]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/shmem.c
mm/shmem.c: distribute switch variables for initialization
[mirror_ubuntu-jammy-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97
98 /*
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
102 */
103 struct shmem_falloc {
104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109 };
110
111 struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
115 kuid_t uid;
116 kgid_t gid;
117 umode_t mode;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp,
148 gfp_t gfp, struct vm_area_struct *vma,
149 struct vm_fault *vmf, vm_fault_t *fault_type);
150
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152 struct page **pagep, enum sgp_type sgp)
153 {
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160 return sb->s_fs_info;
161 }
162
163 /*
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
168 */
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171 return (flags & VM_NORESERVE) ?
172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177 if (!(flags & VM_NORESERVE))
178 vm_unacct_memory(VM_ACCT(size));
179 }
180
181 static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
183 {
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 }
191 return 0;
192 }
193
194 /*
195 * ... whereas tmpfs objects are accounted incrementally as
196 * pages are allocated, in order to allow large sparse files.
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199 */
200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202 if (!(flags & VM_NORESERVE))
203 return 0;
204
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
207 }
208
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211 if (flags & VM_NORESERVE)
212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (shmem_acct_block(info->flags, pages))
221 return false;
222
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
226 goto unacct;
227 percpu_counter_add(&sbinfo->used_blocks, pages);
228 }
229
230 return true;
231
232 unacct:
233 shmem_unacct_blocks(info->flags, pages);
234 return false;
235 }
236
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
245 }
246
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255
256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258 return vma->vm_ops == &shmem_vm_ops;
259 }
260
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263
264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
271 return -ENOSPC;
272 }
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
275 }
276 return 0;
277 }
278
279 static void shmem_free_inode(struct super_block *sb)
280 {
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
286 }
287 }
288
289 /**
290 * shmem_recalc_inode - recalculate the block usage of an inode
291 * @inode: inode to recalc
292 *
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
295 *
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298 *
299 * It has to be called with the spinlock held.
300 */
301 static void shmem_recalc_inode(struct inode *inode)
302 {
303 struct shmem_inode_info *info = SHMEM_I(inode);
304 long freed;
305
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 if (freed > 0) {
308 info->alloced -= freed;
309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 shmem_inode_unacct_blocks(inode, freed);
311 }
312 }
313
314 bool shmem_charge(struct inode *inode, long pages)
315 {
316 struct shmem_inode_info *info = SHMEM_I(inode);
317 unsigned long flags;
318
319 if (!shmem_inode_acct_block(inode, pages))
320 return false;
321
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
324
325 spin_lock_irqsave(&info->lock, flags);
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
329 spin_unlock_irqrestore(&info->lock, flags);
330
331 return true;
332 }
333
334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336 struct shmem_inode_info *info = SHMEM_I(inode);
337 unsigned long flags;
338
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341 spin_lock_irqsave(&info->lock, flags);
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
345 spin_unlock_irqrestore(&info->lock, flags);
346
347 shmem_inode_unacct_blocks(inode, pages);
348 }
349
350 /*
351 * Replace item expected in xarray by a new item, while holding xa_lock.
352 */
353 static int shmem_replace_entry(struct address_space *mapping,
354 pgoff_t index, void *expected, void *replacement)
355 {
356 XA_STATE(xas, &mapping->i_pages, index);
357 void *item;
358
359 VM_BUG_ON(!expected);
360 VM_BUG_ON(!replacement);
361 item = xas_load(&xas);
362 if (item != expected)
363 return -ENOENT;
364 xas_store(&xas, replacement);
365 return 0;
366 }
367
368 /*
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
371 *
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
374 */
375 static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
377 {
378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380
381 /*
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383 *
384 * SHMEM_HUGE_NEVER:
385 * disables huge pages for the mount;
386 * SHMEM_HUGE_ALWAYS:
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
391 * SHMEM_HUGE_ADVISE:
392 * only allocate huge pages if requested with fadvise()/madvise();
393 */
394
395 #define SHMEM_HUGE_NEVER 0
396 #define SHMEM_HUGE_ALWAYS 1
397 #define SHMEM_HUGE_WITHIN_SIZE 2
398 #define SHMEM_HUGE_ADVISE 3
399
400 /*
401 * Special values.
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403 *
404 * SHMEM_HUGE_DENY:
405 * disables huge on shm_mnt and all mounts, for emergency use;
406 * SHMEM_HUGE_FORCE:
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408 *
409 */
410 #define SHMEM_HUGE_DENY (-1)
411 #define SHMEM_HUGE_FORCE (-2)
412
413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415
416 static int shmem_huge __read_mostly;
417
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
420 {
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
433 return -EINVAL;
434 }
435 #endif
436
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
439 {
440 switch (huge) {
441 case SHMEM_HUGE_NEVER:
442 return "never";
443 case SHMEM_HUGE_ALWAYS:
444 return "always";
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
448 return "advise";
449 case SHMEM_HUGE_DENY:
450 return "deny";
451 case SHMEM_HUGE_FORCE:
452 return "force";
453 default:
454 VM_BUG_ON(1);
455 return "bad_val";
456 }
457 }
458 #endif
459
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
462 {
463 LIST_HEAD(list), *pos, *next;
464 LIST_HEAD(to_remove);
465 struct inode *inode;
466 struct shmem_inode_info *info;
467 struct page *page;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int removed = 0, split = 0;
470
471 if (list_empty(&sbinfo->shrinklist))
472 return SHRINK_STOP;
473
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478 /* pin the inode */
479 inode = igrab(&info->vfs_inode);
480
481 /* inode is about to be evicted */
482 if (!inode) {
483 list_del_init(&info->shrinklist);
484 removed++;
485 goto next;
486 }
487
488 /* Check if there's anything to gain */
489 if (round_up(inode->i_size, PAGE_SIZE) ==
490 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491 list_move(&info->shrinklist, &to_remove);
492 removed++;
493 goto next;
494 }
495
496 list_move(&info->shrinklist, &list);
497 next:
498 if (!--batch)
499 break;
500 }
501 spin_unlock(&sbinfo->shrinklist_lock);
502
503 list_for_each_safe(pos, next, &to_remove) {
504 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 inode = &info->vfs_inode;
506 list_del_init(&info->shrinklist);
507 iput(inode);
508 }
509
510 list_for_each_safe(pos, next, &list) {
511 int ret;
512
513 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 inode = &info->vfs_inode;
515
516 if (nr_to_split && split >= nr_to_split)
517 goto leave;
518
519 page = find_get_page(inode->i_mapping,
520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521 if (!page)
522 goto drop;
523
524 /* No huge page at the end of the file: nothing to split */
525 if (!PageTransHuge(page)) {
526 put_page(page);
527 goto drop;
528 }
529
530 /*
531 * Leave the inode on the list if we failed to lock
532 * the page at this time.
533 *
534 * Waiting for the lock may lead to deadlock in the
535 * reclaim path.
536 */
537 if (!trylock_page(page)) {
538 put_page(page);
539 goto leave;
540 }
541
542 ret = split_huge_page(page);
543 unlock_page(page);
544 put_page(page);
545
546 /* If split failed leave the inode on the list */
547 if (ret)
548 goto leave;
549
550 split++;
551 drop:
552 list_del_init(&info->shrinklist);
553 removed++;
554 leave:
555 iput(inode);
556 }
557
558 spin_lock(&sbinfo->shrinklist_lock);
559 list_splice_tail(&list, &sbinfo->shrinklist);
560 sbinfo->shrinklist_len -= removed;
561 spin_unlock(&sbinfo->shrinklist_lock);
562
563 return split;
564 }
565
566 static long shmem_unused_huge_scan(struct super_block *sb,
567 struct shrink_control *sc)
568 {
569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571 if (!READ_ONCE(sbinfo->shrinklist_len))
572 return SHRINK_STOP;
573
574 return shmem_unused_huge_shrink(sbinfo, sc, 0);
575 }
576
577 static long shmem_unused_huge_count(struct super_block *sb,
578 struct shrink_control *sc)
579 {
580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 return READ_ONCE(sbinfo->shrinklist_len);
582 }
583 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
584
585 #define shmem_huge SHMEM_HUGE_DENY
586
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 struct shrink_control *sc, unsigned long nr_to_split)
589 {
590 return 0;
591 }
592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
593
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595 {
596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 shmem_huge != SHMEM_HUGE_DENY)
599 return true;
600 return false;
601 }
602
603 /*
604 * Like add_to_page_cache_locked, but error if expected item has gone.
605 */
606 static int shmem_add_to_page_cache(struct page *page,
607 struct address_space *mapping,
608 pgoff_t index, void *expected, gfp_t gfp)
609 {
610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611 unsigned long i = 0;
612 unsigned long nr = compound_nr(page);
613
614 VM_BUG_ON_PAGE(PageTail(page), page);
615 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
618 VM_BUG_ON(expected && PageTransHuge(page));
619
620 page_ref_add(page, nr);
621 page->mapping = mapping;
622 page->index = index;
623
624 do {
625 void *entry;
626 xas_lock_irq(&xas);
627 entry = xas_find_conflict(&xas);
628 if (entry != expected)
629 xas_set_err(&xas, -EEXIST);
630 xas_create_range(&xas);
631 if (xas_error(&xas))
632 goto unlock;
633 next:
634 xas_store(&xas, page);
635 if (++i < nr) {
636 xas_next(&xas);
637 goto next;
638 }
639 if (PageTransHuge(page)) {
640 count_vm_event(THP_FILE_ALLOC);
641 __inc_node_page_state(page, NR_SHMEM_THPS);
642 }
643 mapping->nrpages += nr;
644 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
646 unlock:
647 xas_unlock_irq(&xas);
648 } while (xas_nomem(&xas, gfp));
649
650 if (xas_error(&xas)) {
651 page->mapping = NULL;
652 page_ref_sub(page, nr);
653 return xas_error(&xas);
654 }
655
656 return 0;
657 }
658
659 /*
660 * Like delete_from_page_cache, but substitutes swap for page.
661 */
662 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
663 {
664 struct address_space *mapping = page->mapping;
665 int error;
666
667 VM_BUG_ON_PAGE(PageCompound(page), page);
668
669 xa_lock_irq(&mapping->i_pages);
670 error = shmem_replace_entry(mapping, page->index, page, radswap);
671 page->mapping = NULL;
672 mapping->nrpages--;
673 __dec_node_page_state(page, NR_FILE_PAGES);
674 __dec_node_page_state(page, NR_SHMEM);
675 xa_unlock_irq(&mapping->i_pages);
676 put_page(page);
677 BUG_ON(error);
678 }
679
680 /*
681 * Remove swap entry from page cache, free the swap and its page cache.
682 */
683 static int shmem_free_swap(struct address_space *mapping,
684 pgoff_t index, void *radswap)
685 {
686 void *old;
687
688 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
689 if (old != radswap)
690 return -ENOENT;
691 free_swap_and_cache(radix_to_swp_entry(radswap));
692 return 0;
693 }
694
695 /*
696 * Determine (in bytes) how many of the shmem object's pages mapped by the
697 * given offsets are swapped out.
698 *
699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
700 * as long as the inode doesn't go away and racy results are not a problem.
701 */
702 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703 pgoff_t start, pgoff_t end)
704 {
705 XA_STATE(xas, &mapping->i_pages, start);
706 struct page *page;
707 unsigned long swapped = 0;
708
709 rcu_read_lock();
710 xas_for_each(&xas, page, end - 1) {
711 if (xas_retry(&xas, page))
712 continue;
713 if (xa_is_value(page))
714 swapped++;
715
716 if (need_resched()) {
717 xas_pause(&xas);
718 cond_resched_rcu();
719 }
720 }
721
722 rcu_read_unlock();
723
724 return swapped << PAGE_SHIFT;
725 }
726
727 /*
728 * Determine (in bytes) how many of the shmem object's pages mapped by the
729 * given vma is swapped out.
730 *
731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
732 * as long as the inode doesn't go away and racy results are not a problem.
733 */
734 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
735 {
736 struct inode *inode = file_inode(vma->vm_file);
737 struct shmem_inode_info *info = SHMEM_I(inode);
738 struct address_space *mapping = inode->i_mapping;
739 unsigned long swapped;
740
741 /* Be careful as we don't hold info->lock */
742 swapped = READ_ONCE(info->swapped);
743
744 /*
745 * The easier cases are when the shmem object has nothing in swap, or
746 * the vma maps it whole. Then we can simply use the stats that we
747 * already track.
748 */
749 if (!swapped)
750 return 0;
751
752 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753 return swapped << PAGE_SHIFT;
754
755 /* Here comes the more involved part */
756 return shmem_partial_swap_usage(mapping,
757 linear_page_index(vma, vma->vm_start),
758 linear_page_index(vma, vma->vm_end));
759 }
760
761 /*
762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
763 */
764 void shmem_unlock_mapping(struct address_space *mapping)
765 {
766 struct pagevec pvec;
767 pgoff_t indices[PAGEVEC_SIZE];
768 pgoff_t index = 0;
769
770 pagevec_init(&pvec);
771 /*
772 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
773 */
774 while (!mapping_unevictable(mapping)) {
775 /*
776 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
778 */
779 pvec.nr = find_get_entries(mapping, index,
780 PAGEVEC_SIZE, pvec.pages, indices);
781 if (!pvec.nr)
782 break;
783 index = indices[pvec.nr - 1] + 1;
784 pagevec_remove_exceptionals(&pvec);
785 check_move_unevictable_pages(&pvec);
786 pagevec_release(&pvec);
787 cond_resched();
788 }
789 }
790
791 /*
792 * Remove range of pages and swap entries from page cache, and free them.
