]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/shmem.c
selftests: timers: freq-step: fix compile error
[mirror_ubuntu-artful-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37
38 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
39
40 static struct vfsmount *shm_mnt;
41
42 #ifdef CONFIG_SHMEM
43 /*
44 * This virtual memory filesystem is heavily based on the ramfs. It
45 * extends ramfs by the ability to use swap and honor resource limits
46 * which makes it a completely usable filesystem.
47 */
48
49 #include <linux/xattr.h>
50 #include <linux/exportfs.h>
51 #include <linux/posix_acl.h>
52 #include <linux/posix_acl_xattr.h>
53 #include <linux/mman.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <linux/backing-dev.h>
57 #include <linux/shmem_fs.h>
58 #include <linux/writeback.h>
59 #include <linux/blkdev.h>
60 #include <linux/pagevec.h>
61 #include <linux/percpu_counter.h>
62 #include <linux/falloc.h>
63 #include <linux/splice.h>
64 #include <linux/security.h>
65 #include <linux/swapops.h>
66 #include <linux/mempolicy.h>
67 #include <linux/namei.h>
68 #include <linux/ctype.h>
69 #include <linux/migrate.h>
70 #include <linux/highmem.h>
71 #include <linux/seq_file.h>
72 #include <linux/magic.h>
73 #include <linux/syscalls.h>
74 #include <linux/fcntl.h>
75 #include <uapi/linux/memfd.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/rmap.h>
78 #include <linux/uuid.h>
79
80 #include <linux/uaccess.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
87
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93
94 /*
95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96 * inode->i_private (with i_mutex making sure that it has only one user at
97 * a time): we would prefer not to enlarge the shmem inode just for that.
98 */
99 struct shmem_falloc {
100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 pgoff_t start; /* start of range currently being fallocated */
102 pgoff_t next; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
105 };
106
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110 return totalram_pages / 2;
111 }
112
113 static unsigned long shmem_default_max_inodes(void)
114 {
115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp,
124 gfp_t gfp, struct vm_area_struct *vma,
125 struct vm_fault *vmf, int *fault_type);
126
127 int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp)
129 {
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 return sb->s_fs_info;
137 }
138
139 /*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159 {
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168 }
169
170 /*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow large sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176 static inline int shmem_acct_block(unsigned long flags, long pages)
177 {
178 if (!(flags & VM_NORESERVE))
179 return 0;
180
181 return security_vm_enough_memory_mm(current->mm,
182 pages * VM_ACCT(PAGE_SIZE));
183 }
184
185 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
186 {
187 if (flags & VM_NORESERVE)
188 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
189 }
190
191 static const struct super_operations shmem_ops;
192 static const struct address_space_operations shmem_aops;
193 static const struct file_operations shmem_file_operations;
194 static const struct inode_operations shmem_inode_operations;
195 static const struct inode_operations shmem_dir_inode_operations;
196 static const struct inode_operations shmem_special_inode_operations;
197 static const struct vm_operations_struct shmem_vm_ops;
198 static struct file_system_type shmem_fs_type;
199
200 bool vma_is_shmem(struct vm_area_struct *vma)
201 {
202 return vma->vm_ops == &shmem_vm_ops;
203 }
204
205 static LIST_HEAD(shmem_swaplist);
206 static DEFINE_MUTEX(shmem_swaplist_mutex);
207
208 static int shmem_reserve_inode(struct super_block *sb)
209 {
210 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
211 if (sbinfo->max_inodes) {
212 spin_lock(&sbinfo->stat_lock);
213 if (!sbinfo->free_inodes) {
214 spin_unlock(&sbinfo->stat_lock);
215 return -ENOSPC;
216 }
217 sbinfo->free_inodes--;
218 spin_unlock(&sbinfo->stat_lock);
219 }
220 return 0;
221 }
222
223 static void shmem_free_inode(struct super_block *sb)
224 {
225 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
226 if (sbinfo->max_inodes) {
227 spin_lock(&sbinfo->stat_lock);
228 sbinfo->free_inodes++;
229 spin_unlock(&sbinfo->stat_lock);
230 }
231 }
232
233 /**
234 * shmem_recalc_inode - recalculate the block usage of an inode
235 * @inode: inode to recalc
236 *
237 * We have to calculate the free blocks since the mm can drop
238 * undirtied hole pages behind our back.
239 *
240 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
241 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
242 *
243 * It has to be called with the spinlock held.
244 */
245 static void shmem_recalc_inode(struct inode *inode)
246 {
247 struct shmem_inode_info *info = SHMEM_I(inode);
248 long freed;
249
250 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
251 if (freed > 0) {
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 if (sbinfo->max_blocks)
254 percpu_counter_add(&sbinfo->used_blocks, -freed);
255 info->alloced -= freed;
256 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
257 shmem_unacct_blocks(info->flags, freed);
258 }
259 }
260
261 bool shmem_charge(struct inode *inode, long pages)
262 {
263 struct shmem_inode_info *info = SHMEM_I(inode);
264 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
265 unsigned long flags;
266
267 if (shmem_acct_block(info->flags, pages))
268 return false;
269 spin_lock_irqsave(&info->lock, flags);
270 info->alloced += pages;
271 inode->i_blocks += pages * BLOCKS_PER_PAGE;
272 shmem_recalc_inode(inode);
273 spin_unlock_irqrestore(&info->lock, flags);
274 inode->i_mapping->nrpages += pages;
275
276 if (!sbinfo->max_blocks)
277 return true;
278 if (percpu_counter_compare(&sbinfo->used_blocks,
279 sbinfo->max_blocks - pages) > 0) {
280 inode->i_mapping->nrpages -= pages;
281 spin_lock_irqsave(&info->lock, flags);
282 info->alloced -= pages;
283 shmem_recalc_inode(inode);
284 spin_unlock_irqrestore(&info->lock, flags);
285 shmem_unacct_blocks(info->flags, pages);
286 return false;
287 }
288 percpu_counter_add(&sbinfo->used_blocks, pages);
289 return true;
290 }
291
292 void shmem_uncharge(struct inode *inode, long pages)
293 {
294 struct shmem_inode_info *info = SHMEM_I(inode);
295 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
296 unsigned long flags;
297
298 spin_lock_irqsave(&info->lock, flags);
299 info->alloced -= pages;
300 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
301 shmem_recalc_inode(inode);
302 spin_unlock_irqrestore(&info->lock, flags);
303
304 if (sbinfo->max_blocks)
305 percpu_counter_sub(&sbinfo->used_blocks, pages);
306 shmem_unacct_blocks(info->flags, pages);
307 }
308
309 /*
310 * Replace item expected in radix tree by a new item, while holding tree lock.
311 */
312 static int shmem_radix_tree_replace(struct address_space *mapping,
313 pgoff_t index, void *expected, void *replacement)
314 {
315 struct radix_tree_node *node;
316 void **pslot;
317 void *item;
318
319 VM_BUG_ON(!expected);
320 VM_BUG_ON(!replacement);
321 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
322 if (!item)
323 return -ENOENT;
324 if (item != expected)
325 return -ENOENT;
326 __radix_tree_replace(&mapping->page_tree, node, pslot,
327 replacement, NULL, NULL);
328 return 0;
329 }
330
331 /*
332 * Sometimes, before we decide whether to proceed or to fail, we must check
333 * that an entry was not already brought back from swap by a racing thread.
334 *
335 * Checking page is not enough: by the time a SwapCache page is locked, it
336 * might be reused, and again be SwapCache, using the same swap as before.
337 */
338 static bool shmem_confirm_swap(struct address_space *mapping,
339 pgoff_t index, swp_entry_t swap)
340 {
341 void *item;
342
343 rcu_read_lock();
344 item = radix_tree_lookup(&mapping->page_tree, index);
345 rcu_read_unlock();
346 return item == swp_to_radix_entry(swap);
347 }
348
349 /*
350 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
351 *
352 * SHMEM_HUGE_NEVER:
353 * disables huge pages for the mount;
354 * SHMEM_HUGE_ALWAYS:
355 * enables huge pages for the mount;
356 * SHMEM_HUGE_WITHIN_SIZE:
357 * only allocate huge pages if the page will be fully within i_size,
358 * also respect fadvise()/madvise() hints;
359 * SHMEM_HUGE_ADVISE:
360 * only allocate huge pages if requested with fadvise()/madvise();
361 */
362
363 #define SHMEM_HUGE_NEVER 0
364 #define SHMEM_HUGE_ALWAYS 1
365 #define SHMEM_HUGE_WITHIN_SIZE 2
366 #define SHMEM_HUGE_ADVISE 3
367
368 /*
369 * Special values.
370 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
371 *
372 * SHMEM_HUGE_DENY:
373 * disables huge on shm_mnt and all mounts, for emergency use;
374 * SHMEM_HUGE_FORCE:
375 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
376 *
377 */
378 #define SHMEM_HUGE_DENY (-1)
379 #define SHMEM_HUGE_FORCE (-2)
380
381 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
382 /* ifdef here to avoid bloating shmem.o when not necessary */
383
384 int shmem_huge __read_mostly;
385
386 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
387 static int shmem_parse_huge(const char *str)
388 {
389 if (!strcmp(str, "never"))
390 return SHMEM_HUGE_NEVER;
391 if (!strcmp(str, "always"))
392 return SHMEM_HUGE_ALWAYS;
393 if (!strcmp(str, "within_size"))
394 return SHMEM_HUGE_WITHIN_SIZE;
395 if (!strcmp(str, "advise"))
396 return SHMEM_HUGE_ADVISE;
397 if (!strcmp(str, "deny"))
398 return SHMEM_HUGE_DENY;
399 if (!strcmp(str, "force"))
400 return SHMEM_HUGE_FORCE;
401 return -EINVAL;
402 }
403
404 static const char *shmem_format_huge(int huge)
405 {
406 switch (huge) {
407 case SHMEM_HUGE_NEVER:
408 return "never";
409 case SHMEM_HUGE_ALWAYS:
410 return "always";
411 case SHMEM_HUGE_WITHIN_SIZE:
412 return "within_size";
413 case SHMEM_HUGE_ADVISE:
414 return "advise";
415 case SHMEM_HUGE_DENY:
416 return "deny";
417 case SHMEM_HUGE_FORCE:
418 return "force";
419 default:
420 VM_BUG_ON(1);
421 return "bad_val";
422 }
423 }
424 #endif
425
426 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
427 struct shrink_control *sc, unsigned long nr_to_split)
428 {
429 LIST_HEAD(list), *pos, *next;
430 LIST_HEAD(to_remove);
431 struct inode *inode;
432 struct shmem_inode_info *info;
433 struct page *page;
434 unsigned long batch = sc ? sc->nr_to_scan : 128;
435 int removed = 0, split = 0;
436
437 if (list_empty(&sbinfo->shrinklist))
438 return SHRINK_STOP;
439
440 spin_lock(&sbinfo->shrinklist_lock);
441 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
442 info = list_entry(pos, struct shmem_inode_info, shrinklist);
443
444 /* pin the inode */
445 inode = igrab(&info->vfs_inode);
446
447 /* inode is about to be evicted */
448 if (!inode) {
449 list_del_init(&info->shrinklist);
450 removed++;
451 goto next;
452 }
453
454 /* Check if there's anything to gain */
455 if (round_up(inode->i_size, PAGE_SIZE) ==
456 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
457 list_move(&info->shrinklist, &to_remove);
458 removed++;
459 goto next;
460 }
461
462 list_move(&info->shrinklist, &list);
463 next:
464 if (!--batch)
465 break;
466 }
467 spin_unlock(&sbinfo->shrinklist_lock);
468
469 list_for_each_safe(pos, next, &to_remove) {
470 info = list_entry(pos, struct shmem_inode_info, shrinklist);
471 inode = &info->vfs_inode;
472 list_del_init(&info->shrinklist);
473 iput(inode);
474 }
475
476 list_for_each_safe(pos, next, &list) {
477 int ret;
478
479 info = list_entry(pos, struct shmem_inode_info, shrinklist);
480 inode = &info->vfs_inode;
481
482 if (nr_to_split && split >= nr_to_split) {
483 iput(inode);
484 continue;
485 }
486
487 page = find_lock_page(inode->i_mapping,
488 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
489 if (!page)
490 goto drop;
491
492 if (!PageTransHuge(page)) {
493 unlock_page(page);
494 put_page(page);
495 goto drop;
496 }
497
498 ret = split_huge_page(page);
499 unlock_page(page);
500 put_page(page);
501
502 if (ret) {
503 /* split failed: leave it on the list */
504 iput(inode);
505 continue;
506 }
507
508 split++;
509 drop:
510 list_del_init(&info->shrinklist);
511 removed++;
512 iput(inode);
513 }
514
515 spin_lock(&sbinfo->shrinklist_lock);
516 list_splice_tail(&list, &sbinfo->shrinklist);
517 sbinfo->shrinklist_len -= removed;
518 spin_unlock(&sbinfo->shrinklist_lock);
519
520 return split;
521 }
522
523 static long shmem_unused_huge_scan(struct super_block *sb,
524 struct shrink_control *sc)
525 {
526 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
527
528 if (!READ_ONCE(sbinfo->shrinklist_len))
529 return SHRINK_STOP;
530
531 return shmem_unused_huge_shrink(sbinfo, sc, 0);
532 }
533
534 static long shmem_unused_huge_count(struct super_block *sb,
535 struct shrink_control *sc)
536 {
537 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
538 return READ_ONCE(sbinfo->shrinklist_len);
539 }
540 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
541
542 #define shmem_huge SHMEM_HUGE_DENY
543
544 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
545 struct shrink_control *sc, unsigned long nr_to_split)
546 {
547 return 0;
548 }
549 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
550
551 /*
552 * Like add_to_page_cache_locked, but error if expected item has gone.
553 */
554 static int shmem_add_to_page_cache(struct page *page,
555 struct address_space *mapping,
556 pgoff_t index, void *expected)
557 {
558 int error, nr = hpage_nr_pages(page);
559
560 VM_BUG_ON_PAGE(PageTail(page), page);
561 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
562 VM_BUG_ON_PAGE(!PageLocked(page), page);
563 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
564 VM_BUG_ON(expected && PageTransHuge(page));
565
566 page_ref_add(page, nr);
567 page->mapping = mapping;
568 page->index = index;
569
570 spin_lock_irq(&mapping->tree_lock);
571 if (PageTransHuge(page)) {
572 void __rcu **results;
573 pgoff_t idx;
574 int i;
575
576 error = 0;
577 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
578 &results, &idx, index, 1) &&
579 idx < index + HPAGE_PMD_NR) {
580 error = -EEXIST;
581 }
582
583 if (!error) {
584 for (i = 0; i < HPAGE_PMD_NR; i++) {
585 error = radix_tree_insert(&mapping->page_tree,
586 index + i, page + i);
587 VM_BUG_ON(error);
588 }
589 count_vm_event(THP_FILE_ALLOC);
590 }
591 } else if (!expected) {
592 error = radix_tree_insert(&mapping->page_tree, index, page);
593 } else {
594 error = shmem_radix_tree_replace(mapping, index, expected,
595 page);
596 }
597
598 if (!error) {
599 mapping->nrpages += nr;
600 if (PageTransHuge(page))
601 __inc_node_page_state(page, NR_SHMEM_THPS);
602 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
603 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
604 spin_unlock_irq(&mapping->tree_lock);
605 } else {
606 page->mapping = NULL;
607 spin_unlock_irq(&mapping->tree_lock);
608 page_ref_sub(page, nr);
609 }
610 return error;
611 }
612
613 /*
614 * Like delete_from_page_cache, but substitutes swap for page.
615 */
616 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
617 {
618 struct address_space *mapping = page->mapping;
619 int error;
620
621 VM_BUG_ON_PAGE(PageCompound(page), page);
622
623 spin_lock_irq(&mapping->tree_lock);
624 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
625 page->mapping = NULL;
626 mapping->nrpages--;
627 __dec_node_page_state(page, NR_FILE_PAGES);
628 __dec_node_page_state(page, NR_SHMEM);
629 spin_unlock_irq(&mapping->tree_lock);
630 put_page(page);
631 BUG_ON(error);
632 }
633
634 /*
635 * Remove swap entry from radix tree, free the swap and its page cache.
