]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/shmem.c
fs: remove generic_acl
[mirror_ubuntu-artful-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
86 */
87 struct shmem_falloc {
88 pgoff_t start; /* start of range currently being fallocated */
89 pgoff_t next; /* the next page offset to be fallocated */
90 pgoff_t nr_falloced; /* how many new pages have been fallocated */
91 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
92 };
93
94 /* Flag allocation requirements to shmem_getpage */
95 enum sgp_type {
96 SGP_READ, /* don't exceed i_size, don't allocate page */
97 SGP_CACHE, /* don't exceed i_size, may allocate page */
98 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
99 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
100 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
101 };
102
103 #ifdef CONFIG_TMPFS
104 static unsigned long shmem_default_max_blocks(void)
105 {
106 return totalram_pages / 2;
107 }
108
109 static unsigned long shmem_default_max_inodes(void)
110 {
111 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112 }
113 #endif
114
115 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117 struct shmem_inode_info *info, pgoff_t index);
118 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122 struct page **pagep, enum sgp_type sgp, int *fault_type)
123 {
124 return shmem_getpage_gfp(inode, index, pagep, sgp,
125 mapping_gfp_mask(inode->i_mapping), fault_type);
126 }
127
128 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 {
130 return sb->s_fs_info;
131 }
132
133 /*
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
138 */
139 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 {
141 return (flags & VM_NORESERVE) ?
142 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143 }
144
145 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 {
147 if (!(flags & VM_NORESERVE))
148 vm_unacct_memory(VM_ACCT(size));
149 }
150
151 /*
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156 */
157 static inline int shmem_acct_block(unsigned long flags)
158 {
159 return (flags & VM_NORESERVE) ?
160 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161 }
162
163 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164 {
165 if (flags & VM_NORESERVE)
166 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167 }
168
169 static const struct super_operations shmem_ops;
170 static const struct address_space_operations shmem_aops;
171 static const struct file_operations shmem_file_operations;
172 static const struct inode_operations shmem_inode_operations;
173 static const struct inode_operations shmem_dir_inode_operations;
174 static const struct inode_operations shmem_special_inode_operations;
175 static const struct vm_operations_struct shmem_vm_ops;
176
177 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
178 .ra_pages = 0, /* No readahead */
179 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180 };
181
182 static LIST_HEAD(shmem_swaplist);
183 static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185 static int shmem_reserve_inode(struct super_block *sb)
186 {
187 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188 if (sbinfo->max_inodes) {
189 spin_lock(&sbinfo->stat_lock);
190 if (!sbinfo->free_inodes) {
191 spin_unlock(&sbinfo->stat_lock);
192 return -ENOSPC;
193 }
194 sbinfo->free_inodes--;
195 spin_unlock(&sbinfo->stat_lock);
196 }
197 return 0;
198 }
199
200 static void shmem_free_inode(struct super_block *sb)
201 {
202 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203 if (sbinfo->max_inodes) {
204 spin_lock(&sbinfo->stat_lock);
205 sbinfo->free_inodes++;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208 }
209
210 /**
211 * shmem_recalc_inode - recalculate the block usage of an inode
212 * @inode: inode to recalc
213 *
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
216 *
217 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219 *
220 * It has to be called with the spinlock held.
221 */
222 static void shmem_recalc_inode(struct inode *inode)
223 {
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 long freed;
226
227 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228 if (freed > 0) {
229 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230 if (sbinfo->max_blocks)
231 percpu_counter_add(&sbinfo->used_blocks, -freed);
232 info->alloced -= freed;
233 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234 shmem_unacct_blocks(info->flags, freed);
235 }
236 }
237
238 /*
239 * Replace item expected in radix tree by a new item, while holding tree lock.
240 */
241 static int shmem_radix_tree_replace(struct address_space *mapping,
242 pgoff_t index, void *expected, void *replacement)
243 {
244 void **pslot;
245 void *item = NULL;
246
247 VM_BUG_ON(!expected);
248 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
249 if (pslot)
250 item = radix_tree_deref_slot_protected(pslot,
251 &mapping->tree_lock);
252 if (item != expected)
253 return -ENOENT;
254 if (replacement)
255 radix_tree_replace_slot(pslot, replacement);
256 else
257 radix_tree_delete(&mapping->page_tree, index);
258 return 0;
259 }
260
261 /*
262 * Sometimes, before we decide whether to proceed or to fail, we must check
263 * that an entry was not already brought back from swap by a racing thread.
264 *
265 * Checking page is not enough: by the time a SwapCache page is locked, it
266 * might be reused, and again be SwapCache, using the same swap as before.
267 */
268 static bool shmem_confirm_swap(struct address_space *mapping,
269 pgoff_t index, swp_entry_t swap)
270 {
271 void *item;
272
273 rcu_read_lock();
274 item = radix_tree_lookup(&mapping->page_tree, index);
275 rcu_read_unlock();
276 return item == swp_to_radix_entry(swap);
277 }
278
279 /*
280 * Like add_to_page_cache_locked, but error if expected item has gone.
281 */
282 static int shmem_add_to_page_cache(struct page *page,
283 struct address_space *mapping,
284 pgoff_t index, gfp_t gfp, void *expected)
285 {
286 int error;
287
288 VM_BUG_ON(!PageLocked(page));
289 VM_BUG_ON(!PageSwapBacked(page));
290
291 page_cache_get(page);
292 page->mapping = mapping;
293 page->index = index;
294
295 spin_lock_irq(&mapping->tree_lock);
296 if (!expected)
297 error = radix_tree_insert(&mapping->page_tree, index, page);
298 else
299 error = shmem_radix_tree_replace(mapping, index, expected,
300 page);
301 if (!error) {
302 mapping->nrpages++;
303 __inc_zone_page_state(page, NR_FILE_PAGES);
304 __inc_zone_page_state(page, NR_SHMEM);
305 spin_unlock_irq(&mapping->tree_lock);
306 } else {
307 page->mapping = NULL;
308 spin_unlock_irq(&mapping->tree_lock);
309 page_cache_release(page);
310 }
311 return error;
312 }
313
314 /*
315 * Like delete_from_page_cache, but substitutes swap for page.