793 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
794 */
795 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
796 bool unfalloc)
797 {
798 struct address_space *mapping = inode->i_mapping;
799 struct shmem_inode_info *info = SHMEM_I(inode);
800 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
801 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
802 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
803 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
804 struct pagevec pvec;
805 pgoff_t indices[PAGEVEC_SIZE];
806 long nr_swaps_freed = 0;
807 pgoff_t index;
808 int i;
809
810 if (lend == -1)
811 end = -1; /* unsigned, so actually very big */
812
813 pagevec_init(&pvec);
814 index = start;
815 while (index < end) {
816 pvec.nr = find_get_entries(mapping, index,
817 min(end - index, (pgoff_t)PAGEVEC_SIZE),
818 pvec.pages, indices);
819 if (!pvec.nr)
820 break;
821 for (i = 0; i < pagevec_count(&pvec); i++) {
822 struct page *page = pvec.pages[i];
823
824 index = indices[i];
825 if (index >= end)
826 break;
827
828 if (xa_is_value(page)) {
829 if (unfalloc)
830 continue;
831 nr_swaps_freed += !shmem_free_swap(mapping,
832 index, page);
833 continue;
834 }
835
836 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
837
838 if (!trylock_page(page))
839 continue;
840
841 if (PageTransTail(page)) {
842 /* Middle of THP: zero out the page */
843 clear_highpage(page);
844 unlock_page(page);
845 continue;
846 } else if (PageTransHuge(page)) {
847 if (index == round_down(end, HPAGE_PMD_NR)) {
848 /*
849 * Range ends in the middle of THP:
850 * zero out the page
851 */
852 clear_highpage(page);
853 unlock_page(page);
854 continue;
855 }
856 index += HPAGE_PMD_NR - 1;
857 i += HPAGE_PMD_NR - 1;
858 }
859
860 if (!unfalloc || !PageUptodate(page)) {
861 VM_BUG_ON_PAGE(PageTail(page), page);
862 if (page_mapping(page) == mapping) {
863 VM_BUG_ON_PAGE(PageWriteback(page), page);
864 truncate_inode_page(mapping, page);
865 }
866 }
867 unlock_page(page);
868 }
869 pagevec_remove_exceptionals(&pvec);
870 pagevec_release(&pvec);
871 cond_resched();
872 index++;
873 }
874
875 if (partial_start) {
876 struct page *page = NULL;
877 shmem_getpage(inode, start - 1, &page, SGP_READ);
878 if (page) {
879 unsigned int top = PAGE_SIZE;
880 if (start > end) {
881 top = partial_end;
882 partial_end = 0;
883 }
884 zero_user_segment(page, partial_start, top);
885 set_page_dirty(page);
886 unlock_page(page);
887 put_page(page);
888 }
889 }
890 if (partial_end) {
891 struct page *page = NULL;
892 shmem_getpage(inode, end, &page, SGP_READ);
893 if (page) {
894 zero_user_segment(page, 0, partial_end);
895 set_page_dirty(page);
896 unlock_page(page);
897 put_page(page);
898 }
899 }
900 if (start >= end)
901 return;
902
903 index = start;
904 while (index < end) {
905 cond_resched();
906
907 pvec.nr = find_get_entries(mapping, index,
908 min(end - index, (pgoff_t)PAGEVEC_SIZE),
909 pvec.pages, indices);
910 if (!pvec.nr) {
911 /* If all gone or hole-punch or unfalloc, we're done */
912 if (index == start || end != -1)
913 break;
914 /* But if truncating, restart to make sure all gone */
915 index = start;
916 continue;
917 }
918 for (i = 0; i < pagevec_count(&pvec); i++) {
919 struct page *page = pvec.pages[i];
920
921 index = indices[i];
922 if (index >= end)
923 break;
924
925 if (xa_is_value(page)) {
926 if (unfalloc)
927 continue;
928 if (shmem_free_swap(mapping, index, page)) {
929 /* Swap was replaced by page: retry */
930 index--;
931 break;
932 }
933 nr_swaps_freed++;
934 continue;
935 }
936
937 lock_page(page);
938
939 if (PageTransTail(page)) {
940 /* Middle of THP: zero out the page */
941 clear_highpage(page);
942 unlock_page(page);
943 /*
944 * Partial thp truncate due 'start' in middle
945 * of THP: don't need to look on these pages
946 * again on !pvec.nr restart.
947 */
948 if (index != round_down(end, HPAGE_PMD_NR))
949 start++;
950 continue;
951 } else if (PageTransHuge(page)) {
952 if (index == round_down(end, HPAGE_PMD_NR)) {
953 /*
954 * Range ends in the middle of THP:
955 * zero out the page
956 */
957 clear_highpage(page);
958 unlock_page(page);
959 continue;
960 }
961 index += HPAGE_PMD_NR - 1;
962 i += HPAGE_PMD_NR - 1;
963 }
964
965 if (!unfalloc || !PageUptodate(page)) {
966 VM_BUG_ON_PAGE(PageTail(page), page);
967 if (page_mapping(page) == mapping) {
968 VM_BUG_ON_PAGE(PageWriteback(page), page);
969 truncate_inode_page(mapping, page);
970 } else {
971 /* Page was replaced by swap: retry */
972 unlock_page(page);
973 index--;
974 break;
975 }
976 }
977 unlock_page(page);
978 }
979 pagevec_remove_exceptionals(&pvec);
980 pagevec_release(&pvec);
981 index++;
982 }
983
984 spin_lock_irq(&info->lock);
985 info->swapped -= nr_swaps_freed;
986 shmem_recalc_inode(inode);
987 spin_unlock_irq(&info->lock);
988 }
989
990 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
991 {
992 shmem_undo_range(inode, lstart, lend, false);
993 inode->i_ctime = inode->i_mtime = current_time(inode);
994 }
995 EXPORT_SYMBOL_GPL(shmem_truncate_range);
996
997 static int shmem_getattr(const struct path *path, struct kstat *stat,
998 u32 request_mask, unsigned int query_flags)
999 {
1000 struct inode *inode = path->dentry->d_inode;
1001 struct shmem_inode_info *info = SHMEM_I(inode);
1002 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1003
1004 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1005 spin_lock_irq(&info->lock);
1006 shmem_recalc_inode(inode);
1007 spin_unlock_irq(&info->lock);
1008 }
1009 generic_fillattr(inode, stat);
1010
1011 if (is_huge_enabled(sb_info))
1012 stat->blksize = HPAGE_PMD_SIZE;
1013
1014 return 0;
1015 }
1016
1017 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1018 {
1019 struct inode *inode = d_inode(dentry);
1020 struct shmem_inode_info *info = SHMEM_I(inode);
1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022 int error;
1023
1024 error = setattr_prepare(dentry, attr);
1025 if (error)
1026 return error;
1027
1028 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1029 loff_t oldsize = inode->i_size;
1030 loff_t newsize = attr->ia_size;
1031
1032 /* protected by i_mutex */
1033 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1034 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1035 return -EPERM;
1036
1037 if (newsize != oldsize) {
1038 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1039 oldsize, newsize);
1040 if (error)
1041 return error;
1042 i_size_write(inode, newsize);
1043 inode->i_ctime = inode->i_mtime = current_time(inode);
1044 }
1045 if (newsize <= oldsize) {
1046 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1047 if (oldsize > holebegin)
1048 unmap_mapping_range(inode->i_mapping,
1049 holebegin, 0, 1);
1050 if (info->alloced)
1051 shmem_truncate_range(inode,
1052 newsize, (loff_t)-1);
1053 /* unmap again to remove racily COWed private pages */
1054 if (oldsize > holebegin)
1055 unmap_mapping_range(inode->i_mapping,
1056 holebegin, 0, 1);
1057
1058 /*
1059 * Part of the huge page can be beyond i_size: subject
1060 * to shrink under memory pressure.
1061 */
1062 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1063 spin_lock(&sbinfo->shrinklist_lock);
1064 /*
1065 * _careful to defend against unlocked access to
1066 * ->shrink_list in shmem_unused_huge_shrink()
1067 */
1068 if (list_empty_careful(&info->shrinklist)) {
1069 list_add_tail(&info->shrinklist,
1070 &sbinfo->shrinklist);
1071 sbinfo->shrinklist_len++;
1072 }
1073 spin_unlock(&sbinfo->shrinklist_lock);
1074 }
1075 }
1076 }
1077
1078 setattr_copy(inode, attr);
1079 if (attr->ia_valid & ATTR_MODE)
1080 error = posix_acl_chmod(inode, inode->i_mode);
1081 return error;
1082 }
1083
1084 static void shmem_evict_inode(struct inode *inode)
1085 {
1086 struct shmem_inode_info *info = SHMEM_I(inode);
1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088
1089 if (inode->i_mapping->a_ops == &shmem_aops) {
1090 shmem_unacct_size(info->flags, inode->i_size);
1091 inode->i_size = 0;
1092 shmem_truncate_range(inode, 0, (loff_t)-1);
1093 if (!list_empty(&info->shrinklist)) {
1094 spin_lock(&sbinfo->shrinklist_lock);
1095 if (!list_empty(&info->shrinklist)) {
1096 list_del_init(&info->shrinklist);
1097 sbinfo->shrinklist_len--;
1098 }
1099 spin_unlock(&sbinfo->shrinklist_lock);
1100 }
1101 while (!list_empty(&info->swaplist)) {
1102 /* Wait while shmem_unuse() is scanning this inode... */
1103 wait_var_event(&info->stop_eviction,
1104 !atomic_read(&info->stop_eviction));
1105 mutex_lock(&shmem_swaplist_mutex);
1106 /* ...but beware of the race if we peeked too early */
1107 if (!atomic_read(&info->stop_eviction))
1108 list_del_init(&info->swaplist);
1109 mutex_unlock(&shmem_swaplist_mutex);
1110 }
1111 }
1112
1113 simple_xattrs_free(&info->xattrs);
1114 WARN_ON(inode->i_blocks);
1115 shmem_free_inode(inode->i_sb);
1116 clear_inode(inode);
1117 }
1118
1119 extern struct swap_info_struct *swap_info[];
1120
1121 static int shmem_find_swap_entries(struct address_space *mapping,
1122 pgoff_t start, unsigned int nr_entries,
1123 struct page **entries, pgoff_t *indices,
1124 unsigned int type, bool frontswap)
1125 {
1126 XA_STATE(xas, &mapping->i_pages, start);
1127 struct page *page;
1128 swp_entry_t entry;
1129 unsigned int ret = 0;
1130
1131 if (!nr_entries)
1132 return 0;
1133
1134 rcu_read_lock();
1135 xas_for_each(&xas, page, ULONG_MAX) {
1136 if (xas_retry(&xas, page))
1137 continue;
1138
1139 if (!xa_is_value(page))
1140 continue;
1141
1142 entry = radix_to_swp_entry(page);
1143 if (swp_type(entry) != type)
1144 continue;
1145 if (frontswap &&
1146 !frontswap_test(swap_info[type], swp_offset(entry)))
1147 continue;
1148
1149 indices[ret] = xas.xa_index;
1150 entries[ret] = page;
1151
1152 if (need_resched()) {
1153 xas_pause(&xas);
1154 cond_resched_rcu();
1155 }
1156 if (++ret == nr_entries)
1157 break;
1158 }
1159 rcu_read_unlock();
1160
1161 return ret;
1162 }
1163
1164 /*
1165 * Move the swapped pages for an inode to page cache. Returns the count
1166 * of pages swapped in, or the error in case of failure.
1167 */
1168 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1169 pgoff_t *indices)
1170 {
1171 int i = 0;
1172 int ret = 0;
1173 int error = 0;
1174 struct address_space *mapping = inode->i_mapping;
1175
1176 for (i = 0; i < pvec.nr; i++) {
1177 struct page *page = pvec.pages[i];
1178
1179 if (!xa_is_value(page))
1180 continue;
1181 error = shmem_swapin_page(inode, indices[i],
1182 &page, SGP_CACHE,
1183 mapping_gfp_mask(mapping),
1184 NULL, NULL);
1185 if (error == 0) {
1186 unlock_page(page);
1187 put_page(page);
1188 ret++;
1189 }
1190 if (error == -ENOMEM)
1191 break;
1192 error = 0;
1193 }
1194 return error ? error : ret;
1195 }
1196
1197 /*
1198 * If swap found in inode, free it and move page from swapcache to filecache.
1199 */
1200 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1201 bool frontswap, unsigned long *fs_pages_to_unuse)
1202 {
1203 struct address_space *mapping = inode->i_mapping;
1204 pgoff_t start = 0;
1205 struct pagevec pvec;
1206 pgoff_t indices[PAGEVEC_SIZE];
1207 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1208 int ret = 0;
1209
1210 pagevec_init(&pvec);
1211 do {
1212 unsigned int nr_entries = PAGEVEC_SIZE;
1213
1214 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1215 nr_entries = *fs_pages_to_unuse;
1216
1217 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1218 pvec.pages, indices,
1219 type, frontswap);
1220 if (pvec.nr == 0) {
1221 ret = 0;
1222 break;
1223 }
1224
1225 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1226 if (ret < 0)
1227 break;
1228
1229 if (frontswap_partial) {
1230 *fs_pages_to_unuse -= ret;
1231 if (*fs_pages_to_unuse == 0) {
1232 ret = FRONTSWAP_PAGES_UNUSED;
1233 break;
1234 }
1235 }
1236
1237 start = indices[pvec.nr - 1];
1238 } while (true);
1239
1240 return ret;
1241 }
1242
1243 /*
1244 * Read all the shared memory data that resides in the swap
1245 * device 'type' back into memory, so the swap device can be
1246 * unused.
1247 */
1248 int shmem_unuse(unsigned int type, bool frontswap,
1249 unsigned long *fs_pages_to_unuse)
1250 {
1251 struct shmem_inode_info *info, *next;
1252 int error = 0;
1253
1254 if (list_empty(&shmem_swaplist))
1255 return 0;
1256
1257 mutex_lock(&shmem_swaplist_mutex);
1258 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1259 if (!info->swapped) {
1260 list_del_init(&info->swaplist);
1261 continue;
1262 }
1263 /*
1264 * Drop the swaplist mutex while searching the inode for swap;
1265 * but before doing so, make sure shmem_evict_inode() will not
1266 * remove placeholder inode from swaplist, nor let it be freed
1267 * (igrab() would protect from unlink, but not from unmount).
1268 */
1269 atomic_inc(&info->stop_eviction);
1270 mutex_unlock(&shmem_swaplist_mutex);
1271
1272 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1273 fs_pages_to_unuse);
1274 cond_resched();
1275
1276 mutex_lock(&shmem_swaplist_mutex);
1277 next = list_next_entry(info, swaplist);
1278 if (!info->swapped)
1279 list_del_init(&info->swaplist);
1280 if (atomic_dec_and_test(&info->stop_eviction))
1281 wake_up_var(&info->stop_eviction);
1282 if (error)
1283 break;
1284 }
1285 mutex_unlock(&shmem_swaplist_mutex);
1286
1287 return error;
1288 }
1289
1290 /*
1291 * Move the page from the page cache to the swap cache.
1292 */
1293 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1294 {
1295 struct shmem_inode_info *info;
1296 struct address_space *mapping;
1297 struct inode *inode;
1298 swp_entry_t swap;
1299 pgoff_t index;
1300
1301 VM_BUG_ON_PAGE(PageCompound(page), page);
1302 BUG_ON(!PageLocked(page));
1303 mapping = page->mapping;
1304 index = page->index;
1305 inode = mapping->host;
1306 info = SHMEM_I(inode);
1307 if (info->flags & VM_LOCKED)
1308 goto redirty;
1309 if (!total_swap_pages)
1310 goto redirty;
1311
1312 /*
1313 * Our capabilities prevent regular writeback or sync from ever calling
1314 * shmem_writepage; but a stacking filesystem might use ->writepage of
1315 * its underlying filesystem, in which case tmpfs should write out to
1316 * swap only in response to memory pressure, and not for the writeback
1317 * threads or sync.
1318 */
1319 if (!wbc->for_reclaim) {
1320 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1321 goto redirty;
1322 }
1323
1324 /*
1325 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1326 * value into swapfile.c, the only way we can correctly account for a
1327 * fallocated page arriving here is now to initialize it and write it.
