]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/shmem.c
shmem: Convert find_swap_entry to XArray
[mirror_ubuntu-kernels.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41
42 static struct vfsmount *shm_mnt;
43
44 #ifdef CONFIG_SHMEM
45 /*
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
49 */
50
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_mutex making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
100 */
101 struct shmem_falloc {
102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 pgoff_t start; /* start of range currently being fallocated */
104 pgoff_t next; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp,
126 gfp_t gfp, struct vm_area_struct *vma,
127 struct vm_fault *vmf, vm_fault_t *fault_type);
128
129 int shmem_getpage(struct inode *inode, pgoff_t index,
130 struct page **pagep, enum sgp_type sgp)
131 {
132 return shmem_getpage_gfp(inode, index, pagep, sgp,
133 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
134 }
135
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138 return sb->s_fs_info;
139 }
140
141 /*
142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143 * for shared memory and for shared anonymous (/dev/zero) mappings
144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145 * consistent with the pre-accounting of private mappings ...
146 */
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149 return (flags & VM_NORESERVE) ?
150 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 }
152
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155 if (!(flags & VM_NORESERVE))
156 vm_unacct_memory(VM_ACCT(size));
157 }
158
159 static inline int shmem_reacct_size(unsigned long flags,
160 loff_t oldsize, loff_t newsize)
161 {
162 if (!(flags & VM_NORESERVE)) {
163 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164 return security_vm_enough_memory_mm(current->mm,
165 VM_ACCT(newsize) - VM_ACCT(oldsize));
166 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168 }
169 return 0;
170 }
171
172 /*
173 * ... whereas tmpfs objects are accounted incrementally as
174 * pages are allocated, in order to allow large sparse files.
175 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177 */
178 static inline int shmem_acct_block(unsigned long flags, long pages)
179 {
180 if (!(flags & VM_NORESERVE))
181 return 0;
182
183 return security_vm_enough_memory_mm(current->mm,
184 pages * VM_ACCT(PAGE_SIZE));
185 }
186
187 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 {
189 if (flags & VM_NORESERVE)
190 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191 }
192
193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 {
195 struct shmem_inode_info *info = SHMEM_I(inode);
196 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197
198 if (shmem_acct_block(info->flags, pages))
199 return false;
200
201 if (sbinfo->max_blocks) {
202 if (percpu_counter_compare(&sbinfo->used_blocks,
203 sbinfo->max_blocks - pages) > 0)
204 goto unacct;
205 percpu_counter_add(&sbinfo->used_blocks, pages);
206 }
207
208 return true;
209
210 unacct:
211 shmem_unacct_blocks(info->flags, pages);
212 return false;
213 }
214
215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 {
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (sbinfo->max_blocks)
221 percpu_counter_sub(&sbinfo->used_blocks, pages);
222 shmem_unacct_blocks(info->flags, pages);
223 }
224
225 static const struct super_operations shmem_ops;
226 static const struct address_space_operations shmem_aops;
227 static const struct file_operations shmem_file_operations;
228 static const struct inode_operations shmem_inode_operations;
229 static const struct inode_operations shmem_dir_inode_operations;
230 static const struct inode_operations shmem_special_inode_operations;
231 static const struct vm_operations_struct shmem_vm_ops;
232 static struct file_system_type shmem_fs_type;
233
234 bool vma_is_shmem(struct vm_area_struct *vma)
235 {
236 return vma->vm_ops == &shmem_vm_ops;
237 }
238
239 static LIST_HEAD(shmem_swaplist);
240 static DEFINE_MUTEX(shmem_swaplist_mutex);
241
242 static int shmem_reserve_inode(struct super_block *sb)
243 {
244 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245 if (sbinfo->max_inodes) {
246 spin_lock(&sbinfo->stat_lock);
247 if (!sbinfo->free_inodes) {
248 spin_unlock(&sbinfo->stat_lock);
249 return -ENOSPC;
250 }
251 sbinfo->free_inodes--;
252 spin_unlock(&sbinfo->stat_lock);
253 }
254 return 0;
255 }
256
257 static void shmem_free_inode(struct super_block *sb)
258 {
259 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260 if (sbinfo->max_inodes) {
261 spin_lock(&sbinfo->stat_lock);
262 sbinfo->free_inodes++;
263 spin_unlock(&sbinfo->stat_lock);
264 }
265 }
266
267 /**
268 * shmem_recalc_inode - recalculate the block usage of an inode
269 * @inode: inode to recalc
270 *
271 * We have to calculate the free blocks since the mm can drop
272 * undirtied hole pages behind our back.
273 *
274 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
275 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276 *
277 * It has to be called with the spinlock held.
278 */
279 static void shmem_recalc_inode(struct inode *inode)
280 {
281 struct shmem_inode_info *info = SHMEM_I(inode);
282 long freed;
283
284 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285 if (freed > 0) {
286 info->alloced -= freed;
287 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
288 shmem_inode_unacct_blocks(inode, freed);
289 }
290 }
291
292 bool shmem_charge(struct inode *inode, long pages)
293 {
294 struct shmem_inode_info *info = SHMEM_I(inode);
295 unsigned long flags;
296
297 if (!shmem_inode_acct_block(inode, pages))
298 return false;
299
300 spin_lock_irqsave(&info->lock, flags);
301 info->alloced += pages;
302 inode->i_blocks += pages * BLOCKS_PER_PAGE;
303 shmem_recalc_inode(inode);
304 spin_unlock_irqrestore(&info->lock, flags);
305 inode->i_mapping->nrpages += pages;
306
307 return true;
308 }
309
310 void shmem_uncharge(struct inode *inode, long pages)
311 {
312 struct shmem_inode_info *info = SHMEM_I(inode);
313 unsigned long flags;
314
315 spin_lock_irqsave(&info->lock, flags);
316 info->alloced -= pages;
317 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
318 shmem_recalc_inode(inode);
319 spin_unlock_irqrestore(&info->lock, flags);
320
321 shmem_inode_unacct_blocks(inode, pages);
322 }
323
324 /*
325 * Replace item expected in xarray by a new item, while holding xa_lock.
326 */
327 static int shmem_replace_entry(struct address_space *mapping,
328 pgoff_t index, void *expected, void *replacement)
329 {
330 XA_STATE(xas, &mapping->i_pages, index);
331 void *item;
332
333 VM_BUG_ON(!expected);
334 VM_BUG_ON(!replacement);
335 item = xas_load(&xas);
336 if (item != expected)
337 return -ENOENT;
338 xas_store(&xas, replacement);
339 return 0;
340 }
341
342 /*
343 * Sometimes, before we decide whether to proceed or to fail, we must check
344 * that an entry was not already brought back from swap by a racing thread.
345 *
346 * Checking page is not enough: by the time a SwapCache page is locked, it
347 * might be reused, and again be SwapCache, using the same swap as before.
348 */
349 static bool shmem_confirm_swap(struct address_space *mapping,
350 pgoff_t index, swp_entry_t swap)
351 {
352 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
353 }
354
355 /*
356 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
357 *
358 * SHMEM_HUGE_NEVER:
359 * disables huge pages for the mount;
360 * SHMEM_HUGE_ALWAYS:
361 * enables huge pages for the mount;
362 * SHMEM_HUGE_WITHIN_SIZE:
363 * only allocate huge pages if the page will be fully within i_size,
364 * also respect fadvise()/madvise() hints;
365 * SHMEM_HUGE_ADVISE:
366 * only allocate huge pages if requested with fadvise()/madvise();
367 */
368
369 #define SHMEM_HUGE_NEVER 0
370 #define SHMEM_HUGE_ALWAYS 1
371 #define SHMEM_HUGE_WITHIN_SIZE 2
372 #define SHMEM_HUGE_ADVISE 3
373
374 /*
375 * Special values.
376 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
377 *
378 * SHMEM_HUGE_DENY:
379 * disables huge on shm_mnt and all mounts, for emergency use;
380 * SHMEM_HUGE_FORCE:
381 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
382 *
383 */
384 #define SHMEM_HUGE_DENY (-1)
385 #define SHMEM_HUGE_FORCE (-2)
386
387 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
388 /* ifdef here to avoid bloating shmem.o when not necessary */
389
390 static int shmem_huge __read_mostly;
391
392 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
393 static int shmem_parse_huge(const char *str)
394 {
395 if (!strcmp(str, "never"))
396 return SHMEM_HUGE_NEVER;
397 if (!strcmp(str, "always"))
398 return SHMEM_HUGE_ALWAYS;
399 if (!strcmp(str, "within_size"))
400 return SHMEM_HUGE_WITHIN_SIZE;
401 if (!strcmp(str, "advise"))
402 return SHMEM_HUGE_ADVISE;
403 if (!strcmp(str, "deny"))
404 return SHMEM_HUGE_DENY;
405 if (!strcmp(str, "force"))
406 return SHMEM_HUGE_FORCE;
407 return -EINVAL;
408 }
409
410 static const char *shmem_format_huge(int huge)
411 {
412 switch (huge) {
413 case SHMEM_HUGE_NEVER:
414 return "never";
415 case SHMEM_HUGE_ALWAYS:
416 return "always";
417 case SHMEM_HUGE_WITHIN_SIZE:
418 return "within_size";
419 case SHMEM_HUGE_ADVISE:
420 return "advise";
421 case SHMEM_HUGE_DENY:
422 return "deny";
423 case SHMEM_HUGE_FORCE:
424 return "force";
425 default:
426 VM_BUG_ON(1);
427 return "bad_val";
428 }
429 }
430 #endif
431
432 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
433 struct shrink_control *sc, unsigned long nr_to_split)
434 {
435 LIST_HEAD(list), *pos, *next;
436 LIST_HEAD(to_remove);
437 struct inode *inode;
438 struct shmem_inode_info *info;
439 struct page *page;
440 unsigned long batch = sc ? sc->nr_to_scan : 128;
441 int removed = 0, split = 0;
442
443 if (list_empty(&sbinfo->shrinklist))
444 return SHRINK_STOP;
445
446 spin_lock(&sbinfo->shrinklist_lock);
447 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
448 info = list_entry(pos, struct shmem_inode_info, shrinklist);
449
450 /* pin the inode */
451 inode = igrab(&info->vfs_inode);
452
453 /* inode is about to be evicted */
454 if (!inode) {
455 list_del_init(&info->shrinklist);
456 removed++;
457 goto next;
458 }
459
460 /* Check if there's anything to gain */
461 if (round_up(inode->i_size, PAGE_SIZE) ==
462 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
463 list_move(&info->shrinklist, &to_remove);
464 removed++;
465 goto next;
466 }
467
468 list_move(&info->shrinklist, &list);
469 next:
470 if (!--batch)
471 break;
472 }
473 spin_unlock(&sbinfo->shrinklist_lock);
474
475 list_for_each_safe(pos, next, &to_remove) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477 inode = &info->vfs_inode;
478 list_del_init(&info->shrinklist);
479 iput(inode);
480 }
481
482 list_for_each_safe(pos, next, &list) {
483 int ret;
484
485 info = list_entry(pos, struct shmem_inode_info, shrinklist);
486 inode = &info->vfs_inode;
487
488 if (nr_to_split && split >= nr_to_split)
489 goto leave;
490
491 page = find_get_page(inode->i_mapping,
492 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
493 if (!page)
494 goto drop;
495
496 /* No huge page at the end of the file: nothing to split */
497 if (!PageTransHuge(page)) {
498 put_page(page);
499 goto drop;
500 }
501
502 /*
503 * Leave the inode on the list if we failed to lock
504 * the page at this time.
505 *
506 * Waiting for the lock may lead to deadlock in the
507 * reclaim path.
508 */
509 if (!trylock_page(page)) {
510 put_page(page);
511 goto leave;
512 }
513
514 ret = split_huge_page(page);
515 unlock_page(page);
516 put_page(page);
517
518 /* If split failed leave the inode on the list */
519 if (ret)
520 goto leave;
521
522 split++;
523 drop:
524 list_del_init(&info->shrinklist);
525 removed++;
526 leave:
527 iput(inode);
528 }
529
530 spin_lock(&sbinfo->shrinklist_lock);
531 list_splice_tail(&list, &sbinfo->shrinklist);
532 sbinfo->shrinklist_len -= removed;
533 spin_unlock(&sbinfo->shrinklist_lock);
534
535 return split;
536 }
537
538 static long shmem_unused_huge_scan(struct super_block *sb,
539 struct shrink_control *sc)
540 {
541 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
542
543 if (!READ_ONCE(sbinfo->shrinklist_len))
544 return SHRINK_STOP;
545
546 return shmem_unused_huge_shrink(sbinfo, sc, 0);
547 }
548
549 static long shmem_unused_huge_count(struct super_block *sb,
550 struct shrink_control *sc)
551 {
552 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
553 return READ_ONCE(sbinfo->shrinklist_len);
554 }
555 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
556
557 #define shmem_huge SHMEM_HUGE_DENY
558
559 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
560 struct shrink_control *sc, unsigned long nr_to_split)
561 {
562 return 0;
563 }
564 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
565
566 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
567 {
568 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
569 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
570 shmem_huge != SHMEM_HUGE_DENY)
571 return true;
572 return false;
573 }
574
575 /*
576 * Like add_to_page_cache_locked, but error if expected item has gone.
577 */
578 static int shmem_add_to_page_cache(struct page *page,
579 struct address_space *mapping,
580 pgoff_t index, void *expected)
581 {
582 int error, nr = hpage_nr_pages(page);
583
584 VM_BUG_ON_PAGE(PageTail(page), page);
585 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
586 VM_BUG_ON_PAGE(!PageLocked(page), page);
587 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
588 VM_BUG_ON(expected && PageTransHuge(page));
589
590 page_ref_add(page, nr);
591 page->mapping = mapping;
592 page->index = index;
593
594 xa_lock_irq(&mapping->i_pages);
595 if (PageTransHuge(page)) {
596 void __rcu **results;
597 pgoff_t idx;
598 int i;
599
600 error = 0;
601 if (radix_tree_gang_lookup_slot(&mapping->i_pages,
602 &results, &idx, index, 1) &&
603 idx < index + HPAGE_PMD_NR) {
604 error = -EEXIST;
605 }
606
607 if (!error) {
608 for (i = 0; i < HPAGE_PMD_NR; i++) {
609 error = radix_tree_insert(&mapping->i_pages,
610 index + i, page + i);
611 VM_BUG_ON(error);
612 }
613 count_vm_event(THP_FILE_ALLOC);
614 }
615 } else if (!expected) {
616 error = radix_tree_insert(&mapping->i_pages, index, page);
617 } else {
618 error = shmem_replace_entry(mapping, index, expected, page);
619 }
620
621 if (!error) {
622 mapping->nrpages += nr;
623 if (PageTransHuge(page))
624 __inc_node_page_state(page, NR_SHMEM_THPS);
625 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
626 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
627 xa_unlock_irq(&mapping->i_pages);
628 } else {
629 page->mapping = NULL;
630 xa_unlock_irq(&mapping->i_pages);
631 page_ref_sub(page, nr);
632 }
633 return error;
634 }
635
636 /*
637 * Like delete_from_page_cache, but substitutes swap for page.