636 */
637 static int shmem_free_swap(struct address_space *mapping,
638 pgoff_t index, void *radswap)
639 {
640 void *old;
641
642 spin_lock_irq(&mapping->tree_lock);
643 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
644 spin_unlock_irq(&mapping->tree_lock);
645 if (old != radswap)
646 return -ENOENT;
647 free_swap_and_cache(radix_to_swp_entry(radswap));
648 return 0;
649 }
650
651 /*
652 * Determine (in bytes) how many of the shmem object's pages mapped by the
653 * given offsets are swapped out.
654 *
655 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
656 * as long as the inode doesn't go away and racy results are not a problem.
657 */
658 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
659 pgoff_t start, pgoff_t end)
660 {
661 struct radix_tree_iter iter;
662 void **slot;
663 struct page *page;
664 unsigned long swapped = 0;
665
666 rcu_read_lock();
667
668 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
669 if (iter.index >= end)
670 break;
671
672 page = radix_tree_deref_slot(slot);
673
674 if (radix_tree_deref_retry(page)) {
675 slot = radix_tree_iter_retry(&iter);
676 continue;
677 }
678
679 if (radix_tree_exceptional_entry(page))
680 swapped++;
681
682 if (need_resched()) {
683 slot = radix_tree_iter_resume(slot, &iter);
684 cond_resched_rcu();
685 }
686 }
687
688 rcu_read_unlock();
689
690 return swapped << PAGE_SHIFT;
691 }
692
693 /*
694 * Determine (in bytes) how many of the shmem object's pages mapped by the
695 * given vma is swapped out.
696 *
697 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
698 * as long as the inode doesn't go away and racy results are not a problem.
699 */
700 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
701 {
702 struct inode *inode = file_inode(vma->vm_file);
703 struct shmem_inode_info *info = SHMEM_I(inode);
704 struct address_space *mapping = inode->i_mapping;
705 unsigned long swapped;
706
707 /* Be careful as we don't hold info->lock */
708 swapped = READ_ONCE(info->swapped);
709
710 /*
711 * The easier cases are when the shmem object has nothing in swap, or
712 * the vma maps it whole. Then we can simply use the stats that we
713 * already track.
714 */
715 if (!swapped)
716 return 0;
717
718 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
719 return swapped << PAGE_SHIFT;
720
721 /* Here comes the more involved part */
722 return shmem_partial_swap_usage(mapping,
723 linear_page_index(vma, vma->vm_start),
724 linear_page_index(vma, vma->vm_end));
725 }
726
727 /*
728 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
729 */
730 void shmem_unlock_mapping(struct address_space *mapping)
731 {
732 struct pagevec pvec;
733 pgoff_t indices[PAGEVEC_SIZE];
734 pgoff_t index = 0;
735
736 pagevec_init(&pvec, 0);
737 /*
738 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
739 */
740 while (!mapping_unevictable(mapping)) {
741 /*
742 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
743 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
744 */
745 pvec.nr = find_get_entries(mapping, index,
746 PAGEVEC_SIZE, pvec.pages, indices);
747 if (!pvec.nr)
748 break;
749 index = indices[pvec.nr - 1] + 1;
750 pagevec_remove_exceptionals(&pvec);
751 check_move_unevictable_pages(pvec.pages, pvec.nr);
752 pagevec_release(&pvec);
753 cond_resched();
754 }
755 }
756
757 /*
758 * Remove range of pages and swap entries from radix tree, and free them.
759 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
760 */
761 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
762 bool unfalloc)
763 {
764 struct address_space *mapping = inode->i_mapping;
765 struct shmem_inode_info *info = SHMEM_I(inode);
766 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
767 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
768 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
769 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
770 struct pagevec pvec;
771 pgoff_t indices[PAGEVEC_SIZE];
772 long nr_swaps_freed = 0;
773 pgoff_t index;
774 int i;
775
776 if (lend == -1)
777 end = -1; /* unsigned, so actually very big */
778
779 pagevec_init(&pvec, 0);
780 index = start;
781 while (index < end) {
782 pvec.nr = find_get_entries(mapping, index,
783 min(end - index, (pgoff_t)PAGEVEC_SIZE),
784 pvec.pages, indices);
785 if (!pvec.nr)
786 break;
787 for (i = 0; i < pagevec_count(&pvec); i++) {
788 struct page *page = pvec.pages[i];
789
790 index = indices[i];
791 if (index >= end)
792 break;
793
794 if (radix_tree_exceptional_entry(page)) {
795 if (unfalloc)
796 continue;
797 nr_swaps_freed += !shmem_free_swap(mapping,
798 index, page);
799 continue;
800 }
801
802 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
803
804 if (!trylock_page(page))
805 continue;
806
807 if (PageTransTail(page)) {
808 /* Middle of THP: zero out the page */
809 clear_highpage(page);
810 unlock_page(page);
811 continue;
812 } else if (PageTransHuge(page)) {
813 if (index == round_down(end, HPAGE_PMD_NR)) {
814 /*
815 * Range ends in the middle of THP:
816 * zero out the page
817 */
818 clear_highpage(page);
819 unlock_page(page);
820 continue;
821 }
822 index += HPAGE_PMD_NR - 1;
823 i += HPAGE_PMD_NR - 1;
824 }
825
826 if (!unfalloc || !PageUptodate(page)) {
827 VM_BUG_ON_PAGE(PageTail(page), page);
828 if (page_mapping(page) == mapping) {
829 VM_BUG_ON_PAGE(PageWriteback(page), page);
830 truncate_inode_page(mapping, page);
831 }
832 }
833 unlock_page(page);
834 }
835 pagevec_remove_exceptionals(&pvec);
836 pagevec_release(&pvec);
837 cond_resched();
838 index++;
839 }
840
841 if (partial_start) {
842 struct page *page = NULL;
843 shmem_getpage(inode, start - 1, &page, SGP_READ);
844 if (page) {
845 unsigned int top = PAGE_SIZE;
846 if (start > end) {
847 top = partial_end;
848 partial_end = 0;
849 }
850 zero_user_segment(page, partial_start, top);
851 set_page_dirty(page);
852 unlock_page(page);
853 put_page(page);
854 }
855 }
856 if (partial_end) {
857 struct page *page = NULL;
858 shmem_getpage(inode, end, &page, SGP_READ);
859 if (page) {
860 zero_user_segment(page, 0, partial_end);
861 set_page_dirty(page);
862 unlock_page(page);
863 put_page(page);
864 }
865 }
866 if (start >= end)
867 return;
868
869 index = start;
870 while (index < end) {
871 cond_resched();
872
873 pvec.nr = find_get_entries(mapping, index,
874 min(end - index, (pgoff_t)PAGEVEC_SIZE),
875 pvec.pages, indices);
876 if (!pvec.nr) {
877 /* If all gone or hole-punch or unfalloc, we're done */
878 if (index == start || end != -1)
879 break;
880 /* But if truncating, restart to make sure all gone */
881 index = start;
882 continue;
883 }
884 for (i = 0; i < pagevec_count(&pvec); i++) {
885 struct page *page = pvec.pages[i];
886
887 index = indices[i];
888 if (index >= end)
889 break;
890
891 if (radix_tree_exceptional_entry(page)) {
892 if (unfalloc)
893 continue;
894 if (shmem_free_swap(mapping, index, page)) {
895 /* Swap was replaced by page: retry */
896 index--;
897 break;
898 }
899 nr_swaps_freed++;
900 continue;
901 }
902
903 lock_page(page);
904
905 if (PageTransTail(page)) {
906 /* Middle of THP: zero out the page */
907 clear_highpage(page);
908 unlock_page(page);
909 /*
910 * Partial thp truncate due 'start' in middle
911 * of THP: don't need to look on these pages
912 * again on !pvec.nr restart.
913 */
914 if (index != round_down(end, HPAGE_PMD_NR))
915 start++;
916 continue;
917 } else if (PageTransHuge(page)) {
918 if (index == round_down(end, HPAGE_PMD_NR)) {
919 /*
920 * Range ends in the middle of THP:
921 * zero out the page
922 */
923 clear_highpage(page);
924 unlock_page(page);
925 continue;
926 }
927 index += HPAGE_PMD_NR - 1;
928 i += HPAGE_PMD_NR - 1;
929 }
930
931 if (!unfalloc || !PageUptodate(page)) {
932 VM_BUG_ON_PAGE(PageTail(page), page);
933 if (page_mapping(page) == mapping) {
934 VM_BUG_ON_PAGE(PageWriteback(page), page);
935 truncate_inode_page(mapping, page);
936 } else {
937 /* Page was replaced by swap: retry */
938 unlock_page(page);
939 index--;
940 break;
941 }
942 }
943 unlock_page(page);
944 }
945 pagevec_remove_exceptionals(&pvec);
946 pagevec_release(&pvec);
947 index++;
948 }
949
950 spin_lock_irq(&info->lock);
951 info->swapped -= nr_swaps_freed;
952 shmem_recalc_inode(inode);
953 spin_unlock_irq(&info->lock);
954 }
955
956 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
957 {
958 shmem_undo_range(inode, lstart, lend, false);
959 inode->i_ctime = inode->i_mtime = current_time(inode);
960 }
961 EXPORT_SYMBOL_GPL(shmem_truncate_range);
962
963 static int shmem_getattr(const struct path *path, struct kstat *stat,
964 u32 request_mask, unsigned int query_flags)
965 {
966 struct inode *inode = path->dentry->d_inode;
967 struct shmem_inode_info *info = SHMEM_I(inode);
968
969 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
970 spin_lock_irq(&info->lock);
971 shmem_recalc_inode(inode);
972 spin_unlock_irq(&info->lock);
973 }
974 generic_fillattr(inode, stat);
975 return 0;
976 }
977
978 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
979 {
980 struct inode *inode = d_inode(dentry);
981 struct shmem_inode_info *info = SHMEM_I(inode);
982 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
983 int error;
984
985 error = setattr_prepare(dentry, attr);
986 if (error)
987 return error;
988
989 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
990 loff_t oldsize = inode->i_size;
991 loff_t newsize = attr->ia_size;
992
993 /* protected by i_mutex */
994 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
995 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
996 return -EPERM;
997
998 if (newsize != oldsize) {
999 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1000 oldsize, newsize);
1001 if (error)
1002 return error;
1003 i_size_write(inode, newsize);
1004 inode->i_ctime = inode->i_mtime = current_time(inode);
1005 }
1006 if (newsize <= oldsize) {
1007 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1008 if (oldsize > holebegin)
1009 unmap_mapping_range(inode->i_mapping,
1010 holebegin, 0, 1);
1011 if (info->alloced)
1012 shmem_truncate_range(inode,
1013 newsize, (loff_t)-1);
1014 /* unmap again to remove racily COWed private pages */
1015 if (oldsize > holebegin)
1016 unmap_mapping_range(inode->i_mapping,
1017 holebegin, 0, 1);
1018
1019 /*
1020 * Part of the huge page can be beyond i_size: subject
1021 * to shrink under memory pressure.
1022 */
1023 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1024 spin_lock(&sbinfo->shrinklist_lock);
1025 if (list_empty(&info->shrinklist)) {
1026 list_add_tail(&info->shrinklist,
1027 &sbinfo->shrinklist);
1028 sbinfo->shrinklist_len++;
1029 }
1030 spin_unlock(&sbinfo->shrinklist_lock);
1031 }
1032 }
1033 }
1034
1035 setattr_copy(inode, attr);
1036 if (attr->ia_valid & ATTR_MODE)
1037 error = posix_acl_chmod(inode, inode->i_mode);
1038 return error;
1039 }
1040
1041 static void shmem_evict_inode(struct inode *inode)
1042 {
1043 struct shmem_inode_info *info = SHMEM_I(inode);
1044 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1045
1046 if (inode->i_mapping->a_ops == &shmem_aops) {
1047 shmem_unacct_size(info->flags, inode->i_size);
1048 inode->i_size = 0;
1049 shmem_truncate_range(inode, 0, (loff_t)-1);
1050 if (!list_empty(&info->shrinklist)) {
1051 spin_lock(&sbinfo->shrinklist_lock);
1052 if (!list_empty(&info->shrinklist)) {
1053 list_del_init(&info->shrinklist);
1054 sbinfo->shrinklist_len--;
1055 }
1056 spin_unlock(&sbinfo->shrinklist_lock);
1057 }
1058 if (!list_empty(&info->swaplist)) {
1059 mutex_lock(&shmem_swaplist_mutex);
1060 list_del_init(&info->swaplist);
1061 mutex_unlock(&shmem_swaplist_mutex);
1062 }
1063 }
1064
1065 simple_xattrs_free(&info->xattrs);
1066 WARN_ON(inode->i_blocks);
1067 shmem_free_inode(inode->i_sb);
1068 clear_inode(inode);
1069 }
1070
1071 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1072 {
1073 struct radix_tree_iter iter;
1074 void **slot;
1075 unsigned long found = -1;
1076 unsigned int checked = 0;
1077
1078 rcu_read_lock();
1079 radix_tree_for_each_slot(slot, root, &iter, 0) {
1080 if (*slot == item) {
1081 found = iter.index;
1082 break;
1083 }
1084 checked++;
1085 if ((checked % 4096) != 0)
1086 continue;
1087 slot = radix_tree_iter_resume(slot, &iter);
1088 cond_resched_rcu();
1089 }
1090
1091 rcu_read_unlock();
1092 return found;
1093 }
1094
1095 /*
1096 * If swap found in inode, free it and move page from swapcache to filecache.
1097 */
1098 static int shmem_unuse_inode(struct shmem_inode_info *info,
1099 swp_entry_t swap, struct page **pagep)
1100 {
1101 struct address_space *mapping = info->vfs_inode.i_mapping;
1102 void *radswap;
1103 pgoff_t index;
1104 gfp_t gfp;
1105 int error = 0;
1106
1107 radswap = swp_to_radix_entry(swap);
1108 index = find_swap_entry(&mapping->page_tree, radswap);
1109 if (index == -1)
1110 return -EAGAIN; /* tell shmem_unuse we found nothing */
1111
1112 /*
1113 * Move _head_ to start search for next from here.
1114 * But be careful: shmem_evict_inode checks list_empty without taking
1115 * mutex, and there's an instant in list_move_tail when info->swaplist
1116 * would appear empty, if it were the only one on shmem_swaplist.
1117 */
1118 if (shmem_swaplist.next != &info->swaplist)
1119 list_move_tail(&shmem_swaplist, &info->swaplist);
1120
1121 gfp = mapping_gfp_mask(mapping);
1122 if (shmem_should_replace_page(*pagep, gfp)) {
1123 mutex_unlock(&shmem_swaplist_mutex);
1124 error = shmem_replace_page(pagep, gfp, info, index);
1125 mutex_lock(&shmem_swaplist_mutex);
1126 /*
1127 * We needed to drop mutex to make that restrictive page
1128 * allocation, but the inode might have been freed while we
1129 * dropped it: although a racing shmem_evict_inode() cannot
1130 * complete without emptying the radix_tree, our page lock
1131 * on this swapcache page is not enough to prevent that -
1132 * free_swap_and_cache() of our swap entry will only
1133 * trylock_page(), removing swap from radix_tree whatever.
1134 *
1135 * We must not proceed to shmem_add_to_page_cache() if the
1136 * inode has been freed, but of course we cannot rely on
1137 * inode or mapping or info to check that. However, we can
1138 * safely check if our swap entry is still in use (and here
1139 * it can't have got reused for another page): if it's still
1140 * in use, then the inode cannot have been freed yet, and we
1141 * can safely proceed (if it's no longer in use, that tells
1142 * nothing about the inode, but we don't need to unuse swap).
1143 */
1144 if (!page_swapcount(*pagep))
1145 error = -ENOENT;
1146 }
1147
1148 /*
1149 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1150 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1151 * beneath us (pagelock doesn't help until the page is in pagecache).
1152 */
1153 if (!error)
1154 error = shmem_add_to_page_cache(*pagep, mapping, index,
1155 radswap);
1156 if (error != -ENOMEM) {
1157 /*
1158 * Truncation and eviction use free_swap_and_cache(), which
1159 * only does trylock page: if we raced, best clean up here.