1328 *
1329 * That's okay for a page already fallocated earlier, but if we have
1330 * not yet completed the fallocation, then (a) we want to keep track
1331 * of this page in case we have to undo it, and (b) it may not be a
1332 * good idea to continue anyway, once we're pushing into swap. So
1333 * reactivate the page, and let shmem_fallocate() quit when too many.
1334 */
1335 if (!PageUptodate(page)) {
1336 if (inode->i_private) {
1337 struct shmem_falloc *shmem_falloc;
1338 spin_lock(&inode->i_lock);
1339 shmem_falloc = inode->i_private;
1340 if (shmem_falloc &&
1341 !shmem_falloc->waitq &&
1342 index >= shmem_falloc->start &&
1343 index < shmem_falloc->next)
1344 shmem_falloc->nr_unswapped++;
1345 else
1346 shmem_falloc = NULL;
1347 spin_unlock(&inode->i_lock);
1348 if (shmem_falloc)
1349 goto redirty;
1350 }
1351 clear_highpage(page);
1352 flush_dcache_page(page);
1353 SetPageUptodate(page);
1354 }
1355
1356 swap = get_swap_page(page);
1357 if (!swap.val)
1358 goto redirty;
1359
1360 /*
1361 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1362 * if it's not already there. Do it now before the page is
1363 * moved to swap cache, when its pagelock no longer protects
1364 * the inode from eviction. But don't unlock the mutex until
1365 * we've incremented swapped, because shmem_unuse_inode() will
1366 * prune a !swapped inode from the swaplist under this mutex.
1367 */
1368 mutex_lock(&shmem_swaplist_mutex);
1369 if (list_empty(&info->swaplist))
1370 list_add(&info->swaplist, &shmem_swaplist);
1371
1372 if (add_to_swap_cache(page, swap,
1373 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1374 spin_lock_irq(&info->lock);
1375 shmem_recalc_inode(inode);
1376 info->swapped++;
1377 spin_unlock_irq(&info->lock);
1378
1379 swap_shmem_alloc(swap);
1380 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1381
1382 mutex_unlock(&shmem_swaplist_mutex);
1383 BUG_ON(page_mapped(page));
1384 swap_writepage(page, wbc);
1385 return 0;
1386 }
1387
1388 mutex_unlock(&shmem_swaplist_mutex);
1389 put_swap_page(page, swap);
1390 redirty:
1391 set_page_dirty(page);
1392 if (wbc->for_reclaim)
1393 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1394 unlock_page(page);
1395 return 0;
1396 }
1397
1398 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1399 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1400 {
1401 char buffer[64];
1402
1403 if (!mpol || mpol->mode == MPOL_DEFAULT)
1404 return; /* show nothing */
1405
1406 mpol_to_str(buffer, sizeof(buffer), mpol);
1407
1408 seq_printf(seq, ",mpol=%s", buffer);
1409 }
1410
1411 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1412 {
1413 struct mempolicy *mpol = NULL;
1414 if (sbinfo->mpol) {
1415 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1416 mpol = sbinfo->mpol;
1417 mpol_get(mpol);
1418 spin_unlock(&sbinfo->stat_lock);
1419 }
1420 return mpol;
1421 }
1422 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1423 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1424 {
1425 }
1426 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1427 {
1428 return NULL;
1429 }
1430 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1431 #ifndef CONFIG_NUMA
1432 #define vm_policy vm_private_data
1433 #endif
1434
1435 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1436 struct shmem_inode_info *info, pgoff_t index)
1437 {
1438 /* Create a pseudo vma that just contains the policy */
1439 vma_init(vma, NULL);
1440 /* Bias interleave by inode number to distribute better across nodes */
1441 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1442 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1443 }
1444
1445 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1446 {
1447 /* Drop reference taken by mpol_shared_policy_lookup() */
1448 mpol_cond_put(vma->vm_policy);
1449 }
1450
1451 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1452 struct shmem_inode_info *info, pgoff_t index)
1453 {
1454 struct vm_area_struct pvma;
1455 struct page *page;
1456 struct vm_fault vmf;
1457
1458 shmem_pseudo_vma_init(&pvma, info, index);
1459 vmf.vma = &pvma;
1460 vmf.address = 0;
1461 page = swap_cluster_readahead(swap, gfp, &vmf);
1462 shmem_pseudo_vma_destroy(&pvma);
1463
1464 return page;
1465 }
1466
1467 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1468 struct shmem_inode_info *info, pgoff_t index)
1469 {
1470 struct vm_area_struct pvma;
1471 struct address_space *mapping = info->vfs_inode.i_mapping;
1472 pgoff_t hindex;
1473 struct page *page;
1474
1475 hindex = round_down(index, HPAGE_PMD_NR);
1476 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1477 XA_PRESENT))
1478 return NULL;
1479
1480 shmem_pseudo_vma_init(&pvma, info, hindex);
1481 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1482 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1483 shmem_pseudo_vma_destroy(&pvma);
1484 if (page)
1485 prep_transhuge_page(page);
1486 else
1487 count_vm_event(THP_FILE_FALLBACK);
1488 return page;
1489 }
1490
1491 static struct page *shmem_alloc_page(gfp_t gfp,
1492 struct shmem_inode_info *info, pgoff_t index)
1493 {
1494 struct vm_area_struct pvma;
1495 struct page *page;
1496
1497 shmem_pseudo_vma_init(&pvma, info, index);
1498 page = alloc_page_vma(gfp, &pvma, 0);
1499 shmem_pseudo_vma_destroy(&pvma);
1500
1501 return page;
1502 }
1503
1504 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1505 struct inode *inode,
1506 pgoff_t index, bool huge)
1507 {
1508 struct shmem_inode_info *info = SHMEM_I(inode);
1509 struct page *page;
1510 int nr;
1511 int err = -ENOSPC;
1512
1513 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1514 huge = false;
1515 nr = huge ? HPAGE_PMD_NR : 1;
1516
1517 if (!shmem_inode_acct_block(inode, nr))
1518 goto failed;
1519
1520 if (huge)
1521 page = shmem_alloc_hugepage(gfp, info, index);
1522 else
1523 page = shmem_alloc_page(gfp, info, index);
1524 if (page) {
1525 __SetPageLocked(page);
1526 __SetPageSwapBacked(page);
1527 return page;
1528 }
1529
1530 err = -ENOMEM;
1531 shmem_inode_unacct_blocks(inode, nr);
1532 failed:
1533 return ERR_PTR(err);
1534 }
1535
1536 /*
1537 * When a page is moved from swapcache to shmem filecache (either by the
1538 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1539 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1540 * ignorance of the mapping it belongs to. If that mapping has special
1541 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1542 * we may need to copy to a suitable page before moving to filecache.
1543 *
1544 * In a future release, this may well be extended to respect cpuset and
1545 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1546 * but for now it is a simple matter of zone.
1547 */
1548 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1549 {
1550 return page_zonenum(page) > gfp_zone(gfp);
1551 }
1552
1553 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1554 struct shmem_inode_info *info, pgoff_t index)
1555 {
1556 struct page *oldpage, *newpage;
1557 struct address_space *swap_mapping;
1558 swp_entry_t entry;
1559 pgoff_t swap_index;
1560 int error;
1561
1562 oldpage = *pagep;
1563 entry.val = page_private(oldpage);
1564 swap_index = swp_offset(entry);
1565 swap_mapping = page_mapping(oldpage);
1566
1567 /*
1568 * We have arrived here because our zones are constrained, so don't
1569 * limit chance of success by further cpuset and node constraints.
1570 */
1571 gfp &= ~GFP_CONSTRAINT_MASK;
1572 newpage = shmem_alloc_page(gfp, info, index);
1573 if (!newpage)
1574 return -ENOMEM;
1575
1576 get_page(newpage);
1577 copy_highpage(newpage, oldpage);
1578 flush_dcache_page(newpage);
1579
1580 __SetPageLocked(newpage);
1581 __SetPageSwapBacked(newpage);
1582 SetPageUptodate(newpage);
1583 set_page_private(newpage, entry.val);
1584 SetPageSwapCache(newpage);
1585
1586 /*
1587 * Our caller will very soon move newpage out of swapcache, but it's
1588 * a nice clean interface for us to replace oldpage by newpage there.
1589 */
1590 xa_lock_irq(&swap_mapping->i_pages);
1591 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1592 if (!error) {
1593 __inc_node_page_state(newpage, NR_FILE_PAGES);
1594 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1595 }
1596 xa_unlock_irq(&swap_mapping->i_pages);
1597
1598 if (unlikely(error)) {
1599 /*
1600 * Is this possible? I think not, now that our callers check
1601 * both PageSwapCache and page_private after getting page lock;
1602 * but be defensive. Reverse old to newpage for clear and free.
1603 */
1604 oldpage = newpage;
1605 } else {
1606 mem_cgroup_migrate(oldpage, newpage);
1607 lru_cache_add_anon(newpage);
1608 *pagep = newpage;
1609 }
1610
1611 ClearPageSwapCache(oldpage);
1612 set_page_private(oldpage, 0);
1613
1614 unlock_page(oldpage);
1615 put_page(oldpage);
1616 put_page(oldpage);
1617 return error;
1618 }
1619
1620 /*
1621 * Swap in the page pointed to by *pagep.
1622 * Caller has to make sure that *pagep contains a valid swapped page.
1623 * Returns 0 and the page in pagep if success. On failure, returns the
1624 * the error code and NULL in *pagep.
1625 */
1626 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1627 struct page **pagep, enum sgp_type sgp,
1628 gfp_t gfp, struct vm_area_struct *vma,
1629 vm_fault_t *fault_type)
1630 {
1631 struct address_space *mapping = inode->i_mapping;
1632 struct shmem_inode_info *info = SHMEM_I(inode);
1633 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1634 struct mem_cgroup *memcg;
1635 struct page *page;
1636 swp_entry_t swap;
1637 int error;
1638
1639 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1640 swap = radix_to_swp_entry(*pagep);
1641 *pagep = NULL;
1642
1643 /* Look it up and read it in.. */
1644 page = lookup_swap_cache(swap, NULL, 0);
1645 if (!page) {
1646 /* Or update major stats only when swapin succeeds?? */
1647 if (fault_type) {
1648 *fault_type |= VM_FAULT_MAJOR;
1649 count_vm_event(PGMAJFAULT);
1650 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1651 }
1652 /* Here we actually start the io */
1653 page = shmem_swapin(swap, gfp, info, index);
1654 if (!page) {
1655 error = -ENOMEM;
1656 goto failed;
1657 }
1658 }
1659
1660 /* We have to do this with page locked to prevent races */
1661 lock_page(page);
1662 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1663 !shmem_confirm_swap(mapping, index, swap)) {
1664 error = -EEXIST;
1665 goto unlock;
1666 }
1667 if (!PageUptodate(page)) {
1668 error = -EIO;
1669 goto failed;
1670 }
1671 wait_on_page_writeback(page);
1672
1673 if (shmem_should_replace_page(page, gfp)) {
1674 error = shmem_replace_page(&page, gfp, info, index);
1675 if (error)
1676 goto failed;
1677 }
1678
1679 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1680 false);
1681 if (!error) {
1682 error = shmem_add_to_page_cache(page, mapping, index,
1683 swp_to_radix_entry(swap), gfp);
1684 /*
1685 * We already confirmed swap under page lock, and make
1686 * no memory allocation here, so usually no possibility
1687 * of error; but free_swap_and_cache() only trylocks a
1688 * page, so it is just possible that the entry has been
1689 * truncated or holepunched since swap was confirmed.
1690 * shmem_undo_range() will have done some of the
1691 * unaccounting, now delete_from_swap_cache() will do
1692 * the rest.
1693 */
1694 if (error) {
1695 mem_cgroup_cancel_charge(page, memcg, false);
1696 delete_from_swap_cache(page);
1697 }
1698 }
1699 if (error)
1700 goto failed;
1701
1702 mem_cgroup_commit_charge(page, memcg, true, false);
1703
1704 spin_lock_irq(&info->lock);
1705 info->swapped--;
1706 shmem_recalc_inode(inode);
1707 spin_unlock_irq(&info->lock);
1708
1709 if (sgp == SGP_WRITE)
1710 mark_page_accessed(page);
1711
1712 delete_from_swap_cache(page);
1713 set_page_dirty(page);
1714 swap_free(swap);
1715
1716 *pagep = page;
1717 return 0;
1718 failed:
1719 if (!shmem_confirm_swap(mapping, index, swap))
1720 error = -EEXIST;
1721 unlock:
1722 if (page) {
1723 unlock_page(page);
1724 put_page(page);
1725 }
1726
1727 return error;
1728 }
1729
1730 /*
1731 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1732 *
1733 * If we allocate a new one we do not mark it dirty. That's up to the
1734 * vm. If we swap it in we mark it dirty since we also free the swap
1735 * entry since a page cannot live in both the swap and page cache.
1736 *
1737 * vmf and fault_type are only supplied by shmem_fault:
1738 * otherwise they are NULL.
1739 */
1740 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1741 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1742 struct vm_area_struct *vma, struct vm_fault *vmf,
1743 vm_fault_t *fault_type)
1744 {
1745 struct address_space *mapping = inode->i_mapping;
1746 struct shmem_inode_info *info = SHMEM_I(inode);
1747 struct shmem_sb_info *sbinfo;
1748 struct mm_struct *charge_mm;
1749 struct mem_cgroup *memcg;
1750 struct page *page;
1751 enum sgp_type sgp_huge = sgp;
1752 pgoff_t hindex = index;
1753 int error;
1754 int once = 0;
1755 int alloced = 0;
1756
1757 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1758 return -EFBIG;
1759 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1760 sgp = SGP_CACHE;
1761 repeat:
1762 if (sgp <= SGP_CACHE &&
1763 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1764 return -EINVAL;
1765 }
1766
1767 sbinfo = SHMEM_SB(inode->i_sb);
1768 charge_mm = vma ? vma->vm_mm : current->mm;
1769
1770 page = find_lock_entry(mapping, index);
1771 if (xa_is_value(page)) {
1772 error = shmem_swapin_page(inode, index, &page,
1773 sgp, gfp, vma, fault_type);
1774 if (error == -EEXIST)
1775 goto repeat;
1776
1777 *pagep = page;
1778 return error;
1779 }
1780
1781 if (page && sgp == SGP_WRITE)
1782 mark_page_accessed(page);
1783
1784 /* fallocated page? */
1785 if (page && !PageUptodate(page)) {
1786 if (sgp != SGP_READ)
1787 goto clear;
1788 unlock_page(page);
1789 put_page(page);
1790 page = NULL;
1791 }
1792 if (page || sgp == SGP_READ) {
1793 *pagep = page;
1794 return 0;
1795 }
1796
1797 /*
1798 * Fast cache lookup did not find it:
1799 * bring it back from swap or allocate.