638 */
639 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
640 {
641 struct address_space *mapping = page->mapping;
642 int error;
643
644 VM_BUG_ON_PAGE(PageCompound(page), page);
645
646 xa_lock_irq(&mapping->i_pages);
647 error = shmem_replace_entry(mapping, page->index, page, radswap);
648 page->mapping = NULL;
649 mapping->nrpages--;
650 __dec_node_page_state(page, NR_FILE_PAGES);
651 __dec_node_page_state(page, NR_SHMEM);
652 xa_unlock_irq(&mapping->i_pages);
653 put_page(page);
654 BUG_ON(error);
655 }
656
657 /*
658 * Remove swap entry from radix tree, free the swap and its page cache.
659 */
660 static int shmem_free_swap(struct address_space *mapping,
661 pgoff_t index, void *radswap)
662 {
663 void *old;
664
665 xa_lock_irq(&mapping->i_pages);
666 old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
667 xa_unlock_irq(&mapping->i_pages);
668 if (old != radswap)
669 return -ENOENT;
670 free_swap_and_cache(radix_to_swp_entry(radswap));
671 return 0;
672 }
673
674 /*
675 * Determine (in bytes) how many of the shmem object's pages mapped by the
676 * given offsets are swapped out.
677 *
678 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
679 * as long as the inode doesn't go away and racy results are not a problem.
680 */
681 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
682 pgoff_t start, pgoff_t end)
683 {
684 struct radix_tree_iter iter;
685 void __rcu **slot;
686 struct page *page;
687 unsigned long swapped = 0;
688
689 rcu_read_lock();
690
691 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
692 if (iter.index >= end)
693 break;
694
695 page = radix_tree_deref_slot(slot);
696
697 if (radix_tree_deref_retry(page)) {
698 slot = radix_tree_iter_retry(&iter);
699 continue;
700 }
701
702 if (xa_is_value(page))
703 swapped++;
704
705 if (need_resched()) {
706 slot = radix_tree_iter_resume(slot, &iter);
707 cond_resched_rcu();
708 }
709 }
710
711 rcu_read_unlock();
712
713 return swapped << PAGE_SHIFT;
714 }
715
716 /*
717 * Determine (in bytes) how many of the shmem object's pages mapped by the
718 * given vma is swapped out.
719 *
720 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
721 * as long as the inode doesn't go away and racy results are not a problem.
722 */
723 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
724 {
725 struct inode *inode = file_inode(vma->vm_file);
726 struct shmem_inode_info *info = SHMEM_I(inode);
727 struct address_space *mapping = inode->i_mapping;
728 unsigned long swapped;
729
730 /* Be careful as we don't hold info->lock */
731 swapped = READ_ONCE(info->swapped);
732
733 /*
734 * The easier cases are when the shmem object has nothing in swap, or
735 * the vma maps it whole. Then we can simply use the stats that we
736 * already track.
737 */
738 if (!swapped)
739 return 0;
740
741 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
742 return swapped << PAGE_SHIFT;
743
744 /* Here comes the more involved part */
745 return shmem_partial_swap_usage(mapping,
746 linear_page_index(vma, vma->vm_start),
747 linear_page_index(vma, vma->vm_end));
748 }
749
750 /*
751 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
752 */
753 void shmem_unlock_mapping(struct address_space *mapping)
754 {
755 struct pagevec pvec;
756 pgoff_t indices[PAGEVEC_SIZE];
757 pgoff_t index = 0;
758
759 pagevec_init(&pvec);
760 /*
761 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
762 */
763 while (!mapping_unevictable(mapping)) {
764 /*
765 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
766 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
767 */
768 pvec.nr = find_get_entries(mapping, index,
769 PAGEVEC_SIZE, pvec.pages, indices);
770 if (!pvec.nr)
771 break;
772 index = indices[pvec.nr - 1] + 1;
773 pagevec_remove_exceptionals(&pvec);
774 check_move_unevictable_pages(pvec.pages, pvec.nr);
775 pagevec_release(&pvec);
776 cond_resched();
777 }
778 }
779
780 /*
781 * Remove range of pages and swap entries from radix tree, and free them.
782 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
783 */
784 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
785 bool unfalloc)
786 {
787 struct address_space *mapping = inode->i_mapping;
788 struct shmem_inode_info *info = SHMEM_I(inode);
789 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
790 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
791 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
792 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
793 struct pagevec pvec;
794 pgoff_t indices[PAGEVEC_SIZE];
795 long nr_swaps_freed = 0;
796 pgoff_t index;
797 int i;
798
799 if (lend == -1)
800 end = -1; /* unsigned, so actually very big */
801
802 pagevec_init(&pvec);
803 index = start;
804 while (index < end) {
805 pvec.nr = find_get_entries(mapping, index,
806 min(end - index, (pgoff_t)PAGEVEC_SIZE),
807 pvec.pages, indices);
808 if (!pvec.nr)
809 break;
810 for (i = 0; i < pagevec_count(&pvec); i++) {
811 struct page *page = pvec.pages[i];
812
813 index = indices[i];
814 if (index >= end)
815 break;
816
817 if (xa_is_value(page)) {
818 if (unfalloc)
819 continue;
820 nr_swaps_freed += !shmem_free_swap(mapping,
821 index, page);
822 continue;
823 }
824
825 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
826
827 if (!trylock_page(page))
828 continue;
829
830 if (PageTransTail(page)) {
831 /* Middle of THP: zero out the page */
832 clear_highpage(page);
833 unlock_page(page);
834 continue;
835 } else if (PageTransHuge(page)) {
836 if (index == round_down(end, HPAGE_PMD_NR)) {
837 /*
838 * Range ends in the middle of THP:
839 * zero out the page
840 */
841 clear_highpage(page);
842 unlock_page(page);
843 continue;
844 }
845 index += HPAGE_PMD_NR - 1;
846 i += HPAGE_PMD_NR - 1;
847 }
848
849 if (!unfalloc || !PageUptodate(page)) {
850 VM_BUG_ON_PAGE(PageTail(page), page);
851 if (page_mapping(page) == mapping) {
852 VM_BUG_ON_PAGE(PageWriteback(page), page);
853 truncate_inode_page(mapping, page);
854 }
855 }
856 unlock_page(page);
857 }
858 pagevec_remove_exceptionals(&pvec);
859 pagevec_release(&pvec);
860 cond_resched();
861 index++;
862 }
863
864 if (partial_start) {
865 struct page *page = NULL;
866 shmem_getpage(inode, start - 1, &page, SGP_READ);
867 if (page) {
868 unsigned int top = PAGE_SIZE;
869 if (start > end) {
870 top = partial_end;
871 partial_end = 0;
872 }
873 zero_user_segment(page, partial_start, top);
874 set_page_dirty(page);
875 unlock_page(page);
876 put_page(page);
877 }
878 }
879 if (partial_end) {
880 struct page *page = NULL;
881 shmem_getpage(inode, end, &page, SGP_READ);
882 if (page) {
883 zero_user_segment(page, 0, partial_end);
884 set_page_dirty(page);
885 unlock_page(page);
886 put_page(page);
887 }
888 }
889 if (start >= end)
890 return;
891
892 index = start;
893 while (index < end) {
894 cond_resched();
895
896 pvec.nr = find_get_entries(mapping, index,
897 min(end - index, (pgoff_t)PAGEVEC_SIZE),
898 pvec.pages, indices);
899 if (!pvec.nr) {
900 /* If all gone or hole-punch or unfalloc, we're done */
901 if (index == start || end != -1)
902 break;
903 /* But if truncating, restart to make sure all gone */
904 index = start;
905 continue;
906 }
907 for (i = 0; i < pagevec_count(&pvec); i++) {
908 struct page *page = pvec.pages[i];
909
910 index = indices[i];
911 if (index >= end)
912 break;
913
914 if (xa_is_value(page)) {
915 if (unfalloc)
916 continue;
917 if (shmem_free_swap(mapping, index, page)) {
918 /* Swap was replaced by page: retry */
919 index--;
920 break;
921 }
922 nr_swaps_freed++;
923 continue;
924 }
925
926 lock_page(page);
927
928 if (PageTransTail(page)) {
929 /* Middle of THP: zero out the page */
930 clear_highpage(page);
931 unlock_page(page);
932 /*
933 * Partial thp truncate due 'start' in middle
934 * of THP: don't need to look on these pages
935 * again on !pvec.nr restart.
936 */
937 if (index != round_down(end, HPAGE_PMD_NR))
938 start++;
939 continue;
940 } else if (PageTransHuge(page)) {
941 if (index == round_down(end, HPAGE_PMD_NR)) {
942 /*
943 * Range ends in the middle of THP:
944 * zero out the page
945 */
946 clear_highpage(page);
947 unlock_page(page);
948 continue;
949 }
950 index += HPAGE_PMD_NR - 1;
951 i += HPAGE_PMD_NR - 1;
952 }
953
954 if (!unfalloc || !PageUptodate(page)) {
955 VM_BUG_ON_PAGE(PageTail(page), page);
956 if (page_mapping(page) == mapping) {
957 VM_BUG_ON_PAGE(PageWriteback(page), page);
958 truncate_inode_page(mapping, page);
959 } else {
960 /* Page was replaced by swap: retry */
961 unlock_page(page);
962 index--;
963 break;
964 }
965 }
966 unlock_page(page);
967 }
968 pagevec_remove_exceptionals(&pvec);
969 pagevec_release(&pvec);
970 index++;
971 }
972
973 spin_lock_irq(&info->lock);
974 info->swapped -= nr_swaps_freed;
975 shmem_recalc_inode(inode);
976 spin_unlock_irq(&info->lock);
977 }
978
979 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
980 {
981 shmem_undo_range(inode, lstart, lend, false);
982 inode->i_ctime = inode->i_mtime = current_time(inode);
983 }
984 EXPORT_SYMBOL_GPL(shmem_truncate_range);
985
986 static int shmem_getattr(const struct path *path, struct kstat *stat,
987 u32 request_mask, unsigned int query_flags)
988 {
989 struct inode *inode = path->dentry->d_inode;
990 struct shmem_inode_info *info = SHMEM_I(inode);
991 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
992
993 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
994 spin_lock_irq(&info->lock);
995 shmem_recalc_inode(inode);
996 spin_unlock_irq(&info->lock);
997 }
998 generic_fillattr(inode, stat);
999
1000 if (is_huge_enabled(sb_info))
1001 stat->blksize = HPAGE_PMD_SIZE;
1002
1003 return 0;
1004 }
1005
1006 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1007 {
1008 struct inode *inode = d_inode(dentry);
1009 struct shmem_inode_info *info = SHMEM_I(inode);
1010 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1011 int error;
1012
1013 error = setattr_prepare(dentry, attr);
1014 if (error)
1015 return error;
1016
1017 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1018 loff_t oldsize = inode->i_size;
1019 loff_t newsize = attr->ia_size;
1020
1021 /* protected by i_mutex */
1022 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1023 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1024 return -EPERM;
1025
1026 if (newsize != oldsize) {
1027 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1028 oldsize, newsize);
1029 if (error)
1030 return error;
1031 i_size_write(inode, newsize);
1032 inode->i_ctime = inode->i_mtime = current_time(inode);
1033 }
1034 if (newsize <= oldsize) {
1035 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1036 if (oldsize > holebegin)
1037 unmap_mapping_range(inode->i_mapping,
1038 holebegin, 0, 1);
1039 if (info->alloced)
1040 shmem_truncate_range(inode,
1041 newsize, (loff_t)-1);
1042 /* unmap again to remove racily COWed private pages */
1043 if (oldsize > holebegin)
1044 unmap_mapping_range(inode->i_mapping,
1045 holebegin, 0, 1);
1046
1047 /*
1048 * Part of the huge page can be beyond i_size: subject
1049 * to shrink under memory pressure.
1050 */
1051 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1052 spin_lock(&sbinfo->shrinklist_lock);
1053 /*
1054 * _careful to defend against unlocked access to
1055 * ->shrink_list in shmem_unused_huge_shrink()
1056 */
1057 if (list_empty_careful(&info->shrinklist)) {
1058 list_add_tail(&info->shrinklist,
1059 &sbinfo->shrinklist);
1060 sbinfo->shrinklist_len++;
1061 }
1062 spin_unlock(&sbinfo->shrinklist_lock);
1063 }
1064 }
1065 }
1066
1067 setattr_copy(inode, attr);
1068 if (attr->ia_valid & ATTR_MODE)
1069 error = posix_acl_chmod(inode, inode->i_mode);
1070 return error;
1071 }
1072
1073 static void shmem_evict_inode(struct inode *inode)
1074 {
1075 struct shmem_inode_info *info = SHMEM_I(inode);
1076 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1077
1078 if (inode->i_mapping->a_ops == &shmem_aops) {
1079 shmem_unacct_size(info->flags, inode->i_size);
1080 inode->i_size = 0;
1081 shmem_truncate_range(inode, 0, (loff_t)-1);
1082 if (!list_empty(&info->shrinklist)) {
1083 spin_lock(&sbinfo->shrinklist_lock);
1084 if (!list_empty(&info->shrinklist)) {
1085 list_del_init(&info->shrinklist);
1086 sbinfo->shrinklist_len--;
1087 }
1088 spin_unlock(&sbinfo->shrinklist_lock);
1089 }
1090 if (!list_empty(&info->swaplist)) {
1091 mutex_lock(&shmem_swaplist_mutex);
1092 list_del_init(&info->swaplist);
1093 mutex_unlock(&shmem_swaplist_mutex);
1094 }
1095 }
1096
1097 simple_xattrs_free(&info->xattrs);
1098 WARN_ON(inode->i_blocks);
1099 shmem_free_inode(inode->i_sb);
1100 clear_inode(inode);
1101 }
1102
1103 static unsigned long find_swap_entry(struct xarray *xa, void *item)
1104 {
1105 XA_STATE(xas, xa, 0);
1106 unsigned int checked = 0;
1107 void *entry;
1108
1109 rcu_read_lock();
1110 xas_for_each(&xas, entry, ULONG_MAX) {
1111 if (xas_retry(&xas, entry))
1112 continue;
1113 if (entry == item)
1114 break;
1115 checked++;
1116 if ((checked % XA_CHECK_SCHED) != 0)
1117 continue;
1118 xas_pause(&xas);
1119 cond_resched_rcu();
1120 }
1121 rcu_read_unlock();
1122
1123 return entry ? xas.xa_index : -1;
1124 }
1125
1126 /*
1127 * If swap found in inode, free it and move page from swapcache to filecache.
1128 */
1129 static int shmem_unuse_inode(struct shmem_inode_info *info,
1130 swp_entry_t swap, struct page **pagep)
1131 {
1132 struct address_space *mapping = info->vfs_inode.i_mapping;
1133 void *radswap;
1134 pgoff_t index;
1135 gfp_t gfp;
1136 int error = 0;
1137
1138 radswap = swp_to_radix_entry(swap);
1139 index = find_swap_entry(&mapping->i_pages, radswap);
1140 if (index == -1)
1141 return -EAGAIN; /* tell shmem_unuse we found nothing */
1142
1143 /*
1144 * Move _head_ to start search for next from here.