1160 */
1161 delete_from_swap_cache(*pagep);
1162 set_page_dirty(*pagep);
1163 if (!error) {
1164 spin_lock_irq(&info->lock);
1165 info->swapped--;
1166 spin_unlock_irq(&info->lock);
1167 swap_free(swap);
1168 }
1169 }
1170 return error;
1171 }
1172
1173 /*
1174 * Search through swapped inodes to find and replace swap by page.
1175 */
1176 int shmem_unuse(swp_entry_t swap, struct page *page)
1177 {
1178 struct list_head *this, *next;
1179 struct shmem_inode_info *info;
1180 struct mem_cgroup *memcg;
1181 int error = 0;
1182
1183 /*
1184 * There's a faint possibility that swap page was replaced before
1185 * caller locked it: caller will come back later with the right page.
1186 */
1187 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1188 goto out;
1189
1190 /*
1191 * Charge page using GFP_KERNEL while we can wait, before taking
1192 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1193 * Charged back to the user (not to caller) when swap account is used.
1194 */
1195 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1196 false);
1197 if (error)
1198 goto out;
1199 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1200 error = -EAGAIN;
1201
1202 mutex_lock(&shmem_swaplist_mutex);
1203 list_for_each_safe(this, next, &shmem_swaplist) {
1204 info = list_entry(this, struct shmem_inode_info, swaplist);
1205 if (info->swapped)
1206 error = shmem_unuse_inode(info, swap, &page);
1207 else
1208 list_del_init(&info->swaplist);
1209 cond_resched();
1210 if (error != -EAGAIN)
1211 break;
1212 /* found nothing in this: move on to search the next */
1213 }
1214 mutex_unlock(&shmem_swaplist_mutex);
1215
1216 if (error) {
1217 if (error != -ENOMEM)
1218 error = 0;
1219 mem_cgroup_cancel_charge(page, memcg, false);
1220 } else
1221 mem_cgroup_commit_charge(page, memcg, true, false);
1222 out:
1223 unlock_page(page);
1224 put_page(page);
1225 return error;
1226 }
1227
1228 /*
1229 * Move the page from the page cache to the swap cache.
1230 */
1231 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1232 {
1233 struct shmem_inode_info *info;
1234 struct address_space *mapping;
1235 struct inode *inode;
1236 swp_entry_t swap;
1237 pgoff_t index;
1238
1239 VM_BUG_ON_PAGE(PageCompound(page), page);
1240 BUG_ON(!PageLocked(page));
1241 mapping = page->mapping;
1242 index = page->index;
1243 inode = mapping->host;
1244 info = SHMEM_I(inode);
1245 if (info->flags & VM_LOCKED)
1246 goto redirty;
1247 if (!total_swap_pages)
1248 goto redirty;
1249
1250 /*
1251 * Our capabilities prevent regular writeback or sync from ever calling
1252 * shmem_writepage; but a stacking filesystem might use ->writepage of
1253 * its underlying filesystem, in which case tmpfs should write out to
1254 * swap only in response to memory pressure, and not for the writeback
1255 * threads or sync.
1256 */
1257 if (!wbc->for_reclaim) {
1258 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1259 goto redirty;
1260 }
1261
1262 /*
1263 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1264 * value into swapfile.c, the only way we can correctly account for a
1265 * fallocated page arriving here is now to initialize it and write it.
1266 *
1267 * That's okay for a page already fallocated earlier, but if we have
1268 * not yet completed the fallocation, then (a) we want to keep track
1269 * of this page in case we have to undo it, and (b) it may not be a
1270 * good idea to continue anyway, once we're pushing into swap. So
1271 * reactivate the page, and let shmem_fallocate() quit when too many.
1272 */
1273 if (!PageUptodate(page)) {
1274 if (inode->i_private) {
1275 struct shmem_falloc *shmem_falloc;
1276 spin_lock(&inode->i_lock);
1277 shmem_falloc = inode->i_private;
1278 if (shmem_falloc &&
1279 !shmem_falloc->waitq &&
1280 index >= shmem_falloc->start &&
1281 index < shmem_falloc->next)
1282 shmem_falloc->nr_unswapped++;
1283 else
1284 shmem_falloc = NULL;
1285 spin_unlock(&inode->i_lock);
1286 if (shmem_falloc)
1287 goto redirty;
1288 }
1289 clear_highpage(page);
1290 flush_dcache_page(page);
1291 SetPageUptodate(page);
1292 }
1293
1294 swap = get_swap_page(page);
1295 if (!swap.val)
1296 goto redirty;
1297
1298 if (mem_cgroup_try_charge_swap(page, swap))
1299 goto free_swap;
1300
1301 /*
1302 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1303 * if it's not already there. Do it now before the page is
1304 * moved to swap cache, when its pagelock no longer protects
1305 * the inode from eviction. But don't unlock the mutex until
1306 * we've incremented swapped, because shmem_unuse_inode() will
1307 * prune a !swapped inode from the swaplist under this mutex.
1308 */
1309 mutex_lock(&shmem_swaplist_mutex);
1310 if (list_empty(&info->swaplist))
1311 list_add_tail(&info->swaplist, &shmem_swaplist);
1312
1313 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1314 spin_lock_irq(&info->lock);
1315 shmem_recalc_inode(inode);
1316 info->swapped++;
1317 spin_unlock_irq(&info->lock);
1318
1319 swap_shmem_alloc(swap);
1320 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1321
1322 mutex_unlock(&shmem_swaplist_mutex);
1323 BUG_ON(page_mapped(page));
1324 swap_writepage(page, wbc);
1325 return 0;
1326 }
1327
1328 mutex_unlock(&shmem_swaplist_mutex);
1329 free_swap:
1330 put_swap_page(page, swap);
1331 redirty:
1332 set_page_dirty(page);
1333 if (wbc->for_reclaim)
1334 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1335 unlock_page(page);
1336 return 0;
1337 }
1338
1339 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1340 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1341 {
1342 char buffer[64];
1343
1344 if (!mpol || mpol->mode == MPOL_DEFAULT)
1345 return; /* show nothing */
1346
1347 mpol_to_str(buffer, sizeof(buffer), mpol);
1348
1349 seq_printf(seq, ",mpol=%s", buffer);
1350 }
1351
1352 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1353 {
1354 struct mempolicy *mpol = NULL;
1355 if (sbinfo->mpol) {
1356 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1357 mpol = sbinfo->mpol;
1358 mpol_get(mpol);
1359 spin_unlock(&sbinfo->stat_lock);
1360 }
1361 return mpol;
1362 }
1363 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1364 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1365 {
1366 }
1367 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1368 {
1369 return NULL;
1370 }
1371 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1372 #ifndef CONFIG_NUMA
1373 #define vm_policy vm_private_data
1374 #endif
1375
1376 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1377 struct shmem_inode_info *info, pgoff_t index)
1378 {
1379 /* Create a pseudo vma that just contains the policy */
1380 vma->vm_start = 0;
1381 /* Bias interleave by inode number to distribute better across nodes */
1382 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1383 vma->vm_ops = NULL;
1384 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1385 }
1386
1387 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1388 {
1389 /* Drop reference taken by mpol_shared_policy_lookup() */
1390 mpol_cond_put(vma->vm_policy);
1391 }
1392
1393 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1394 struct shmem_inode_info *info, pgoff_t index)
1395 {
1396 struct vm_area_struct pvma;
1397 struct page *page;
1398
1399 shmem_pseudo_vma_init(&pvma, info, index);
1400 page = swapin_readahead(swap, gfp, &pvma, 0);
1401 shmem_pseudo_vma_destroy(&pvma);
1402
1403 return page;
1404 }
1405
1406 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1407 struct shmem_inode_info *info, pgoff_t index)
1408 {
1409 struct vm_area_struct pvma;
1410 struct inode *inode = &info->vfs_inode;
1411 struct address_space *mapping = inode->i_mapping;
1412 pgoff_t idx, hindex;
1413 void __rcu **results;
1414 struct page *page;
1415
1416 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1417 return NULL;
1418
1419 hindex = round_down(index, HPAGE_PMD_NR);
1420 rcu_read_lock();
1421 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1422 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1423 rcu_read_unlock();
1424 return NULL;
1425 }
1426 rcu_read_unlock();
1427
1428 shmem_pseudo_vma_init(&pvma, info, hindex);
1429 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1430 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1431 shmem_pseudo_vma_destroy(&pvma);
1432 if (page)
1433 prep_transhuge_page(page);
1434 return page;
1435 }
1436
1437 static struct page *shmem_alloc_page(gfp_t gfp,
1438 struct shmem_inode_info *info, pgoff_t index)
1439 {
1440 struct vm_area_struct pvma;
1441 struct page *page;
1442
1443 shmem_pseudo_vma_init(&pvma, info, index);
1444 page = alloc_page_vma(gfp, &pvma, 0);
1445 shmem_pseudo_vma_destroy(&pvma);
1446
1447 return page;
1448 }
1449
1450 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1451 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1452 pgoff_t index, bool huge)
1453 {
1454 struct page *page;
1455 int nr;
1456 int err = -ENOSPC;
1457
1458 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1459 huge = false;
1460 nr = huge ? HPAGE_PMD_NR : 1;
1461
1462 if (shmem_acct_block(info->flags, nr))
1463 goto failed;
1464 if (sbinfo->max_blocks) {
1465 if (percpu_counter_compare(&sbinfo->used_blocks,
1466 sbinfo->max_blocks - nr) > 0)
1467 goto unacct;
1468 percpu_counter_add(&sbinfo->used_blocks, nr);
1469 }
1470
1471 if (huge)
1472 page = shmem_alloc_hugepage(gfp, info, index);
1473 else
1474 page = shmem_alloc_page(gfp, info, index);
1475 if (page) {
1476 __SetPageLocked(page);
1477 __SetPageSwapBacked(page);
1478 return page;
1479 }
1480
1481 err = -ENOMEM;
1482 if (sbinfo->max_blocks)
1483 percpu_counter_add(&sbinfo->used_blocks, -nr);
1484 unacct:
1485 shmem_unacct_blocks(info->flags, nr);
1486 failed:
1487 return ERR_PTR(err);
1488 }
1489
1490 /*
1491 * When a page is moved from swapcache to shmem filecache (either by the
1492 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1493 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1494 * ignorance of the mapping it belongs to. If that mapping has special
1495 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1496 * we may need to copy to a suitable page before moving to filecache.
1497 *
1498 * In a future release, this may well be extended to respect cpuset and
1499 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1500 * but for now it is a simple matter of zone.
1501 */
1502 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1503 {
1504 return page_zonenum(page) > gfp_zone(gfp);
1505 }
1506
1507 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1508 struct shmem_inode_info *info, pgoff_t index)
1509 {
1510 struct page *oldpage, *newpage;
1511 struct address_space *swap_mapping;
1512 pgoff_t swap_index;
1513 int error;
1514
1515 oldpage = *pagep;
1516 swap_index = page_private(oldpage);
1517 swap_mapping = page_mapping(oldpage);
1518
1519 /*
1520 * We have arrived here because our zones are constrained, so don't
1521 * limit chance of success by further cpuset and node constraints.
1522 */
1523 gfp &= ~GFP_CONSTRAINT_MASK;
1524 newpage = shmem_alloc_page(gfp, info, index);
1525 if (!newpage)
1526 return -ENOMEM;
1527
1528 get_page(newpage);
1529 copy_highpage(newpage, oldpage);
1530 flush_dcache_page(newpage);
1531
1532 __SetPageLocked(newpage);
1533 __SetPageSwapBacked(newpage);
1534 SetPageUptodate(newpage);
1535 set_page_private(newpage, swap_index);
1536 SetPageSwapCache(newpage);
1537
1538 /*
1539 * Our caller will very soon move newpage out of swapcache, but it's
1540 * a nice clean interface for us to replace oldpage by newpage there.
1541 */
1542 spin_lock_irq(&swap_mapping->tree_lock);
1543 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1544 newpage);
1545 if (!error) {
1546 __inc_node_page_state(newpage, NR_FILE_PAGES);
1547 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1548 }
1549 spin_unlock_irq(&swap_mapping->tree_lock);
1550
1551 if (unlikely(error)) {
1552 /*
1553 * Is this possible? I think not, now that our callers check
1554 * both PageSwapCache and page_private after getting page lock;
1555 * but be defensive. Reverse old to newpage for clear and free.
1556 */
1557 oldpage = newpage;
1558 } else {
1559 mem_cgroup_migrate(oldpage, newpage);
1560 lru_cache_add_anon(newpage);
1561 *pagep = newpage;
1562 }
1563
1564 ClearPageSwapCache(oldpage);
1565 set_page_private(oldpage, 0);
1566
1567 unlock_page(oldpage);
1568 put_page(oldpage);
1569 put_page(oldpage);
1570 return error;
1571 }
1572
1573 /*
1574 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1575 *
1576 * If we allocate a new one we do not mark it dirty. That's up to the
1577 * vm. If we swap it in we mark it dirty since we also free the swap
1578 * entry since a page cannot live in both the swap and page cache.
1579 *
1580 * fault_mm and fault_type are only supplied by shmem_fault:
1581 * otherwise they are NULL.
1582 */
1583 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1584 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1585 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1586 {
1587 struct address_space *mapping = inode->i_mapping;
1588 struct shmem_inode_info *info = SHMEM_I(inode);
1589 struct shmem_sb_info *sbinfo;
1590 struct mm_struct *charge_mm;
1591 struct mem_cgroup *memcg;
1592 struct page *page;
1593 swp_entry_t swap;
1594 enum sgp_type sgp_huge = sgp;
1595 pgoff_t hindex = index;
1596 int error;
1597 int once = 0;
1598 int alloced = 0;
1599
1600 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1601 return -EFBIG;
1602 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1603 sgp = SGP_CACHE;
1604 repeat:
1605 swap.val = 0;
1606 page = find_lock_entry(mapping, index);
1607 if (radix_tree_exceptional_entry(page)) {
1608 swap = radix_to_swp_entry(page);
1609 page = NULL;
1610 }
1611
1612 if (sgp <= SGP_CACHE &&
1613 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1614 error = -EINVAL;
1615 goto unlock;
1616 }
1617
1618 if (page && sgp == SGP_WRITE)
1619 mark_page_accessed(page);
1620
1621 /* fallocated page? */
1622 if (page && !PageUptodate(page)) {
1623 if (sgp != SGP_READ)
1624 goto clear;
1625 unlock_page(page);
1626 put_page(page);
1627 page = NULL;
1628 }
1629 if (page || (sgp == SGP_READ && !swap.val)) {
1630 *pagep = page;
1631 return 0;
1632 }
1633
1634 /*
1635 * Fast cache lookup did not find it:
1636 * bring it back from swap or allocate.
1637 */
1638 sbinfo = SHMEM_SB(inode->i_sb);
1639 charge_mm = vma ? vma->vm_mm : current->mm;
1640
1641 if (swap.val) {
1642 /* Look it up and read it in.. */
1643 page = lookup_swap_cache(swap);
1644 if (!page) {
1645 /* Or update major stats only when swapin succeeds?? */
1646 if (fault_type) {
1647 *fault_type |= VM_FAULT_MAJOR;
1648 count_vm_event(PGMAJFAULT);
1649 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1650 }
1651 /* Here we actually start the io */
1652 page = shmem_swapin(swap, gfp, info, index);
1653 if (!page) {
1654 error = -ENOMEM;
1655 goto failed;
1656 }
1657 }
1658
1659 /* We have to do this with page locked to prevent races */
1660 lock_page(page);
1661 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1662 !shmem_confirm_swap(mapping, index, swap)) {
1663 error = -EEXIST; /* try again */
1664 goto unlock;
1665 }
1666 if (!PageUptodate(page)) {
1667 error = -EIO;
1668 goto failed;
1669 }
1670 wait_on_page_writeback(page);
1671
1672 if (shmem_should_replace_page(page, gfp)) {
1673 error = shmem_replace_page(&page, gfp, info, index);
1674 if (error)
1675 goto failed;
1676 }
1677
1678 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1679 false);
1680 if (!error) {
1681 error = shmem_add_to_page_cache(page, mapping, index,
1682 swp_to_radix_entry(swap));
1683 /*
1684 * We already confirmed swap under page lock, and make
1685 * no memory allocation here, so usually no possibility
1686 * of error; but free_swap_and_cache() only trylocks a
1687 * page, so it is just possible that the entry has been
1688 * truncated or holepunched since swap was confirmed.