1800 */
1801
1802 if (vma && userfaultfd_missing(vma)) {
1803 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1804 return 0;
1805 }
1806
1807 /* shmem_symlink() */
1808 if (mapping->a_ops != &shmem_aops)
1809 goto alloc_nohuge;
1810 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1811 goto alloc_nohuge;
1812 if (shmem_huge == SHMEM_HUGE_FORCE)
1813 goto alloc_huge;
1814 switch (sbinfo->huge) {
1815 case SHMEM_HUGE_NEVER:
1816 goto alloc_nohuge;
1817 case SHMEM_HUGE_WITHIN_SIZE: {
1818 loff_t i_size;
1819 pgoff_t off;
1820
1821 off = round_up(index, HPAGE_PMD_NR);
1822 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1823 if (i_size >= HPAGE_PMD_SIZE &&
1824 i_size >> PAGE_SHIFT >= off)
1825 goto alloc_huge;
1826
1827 fallthrough;
1828 }
1829 case SHMEM_HUGE_ADVISE:
1830 if (sgp_huge == SGP_HUGE)
1831 goto alloc_huge;
1832 /* TODO: implement fadvise() hints */
1833 goto alloc_nohuge;
1834 }
1835
1836 alloc_huge:
1837 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1838 if (IS_ERR(page)) {
1839 alloc_nohuge:
1840 page = shmem_alloc_and_acct_page(gfp, inode,
1841 index, false);
1842 }
1843 if (IS_ERR(page)) {
1844 int retry = 5;
1845
1846 error = PTR_ERR(page);
1847 page = NULL;
1848 if (error != -ENOSPC)
1849 goto unlock;
1850 /*
1851 * Try to reclaim some space by splitting a huge page
1852 * beyond i_size on the filesystem.
1853 */
1854 while (retry--) {
1855 int ret;
1856
1857 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1858 if (ret == SHRINK_STOP)
1859 break;
1860 if (ret)
1861 goto alloc_nohuge;
1862 }
1863 goto unlock;
1864 }
1865
1866 if (PageTransHuge(page))
1867 hindex = round_down(index, HPAGE_PMD_NR);
1868 else
1869 hindex = index;
1870
1871 if (sgp == SGP_WRITE)
1872 __SetPageReferenced(page);
1873
1874 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1875 PageTransHuge(page));
1876 if (error) {
1877 if (PageTransHuge(page)) {
1878 count_vm_event(THP_FILE_FALLBACK);
1879 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1880 }
1881 goto unacct;
1882 }
1883 error = shmem_add_to_page_cache(page, mapping, hindex,
1884 NULL, gfp & GFP_RECLAIM_MASK);
1885 if (error) {
1886 mem_cgroup_cancel_charge(page, memcg,
1887 PageTransHuge(page));
1888 goto unacct;
1889 }
1890 mem_cgroup_commit_charge(page, memcg, false,
1891 PageTransHuge(page));
1892 lru_cache_add_anon(page);
1893
1894 spin_lock_irq(&info->lock);
1895 info->alloced += compound_nr(page);
1896 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1897 shmem_recalc_inode(inode);
1898 spin_unlock_irq(&info->lock);
1899 alloced = true;
1900
1901 if (PageTransHuge(page) &&
1902 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1903 hindex + HPAGE_PMD_NR - 1) {
1904 /*
1905 * Part of the huge page is beyond i_size: subject
1906 * to shrink under memory pressure.
1907 */
1908 spin_lock(&sbinfo->shrinklist_lock);
1909 /*
1910 * _careful to defend against unlocked access to
1911 * ->shrink_list in shmem_unused_huge_shrink()
1912 */
1913 if (list_empty_careful(&info->shrinklist)) {
1914 list_add_tail(&info->shrinklist,
1915 &sbinfo->shrinklist);
1916 sbinfo->shrinklist_len++;
1917 }
1918 spin_unlock(&sbinfo->shrinklist_lock);
1919 }
1920
1921 /*
1922 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1923 */
1924 if (sgp == SGP_FALLOC)
1925 sgp = SGP_WRITE;
1926 clear:
1927 /*
1928 * Let SGP_WRITE caller clear ends if write does not fill page;
1929 * but SGP_FALLOC on a page fallocated earlier must initialize
1930 * it now, lest undo on failure cancel our earlier guarantee.
1931 */
1932 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1933 struct page *head = compound_head(page);
1934 int i;
1935
1936 for (i = 0; i < compound_nr(head); i++) {
1937 clear_highpage(head + i);
1938 flush_dcache_page(head + i);
1939 }
1940 SetPageUptodate(head);
1941 }
1942
1943 /* Perhaps the file has been truncated since we checked */
1944 if (sgp <= SGP_CACHE &&
1945 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1946 if (alloced) {
1947 ClearPageDirty(page);
1948 delete_from_page_cache(page);
1949 spin_lock_irq(&info->lock);
1950 shmem_recalc_inode(inode);
1951 spin_unlock_irq(&info->lock);
1952 }
1953 error = -EINVAL;
1954 goto unlock;
1955 }
1956 *pagep = page + index - hindex;
1957 return 0;
1958
1959 /*
1960 * Error recovery.
1961 */
1962 unacct:
1963 shmem_inode_unacct_blocks(inode, compound_nr(page));
1964
1965 if (PageTransHuge(page)) {
1966 unlock_page(page);
1967 put_page(page);
1968 goto alloc_nohuge;
1969 }
1970 unlock:
1971 if (page) {
1972 unlock_page(page);
1973 put_page(page);
1974 }
1975 if (error == -ENOSPC && !once++) {
1976 spin_lock_irq(&info->lock);
1977 shmem_recalc_inode(inode);
1978 spin_unlock_irq(&info->lock);
1979 goto repeat;
1980 }
1981 if (error == -EEXIST)
1982 goto repeat;
1983 return error;
1984 }
1985
1986 /*
1987 * This is like autoremove_wake_function, but it removes the wait queue
1988 * entry unconditionally - even if something else had already woken the
1989 * target.
1990 */
1991 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1992 {
1993 int ret = default_wake_function(wait, mode, sync, key);
1994 list_del_init(&wait->entry);
1995 return ret;
1996 }
1997
1998 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1999 {
2000 struct vm_area_struct *vma = vmf->vma;
2001 struct inode *inode = file_inode(vma->vm_file);
2002 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2003 enum sgp_type sgp;
2004 int err;
2005 vm_fault_t ret = VM_FAULT_LOCKED;
2006
2007 /*
2008 * Trinity finds that probing a hole which tmpfs is punching can
2009 * prevent the hole-punch from ever completing: which in turn
2010 * locks writers out with its hold on i_mutex. So refrain from
2011 * faulting pages into the hole while it's being punched. Although
2012 * shmem_undo_range() does remove the additions, it may be unable to
2013 * keep up, as each new page needs its own unmap_mapping_range() call,
2014 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2015 *
2016 * It does not matter if we sometimes reach this check just before the
2017 * hole-punch begins, so that one fault then races with the punch:
2018 * we just need to make racing faults a rare case.
2019 *
2020 * The implementation below would be much simpler if we just used a
2021 * standard mutex or completion: but we cannot take i_mutex in fault,
2022 * and bloating every shmem inode for this unlikely case would be sad.
2023 */
2024 if (unlikely(inode->i_private)) {
2025 struct shmem_falloc *shmem_falloc;
2026
2027 spin_lock(&inode->i_lock);
2028 shmem_falloc = inode->i_private;
2029 if (shmem_falloc &&
2030 shmem_falloc->waitq &&
2031 vmf->pgoff >= shmem_falloc->start &&
2032 vmf->pgoff < shmem_falloc->next) {
2033 struct file *fpin;
2034 wait_queue_head_t *shmem_falloc_waitq;
2035 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2036
2037 ret = VM_FAULT_NOPAGE;
2038 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2039 if (fpin)
2040 ret = VM_FAULT_RETRY;
2041
2042 shmem_falloc_waitq = shmem_falloc->waitq;
2043 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2044 TASK_UNINTERRUPTIBLE);
2045 spin_unlock(&inode->i_lock);
2046 schedule();
2047
2048 /*
2049 * shmem_falloc_waitq points into the shmem_fallocate()
2050 * stack of the hole-punching task: shmem_falloc_waitq
2051 * is usually invalid by the time we reach here, but
2052 * finish_wait() does not dereference it in that case;
2053 * though i_lock needed lest racing with wake_up_all().
2054 */
2055 spin_lock(&inode->i_lock);
2056 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2057 spin_unlock(&inode->i_lock);
2058
2059 if (fpin)
2060 fput(fpin);
2061 return ret;
2062 }
2063 spin_unlock(&inode->i_lock);
2064 }
2065
2066 sgp = SGP_CACHE;
2067
2068 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2069 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2070 sgp = SGP_NOHUGE;
2071 else if (vma->vm_flags & VM_HUGEPAGE)
2072 sgp = SGP_HUGE;
2073
2074 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2075 gfp, vma, vmf, &ret);
2076 if (err)
2077 return vmf_error(err);
2078 return ret;
2079 }
2080
2081 unsigned long shmem_get_unmapped_area(struct file *file,
2082 unsigned long uaddr, unsigned long len,
2083 unsigned long pgoff, unsigned long flags)
2084 {
2085 unsigned long (*get_area)(struct file *,
2086 unsigned long, unsigned long, unsigned long, unsigned long);
2087 unsigned long addr;
2088 unsigned long offset;
2089 unsigned long inflated_len;
2090 unsigned long inflated_addr;
2091 unsigned long inflated_offset;
2092
2093 if (len > TASK_SIZE)
2094 return -ENOMEM;
2095
2096 get_area = current->mm->get_unmapped_area;
2097 addr = get_area(file, uaddr, len, pgoff, flags);
2098
2099 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2100 return addr;
2101 if (IS_ERR_VALUE(addr))
2102 return addr;
2103 if (addr & ~PAGE_MASK)
2104 return addr;
2105 if (addr > TASK_SIZE - len)
2106 return addr;
2107
2108 if (shmem_huge == SHMEM_HUGE_DENY)
2109 return addr;
2110 if (len < HPAGE_PMD_SIZE)
2111 return addr;
2112 if (flags & MAP_FIXED)
2113 return addr;
2114 /*
2115 * Our priority is to support MAP_SHARED mapped hugely;
2116 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2117 * But if caller specified an address hint and we allocated area there
2118 * successfully, respect that as before.
2119 */
2120 if (uaddr == addr)
2121 return addr;
2122
2123 if (shmem_huge != SHMEM_HUGE_FORCE) {
2124 struct super_block *sb;
2125
2126 if (file) {
2127 VM_BUG_ON(file->f_op != &shmem_file_operations);
2128 sb = file_inode(file)->i_sb;
2129 } else {
2130 /*
2131 * Called directly from mm/mmap.c, or drivers/char/mem.c
2132 * for "/dev/zero", to create a shared anonymous object.
2133 */
2134 if (IS_ERR(shm_mnt))
2135 return addr;
2136 sb = shm_mnt->mnt_sb;
2137 }
2138 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2139 return addr;
2140 }
2141
2142 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2143 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2144 return addr;
2145 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2146 return addr;
2147
2148 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2149 if (inflated_len > TASK_SIZE)
2150 return addr;
2151 if (inflated_len < len)
2152 return addr;
2153
2154 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2155 if (IS_ERR_VALUE(inflated_addr))
2156 return addr;
2157 if (inflated_addr & ~PAGE_MASK)
2158 return addr;
2159
2160 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2161 inflated_addr += offset - inflated_offset;
2162 if (inflated_offset > offset)
2163 inflated_addr += HPAGE_PMD_SIZE;
2164
2165 if (inflated_addr > TASK_SIZE - len)
2166 return addr;
2167 return inflated_addr;
2168 }
2169
2170 #ifdef CONFIG_NUMA
2171 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2172 {
2173 struct inode *inode = file_inode(vma->vm_file);
2174 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2175 }
2176
2177 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2178 unsigned long addr)
2179 {
2180 struct inode *inode = file_inode(vma->vm_file);
2181 pgoff_t index;
2182
2183 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2184 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2185 }
2186 #endif
2187
2188 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2189 {
2190 struct inode *inode = file_inode(file);
2191 struct shmem_inode_info *info = SHMEM_I(inode);
2192 int retval = -ENOMEM;
2193
2194 spin_lock_irq(&info->lock);
2195 if (lock && !(info->flags & VM_LOCKED)) {
2196 if (!user_shm_lock(inode->i_size, user))
2197 goto out_nomem;
2198 info->flags |= VM_LOCKED;
2199 mapping_set_unevictable(file->f_mapping);
2200 }
2201 if (!lock && (info->flags & VM_LOCKED) && user) {
2202 user_shm_unlock(inode->i_size, user);
2203 info->flags &= ~VM_LOCKED;
2204 mapping_clear_unevictable(file->f_mapping);
2205 }
2206 retval = 0;
2207
2208 out_nomem:
2209 spin_unlock_irq(&info->lock);
2210 return retval;
2211 }
2212
2213 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2214 {
2215 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2216
2217 if (info->seals & F_SEAL_FUTURE_WRITE) {
2218 /*
2219 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2220 * "future write" seal active.
2221 */
2222 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2223 return -EPERM;
2224
2225 /*
2226 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2227 * MAP_SHARED and read-only, take care to not allow mprotect to
2228 * revert protections on such mappings. Do this only for shared
2229 * mappings. For private mappings, don't need to mask
2230 * VM_MAYWRITE as we still want them to be COW-writable.
2231 */
2232 if (vma->vm_flags & VM_SHARED)
2233 vma->vm_flags &= ~(VM_MAYWRITE);
2234 }
2235
2236 file_accessed(file);
2237 vma->vm_ops = &shmem_vm_ops;
2238 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2239 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2240 (vma->vm_end & HPAGE_PMD_MASK)) {
2241 khugepaged_enter(vma, vma->vm_flags);
2242 }
2243 return 0;
2244 }
2245
2246 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2247 umode_t mode, dev_t dev, unsigned long flags)
2248 {
2249 struct inode *inode;
2250 struct shmem_inode_info *info;
2251 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2252
2253 if (shmem_reserve_inode(sb))
2254 return NULL;
2255
2256 inode = new_inode(sb);
2257 if (inode) {
2258 inode->i_ino = get_next_ino();
2259 inode_init_owner(inode, dir, mode);
2260 inode->i_blocks = 0;
2261 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2262 inode->i_generation = prandom_u32();
2263 info = SHMEM_I(inode);
2264 memset(info, 0, (char *)inode - (char *)info);
2265 spin_lock_init(&info->lock);
2266 atomic_set(&info->stop_eviction, 0);
2267 info->seals = F_SEAL_SEAL;
2268 info->flags = flags & VM_NORESERVE;
2269 INIT_LIST_HEAD(&info->shrinklist);
2270 INIT_LIST_HEAD(&info->swaplist);
2271 simple_xattrs_init(&info->xattrs);
2272 cache_no_acl(inode);
2273
2274 switch (mode & S_IFMT) {
2275 default:
2276 inode->i_op = &shmem_special_inode_operations;
2277 init_special_inode(inode, mode, dev);
2278 break;
2279 case S_IFREG:
2280 inode->i_mapping->a_ops = &shmem_aops;
2281 inode->i_op = &shmem_inode_operations;
2282 inode->i_fop = &shmem_file_operations;
2283 mpol_shared_policy_init(&info->policy,
2284 shmem_get_sbmpol(sbinfo));
2285 break;
2286 case S_IFDIR:
2287 inc_nlink(inode);
2288 /* Some things misbehave if size == 0 on a directory */
2289 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2290 inode->i_op = &shmem_dir_inode_operations;
2291 inode->i_fop = &simple_dir_operations;
2292 break;
2293 case S_IFLNK:
2294 /*
2295 * Must not load anything in the rbtree,
2296 * mpol_free_shared_policy will not be called.