316 */
317 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
318 {
319 struct address_space *mapping = page->mapping;
320 int error;
321
322 spin_lock_irq(&mapping->tree_lock);
323 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
324 page->mapping = NULL;
325 mapping->nrpages--;
326 __dec_zone_page_state(page, NR_FILE_PAGES);
327 __dec_zone_page_state(page, NR_SHMEM);
328 spin_unlock_irq(&mapping->tree_lock);
329 page_cache_release(page);
330 BUG_ON(error);
331 }
332
333 /*
334 * Like find_get_pages, but collecting swap entries as well as pages.
335 */
336 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
337 pgoff_t start, unsigned int nr_pages,
338 struct page **pages, pgoff_t *indices)
339 {
340 void **slot;
341 unsigned int ret = 0;
342 struct radix_tree_iter iter;
343
344 if (!nr_pages)
345 return 0;
346
347 rcu_read_lock();
348 restart:
349 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
350 struct page *page;
351 repeat:
352 page = radix_tree_deref_slot(slot);
353 if (unlikely(!page))
354 continue;
355 if (radix_tree_exception(page)) {
356 if (radix_tree_deref_retry(page))
357 goto restart;
358 /*
359 * Otherwise, we must be storing a swap entry
360 * here as an exceptional entry: so return it
361 * without attempting to raise page count.
362 */
363 goto export;
364 }
365 if (!page_cache_get_speculative(page))
366 goto repeat;
367
368 /* Has the page moved? */
369 if (unlikely(page != *slot)) {
370 page_cache_release(page);
371 goto repeat;
372 }
373 export:
374 indices[ret] = iter.index;
375 pages[ret] = page;
376 if (++ret == nr_pages)
377 break;
378 }
379 rcu_read_unlock();
380 return ret;
381 }
382
383 /*
384 * Remove swap entry from radix tree, free the swap and its page cache.
385 */
386 static int shmem_free_swap(struct address_space *mapping,
387 pgoff_t index, void *radswap)
388 {
389 int error;
390
391 spin_lock_irq(&mapping->tree_lock);
392 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
393 spin_unlock_irq(&mapping->tree_lock);
394 if (!error)
395 free_swap_and_cache(radix_to_swp_entry(radswap));
396 return error;
397 }
398
399 /*
400 * Pagevec may contain swap entries, so shuffle up pages before releasing.
401 */
402 static void shmem_deswap_pagevec(struct pagevec *pvec)
403 {
404 int i, j;
405
406 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
407 struct page *page = pvec->pages[i];
408 if (!radix_tree_exceptional_entry(page))
409 pvec->pages[j++] = page;
410 }
411 pvec->nr = j;
412 }
413
414 /*
415 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
416 */
417 void shmem_unlock_mapping(struct address_space *mapping)
418 {
419 struct pagevec pvec;
420 pgoff_t indices[PAGEVEC_SIZE];
421 pgoff_t index = 0;
422
423 pagevec_init(&pvec, 0);
424 /*
425 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
426 */
427 while (!mapping_unevictable(mapping)) {
428 /*
429 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
430 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
431 */
432 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
433 PAGEVEC_SIZE, pvec.pages, indices);
434 if (!pvec.nr)
435 break;
436 index = indices[pvec.nr - 1] + 1;
437 shmem_deswap_pagevec(&pvec);
438 check_move_unevictable_pages(pvec.pages, pvec.nr);
439 pagevec_release(&pvec);
440 cond_resched();
441 }
442 }
443
444 /*
445 * Remove range of pages and swap entries from radix tree, and free them.
446 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
447 */
448 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
449 bool unfalloc)
450 {
451 struct address_space *mapping = inode->i_mapping;
452 struct shmem_inode_info *info = SHMEM_I(inode);
453 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
454 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
455 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
456 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
457 struct pagevec pvec;
458 pgoff_t indices[PAGEVEC_SIZE];
459 long nr_swaps_freed = 0;
460 pgoff_t index;
461 int i;
462
463 if (lend == -1)
464 end = -1; /* unsigned, so actually very big */
465
466 pagevec_init(&pvec, 0);
467 index = start;
468 while (index < end) {
469 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
470 min(end - index, (pgoff_t)PAGEVEC_SIZE),
471 pvec.pages, indices);
472 if (!pvec.nr)
473 break;
474 mem_cgroup_uncharge_start();
475 for (i = 0; i < pagevec_count(&pvec); i++) {
476 struct page *page = pvec.pages[i];
477
478 index = indices[i];
479 if (index >= end)
480 break;
481
482 if (radix_tree_exceptional_entry(page)) {
483 if (unfalloc)
484 continue;
485 nr_swaps_freed += !shmem_free_swap(mapping,
486 index, page);
487 continue;
488 }
489
490 if (!trylock_page(page))
491 continue;
492 if (!unfalloc || !PageUptodate(page)) {
493 if (page->mapping == mapping) {
494 VM_BUG_ON(PageWriteback(page));
495 truncate_inode_page(mapping, page);
496 }
497 }
498 unlock_page(page);
499 }
500 shmem_deswap_pagevec(&pvec);
501 pagevec_release(&pvec);
502 mem_cgroup_uncharge_end();
503 cond_resched();
504 index++;
505 }
506
507 if (partial_start) {
508 struct page *page = NULL;
509 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