1145 * But be careful: shmem_evict_inode checks list_empty without taking
1146 * mutex, and there's an instant in list_move_tail when info->swaplist
1147 * would appear empty, if it were the only one on shmem_swaplist.
1148 */
1149 if (shmem_swaplist.next != &info->swaplist)
1150 list_move_tail(&shmem_swaplist, &info->swaplist);
1151
1152 gfp = mapping_gfp_mask(mapping);
1153 if (shmem_should_replace_page(*pagep, gfp)) {
1154 mutex_unlock(&shmem_swaplist_mutex);
1155 error = shmem_replace_page(pagep, gfp, info, index);
1156 mutex_lock(&shmem_swaplist_mutex);
1157 /*
1158 * We needed to drop mutex to make that restrictive page
1159 * allocation, but the inode might have been freed while we
1160 * dropped it: although a racing shmem_evict_inode() cannot
1161 * complete without emptying the radix_tree, our page lock
1162 * on this swapcache page is not enough to prevent that -
1163 * free_swap_and_cache() of our swap entry will only
1164 * trylock_page(), removing swap from radix_tree whatever.
1165 *
1166 * We must not proceed to shmem_add_to_page_cache() if the
1167 * inode has been freed, but of course we cannot rely on
1168 * inode or mapping or info to check that. However, we can
1169 * safely check if our swap entry is still in use (and here
1170 * it can't have got reused for another page): if it's still
1171 * in use, then the inode cannot have been freed yet, and we
1172 * can safely proceed (if it's no longer in use, that tells
1173 * nothing about the inode, but we don't need to unuse swap).
1174 */
1175 if (!page_swapcount(*pagep))
1176 error = -ENOENT;
1177 }
1178
1179 /*
1180 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1181 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1182 * beneath us (pagelock doesn't help until the page is in pagecache).
1183 */
1184 if (!error)
1185 error = shmem_add_to_page_cache(*pagep, mapping, index,
1186 radswap);
1187 if (error != -ENOMEM) {
1188 /*
1189 * Truncation and eviction use free_swap_and_cache(), which
1190 * only does trylock page: if we raced, best clean up here.
1191 */
1192 delete_from_swap_cache(*pagep);
1193 set_page_dirty(*pagep);
1194 if (!error) {
1195 spin_lock_irq(&info->lock);
1196 info->swapped--;
1197 spin_unlock_irq(&info->lock);
1198 swap_free(swap);
1199 }
1200 }
1201 return error;
1202 }
1203
1204 /*
1205 * Search through swapped inodes to find and replace swap by page.
1206 */
1207 int shmem_unuse(swp_entry_t swap, struct page *page)
1208 {
1209 struct list_head *this, *next;
1210 struct shmem_inode_info *info;
1211 struct mem_cgroup *memcg;
1212 int error = 0;
1213
1214 /*
1215 * There's a faint possibility that swap page was replaced before
1216 * caller locked it: caller will come back later with the right page.
1217 */
1218 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1219 goto out;
1220
1221 /*
1222 * Charge page using GFP_KERNEL while we can wait, before taking
1223 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1224 * Charged back to the user (not to caller) when swap account is used.
1225 */
1226 error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1227 &memcg, false);
1228 if (error)
1229 goto out;
1230 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1231 error = -EAGAIN;
1232
1233 mutex_lock(&shmem_swaplist_mutex);
1234 list_for_each_safe(this, next, &shmem_swaplist) {
1235 info = list_entry(this, struct shmem_inode_info, swaplist);
1236 if (info->swapped)
1237 error = shmem_unuse_inode(info, swap, &page);
1238 else
1239 list_del_init(&info->swaplist);
1240 cond_resched();
1241 if (error != -EAGAIN)
1242 break;
1243 /* found nothing in this: move on to search the next */
1244 }
1245 mutex_unlock(&shmem_swaplist_mutex);
1246
1247 if (error) {
1248 if (error != -ENOMEM)
1249 error = 0;
1250 mem_cgroup_cancel_charge(page, memcg, false);
1251 } else
1252 mem_cgroup_commit_charge(page, memcg, true, false);
1253 out:
1254 unlock_page(page);
1255 put_page(page);
1256 return error;
1257 }
1258
1259 /*
1260 * Move the page from the page cache to the swap cache.
1261 */
1262 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1263 {
1264 struct shmem_inode_info *info;
1265 struct address_space *mapping;
1266 struct inode *inode;
1267 swp_entry_t swap;
1268 pgoff_t index;
1269
1270 VM_BUG_ON_PAGE(PageCompound(page), page);
1271 BUG_ON(!PageLocked(page));
1272 mapping = page->mapping;
1273 index = page->index;
1274 inode = mapping->host;
1275 info = SHMEM_I(inode);
1276 if (info->flags & VM_LOCKED)
1277 goto redirty;
1278 if (!total_swap_pages)
1279 goto redirty;
1280
1281 /*
1282 * Our capabilities prevent regular writeback or sync from ever calling
1283 * shmem_writepage; but a stacking filesystem might use ->writepage of
1284 * its underlying filesystem, in which case tmpfs should write out to
1285 * swap only in response to memory pressure, and not for the writeback
1286 * threads or sync.
1287 */
1288 if (!wbc->for_reclaim) {
1289 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1290 goto redirty;
1291 }
1292
1293 /*
1294 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1295 * value into swapfile.c, the only way we can correctly account for a
1296 * fallocated page arriving here is now to initialize it and write it.
1297 *
1298 * That's okay for a page already fallocated earlier, but if we have
1299 * not yet completed the fallocation, then (a) we want to keep track
1300 * of this page in case we have to undo it, and (b) it may not be a
1301 * good idea to continue anyway, once we're pushing into swap. So
1302 * reactivate the page, and let shmem_fallocate() quit when too many.
1303 */
1304 if (!PageUptodate(page)) {
1305 if (inode->i_private) {
1306 struct shmem_falloc *shmem_falloc;
1307 spin_lock(&inode->i_lock);
1308 shmem_falloc = inode->i_private;
1309 if (shmem_falloc &&
1310 !shmem_falloc->waitq &&
1311 index >= shmem_falloc->start &&
1312 index < shmem_falloc->next)
1313 shmem_falloc->nr_unswapped++;
1314 else
1315 shmem_falloc = NULL;
1316 spin_unlock(&inode->i_lock);
1317 if (shmem_falloc)
1318 goto redirty;
1319 }
1320 clear_highpage(page);
1321 flush_dcache_page(page);
1322 SetPageUptodate(page);
1323 }
1324
1325 swap = get_swap_page(page);
1326 if (!swap.val)
1327 goto redirty;
1328
1329 /*
1330 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1331 * if it's not already there. Do it now before the page is
1332 * moved to swap cache, when its pagelock no longer protects
1333 * the inode from eviction. But don't unlock the mutex until
1334 * we've incremented swapped, because shmem_unuse_inode() will
1335 * prune a !swapped inode from the swaplist under this mutex.
1336 */
1337 mutex_lock(&shmem_swaplist_mutex);
1338 if (list_empty(&info->swaplist))
1339 list_add_tail(&info->swaplist, &shmem_swaplist);
1340
1341 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1342 spin_lock_irq(&info->lock);
1343 shmem_recalc_inode(inode);
1344 info->swapped++;
1345 spin_unlock_irq(&info->lock);
1346
1347 swap_shmem_alloc(swap);
1348 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1349
1350 mutex_unlock(&shmem_swaplist_mutex);
1351 BUG_ON(page_mapped(page));
1352 swap_writepage(page, wbc);
1353 return 0;
1354 }
1355
1356 mutex_unlock(&shmem_swaplist_mutex);
1357 put_swap_page(page, swap);
1358 redirty:
1359 set_page_dirty(page);
1360 if (wbc->for_reclaim)
1361 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1362 unlock_page(page);
1363 return 0;
1364 }
1365
1366 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1367 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1368 {
1369 char buffer[64];
1370
1371 if (!mpol || mpol->mode == MPOL_DEFAULT)
1372 return; /* show nothing */
1373
1374 mpol_to_str(buffer, sizeof(buffer), mpol);
1375
1376 seq_printf(seq, ",mpol=%s", buffer);
1377 }
1378
1379 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1380 {
1381 struct mempolicy *mpol = NULL;
1382 if (sbinfo->mpol) {
1383 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1384 mpol = sbinfo->mpol;
1385 mpol_get(mpol);
1386 spin_unlock(&sbinfo->stat_lock);
1387 }
1388 return mpol;
1389 }
1390 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1391 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1392 {
1393 }
1394 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1395 {
1396 return NULL;
1397 }
1398 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1399 #ifndef CONFIG_NUMA
1400 #define vm_policy vm_private_data
1401 #endif
1402
1403 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1404 struct shmem_inode_info *info, pgoff_t index)
1405 {
1406 /* Create a pseudo vma that just contains the policy */
1407 vma_init(vma, NULL);
1408 /* Bias interleave by inode number to distribute better across nodes */
1409 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1410 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1411 }
1412
1413 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1414 {
1415 /* Drop reference taken by mpol_shared_policy_lookup() */
1416 mpol_cond_put(vma->vm_policy);
1417 }
1418
1419 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1420 struct shmem_inode_info *info, pgoff_t index)
1421 {
1422 struct vm_area_struct pvma;
1423 struct page *page;
1424 struct vm_fault vmf;
1425
1426 shmem_pseudo_vma_init(&pvma, info, index);
1427 vmf.vma = &pvma;
1428 vmf.address = 0;
1429 page = swap_cluster_readahead(swap, gfp, &vmf);
1430 shmem_pseudo_vma_destroy(&pvma);
1431
1432 return page;
1433 }
1434
1435 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1436 struct shmem_inode_info *info, pgoff_t index)
1437 {
1438 struct vm_area_struct pvma;
1439 struct inode *inode = &info->vfs_inode;
1440 struct address_space *mapping = inode->i_mapping;
1441 pgoff_t idx, hindex;
1442 void __rcu **results;
1443 struct page *page;
1444
1445 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1446 return NULL;
1447
1448 hindex = round_down(index, HPAGE_PMD_NR);
1449 rcu_read_lock();
1450 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1451 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1452 rcu_read_unlock();
1453 return NULL;
1454 }
1455 rcu_read_unlock();
1456
1457 shmem_pseudo_vma_init(&pvma, info, hindex);
1458 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1459 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1460 shmem_pseudo_vma_destroy(&pvma);
1461 if (page)
1462 prep_transhuge_page(page);
1463 return page;
1464 }
1465
1466 static struct page *shmem_alloc_page(gfp_t gfp,
1467 struct shmem_inode_info *info, pgoff_t index)
1468 {
1469 struct vm_area_struct pvma;
1470 struct page *page;
1471
1472 shmem_pseudo_vma_init(&pvma, info, index);
1473 page = alloc_page_vma(gfp, &pvma, 0);
1474 shmem_pseudo_vma_destroy(&pvma);
1475
1476 return page;
1477 }
1478
1479 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1480 struct inode *inode,
1481 pgoff_t index, bool huge)
1482 {
1483 struct shmem_inode_info *info = SHMEM_I(inode);
1484 struct page *page;
1485 int nr;
1486 int err = -ENOSPC;
1487
1488 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1489 huge = false;
1490 nr = huge ? HPAGE_PMD_NR : 1;
1491
1492 if (!shmem_inode_acct_block(inode, nr))
1493 goto failed;
1494
1495 if (huge)
1496 page = shmem_alloc_hugepage(gfp, info, index);
1497 else
1498 page = shmem_alloc_page(gfp, info, index);
1499 if (page) {
1500 __SetPageLocked(page);
1501 __SetPageSwapBacked(page);
1502 return page;
1503 }
1504
1505 err = -ENOMEM;
1506 shmem_inode_unacct_blocks(inode, nr);
1507 failed:
1508 return ERR_PTR(err);
1509 }
1510
1511 /*
1512 * When a page is moved from swapcache to shmem filecache (either by the
1513 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1514 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1515 * ignorance of the mapping it belongs to. If that mapping has special
1516 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1517 * we may need to copy to a suitable page before moving to filecache.
1518 *
1519 * In a future release, this may well be extended to respect cpuset and
1520 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1521 * but for now it is a simple matter of zone.
1522 */
1523 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1524 {
1525 return page_zonenum(page) > gfp_zone(gfp);
1526 }
1527
1528 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1529 struct shmem_inode_info *info, pgoff_t index)
1530 {
1531 struct page *oldpage, *newpage;
1532 struct address_space *swap_mapping;
1533 pgoff_t swap_index;
1534 int error;
1535
1536 oldpage = *pagep;
1537 swap_index = page_private(oldpage);
1538 swap_mapping = page_mapping(oldpage);
1539
1540 /*
1541 * We have arrived here because our zones are constrained, so don't
1542 * limit chance of success by further cpuset and node constraints.
1543 */
1544 gfp &= ~GFP_CONSTRAINT_MASK;
1545 newpage = shmem_alloc_page(gfp, info, index);
1546 if (!newpage)
1547 return -ENOMEM;
1548
1549 get_page(newpage);
1550 copy_highpage(newpage, oldpage);
1551 flush_dcache_page(newpage);
1552
1553 __SetPageLocked(newpage);
1554 __SetPageSwapBacked(newpage);
1555 SetPageUptodate(newpage);
1556 set_page_private(newpage, swap_index);
1557 SetPageSwapCache(newpage);
1558
1559 /*
1560 * Our caller will very soon move newpage out of swapcache, but it's
1561 * a nice clean interface for us to replace oldpage by newpage there.
1562 */
1563 xa_lock_irq(&swap_mapping->i_pages);
1564 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1565 if (!error) {
1566 __inc_node_page_state(newpage, NR_FILE_PAGES);
1567 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1568 }
1569 xa_unlock_irq(&swap_mapping->i_pages);
1570
1571 if (unlikely(error)) {
1572 /*
1573 * Is this possible? I think not, now that our callers check
1574 * both PageSwapCache and page_private after getting page lock;
1575 * but be defensive. Reverse old to newpage for clear and free.
1576 */
1577 oldpage = newpage;
1578 } else {
1579 mem_cgroup_migrate(oldpage, newpage);
1580 lru_cache_add_anon(newpage);
1581 *pagep = newpage;
1582 }
1583
1584 ClearPageSwapCache(oldpage);
1585 set_page_private(oldpage, 0);
1586
1587 unlock_page(oldpage);
1588 put_page(oldpage);
1589 put_page(oldpage);
1590 return error;
1591 }
1592
1593 /*
1594 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1595 *
1596 * If we allocate a new one we do not mark it dirty. That's up to the
1597 * vm. If we swap it in we mark it dirty since we also free the swap
1598 * entry since a page cannot live in both the swap and page cache.
1599 *
1600 * fault_mm and fault_type are only supplied by shmem_fault:
1601 * otherwise they are NULL.