2297 */
2298 mpol_shared_policy_init(&info->policy, NULL);
2299 break;
2300 }
2301
2302 lockdep_annotate_inode_mutex_key(inode);
2303 } else
2304 shmem_free_inode(sb);
2305 return inode;
2306 }
2307
2308 bool shmem_mapping(struct address_space *mapping)
2309 {
2310 return mapping->a_ops == &shmem_aops;
2311 }
2312
2313 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2314 pmd_t *dst_pmd,
2315 struct vm_area_struct *dst_vma,
2316 unsigned long dst_addr,
2317 unsigned long src_addr,
2318 bool zeropage,
2319 struct page **pagep)
2320 {
2321 struct inode *inode = file_inode(dst_vma->vm_file);
2322 struct shmem_inode_info *info = SHMEM_I(inode);
2323 struct address_space *mapping = inode->i_mapping;
2324 gfp_t gfp = mapping_gfp_mask(mapping);
2325 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2326 struct mem_cgroup *memcg;
2327 spinlock_t *ptl;
2328 void *page_kaddr;
2329 struct page *page;
2330 pte_t _dst_pte, *dst_pte;
2331 int ret;
2332 pgoff_t offset, max_off;
2333
2334 ret = -ENOMEM;
2335 if (!shmem_inode_acct_block(inode, 1))
2336 goto out;
2337
2338 if (!*pagep) {
2339 page = shmem_alloc_page(gfp, info, pgoff);
2340 if (!page)
2341 goto out_unacct_blocks;
2342
2343 if (!zeropage) { /* mcopy_atomic */
2344 page_kaddr = kmap_atomic(page);
2345 ret = copy_from_user(page_kaddr,
2346 (const void __user *)src_addr,
2347 PAGE_SIZE);
2348 kunmap_atomic(page_kaddr);
2349
2350 /* fallback to copy_from_user outside mmap_sem */
2351 if (unlikely(ret)) {
2352 *pagep = page;
2353 shmem_inode_unacct_blocks(inode, 1);
2354 /* don't free the page */
2355 return -ENOENT;
2356 }
2357 } else { /* mfill_zeropage_atomic */
2358 clear_highpage(page);
2359 }
2360 } else {
2361 page = *pagep;
2362 *pagep = NULL;
2363 }
2364
2365 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2366 __SetPageLocked(page);
2367 __SetPageSwapBacked(page);
2368 __SetPageUptodate(page);
2369
2370 ret = -EFAULT;
2371 offset = linear_page_index(dst_vma, dst_addr);
2372 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2373 if (unlikely(offset >= max_off))
2374 goto out_release;
2375
2376 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2377 if (ret)
2378 goto out_release;
2379
2380 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2381 gfp & GFP_RECLAIM_MASK);
2382 if (ret)
2383 goto out_release_uncharge;
2384
2385 mem_cgroup_commit_charge(page, memcg, false, false);
2386
2387 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2388 if (dst_vma->vm_flags & VM_WRITE)
2389 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2390 else {
2391 /*
2392 * We don't set the pte dirty if the vma has no
2393 * VM_WRITE permission, so mark the page dirty or it
2394 * could be freed from under us. We could do it
2395 * unconditionally before unlock_page(), but doing it
2396 * only if VM_WRITE is not set is faster.
2397 */
2398 set_page_dirty(page);
2399 }
2400
2401 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2402
2403 ret = -EFAULT;
2404 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2405 if (unlikely(offset >= max_off))
2406 goto out_release_uncharge_unlock;
2407
2408 ret = -EEXIST;
2409 if (!pte_none(*dst_pte))
2410 goto out_release_uncharge_unlock;
2411
2412 lru_cache_add_anon(page);
2413
2414 spin_lock(&info->lock);
2415 info->alloced++;
2416 inode->i_blocks += BLOCKS_PER_PAGE;
2417 shmem_recalc_inode(inode);
2418 spin_unlock(&info->lock);
2419
2420 inc_mm_counter(dst_mm, mm_counter_file(page));
2421 page_add_file_rmap(page, false);
2422 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2423
2424 /* No need to invalidate - it was non-present before */
2425 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2426 pte_unmap_unlock(dst_pte, ptl);
2427 unlock_page(page);
2428 ret = 0;
2429 out:
2430 return ret;
2431 out_release_uncharge_unlock:
2432 pte_unmap_unlock(dst_pte, ptl);
2433 ClearPageDirty(page);
2434 delete_from_page_cache(page);
2435 out_release_uncharge:
2436 mem_cgroup_cancel_charge(page, memcg, false);
2437 out_release:
2438 unlock_page(page);
2439 put_page(page);
2440 out_unacct_blocks:
2441 shmem_inode_unacct_blocks(inode, 1);
2442 goto out;
2443 }
2444
2445 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2446 pmd_t *dst_pmd,
2447 struct vm_area_struct *dst_vma,
2448 unsigned long dst_addr,
2449 unsigned long src_addr,
2450 struct page **pagep)
2451 {
2452 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2453 dst_addr, src_addr, false, pagep);
2454 }
2455
2456 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2457 pmd_t *dst_pmd,
2458 struct vm_area_struct *dst_vma,
2459 unsigned long dst_addr)
2460 {
2461 struct page *page = NULL;
2462
2463 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2464 dst_addr, 0, true, &page);
2465 }
2466
2467 #ifdef CONFIG_TMPFS
2468 static const struct inode_operations shmem_symlink_inode_operations;
2469 static const struct inode_operations shmem_short_symlink_operations;
2470
2471 #ifdef CONFIG_TMPFS_XATTR
2472 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2473 #else
2474 #define shmem_initxattrs NULL
2475 #endif
2476
2477 static int
2478 shmem_write_begin(struct file *file, struct address_space *mapping,
2479 loff_t pos, unsigned len, unsigned flags,
2480 struct page **pagep, void **fsdata)
2481 {
2482 struct inode *inode = mapping->host;
2483 struct shmem_inode_info *info = SHMEM_I(inode);
2484 pgoff_t index = pos >> PAGE_SHIFT;
2485
2486 /* i_mutex is held by caller */
2487 if (unlikely(info->seals & (F_SEAL_GROW |
2488 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2489 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2490 return -EPERM;
2491 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2492 return -EPERM;
2493 }
2494
2495 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2496 }
2497
2498 static int
2499 shmem_write_end(struct file *file, struct address_space *mapping,
2500 loff_t pos, unsigned len, unsigned copied,
2501 struct page *page, void *fsdata)
2502 {
2503 struct inode *inode = mapping->host;
2504
2505 if (pos + copied > inode->i_size)
2506 i_size_write(inode, pos + copied);
2507
2508 if (!PageUptodate(page)) {
2509 struct page *head = compound_head(page);
2510 if (PageTransCompound(page)) {
2511 int i;
2512
2513 for (i = 0; i < HPAGE_PMD_NR; i++) {
2514 if (head + i == page)
2515 continue;
2516 clear_highpage(head + i);
2517 flush_dcache_page(head + i);
2518 }
2519 }
2520 if (copied < PAGE_SIZE) {
2521 unsigned from = pos & (PAGE_SIZE - 1);
2522 zero_user_segments(page, 0, from,
2523 from + copied, PAGE_SIZE);
2524 }
2525 SetPageUptodate(head);
2526 }
2527 set_page_dirty(page);
2528 unlock_page(page);
2529 put_page(page);
2530
2531 return copied;
2532 }
2533
2534 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2535 {
2536 struct file *file = iocb->ki_filp;
2537 struct inode *inode = file_inode(file);
2538 struct address_space *mapping = inode->i_mapping;
2539 pgoff_t index;
2540 unsigned long offset;
2541 enum sgp_type sgp = SGP_READ;
2542 int error = 0;
2543 ssize_t retval = 0;
2544 loff_t *ppos = &iocb->ki_pos;
2545
2546 /*
2547 * Might this read be for a stacking filesystem? Then when reading
2548 * holes of a sparse file, we actually need to allocate those pages,
2549 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2550 */
2551 if (!iter_is_iovec(to))
2552 sgp = SGP_CACHE;
2553
2554 index = *ppos >> PAGE_SHIFT;
2555 offset = *ppos & ~PAGE_MASK;
2556
2557 for (;;) {
2558 struct page *page = NULL;
2559 pgoff_t end_index;
2560 unsigned long nr, ret;
2561 loff_t i_size = i_size_read(inode);
2562
2563 end_index = i_size >> PAGE_SHIFT;
2564 if (index > end_index)
2565 break;
2566 if (index == end_index) {
2567 nr = i_size & ~PAGE_MASK;
2568 if (nr <= offset)
2569 break;
2570 }
2571
2572 error = shmem_getpage(inode, index, &page, sgp);
2573 if (error) {
2574 if (error == -EINVAL)
2575 error = 0;
2576 break;
2577 }
2578 if (page) {
2579 if (sgp == SGP_CACHE)
2580 set_page_dirty(page);
2581 unlock_page(page);
2582 }
2583
2584 /*
2585 * We must evaluate after, since reads (unlike writes)
2586 * are called without i_mutex protection against truncate
2587 */
2588 nr = PAGE_SIZE;
2589 i_size = i_size_read(inode);
2590 end_index = i_size >> PAGE_SHIFT;
2591 if (index == end_index) {
2592 nr = i_size & ~PAGE_MASK;
2593 if (nr <= offset) {
2594 if (page)
2595 put_page(page);
2596 break;
2597 }
2598 }
2599 nr -= offset;
2600
2601 if (page) {
2602 /*
2603 * If users can be writing to this page using arbitrary
2604 * virtual addresses, take care about potential aliasing
2605 * before reading the page on the kernel side.
2606 */
2607 if (mapping_writably_mapped(mapping))
2608 flush_dcache_page(page);
2609 /*
2610 * Mark the page accessed if we read the beginning.
2611 */
2612 if (!offset)
2613 mark_page_accessed(page);
2614 } else {
2615 page = ZERO_PAGE(0);
2616 get_page(page);
2617 }
2618
2619 /*
2620 * Ok, we have the page, and it's up-to-date, so
2621 * now we can copy it to user space...
2622 */
2623 ret = copy_page_to_iter(page, offset, nr, to);
2624 retval += ret;
2625 offset += ret;
2626 index += offset >> PAGE_SHIFT;
2627 offset &= ~PAGE_MASK;
2628
2629 put_page(page);
2630 if (!iov_iter_count(to))
2631 break;
2632 if (ret < nr) {
2633 error = -EFAULT;
2634 break;
2635 }
2636 cond_resched();
2637 }
2638
2639 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2640 file_accessed(file);
2641 return retval ? retval : error;
2642 }
2643
2644 /*
2645 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2646 */
2647 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2648 pgoff_t index, pgoff_t end, int whence)
2649 {
2650 struct page *page;
2651 struct pagevec pvec;
2652 pgoff_t indices[PAGEVEC_SIZE];
2653 bool done = false;
2654 int i;
2655
2656 pagevec_init(&pvec);
2657 pvec.nr = 1; /* start small: we may be there already */
2658 while (!done) {
2659 pvec.nr = find_get_entries(mapping, index,
2660 pvec.nr, pvec.pages, indices);
2661 if (!pvec.nr) {
2662 if (whence == SEEK_DATA)
2663 index = end;
2664 break;
2665 }
2666 for (i = 0; i < pvec.nr; i++, index++) {
2667 if (index < indices[i]) {
2668 if (whence == SEEK_HOLE) {
2669 done = true;
2670 break;
2671 }
2672 index = indices[i];
2673 }
2674 page = pvec.pages[i];
2675 if (page && !xa_is_value(page)) {
2676 if (!PageUptodate(page))
2677 page = NULL;
2678 }
2679 if (index >= end ||
2680 (page && whence == SEEK_DATA) ||
2681 (!page && whence == SEEK_HOLE)) {
2682 done = true;
2683 break;
2684 }
2685 }
2686 pagevec_remove_exceptionals(&pvec);
2687 pagevec_release(&pvec);
2688 pvec.nr = PAGEVEC_SIZE;
2689 cond_resched();
2690 }
2691 return index;
2692 }
2693
2694 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2695 {
2696 struct address_space *mapping = file->f_mapping;
2697 struct inode *inode = mapping->host;
2698 pgoff_t start, end;
2699 loff_t new_offset;
2700
2701 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2702 return generic_file_llseek_size(file, offset, whence,
2703 MAX_LFS_FILESIZE, i_size_read(inode));
2704 inode_lock(inode);
2705 /* We're holding i_mutex so we can access i_size directly */
2706
2707 if (offset < 0 || offset >= inode->i_size)
2708 offset = -ENXIO;
2709 else {
2710 start = offset >> PAGE_SHIFT;
2711 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2712 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2713 new_offset <<= PAGE_SHIFT;
2714 if (new_offset > offset) {
2715 if (new_offset < inode->i_size)
2716 offset = new_offset;
2717 else if (whence == SEEK_DATA)
2718 offset = -ENXIO;
2719 else
2720 offset = inode->i_size;
2721 }
2722 }
2723
2724 if (offset >= 0)
2725 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2726 inode_unlock(inode);
2727 return offset;
2728 }
2729
2730 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2731 loff_t len)
2732 {
2733 struct inode *inode = file_inode(file);
2734 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2735 struct shmem_inode_info *info = SHMEM_I(inode);
2736 struct shmem_falloc shmem_falloc;
2737 pgoff_t start, index, end;
2738 int error;
2739
2740 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2741 return -EOPNOTSUPP;
2742
2743 inode_lock(inode);
2744
2745 if (mode & FALLOC_FL_PUNCH_HOLE) {
2746 struct address_space *mapping = file->f_mapping;
2747 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2748 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2749 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2750
2751 /* protected by i_mutex */
2752 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2753 error = -EPERM;
2754 goto out;
2755 }
2756
2757 shmem_falloc.waitq = &shmem_falloc_waitq;
2758 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2759 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2760 spin_lock(&inode->i_lock);
2761 inode->i_private = &shmem_falloc;
2762 spin_unlock(&inode->i_lock);
2763
2764 if ((u64)unmap_end > (u64)unmap_start)
2765 unmap_mapping_range(mapping, unmap_start,
2766 1 + unmap_end - unmap_start, 0);
2767 shmem_truncate_range(inode, offset, offset + len - 1);
2768 /* No need to unmap again: hole-punching leaves COWed pages */
2769
2770 spin_lock(&inode->i_lock);
2771 inode->i_private = NULL;
2772 wake_up_all(&shmem_falloc_waitq);
2773 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2774 spin_unlock(&inode->i_lock);
2775 error = 0;
2776 goto out;
2777 }
2778
2779 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2780 error = inode_newsize_ok(inode, offset + len);
2781 if (error)
2782 goto out;
2783
2784 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2785 error = -EPERM;
2786 goto out;
2787 }
2788
2789 start = offset >> PAGE_SHIFT;
2790 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2791 /* Try to avoid a swapstorm if len is impossible to satisfy */
2792 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2793 error = -ENOSPC;
2794 goto out;
2795 }
2796
2797 shmem_falloc.waitq = NULL;
2798 shmem_falloc.start = start;
2799 shmem_falloc.next = start;
2800 shmem_falloc.nr_falloced = 0;
2801 shmem_falloc.nr_unswapped = 0;
2802 spin_lock(&inode->i_lock);
2803 inode->i_private = &shmem_falloc;
2804 spin_unlock(&inode->i_lock);
2805
2806 for (index = start; index < end; index++) {
2807 struct page *page;
2808
2809 /*
2810 * Good, the fallocate(2) manpage permits EINTR: we may have
2811 * been interrupted because we are using up too much memory.