1689 * shmem_undo_range() will have done some of the
1690 * unaccounting, now delete_from_swap_cache() will do
1691 * the rest.
1692 * Reset swap.val? No, leave it so "failed" goes back to
1693 * "repeat": reading a hole and writing should succeed.
1694 */
1695 if (error) {
1696 mem_cgroup_cancel_charge(page, memcg, false);
1697 delete_from_swap_cache(page);
1698 }
1699 }
1700 if (error)
1701 goto failed;
1702
1703 mem_cgroup_commit_charge(page, memcg, true, false);
1704
1705 spin_lock_irq(&info->lock);
1706 info->swapped--;
1707 shmem_recalc_inode(inode);
1708 spin_unlock_irq(&info->lock);
1709
1710 if (sgp == SGP_WRITE)
1711 mark_page_accessed(page);
1712
1713 delete_from_swap_cache(page);
1714 set_page_dirty(page);
1715 swap_free(swap);
1716
1717 } else {
1718 if (vma && userfaultfd_missing(vma)) {
1719 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1720 return 0;
1721 }
1722
1723 /* shmem_symlink() */
1724 if (mapping->a_ops != &shmem_aops)
1725 goto alloc_nohuge;
1726 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1727 goto alloc_nohuge;
1728 if (shmem_huge == SHMEM_HUGE_FORCE)
1729 goto alloc_huge;
1730 switch (sbinfo->huge) {
1731 loff_t i_size;
1732 pgoff_t off;
1733 case SHMEM_HUGE_NEVER:
1734 goto alloc_nohuge;
1735 case SHMEM_HUGE_WITHIN_SIZE:
1736 off = round_up(index, HPAGE_PMD_NR);
1737 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1738 if (i_size >= HPAGE_PMD_SIZE &&
1739 i_size >> PAGE_SHIFT >= off)
1740 goto alloc_huge;
1741 /* fallthrough */
1742 case SHMEM_HUGE_ADVISE:
1743 if (sgp_huge == SGP_HUGE)
1744 goto alloc_huge;
1745 /* TODO: implement fadvise() hints */
1746 goto alloc_nohuge;
1747 }
1748
1749 alloc_huge:
1750 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1751 index, true);
1752 if (IS_ERR(page)) {
1753 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1754 index, false);
1755 }
1756 if (IS_ERR(page)) {
1757 int retry = 5;
1758 error = PTR_ERR(page);
1759 page = NULL;
1760 if (error != -ENOSPC)
1761 goto failed;
1762 /*
1763 * Try to reclaim some spece by splitting a huge page
1764 * beyond i_size on the filesystem.
1765 */
1766 while (retry--) {
1767 int ret;
1768 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1769 if (ret == SHRINK_STOP)
1770 break;
1771 if (ret)
1772 goto alloc_nohuge;
1773 }
1774 goto failed;
1775 }
1776
1777 if (PageTransHuge(page))
1778 hindex = round_down(index, HPAGE_PMD_NR);
1779 else
1780 hindex = index;
1781
1782 if (sgp == SGP_WRITE)
1783 __SetPageReferenced(page);
1784
1785 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1786 PageTransHuge(page));
1787 if (error)
1788 goto unacct;
1789 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1790 compound_order(page));
1791 if (!error) {
1792 error = shmem_add_to_page_cache(page, mapping, hindex,
1793 NULL);
1794 radix_tree_preload_end();
1795 }
1796 if (error) {
1797 mem_cgroup_cancel_charge(page, memcg,
1798 PageTransHuge(page));
1799 goto unacct;
1800 }
1801 mem_cgroup_commit_charge(page, memcg, false,
1802 PageTransHuge(page));
1803 lru_cache_add_anon(page);
1804
1805 spin_lock_irq(&info->lock);
1806 info->alloced += 1 << compound_order(page);
1807 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1808 shmem_recalc_inode(inode);
1809 spin_unlock_irq(&info->lock);
1810 alloced = true;
1811
1812 if (PageTransHuge(page) &&
1813 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1814 hindex + HPAGE_PMD_NR - 1) {
1815 /*
1816 * Part of the huge page is beyond i_size: subject
1817 * to shrink under memory pressure.
1818 */
1819 spin_lock(&sbinfo->shrinklist_lock);
1820 if (list_empty(&info->shrinklist)) {
1821 list_add_tail(&info->shrinklist,
1822 &sbinfo->shrinklist);
1823 sbinfo->shrinklist_len++;
1824 }
1825 spin_unlock(&sbinfo->shrinklist_lock);
1826 }
1827
1828 /*
1829 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1830 */
1831 if (sgp == SGP_FALLOC)
1832 sgp = SGP_WRITE;
1833 clear:
1834 /*
1835 * Let SGP_WRITE caller clear ends if write does not fill page;
1836 * but SGP_FALLOC on a page fallocated earlier must initialize
1837 * it now, lest undo on failure cancel our earlier guarantee.
1838 */
1839 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1840 struct page *head = compound_head(page);
1841 int i;
1842
1843 for (i = 0; i < (1 << compound_order(head)); i++) {
1844 clear_highpage(head + i);
1845 flush_dcache_page(head + i);
1846 }
1847 SetPageUptodate(head);
1848 }
1849 }
1850
1851 /* Perhaps the file has been truncated since we checked */
1852 if (sgp <= SGP_CACHE &&
1853 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1854 if (alloced) {
1855 ClearPageDirty(page);
1856 delete_from_page_cache(page);
1857 spin_lock_irq(&info->lock);
1858 shmem_recalc_inode(inode);
1859 spin_unlock_irq(&info->lock);
1860 }
1861 error = -EINVAL;
1862 goto unlock;
1863 }
1864 *pagep = page + index - hindex;
1865 return 0;
1866
1867 /*
1868 * Error recovery.
1869 */
1870 unacct:
1871 if (sbinfo->max_blocks)
1872 percpu_counter_sub(&sbinfo->used_blocks,
1873 1 << compound_order(page));
1874 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1875
1876 if (PageTransHuge(page)) {
1877 unlock_page(page);
1878 put_page(page);
1879 goto alloc_nohuge;
1880 }
1881 failed:
1882 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1883 error = -EEXIST;
1884 unlock:
1885 if (page) {
1886 unlock_page(page);
1887 put_page(page);
1888 }
1889 if (error == -ENOSPC && !once++) {
1890 spin_lock_irq(&info->lock);
1891 shmem_recalc_inode(inode);
1892 spin_unlock_irq(&info->lock);
1893 goto repeat;
1894 }
1895 if (error == -EEXIST) /* from above or from radix_tree_insert */
1896 goto repeat;
1897 return error;
1898 }
1899
1900 /*
1901 * This is like autoremove_wake_function, but it removes the wait queue
1902 * entry unconditionally - even if something else had already woken the
1903 * target.
1904 */
1905 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1906 {
1907 int ret = default_wake_function(wait, mode, sync, key);
1908 list_del_init(&wait->entry);
1909 return ret;
1910 }
1911
1912 static int shmem_fault(struct vm_fault *vmf)
1913 {
1914 struct vm_area_struct *vma = vmf->vma;
1915 struct inode *inode = file_inode(vma->vm_file);
1916 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1917 enum sgp_type sgp;
1918 int error;
1919 int ret = VM_FAULT_LOCKED;
1920
1921 /*
1922 * Trinity finds that probing a hole which tmpfs is punching can
1923 * prevent the hole-punch from ever completing: which in turn
1924 * locks writers out with its hold on i_mutex. So refrain from
1925 * faulting pages into the hole while it's being punched. Although
1926 * shmem_undo_range() does remove the additions, it may be unable to
1927 * keep up, as each new page needs its own unmap_mapping_range() call,
1928 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1929 *
1930 * It does not matter if we sometimes reach this check just before the
1931 * hole-punch begins, so that one fault then races with the punch:
1932 * we just need to make racing faults a rare case.
1933 *
1934 * The implementation below would be much simpler if we just used a
1935 * standard mutex or completion: but we cannot take i_mutex in fault,
1936 * and bloating every shmem inode for this unlikely case would be sad.
1937 */
1938 if (unlikely(inode->i_private)) {
1939 struct shmem_falloc *shmem_falloc;
1940
1941 spin_lock(&inode->i_lock);
1942 shmem_falloc = inode->i_private;
1943 if (shmem_falloc &&
1944 shmem_falloc->waitq &&
1945 vmf->pgoff >= shmem_falloc->start &&
1946 vmf->pgoff < shmem_falloc->next) {
1947 wait_queue_head_t *shmem_falloc_waitq;
1948 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1949
1950 ret = VM_FAULT_NOPAGE;
1951 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1952 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1953 /* It's polite to up mmap_sem if we can */
1954 up_read(&vma->vm_mm->mmap_sem);
1955 ret = VM_FAULT_RETRY;
1956 }
1957
1958 shmem_falloc_waitq = shmem_falloc->waitq;
1959 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1960 TASK_UNINTERRUPTIBLE);
1961 spin_unlock(&inode->i_lock);
1962 schedule();
1963
1964 /*
1965 * shmem_falloc_waitq points into the shmem_fallocate()
1966 * stack of the hole-punching task: shmem_falloc_waitq
1967 * is usually invalid by the time we reach here, but
1968 * finish_wait() does not dereference it in that case;
1969 * though i_lock needed lest racing with wake_up_all().
1970 */
1971 spin_lock(&inode->i_lock);
1972 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1973 spin_unlock(&inode->i_lock);
1974 return ret;
1975 }
1976 spin_unlock(&inode->i_lock);
1977 }
1978
1979 sgp = SGP_CACHE;
1980
1981 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1982 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1983 sgp = SGP_NOHUGE;
1984 else if (vma->vm_flags & VM_HUGEPAGE)
1985 sgp = SGP_HUGE;
1986
1987 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1988 gfp, vma, vmf, &ret);
1989 if (error)
1990 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1991 return ret;
1992 }
1993
1994 unsigned long shmem_get_unmapped_area(struct file *file,
1995 unsigned long uaddr, unsigned long len,
1996 unsigned long pgoff, unsigned long flags)
1997 {
1998 unsigned long (*get_area)(struct file *,
1999 unsigned long, unsigned long, unsigned long, unsigned long);
2000 unsigned long addr;
2001 unsigned long offset;
2002 unsigned long inflated_len;
2003 unsigned long inflated_addr;
2004 unsigned long inflated_offset;
2005
2006 if (len > TASK_SIZE)
2007 return -ENOMEM;
2008
2009 get_area = current->mm->get_unmapped_area;
2010 addr = get_area(file, uaddr, len, pgoff, flags);
2011
2012 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2013 return addr;
2014 if (IS_ERR_VALUE(addr))
2015 return addr;
2016 if (addr & ~PAGE_MASK)
2017 return addr;
2018 if (addr > TASK_SIZE - len)
2019 return addr;
2020
2021 if (shmem_huge == SHMEM_HUGE_DENY)
2022 return addr;
2023 if (len < HPAGE_PMD_SIZE)
2024 return addr;
2025 if (flags & MAP_FIXED)
2026 return addr;
2027 /*
2028 * Our priority is to support MAP_SHARED mapped hugely;
2029 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2030 * But if caller specified an address hint, respect that as before.
2031 */
2032 if (uaddr)
2033 return addr;
2034
2035 if (shmem_huge != SHMEM_HUGE_FORCE) {
2036 struct super_block *sb;
2037
2038 if (file) {
2039 VM_BUG_ON(file->f_op != &shmem_file_operations);
2040 sb = file_inode(file)->i_sb;
2041 } else {
2042 /*
2043 * Called directly from mm/mmap.c, or drivers/char/mem.c
2044 * for "/dev/zero", to create a shared anonymous object.
2045 */
2046 if (IS_ERR(shm_mnt))
2047 return addr;
2048 sb = shm_mnt->mnt_sb;
2049 }
2050 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2051 return addr;
2052 }
2053
2054 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2055 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2056 return addr;
2057 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2058 return addr;
2059
2060 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2061 if (inflated_len > TASK_SIZE)
2062 return addr;
2063 if (inflated_len < len)
2064 return addr;
2065
2066 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2067 if (IS_ERR_VALUE(inflated_addr))
2068 return addr;
2069 if (inflated_addr & ~PAGE_MASK)
2070 return addr;
2071
2072 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2073 inflated_addr += offset - inflated_offset;
2074 if (inflated_offset > offset)
2075 inflated_addr += HPAGE_PMD_SIZE;
2076
2077 if (inflated_addr > TASK_SIZE - len)
2078 return addr;
2079 return inflated_addr;
2080 }
2081
2082 #ifdef CONFIG_NUMA
2083 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2084 {
2085 struct inode *inode = file_inode(vma->vm_file);
2086 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2087 }
2088
2089 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2090 unsigned long addr)
2091 {
2092 struct inode *inode = file_inode(vma->vm_file);
2093 pgoff_t index;
2094
2095 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2096 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2097 }
2098 #endif
2099
2100 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2101 {
2102 struct inode *inode = file_inode(file);
2103 struct shmem_inode_info *info = SHMEM_I(inode);
2104 int retval = -ENOMEM;
2105
2106 spin_lock_irq(&info->lock);
2107 if (lock && !(info->flags & VM_LOCKED)) {
2108 if (!user_shm_lock(inode->i_size, user))
2109 goto out_nomem;
2110 info->flags |= VM_LOCKED;
2111 mapping_set_unevictable(file->f_mapping);
2112 }
2113 if (!lock && (info->flags & VM_LOCKED) && user) {
2114 user_shm_unlock(inode->i_size, user);
2115 info->flags &= ~VM_LOCKED;
2116 mapping_clear_unevictable(file->f_mapping);
2117 }
2118 retval = 0;
2119
2120 out_nomem:
2121 spin_unlock_irq(&info->lock);
2122 return retval;
2123 }
2124
2125 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2126 {
2127 file_accessed(file);
2128 vma->vm_ops = &shmem_vm_ops;
2129 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2130 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2131 (vma->vm_end & HPAGE_PMD_MASK)) {
2132 khugepaged_enter(vma, vma->vm_flags);
2133 }
2134 return 0;
2135 }
2136
2137 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2138 umode_t mode, dev_t dev, unsigned long flags)
2139 {
2140 struct inode *inode;
2141 struct shmem_inode_info *info;
2142 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2143
2144 if (shmem_reserve_inode(sb))
2145 return NULL;
2146
2147 inode = new_inode(sb);
2148 if (inode) {
2149 inode->i_ino = get_next_ino();
2150 inode_init_owner(inode, dir, mode);
2151 inode->i_blocks = 0;
2152 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2153 inode->i_generation = get_seconds();
2154 info = SHMEM_I(inode);
2155 memset(info, 0, (char *)inode - (char *)info);
2156 spin_lock_init(&info->lock);
2157 info->seals = F_SEAL_SEAL;
2158 info->flags = flags & VM_NORESERVE;
2159 INIT_LIST_HEAD(&info->shrinklist);
2160 INIT_LIST_HEAD(&info->swaplist);
2161 simple_xattrs_init(&info->xattrs);
2162 cache_no_acl(inode);
2163
2164 switch (mode & S_IFMT) {
2165 default:
2166 inode->i_op = &shmem_special_inode_operations;
2167 init_special_inode(inode, mode, dev);
2168 break;
2169 case S_IFREG:
2170 inode->i_mapping->a_ops = &shmem_aops;
2171 inode->i_op = &shmem_inode_operations;
2172 inode->i_fop = &shmem_file_operations;
2173 mpol_shared_policy_init(&info->policy,
2174 shmem_get_sbmpol(sbinfo));
2175 break;
2176 case S_IFDIR:
2177 inc_nlink(inode);
2178 /* Some things misbehave if size == 0 on a directory */
2179 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2180 inode->i_op = &shmem_dir_inode_operations;
2181 inode->i_fop = &simple_dir_operations;
2182 break;
2183 case S_IFLNK:
2184 /*
2185 * Must not load anything in the rbtree,
2186 * mpol_free_shared_policy will not be called.