1602 */
1603 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1604 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1605 struct vm_area_struct *vma, struct vm_fault *vmf,
1606 vm_fault_t *fault_type)
1607 {
1608 struct address_space *mapping = inode->i_mapping;
1609 struct shmem_inode_info *info = SHMEM_I(inode);
1610 struct shmem_sb_info *sbinfo;
1611 struct mm_struct *charge_mm;
1612 struct mem_cgroup *memcg;
1613 struct page *page;
1614 swp_entry_t swap;
1615 enum sgp_type sgp_huge = sgp;
1616 pgoff_t hindex = index;
1617 int error;
1618 int once = 0;
1619 int alloced = 0;
1620
1621 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1622 return -EFBIG;
1623 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1624 sgp = SGP_CACHE;
1625 repeat:
1626 swap.val = 0;
1627 page = find_lock_entry(mapping, index);
1628 if (xa_is_value(page)) {
1629 swap = radix_to_swp_entry(page);
1630 page = NULL;
1631 }
1632
1633 if (sgp <= SGP_CACHE &&
1634 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1635 error = -EINVAL;
1636 goto unlock;
1637 }
1638
1639 if (page && sgp == SGP_WRITE)
1640 mark_page_accessed(page);
1641
1642 /* fallocated page? */
1643 if (page && !PageUptodate(page)) {
1644 if (sgp != SGP_READ)
1645 goto clear;
1646 unlock_page(page);
1647 put_page(page);
1648 page = NULL;
1649 }
1650 if (page || (sgp == SGP_READ && !swap.val)) {
1651 *pagep = page;
1652 return 0;
1653 }
1654
1655 /*
1656 * Fast cache lookup did not find it:
1657 * bring it back from swap or allocate.
1658 */
1659 sbinfo = SHMEM_SB(inode->i_sb);
1660 charge_mm = vma ? vma->vm_mm : current->mm;
1661
1662 if (swap.val) {
1663 /* Look it up and read it in.. */
1664 page = lookup_swap_cache(swap, NULL, 0);
1665 if (!page) {
1666 /* Or update major stats only when swapin succeeds?? */
1667 if (fault_type) {
1668 *fault_type |= VM_FAULT_MAJOR;
1669 count_vm_event(PGMAJFAULT);
1670 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1671 }
1672 /* Here we actually start the io */
1673 page = shmem_swapin(swap, gfp, info, index);
1674 if (!page) {
1675 error = -ENOMEM;
1676 goto failed;
1677 }
1678 }
1679
1680 /* We have to do this with page locked to prevent races */
1681 lock_page(page);
1682 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1683 !shmem_confirm_swap(mapping, index, swap)) {
1684 error = -EEXIST; /* try again */
1685 goto unlock;
1686 }
1687 if (!PageUptodate(page)) {
1688 error = -EIO;
1689 goto failed;
1690 }
1691 wait_on_page_writeback(page);
1692
1693 if (shmem_should_replace_page(page, gfp)) {
1694 error = shmem_replace_page(&page, gfp, info, index);
1695 if (error)
1696 goto failed;
1697 }
1698
1699 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1700 false);
1701 if (!error) {
1702 error = shmem_add_to_page_cache(page, mapping, index,
1703 swp_to_radix_entry(swap));
1704 /*
1705 * We already confirmed swap under page lock, and make
1706 * no memory allocation here, so usually no possibility
1707 * of error; but free_swap_and_cache() only trylocks a
1708 * page, so it is just possible that the entry has been
1709 * truncated or holepunched since swap was confirmed.
1710 * shmem_undo_range() will have done some of the
1711 * unaccounting, now delete_from_swap_cache() will do
1712 * the rest.
1713 * Reset swap.val? No, leave it so "failed" goes back to
1714 * "repeat": reading a hole and writing should succeed.
1715 */
1716 if (error) {
1717 mem_cgroup_cancel_charge(page, memcg, false);
1718 delete_from_swap_cache(page);
1719 }
1720 }
1721 if (error)
1722 goto failed;
1723
1724 mem_cgroup_commit_charge(page, memcg, true, false);
1725
1726 spin_lock_irq(&info->lock);
1727 info->swapped--;
1728 shmem_recalc_inode(inode);
1729 spin_unlock_irq(&info->lock);
1730
1731 if (sgp == SGP_WRITE)
1732 mark_page_accessed(page);
1733
1734 delete_from_swap_cache(page);
1735 set_page_dirty(page);
1736 swap_free(swap);
1737
1738 } else {
1739 if (vma && userfaultfd_missing(vma)) {
1740 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1741 return 0;
1742 }
1743
1744 /* shmem_symlink() */
1745 if (mapping->a_ops != &shmem_aops)
1746 goto alloc_nohuge;
1747 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1748 goto alloc_nohuge;
1749 if (shmem_huge == SHMEM_HUGE_FORCE)
1750 goto alloc_huge;
1751 switch (sbinfo->huge) {
1752 loff_t i_size;
1753 pgoff_t off;
1754 case SHMEM_HUGE_NEVER:
1755 goto alloc_nohuge;
1756 case SHMEM_HUGE_WITHIN_SIZE:
1757 off = round_up(index, HPAGE_PMD_NR);
1758 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1759 if (i_size >= HPAGE_PMD_SIZE &&
1760 i_size >> PAGE_SHIFT >= off)
1761 goto alloc_huge;
1762 /* fallthrough */
1763 case SHMEM_HUGE_ADVISE:
1764 if (sgp_huge == SGP_HUGE)
1765 goto alloc_huge;
1766 /* TODO: implement fadvise() hints */
1767 goto alloc_nohuge;
1768 }
1769
1770 alloc_huge:
1771 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1772 if (IS_ERR(page)) {
1773 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1774 index, false);
1775 }
1776 if (IS_ERR(page)) {
1777 int retry = 5;
1778 error = PTR_ERR(page);
1779 page = NULL;
1780 if (error != -ENOSPC)
1781 goto failed;
1782 /*
1783 * Try to reclaim some spece by splitting a huge page
1784 * beyond i_size on the filesystem.
1785 */
1786 while (retry--) {
1787 int ret;
1788 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1789 if (ret == SHRINK_STOP)
1790 break;
1791 if (ret)
1792 goto alloc_nohuge;
1793 }
1794 goto failed;
1795 }
1796
1797 if (PageTransHuge(page))
1798 hindex = round_down(index, HPAGE_PMD_NR);
1799 else
1800 hindex = index;
1801
1802 if (sgp == SGP_WRITE)
1803 __SetPageReferenced(page);
1804
1805 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1806 PageTransHuge(page));
1807 if (error)
1808 goto unacct;
1809 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1810 compound_order(page));
1811 if (!error) {
1812 error = shmem_add_to_page_cache(page, mapping, hindex,
1813 NULL);
1814 radix_tree_preload_end();
1815 }
1816 if (error) {
1817 mem_cgroup_cancel_charge(page, memcg,
1818 PageTransHuge(page));
1819 goto unacct;
1820 }
1821 mem_cgroup_commit_charge(page, memcg, false,
1822 PageTransHuge(page));
1823 lru_cache_add_anon(page);
1824
1825 spin_lock_irq(&info->lock);
1826 info->alloced += 1 << compound_order(page);
1827 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1828 shmem_recalc_inode(inode);
1829 spin_unlock_irq(&info->lock);
1830 alloced = true;
1831
1832 if (PageTransHuge(page) &&
1833 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1834 hindex + HPAGE_PMD_NR - 1) {
1835 /*
1836 * Part of the huge page is beyond i_size: subject
1837 * to shrink under memory pressure.
1838 */
1839 spin_lock(&sbinfo->shrinklist_lock);
1840 /*
1841 * _careful to defend against unlocked access to
1842 * ->shrink_list in shmem_unused_huge_shrink()
1843 */
1844 if (list_empty_careful(&info->shrinklist)) {
1845 list_add_tail(&info->shrinklist,
1846 &sbinfo->shrinklist);
1847 sbinfo->shrinklist_len++;
1848 }
1849 spin_unlock(&sbinfo->shrinklist_lock);
1850 }
1851
1852 /*
1853 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1854 */
1855 if (sgp == SGP_FALLOC)
1856 sgp = SGP_WRITE;
1857 clear:
1858 /*
1859 * Let SGP_WRITE caller clear ends if write does not fill page;
1860 * but SGP_FALLOC on a page fallocated earlier must initialize
1861 * it now, lest undo on failure cancel our earlier guarantee.
1862 */
1863 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1864 struct page *head = compound_head(page);
1865 int i;
1866
1867 for (i = 0; i < (1 << compound_order(head)); i++) {
1868 clear_highpage(head + i);
1869 flush_dcache_page(head + i);
1870 }
1871 SetPageUptodate(head);
1872 }
1873 }
1874
1875 /* Perhaps the file has been truncated since we checked */
1876 if (sgp <= SGP_CACHE &&
1877 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1878 if (alloced) {
1879 ClearPageDirty(page);
1880 delete_from_page_cache(page);
1881 spin_lock_irq(&info->lock);
1882 shmem_recalc_inode(inode);
1883 spin_unlock_irq(&info->lock);
1884 }
1885 error = -EINVAL;
1886 goto unlock;
1887 }
1888 *pagep = page + index - hindex;
1889 return 0;
1890
1891 /*
1892 * Error recovery.
1893 */
1894 unacct:
1895 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1896
1897 if (PageTransHuge(page)) {
1898 unlock_page(page);
1899 put_page(page);
1900 goto alloc_nohuge;
1901 }
1902 failed:
1903 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1904 error = -EEXIST;
1905 unlock:
1906 if (page) {
1907 unlock_page(page);
1908 put_page(page);
1909 }
1910 if (error == -ENOSPC && !once++) {
1911 spin_lock_irq(&info->lock);
1912 shmem_recalc_inode(inode);
1913 spin_unlock_irq(&info->lock);
1914 goto repeat;
1915 }
1916 if (error == -EEXIST) /* from above or from radix_tree_insert */
1917 goto repeat;
1918 return error;
1919 }
1920
1921 /*
1922 * This is like autoremove_wake_function, but it removes the wait queue
1923 * entry unconditionally - even if something else had already woken the
1924 * target.
1925 */
1926 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1927 {
1928 int ret = default_wake_function(wait, mode, sync, key);
1929 list_del_init(&wait->entry);
1930 return ret;
1931 }
1932
1933 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1934 {
1935 struct vm_area_struct *vma = vmf->vma;
1936 struct inode *inode = file_inode(vma->vm_file);
1937 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1938 enum sgp_type sgp;
1939 int err;
1940 vm_fault_t ret = VM_FAULT_LOCKED;
1941
1942 /*
1943 * Trinity finds that probing a hole which tmpfs is punching can
1944 * prevent the hole-punch from ever completing: which in turn
1945 * locks writers out with its hold on i_mutex. So refrain from
1946 * faulting pages into the hole while it's being punched. Although
1947 * shmem_undo_range() does remove the additions, it may be unable to
1948 * keep up, as each new page needs its own unmap_mapping_range() call,
1949 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1950 *
1951 * It does not matter if we sometimes reach this check just before the
1952 * hole-punch begins, so that one fault then races with the punch:
1953 * we just need to make racing faults a rare case.
1954 *
1955 * The implementation below would be much simpler if we just used a
1956 * standard mutex or completion: but we cannot take i_mutex in fault,
1957 * and bloating every shmem inode for this unlikely case would be sad.
1958 */
1959 if (unlikely(inode->i_private)) {
1960 struct shmem_falloc *shmem_falloc;
1961
1962 spin_lock(&inode->i_lock);
1963 shmem_falloc = inode->i_private;
1964 if (shmem_falloc &&
1965 shmem_falloc->waitq &&
1966 vmf->pgoff >= shmem_falloc->start &&
1967 vmf->pgoff < shmem_falloc->next) {
1968 wait_queue_head_t *shmem_falloc_waitq;
1969 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1970
1971 ret = VM_FAULT_NOPAGE;
1972 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1973 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1974 /* It's polite to up mmap_sem if we can */
1975 up_read(&vma->vm_mm->mmap_sem);
1976 ret = VM_FAULT_RETRY;
1977 }
1978
1979 shmem_falloc_waitq = shmem_falloc->waitq;
1980 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1981 TASK_UNINTERRUPTIBLE);
1982 spin_unlock(&inode->i_lock);
1983 schedule();
1984
1985 /*
1986 * shmem_falloc_waitq points into the shmem_fallocate()
1987 * stack of the hole-punching task: shmem_falloc_waitq
1988 * is usually invalid by the time we reach here, but
1989 * finish_wait() does not dereference it in that case;
1990 * though i_lock needed lest racing with wake_up_all().
1991 */
1992 spin_lock(&inode->i_lock);
1993 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1994 spin_unlock(&inode->i_lock);
1995 return ret;
1996 }
1997 spin_unlock(&inode->i_lock);
1998 }
1999
2000 sgp = SGP_CACHE;
2001
2002 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2003 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2004 sgp = SGP_NOHUGE;
2005 else if (vma->vm_flags & VM_HUGEPAGE)
2006 sgp = SGP_HUGE;
2007
2008 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2009 gfp, vma, vmf, &ret);
2010 if (err)
2011 return vmf_error(err);
2012 return ret;
2013 }
2014
2015 unsigned long shmem_get_unmapped_area(struct file *file,
2016 unsigned long uaddr, unsigned long len,
2017 unsigned long pgoff, unsigned long flags)
2018 {
2019 unsigned long (*get_area)(struct file *,
2020 unsigned long, unsigned long, unsigned long, unsigned long);
2021 unsigned long addr;
2022 unsigned long offset;
2023 unsigned long inflated_len;
2024 unsigned long inflated_addr;
2025 unsigned long inflated_offset;
2026
2027 if (len > TASK_SIZE)
2028 return -ENOMEM;
2029
2030 get_area = current->mm->get_unmapped_area;
2031 addr = get_area(file, uaddr, len, pgoff, flags);
2032
2033 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2034 return addr;
2035 if (IS_ERR_VALUE(addr))
2036 return addr;
2037 if (addr & ~PAGE_MASK)
2038 return addr;
2039 if (addr > TASK_SIZE - len)
2040 return addr;
2041
2042 if (shmem_huge == SHMEM_HUGE_DENY)
2043 return addr;
2044 if (len < HPAGE_PMD_SIZE)
2045 return addr;
2046 if (flags & MAP_FIXED)
2047 return addr;
2048 /*
2049 * Our priority is to support MAP_SHARED mapped hugely;
2050 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2051 * But if caller specified an address hint, respect that as before.
2052 */
2053 if (uaddr)
2054 return addr;
2055
2056 if (shmem_huge != SHMEM_HUGE_FORCE) {
2057 struct super_block *sb;
2058
2059 if (file) {
2060 VM_BUG_ON(file->f_op != &shmem_file_operations);
2061 sb = file_inode(file)->i_sb;
2062 } else {
2063 /*
2064 * Called directly from mm/mmap.c, or drivers/char/mem.c
2065 * for "/dev/zero", to create a shared anonymous object.