2812 */
2813 if (signal_pending(current))
2814 error = -EINTR;
2815 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2816 error = -ENOMEM;
2817 else
2818 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2819 if (error) {
2820 /* Remove the !PageUptodate pages we added */
2821 if (index > start) {
2822 shmem_undo_range(inode,
2823 (loff_t)start << PAGE_SHIFT,
2824 ((loff_t)index << PAGE_SHIFT) - 1, true);
2825 }
2826 goto undone;
2827 }
2828
2829 /*
2830 * Inform shmem_writepage() how far we have reached.
2831 * No need for lock or barrier: we have the page lock.
2832 */
2833 shmem_falloc.next++;
2834 if (!PageUptodate(page))
2835 shmem_falloc.nr_falloced++;
2836
2837 /*
2838 * If !PageUptodate, leave it that way so that freeable pages
2839 * can be recognized if we need to rollback on error later.
2840 * But set_page_dirty so that memory pressure will swap rather
2841 * than free the pages we are allocating (and SGP_CACHE pages
2842 * might still be clean: we now need to mark those dirty too).
2843 */
2844 set_page_dirty(page);
2845 unlock_page(page);
2846 put_page(page);
2847 cond_resched();
2848 }
2849
2850 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2851 i_size_write(inode, offset + len);
2852 inode->i_ctime = current_time(inode);
2853 undone:
2854 spin_lock(&inode->i_lock);
2855 inode->i_private = NULL;
2856 spin_unlock(&inode->i_lock);
2857 out:
2858 inode_unlock(inode);
2859 return error;
2860 }
2861
2862 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2863 {
2864 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2865
2866 buf->f_type = TMPFS_MAGIC;
2867 buf->f_bsize = PAGE_SIZE;
2868 buf->f_namelen = NAME_MAX;
2869 if (sbinfo->max_blocks) {
2870 buf->f_blocks = sbinfo->max_blocks;
2871 buf->f_bavail =
2872 buf->f_bfree = sbinfo->max_blocks -
2873 percpu_counter_sum(&sbinfo->used_blocks);
2874 }
2875 if (sbinfo->max_inodes) {
2876 buf->f_files = sbinfo->max_inodes;
2877 buf->f_ffree = sbinfo->free_inodes;
2878 }
2879 /* else leave those fields 0 like simple_statfs */
2880 return 0;
2881 }
2882
2883 /*
2884 * File creation. Allocate an inode, and we're done..
2885 */
2886 static int
2887 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2888 {
2889 struct inode *inode;
2890 int error = -ENOSPC;
2891
2892 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2893 if (inode) {
2894 error = simple_acl_create(dir, inode);
2895 if (error)
2896 goto out_iput;
2897 error = security_inode_init_security(inode, dir,
2898 &dentry->d_name,
2899 shmem_initxattrs, NULL);
2900 if (error && error != -EOPNOTSUPP)
2901 goto out_iput;
2902
2903 error = 0;
2904 dir->i_size += BOGO_DIRENT_SIZE;
2905 dir->i_ctime = dir->i_mtime = current_time(dir);
2906 d_instantiate(dentry, inode);
2907 dget(dentry); /* Extra count - pin the dentry in core */
2908 }
2909 return error;
2910 out_iput:
2911 iput(inode);
2912 return error;
2913 }
2914
2915 static int
2916 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2917 {
2918 struct inode *inode;
2919 int error = -ENOSPC;
2920
2921 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2922 if (inode) {
2923 error = security_inode_init_security(inode, dir,
2924 NULL,
2925 shmem_initxattrs, NULL);
2926 if (error && error != -EOPNOTSUPP)
2927 goto out_iput;
2928 error = simple_acl_create(dir, inode);
2929 if (error)
2930 goto out_iput;
2931 d_tmpfile(dentry, inode);
2932 }
2933 return error;
2934 out_iput:
2935 iput(inode);
2936 return error;
2937 }
2938
2939 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2940 {
2941 int error;
2942
2943 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2944 return error;
2945 inc_nlink(dir);
2946 return 0;
2947 }
2948
2949 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2950 bool excl)
2951 {
2952 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2953 }
2954
2955 /*
2956 * Link a file..
2957 */
2958 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2959 {
2960 struct inode *inode = d_inode(old_dentry);
2961 int ret = 0;
2962
2963 /*
2964 * No ordinary (disk based) filesystem counts links as inodes;
2965 * but each new link needs a new dentry, pinning lowmem, and
2966 * tmpfs dentries cannot be pruned until they are unlinked.
2967 * But if an O_TMPFILE file is linked into the tmpfs, the
2968 * first link must skip that, to get the accounting right.
2969 */
2970 if (inode->i_nlink) {
2971 ret = shmem_reserve_inode(inode->i_sb);
2972 if (ret)
2973 goto out;
2974 }
2975
2976 dir->i_size += BOGO_DIRENT_SIZE;
2977 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2978 inc_nlink(inode);
2979 ihold(inode); /* New dentry reference */
2980 dget(dentry); /* Extra pinning count for the created dentry */
2981 d_instantiate(dentry, inode);
2982 out:
2983 return ret;
2984 }
2985
2986 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2987 {
2988 struct inode *inode = d_inode(dentry);
2989
2990 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2991 shmem_free_inode(inode->i_sb);
2992
2993 dir->i_size -= BOGO_DIRENT_SIZE;
2994 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2995 drop_nlink(inode);
2996 dput(dentry); /* Undo the count from "create" - this does all the work */
2997 return 0;
2998 }
2999
3000 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3001 {
3002 if (!simple_empty(dentry))
3003 return -ENOTEMPTY;
3004
3005 drop_nlink(d_inode(dentry));
3006 drop_nlink(dir);
3007 return shmem_unlink(dir, dentry);
3008 }
3009
3010 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3011 {
3012 bool old_is_dir = d_is_dir(old_dentry);
3013 bool new_is_dir = d_is_dir(new_dentry);
3014
3015 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3016 if (old_is_dir) {
3017 drop_nlink(old_dir);
3018 inc_nlink(new_dir);
3019 } else {
3020 drop_nlink(new_dir);
3021 inc_nlink(old_dir);
3022 }
3023 }
3024 old_dir->i_ctime = old_dir->i_mtime =
3025 new_dir->i_ctime = new_dir->i_mtime =
3026 d_inode(old_dentry)->i_ctime =
3027 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3028
3029 return 0;
3030 }
3031
3032 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3033 {
3034 struct dentry *whiteout;
3035 int error;
3036
3037 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3038 if (!whiteout)
3039 return -ENOMEM;
3040
3041 error = shmem_mknod(old_dir, whiteout,
3042 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3043 dput(whiteout);
3044 if (error)
3045 return error;
3046
3047 /*
3048 * Cheat and hash the whiteout while the old dentry is still in
3049 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3050 *
3051 * d_lookup() will consistently find one of them at this point,
3052 * not sure which one, but that isn't even important.
3053 */
3054 d_rehash(whiteout);
3055 return 0;
3056 }
3057
3058 /*
3059 * The VFS layer already does all the dentry stuff for rename,
3060 * we just have to decrement the usage count for the target if
3061 * it exists so that the VFS layer correctly free's it when it
3062 * gets overwritten.
3063 */
3064 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3065 {
3066 struct inode *inode = d_inode(old_dentry);
3067 int they_are_dirs = S_ISDIR(inode->i_mode);
3068
3069 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3070 return -EINVAL;
3071
3072 if (flags & RENAME_EXCHANGE)
3073 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3074
3075 if (!simple_empty(new_dentry))
3076 return -ENOTEMPTY;
3077
3078 if (flags & RENAME_WHITEOUT) {
3079 int error;
3080
3081 error = shmem_whiteout(old_dir, old_dentry);
3082 if (error)
3083 return error;
3084 }
3085
3086 if (d_really_is_positive(new_dentry)) {
3087 (void) shmem_unlink(new_dir, new_dentry);
3088 if (they_are_dirs) {
3089 drop_nlink(d_inode(new_dentry));
3090 drop_nlink(old_dir);
3091 }
3092 } else if (they_are_dirs) {
3093 drop_nlink(old_dir);
3094 inc_nlink(new_dir);
3095 }
3096
3097 old_dir->i_size -= BOGO_DIRENT_SIZE;
3098 new_dir->i_size += BOGO_DIRENT_SIZE;
3099 old_dir->i_ctime = old_dir->i_mtime =
3100 new_dir->i_ctime = new_dir->i_mtime =
3101 inode->i_ctime = current_time(old_dir);
3102 return 0;
3103 }
3104
3105 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3106 {
3107 int error;
3108 int len;
3109 struct inode *inode;
3110 struct page *page;
3111
3112 len = strlen(symname) + 1;
3113 if (len > PAGE_SIZE)
3114 return -ENAMETOOLONG;
3115
3116 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3117 VM_NORESERVE);
3118 if (!inode)
3119 return -ENOSPC;
3120
3121 error = security_inode_init_security(inode, dir, &dentry->d_name,
3122 shmem_initxattrs, NULL);
3123 if (error) {
3124 if (error != -EOPNOTSUPP) {
3125 iput(inode);
3126 return error;
3127 }
3128 error = 0;
3129 }
3130
3131 inode->i_size = len-1;
3132 if (len <= SHORT_SYMLINK_LEN) {
3133 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3134 if (!inode->i_link) {
3135 iput(inode);
3136 return -ENOMEM;
3137 }
3138 inode->i_op = &shmem_short_symlink_operations;
3139 } else {
3140 inode_nohighmem(inode);
3141 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3142 if (error) {
3143 iput(inode);
3144 return error;
3145 }
3146 inode->i_mapping->a_ops = &shmem_aops;
3147 inode->i_op = &shmem_symlink_inode_operations;
3148 memcpy(page_address(page), symname, len);
3149 SetPageUptodate(page);
3150 set_page_dirty(page);
3151 unlock_page(page);
3152 put_page(page);
3153 }
3154 dir->i_size += BOGO_DIRENT_SIZE;
3155 dir->i_ctime = dir->i_mtime = current_time(dir);
3156 d_instantiate(dentry, inode);
3157 dget(dentry);
3158 return 0;
3159 }
3160
3161 static void shmem_put_link(void *arg)
3162 {
3163 mark_page_accessed(arg);
3164 put_page(arg);
3165 }
3166
3167 static const char *shmem_get_link(struct dentry *dentry,
3168 struct inode *inode,
3169 struct delayed_call *done)
3170 {
3171 struct page *page = NULL;
3172 int error;
3173 if (!dentry) {
3174 page = find_get_page(inode->i_mapping, 0);
3175 if (!page)
3176 return ERR_PTR(-ECHILD);
3177 if (!PageUptodate(page)) {
3178 put_page(page);
3179 return ERR_PTR(-ECHILD);
3180 }
3181 } else {
3182 error = shmem_getpage(inode, 0, &page, SGP_READ);
3183 if (error)
3184 return ERR_PTR(error);
3185 unlock_page(page);
3186 }
3187 set_delayed_call(done, shmem_put_link, page);
3188 return page_address(page);
3189 }
3190
3191 #ifdef CONFIG_TMPFS_XATTR
3192 /*
3193 * Superblocks without xattr inode operations may get some security.* xattr
3194 * support from the LSM "for free". As soon as we have any other xattrs
3195 * like ACLs, we also need to implement the security.* handlers at
3196 * filesystem level, though.
3197 */
3198
3199 /*
3200 * Callback for security_inode_init_security() for acquiring xattrs.