2187 */
2188 mpol_shared_policy_init(&info->policy, NULL);
2189 break;
2190 }
2191 } else
2192 shmem_free_inode(sb);
2193 return inode;
2194 }
2195
2196 bool shmem_mapping(struct address_space *mapping)
2197 {
2198 return mapping->a_ops == &shmem_aops;
2199 }
2200
2201 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2202 pmd_t *dst_pmd,
2203 struct vm_area_struct *dst_vma,
2204 unsigned long dst_addr,
2205 unsigned long src_addr,
2206 struct page **pagep)
2207 {
2208 struct inode *inode = file_inode(dst_vma->vm_file);
2209 struct shmem_inode_info *info = SHMEM_I(inode);
2210 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2211 struct address_space *mapping = inode->i_mapping;
2212 gfp_t gfp = mapping_gfp_mask(mapping);
2213 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2214 struct mem_cgroup *memcg;
2215 spinlock_t *ptl;
2216 void *page_kaddr;
2217 struct page *page;
2218 pte_t _dst_pte, *dst_pte;
2219 int ret;
2220
2221 ret = -ENOMEM;
2222 if (shmem_acct_block(info->flags, 1))
2223 goto out;
2224 if (sbinfo->max_blocks) {
2225 if (percpu_counter_compare(&sbinfo->used_blocks,
2226 sbinfo->max_blocks) >= 0)
2227 goto out_unacct_blocks;
2228 percpu_counter_inc(&sbinfo->used_blocks);
2229 }
2230
2231 if (!*pagep) {
2232 page = shmem_alloc_page(gfp, info, pgoff);
2233 if (!page)
2234 goto out_dec_used_blocks;
2235
2236 page_kaddr = kmap_atomic(page);
2237 ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2238 PAGE_SIZE);
2239 kunmap_atomic(page_kaddr);
2240
2241 /* fallback to copy_from_user outside mmap_sem */
2242 if (unlikely(ret)) {
2243 *pagep = page;
2244 if (sbinfo->max_blocks)
2245 percpu_counter_add(&sbinfo->used_blocks, -1);
2246 shmem_unacct_blocks(info->flags, 1);
2247 /* don't free the page */
2248 return -EFAULT;
2249 }
2250 } else {
2251 page = *pagep;
2252 *pagep = NULL;
2253 }
2254
2255 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2256 __SetPageLocked(page);
2257 __SetPageSwapBacked(page);
2258 __SetPageUptodate(page);
2259
2260 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2261 if (ret)
2262 goto out_release;
2263
2264 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2265 if (!ret) {
2266 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2267 radix_tree_preload_end();
2268 }
2269 if (ret)
2270 goto out_release_uncharge;
2271
2272 mem_cgroup_commit_charge(page, memcg, false, false);
2273
2274 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2275 if (dst_vma->vm_flags & VM_WRITE)
2276 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2277
2278 ret = -EEXIST;
2279 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2280 if (!pte_none(*dst_pte))
2281 goto out_release_uncharge_unlock;
2282
2283 lru_cache_add_anon(page);
2284
2285 spin_lock(&info->lock);
2286 info->alloced++;
2287 inode->i_blocks += BLOCKS_PER_PAGE;
2288 shmem_recalc_inode(inode);
2289 spin_unlock(&info->lock);
2290
2291 inc_mm_counter(dst_mm, mm_counter_file(page));
2292 page_add_file_rmap(page, false);
2293 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2294
2295 /* No need to invalidate - it was non-present before */
2296 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2297 unlock_page(page);
2298 pte_unmap_unlock(dst_pte, ptl);
2299 ret = 0;
2300 out:
2301 return ret;
2302 out_release_uncharge_unlock:
2303 pte_unmap_unlock(dst_pte, ptl);
2304 out_release_uncharge:
2305 mem_cgroup_cancel_charge(page, memcg, false);
2306 out_release:
2307 unlock_page(page);
2308 put_page(page);
2309 out_dec_used_blocks:
2310 if (sbinfo->max_blocks)
2311 percpu_counter_add(&sbinfo->used_blocks, -1);
2312 out_unacct_blocks:
2313 shmem_unacct_blocks(info->flags, 1);
2314 goto out;
2315 }
2316
2317 #ifdef CONFIG_TMPFS
2318 static const struct inode_operations shmem_symlink_inode_operations;
2319 static const struct inode_operations shmem_short_symlink_operations;
2320
2321 #ifdef CONFIG_TMPFS_XATTR
2322 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2323 #else
2324 #define shmem_initxattrs NULL
2325 #endif
2326
2327 static int
2328 shmem_write_begin(struct file *file, struct address_space *mapping,
2329 loff_t pos, unsigned len, unsigned flags,
2330 struct page **pagep, void **fsdata)
2331 {
2332 struct inode *inode = mapping->host;
2333 struct shmem_inode_info *info = SHMEM_I(inode);
2334 pgoff_t index = pos >> PAGE_SHIFT;
2335
2336 /* i_mutex is held by caller */
2337 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2338 if (info->seals & F_SEAL_WRITE)
2339 return -EPERM;
2340 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2341 return -EPERM;
2342 }
2343
2344 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2345 }
2346
2347 static int
2348 shmem_write_end(struct file *file, struct address_space *mapping,
2349 loff_t pos, unsigned len, unsigned copied,
2350 struct page *page, void *fsdata)
2351 {
2352 struct inode *inode = mapping->host;
2353
2354 if (pos + copied > inode->i_size)
2355 i_size_write(inode, pos + copied);
2356
2357 if (!PageUptodate(page)) {
2358 struct page *head = compound_head(page);
2359 if (PageTransCompound(page)) {
2360 int i;
2361
2362 for (i = 0; i < HPAGE_PMD_NR; i++) {
2363 if (head + i == page)
2364 continue;
2365 clear_highpage(head + i);
2366 flush_dcache_page(head + i);
2367 }
2368 }
2369 if (copied < PAGE_SIZE) {
2370 unsigned from = pos & (PAGE_SIZE - 1);
2371 zero_user_segments(page, 0, from,
2372 from + copied, PAGE_SIZE);
2373 }
2374 SetPageUptodate(head);
2375 }
2376 set_page_dirty(page);
2377 unlock_page(page);
2378 put_page(page);
2379
2380 return copied;
2381 }
2382
2383 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2384 {
2385 struct file *file = iocb->ki_filp;
2386 struct inode *inode = file_inode(file);
2387 struct address_space *mapping = inode->i_mapping;
2388 pgoff_t index;
2389 unsigned long offset;
2390 enum sgp_type sgp = SGP_READ;
2391 int error = 0;
2392 ssize_t retval = 0;
2393 loff_t *ppos = &iocb->ki_pos;
2394
2395 /*
2396 * Might this read be for a stacking filesystem? Then when reading
2397 * holes of a sparse file, we actually need to allocate those pages,
2398 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2399 */
2400 if (!iter_is_iovec(to))
2401 sgp = SGP_CACHE;
2402
2403 index = *ppos >> PAGE_SHIFT;
2404 offset = *ppos & ~PAGE_MASK;
2405
2406 for (;;) {
2407 struct page *page = NULL;
2408 pgoff_t end_index;
2409 unsigned long nr, ret;
2410 loff_t i_size = i_size_read(inode);
2411
2412 end_index = i_size >> PAGE_SHIFT;
2413 if (index > end_index)
2414 break;
2415 if (index == end_index) {
2416 nr = i_size & ~PAGE_MASK;
2417 if (nr <= offset)
2418 break;
2419 }
2420
2421 error = shmem_getpage(inode, index, &page, sgp);
2422 if (error) {
2423 if (error == -EINVAL)
2424 error = 0;
2425 break;
2426 }
2427 if (page) {
2428 if (sgp == SGP_CACHE)
2429 set_page_dirty(page);
2430 unlock_page(page);
2431 }
2432
2433 /*
2434 * We must evaluate after, since reads (unlike writes)
2435 * are called without i_mutex protection against truncate
2436 */
2437 nr = PAGE_SIZE;
2438 i_size = i_size_read(inode);
2439 end_index = i_size >> PAGE_SHIFT;
2440 if (index == end_index) {
2441 nr = i_size & ~PAGE_MASK;
2442 if (nr <= offset) {
2443 if (page)
2444 put_page(page);
2445 break;
2446 }
2447 }
2448 nr -= offset;
2449
2450 if (page) {
2451 /*
2452 * If users can be writing to this page using arbitrary
2453 * virtual addresses, take care about potential aliasing
2454 * before reading the page on the kernel side.
2455 */
2456 if (mapping_writably_mapped(mapping))
2457 flush_dcache_page(page);
2458 /*
2459 * Mark the page accessed if we read the beginning.
2460 */
2461 if (!offset)
2462 mark_page_accessed(page);
2463 } else {
2464 page = ZERO_PAGE(0);
2465 get_page(page);
2466 }
2467
2468 /*
2469 * Ok, we have the page, and it's up-to-date, so
2470 * now we can copy it to user space...
2471 */
2472 ret = copy_page_to_iter(page, offset, nr, to);
2473 retval += ret;
2474 offset += ret;
2475 index += offset >> PAGE_SHIFT;
2476 offset &= ~PAGE_MASK;
2477
2478 put_page(page);
2479 if (!iov_iter_count(to))
2480 break;
2481 if (ret < nr) {
2482 error = -EFAULT;
2483 break;
2484 }
2485 cond_resched();
2486 }
2487
2488 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2489 file_accessed(file);
2490 return retval ? retval : error;
2491 }
2492
2493 /*
2494 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2495 */
2496 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2497 pgoff_t index, pgoff_t end, int whence)
2498 {
2499 struct page *page;
2500 struct pagevec pvec;
2501 pgoff_t indices[PAGEVEC_SIZE];
2502 bool done = false;
2503 int i;
2504
2505 pagevec_init(&pvec, 0);
2506 pvec.nr = 1; /* start small: we may be there already */
2507 while (!done) {
2508 pvec.nr = find_get_entries(mapping, index,
2509 pvec.nr, pvec.pages, indices);
2510 if (!pvec.nr) {
2511 if (whence == SEEK_DATA)
2512 index = end;
2513 break;
2514 }
2515 for (i = 0; i < pvec.nr; i++, index++) {
2516 if (index < indices[i]) {
2517 if (whence == SEEK_HOLE) {
2518 done = true;
2519 break;
2520 }
2521 index = indices[i];
2522 }
2523 page = pvec.pages[i];
2524 if (page && !radix_tree_exceptional_entry(page)) {
2525 if (!PageUptodate(page))
2526 page = NULL;
2527 }
2528 if (index >= end ||
2529 (page && whence == SEEK_DATA) ||
2530 (!page && whence == SEEK_HOLE)) {
2531 done = true;
2532 break;
2533 }
2534 }
2535 pagevec_remove_exceptionals(&pvec);
2536 pagevec_release(&pvec);
2537 pvec.nr = PAGEVEC_SIZE;
2538 cond_resched();
2539 }
2540 return index;
2541 }
2542
2543 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2544 {
2545 struct address_space *mapping = file->f_mapping;
2546 struct inode *inode = mapping->host;
2547 pgoff_t start, end;
2548 loff_t new_offset;
2549
2550 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2551 return generic_file_llseek_size(file, offset, whence,
2552 MAX_LFS_FILESIZE, i_size_read(inode));
2553 inode_lock(inode);
2554 /* We're holding i_mutex so we can access i_size directly */
2555
2556 if (offset < 0)
2557 offset = -EINVAL;
2558 else if (offset >= inode->i_size)
2559 offset = -ENXIO;
2560 else {
2561 start = offset >> PAGE_SHIFT;
2562 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2563 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2564 new_offset <<= PAGE_SHIFT;
2565 if (new_offset > offset) {
2566 if (new_offset < inode->i_size)
2567 offset = new_offset;
2568 else if (whence == SEEK_DATA)
2569 offset = -ENXIO;
2570 else
2571 offset = inode->i_size;
2572 }
2573 }
2574
2575 if (offset >= 0)
2576 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2577 inode_unlock(inode);
2578 return offset;
2579 }
2580
2581 /*
2582 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2583 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2584 */
2585 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2586 #define LAST_SCAN 4 /* about 150ms max */
2587
2588 static void shmem_tag_pins(struct address_space *mapping)
2589 {
2590 struct radix_tree_iter iter;
2591 void **slot;
2592 pgoff_t start;
2593 struct page *page;
2594
2595 lru_add_drain();
2596 start = 0;
2597 rcu_read_lock();
2598
2599 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2600 page = radix_tree_deref_slot(slot);
2601 if (!page || radix_tree_exception(page)) {
2602 if (radix_tree_deref_retry(page)) {
2603 slot = radix_tree_iter_retry(&iter);
2604 continue;
2605 }
2606 } else if (page_count(page) - page_mapcount(page) > 1) {
2607 spin_lock_irq(&mapping->tree_lock);
2608 radix_tree_tag_set(&mapping->page_tree, iter.index,
2609 SHMEM_TAG_PINNED);
2610 spin_unlock_irq(&mapping->tree_lock);
2611 }
2612
2613 if (need_resched()) {
2614 slot = radix_tree_iter_resume(slot, &iter);
2615 cond_resched_rcu();
2616 }
2617 }
2618 rcu_read_unlock();
2619 }
2620
2621 /*
2622 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2623 * via get_user_pages(), drivers might have some pending I/O without any active
2624 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2625 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2626 * them to be dropped.
2627 * The caller must guarantee that no new user will acquire writable references
2628 * to those pages to avoid races.
2629 */
2630 static int shmem_wait_for_pins(struct address_space *mapping)
2631 {
2632 struct radix_tree_iter iter;
2633 void **slot;
2634 pgoff_t start;
2635 struct page *page;
2636 int error, scan;
2637
2638 shmem_tag_pins(mapping);
2639
2640 error = 0;
2641 for (scan = 0; scan <= LAST_SCAN; scan++) {
2642 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2643 break;
2644
2645 if (!scan)
2646 lru_add_drain_all();
2647 else if (schedule_timeout_killable((HZ << scan) / 200))
2648 scan = LAST_SCAN;
2649
2650 start = 0;
2651 rcu_read_lock();
2652 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2653 start, SHMEM_TAG_PINNED) {
2654
2655 page = radix_tree_deref_slot(slot);
2656 if (radix_tree_exception(page)) {
2657 if (radix_tree_deref_retry(page)) {
2658 slot = radix_tree_iter_retry(&iter);
2659 continue;
2660 }
2661
2662 page = NULL;
2663 }
2664
2665 if (page &&
2666 page_count(page) - page_mapcount(page) != 1) {
2667 if (scan < LAST_SCAN)
2668 goto continue_resched;
2669
2670 /*
2671 * On the last scan, we clean up all those tags
2672 * we inserted; but make a note that we still
2673 * found pages pinned.
2674 */
2675 error = -EBUSY;
2676 }
2677
2678 spin_lock_irq(&mapping->tree_lock);
2679 radix_tree_tag_clear(&mapping->page_tree,
2680 iter.index, SHMEM_TAG_PINNED);
2681 spin_unlock_irq(&mapping->tree_lock);
2682 continue_resched:
2683 if (need_resched()) {
2684 slot = radix_tree_iter_resume(slot, &iter);
2685 cond_resched_rcu();
2686 }
2687 }
2688 rcu_read_unlock();
2689 }
2690
2691 return error;
2692 }
2693
2694 #define F_ALL_SEALS (F_SEAL_SEAL | \
2695 F_SEAL_SHRINK | \
2696 F_SEAL_GROW | \
2697 F_SEAL_WRITE)
2698
2699 int shmem_add_seals(struct file *file, unsigned int seals)
2700 {
2701 struct inode *inode = file_inode(file);
2702 struct shmem_inode_info *info = SHMEM_I(inode);
2703 int error;
2704
2705 /*
2706 * SEALING
2707 * Sealing allows multiple parties to share a shmem-file but restrict
2708 * access to a specific subset of file operations. Seals can only be
2709 * added, but never removed. This way, mutually untrusted parties can
2710 * share common memory regions with a well-defined policy. A malicious
2711 * peer can thus never perform unwanted operations on a shared object.