510 if (page) {
511 unsigned int top = PAGE_CACHE_SIZE;
512 if (start > end) {
513 top = partial_end;
514 partial_end = 0;
515 }
516 zero_user_segment(page, partial_start, top);
517 set_page_dirty(page);
518 unlock_page(page);
519 page_cache_release(page);
520 }
521 }
522 if (partial_end) {
523 struct page *page = NULL;
524 shmem_getpage(inode, end, &page, SGP_READ, NULL);
525 if (page) {
526 zero_user_segment(page, 0, partial_end);
527 set_page_dirty(page);
528 unlock_page(page);
529 page_cache_release(page);
530 }
531 }
532 if (start >= end)
533 return;
534
535 index = start;
536 for ( ; ; ) {
537 cond_resched();
538 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
539 min(end - index, (pgoff_t)PAGEVEC_SIZE),
540 pvec.pages, indices);
541 if (!pvec.nr) {
542 if (index == start || unfalloc)
543 break;
544 index = start;
545 continue;
546 }
547 if ((index == start || unfalloc) && indices[0] >= end) {
548 shmem_deswap_pagevec(&pvec);
549 pagevec_release(&pvec);
550 break;
551 }
552 mem_cgroup_uncharge_start();
553 for (i = 0; i < pagevec_count(&pvec); i++) {
554 struct page *page = pvec.pages[i];
555
556 index = indices[i];
557 if (index >= end)
558 break;
559
560 if (radix_tree_exceptional_entry(page)) {
561 if (unfalloc)
562 continue;
563 nr_swaps_freed += !shmem_free_swap(mapping,
564 index, page);
565 continue;
566 }
567
568 lock_page(page);
569 if (!unfalloc || !PageUptodate(page)) {
570 if (page->mapping == mapping) {
571 VM_BUG_ON(PageWriteback(page));
572 truncate_inode_page(mapping, page);
573 }
574 }
575 unlock_page(page);
576 }
577 shmem_deswap_pagevec(&pvec);
578 pagevec_release(&pvec);
579 mem_cgroup_uncharge_end();
580 index++;
581 }
582
583 spin_lock(&info->lock);
584 info->swapped -= nr_swaps_freed;
585 shmem_recalc_inode(inode);
586 spin_unlock(&info->lock);
587 }
588
589 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
590 {
591 shmem_undo_range(inode, lstart, lend, false);
592 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
593 }
594 EXPORT_SYMBOL_GPL(shmem_truncate_range);
595
596 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
597 {
598 struct inode *inode = dentry->d_inode;
599 int error;
600
601 error = inode_change_ok(inode, attr);
602 if (error)
603 return error;
604
605 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
606 loff_t oldsize = inode->i_size;
607 loff_t newsize = attr->ia_size;
608
609 if (newsize != oldsize) {
610 i_size_write(inode, newsize);
611 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
612 }
613 if (newsize < oldsize) {
614 loff_t holebegin = round_up(newsize, PAGE_SIZE);
615 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616 shmem_truncate_range(inode, newsize, (loff_t)-1);
617 /* unmap again to remove racily COWed private pages */
618 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
619 }
620 }
621
622 setattr_copy(inode, attr);
623 if (attr->ia_valid & ATTR_MODE)
624 error = posix_acl_chmod(inode, inode->i_mode);
625 return error;
626 }
627
628 static void shmem_evict_inode(struct inode *inode)
629 {
630 struct shmem_inode_info *info = SHMEM_I(inode);
631
632 if (inode->i_mapping->a_ops == &shmem_aops) {
633 shmem_unacct_size(info->flags, inode->i_size);
634 inode->i_size = 0;
635 shmem_truncate_range(inode, 0, (loff_t)-1);
636 if (!list_empty(&info->swaplist)) {
637 mutex_lock(&shmem_swaplist_mutex);
638 list_del_init(&info->swaplist);
639 mutex_unlock(&shmem_swaplist_mutex);
640 }
641 } else
642 kfree(info->symlink);
643
644 simple_xattrs_free(&info->xattrs);
645 WARN_ON(inode->i_blocks);
646 shmem_free_inode(inode->i_sb);
647 clear_inode(inode);
648 }
649
650 /*
651 * If swap found in inode, free it and move page from swapcache to filecache.
652 */
653 static int shmem_unuse_inode(struct shmem_inode_info *info,
654 swp_entry_t swap, struct page **pagep)
655 {
656 struct address_space *mapping = info->vfs_inode.i_mapping;
657 void *radswap;
658 pgoff_t index;
659 gfp_t gfp;
660 int error = 0;
661
662 radswap = swp_to_radix_entry(swap);
663 index = radix_tree_locate_item(&mapping->page_tree, radswap);
664 if (index == -1)
665 return 0;
666
667 /*
668 * Move _head_ to start search for next from here.
669 * But be careful: shmem_evict_inode checks list_empty without taking
670 * mutex, and there's an instant in list_move_tail when info->swaplist
671 * would appear empty, if it were the only one on shmem_swaplist.
672 */
673 if (shmem_swaplist.next != &info->swaplist)
674 list_move_tail(&shmem_swaplist, &info->swaplist);
675
676 gfp = mapping_gfp_mask(mapping);
677 if (shmem_should_replace_page(*pagep, gfp)) {
678 mutex_unlock(&shmem_swaplist_mutex);
679 error = shmem_replace_page(pagep, gfp, info, index);
680 mutex_lock(&shmem_swaplist_mutex);
681 /*
682 * We needed to drop mutex to make that restrictive page
683 * allocation, but the inode might have been freed while we
684 * dropped it: although a racing shmem_evict_inode() cannot
685 * complete without emptying the radix_tree, our page lock
686 * on this swapcache page is not enough to prevent that -
687 * free_swap_and_cache() of our swap entry will only
688 * trylock_page(), removing swap from radix_tree whatever.