3201 */
3202 static int shmem_initxattrs(struct inode *inode,
3203 const struct xattr *xattr_array,
3204 void *fs_info)
3205 {
3206 struct shmem_inode_info *info = SHMEM_I(inode);
3207 const struct xattr *xattr;
3208 struct simple_xattr *new_xattr;
3209 size_t len;
3210
3211 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3212 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3213 if (!new_xattr)
3214 return -ENOMEM;
3215
3216 len = strlen(xattr->name) + 1;
3217 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3218 GFP_KERNEL);
3219 if (!new_xattr->name) {
3220 kfree(new_xattr);
3221 return -ENOMEM;
3222 }
3223
3224 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3225 XATTR_SECURITY_PREFIX_LEN);
3226 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3227 xattr->name, len);
3228
3229 simple_xattr_list_add(&info->xattrs, new_xattr);
3230 }
3231
3232 return 0;
3233 }
3234
3235 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3236 struct dentry *unused, struct inode *inode,
3237 const char *name, void *buffer, size_t size)
3238 {
3239 struct shmem_inode_info *info = SHMEM_I(inode);
3240
3241 name = xattr_full_name(handler, name);
3242 return simple_xattr_get(&info->xattrs, name, buffer, size);
3243 }
3244
3245 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3246 struct dentry *unused, struct inode *inode,
3247 const char *name, const void *value,
3248 size_t size, int flags)
3249 {
3250 struct shmem_inode_info *info = SHMEM_I(inode);
3251
3252 name = xattr_full_name(handler, name);
3253 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3254 }
3255
3256 static const struct xattr_handler shmem_security_xattr_handler = {
3257 .prefix = XATTR_SECURITY_PREFIX,
3258 .get = shmem_xattr_handler_get,
3259 .set = shmem_xattr_handler_set,
3260 };
3261
3262 static const struct xattr_handler shmem_trusted_xattr_handler = {
3263 .prefix = XATTR_TRUSTED_PREFIX,
3264 .get = shmem_xattr_handler_get,
3265 .set = shmem_xattr_handler_set,
3266 };
3267
3268 static const struct xattr_handler *shmem_xattr_handlers[] = {
3269 #ifdef CONFIG_TMPFS_POSIX_ACL
3270 &posix_acl_access_xattr_handler,
3271 &posix_acl_default_xattr_handler,
3272 #endif
3273 &shmem_security_xattr_handler,
3274 &shmem_trusted_xattr_handler,
3275 NULL
3276 };
3277
3278 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3279 {
3280 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3281 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3282 }
3283 #endif /* CONFIG_TMPFS_XATTR */
3284
3285 static const struct inode_operations shmem_short_symlink_operations = {
3286 .get_link = simple_get_link,
3287 #ifdef CONFIG_TMPFS_XATTR
3288 .listxattr = shmem_listxattr,
3289 #endif
3290 };
3291
3292 static const struct inode_operations shmem_symlink_inode_operations = {
3293 .get_link = shmem_get_link,
3294 #ifdef CONFIG_TMPFS_XATTR
3295 .listxattr = shmem_listxattr,
3296 #endif
3297 };
3298
3299 static struct dentry *shmem_get_parent(struct dentry *child)
3300 {
3301 return ERR_PTR(-ESTALE);
3302 }
3303
3304 static int shmem_match(struct inode *ino, void *vfh)
3305 {
3306 __u32 *fh = vfh;
3307 __u64 inum = fh[2];
3308 inum = (inum << 32) | fh[1];
3309 return ino->i_ino == inum && fh[0] == ino->i_generation;
3310 }
3311
3312 /* Find any alias of inode, but prefer a hashed alias */
3313 static struct dentry *shmem_find_alias(struct inode *inode)
3314 {
3315 struct dentry *alias = d_find_alias(inode);
3316
3317 return alias ?: d_find_any_alias(inode);
3318 }
3319
3320
3321 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3322 struct fid *fid, int fh_len, int fh_type)
3323 {
3324 struct inode *inode;
3325 struct dentry *dentry = NULL;
3326 u64 inum;
3327
3328 if (fh_len < 3)
3329 return NULL;
3330
3331 inum = fid->raw[2];
3332 inum = (inum << 32) | fid->raw[1];
3333
3334 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3335 shmem_match, fid->raw);
3336 if (inode) {
3337 dentry = shmem_find_alias(inode);
3338 iput(inode);
3339 }
3340
3341 return dentry;
3342 }
3343
3344 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3345 struct inode *parent)
3346 {
3347 if (*len < 3) {
3348 *len = 3;
3349 return FILEID_INVALID;
3350 }
3351
3352 if (inode_unhashed(inode)) {
3353 /* Unfortunately insert_inode_hash is not idempotent,
3354 * so as we hash inodes here rather than at creation
3355 * time, we need a lock to ensure we only try
3356 * to do it once
3357 */
3358 static DEFINE_SPINLOCK(lock);
3359 spin_lock(&lock);
3360 if (inode_unhashed(inode))
3361 __insert_inode_hash(inode,
3362 inode->i_ino + inode->i_generation);
3363 spin_unlock(&lock);
3364 }
3365
3366 fh[0] = inode->i_generation;
3367 fh[1] = inode->i_ino;
3368 fh[2] = ((__u64)inode->i_ino) >> 32;
3369
3370 *len = 3;
3371 return 1;
3372 }
3373
3374 static const struct export_operations shmem_export_ops = {
3375 .get_parent = shmem_get_parent,
3376 .encode_fh = shmem_encode_fh,
3377 .fh_to_dentry = shmem_fh_to_dentry,
3378 };
3379
3380 enum shmem_param {
3381 Opt_gid,
3382 Opt_huge,
3383 Opt_mode,
3384 Opt_mpol,
3385 Opt_nr_blocks,
3386 Opt_nr_inodes,
3387 Opt_size,
3388 Opt_uid,
3389 };
3390
3391 static const struct constant_table shmem_param_enums_huge[] = {
3392 {"never", SHMEM_HUGE_NEVER },
3393 {"always", SHMEM_HUGE_ALWAYS },
3394 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3395 {"advise", SHMEM_HUGE_ADVISE },
3396 {}
3397 };
3398
3399 const struct fs_parameter_spec shmem_fs_parameters[] = {
3400 fsparam_u32 ("gid", Opt_gid),
3401 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3402 fsparam_u32oct("mode", Opt_mode),
3403 fsparam_string("mpol", Opt_mpol),
3404 fsparam_string("nr_blocks", Opt_nr_blocks),
3405 fsparam_string("nr_inodes", Opt_nr_inodes),
3406 fsparam_string("size", Opt_size),
3407 fsparam_u32 ("uid", Opt_uid),
3408 {}
3409 };
3410
3411 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3412 {
3413 struct shmem_options *ctx = fc->fs_private;
3414 struct fs_parse_result result;
3415 unsigned long long size;
3416 char *rest;
3417 int opt;
3418
3419 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3420 if (opt < 0)
3421 return opt;
3422
3423 switch (opt) {
3424 case Opt_size:
3425 size = memparse(param->string, &rest);
3426 if (*rest == '%') {
3427 size <<= PAGE_SHIFT;
3428 size *= totalram_pages();
3429 do_div(size, 100);
3430 rest++;
3431 }
3432 if (*rest)
3433 goto bad_value;
3434 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3435 ctx->seen |= SHMEM_SEEN_BLOCKS;
3436 break;
3437 case Opt_nr_blocks:
3438 ctx->blocks = memparse(param->string, &rest);
3439 if (*rest)
3440 goto bad_value;
3441 ctx->seen |= SHMEM_SEEN_BLOCKS;
3442 break;
3443 case Opt_nr_inodes:
3444 ctx->inodes = memparse(param->string, &rest);
3445 if (*rest)
3446 goto bad_value;
3447 ctx->seen |= SHMEM_SEEN_INODES;
3448 break;
3449 case Opt_mode:
3450 ctx->mode = result.uint_32 & 07777;
3451 break;
3452 case Opt_uid:
3453 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3454 if (!uid_valid(ctx->uid))
3455 goto bad_value;
3456 break;
3457 case Opt_gid:
3458 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3459 if (!gid_valid(ctx->gid))
3460 goto bad_value;
3461 break;
3462 case Opt_huge:
3463 ctx->huge = result.uint_32;
3464 if (ctx->huge != SHMEM_HUGE_NEVER &&
3465 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3466 has_transparent_hugepage()))
3467 goto unsupported_parameter;
3468 ctx->seen |= SHMEM_SEEN_HUGE;
3469 break;
3470 case Opt_mpol:
3471 if (IS_ENABLED(CONFIG_NUMA)) {
3472 mpol_put(ctx->mpol);
3473 ctx->mpol = NULL;
3474 if (mpol_parse_str(param->string, &ctx->mpol))
3475 goto bad_value;
3476 break;
3477 }
3478 goto unsupported_parameter;
3479 }
3480 return 0;
3481
3482 unsupported_parameter:
3483 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3484 bad_value:
3485 return invalfc(fc, "Bad value for '%s'", param->key);
3486 }
3487
3488 static int shmem_parse_options(struct fs_context *fc, void *data)
3489 {
3490 char *options = data;
3491
3492 if (options) {
3493 int err = security_sb_eat_lsm_opts(options, &fc->security);
3494 if (err)
3495 return err;
3496 }
3497
3498 while (options != NULL) {
3499 char *this_char = options;
3500 for (;;) {
3501 /*
3502 * NUL-terminate this option: unfortunately,
3503 * mount options form a comma-separated list,
3504 * but mpol's nodelist may also contain commas.
3505 */
3506 options = strchr(options, ',');
3507 if (options == NULL)
3508 break;
3509 options++;
3510 if (!isdigit(*options)) {
3511 options[-1] = '\0';
3512 break;
3513 }
3514 }
3515 if (*this_char) {
3516 char *value = strchr(this_char,'=');
3517 size_t len = 0;
3518 int err;
3519
3520 if (value) {
3521 *value++ = '\0';
3522 len = strlen(value);
3523 }
3524 err = vfs_parse_fs_string(fc, this_char, value, len);
3525 if (err < 0)
3526 return err;
3527 }
3528 }
3529 return 0;
3530 }
3531
3532 /*
3533 * Reconfigure a shmem filesystem.
3534 *
3535 * Note that we disallow change from limited->unlimited blocks/inodes while any
3536 * are in use; but we must separately disallow unlimited->limited, because in
3537 * that case we have no record of how much is already in use.
3538 */
3539 static int shmem_reconfigure(struct fs_context *fc)
3540 {
3541 struct shmem_options *ctx = fc->fs_private;
3542 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3543 unsigned long inodes;
3544 const char *err;
3545
3546 spin_lock(&sbinfo->stat_lock);
3547 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3548 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3549 if (!sbinfo->max_blocks) {
3550 err = "Cannot retroactively limit size";
3551 goto out;
3552 }
3553 if (percpu_counter_compare(&sbinfo->used_blocks,
3554 ctx->blocks) > 0) {
3555 err = "Too small a size for current use";
3556 goto out;
3557 }
3558 }
3559 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3560 if (!sbinfo->max_inodes) {
3561 err = "Cannot retroactively limit inodes";
3562 goto out;
3563 }
3564 if (ctx->inodes < inodes) {
3565 err = "Too few inodes for current use";
3566 goto out;
3567 }
3568 }
3569
3570 if (ctx->seen & SHMEM_SEEN_HUGE)
3571 sbinfo->huge = ctx->huge;
3572 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3573 sbinfo->max_blocks = ctx->blocks;
3574 if (ctx->seen & SHMEM_SEEN_INODES) {
3575 sbinfo->max_inodes = ctx->inodes;
3576 sbinfo->free_inodes = ctx->inodes - inodes;
3577 }
3578
3579 /*
3580 * Preserve previous mempolicy unless mpol remount option was specified.
3581 */
3582 if (ctx->mpol) {
3583 mpol_put(sbinfo->mpol);
3584 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3585 ctx->mpol = NULL;
3586 }
3587 spin_unlock(&sbinfo->stat_lock);
3588 return 0;
3589 out:
3590 spin_unlock(&sbinfo->stat_lock);
3591 return invalfc(fc, "%s", err);
3592 }
3593
3594 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3595 {
3596 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3597
3598 if (sbinfo->max_blocks != shmem_default_max_blocks())
3599 seq_printf(seq, ",size=%luk",
3600 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3601 if (sbinfo->max_inodes != shmem_default_max_inodes())
3602 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3603 if (sbinfo->mode != (0777 | S_ISVTX))
3604 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3605 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3606 seq_printf(seq, ",uid=%u",
3607 from_kuid_munged(&init_user_ns, sbinfo->uid));
3608 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3609 seq_printf(seq, ",gid=%u",
3610 from_kgid_munged(&init_user_ns, sbinfo->gid));
3611 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3612 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3613 if (sbinfo->huge)
3614 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3615 #endif
3616 shmem_show_mpol(seq, sbinfo->mpol);
3617 return 0;
3618 }
3619
3620 #endif /* CONFIG_TMPFS */
3621
3622 static void shmem_put_super(struct super_block *sb)
3623 {
3624 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3625
3626 percpu_counter_destroy(&sbinfo->used_blocks);
3627 mpol_put(sbinfo->mpol);
3628 kfree(sbinfo);
3629 sb->s_fs_info = NULL;
3630 }
3631
3632 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3633 {
3634 struct shmem_options *ctx = fc->fs_private;
3635 struct inode *inode;
3636 struct shmem_sb_info *sbinfo;
3637 int err = -ENOMEM;
3638
3639 /* Round up to L1_CACHE_BYTES to resist false sharing */
3640 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3641 L1_CACHE_BYTES), GFP_KERNEL);
3642 if (!sbinfo)
3643 return -ENOMEM;
3644
3645 sb->s_fs_info = sbinfo;
3646
3647 #ifdef CONFIG_TMPFS
3648 /*
3649 * Per default we only allow half of the physical ram per
3650 * tmpfs instance, limiting inodes to one per page of lowmem;
3651 * but the internal instance is left unlimited.