2066 */
2067 if (IS_ERR(shm_mnt))
2068 return addr;
2069 sb = shm_mnt->mnt_sb;
2070 }
2071 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2072 return addr;
2073 }
2074
2075 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2076 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2077 return addr;
2078 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2079 return addr;
2080
2081 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2082 if (inflated_len > TASK_SIZE)
2083 return addr;
2084 if (inflated_len < len)
2085 return addr;
2086
2087 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2088 if (IS_ERR_VALUE(inflated_addr))
2089 return addr;
2090 if (inflated_addr & ~PAGE_MASK)
2091 return addr;
2092
2093 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2094 inflated_addr += offset - inflated_offset;
2095 if (inflated_offset > offset)
2096 inflated_addr += HPAGE_PMD_SIZE;
2097
2098 if (inflated_addr > TASK_SIZE - len)
2099 return addr;
2100 return inflated_addr;
2101 }
2102
2103 #ifdef CONFIG_NUMA
2104 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2105 {
2106 struct inode *inode = file_inode(vma->vm_file);
2107 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2108 }
2109
2110 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2111 unsigned long addr)
2112 {
2113 struct inode *inode = file_inode(vma->vm_file);
2114 pgoff_t index;
2115
2116 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2117 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2118 }
2119 #endif
2120
2121 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2122 {
2123 struct inode *inode = file_inode(file);
2124 struct shmem_inode_info *info = SHMEM_I(inode);
2125 int retval = -ENOMEM;
2126
2127 spin_lock_irq(&info->lock);
2128 if (lock && !(info->flags & VM_LOCKED)) {
2129 if (!user_shm_lock(inode->i_size, user))
2130 goto out_nomem;
2131 info->flags |= VM_LOCKED;
2132 mapping_set_unevictable(file->f_mapping);
2133 }
2134 if (!lock && (info->flags & VM_LOCKED) && user) {
2135 user_shm_unlock(inode->i_size, user);
2136 info->flags &= ~VM_LOCKED;
2137 mapping_clear_unevictable(file->f_mapping);
2138 }
2139 retval = 0;
2140
2141 out_nomem:
2142 spin_unlock_irq(&info->lock);
2143 return retval;
2144 }
2145
2146 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2147 {
2148 file_accessed(file);
2149 vma->vm_ops = &shmem_vm_ops;
2150 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2151 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2152 (vma->vm_end & HPAGE_PMD_MASK)) {
2153 khugepaged_enter(vma, vma->vm_flags);
2154 }
2155 return 0;
2156 }
2157
2158 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2159 umode_t mode, dev_t dev, unsigned long flags)
2160 {
2161 struct inode *inode;
2162 struct shmem_inode_info *info;
2163 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2164
2165 if (shmem_reserve_inode(sb))
2166 return NULL;
2167
2168 inode = new_inode(sb);
2169 if (inode) {
2170 inode->i_ino = get_next_ino();
2171 inode_init_owner(inode, dir, mode);
2172 inode->i_blocks = 0;
2173 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2174 inode->i_generation = prandom_u32();
2175 info = SHMEM_I(inode);
2176 memset(info, 0, (char *)inode - (char *)info);
2177 spin_lock_init(&info->lock);
2178 info->seals = F_SEAL_SEAL;
2179 info->flags = flags & VM_NORESERVE;
2180 INIT_LIST_HEAD(&info->shrinklist);
2181 INIT_LIST_HEAD(&info->swaplist);
2182 simple_xattrs_init(&info->xattrs);
2183 cache_no_acl(inode);
2184
2185 switch (mode & S_IFMT) {
2186 default:
2187 inode->i_op = &shmem_special_inode_operations;
2188 init_special_inode(inode, mode, dev);
2189 break;
2190 case S_IFREG:
2191 inode->i_mapping->a_ops = &shmem_aops;
2192 inode->i_op = &shmem_inode_operations;
2193 inode->i_fop = &shmem_file_operations;
2194 mpol_shared_policy_init(&info->policy,
2195 shmem_get_sbmpol(sbinfo));
2196 break;
2197 case S_IFDIR:
2198 inc_nlink(inode);
2199 /* Some things misbehave if size == 0 on a directory */
2200 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2201 inode->i_op = &shmem_dir_inode_operations;
2202 inode->i_fop = &simple_dir_operations;
2203 break;
2204 case S_IFLNK:
2205 /*
2206 * Must not load anything in the rbtree,
2207 * mpol_free_shared_policy will not be called.
2208 */
2209 mpol_shared_policy_init(&info->policy, NULL);
2210 break;
2211 }
2212
2213 lockdep_annotate_inode_mutex_key(inode);
2214 } else
2215 shmem_free_inode(sb);
2216 return inode;
2217 }
2218
2219 bool shmem_mapping(struct address_space *mapping)
2220 {
2221 return mapping->a_ops == &shmem_aops;
2222 }
2223
2224 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2225 pmd_t *dst_pmd,
2226 struct vm_area_struct *dst_vma,
2227 unsigned long dst_addr,
2228 unsigned long src_addr,
2229 bool zeropage,
2230 struct page **pagep)
2231 {
2232 struct inode *inode = file_inode(dst_vma->vm_file);
2233 struct shmem_inode_info *info = SHMEM_I(inode);
2234 struct address_space *mapping = inode->i_mapping;
2235 gfp_t gfp = mapping_gfp_mask(mapping);
2236 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2237 struct mem_cgroup *memcg;
2238 spinlock_t *ptl;
2239 void *page_kaddr;
2240 struct page *page;
2241 pte_t _dst_pte, *dst_pte;
2242 int ret;
2243
2244 ret = -ENOMEM;
2245 if (!shmem_inode_acct_block(inode, 1))
2246 goto out;
2247
2248 if (!*pagep) {
2249 page = shmem_alloc_page(gfp, info, pgoff);
2250 if (!page)
2251 goto out_unacct_blocks;
2252
2253 if (!zeropage) { /* mcopy_atomic */
2254 page_kaddr = kmap_atomic(page);
2255 ret = copy_from_user(page_kaddr,
2256 (const void __user *)src_addr,
2257 PAGE_SIZE);
2258 kunmap_atomic(page_kaddr);
2259
2260 /* fallback to copy_from_user outside mmap_sem */
2261 if (unlikely(ret)) {
2262 *pagep = page;
2263 shmem_inode_unacct_blocks(inode, 1);
2264 /* don't free the page */
2265 return -EFAULT;
2266 }
2267 } else { /* mfill_zeropage_atomic */
2268 clear_highpage(page);
2269 }
2270 } else {
2271 page = *pagep;
2272 *pagep = NULL;
2273 }
2274
2275 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2276 __SetPageLocked(page);
2277 __SetPageSwapBacked(page);
2278 __SetPageUptodate(page);
2279
2280 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2281 if (ret)
2282 goto out_release;
2283
2284 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2285 if (!ret) {
2286 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2287 radix_tree_preload_end();
2288 }
2289 if (ret)
2290 goto out_release_uncharge;
2291
2292 mem_cgroup_commit_charge(page, memcg, false, false);
2293
2294 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2295 if (dst_vma->vm_flags & VM_WRITE)
2296 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2297
2298 ret = -EEXIST;
2299 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2300 if (!pte_none(*dst_pte))
2301 goto out_release_uncharge_unlock;
2302
2303 lru_cache_add_anon(page);
2304
2305 spin_lock(&info->lock);
2306 info->alloced++;
2307 inode->i_blocks += BLOCKS_PER_PAGE;
2308 shmem_recalc_inode(inode);
2309 spin_unlock(&info->lock);
2310
2311 inc_mm_counter(dst_mm, mm_counter_file(page));
2312 page_add_file_rmap(page, false);
2313 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2314
2315 /* No need to invalidate - it was non-present before */
2316 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2317 unlock_page(page);
2318 pte_unmap_unlock(dst_pte, ptl);
2319 ret = 0;
2320 out:
2321 return ret;
2322 out_release_uncharge_unlock:
2323 pte_unmap_unlock(dst_pte, ptl);
2324 out_release_uncharge:
2325 mem_cgroup_cancel_charge(page, memcg, false);
2326 out_release:
2327 unlock_page(page);
2328 put_page(page);
2329 out_unacct_blocks:
2330 shmem_inode_unacct_blocks(inode, 1);
2331 goto out;
2332 }
2333
2334 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2335 pmd_t *dst_pmd,
2336 struct vm_area_struct *dst_vma,
2337 unsigned long dst_addr,
2338 unsigned long src_addr,
2339 struct page **pagep)
2340 {
2341 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2342 dst_addr, src_addr, false, pagep);
2343 }
2344
2345 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2346 pmd_t *dst_pmd,
2347 struct vm_area_struct *dst_vma,
2348 unsigned long dst_addr)
2349 {
2350 struct page *page = NULL;
2351
2352 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2353 dst_addr, 0, true, &page);
2354 }
2355
2356 #ifdef CONFIG_TMPFS
2357 static const struct inode_operations shmem_symlink_inode_operations;
2358 static const struct inode_operations shmem_short_symlink_operations;
2359
2360 #ifdef CONFIG_TMPFS_XATTR
2361 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2362 #else
2363 #define shmem_initxattrs NULL
2364 #endif
2365
2366 static int
2367 shmem_write_begin(struct file *file, struct address_space *mapping,
2368 loff_t pos, unsigned len, unsigned flags,
2369 struct page **pagep, void **fsdata)
2370 {
2371 struct inode *inode = mapping->host;
2372 struct shmem_inode_info *info = SHMEM_I(inode);
2373 pgoff_t index = pos >> PAGE_SHIFT;
2374
2375 /* i_mutex is held by caller */
2376 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2377 if (info->seals & F_SEAL_WRITE)
2378 return -EPERM;
2379 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2380 return -EPERM;
2381 }
2382
2383 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2384 }
2385
2386 static int
2387 shmem_write_end(struct file *file, struct address_space *mapping,
2388 loff_t pos, unsigned len, unsigned copied,
2389 struct page *page, void *fsdata)
2390 {
2391 struct inode *inode = mapping->host;
2392
2393 if (pos + copied > inode->i_size)
2394 i_size_write(inode, pos + copied);
2395
2396 if (!PageUptodate(page)) {
2397 struct page *head = compound_head(page);
2398 if (PageTransCompound(page)) {
2399 int i;
2400
2401 for (i = 0; i < HPAGE_PMD_NR; i++) {
2402 if (head + i == page)
2403 continue;
2404 clear_highpage(head + i);
2405 flush_dcache_page(head + i);
2406 }
2407 }
2408 if (copied < PAGE_SIZE) {
2409 unsigned from = pos & (PAGE_SIZE - 1);
2410 zero_user_segments(page, 0, from,
2411 from + copied, PAGE_SIZE);
2412 }
2413 SetPageUptodate(head);
2414 }
2415 set_page_dirty(page);
2416 unlock_page(page);
2417 put_page(page);
2418
2419 return copied;
2420 }
2421
2422 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2423 {
2424 struct file *file = iocb->ki_filp;
2425 struct inode *inode = file_inode(file);
2426 struct address_space *mapping = inode->i_mapping;
2427 pgoff_t index;
2428 unsigned long offset;
2429 enum sgp_type sgp = SGP_READ;
2430 int error = 0;
2431 ssize_t retval = 0;
2432 loff_t *ppos = &iocb->ki_pos;
2433
2434 /*
2435 * Might this read be for a stacking filesystem? Then when reading
2436 * holes of a sparse file, we actually need to allocate those pages,
2437 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2438 */
2439 if (!iter_is_iovec(to))
2440 sgp = SGP_CACHE;
2441
2442 index = *ppos >> PAGE_SHIFT;
2443 offset = *ppos & ~PAGE_MASK;
2444
2445 for (;;) {
2446 struct page *page = NULL;
2447 pgoff_t end_index;
2448 unsigned long nr, ret;
2449 loff_t i_size = i_size_read(inode);
2450
2451 end_index = i_size >> PAGE_SHIFT;
2452 if (index > end_index)
2453 break;
2454 if (index == end_index) {
2455 nr = i_size & ~PAGE_MASK;
2456 if (nr <= offset)
2457 break;
2458 }
2459
2460 error = shmem_getpage(inode, index, &page, sgp);
2461 if (error) {
2462 if (error == -EINVAL)
2463 error = 0;
2464 break;
2465 }
2466 if (page) {
2467 if (sgp == SGP_CACHE)
2468 set_page_dirty(page);
2469 unlock_page(page);
2470 }
2471
2472 /*
2473 * We must evaluate after, since reads (unlike writes)
2474 * are called without i_mutex protection against truncate
2475 */
2476 nr = PAGE_SIZE;
2477 i_size = i_size_read(inode);
2478 end_index = i_size >> PAGE_SHIFT;
2479 if (index == end_index) {
2480 nr = i_size & ~PAGE_MASK;
2481 if (nr <= offset) {
2482 if (page)
2483 put_page(page);
2484 break;
2485 }
2486 }
2487 nr -= offset;
2488
2489 if (page) {
2490 /*
2491 * If users can be writing to this page using arbitrary
2492 * virtual addresses, take care about potential aliasing
2493 * before reading the page on the kernel side.
2494 */
2495 if (mapping_writably_mapped(mapping))
2496 flush_dcache_page(page);
2497 /*
2498 * Mark the page accessed if we read the beginning.
2499 */
2500 if (!offset)
2501 mark_page_accessed(page);
2502 } else {
2503 page = ZERO_PAGE(0);
2504 get_page(page);
2505 }
2506
2507 /*
2508 * Ok, we have the page, and it's up-to-date, so
2509 * now we can copy it to user space...