689 *
690 * We must not proceed to shmem_add_to_page_cache() if the
691 * inode has been freed, but of course we cannot rely on
692 * inode or mapping or info to check that. However, we can
693 * safely check if our swap entry is still in use (and here
694 * it can't have got reused for another page): if it's still
695 * in use, then the inode cannot have been freed yet, and we
696 * can safely proceed (if it's no longer in use, that tells
697 * nothing about the inode, but we don't need to unuse swap).
698 */
699 if (!page_swapcount(*pagep))
700 error = -ENOENT;
701 }
702
703 /*
704 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
705 * but also to hold up shmem_evict_inode(): so inode cannot be freed
706 * beneath us (pagelock doesn't help until the page is in pagecache).
707 */
708 if (!error)
709 error = shmem_add_to_page_cache(*pagep, mapping, index,
710 GFP_NOWAIT, radswap);
711 if (error != -ENOMEM) {
712 /*
713 * Truncation and eviction use free_swap_and_cache(), which
714 * only does trylock page: if we raced, best clean up here.
715 */
716 delete_from_swap_cache(*pagep);
717 set_page_dirty(*pagep);
718 if (!error) {
719 spin_lock(&info->lock);
720 info->swapped--;
721 spin_unlock(&info->lock);
722 swap_free(swap);
723 }
724 error = 1; /* not an error, but entry was found */
725 }
726 return error;
727 }
728
729 /*
730 * Search through swapped inodes to find and replace swap by page.
731 */
732 int shmem_unuse(swp_entry_t swap, struct page *page)
733 {
734 struct list_head *this, *next;
735 struct shmem_inode_info *info;
736 int found = 0;
737 int error = 0;
738
739 /*
740 * There's a faint possibility that swap page was replaced before
741 * caller locked it: caller will come back later with the right page.
742 */
743 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
744 goto out;
745
746 /*
747 * Charge page using GFP_KERNEL while we can wait, before taking
748 * the shmem_swaplist_mutex which might hold up shmem_writepage().
749 * Charged back to the user (not to caller) when swap account is used.
750 */
751 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
752 if (error)
753 goto out;
754 /* No radix_tree_preload: swap entry keeps a place for page in tree */
755
756 mutex_lock(&shmem_swaplist_mutex);
757 list_for_each_safe(this, next, &shmem_swaplist) {
758 info = list_entry(this, struct shmem_inode_info, swaplist);
759 if (info->swapped)
760 found = shmem_unuse_inode(info, swap, &page);
761 else
762 list_del_init(&info->swaplist);
763 cond_resched();
764 if (found)
765 break;
766 }
767 mutex_unlock(&shmem_swaplist_mutex);
768
769 if (found < 0)
770 error = found;
771 out:
772 unlock_page(page);
773 page_cache_release(page);
774 return error;
775 }
776
777 /*
778 * Move the page from the page cache to the swap cache.
779 */
780 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
781 {
782 struct shmem_inode_info *info;
783 struct address_space *mapping;
784 struct inode *inode;
785 swp_entry_t swap;
786 pgoff_t index;
787
788 BUG_ON(!PageLocked(page));
789 mapping = page->mapping;
790 index = page->index;
791 inode = mapping->host;
792 info = SHMEM_I(inode);
793 if (info->flags & VM_LOCKED)
794 goto redirty;
795 if (!total_swap_pages)
796 goto redirty;
797
798 /*
799 * shmem_backing_dev_info's capabilities prevent regular writeback or
800 * sync from ever calling shmem_writepage; but a stacking filesystem
801 * might use ->writepage of its underlying filesystem, in which case
802 * tmpfs should write out to swap only in response to memory pressure,
803 * and not for the writeback threads or sync.
804 */
805 if (!wbc->for_reclaim) {
806 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
807 goto redirty;
808 }
809
810 /*
811 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
812 * value into swapfile.c, the only way we can correctly account for a
813 * fallocated page arriving here is now to initialize it and write it.
814 *
815 * That's okay for a page already fallocated earlier, but if we have
816 * not yet completed the fallocation, then (a) we want to keep track
817 * of this page in case we have to undo it, and (b) it may not be a
818 * good idea to continue anyway, once we're pushing into swap. So
819 * reactivate the page, and let shmem_fallocate() quit when too many.
820 */
821 if (!PageUptodate(page)) {
822 if (inode->i_private) {
823 struct shmem_falloc *shmem_falloc;
824 spin_lock(&inode->i_lock);
825 shmem_falloc = inode->i_private;
826 if (shmem_falloc &&
827 index >= shmem_falloc->start &&
828 index < shmem_falloc->next)
829 shmem_falloc->nr_unswapped++;
830 else
831 shmem_falloc = NULL;
832 spin_unlock(&inode->i_lock);
833 if (shmem_falloc)
834 goto redirty;
835 }
836 clear_highpage(page);
837 flush_dcache_page(page);
838 SetPageUptodate(page);
839 }
840
841 swap = get_swap_page();
842 if (!swap.val)
843 goto redirty;
844
845 /*
846 * Add inode to shmem_unuse()'s list of swapped-out inodes,
847 * if it's not already there. Do it now before the page is
848 * moved to swap cache, when its pagelock no longer protects
849 * the inode from eviction. But don't unlock the mutex until
850 * we've incremented swapped, because shmem_unuse_inode() will
851 * prune a !swapped inode from the swaplist under this mutex.