2712 *
2713 * Seals are only supported on special shmem-files and always affect
2714 * the whole underlying inode. Once a seal is set, it may prevent some
2715 * kinds of access to the file. Currently, the following seals are
2716 * defined:
2717 * SEAL_SEAL: Prevent further seals from being set on this file
2718 * SEAL_SHRINK: Prevent the file from shrinking
2719 * SEAL_GROW: Prevent the file from growing
2720 * SEAL_WRITE: Prevent write access to the file
2721 *
2722 * As we don't require any trust relationship between two parties, we
2723 * must prevent seals from being removed. Therefore, sealing a file
2724 * only adds a given set of seals to the file, it never touches
2725 * existing seals. Furthermore, the "setting seals"-operation can be
2726 * sealed itself, which basically prevents any further seal from being
2727 * added.
2728 *
2729 * Semantics of sealing are only defined on volatile files. Only
2730 * anonymous shmem files support sealing. More importantly, seals are
2731 * never written to disk. Therefore, there's no plan to support it on
2732 * other file types.
2733 */
2734
2735 if (file->f_op != &shmem_file_operations)
2736 return -EINVAL;
2737 if (!(file->f_mode & FMODE_WRITE))
2738 return -EPERM;
2739 if (seals & ~(unsigned int)F_ALL_SEALS)
2740 return -EINVAL;
2741
2742 inode_lock(inode);
2743
2744 if (info->seals & F_SEAL_SEAL) {
2745 error = -EPERM;
2746 goto unlock;
2747 }
2748
2749 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2750 error = mapping_deny_writable(file->f_mapping);
2751 if (error)
2752 goto unlock;
2753
2754 error = shmem_wait_for_pins(file->f_mapping);
2755 if (error) {
2756 mapping_allow_writable(file->f_mapping);
2757 goto unlock;
2758 }
2759 }
2760
2761 info->seals |= seals;
2762 error = 0;
2763
2764 unlock:
2765 inode_unlock(inode);
2766 return error;
2767 }
2768 EXPORT_SYMBOL_GPL(shmem_add_seals);
2769
2770 int shmem_get_seals(struct file *file)
2771 {
2772 if (file->f_op != &shmem_file_operations)
2773 return -EINVAL;
2774
2775 return SHMEM_I(file_inode(file))->seals;
2776 }
2777 EXPORT_SYMBOL_GPL(shmem_get_seals);
2778
2779 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2780 {
2781 long error;
2782
2783 switch (cmd) {
2784 case F_ADD_SEALS:
2785 /* disallow upper 32bit */
2786 if (arg > UINT_MAX)
2787 return -EINVAL;
2788
2789 error = shmem_add_seals(file, arg);
2790 break;
2791 case F_GET_SEALS:
2792 error = shmem_get_seals(file);
2793 break;
2794 default:
2795 error = -EINVAL;
2796 break;
2797 }
2798
2799 return error;
2800 }
2801
2802 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2803 loff_t len)
2804 {
2805 struct inode *inode = file_inode(file);
2806 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2807 struct shmem_inode_info *info = SHMEM_I(inode);
2808 struct shmem_falloc shmem_falloc;
2809 pgoff_t start, index, end;
2810 int error;
2811
2812 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2813 return -EOPNOTSUPP;
2814
2815 inode_lock(inode);
2816
2817 if (mode & FALLOC_FL_PUNCH_HOLE) {
2818 struct address_space *mapping = file->f_mapping;
2819 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2820 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2821 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2822
2823 /* protected by i_mutex */
2824 if (info->seals & F_SEAL_WRITE) {
2825 error = -EPERM;
2826 goto out;
2827 }
2828
2829 shmem_falloc.waitq = &shmem_falloc_waitq;
2830 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2831 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2832 spin_lock(&inode->i_lock);
2833 inode->i_private = &shmem_falloc;
2834 spin_unlock(&inode->i_lock);
2835
2836 if ((u64)unmap_end > (u64)unmap_start)
2837 unmap_mapping_range(mapping, unmap_start,
2838 1 + unmap_end - unmap_start, 0);
2839 shmem_truncate_range(inode, offset, offset + len - 1);
2840 /* No need to unmap again: hole-punching leaves COWed pages */
2841
2842 spin_lock(&inode->i_lock);
2843 inode->i_private = NULL;
2844 wake_up_all(&shmem_falloc_waitq);
2845 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2846 spin_unlock(&inode->i_lock);
2847 error = 0;
2848 goto out;
2849 }
2850
2851 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2852 error = inode_newsize_ok(inode, offset + len);
2853 if (error)
2854 goto out;
2855
2856 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2857 error = -EPERM;
2858 goto out;
2859 }
2860
2861 start = offset >> PAGE_SHIFT;
2862 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2863 /* Try to avoid a swapstorm if len is impossible to satisfy */
2864 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2865 error = -ENOSPC;
2866 goto out;
2867 }
2868
2869 shmem_falloc.waitq = NULL;
2870 shmem_falloc.start = start;
2871 shmem_falloc.next = start;
2872 shmem_falloc.nr_falloced = 0;
2873 shmem_falloc.nr_unswapped = 0;
2874 spin_lock(&inode->i_lock);
2875 inode->i_private = &shmem_falloc;
2876 spin_unlock(&inode->i_lock);
2877
2878 for (index = start; index < end; index++) {
2879 struct page *page;
2880
2881 /*
2882 * Good, the fallocate(2) manpage permits EINTR: we may have
2883 * been interrupted because we are using up too much memory.
2884 */
2885 if (signal_pending(current))
2886 error = -EINTR;
2887 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2888 error = -ENOMEM;
2889 else
2890 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2891 if (error) {
2892 /* Remove the !PageUptodate pages we added */
2893 if (index > start) {
2894 shmem_undo_range(inode,
2895 (loff_t)start << PAGE_SHIFT,
2896 ((loff_t)index << PAGE_SHIFT) - 1, true);
2897 }
2898 goto undone;
2899 }
2900
2901 /*
2902 * Inform shmem_writepage() how far we have reached.
2903 * No need for lock or barrier: we have the page lock.
2904 */
2905 shmem_falloc.next++;
2906 if (!PageUptodate(page))
2907 shmem_falloc.nr_falloced++;
2908
2909 /*
2910 * If !PageUptodate, leave it that way so that freeable pages
2911 * can be recognized if we need to rollback on error later.
2912 * But set_page_dirty so that memory pressure will swap rather
2913 * than free the pages we are allocating (and SGP_CACHE pages
2914 * might still be clean: we now need to mark those dirty too).
2915 */
2916 set_page_dirty(page);
2917 unlock_page(page);
2918 put_page(page);
2919 cond_resched();
2920 }
2921
2922 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2923 i_size_write(inode, offset + len);
2924 inode->i_ctime = current_time(inode);
2925 undone:
2926 spin_lock(&inode->i_lock);
2927 inode->i_private = NULL;
2928 spin_unlock(&inode->i_lock);
2929 out:
2930 inode_unlock(inode);
2931 return error;
2932 }
2933
2934 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2935 {
2936 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2937
2938 buf->f_type = TMPFS_MAGIC;
2939 buf->f_bsize = PAGE_SIZE;
2940 buf->f_namelen = NAME_MAX;
2941 if (sbinfo->max_blocks) {
2942 buf->f_blocks = sbinfo->max_blocks;
2943 buf->f_bavail =
2944 buf->f_bfree = sbinfo->max_blocks -
2945 percpu_counter_sum(&sbinfo->used_blocks);
2946 }
2947 if (sbinfo->max_inodes) {
2948 buf->f_files = sbinfo->max_inodes;
2949 buf->f_ffree = sbinfo->free_inodes;
2950 }
2951 /* else leave those fields 0 like simple_statfs */
2952 return 0;
2953 }
2954
2955 /*
2956 * File creation. Allocate an inode, and we're done..
2957 */
2958 static int
2959 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2960 {
2961 struct inode *inode;
2962 int error = -ENOSPC;
2963
2964 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2965 if (inode) {
2966 error = simple_acl_create(dir, inode);
2967 if (error)
2968 goto out_iput;
2969 error = security_inode_init_security(inode, dir,
2970 &dentry->d_name,
2971 shmem_initxattrs, NULL);
2972 if (error && error != -EOPNOTSUPP)
2973 goto out_iput;
2974
2975 error = 0;
2976 dir->i_size += BOGO_DIRENT_SIZE;
2977 dir->i_ctime = dir->i_mtime = current_time(dir);
2978 d_instantiate(dentry, inode);
2979 dget(dentry); /* Extra count - pin the dentry in core */
2980 }
2981 return error;
2982 out_iput:
2983 iput(inode);
2984 return error;
2985 }
2986
2987 static int
2988 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2989 {
2990 struct inode *inode;
2991 int error = -ENOSPC;
2992
2993 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2994 if (inode) {
2995 error = security_inode_init_security(inode, dir,
2996 NULL,
2997 shmem_initxattrs, NULL);
2998 if (error && error != -EOPNOTSUPP)
2999 goto out_iput;
3000 error = simple_acl_create(dir, inode);
3001 if (error)
3002 goto out_iput;
3003 d_tmpfile(dentry, inode);
3004 }
3005 return error;
3006 out_iput:
3007 iput(inode);
3008 return error;
3009 }
3010
3011 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3012 {
3013 int error;
3014
3015 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3016 return error;
3017 inc_nlink(dir);
3018 return 0;
3019 }
3020
3021 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3022 bool excl)
3023 {
3024 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3025 }
3026
3027 /*
3028 * Link a file..
3029 */
3030 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3031 {
3032 struct inode *inode = d_inode(old_dentry);
3033 int ret;
3034
3035 /*
3036 * No ordinary (disk based) filesystem counts links as inodes;
3037 * but each new link needs a new dentry, pinning lowmem, and
3038 * tmpfs dentries cannot be pruned until they are unlinked.
3039 */
3040 ret = shmem_reserve_inode(inode->i_sb);
3041 if (ret)
3042 goto out;
3043
3044 dir->i_size += BOGO_DIRENT_SIZE;
3045 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3046 inc_nlink(inode);
3047 ihold(inode); /* New dentry reference */
3048 dget(dentry); /* Extra pinning count for the created dentry */
3049 d_instantiate(dentry, inode);
3050 out:
3051 return ret;
3052 }
3053
3054 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3055 {
3056 struct inode *inode = d_inode(dentry);
3057
3058 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3059 shmem_free_inode(inode->i_sb);
3060
3061 dir->i_size -= BOGO_DIRENT_SIZE;
3062 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3063 drop_nlink(inode);
3064 dput(dentry); /* Undo the count from "create" - this does all the work */
3065 return 0;
3066 }
3067
3068 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3069 {
3070 if (!simple_empty(dentry))
3071 return -ENOTEMPTY;
3072
3073 drop_nlink(d_inode(dentry));
3074 drop_nlink(dir);
3075 return shmem_unlink(dir, dentry);
3076 }
3077
3078 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3079 {
3080 bool old_is_dir = d_is_dir(old_dentry);
3081 bool new_is_dir = d_is_dir(new_dentry);
3082
3083 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3084 if (old_is_dir) {
3085 drop_nlink(old_dir);
3086 inc_nlink(new_dir);
3087 } else {
3088 drop_nlink(new_dir);
3089 inc_nlink(old_dir);
3090 }
3091 }
3092 old_dir->i_ctime = old_dir->i_mtime =
3093 new_dir->i_ctime = new_dir->i_mtime =
3094 d_inode(old_dentry)->i_ctime =
3095 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3096
3097 return 0;
3098 }
3099
3100 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3101 {
3102 struct dentry *whiteout;
3103 int error;
3104
3105 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3106 if (!whiteout)
3107 return -ENOMEM;
3108
3109 error = shmem_mknod(old_dir, whiteout,
3110 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3111 dput(whiteout);
3112 if (error)
3113 return error;
3114
3115 /*
3116 * Cheat and hash the whiteout while the old dentry is still in
3117 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3118 *
3119 * d_lookup() will consistently find one of them at this point,
3120 * not sure which one, but that isn't even important.
3121 */
3122 d_rehash(whiteout);
3123 return 0;
3124 }
3125
3126 /*
3127 * The VFS layer already does all the dentry stuff for rename,
3128 * we just have to decrement the usage count for the target if
3129 * it exists so that the VFS layer correctly free's it when it
3130 * gets overwritten.
3131 */
3132 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3133 {
3134 struct inode *inode = d_inode(old_dentry);
3135 int they_are_dirs = S_ISDIR(inode->i_mode);
3136
3137 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3138 return -EINVAL;
3139
3140 if (flags & RENAME_EXCHANGE)
3141 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3142
3143 if (!simple_empty(new_dentry))
3144 return -ENOTEMPTY;
3145
3146 if (flags & RENAME_WHITEOUT) {
3147 int error;
3148
3149 error = shmem_whiteout(old_dir, old_dentry);
3150 if (error)
3151 return error;
3152 }
3153
3154 if (d_really_is_positive(new_dentry)) {
3155 (void) shmem_unlink(new_dir, new_dentry);
3156 if (they_are_dirs) {
3157 drop_nlink(d_inode(new_dentry));
3158 drop_nlink(old_dir);
3159 }
3160 } else if (they_are_dirs) {
3161 drop_nlink(old_dir);
3162 inc_nlink(new_dir);
3163 }
3164
3165 old_dir->i_size -= BOGO_DIRENT_SIZE;
3166 new_dir->i_size += BOGO_DIRENT_SIZE;
3167 old_dir->i_ctime = old_dir->i_mtime =
3168 new_dir->i_ctime = new_dir->i_mtime =
3169 inode->i_ctime = current_time(old_dir);
3170 return 0;
3171 }
3172
3173 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3174 {
3175 int error;
3176 int len;
3177 struct inode *inode;
3178 struct page *page;
3179 struct shmem_inode_info *info;
3180
3181 len = strlen(symname) + 1;
3182 if (len > PAGE_SIZE)
3183 return -ENAMETOOLONG;
3184
3185 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3186 if (!inode)
3187 return -ENOSPC;
3188
3189 error = security_inode_init_security(inode, dir, &dentry->d_name,
3190 shmem_initxattrs, NULL);
3191 if (error) {
3192 if (error != -EOPNOTSUPP) {
3193 iput(inode);
3194 return error;
3195 }
3196 error = 0;
3197 }
3198
3199 info = SHMEM_I(inode);
3200 inode->i_size = len-1;
3201 if (len <= SHORT_SYMLINK_LEN) {
3202 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3203 if (!inode->i_link) {
3204 iput(inode);
3205 return -ENOMEM;
3206 }
3207 inode->i_op = &shmem_short_symlink_operations;
3208 } else {
3209 inode_nohighmem(inode);
3210 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3211 if (error) {
3212 iput(inode);
3213 return error;
3214 }
3215 inode->i_mapping->a_ops = &shmem_aops;
3216 inode->i_op = &shmem_symlink_inode_operations;
3217 memcpy(page_address(page), symname, len);
3218 SetPageUptodate(page);
3219 set_page_dirty(page);
3220 unlock_page(page);
3221 put_page(page);
3222 }
3223 dir->i_size += BOGO_DIRENT_SIZE;
3224 dir->i_ctime = dir->i_mtime = current_time(dir);
3225 d_instantiate(dentry, inode);
3226 dget(dentry);
3227 return 0;
3228 }
3229
3230 static void shmem_put_link(void *arg)
3231 {
3232 mark_page_accessed(arg);
3233 put_page(arg);
3234 }
3235
3236 static const char *shmem_get_link(struct dentry *dentry,
3237 struct inode *inode,
3238 struct delayed_call *done)
3239 {
3240 struct page *page = NULL;
3241 int error;
3242 if (!dentry) {
3243 page = find_get_page(inode->i_mapping, 0);
3244 if (!page)
3245 return ERR_PTR(-ECHILD);
3246 if (!PageUptodate(page)) {
3247 put_page(page);
3248 return ERR_PTR(-ECHILD);
3249 }
3250 } else {
3251 error = shmem_getpage(inode, 0, &page, SGP_READ);
3252 if (error)
3253 return ERR_PTR(error);
3254 unlock_page(page);
3255 }
3256 set_delayed_call(done, shmem_put_link, page);
3257 return page_address(page);
3258 }
3259
3260 #ifdef CONFIG_TMPFS_XATTR
3261 /*
3262 * Superblocks without xattr inode operations may get some security.* xattr
3263 * support from the LSM "for free". As soon as we have any other xattrs
3264 * like ACLs, we also need to implement the security.* handlers at
3265 * filesystem level, though.