2510 */
2511 ret = copy_page_to_iter(page, offset, nr, to);
2512 retval += ret;
2513 offset += ret;
2514 index += offset >> PAGE_SHIFT;
2515 offset &= ~PAGE_MASK;
2516
2517 put_page(page);
2518 if (!iov_iter_count(to))
2519 break;
2520 if (ret < nr) {
2521 error = -EFAULT;
2522 break;
2523 }
2524 cond_resched();
2525 }
2526
2527 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2528 file_accessed(file);
2529 return retval ? retval : error;
2530 }
2531
2532 /*
2533 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2534 */
2535 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2536 pgoff_t index, pgoff_t end, int whence)
2537 {
2538 struct page *page;
2539 struct pagevec pvec;
2540 pgoff_t indices[PAGEVEC_SIZE];
2541 bool done = false;
2542 int i;
2543
2544 pagevec_init(&pvec);
2545 pvec.nr = 1; /* start small: we may be there already */
2546 while (!done) {
2547 pvec.nr = find_get_entries(mapping, index,
2548 pvec.nr, pvec.pages, indices);
2549 if (!pvec.nr) {
2550 if (whence == SEEK_DATA)
2551 index = end;
2552 break;
2553 }
2554 for (i = 0; i < pvec.nr; i++, index++) {
2555 if (index < indices[i]) {
2556 if (whence == SEEK_HOLE) {
2557 done = true;
2558 break;
2559 }
2560 index = indices[i];
2561 }
2562 page = pvec.pages[i];
2563 if (page && !xa_is_value(page)) {
2564 if (!PageUptodate(page))
2565 page = NULL;
2566 }
2567 if (index >= end ||
2568 (page && whence == SEEK_DATA) ||
2569 (!page && whence == SEEK_HOLE)) {
2570 done = true;
2571 break;
2572 }
2573 }
2574 pagevec_remove_exceptionals(&pvec);
2575 pagevec_release(&pvec);
2576 pvec.nr = PAGEVEC_SIZE;
2577 cond_resched();
2578 }
2579 return index;
2580 }
2581
2582 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2583 {
2584 struct address_space *mapping = file->f_mapping;
2585 struct inode *inode = mapping->host;
2586 pgoff_t start, end;
2587 loff_t new_offset;
2588
2589 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2590 return generic_file_llseek_size(file, offset, whence,
2591 MAX_LFS_FILESIZE, i_size_read(inode));
2592 inode_lock(inode);
2593 /* We're holding i_mutex so we can access i_size directly */
2594
2595 if (offset < 0)
2596 offset = -EINVAL;
2597 else if (offset >= inode->i_size)
2598 offset = -ENXIO;
2599 else {
2600 start = offset >> PAGE_SHIFT;
2601 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2602 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2603 new_offset <<= PAGE_SHIFT;
2604 if (new_offset > offset) {
2605 if (new_offset < inode->i_size)
2606 offset = new_offset;
2607 else if (whence == SEEK_DATA)
2608 offset = -ENXIO;
2609 else
2610 offset = inode->i_size;
2611 }
2612 }
2613
2614 if (offset >= 0)
2615 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2616 inode_unlock(inode);
2617 return offset;
2618 }
2619
2620 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2621 loff_t len)
2622 {
2623 struct inode *inode = file_inode(file);
2624 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2625 struct shmem_inode_info *info = SHMEM_I(inode);
2626 struct shmem_falloc shmem_falloc;
2627 pgoff_t start, index, end;
2628 int error;
2629
2630 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2631 return -EOPNOTSUPP;
2632
2633 inode_lock(inode);
2634
2635 if (mode & FALLOC_FL_PUNCH_HOLE) {
2636 struct address_space *mapping = file->f_mapping;
2637 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2638 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2639 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2640
2641 /* protected by i_mutex */
2642 if (info->seals & F_SEAL_WRITE) {
2643 error = -EPERM;
2644 goto out;
2645 }
2646
2647 shmem_falloc.waitq = &shmem_falloc_waitq;
2648 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2649 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2650 spin_lock(&inode->i_lock);
2651 inode->i_private = &shmem_falloc;
2652 spin_unlock(&inode->i_lock);
2653
2654 if ((u64)unmap_end > (u64)unmap_start)
2655 unmap_mapping_range(mapping, unmap_start,
2656 1 + unmap_end - unmap_start, 0);
2657 shmem_truncate_range(inode, offset, offset + len - 1);
2658 /* No need to unmap again: hole-punching leaves COWed pages */
2659
2660 spin_lock(&inode->i_lock);
2661 inode->i_private = NULL;
2662 wake_up_all(&shmem_falloc_waitq);
2663 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2664 spin_unlock(&inode->i_lock);
2665 error = 0;
2666 goto out;
2667 }
2668
2669 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2670 error = inode_newsize_ok(inode, offset + len);
2671 if (error)
2672 goto out;
2673
2674 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2675 error = -EPERM;
2676 goto out;
2677 }
2678
2679 start = offset >> PAGE_SHIFT;
2680 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2681 /* Try to avoid a swapstorm if len is impossible to satisfy */
2682 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2683 error = -ENOSPC;
2684 goto out;
2685 }
2686
2687 shmem_falloc.waitq = NULL;
2688 shmem_falloc.start = start;
2689 shmem_falloc.next = start;
2690 shmem_falloc.nr_falloced = 0;
2691 shmem_falloc.nr_unswapped = 0;
2692 spin_lock(&inode->i_lock);
2693 inode->i_private = &shmem_falloc;
2694 spin_unlock(&inode->i_lock);
2695
2696 for (index = start; index < end; index++) {
2697 struct page *page;
2698
2699 /*
2700 * Good, the fallocate(2) manpage permits EINTR: we may have
2701 * been interrupted because we are using up too much memory.
2702 */
2703 if (signal_pending(current))
2704 error = -EINTR;
2705 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2706 error = -ENOMEM;
2707 else
2708 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2709 if (error) {
2710 /* Remove the !PageUptodate pages we added */
2711 if (index > start) {
2712 shmem_undo_range(inode,
2713 (loff_t)start << PAGE_SHIFT,
2714 ((loff_t)index << PAGE_SHIFT) - 1, true);
2715 }
2716 goto undone;
2717 }
2718
2719 /*
2720 * Inform shmem_writepage() how far we have reached.
2721 * No need for lock or barrier: we have the page lock.
2722 */
2723 shmem_falloc.next++;
2724 if (!PageUptodate(page))
2725 shmem_falloc.nr_falloced++;
2726
2727 /*
2728 * If !PageUptodate, leave it that way so that freeable pages
2729 * can be recognized if we need to rollback on error later.
2730 * But set_page_dirty so that memory pressure will swap rather
2731 * than free the pages we are allocating (and SGP_CACHE pages
2732 * might still be clean: we now need to mark those dirty too).
2733 */
2734 set_page_dirty(page);
2735 unlock_page(page);
2736 put_page(page);
2737 cond_resched();
2738 }
2739
2740 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2741 i_size_write(inode, offset + len);
2742 inode->i_ctime = current_time(inode);
2743 undone:
2744 spin_lock(&inode->i_lock);
2745 inode->i_private = NULL;
2746 spin_unlock(&inode->i_lock);
2747 out:
2748 inode_unlock(inode);
2749 return error;
2750 }
2751
2752 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2753 {
2754 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2755
2756 buf->f_type = TMPFS_MAGIC;
2757 buf->f_bsize = PAGE_SIZE;
2758 buf->f_namelen = NAME_MAX;
2759 if (sbinfo->max_blocks) {
2760 buf->f_blocks = sbinfo->max_blocks;
2761 buf->f_bavail =
2762 buf->f_bfree = sbinfo->max_blocks -
2763 percpu_counter_sum(&sbinfo->used_blocks);
2764 }
2765 if (sbinfo->max_inodes) {
2766 buf->f_files = sbinfo->max_inodes;
2767 buf->f_ffree = sbinfo->free_inodes;
2768 }
2769 /* else leave those fields 0 like simple_statfs */
2770 return 0;
2771 }
2772
2773 /*
2774 * File creation. Allocate an inode, and we're done..
2775 */
2776 static int
2777 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2778 {
2779 struct inode *inode;
2780 int error = -ENOSPC;
2781
2782 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2783 if (inode) {
2784 error = simple_acl_create(dir, inode);
2785 if (error)
2786 goto out_iput;
2787 error = security_inode_init_security(inode, dir,
2788 &dentry->d_name,
2789 shmem_initxattrs, NULL);
2790 if (error && error != -EOPNOTSUPP)
2791 goto out_iput;
2792
2793 error = 0;
2794 dir->i_size += BOGO_DIRENT_SIZE;
2795 dir->i_ctime = dir->i_mtime = current_time(dir);
2796 d_instantiate(dentry, inode);
2797 dget(dentry); /* Extra count - pin the dentry in core */
2798 }
2799 return error;
2800 out_iput:
2801 iput(inode);
2802 return error;
2803 }
2804
2805 static int
2806 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2807 {
2808 struct inode *inode;
2809 int error = -ENOSPC;
2810
2811 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2812 if (inode) {
2813 error = security_inode_init_security(inode, dir,
2814 NULL,
2815 shmem_initxattrs, NULL);
2816 if (error && error != -EOPNOTSUPP)
2817 goto out_iput;
2818 error = simple_acl_create(dir, inode);
2819 if (error)
2820 goto out_iput;
2821 d_tmpfile(dentry, inode);
2822 }
2823 return error;
2824 out_iput:
2825 iput(inode);
2826 return error;
2827 }
2828
2829 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2830 {
2831 int error;
2832
2833 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2834 return error;
2835 inc_nlink(dir);
2836 return 0;
2837 }
2838
2839 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2840 bool excl)
2841 {
2842 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2843 }
2844
2845 /*
2846 * Link a file..
2847 */
2848 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2849 {
2850 struct inode *inode = d_inode(old_dentry);
2851 int ret;
2852
2853 /*
2854 * No ordinary (disk based) filesystem counts links as inodes;
2855 * but each new link needs a new dentry, pinning lowmem, and
2856 * tmpfs dentries cannot be pruned until they are unlinked.
2857 */
2858 ret = shmem_reserve_inode(inode->i_sb);
2859 if (ret)
2860 goto out;
2861
2862 dir->i_size += BOGO_DIRENT_SIZE;
2863 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2864 inc_nlink(inode);
2865 ihold(inode); /* New dentry reference */
2866 dget(dentry); /* Extra pinning count for the created dentry */
2867 d_instantiate(dentry, inode);
2868 out:
2869 return ret;
2870 }
2871
2872 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2873 {
2874 struct inode *inode = d_inode(dentry);
2875
2876 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2877 shmem_free_inode(inode->i_sb);
2878
2879 dir->i_size -= BOGO_DIRENT_SIZE;
2880 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2881 drop_nlink(inode);
2882 dput(dentry); /* Undo the count from "create" - this does all the work */
2883 return 0;
2884 }
2885
2886 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2887 {
2888 if (!simple_empty(dentry))
2889 return -ENOTEMPTY;
2890
2891 drop_nlink(d_inode(dentry));
2892 drop_nlink(dir);
2893 return shmem_unlink(dir, dentry);
2894 }
2895
2896 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2897 {
2898 bool old_is_dir = d_is_dir(old_dentry);
2899 bool new_is_dir = d_is_dir(new_dentry);
2900
2901 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2902 if (old_is_dir) {
2903 drop_nlink(old_dir);
2904 inc_nlink(new_dir);
2905 } else {
2906 drop_nlink(new_dir);
2907 inc_nlink(old_dir);
2908 }
2909 }
2910 old_dir->i_ctime = old_dir->i_mtime =
2911 new_dir->i_ctime = new_dir->i_mtime =
2912 d_inode(old_dentry)->i_ctime =
2913 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2914
2915 return 0;
2916 }
2917
2918 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2919 {
2920 struct dentry *whiteout;
2921 int error;
2922
2923 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2924 if (!whiteout)
2925 return -ENOMEM;
2926
2927 error = shmem_mknod(old_dir, whiteout,
2928 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2929 dput(whiteout);
2930 if (error)
2931 return error;
2932
2933 /*
2934 * Cheat and hash the whiteout while the old dentry is still in
2935 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2936 *
2937 * d_lookup() will consistently find one of them at this point,
2938 * not sure which one, but that isn't even important.
2939 */
2940 d_rehash(whiteout);
2941 return 0;
2942 }
2943
2944 /*
2945 * The VFS layer already does all the dentry stuff for rename,
2946 * we just have to decrement the usage count for the target if
2947 * it exists so that the VFS layer correctly free's it when it
2948 * gets overwritten.
2949 */
2950 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2951 {
2952 struct inode *inode = d_inode(old_dentry);
2953 int they_are_dirs = S_ISDIR(inode->i_mode);
2954
2955 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2956 return -EINVAL;
2957
2958 if (flags & RENAME_EXCHANGE)
2959 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2960
2961 if (!simple_empty(new_dentry))
2962 return -ENOTEMPTY;
2963
2964 if (flags & RENAME_WHITEOUT) {
2965 int error;
2966
2967 error = shmem_whiteout(old_dir, old_dentry);
2968 if (error)
2969 return error;
2970 }
2971
2972 if (d_really_is_positive(new_dentry)) {
2973 (void) shmem_unlink(new_dir, new_dentry);
2974 if (they_are_dirs) {
2975 drop_nlink(d_inode(new_dentry));
2976 drop_nlink(old_dir);
2977 }
2978 } else if (they_are_dirs) {
2979 drop_nlink(old_dir);
2980 inc_nlink(new_dir);
2981 }
2982
2983 old_dir->i_size -= BOGO_DIRENT_SIZE;
2984 new_dir->i_size += BOGO_DIRENT_SIZE;
2985 old_dir->i_ctime = old_dir->i_mtime =
2986 new_dir->i_ctime = new_dir->i_mtime =
2987 inode->i_ctime = current_time(old_dir);
2988 return 0;
2989 }
2990
2991 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2992 {
2993 int error;
2994 int len;
2995 struct inode *inode;
2996 struct page *page;
2997
2998 len = strlen(symname) + 1;
2999 if (len > PAGE_SIZE)
3000 return -ENAMETOOLONG;
3001
3002 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3003 VM_NORESERVE);
3004 if (!inode)
3005 return -ENOSPC;
3006
3007 error = security_inode_init_security(inode, dir, &dentry->d_name,
3008 shmem_initxattrs, NULL);
3009 if (error) {
3010 if (error != -EOPNOTSUPP) {
3011 iput(inode);
3012 return error;
3013 }
3014 error = 0;
3015 }
3016
3017 inode->i_size = len-1;
3018 if (len <= SHORT_SYMLINK_LEN) {
3019 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3020 if (!inode->i_link) {
3021 iput(inode);
3022 return -ENOMEM;
3023 }
3024 inode->i_op = &shmem_short_symlink_operations;
3025 } else {
3026 inode_nohighmem(inode);
3027 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3028 if (error) {
3029 iput(inode);
3030 return error;
3031 }
3032 inode->i_mapping->a_ops = &shmem_aops;
3033 inode->i_op = &shmem_symlink_inode_operations;
3034 memcpy(page_address(page), symname, len);
3035 SetPageUptodate(page);
3036 set_page_dirty(page);
3037 unlock_page(page);
3038 put_page(page);
3039 }
3040 dir->i_size += BOGO_DIRENT_SIZE;
3041 dir->i_ctime = dir->i_mtime = current_time(dir);
3042 d_instantiate(dentry, inode);
3043 dget(dentry);
3044 return 0;
3045 }
3046
3047 static void shmem_put_link(void *arg)
3048 {
3049 mark_page_accessed(arg);
3050 put_page(arg);
3051 }
3052
3053 static const char *shmem_get_link(struct dentry *dentry,
3054 struct inode *inode,
3055 struct delayed_call *done)
3056 {
3057 struct page *page = NULL;
3058 int error;
3059 if (!dentry) {
3060 page = find_get_page(inode->i_mapping, 0);
3061 if (!page)
3062 return ERR_PTR(-ECHILD);
3063 if (!PageUptodate(page)) {
3064 put_page(page);
3065 return ERR_PTR(-ECHILD);
3066 }
3067 } else {
3068 error = shmem_getpage(inode, 0, &page, SGP_READ);
3069 if (error)
3070 return ERR_PTR(error);
3071 unlock_page(page);
3072 }
3073 set_delayed_call(done, shmem_put_link, page);
3074 return page_address(page);
3075 }
3076
3077 #ifdef CONFIG_TMPFS_XATTR
3078 /*
3079 * Superblocks without xattr inode operations may get some security.* xattr
3080 * support from the LSM "for free". As soon as we have any other xattrs
3081 * like ACLs, we also need to implement the security.* handlers at
3082 * filesystem level, though.