852 */
853 mutex_lock(&shmem_swaplist_mutex);
854 if (list_empty(&info->swaplist))
855 list_add_tail(&info->swaplist, &shmem_swaplist);
856
857 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
858 swap_shmem_alloc(swap);
859 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
860
861 spin_lock(&info->lock);
862 info->swapped++;
863 shmem_recalc_inode(inode);
864 spin_unlock(&info->lock);
865
866 mutex_unlock(&shmem_swaplist_mutex);
867 BUG_ON(page_mapped(page));
868 swap_writepage(page, wbc);
869 return 0;
870 }
871
872 mutex_unlock(&shmem_swaplist_mutex);
873 swapcache_free(swap, NULL);
874 redirty:
875 set_page_dirty(page);
876 if (wbc->for_reclaim)
877 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
878 unlock_page(page);
879 return 0;
880 }
881
882 #ifdef CONFIG_NUMA
883 #ifdef CONFIG_TMPFS
884 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
885 {
886 char buffer[64];
887
888 if (!mpol || mpol->mode == MPOL_DEFAULT)
889 return; /* show nothing */
890
891 mpol_to_str(buffer, sizeof(buffer), mpol);
892
893 seq_printf(seq, ",mpol=%s", buffer);
894 }
895
896 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
897 {
898 struct mempolicy *mpol = NULL;
899 if (sbinfo->mpol) {
900 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
901 mpol = sbinfo->mpol;
902 mpol_get(mpol);
903 spin_unlock(&sbinfo->stat_lock);
904 }
905 return mpol;
906 }
907 #endif /* CONFIG_TMPFS */
908
909 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
910 struct shmem_inode_info *info, pgoff_t index)
911 {
912 struct vm_area_struct pvma;
913 struct page *page;
914
915 /* Create a pseudo vma that just contains the policy */
916 pvma.vm_start = 0;
917 /* Bias interleave by inode number to distribute better across nodes */
918 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
919 pvma.vm_ops = NULL;
920 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
921
922 page = swapin_readahead(swap, gfp, &pvma, 0);
923
924 /* Drop reference taken by mpol_shared_policy_lookup() */
925 mpol_cond_put(pvma.vm_policy);
926
927 return page;
928 }
929
930 static struct page *shmem_alloc_page(gfp_t gfp,
931 struct shmem_inode_info *info, pgoff_t index)
932 {
933 struct vm_area_struct pvma;
934 struct page *page;
935
936 /* Create a pseudo vma that just contains the policy */
937 pvma.vm_start = 0;
938 /* Bias interleave by inode number to distribute better across nodes */
939 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
940 pvma.vm_ops = NULL;
941 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
942
943 page = alloc_page_vma(gfp, &pvma, 0);
944
945 /* Drop reference taken by mpol_shared_policy_lookup() */
946 mpol_cond_put(pvma.vm_policy);
947
948 return page;
949 }
950 #else /* !CONFIG_NUMA */
951 #ifdef CONFIG_TMPFS
952 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
953 {
954 }
955 #endif /* CONFIG_TMPFS */
956
957 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
958 struct shmem_inode_info *info, pgoff_t index)
959 {
960 return swapin_readahead(swap, gfp, NULL, 0);
961 }
962
963 static inline struct page *shmem_alloc_page(gfp_t gfp,
964 struct shmem_inode_info *info, pgoff_t index)
965 {
966 return alloc_page(gfp);
967 }
968 #endif /* CONFIG_NUMA */
969
970 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
971 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
972 {
973 return NULL;
974 }
975 #endif
976
977 /*
978 * When a page is moved from swapcache to shmem filecache (either by the
979 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
980 * shmem_unuse_inode()), it may have been read in earlier from swap, in
981 * ignorance of the mapping it belongs to. If that mapping has special
982 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
983 * we may need to copy to a suitable page before moving to filecache.
984 *
985 * In a future release, this may well be extended to respect cpuset and
986 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
987 * but for now it is a simple matter of zone.
988 */
989 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
990 {
991 return page_zonenum(page) > gfp_zone(gfp);
992 }
993
994 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
995 struct shmem_inode_info *info, pgoff_t index)
996 {
997 struct page *oldpage, *newpage;
998 struct address_space *swap_mapping;
999 pgoff_t swap_index;
1000 int error;
1001
1002 oldpage = *pagep;
1003 swap_index = page_private(oldpage);
1004 swap_mapping = page_mapping(oldpage);
1005
1006 /*
1007 * We have arrived here because our zones are constrained, so don't
1008 * limit chance of success by further cpuset and node constraints.
1009 */
1010 gfp &= ~GFP_CONSTRAINT_MASK;
1011 newpage = shmem_alloc_page(gfp, info, index);
1012 if (!newpage)
1013 return -ENOMEM;
1014
1015 page_cache_get(newpage);
1016 copy_highpage(newpage, oldpage);
1017 flush_dcache_page(newpage);
1018
1019 __set_page_locked(newpage);
1020 SetPageUptodate(newpage);
1021 SetPageSwapBacked(newpage);
1022 set_page_private(newpage, swap_index);
1023 SetPageSwapCache(newpage);
1024
1025 /*
1026 * Our caller will very soon move newpage out of swapcache, but it's
1027 * a nice clean interface for us to replace oldpage by newpage there.
1028 */
1029 spin_lock_irq(&swap_mapping->tree_lock);
1030 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1031 newpage);
1032 if (!error) {
1033 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1034 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1035 }
1036 spin_unlock_irq(&swap_mapping->tree_lock);
1037
1038 if (unlikely(error)) {
1039 /*
1040 * Is this possible? I think not, now that our callers check
1041 * both PageSwapCache and page_private after getting page lock;
1042 * but be defensive. Reverse old to newpage for clear and free.