3266 */
3267
3268 /*
3269 * Callback for security_inode_init_security() for acquiring xattrs.
3270 */
3271 static int shmem_initxattrs(struct inode *inode,
3272 const struct xattr *xattr_array,
3273 void *fs_info)
3274 {
3275 struct shmem_inode_info *info = SHMEM_I(inode);
3276 const struct xattr *xattr;
3277 struct simple_xattr *new_xattr;
3278 size_t len;
3279
3280 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3281 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3282 if (!new_xattr)
3283 return -ENOMEM;
3284
3285 len = strlen(xattr->name) + 1;
3286 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3287 GFP_KERNEL);
3288 if (!new_xattr->name) {
3289 kfree(new_xattr);
3290 return -ENOMEM;
3291 }
3292
3293 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3294 XATTR_SECURITY_PREFIX_LEN);
3295 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3296 xattr->name, len);
3297
3298 simple_xattr_list_add(&info->xattrs, new_xattr);
3299 }
3300
3301 return 0;
3302 }
3303
3304 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3305 struct dentry *unused, struct inode *inode,
3306 const char *name, void *buffer, size_t size)
3307 {
3308 struct shmem_inode_info *info = SHMEM_I(inode);
3309
3310 name = xattr_full_name(handler, name);
3311 return simple_xattr_get(&info->xattrs, name, buffer, size);
3312 }
3313
3314 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3315 struct dentry *unused, struct inode *inode,
3316 const char *name, const void *value,
3317 size_t size, int flags)
3318 {
3319 struct shmem_inode_info *info = SHMEM_I(inode);
3320
3321 name = xattr_full_name(handler, name);
3322 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3323 }
3324
3325 static const struct xattr_handler shmem_security_xattr_handler = {
3326 .prefix = XATTR_SECURITY_PREFIX,
3327 .get = shmem_xattr_handler_get,
3328 .set = shmem_xattr_handler_set,
3329 };
3330
3331 static const struct xattr_handler shmem_trusted_xattr_handler = {
3332 .prefix = XATTR_TRUSTED_PREFIX,
3333 .get = shmem_xattr_handler_get,
3334 .set = shmem_xattr_handler_set,
3335 };
3336
3337 static const struct xattr_handler *shmem_xattr_handlers[] = {
3338 #ifdef CONFIG_TMPFS_POSIX_ACL
3339 &posix_acl_access_xattr_handler,
3340 &posix_acl_default_xattr_handler,
3341 #endif
3342 &shmem_security_xattr_handler,
3343 &shmem_trusted_xattr_handler,
3344 NULL
3345 };
3346
3347 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3348 {
3349 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3350 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3351 }
3352 #endif /* CONFIG_TMPFS_XATTR */
3353
3354 static const struct inode_operations shmem_short_symlink_operations = {
3355 .get_link = simple_get_link,
3356 #ifdef CONFIG_TMPFS_XATTR
3357 .listxattr = shmem_listxattr,
3358 #endif
3359 };
3360
3361 static const struct inode_operations shmem_symlink_inode_operations = {
3362 .get_link = shmem_get_link,
3363 #ifdef CONFIG_TMPFS_XATTR
3364 .listxattr = shmem_listxattr,
3365 #endif
3366 };
3367
3368 static struct dentry *shmem_get_parent(struct dentry *child)
3369 {
3370 return ERR_PTR(-ESTALE);
3371 }
3372
3373 static int shmem_match(struct inode *ino, void *vfh)
3374 {
3375 __u32 *fh = vfh;
3376 __u64 inum = fh[2];
3377 inum = (inum << 32) | fh[1];
3378 return ino->i_ino == inum && fh[0] == ino->i_generation;
3379 }
3380
3381 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3382 struct fid *fid, int fh_len, int fh_type)
3383 {
3384 struct inode *inode;
3385 struct dentry *dentry = NULL;
3386 u64 inum;
3387
3388 if (fh_len < 3)
3389 return NULL;
3390
3391 inum = fid->raw[2];
3392 inum = (inum << 32) | fid->raw[1];
3393
3394 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3395 shmem_match, fid->raw);
3396 if (inode) {
3397 dentry = d_find_alias(inode);
3398 iput(inode);
3399 }
3400
3401 return dentry;
3402 }
3403
3404 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3405 struct inode *parent)
3406 {
3407 if (*len < 3) {
3408 *len = 3;
3409 return FILEID_INVALID;
3410 }
3411
3412 if (inode_unhashed(inode)) {
3413 /* Unfortunately insert_inode_hash is not idempotent,
3414 * so as we hash inodes here rather than at creation
3415 * time, we need a lock to ensure we only try
3416 * to do it once
3417 */
3418 static DEFINE_SPINLOCK(lock);
3419 spin_lock(&lock);
3420 if (inode_unhashed(inode))
3421 __insert_inode_hash(inode,
3422 inode->i_ino + inode->i_generation);
3423 spin_unlock(&lock);
3424 }
3425
3426 fh[0] = inode->i_generation;
3427 fh[1] = inode->i_ino;
3428 fh[2] = ((__u64)inode->i_ino) >> 32;
3429
3430 *len = 3;
3431 return 1;
3432 }
3433
3434 static const struct export_operations shmem_export_ops = {
3435 .get_parent = shmem_get_parent,
3436 .encode_fh = shmem_encode_fh,
3437 .fh_to_dentry = shmem_fh_to_dentry,
3438 };
3439
3440 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3441 bool remount)
3442 {
3443 char *this_char, *value, *rest;
3444 struct mempolicy *mpol = NULL;
3445 uid_t uid;
3446 gid_t gid;
3447
3448 while (options != NULL) {
3449 this_char = options;
3450 for (;;) {
3451 /*
3452 * NUL-terminate this option: unfortunately,
3453 * mount options form a comma-separated list,
3454 * but mpol's nodelist may also contain commas.
3455 */
3456 options = strchr(options, ',');
3457 if (options == NULL)
3458 break;
3459 options++;
3460 if (!isdigit(*options)) {
3461 options[-1] = '\0';
3462 break;
3463 }
3464 }
3465 if (!*this_char)
3466 continue;
3467 if ((value = strchr(this_char,'=')) != NULL) {
3468 *value++ = 0;
3469 } else {
3470 pr_err("tmpfs: No value for mount option '%s'\n",
3471 this_char);
3472 goto error;
3473 }
3474
3475 if (!strcmp(this_char,"size")) {
3476 unsigned long long size;
3477 size = memparse(value,&rest);
3478 if (*rest == '%') {
3479 size <<= PAGE_SHIFT;
3480 size *= totalram_pages;
3481 do_div(size, 100);
3482 rest++;
3483 }
3484 if (*rest)
3485 goto bad_val;
3486 sbinfo->max_blocks =
3487 DIV_ROUND_UP(size, PAGE_SIZE);
3488 } else if (!strcmp(this_char,"nr_blocks")) {
3489 sbinfo->max_blocks = memparse(value, &rest);
3490 if (*rest)
3491 goto bad_val;
3492 } else if (!strcmp(this_char,"nr_inodes")) {
3493 sbinfo->max_inodes = memparse(value, &rest);
3494 if (*rest)
3495 goto bad_val;
3496 } else if (!strcmp(this_char,"mode")) {
3497 if (remount)
3498 continue;
3499 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3500 if (*rest)
3501 goto bad_val;
3502 } else if (!strcmp(this_char,"uid")) {
3503 if (remount)
3504 continue;
3505 uid = simple_strtoul(value, &rest, 0);
3506 if (*rest)
3507 goto bad_val;
3508 sbinfo->uid = make_kuid(current_user_ns(), uid);
3509 if (!uid_valid(sbinfo->uid))
3510 goto bad_val;
3511 } else if (!strcmp(this_char,"gid")) {
3512 if (remount)
3513 continue;
3514 gid = simple_strtoul(value, &rest, 0);
3515 if (*rest)
3516 goto bad_val;
3517 sbinfo->gid = make_kgid(current_user_ns(), gid);
3518 if (!gid_valid(sbinfo->gid))
3519 goto bad_val;
3520 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3521 } else if (!strcmp(this_char, "huge")) {
3522 int huge;
3523 huge = shmem_parse_huge(value);
3524 if (huge < 0)
3525 goto bad_val;
3526 if (!has_transparent_hugepage() &&
3527 huge != SHMEM_HUGE_NEVER)
3528 goto bad_val;
3529 sbinfo->huge = huge;
3530 #endif
3531 #ifdef CONFIG_NUMA
3532 } else if (!strcmp(this_char,"mpol")) {
3533 mpol_put(mpol);
3534 mpol = NULL;
3535 if (mpol_parse_str(value, &mpol))
3536 goto bad_val;
3537 #endif
3538 } else {
3539 pr_err("tmpfs: Bad mount option %s\n", this_char);
3540 goto error;
3541 }
3542 }
3543 sbinfo->mpol = mpol;
3544 return 0;
3545
3546 bad_val:
3547 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3548 value, this_char);
3549 error:
3550 mpol_put(mpol);
3551 return 1;
3552
3553 }
3554
3555 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3556 {
3557 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3558 struct shmem_sb_info config = *sbinfo;
3559 unsigned long inodes;
3560 int error = -EINVAL;
3561
3562 config.mpol = NULL;
3563 if (shmem_parse_options(data, &config, true))
3564 return error;
3565
3566 spin_lock(&sbinfo->stat_lock);
3567 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3568 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3569 goto out;
3570 if (config.max_inodes < inodes)
3571 goto out;
3572 /*
3573 * Those tests disallow limited->unlimited while any are in use;
3574 * but we must separately disallow unlimited->limited, because
3575 * in that case we have no record of how much is already in use.
3576 */
3577 if (config.max_blocks && !sbinfo->max_blocks)
3578 goto out;
3579 if (config.max_inodes && !sbinfo->max_inodes)
3580 goto out;
3581
3582 error = 0;
3583 sbinfo->huge = config.huge;
3584 sbinfo->max_blocks = config.max_blocks;
3585 sbinfo->max_inodes = config.max_inodes;
3586 sbinfo->free_inodes = config.max_inodes - inodes;
3587
3588 /*
3589 * Preserve previous mempolicy unless mpol remount option was specified.
3590 */
3591 if (config.mpol) {
3592 mpol_put(sbinfo->mpol);
3593 sbinfo->mpol = config.mpol; /* transfers initial ref */
3594 }
3595 out:
3596 spin_unlock(&sbinfo->stat_lock);
3597 return error;
3598 }
3599
3600 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3601 {
3602 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3603
3604 if (sbinfo->max_blocks != shmem_default_max_blocks())
3605 seq_printf(seq, ",size=%luk",
3606 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3607 if (sbinfo->max_inodes != shmem_default_max_inodes())
3608 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3609 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3610 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3611 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3612 seq_printf(seq, ",uid=%u",
3613 from_kuid_munged(&init_user_ns, sbinfo->uid));
3614 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3615 seq_printf(seq, ",gid=%u",
3616 from_kgid_munged(&init_user_ns, sbinfo->gid));
3617 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3618 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3619 if (sbinfo->huge)
3620 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3621 #endif
3622 shmem_show_mpol(seq, sbinfo->mpol);
3623 return 0;
3624 }
3625
3626 #define MFD_NAME_PREFIX "memfd:"
3627 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3628 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3629
3630 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3631
3632 SYSCALL_DEFINE2(memfd_create,
3633 const char __user *, uname,
3634 unsigned int, flags)
3635 {
3636 struct shmem_inode_info *info;
3637 struct file *file;
3638 int fd, error;
3639 char *name;
3640 long len;
3641
3642 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3643 return -EINVAL;
3644
3645 /* length includes terminating zero */
3646 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3647 if (len <= 0)
3648 return -EFAULT;
3649 if (len > MFD_NAME_MAX_LEN + 1)
3650 return -EINVAL;
3651
3652 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3653 if (!name)
3654 return -ENOMEM;
3655
3656 strcpy(name, MFD_NAME_PREFIX);
3657 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3658 error = -EFAULT;
3659 goto err_name;
3660 }
3661
3662 /* terminating-zero may have changed after strnlen_user() returned */
3663 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3664 error = -EFAULT;
3665 goto err_name;
3666 }
3667
3668 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3669 if (fd < 0) {
3670 error = fd;
3671 goto err_name;
3672 }
3673
3674 file = shmem_file_setup(name, 0, VM_NORESERVE);
3675 if (IS_ERR(file)) {
3676 error = PTR_ERR(file);
3677 goto err_fd;
3678 }
3679 info = SHMEM_I(file_inode(file));
3680 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3681 file->f_flags |= O_RDWR | O_LARGEFILE;
3682 if (flags & MFD_ALLOW_SEALING)
3683 info->seals &= ~F_SEAL_SEAL;
3684
3685 fd_install(fd, file);
3686 kfree(name);
3687 return fd;
3688
3689 err_fd:
3690 put_unused_fd(fd);
3691 err_name:
3692 kfree(name);
3693 return error;
3694 }
3695
3696 #endif /* CONFIG_TMPFS */
3697
3698 static void shmem_put_super(struct super_block *sb)
3699 {
3700 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3701
3702 percpu_counter_destroy(&sbinfo->used_blocks);
3703 mpol_put(sbinfo->mpol);
3704 kfree(sbinfo);
3705 sb->s_fs_info = NULL;
3706 }
3707
3708 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3709 {
3710 struct inode *inode;
3711 struct shmem_sb_info *sbinfo;
3712 int err = -ENOMEM;
3713
3714 /* Round up to L1_CACHE_BYTES to resist false sharing */
3715 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3716 L1_CACHE_BYTES), GFP_KERNEL);
3717 if (!sbinfo)
3718 return -ENOMEM;
3719
3720 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3721 sbinfo->uid = current_fsuid();
3722 sbinfo->gid = current_fsgid();
3723 sb->s_fs_info = sbinfo;
3724
3725 #ifdef CONFIG_TMPFS
3726 /*
3727 * Per default we only allow half of the physical ram per
3728 * tmpfs instance, limiting inodes to one per page of lowmem;
3729 * but the internal instance is left unlimited.