3083 */
3084
3085 /*
3086 * Callback for security_inode_init_security() for acquiring xattrs.
3087 */
3088 static int shmem_initxattrs(struct inode *inode,
3089 const struct xattr *xattr_array,
3090 void *fs_info)
3091 {
3092 struct shmem_inode_info *info = SHMEM_I(inode);
3093 const struct xattr *xattr;
3094 struct simple_xattr *new_xattr;
3095 size_t len;
3096
3097 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3098 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3099 if (!new_xattr)
3100 return -ENOMEM;
3101
3102 len = strlen(xattr->name) + 1;
3103 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3104 GFP_KERNEL);
3105 if (!new_xattr->name) {
3106 kfree(new_xattr);
3107 return -ENOMEM;
3108 }
3109
3110 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3111 XATTR_SECURITY_PREFIX_LEN);
3112 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3113 xattr->name, len);
3114
3115 simple_xattr_list_add(&info->xattrs, new_xattr);
3116 }
3117
3118 return 0;
3119 }
3120
3121 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3122 struct dentry *unused, struct inode *inode,
3123 const char *name, void *buffer, size_t size)
3124 {
3125 struct shmem_inode_info *info = SHMEM_I(inode);
3126
3127 name = xattr_full_name(handler, name);
3128 return simple_xattr_get(&info->xattrs, name, buffer, size);
3129 }
3130
3131 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3132 struct dentry *unused, struct inode *inode,
3133 const char *name, const void *value,
3134 size_t size, int flags)
3135 {
3136 struct shmem_inode_info *info = SHMEM_I(inode);
3137
3138 name = xattr_full_name(handler, name);
3139 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3140 }
3141
3142 static const struct xattr_handler shmem_security_xattr_handler = {
3143 .prefix = XATTR_SECURITY_PREFIX,
3144 .get = shmem_xattr_handler_get,
3145 .set = shmem_xattr_handler_set,
3146 };
3147
3148 static const struct xattr_handler shmem_trusted_xattr_handler = {
3149 .prefix = XATTR_TRUSTED_PREFIX,
3150 .get = shmem_xattr_handler_get,
3151 .set = shmem_xattr_handler_set,
3152 };
3153
3154 static const struct xattr_handler *shmem_xattr_handlers[] = {
3155 #ifdef CONFIG_TMPFS_POSIX_ACL
3156 &posix_acl_access_xattr_handler,
3157 &posix_acl_default_xattr_handler,
3158 #endif
3159 &shmem_security_xattr_handler,
3160 &shmem_trusted_xattr_handler,
3161 NULL
3162 };
3163
3164 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3165 {
3166 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3167 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3168 }
3169 #endif /* CONFIG_TMPFS_XATTR */
3170
3171 static const struct inode_operations shmem_short_symlink_operations = {
3172 .get_link = simple_get_link,
3173 #ifdef CONFIG_TMPFS_XATTR
3174 .listxattr = shmem_listxattr,
3175 #endif
3176 };
3177
3178 static const struct inode_operations shmem_symlink_inode_operations = {
3179 .get_link = shmem_get_link,
3180 #ifdef CONFIG_TMPFS_XATTR
3181 .listxattr = shmem_listxattr,
3182 #endif
3183 };
3184
3185 static struct dentry *shmem_get_parent(struct dentry *child)
3186 {
3187 return ERR_PTR(-ESTALE);
3188 }
3189
3190 static int shmem_match(struct inode *ino, void *vfh)
3191 {
3192 __u32 *fh = vfh;
3193 __u64 inum = fh[2];
3194 inum = (inum << 32) | fh[1];
3195 return ino->i_ino == inum && fh[0] == ino->i_generation;
3196 }
3197
3198 /* Find any alias of inode, but prefer a hashed alias */
3199 static struct dentry *shmem_find_alias(struct inode *inode)
3200 {
3201 struct dentry *alias = d_find_alias(inode);
3202
3203 return alias ?: d_find_any_alias(inode);
3204 }
3205
3206
3207 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3208 struct fid *fid, int fh_len, int fh_type)
3209 {
3210 struct inode *inode;
3211 struct dentry *dentry = NULL;
3212 u64 inum;
3213
3214 if (fh_len < 3)
3215 return NULL;
3216
3217 inum = fid->raw[2];
3218 inum = (inum << 32) | fid->raw[1];
3219
3220 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3221 shmem_match, fid->raw);
3222 if (inode) {
3223 dentry = shmem_find_alias(inode);
3224 iput(inode);
3225 }
3226
3227 return dentry;
3228 }
3229
3230 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3231 struct inode *parent)
3232 {
3233 if (*len < 3) {
3234 *len = 3;
3235 return FILEID_INVALID;
3236 }
3237
3238 if (inode_unhashed(inode)) {
3239 /* Unfortunately insert_inode_hash is not idempotent,
3240 * so as we hash inodes here rather than at creation
3241 * time, we need a lock to ensure we only try
3242 * to do it once
3243 */
3244 static DEFINE_SPINLOCK(lock);
3245 spin_lock(&lock);
3246 if (inode_unhashed(inode))
3247 __insert_inode_hash(inode,
3248 inode->i_ino + inode->i_generation);
3249 spin_unlock(&lock);
3250 }
3251
3252 fh[0] = inode->i_generation;
3253 fh[1] = inode->i_ino;
3254 fh[2] = ((__u64)inode->i_ino) >> 32;
3255
3256 *len = 3;
3257 return 1;
3258 }
3259
3260 static const struct export_operations shmem_export_ops = {
3261 .get_parent = shmem_get_parent,
3262 .encode_fh = shmem_encode_fh,
3263 .fh_to_dentry = shmem_fh_to_dentry,
3264 };
3265
3266 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3267 bool remount)
3268 {
3269 char *this_char, *value, *rest;
3270 struct mempolicy *mpol = NULL;
3271 uid_t uid;
3272 gid_t gid;
3273
3274 while (options != NULL) {
3275 this_char = options;
3276 for (;;) {
3277 /*
3278 * NUL-terminate this option: unfortunately,
3279 * mount options form a comma-separated list,
3280 * but mpol's nodelist may also contain commas.
3281 */
3282 options = strchr(options, ',');
3283 if (options == NULL)
3284 break;
3285 options++;
3286 if (!isdigit(*options)) {
3287 options[-1] = '\0';
3288 break;
3289 }
3290 }
3291 if (!*this_char)
3292 continue;
3293 if ((value = strchr(this_char,'=')) != NULL) {
3294 *value++ = 0;
3295 } else {
3296 pr_err("tmpfs: No value for mount option '%s'\n",
3297 this_char);
3298 goto error;
3299 }
3300
3301 if (!strcmp(this_char,"size")) {
3302 unsigned long long size;
3303 size = memparse(value,&rest);
3304 if (*rest == '%') {
3305 size <<= PAGE_SHIFT;
3306 size *= totalram_pages;
3307 do_div(size, 100);
3308 rest++;
3309 }
3310 if (*rest)
3311 goto bad_val;
3312 sbinfo->max_blocks =
3313 DIV_ROUND_UP(size, PAGE_SIZE);
3314 } else if (!strcmp(this_char,"nr_blocks")) {
3315 sbinfo->max_blocks = memparse(value, &rest);
3316 if (*rest)
3317 goto bad_val;
3318 } else if (!strcmp(this_char,"nr_inodes")) {
3319 sbinfo->max_inodes = memparse(value, &rest);
3320 if (*rest)
3321 goto bad_val;
3322 } else if (!strcmp(this_char,"mode")) {
3323 if (remount)
3324 continue;
3325 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3326 if (*rest)
3327 goto bad_val;
3328 } else if (!strcmp(this_char,"uid")) {
3329 if (remount)
3330 continue;
3331 uid = simple_strtoul(value, &rest, 0);
3332 if (*rest)
3333 goto bad_val;
3334 sbinfo->uid = make_kuid(current_user_ns(), uid);
3335 if (!uid_valid(sbinfo->uid))
3336 goto bad_val;
3337 } else if (!strcmp(this_char,"gid")) {
3338 if (remount)
3339 continue;
3340 gid = simple_strtoul(value, &rest, 0);
3341 if (*rest)
3342 goto bad_val;
3343 sbinfo->gid = make_kgid(current_user_ns(), gid);
3344 if (!gid_valid(sbinfo->gid))
3345 goto bad_val;
3346 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3347 } else if (!strcmp(this_char, "huge")) {
3348 int huge;
3349 huge = shmem_parse_huge(value);
3350 if (huge < 0)
3351 goto bad_val;
3352 if (!has_transparent_hugepage() &&
3353 huge != SHMEM_HUGE_NEVER)
3354 goto bad_val;
3355 sbinfo->huge = huge;
3356 #endif
3357 #ifdef CONFIG_NUMA
3358 } else if (!strcmp(this_char,"mpol")) {
3359 mpol_put(mpol);
3360 mpol = NULL;
3361 if (mpol_parse_str(value, &mpol))
3362 goto bad_val;
3363 #endif
3364 } else {
3365 pr_err("tmpfs: Bad mount option %s\n", this_char);
3366 goto error;
3367 }
3368 }
3369 sbinfo->mpol = mpol;
3370 return 0;
3371
3372 bad_val:
3373 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3374 value, this_char);
3375 error:
3376 mpol_put(mpol);
3377 return 1;
3378
3379 }
3380
3381 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3382 {
3383 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3384 struct shmem_sb_info config = *sbinfo;
3385 unsigned long inodes;
3386 int error = -EINVAL;
3387
3388 config.mpol = NULL;
3389 if (shmem_parse_options(data, &config, true))
3390 return error;
3391
3392 spin_lock(&sbinfo->stat_lock);
3393 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3394 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3395 goto out;
3396 if (config.max_inodes < inodes)
3397 goto out;
3398 /*
3399 * Those tests disallow limited->unlimited while any are in use;
3400 * but we must separately disallow unlimited->limited, because
3401 * in that case we have no record of how much is already in use.
3402 */
3403 if (config.max_blocks && !sbinfo->max_blocks)
3404 goto out;
3405 if (config.max_inodes && !sbinfo->max_inodes)
3406 goto out;
3407
3408 error = 0;
3409 sbinfo->huge = config.huge;
3410 sbinfo->max_blocks = config.max_blocks;
3411 sbinfo->max_inodes = config.max_inodes;
3412 sbinfo->free_inodes = config.max_inodes - inodes;
3413
3414 /*
3415 * Preserve previous mempolicy unless mpol remount option was specified.
3416 */
3417 if (config.mpol) {
3418 mpol_put(sbinfo->mpol);
3419 sbinfo->mpol = config.mpol; /* transfers initial ref */
3420 }
3421 out:
3422 spin_unlock(&sbinfo->stat_lock);
3423 return error;
3424 }
3425
3426 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3427 {
3428 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3429
3430 if (sbinfo->max_blocks != shmem_default_max_blocks())
3431 seq_printf(seq, ",size=%luk",
3432 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3433 if (sbinfo->max_inodes != shmem_default_max_inodes())
3434 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3435 if (sbinfo->mode != (0777 | S_ISVTX))
3436 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3437 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3438 seq_printf(seq, ",uid=%u",
3439 from_kuid_munged(&init_user_ns, sbinfo->uid));
3440 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3441 seq_printf(seq, ",gid=%u",
3442 from_kgid_munged(&init_user_ns, sbinfo->gid));
3443 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3444 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3445 if (sbinfo->huge)
3446 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3447 #endif
3448 shmem_show_mpol(seq, sbinfo->mpol);
3449 return 0;
3450 }
3451
3452 #endif /* CONFIG_TMPFS */
3453
3454 static void shmem_put_super(struct super_block *sb)
3455 {
3456 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3457
3458 percpu_counter_destroy(&sbinfo->used_blocks);
3459 mpol_put(sbinfo->mpol);
3460 kfree(sbinfo);
3461 sb->s_fs_info = NULL;
3462 }
3463
3464 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3465 {
3466 struct inode *inode;
3467 struct shmem_sb_info *sbinfo;
3468 int err = -ENOMEM;
3469
3470 /* Round up to L1_CACHE_BYTES to resist false sharing */
3471 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3472 L1_CACHE_BYTES), GFP_KERNEL);
3473 if (!sbinfo)
3474 return -ENOMEM;
3475
3476 sbinfo->mode = 0777 | S_ISVTX;
3477 sbinfo->uid = current_fsuid();
3478 sbinfo->gid = current_fsgid();
3479 sb->s_fs_info = sbinfo;
3480
3481 #ifdef CONFIG_TMPFS
3482 /*
3483 * Per default we only allow half of the physical ram per
3484 * tmpfs instance, limiting inodes to one per page of lowmem;
3485 * but the internal instance is left unlimited.