1043 */
1044 oldpage = newpage;
1045 } else {
1046 mem_cgroup_replace_page_cache(oldpage, newpage);
1047 lru_cache_add_anon(newpage);
1048 *pagep = newpage;
1049 }
1050
1051 ClearPageSwapCache(oldpage);
1052 set_page_private(oldpage, 0);
1053
1054 unlock_page(oldpage);
1055 page_cache_release(oldpage);
1056 page_cache_release(oldpage);
1057 return error;
1058 }
1059
1060 /*
1061 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1062 *
1063 * If we allocate a new one we do not mark it dirty. That's up to the
1064 * vm. If we swap it in we mark it dirty since we also free the swap
1065 * entry since a page cannot live in both the swap and page cache
1066 */
1067 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1068 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1069 {
1070 struct address_space *mapping = inode->i_mapping;
1071 struct shmem_inode_info *info;
1072 struct shmem_sb_info *sbinfo;
1073 struct page *page;
1074 swp_entry_t swap;
1075 int error;
1076 int once = 0;
1077 int alloced = 0;
1078
1079 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1080 return -EFBIG;
1081 repeat:
1082 swap.val = 0;
1083 page = find_lock_page(mapping, index);
1084 if (radix_tree_exceptional_entry(page)) {
1085 swap = radix_to_swp_entry(page);
1086 page = NULL;
1087 }
1088
1089 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1090 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1091 error = -EINVAL;
1092 goto failed;
1093 }
1094
1095 /* fallocated page? */
1096 if (page && !PageUptodate(page)) {
1097 if (sgp != SGP_READ)
1098 goto clear;
1099 unlock_page(page);
1100 page_cache_release(page);
1101 page = NULL;
1102 }
1103 if (page || (sgp == SGP_READ && !swap.val)) {
1104 *pagep = page;
1105 return 0;
1106 }
1107
1108 /*
1109 * Fast cache lookup did not find it:
1110 * bring it back from swap or allocate.
1111 */
1112 info = SHMEM_I(inode);
1113 sbinfo = SHMEM_SB(inode->i_sb);
1114
1115 if (swap.val) {
1116 /* Look it up and read it in.. */
1117 page = lookup_swap_cache(swap);
1118 if (!page) {
1119 /* here we actually do the io */
1120 if (fault_type)
1121 *fault_type |= VM_FAULT_MAJOR;
1122 page = shmem_swapin(swap, gfp, info, index);
1123 if (!page) {
1124 error = -ENOMEM;
1125 goto failed;
1126 }
1127 }
1128
1129 /* We have to do this with page locked to prevent races */
1130 lock_page(page);
1131 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1132 !shmem_confirm_swap(mapping, index, swap)) {
1133 error = -EEXIST; /* try again */
1134 goto unlock;
1135 }
1136 if (!PageUptodate(page)) {
1137 error = -EIO;
1138 goto failed;
1139 }
1140 wait_on_page_writeback(page);
1141
1142 if (shmem_should_replace_page(page, gfp)) {
1143 error = shmem_replace_page(&page, gfp, info, index);
1144 if (error)
1145 goto failed;
1146 }
1147
1148 error = mem_cgroup_cache_charge(page, current->mm,
1149 gfp & GFP_RECLAIM_MASK);
1150 if (!error) {
1151 error = shmem_add_to_page_cache(page, mapping, index,
1152 gfp, swp_to_radix_entry(swap));
1153 /*
1154 * We already confirmed swap under page lock, and make
1155 * no memory allocation here, so usually no possibility
1156 * of error; but free_swap_and_cache() only trylocks a
1157 * page, so it is just possible that the entry has been
1158 * truncated or holepunched since swap was confirmed.
1159 * shmem_undo_range() will have done some of the
1160 * unaccounting, now delete_from_swap_cache() will do
1161 * the rest (including mem_cgroup_uncharge_swapcache).
1162 * Reset swap.val? No, leave it so "failed" goes back to
1163 * "repeat": reading a hole and writing should succeed.
1164 */
1165 if (error)
1166 delete_from_swap_cache(page);
1167 }
1168 if (error)
1169 goto failed;
1170
1171 spin_lock(&info->lock);
1172 info->swapped--;
1173 shmem_recalc_inode(inode);
1174 spin_unlock(&info->lock);
1175
1176 delete_from_swap_cache(page);
1177 set_page_dirty(page);
1178 swap_free(swap);
1179
1180 } else {
1181 if (shmem_acct_block(info->flags)) {
1182 error = -ENOSPC;
1183 goto failed;
1184 }
1185 if (sbinfo->max_blocks) {
1186 if (percpu_counter_compare(&sbinfo->used_blocks,
1187 sbinfo->max_blocks) >= 0) {
1188 error = -ENOSPC;
1189 goto unacct;
1190 }
1191 percpu_counter_inc(&sbinfo->used_blocks);
1192 }
1193
1194 page = shmem_alloc_page(gfp, info, index);
1195 if (!page) {
1196 error = -ENOMEM;
1197 goto decused;
1198 }
1199
1200 SetPageSwapBacked(page);
1201 __set_page_locked(page);
1202 error = mem_cgroup_cache_charge(page, current->mm,
1203 gfp & GFP_RECLAIM_MASK);
1204 if (error)
1205 goto decused;
1206 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1207 if (!error) {
1208 error = shmem_add_to_page_cache(page, mapping, index,
1209 gfp, NULL);
1210 radix_tree_preload_end();
1211 }
1212 if (error) {
1213 mem_cgroup_uncharge_cache_page(page);
1214 goto decused;
1215 }
1216 lru_cache_add_anon(page);
1217
1218 spin_lock(&info->lock);
1219 info->alloced++;
1220 inode->i_blocks += BLOCKS_PER_PAGE;
1221 shmem_recalc_inode(inode);
1222 spin_unlock(&info->lock);
1223 alloced = true;
1224
1225 /*
1226 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1227 */
1228 if (sgp == SGP_FALLOC)
1229 sgp = SGP_WRITE;
1230 clear:
1231 /*
1232 * Let SGP_WRITE caller clear ends if write does not fill page;
1233 * but SGP_FALLOC on a page fallocated earlier must initialize
1234 * it now, lest undo on failure cancel our earlier guarantee.