3730 */
3731 if (!(sb->s_flags & MS_KERNMOUNT)) {
3732 sbinfo->max_blocks = shmem_default_max_blocks();
3733 sbinfo->max_inodes = shmem_default_max_inodes();
3734 if (shmem_parse_options(data, sbinfo, false)) {
3735 err = -EINVAL;
3736 goto failed;
3737 }
3738 } else {
3739 sb->s_flags |= MS_NOUSER;
3740 }
3741 sb->s_export_op = &shmem_export_ops;
3742 sb->s_flags |= MS_NOSEC;
3743 #else
3744 sb->s_flags |= MS_NOUSER;
3745 #endif
3746
3747 spin_lock_init(&sbinfo->stat_lock);
3748 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3749 goto failed;
3750 sbinfo->free_inodes = sbinfo->max_inodes;
3751 spin_lock_init(&sbinfo->shrinklist_lock);
3752 INIT_LIST_HEAD(&sbinfo->shrinklist);
3753
3754 sb->s_maxbytes = MAX_LFS_FILESIZE;
3755 sb->s_blocksize = PAGE_SIZE;
3756 sb->s_blocksize_bits = PAGE_SHIFT;
3757 sb->s_magic = TMPFS_MAGIC;
3758 sb->s_op = &shmem_ops;
3759 sb->s_time_gran = 1;
3760 #ifdef CONFIG_TMPFS_XATTR
3761 sb->s_xattr = shmem_xattr_handlers;
3762 #endif
3763 #ifdef CONFIG_TMPFS_POSIX_ACL
3764 sb->s_flags |= MS_POSIXACL;
3765 #endif
3766 uuid_gen(&sb->s_uuid);
3767
3768 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3769 if (!inode)
3770 goto failed;
3771 inode->i_uid = sbinfo->uid;
3772 inode->i_gid = sbinfo->gid;
3773 sb->s_root = d_make_root(inode);
3774 if (!sb->s_root)
3775 goto failed;
3776 return 0;
3777
3778 failed:
3779 shmem_put_super(sb);
3780 return err;
3781 }
3782
3783 static struct kmem_cache *shmem_inode_cachep;
3784
3785 static struct inode *shmem_alloc_inode(struct super_block *sb)
3786 {
3787 struct shmem_inode_info *info;
3788 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3789 if (!info)
3790 return NULL;
3791 return &info->vfs_inode;
3792 }
3793
3794 static void shmem_destroy_callback(struct rcu_head *head)
3795 {
3796 struct inode *inode = container_of(head, struct inode, i_rcu);
3797 if (S_ISLNK(inode->i_mode))
3798 kfree(inode->i_link);
3799 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3800 }
3801
3802 static void shmem_destroy_inode(struct inode *inode)
3803 {
3804 if (S_ISREG(inode->i_mode))
3805 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3806 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3807 }
3808
3809 static void shmem_init_inode(void *foo)
3810 {
3811 struct shmem_inode_info *info = foo;
3812 inode_init_once(&info->vfs_inode);
3813 }
3814
3815 static int shmem_init_inodecache(void)
3816 {
3817 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3818 sizeof(struct shmem_inode_info),
3819 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3820 return 0;
3821 }
3822
3823 static void shmem_destroy_inodecache(void)
3824 {
3825 kmem_cache_destroy(shmem_inode_cachep);
3826 }
3827
3828 static const struct address_space_operations shmem_aops = {
3829 .writepage = shmem_writepage,
3830 .set_page_dirty = __set_page_dirty_no_writeback,
3831 #ifdef CONFIG_TMPFS
3832 .write_begin = shmem_write_begin,
3833 .write_end = shmem_write_end,
3834 #endif
3835 #ifdef CONFIG_MIGRATION
3836 .migratepage = migrate_page,
3837 #endif
3838 .error_remove_page = generic_error_remove_page,
3839 };
3840
3841 static const struct file_operations shmem_file_operations = {
3842 .mmap = shmem_mmap,
3843 .get_unmapped_area = shmem_get_unmapped_area,
3844 #ifdef CONFIG_TMPFS
3845 .llseek = shmem_file_llseek,
3846 .read_iter = shmem_file_read_iter,
3847 .write_iter = generic_file_write_iter,
3848 .fsync = noop_fsync,
3849 .splice_read = generic_file_splice_read,
3850 .splice_write = iter_file_splice_write,
3851 .fallocate = shmem_fallocate,
3852 #endif
3853 };
3854
3855 static const struct inode_operations shmem_inode_operations = {
3856 .getattr = shmem_getattr,
3857 .setattr = shmem_setattr,
3858 #ifdef CONFIG_TMPFS_XATTR
3859 .listxattr = shmem_listxattr,
3860 .set_acl = simple_set_acl,
3861 #endif
3862 };
3863
3864 static const struct inode_operations shmem_dir_inode_operations = {
3865 #ifdef CONFIG_TMPFS
3866 .create = shmem_create,
3867 .lookup = simple_lookup,
3868 .link = shmem_link,
3869 .unlink = shmem_unlink,
3870 .symlink = shmem_symlink,
3871 .mkdir = shmem_mkdir,
3872 .rmdir = shmem_rmdir,
3873 .mknod = shmem_mknod,
3874 .rename = shmem_rename2,
3875 .tmpfile = shmem_tmpfile,
3876 #endif
3877 #ifdef CONFIG_TMPFS_XATTR
3878 .listxattr = shmem_listxattr,
3879 #endif
3880 #ifdef CONFIG_TMPFS_POSIX_ACL
3881 .setattr = shmem_setattr,
3882 .set_acl = simple_set_acl,
3883 #endif
3884 };
3885
3886 static const struct inode_operations shmem_special_inode_operations = {
3887 #ifdef CONFIG_TMPFS_XATTR
3888 .listxattr = shmem_listxattr,
3889 #endif
3890 #ifdef CONFIG_TMPFS_POSIX_ACL
3891 .setattr = shmem_setattr,
3892 .set_acl = simple_set_acl,
3893 #endif
3894 };
3895
3896 static const struct super_operations shmem_ops = {
3897 .alloc_inode = shmem_alloc_inode,
3898 .destroy_inode = shmem_destroy_inode,
3899 #ifdef CONFIG_TMPFS
3900 .statfs = shmem_statfs,
3901 .remount_fs = shmem_remount_fs,
3902 .show_options = shmem_show_options,
3903 #endif
3904 .evict_inode = shmem_evict_inode,
3905 .drop_inode = generic_delete_inode,
3906 .put_super = shmem_put_super,
3907 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3908 .nr_cached_objects = shmem_unused_huge_count,
3909 .free_cached_objects = shmem_unused_huge_scan,
3910 #endif
3911 };
3912
3913 static const struct vm_operations_struct shmem_vm_ops = {
3914 .fault = shmem_fault,
3915 .map_pages = filemap_map_pages,
3916 #ifdef CONFIG_NUMA
3917 .set_policy = shmem_set_policy,
3918 .get_policy = shmem_get_policy,
3919 #endif
3920 };
3921
3922 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3923 int flags, const char *dev_name, void *data)
3924 {
3925 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3926 }
3927
3928 static struct file_system_type shmem_fs_type = {
3929 .owner = THIS_MODULE,
3930 .name = "tmpfs",
3931 .mount = shmem_mount,
3932 .kill_sb = kill_litter_super,
3933 .fs_flags = FS_USERNS_MOUNT,
3934 };
3935
3936 int __init shmem_init(void)
3937 {
3938 int error;
3939
3940 /* If rootfs called this, don't re-init */
3941 if (shmem_inode_cachep)
3942 return 0;
3943
3944 error = shmem_init_inodecache();
3945 if (error)
3946 goto out3;
3947
3948 error = register_filesystem(&shmem_fs_type);
3949 if (error) {
3950 pr_err("Could not register tmpfs\n");
3951 goto out2;
3952 }
3953
3954 shm_mnt = kern_mount(&shmem_fs_type);
3955 if (IS_ERR(shm_mnt)) {
3956 error = PTR_ERR(shm_mnt);
3957 pr_err("Could not kern_mount tmpfs\n");
3958 goto out1;
3959 }
3960
3961 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3962 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3963 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3964 else
3965 shmem_huge = 0; /* just in case it was patched */
3966 #endif
3967 return 0;
3968
3969 out1:
3970 unregister_filesystem(&shmem_fs_type);
3971 out2:
3972 shmem_destroy_inodecache();
3973 out3:
3974 shm_mnt = ERR_PTR(error);
3975 return error;
3976 }
3977
3978 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3979 static ssize_t shmem_enabled_show(struct kobject *kobj,
3980 struct kobj_attribute *attr, char *buf)
3981 {
3982 int values[] = {
3983 SHMEM_HUGE_ALWAYS,
3984 SHMEM_HUGE_WITHIN_SIZE,
3985 SHMEM_HUGE_ADVISE,
3986 SHMEM_HUGE_NEVER,
3987 SHMEM_HUGE_DENY,
3988 SHMEM_HUGE_FORCE,
3989 };
3990 int i, count;
3991
3992 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3993 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3994
3995 count += sprintf(buf + count, fmt,
3996 shmem_format_huge(values[i]));
3997 }
3998 buf[count - 1] = '\n';
3999 return count;
4000 }
4001
4002 static ssize_t shmem_enabled_store(struct kobject *kobj,
4003 struct kobj_attribute *attr, const char *buf, size_t count)
4004 {
4005 char tmp[16];
4006 int huge;
4007
4008 if (count + 1 > sizeof(tmp))
4009 return -EINVAL;
4010 memcpy(tmp, buf, count);
4011 tmp[count] = '\0';
4012 if (count && tmp[count - 1] == '\n')
4013 tmp[count - 1] = '\0';
4014
4015 huge = shmem_parse_huge(tmp);
4016 if (huge == -EINVAL)
4017 return -EINVAL;
4018 if (!has_transparent_hugepage() &&
4019 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4020 return -EINVAL;
4021
4022 shmem_huge = huge;
4023 if (shmem_huge < SHMEM_HUGE_DENY)
4024 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4025 return count;
4026 }
4027
4028 struct kobj_attribute shmem_enabled_attr =
4029 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4030 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4031
4032 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4033 bool shmem_huge_enabled(struct vm_area_struct *vma)
4034 {
4035 struct inode *inode = file_inode(vma->vm_file);
4036 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4037 loff_t i_size;
4038 pgoff_t off;
4039
4040 if (shmem_huge == SHMEM_HUGE_FORCE)
4041 return true;
4042 if (shmem_huge == SHMEM_HUGE_DENY)
4043 return false;
4044 switch (sbinfo->huge) {
4045 case SHMEM_HUGE_NEVER:
4046 return false;
4047 case SHMEM_HUGE_ALWAYS:
4048 return true;
4049 case SHMEM_HUGE_WITHIN_SIZE:
4050 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4051 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4052 if (i_size >= HPAGE_PMD_SIZE &&
4053 i_size >> PAGE_SHIFT >= off)
4054 return true;
4055 case SHMEM_HUGE_ADVISE:
4056 /* TODO: implement fadvise() hints */
4057 return (vma->vm_flags & VM_HUGEPAGE);
4058 default:
4059 VM_BUG_ON(1);
4060 return false;
4061 }
4062 }
4063 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4064
4065 #else /* !CONFIG_SHMEM */
4066
4067 /*
4068 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4069 *
4070 * This is intended for small system where the benefits of the full
4071 * shmem code (swap-backed and resource-limited) are outweighed by
4072 * their complexity. On systems without swap this code should be
4073 * effectively equivalent, but much lighter weight.
4074 */
4075
4076 static struct file_system_type shmem_fs_type = {
4077 .name = "tmpfs",
4078 .mount = ramfs_mount,
4079 .kill_sb = kill_litter_super,
4080 .fs_flags = FS_USERNS_MOUNT,
4081 };
4082
4083 int __init shmem_init(void)
4084 {
4085 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4086
4087 shm_mnt = kern_mount(&shmem_fs_type);
4088 BUG_ON(IS_ERR(shm_mnt));
4089
4090 return 0;
4091 }
4092
4093 int shmem_unuse(swp_entry_t swap, struct page *page)
4094 {
4095 return 0;
4096 }
4097
4098 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4099 {
4100 return 0;
4101 }
4102
4103 void shmem_unlock_mapping(struct address_space *mapping)
4104 {
4105 }
4106
4107 #ifdef CONFIG_MMU
4108 unsigned long shmem_get_unmapped_area(struct file *file,
4109 unsigned long addr, unsigned long len,
4110 unsigned long pgoff, unsigned long flags)
4111 {
4112 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4113 }
4114 #endif
4115
4116 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4117 {
4118 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4119 }
4120 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4121
4122 #define shmem_vm_ops generic_file_vm_ops
4123 #define shmem_file_operations ramfs_file_operations
4124 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4125 #define shmem_acct_size(flags, size) 0
4126 #define shmem_unacct_size(flags, size) do {} while (0)
4127
4128 #endif /* CONFIG_SHMEM */
4129
4130 /* common code */
4131
4132 static const struct dentry_operations anon_ops = {
4133 .d_dname = simple_dname
4134 };
4135
4136 static struct file *__shmem_file_setup(const char *name, loff_t size,
4137 unsigned long flags, unsigned int i_flags)
4138 {
4139 struct file *res;
4140 struct inode *inode;
4141 struct path path;
4142 struct super_block *sb;
4143 struct qstr this;
4144
4145 if (IS_ERR(shm_mnt))
4146 return ERR_CAST(shm_mnt);
4147
4148 if (size < 0 || size > MAX_LFS_FILESIZE)
4149 return ERR_PTR(-EINVAL);
4150
4151 if (shmem_acct_size(flags, size))
4152 return ERR_PTR(-ENOMEM);
4153
4154 res = ERR_PTR(-ENOMEM);
4155 this.name = name;
4156 this.len = strlen(name);
4157 this.hash = 0; /* will go */
4158 sb = shm_mnt->mnt_sb;
4159 path.mnt = mntget(shm_mnt);
4160 path.dentry = d_alloc_pseudo(sb, &this);
4161 if (!path.dentry)
4162 goto put_memory;
4163 d_set_d_op(path.dentry, &anon_ops);
4164
4165 res = ERR_PTR(-ENOSPC);
4166 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4167 if (!inode)
4168 goto put_memory;
4169
4170 inode->i_flags |= i_flags;
4171 d_instantiate(path.dentry, inode);
4172 inode->i_size = size;
4173 clear_nlink(inode); /* It is unlinked */
4174 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4175 if (IS_ERR(res))
4176 goto put_path;
4177
4178 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4179 &shmem_file_operations);
4180 if (IS_ERR(res))
4181 goto put_path;
4182
4183 return res;
4184
4185 put_memory:
4186 shmem_unacct_size(flags, size);
4187 put_path:
4188 path_put(&path);
4189 return res;
4190 }
4191
4192 /**
4193 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4194 * kernel internal. There will be NO LSM permission checks against the
4195 * underlying inode. So users of this interface must do LSM checks at a
4196 * higher layer. The users are the big_key and shm implementations. LSM
4197 * checks are provided at the key or shm level rather than the inode.
4198 * @name: name for dentry (to be seen in /proc/<pid>/maps
4199 * @size: size to be set for the file
4200 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4201 */
4202 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4203 {
4204 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4205 }
4206
4207 /**
4208 * shmem_file_setup - get an unlinked file living in tmpfs
4209 * @name: name for dentry (to be seen in /proc/<pid>/maps
4210 * @size: size to be set for the file
4211 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4212 */
4213 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4214 {
4215 return __shmem_file_setup(name, size, flags, 0);
4216 }
4217 EXPORT_SYMBOL_GPL(shmem_file_setup);
4218
4219 /**
4220 * shmem_zero_setup - setup a shared anonymous mapping
4221 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4222 */
4223 int shmem_zero_setup(struct vm_area_struct *vma)
4224 {
4225 struct file *file;
4226 loff_t size = vma->vm_end - vma->vm_start;
4227
4228 /*
4229 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4230 * between XFS directory reading and selinux: since this file is only
4231 * accessible to the user through its mapping, use S_PRIVATE flag to
4232 * bypass file security, in the same way as shmem_kernel_file_setup().
4233 */
4234 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4235 if (IS_ERR(file))
4236 return PTR_ERR(file);
4237
4238 if (vma->vm_file)
4239 fput(vma->vm_file);
4240 vma->vm_file = file;
4241 vma->vm_ops = &shmem_vm_ops;
4242
4243 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4244 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4245 (vma->vm_end & HPAGE_PMD_MASK)) {
4246 khugepaged_enter(vma, vma->vm_flags);
4247 }
4248
4249 return 0;
4250 }
4251
4252 /**
4253 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4254 * @mapping: the page's address_space
4255 * @index: the page index
4256 * @gfp: the page allocator flags to use if allocating
4257 *
4258 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4259 * with any new page allocations done using the specified allocation flags.
4260 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4261 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4262 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4263 *
4264 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4265 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4266 */
4267 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4268 pgoff_t index, gfp_t gfp)
4269 {
4270 #ifdef CONFIG_SHMEM
4271 struct inode *inode = mapping->host;
4272 struct page *page;
4273 int error;
4274
4275 BUG_ON(mapping->a_ops != &shmem_aops);
4276 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4277 gfp, NULL, NULL, NULL);
4278 if (error)
4279 page = ERR_PTR(error);
4280 else
4281 unlock_page(page);
4282 return page;
4283 #else
4284 /*
4285 * The tiny !SHMEM case uses ramfs without swap
4286 */
4287 return read_cache_page_gfp(mapping, index, gfp);
4288 #endif
4289 }
4290 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);