3652 */
3653 if (!(sb->s_flags & SB_KERNMOUNT)) {
3654 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3655 ctx->blocks = shmem_default_max_blocks();
3656 if (!(ctx->seen & SHMEM_SEEN_INODES))
3657 ctx->inodes = shmem_default_max_inodes();
3658 } else {
3659 sb->s_flags |= SB_NOUSER;
3660 }
3661 sb->s_export_op = &shmem_export_ops;
3662 sb->s_flags |= SB_NOSEC;
3663 #else
3664 sb->s_flags |= SB_NOUSER;
3665 #endif
3666 sbinfo->max_blocks = ctx->blocks;
3667 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3668 sbinfo->uid = ctx->uid;
3669 sbinfo->gid = ctx->gid;
3670 sbinfo->mode = ctx->mode;
3671 sbinfo->huge = ctx->huge;
3672 sbinfo->mpol = ctx->mpol;
3673 ctx->mpol = NULL;
3674
3675 spin_lock_init(&sbinfo->stat_lock);
3676 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3677 goto failed;
3678 spin_lock_init(&sbinfo->shrinklist_lock);
3679 INIT_LIST_HEAD(&sbinfo->shrinklist);
3680
3681 sb->s_maxbytes = MAX_LFS_FILESIZE;
3682 sb->s_blocksize = PAGE_SIZE;
3683 sb->s_blocksize_bits = PAGE_SHIFT;
3684 sb->s_magic = TMPFS_MAGIC;
3685 sb->s_op = &shmem_ops;
3686 sb->s_time_gran = 1;
3687 #ifdef CONFIG_TMPFS_XATTR
3688 sb->s_xattr = shmem_xattr_handlers;
3689 #endif
3690 #ifdef CONFIG_TMPFS_POSIX_ACL
3691 sb->s_flags |= SB_POSIXACL;
3692 #endif
3693 uuid_gen(&sb->s_uuid);
3694
3695 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3696 if (!inode)
3697 goto failed;
3698 inode->i_uid = sbinfo->uid;
3699 inode->i_gid = sbinfo->gid;
3700 sb->s_root = d_make_root(inode);
3701 if (!sb->s_root)
3702 goto failed;
3703 return 0;
3704
3705 failed:
3706 shmem_put_super(sb);
3707 return err;
3708 }
3709
3710 static int shmem_get_tree(struct fs_context *fc)
3711 {
3712 return get_tree_nodev(fc, shmem_fill_super);
3713 }
3714
3715 static void shmem_free_fc(struct fs_context *fc)
3716 {
3717 struct shmem_options *ctx = fc->fs_private;
3718
3719 if (ctx) {
3720 mpol_put(ctx->mpol);
3721 kfree(ctx);
3722 }
3723 }
3724
3725 static const struct fs_context_operations shmem_fs_context_ops = {
3726 .free = shmem_free_fc,
3727 .get_tree = shmem_get_tree,
3728 #ifdef CONFIG_TMPFS
3729 .parse_monolithic = shmem_parse_options,
3730 .parse_param = shmem_parse_one,
3731 .reconfigure = shmem_reconfigure,
3732 #endif
3733 };
3734
3735 static struct kmem_cache *shmem_inode_cachep;
3736
3737 static struct inode *shmem_alloc_inode(struct super_block *sb)
3738 {
3739 struct shmem_inode_info *info;
3740 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3741 if (!info)
3742 return NULL;
3743 return &info->vfs_inode;
3744 }
3745
3746 static void shmem_free_in_core_inode(struct inode *inode)
3747 {
3748 if (S_ISLNK(inode->i_mode))
3749 kfree(inode->i_link);
3750 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3751 }
3752
3753 static void shmem_destroy_inode(struct inode *inode)
3754 {
3755 if (S_ISREG(inode->i_mode))
3756 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3757 }
3758
3759 static void shmem_init_inode(void *foo)
3760 {
3761 struct shmem_inode_info *info = foo;
3762 inode_init_once(&info->vfs_inode);
3763 }
3764
3765 static void shmem_init_inodecache(void)
3766 {
3767 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3768 sizeof(struct shmem_inode_info),
3769 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3770 }
3771
3772 static void shmem_destroy_inodecache(void)
3773 {
3774 kmem_cache_destroy(shmem_inode_cachep);
3775 }
3776
3777 static const struct address_space_operations shmem_aops = {
3778 .writepage = shmem_writepage,
3779 .set_page_dirty = __set_page_dirty_no_writeback,
3780 #ifdef CONFIG_TMPFS
3781 .write_begin = shmem_write_begin,
3782 .write_end = shmem_write_end,
3783 #endif
3784 #ifdef CONFIG_MIGRATION
3785 .migratepage = migrate_page,
3786 #endif
3787 .error_remove_page = generic_error_remove_page,
3788 };
3789
3790 static const struct file_operations shmem_file_operations = {
3791 .mmap = shmem_mmap,
3792 .get_unmapped_area = shmem_get_unmapped_area,
3793 #ifdef CONFIG_TMPFS
3794 .llseek = shmem_file_llseek,
3795 .read_iter = shmem_file_read_iter,
3796 .write_iter = generic_file_write_iter,
3797 .fsync = noop_fsync,
3798 .splice_read = generic_file_splice_read,
3799 .splice_write = iter_file_splice_write,
3800 .fallocate = shmem_fallocate,
3801 #endif
3802 };
3803
3804 static const struct inode_operations shmem_inode_operations = {
3805 .getattr = shmem_getattr,
3806 .setattr = shmem_setattr,
3807 #ifdef CONFIG_TMPFS_XATTR
3808 .listxattr = shmem_listxattr,
3809 .set_acl = simple_set_acl,
3810 #endif
3811 };
3812
3813 static const struct inode_operations shmem_dir_inode_operations = {
3814 #ifdef CONFIG_TMPFS
3815 .create = shmem_create,
3816 .lookup = simple_lookup,
3817 .link = shmem_link,
3818 .unlink = shmem_unlink,
3819 .symlink = shmem_symlink,
3820 .mkdir = shmem_mkdir,
3821 .rmdir = shmem_rmdir,
3822 .mknod = shmem_mknod,
3823 .rename = shmem_rename2,
3824 .tmpfile = shmem_tmpfile,
3825 #endif
3826 #ifdef CONFIG_TMPFS_XATTR
3827 .listxattr = shmem_listxattr,
3828 #endif
3829 #ifdef CONFIG_TMPFS_POSIX_ACL
3830 .setattr = shmem_setattr,
3831 .set_acl = simple_set_acl,
3832 #endif
3833 };
3834
3835 static const struct inode_operations shmem_special_inode_operations = {
3836 #ifdef CONFIG_TMPFS_XATTR
3837 .listxattr = shmem_listxattr,
3838 #endif
3839 #ifdef CONFIG_TMPFS_POSIX_ACL
3840 .setattr = shmem_setattr,
3841 .set_acl = simple_set_acl,
3842 #endif
3843 };
3844
3845 static const struct super_operations shmem_ops = {
3846 .alloc_inode = shmem_alloc_inode,
3847 .free_inode = shmem_free_in_core_inode,
3848 .destroy_inode = shmem_destroy_inode,
3849 #ifdef CONFIG_TMPFS
3850 .statfs = shmem_statfs,
3851 .show_options = shmem_show_options,
3852 #endif
3853 .evict_inode = shmem_evict_inode,
3854 .drop_inode = generic_delete_inode,
3855 .put_super = shmem_put_super,
3856 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3857 .nr_cached_objects = shmem_unused_huge_count,
3858 .free_cached_objects = shmem_unused_huge_scan,
3859 #endif
3860 };
3861
3862 static const struct vm_operations_struct shmem_vm_ops = {
3863 .fault = shmem_fault,
3864 .map_pages = filemap_map_pages,
3865 #ifdef CONFIG_NUMA
3866 .set_policy = shmem_set_policy,
3867 .get_policy = shmem_get_policy,
3868 #endif
3869 };
3870
3871 int shmem_init_fs_context(struct fs_context *fc)
3872 {
3873 struct shmem_options *ctx;
3874
3875 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3876 if (!ctx)
3877 return -ENOMEM;
3878
3879 ctx->mode = 0777 | S_ISVTX;
3880 ctx->uid = current_fsuid();
3881 ctx->gid = current_fsgid();
3882
3883 fc->fs_private = ctx;
3884 fc->ops = &shmem_fs_context_ops;
3885 return 0;
3886 }
3887
3888 static struct file_system_type shmem_fs_type = {
3889 .owner = THIS_MODULE,
3890 .name = "tmpfs",
3891 .init_fs_context = shmem_init_fs_context,
3892 #ifdef CONFIG_TMPFS
3893 .parameters = shmem_fs_parameters,
3894 #endif
3895 .kill_sb = kill_litter_super,
3896 .fs_flags = FS_USERNS_MOUNT,
3897 };
3898
3899 int __init shmem_init(void)
3900 {
3901 int error;
3902
3903 shmem_init_inodecache();
3904
3905 error = register_filesystem(&shmem_fs_type);
3906 if (error) {
3907 pr_err("Could not register tmpfs\n");
3908 goto out2;
3909 }
3910
3911 shm_mnt = kern_mount(&shmem_fs_type);
3912 if (IS_ERR(shm_mnt)) {
3913 error = PTR_ERR(shm_mnt);
3914 pr_err("Could not kern_mount tmpfs\n");
3915 goto out1;
3916 }
3917
3918 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3919 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3920 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3921 else
3922 shmem_huge = 0; /* just in case it was patched */
3923 #endif
3924 return 0;
3925
3926 out1:
3927 unregister_filesystem(&shmem_fs_type);
3928 out2:
3929 shmem_destroy_inodecache();
3930 shm_mnt = ERR_PTR(error);
3931 return error;
3932 }
3933
3934 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3935 static ssize_t shmem_enabled_show(struct kobject *kobj,
3936 struct kobj_attribute *attr, char *buf)
3937 {
3938 static const int values[] = {
3939 SHMEM_HUGE_ALWAYS,
3940 SHMEM_HUGE_WITHIN_SIZE,
3941 SHMEM_HUGE_ADVISE,
3942 SHMEM_HUGE_NEVER,
3943 SHMEM_HUGE_DENY,
3944 SHMEM_HUGE_FORCE,
3945 };
3946 int i, count;
3947
3948 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3949 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3950
3951 count += sprintf(buf + count, fmt,
3952 shmem_format_huge(values[i]));
3953 }
3954 buf[count - 1] = '\n';
3955 return count;
3956 }
3957
3958 static ssize_t shmem_enabled_store(struct kobject *kobj,
3959 struct kobj_attribute *attr, const char *buf, size_t count)
3960 {
3961 char tmp[16];
3962 int huge;
3963
3964 if (count + 1 > sizeof(tmp))
3965 return -EINVAL;
3966 memcpy(tmp, buf, count);
3967 tmp[count] = '\0';
3968 if (count && tmp[count - 1] == '\n')
3969 tmp[count - 1] = '\0';
3970
3971 huge = shmem_parse_huge(tmp);
3972 if (huge == -EINVAL)
3973 return -EINVAL;
3974 if (!has_transparent_hugepage() &&
3975 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3976 return -EINVAL;
3977
3978 shmem_huge = huge;
3979 if (shmem_huge > SHMEM_HUGE_DENY)
3980 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3981 return count;
3982 }
3983
3984 struct kobj_attribute shmem_enabled_attr =
3985 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3986 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3987
3988 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3989 bool shmem_huge_enabled(struct vm_area_struct *vma)
3990 {
3991 struct inode *inode = file_inode(vma->vm_file);
3992 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3993 loff_t i_size;
3994 pgoff_t off;
3995
3996 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3997 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3998 return false;
3999 if (shmem_huge == SHMEM_HUGE_FORCE)
4000 return true;
4001 if (shmem_huge == SHMEM_HUGE_DENY)
4002 return false;
4003 switch (sbinfo->huge) {
4004 case SHMEM_HUGE_NEVER:
4005 return false;
4006 case SHMEM_HUGE_ALWAYS:
4007 return true;
4008 case SHMEM_HUGE_WITHIN_SIZE:
4009 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4010 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4011 if (i_size >= HPAGE_PMD_SIZE &&
4012 i_size >> PAGE_SHIFT >= off)
4013 return true;
4014 /* fall through */
4015 case SHMEM_HUGE_ADVISE:
4016 /* TODO: implement fadvise() hints */
4017 return (vma->vm_flags & VM_HUGEPAGE);
4018 default:
4019 VM_BUG_ON(1);
4020 return false;
4021 }
4022 }
4023 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4024
4025 #else /* !CONFIG_SHMEM */
4026
4027 /*
4028 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4029 *
4030 * This is intended for small system where the benefits of the full
4031 * shmem code (swap-backed and resource-limited) are outweighed by
4032 * their complexity. On systems without swap this code should be
4033 * effectively equivalent, but much lighter weight.
4034 */
4035
4036 static struct file_system_type shmem_fs_type = {
4037 .name = "tmpfs",
4038 .init_fs_context = ramfs_init_fs_context,
4039 .parameters = ramfs_fs_parameters,
4040 .kill_sb = kill_litter_super,
4041 .fs_flags = FS_USERNS_MOUNT,
4042 };
4043
4044 int __init shmem_init(void)
4045 {
4046 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4047
4048 shm_mnt = kern_mount(&shmem_fs_type);
4049 BUG_ON(IS_ERR(shm_mnt));
4050
4051 return 0;
4052 }
4053
4054 int shmem_unuse(unsigned int type, bool frontswap,
4055 unsigned long *fs_pages_to_unuse)
4056 {
4057 return 0;
4058 }
4059
4060 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4061 {
4062 return 0;
4063 }
4064
4065 void shmem_unlock_mapping(struct address_space *mapping)
4066 {
4067 }
4068
4069 #ifdef CONFIG_MMU
4070 unsigned long shmem_get_unmapped_area(struct file *file,
4071 unsigned long addr, unsigned long len,
4072 unsigned long pgoff, unsigned long flags)
4073 {
4074 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4075 }
4076 #endif
4077
4078 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4079 {
4080 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4081 }
4082 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4083
4084 #define shmem_vm_ops generic_file_vm_ops
4085 #define shmem_file_operations ramfs_file_operations
4086 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4087 #define shmem_acct_size(flags, size) 0
4088 #define shmem_unacct_size(flags, size) do {} while (0)
4089
4090 #endif /* CONFIG_SHMEM */
4091
4092 /* common code */
4093
4094 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4095 unsigned long flags, unsigned int i_flags)
4096 {
4097 struct inode *inode;
4098 struct file *res;
4099
4100 if (IS_ERR(mnt))
4101 return ERR_CAST(mnt);
4102
4103 if (size < 0 || size > MAX_LFS_FILESIZE)
4104 return ERR_PTR(-EINVAL);
4105
4106 if (shmem_acct_size(flags, size))
4107 return ERR_PTR(-ENOMEM);
4108
4109 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4110 flags);
4111 if (unlikely(!inode)) {
4112 shmem_unacct_size(flags, size);
4113 return ERR_PTR(-ENOSPC);
4114 }
4115 inode->i_flags |= i_flags;
4116 inode->i_size = size;
4117 clear_nlink(inode); /* It is unlinked */
4118 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4119 if (!IS_ERR(res))
4120 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4121 &shmem_file_operations);
4122 if (IS_ERR(res))
4123 iput(inode);
4124 return res;
4125 }
4126
4127 /**
4128 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4129 * kernel internal. There will be NO LSM permission checks against the
4130 * underlying inode. So users of this interface must do LSM checks at a
4131 * higher layer. The users are the big_key and shm implementations. LSM
4132 * checks are provided at the key or shm level rather than the inode.
4133 * @name: name for dentry (to be seen in /proc/<pid>/maps
4134 * @size: size to be set for the file
4135 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4136 */
4137 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4138 {
4139 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4140 }
4141
4142 /**
4143 * shmem_file_setup - get an unlinked file living in tmpfs
4144 * @name: name for dentry (to be seen in /proc/<pid>/maps
4145 * @size: size to be set for the file
4146 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4147 */
4148 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4149 {
4150 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4151 }
4152 EXPORT_SYMBOL_GPL(shmem_file_setup);
4153
4154 /**
4155 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4156 * @mnt: the tmpfs mount where the file will be created
4157 * @name: name for dentry (to be seen in /proc/<pid>/maps
4158 * @size: size to be set for the file
4159 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4160 */
4161 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4162 loff_t size, unsigned long flags)
4163 {
4164 return __shmem_file_setup(mnt, name, size, flags, 0);
4165 }
4166 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4167
4168 /**
4169 * shmem_zero_setup - setup a shared anonymous mapping
4170 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4171 */
4172 int shmem_zero_setup(struct vm_area_struct *vma)
4173 {
4174 struct file *file;
4175 loff_t size = vma->vm_end - vma->vm_start;
4176
4177 /*
4178 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4179 * between XFS directory reading and selinux: since this file is only
4180 * accessible to the user through its mapping, use S_PRIVATE flag to
4181 * bypass file security, in the same way as shmem_kernel_file_setup().
4182 */
4183 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4184 if (IS_ERR(file))
4185 return PTR_ERR(file);
4186
4187 if (vma->vm_file)
4188 fput(vma->vm_file);
4189 vma->vm_file = file;
4190 vma->vm_ops = &shmem_vm_ops;
4191
4192 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4193 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4194 (vma->vm_end & HPAGE_PMD_MASK)) {
4195 khugepaged_enter(vma, vma->vm_flags);
4196 }
4197
4198 return 0;
4199 }
4200
4201 /**
4202 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4203 * @mapping: the page's address_space
4204 * @index: the page index
4205 * @gfp: the page allocator flags to use if allocating
4206 *
4207 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4208 * with any new page allocations done using the specified allocation flags.
4209 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4210 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4211 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4212 *
4213 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4214 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4215 */
4216 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4217 pgoff_t index, gfp_t gfp)
4218 {
4219 #ifdef CONFIG_SHMEM
4220 struct inode *inode = mapping->host;
4221 struct page *page;
4222 int error;
4223
4224 BUG_ON(mapping->a_ops != &shmem_aops);
4225 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4226 gfp, NULL, NULL, NULL);
4227 if (error)
4228 page = ERR_PTR(error);
4229 else
4230 unlock_page(page);
4231 return page;
4232 #else
4233 /*
4234 * The tiny !SHMEM case uses ramfs without swap
4235 */
4236 return read_cache_page_gfp(mapping, index, gfp);
4237 #endif
4238 }
4239 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);