1235 */
1236 if (sgp != SGP_WRITE) {
1237 clear_highpage(page);
1238 flush_dcache_page(page);
1239 SetPageUptodate(page);
1240 }
1241 if (sgp == SGP_DIRTY)
1242 set_page_dirty(page);
1243 }
1244
1245 /* Perhaps the file has been truncated since we checked */
1246 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1247 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1248 error = -EINVAL;
1249 if (alloced)
1250 goto trunc;
1251 else
1252 goto failed;
1253 }
1254 *pagep = page;
1255 return 0;
1256
1257 /*
1258 * Error recovery.
1259 */
1260 trunc:
1261 info = SHMEM_I(inode);
1262 ClearPageDirty(page);
1263 delete_from_page_cache(page);
1264 spin_lock(&info->lock);
1265 info->alloced--;
1266 inode->i_blocks -= BLOCKS_PER_PAGE;
1267 spin_unlock(&info->lock);
1268 decused:
1269 sbinfo = SHMEM_SB(inode->i_sb);
1270 if (sbinfo->max_blocks)
1271 percpu_counter_add(&sbinfo->used_blocks, -1);
1272 unacct:
1273 shmem_unacct_blocks(info->flags, 1);
1274 failed:
1275 if (swap.val && error != -EINVAL &&
1276 !shmem_confirm_swap(mapping, index, swap))
1277 error = -EEXIST;
1278 unlock:
1279 if (page) {
1280 unlock_page(page);
1281 page_cache_release(page);
1282 }
1283 if (error == -ENOSPC && !once++) {
1284 info = SHMEM_I(inode);
1285 spin_lock(&info->lock);
1286 shmem_recalc_inode(inode);
1287 spin_unlock(&info->lock);
1288 goto repeat;
1289 }
1290 if (error == -EEXIST) /* from above or from radix_tree_insert */
1291 goto repeat;
1292 return error;
1293 }
1294
1295 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1296 {
1297 struct inode *inode = file_inode(vma->vm_file);
1298 int error;
1299 int ret = VM_FAULT_LOCKED;
1300
1301 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1302 if (error)
1303 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1304
1305 if (ret & VM_FAULT_MAJOR) {
1306 count_vm_event(PGMAJFAULT);
1307 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1308 }
1309 return ret;
1310 }
1311
1312 #ifdef CONFIG_NUMA
1313 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1314 {
1315 struct inode *inode = file_inode(vma->vm_file);
1316 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1317 }
1318
1319 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1320 unsigned long addr)
1321 {
1322 struct inode *inode = file_inode(vma->vm_file);
1323 pgoff_t index;
1324
1325 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1326 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1327 }
1328 #endif
1329
1330 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1331 {
1332 struct inode *inode = file_inode(file);
1333 struct shmem_inode_info *info = SHMEM_I(inode);
1334 int retval = -ENOMEM;
1335
1336 spin_lock(&info->lock);
1337 if (lock && !(info->flags & VM_LOCKED)) {
1338 if (!user_shm_lock(inode->i_size, user))
1339 goto out_nomem;
1340 info->flags |= VM_LOCKED;
1341 mapping_set_unevictable(file->f_mapping);
1342 }
1343 if (!lock && (info->flags & VM_LOCKED) && user) {
1344 user_shm_unlock(inode->i_size, user);
1345 info->flags &= ~VM_LOCKED;
1346 mapping_clear_unevictable(file->f_mapping);
1347 }
1348 retval = 0;
1349
1350 out_nomem:
1351 spin_unlock(&info->lock);
1352 return retval;
1353 }
1354
1355 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1356 {
1357 file_accessed(file);
1358 vma->vm_ops = &shmem_vm_ops;
1359 return 0;
1360 }
1361
1362 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1363 umode_t mode, dev_t dev, unsigned long flags)
1364 {
1365 struct inode *inode;
1366 struct shmem_inode_info *info;
1367 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1368
1369 if (shmem_reserve_inode(sb))
1370 return NULL;
1371
1372 inode = new_inode(sb);
1373 if (inode) {
1374 inode->i_ino = get_next_ino();
1375 inode_init_owner(inode, dir, mode);
1376 inode->i_blocks = 0;
1377 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1378 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1379 inode->i_generation = get_seconds();
1380 info = SHMEM_I(inode);
1381 memset(info, 0, (char *)inode - (char *)info);
1382 spin_lock_init(&info->lock);
1383 info->flags = flags & VM_NORESERVE;
1384 INIT_LIST_HEAD(&info->swaplist);
1385 simple_xattrs_init(&info->xattrs);
1386 cache_no_acl(inode);
1387
1388 switch (mode & S_IFMT) {
1389 default:
1390 inode->i_op = &shmem_special_inode_operations;
1391 init_special_inode(inode, mode, dev);
1392 break;
1393 case S_IFREG:
1394 inode->i_mapping->a_ops = &shmem_aops;
1395 inode->i_op = &shmem_inode_operations;
1396 inode->i_fop = &shmem_file_operations;
1397 mpol_shared_policy_init(&info->policy,
1398 shmem_get_sbmpol(sbinfo));
1399 break;
1400 case S_IFDIR:
1401 inc_nlink(inode);
1402 /* Some things misbehave if size == 0 on a directory */
1403 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1404 inode->i_op = &shmem_dir_inode_operations;
1405 inode->i_fop = &simple_dir_operations;
1406 break;
1407 case S_IFLNK:
1408 /*
1409 * Must not load anything in the rbtree,
1410 * mpol_free_shared_policy will not be called.