3486 */
3487 if (!(sb->s_flags & SB_KERNMOUNT)) {
3488 sbinfo->max_blocks = shmem_default_max_blocks();
3489 sbinfo->max_inodes = shmem_default_max_inodes();
3490 if (shmem_parse_options(data, sbinfo, false)) {
3491 err = -EINVAL;
3492 goto failed;
3493 }
3494 } else {
3495 sb->s_flags |= SB_NOUSER;
3496 }
3497 sb->s_export_op = &shmem_export_ops;
3498 sb->s_flags |= SB_NOSEC;
3499 #else
3500 sb->s_flags |= SB_NOUSER;
3501 #endif
3502
3503 spin_lock_init(&sbinfo->stat_lock);
3504 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3505 goto failed;
3506 sbinfo->free_inodes = sbinfo->max_inodes;
3507 spin_lock_init(&sbinfo->shrinklist_lock);
3508 INIT_LIST_HEAD(&sbinfo->shrinklist);
3509
3510 sb->s_maxbytes = MAX_LFS_FILESIZE;
3511 sb->s_blocksize = PAGE_SIZE;
3512 sb->s_blocksize_bits = PAGE_SHIFT;
3513 sb->s_magic = TMPFS_MAGIC;
3514 sb->s_op = &shmem_ops;
3515 sb->s_time_gran = 1;
3516 #ifdef CONFIG_TMPFS_XATTR
3517 sb->s_xattr = shmem_xattr_handlers;
3518 #endif
3519 #ifdef CONFIG_TMPFS_POSIX_ACL
3520 sb->s_flags |= SB_POSIXACL;
3521 #endif
3522 uuid_gen(&sb->s_uuid);
3523
3524 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3525 if (!inode)
3526 goto failed;
3527 inode->i_uid = sbinfo->uid;
3528 inode->i_gid = sbinfo->gid;
3529 sb->s_root = d_make_root(inode);
3530 if (!sb->s_root)
3531 goto failed;
3532 return 0;
3533
3534 failed:
3535 shmem_put_super(sb);
3536 return err;
3537 }
3538
3539 static struct kmem_cache *shmem_inode_cachep;
3540
3541 static struct inode *shmem_alloc_inode(struct super_block *sb)
3542 {
3543 struct shmem_inode_info *info;
3544 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3545 if (!info)
3546 return NULL;
3547 return &info->vfs_inode;
3548 }
3549
3550 static void shmem_destroy_callback(struct rcu_head *head)
3551 {
3552 struct inode *inode = container_of(head, struct inode, i_rcu);
3553 if (S_ISLNK(inode->i_mode))
3554 kfree(inode->i_link);
3555 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3556 }
3557
3558 static void shmem_destroy_inode(struct inode *inode)
3559 {
3560 if (S_ISREG(inode->i_mode))
3561 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3562 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3563 }
3564
3565 static void shmem_init_inode(void *foo)
3566 {
3567 struct shmem_inode_info *info = foo;
3568 inode_init_once(&info->vfs_inode);
3569 }
3570
3571 static void shmem_init_inodecache(void)
3572 {
3573 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3574 sizeof(struct shmem_inode_info),
3575 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3576 }
3577
3578 static void shmem_destroy_inodecache(void)
3579 {
3580 kmem_cache_destroy(shmem_inode_cachep);
3581 }
3582
3583 static const struct address_space_operations shmem_aops = {
3584 .writepage = shmem_writepage,
3585 .set_page_dirty = __set_page_dirty_no_writeback,
3586 #ifdef CONFIG_TMPFS
3587 .write_begin = shmem_write_begin,
3588 .write_end = shmem_write_end,
3589 #endif
3590 #ifdef CONFIG_MIGRATION
3591 .migratepage = migrate_page,
3592 #endif
3593 .error_remove_page = generic_error_remove_page,
3594 };
3595
3596 static const struct file_operations shmem_file_operations = {
3597 .mmap = shmem_mmap,
3598 .get_unmapped_area = shmem_get_unmapped_area,
3599 #ifdef CONFIG_TMPFS
3600 .llseek = shmem_file_llseek,
3601 .read_iter = shmem_file_read_iter,
3602 .write_iter = generic_file_write_iter,
3603 .fsync = noop_fsync,
3604 .splice_read = generic_file_splice_read,
3605 .splice_write = iter_file_splice_write,
3606 .fallocate = shmem_fallocate,
3607 #endif
3608 };
3609
3610 static const struct inode_operations shmem_inode_operations = {
3611 .getattr = shmem_getattr,
3612 .setattr = shmem_setattr,
3613 #ifdef CONFIG_TMPFS_XATTR
3614 .listxattr = shmem_listxattr,
3615 .set_acl = simple_set_acl,
3616 #endif
3617 };
3618
3619 static const struct inode_operations shmem_dir_inode_operations = {
3620 #ifdef CONFIG_TMPFS
3621 .create = shmem_create,
3622 .lookup = simple_lookup,
3623 .link = shmem_link,
3624 .unlink = shmem_unlink,
3625 .symlink = shmem_symlink,
3626 .mkdir = shmem_mkdir,
3627 .rmdir = shmem_rmdir,
3628 .mknod = shmem_mknod,
3629 .rename = shmem_rename2,
3630 .tmpfile = shmem_tmpfile,
3631 #endif
3632 #ifdef CONFIG_TMPFS_XATTR
3633 .listxattr = shmem_listxattr,
3634 #endif
3635 #ifdef CONFIG_TMPFS_POSIX_ACL
3636 .setattr = shmem_setattr,
3637 .set_acl = simple_set_acl,
3638 #endif
3639 };
3640
3641 static const struct inode_operations shmem_special_inode_operations = {
3642 #ifdef CONFIG_TMPFS_XATTR
3643 .listxattr = shmem_listxattr,
3644 #endif
3645 #ifdef CONFIG_TMPFS_POSIX_ACL
3646 .setattr = shmem_setattr,
3647 .set_acl = simple_set_acl,
3648 #endif
3649 };
3650
3651 static const struct super_operations shmem_ops = {
3652 .alloc_inode = shmem_alloc_inode,
3653 .destroy_inode = shmem_destroy_inode,
3654 #ifdef CONFIG_TMPFS
3655 .statfs = shmem_statfs,
3656 .remount_fs = shmem_remount_fs,
3657 .show_options = shmem_show_options,
3658 #endif
3659 .evict_inode = shmem_evict_inode,
3660 .drop_inode = generic_delete_inode,
3661 .put_super = shmem_put_super,
3662 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3663 .nr_cached_objects = shmem_unused_huge_count,
3664 .free_cached_objects = shmem_unused_huge_scan,
3665 #endif
3666 };
3667
3668 static const struct vm_operations_struct shmem_vm_ops = {
3669 .fault = shmem_fault,
3670 .map_pages = filemap_map_pages,
3671 #ifdef CONFIG_NUMA
3672 .set_policy = shmem_set_policy,
3673 .get_policy = shmem_get_policy,
3674 #endif
3675 };
3676
3677 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3678 int flags, const char *dev_name, void *data)
3679 {
3680 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3681 }
3682
3683 static struct file_system_type shmem_fs_type = {
3684 .owner = THIS_MODULE,
3685 .name = "tmpfs",
3686 .mount = shmem_mount,
3687 .kill_sb = kill_litter_super,
3688 .fs_flags = FS_USERNS_MOUNT,
3689 };
3690
3691 int __init shmem_init(void)
3692 {
3693 int error;
3694
3695 /* If rootfs called this, don't re-init */
3696 if (shmem_inode_cachep)
3697 return 0;
3698
3699 shmem_init_inodecache();
3700
3701 error = register_filesystem(&shmem_fs_type);
3702 if (error) {
3703 pr_err("Could not register tmpfs\n");
3704 goto out2;
3705 }
3706
3707 shm_mnt = kern_mount(&shmem_fs_type);
3708 if (IS_ERR(shm_mnt)) {
3709 error = PTR_ERR(shm_mnt);
3710 pr_err("Could not kern_mount tmpfs\n");
3711 goto out1;
3712 }
3713
3714 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3715 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3716 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3717 else
3718 shmem_huge = 0; /* just in case it was patched */
3719 #endif
3720 return 0;
3721
3722 out1:
3723 unregister_filesystem(&shmem_fs_type);
3724 out2:
3725 shmem_destroy_inodecache();
3726 shm_mnt = ERR_PTR(error);
3727 return error;
3728 }
3729
3730 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3731 static ssize_t shmem_enabled_show(struct kobject *kobj,
3732 struct kobj_attribute *attr, char *buf)
3733 {
3734 int values[] = {
3735 SHMEM_HUGE_ALWAYS,
3736 SHMEM_HUGE_WITHIN_SIZE,
3737 SHMEM_HUGE_ADVISE,
3738 SHMEM_HUGE_NEVER,
3739 SHMEM_HUGE_DENY,
3740 SHMEM_HUGE_FORCE,
3741 };
3742 int i, count;
3743
3744 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3745 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3746
3747 count += sprintf(buf + count, fmt,
3748 shmem_format_huge(values[i]));
3749 }
3750 buf[count - 1] = '\n';
3751 return count;
3752 }
3753
3754 static ssize_t shmem_enabled_store(struct kobject *kobj,
3755 struct kobj_attribute *attr, const char *buf, size_t count)
3756 {
3757 char tmp[16];
3758 int huge;
3759
3760 if (count + 1 > sizeof(tmp))
3761 return -EINVAL;
3762 memcpy(tmp, buf, count);
3763 tmp[count] = '\0';
3764 if (count && tmp[count - 1] == '\n')
3765 tmp[count - 1] = '\0';
3766
3767 huge = shmem_parse_huge(tmp);
3768 if (huge == -EINVAL)
3769 return -EINVAL;
3770 if (!has_transparent_hugepage() &&
3771 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3772 return -EINVAL;
3773
3774 shmem_huge = huge;
3775 if (shmem_huge > SHMEM_HUGE_DENY)
3776 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3777 return count;
3778 }
3779
3780 struct kobj_attribute shmem_enabled_attr =
3781 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3782 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3783
3784 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3785 bool shmem_huge_enabled(struct vm_area_struct *vma)
3786 {
3787 struct inode *inode = file_inode(vma->vm_file);
3788 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3789 loff_t i_size;
3790 pgoff_t off;
3791
3792 if (shmem_huge == SHMEM_HUGE_FORCE)
3793 return true;
3794 if (shmem_huge == SHMEM_HUGE_DENY)
3795 return false;
3796 switch (sbinfo->huge) {
3797 case SHMEM_HUGE_NEVER:
3798 return false;
3799 case SHMEM_HUGE_ALWAYS:
3800 return true;
3801 case SHMEM_HUGE_WITHIN_SIZE:
3802 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3803 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3804 if (i_size >= HPAGE_PMD_SIZE &&
3805 i_size >> PAGE_SHIFT >= off)
3806 return true;
3807 /* fall through */
3808 case SHMEM_HUGE_ADVISE:
3809 /* TODO: implement fadvise() hints */
3810 return (vma->vm_flags & VM_HUGEPAGE);
3811 default:
3812 VM_BUG_ON(1);
3813 return false;
3814 }
3815 }
3816 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3817
3818 #else /* !CONFIG_SHMEM */
3819
3820 /*
3821 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3822 *
3823 * This is intended for small system where the benefits of the full
3824 * shmem code (swap-backed and resource-limited) are outweighed by
3825 * their complexity. On systems without swap this code should be
3826 * effectively equivalent, but much lighter weight.
3827 */
3828
3829 static struct file_system_type shmem_fs_type = {
3830 .name = "tmpfs",
3831 .mount = ramfs_mount,
3832 .kill_sb = kill_litter_super,
3833 .fs_flags = FS_USERNS_MOUNT,
3834 };
3835
3836 int __init shmem_init(void)
3837 {
3838 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3839
3840 shm_mnt = kern_mount(&shmem_fs_type);
3841 BUG_ON(IS_ERR(shm_mnt));
3842
3843 return 0;
3844 }
3845
3846 int shmem_unuse(swp_entry_t swap, struct page *page)
3847 {
3848 return 0;
3849 }
3850
3851 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3852 {
3853 return 0;
3854 }
3855
3856 void shmem_unlock_mapping(struct address_space *mapping)
3857 {
3858 }
3859
3860 #ifdef CONFIG_MMU
3861 unsigned long shmem_get_unmapped_area(struct file *file,
3862 unsigned long addr, unsigned long len,
3863 unsigned long pgoff, unsigned long flags)
3864 {
3865 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3866 }
3867 #endif
3868
3869 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3870 {
3871 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3872 }
3873 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3874
3875 #define shmem_vm_ops generic_file_vm_ops
3876 #define shmem_file_operations ramfs_file_operations
3877 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3878 #define shmem_acct_size(flags, size) 0
3879 #define shmem_unacct_size(flags, size) do {} while (0)
3880
3881 #endif /* CONFIG_SHMEM */
3882
3883 /* common code */
3884
3885 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3886 unsigned long flags, unsigned int i_flags)
3887 {
3888 struct inode *inode;
3889 struct file *res;
3890
3891 if (IS_ERR(mnt))
3892 return ERR_CAST(mnt);
3893
3894 if (size < 0 || size > MAX_LFS_FILESIZE)
3895 return ERR_PTR(-EINVAL);
3896
3897 if (shmem_acct_size(flags, size))
3898 return ERR_PTR(-ENOMEM);
3899
3900 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3901 flags);
3902 if (unlikely(!inode)) {
3903 shmem_unacct_size(flags, size);
3904 return ERR_PTR(-ENOSPC);
3905 }
3906 inode->i_flags |= i_flags;
3907 inode->i_size = size;
3908 clear_nlink(inode); /* It is unlinked */
3909 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3910 if (!IS_ERR(res))
3911 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3912 &shmem_file_operations);
3913 if (IS_ERR(res))
3914 iput(inode);
3915 return res;
3916 }
3917
3918 /**
3919 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3920 * kernel internal. There will be NO LSM permission checks against the
3921 * underlying inode. So users of this interface must do LSM checks at a
3922 * higher layer. The users are the big_key and shm implementations. LSM
3923 * checks are provided at the key or shm level rather than the inode.
3924 * @name: name for dentry (to be seen in /proc/<pid>/maps
3925 * @size: size to be set for the file
3926 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3927 */
3928 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3929 {
3930 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3931 }
3932
3933 /**
3934 * shmem_file_setup - get an unlinked file living in tmpfs
3935 * @name: name for dentry (to be seen in /proc/<pid>/maps
3936 * @size: size to be set for the file
3937 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3938 */
3939 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3940 {
3941 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3942 }
3943 EXPORT_SYMBOL_GPL(shmem_file_setup);
3944
3945 /**
3946 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3947 * @mnt: the tmpfs mount where the file will be created
3948 * @name: name for dentry (to be seen in /proc/<pid>/maps
3949 * @size: size to be set for the file
3950 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3951 */
3952 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3953 loff_t size, unsigned long flags)
3954 {
3955 return __shmem_file_setup(mnt, name, size, flags, 0);
3956 }
3957 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3958
3959 /**
3960 * shmem_zero_setup - setup a shared anonymous mapping
3961 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3962 */
3963 int shmem_zero_setup(struct vm_area_struct *vma)
3964 {
3965 struct file *file;
3966 loff_t size = vma->vm_end - vma->vm_start;
3967
3968 /*
3969 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3970 * between XFS directory reading and selinux: since this file is only
3971 * accessible to the user through its mapping, use S_PRIVATE flag to
3972 * bypass file security, in the same way as shmem_kernel_file_setup().
3973 */
3974 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
3975 if (IS_ERR(file))
3976 return PTR_ERR(file);
3977
3978 if (vma->vm_file)
3979 fput(vma->vm_file);
3980 vma->vm_file = file;
3981 vma->vm_ops = &shmem_vm_ops;
3982
3983 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3984 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
3985 (vma->vm_end & HPAGE_PMD_MASK)) {
3986 khugepaged_enter(vma, vma->vm_flags);
3987 }
3988
3989 return 0;
3990 }
3991
3992 /**
3993 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3994 * @mapping: the page's address_space
3995 * @index: the page index
3996 * @gfp: the page allocator flags to use if allocating
3997 *
3998 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3999 * with any new page allocations done using the specified allocation flags.
4000 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4001 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4002 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4003 *
4004 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4005 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4006 */
4007 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4008 pgoff_t index, gfp_t gfp)
4009 {
4010 #ifdef CONFIG_SHMEM
4011 struct inode *inode = mapping->host;
4012 struct page *page;
4013 int error;
4014
4015 BUG_ON(mapping->a_ops != &shmem_aops);
4016 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4017 gfp, NULL, NULL, NULL);
4018 if (error)
4019 page = ERR_PTR(error);
4020 else
4021 unlock_page(page);
4022 return page;
4023 #else
4024 /*
4025 * The tiny !SHMEM case uses ramfs without swap
4026 */
4027 return read_cache_page_gfp(mapping, index, gfp);
4028 #endif
4029 }
4030 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);