1411 */
1412 mpol_shared_policy_init(&info->policy, NULL);
1413 break;
1414 }
1415 } else
1416 shmem_free_inode(sb);
1417 return inode;
1418 }
1419
1420 #ifdef CONFIG_TMPFS
1421 static const struct inode_operations shmem_symlink_inode_operations;
1422 static const struct inode_operations shmem_short_symlink_operations;
1423
1424 #ifdef CONFIG_TMPFS_XATTR
1425 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1426 #else
1427 #define shmem_initxattrs NULL
1428 #endif
1429
1430 static int
1431 shmem_write_begin(struct file *file, struct address_space *mapping,
1432 loff_t pos, unsigned len, unsigned flags,
1433 struct page **pagep, void **fsdata)
1434 {
1435 struct inode *inode = mapping->host;
1436 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1437 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1438 }
1439
1440 static int
1441 shmem_write_end(struct file *file, struct address_space *mapping,
1442 loff_t pos, unsigned len, unsigned copied,
1443 struct page *page, void *fsdata)
1444 {
1445 struct inode *inode = mapping->host;
1446
1447 if (pos + copied > inode->i_size)
1448 i_size_write(inode, pos + copied);
1449
1450 if (!PageUptodate(page)) {
1451 if (copied < PAGE_CACHE_SIZE) {
1452 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1453 zero_user_segments(page, 0, from,
1454 from + copied, PAGE_CACHE_SIZE);
1455 }
1456 SetPageUptodate(page);
1457 }
1458 set_page_dirty(page);
1459 unlock_page(page);
1460 page_cache_release(page);
1461
1462 return copied;
1463 }
1464
1465 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1466 {
1467 struct inode *inode = file_inode(filp);
1468 struct address_space *mapping = inode->i_mapping;
1469 pgoff_t index;
1470 unsigned long offset;
1471 enum sgp_type sgp = SGP_READ;
1472
1473 /*
1474 * Might this read be for a stacking filesystem? Then when reading
1475 * holes of a sparse file, we actually need to allocate those pages,
1476 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1477 */
1478 if (segment_eq(get_fs(), KERNEL_DS))
1479 sgp = SGP_DIRTY;
1480
1481 index = *ppos >> PAGE_CACHE_SHIFT;
1482 offset = *ppos & ~PAGE_CACHE_MASK;
1483
1484 for (;;) {
1485 struct page *page = NULL;
1486 pgoff_t end_index;
1487 unsigned long nr, ret;
1488 loff_t i_size = i_size_read(inode);
1489
1490 end_index = i_size >> PAGE_CACHE_SHIFT;
1491 if (index > end_index)
1492 break;
1493 if (index == end_index) {
1494 nr = i_size & ~PAGE_CACHE_MASK;
1495 if (nr <= offset)
1496 break;
1497 }
1498
1499 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1500 if (desc->error) {
1501 if (desc->error == -EINVAL)
1502 desc->error = 0;
1503 break;
1504 }
1505 if (page)
1506 unlock_page(page);
1507
1508 /*
1509 * We must evaluate after, since reads (unlike writes)
1510 * are called without i_mutex protection against truncate
1511 */
1512 nr = PAGE_CACHE_SIZE;
1513 i_size = i_size_read(inode);
1514 end_index = i_size >> PAGE_CACHE_SHIFT;
1515 if (index == end_index) {
1516 nr = i_size & ~PAGE_CACHE_MASK;
1517 if (nr <= offset) {
1518 if (page)
1519 page_cache_release(page);
1520 break;
1521 }
1522 }
1523 nr -= offset;
1524
1525 if (page) {
1526 /*
1527 * If users can be writing to this page using arbitrary
1528 * virtual addresses, take care about potential aliasing
1529 * before reading the page on the kernel side.
1530 */
1531 if (mapping_writably_mapped(mapping))
1532 flush_dcache_page(page);
1533 /*
1534 * Mark the page accessed if we read the beginning.
1535 */
1536 if (!offset)
1537 mark_page_accessed(page);
1538 } else {
1539 page = ZERO_PAGE(0);
1540 page_cache_get(page);
1541 }
1542
1543 /*
1544 * Ok, we have the page, and it's up-to-date, so
1545 * now we can copy it to user space...
1546 *
1547 * The actor routine returns how many bytes were actually used..
1548 * NOTE! This may not be the same as how much of a user buffer
1549 * we filled up (we may be padding etc), so we can only update
1550 * "pos" here (the actor routine has to update the user buffer
1551 * pointers and the remaining count).
1552 */
1553 ret = actor(desc, page, offset, nr);
1554 offset += ret;
1555 index += offset >> PAGE_CACHE_SHIFT;
1556 offset &= ~PAGE_CACHE_MASK;
1557
1558 page_cache_release(page);
1559 if (ret != nr || !desc->count)
1560 break;
1561
1562 cond_resched();
1563 }
1564
1565 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1566 file_accessed(filp);
1567 }
1568
1569 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1570 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1571 {
1572 struct file *filp = iocb->ki_filp;
1573 ssize_t retval;
1574 unsigned long seg;
1575 size_t count;
1576 loff_t *ppos = &iocb->ki_pos;
1577
1578 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1579 if (retval)
1580 return retval;
1581
1582 for (seg = 0; seg < nr_segs; seg++) {
1583 read_descriptor_t desc;
1584
1585 desc.written = 0;
1586 desc.arg.buf = iov[seg].iov_base;
1587 desc.count = iov[seg].iov_len;
1588 if (desc.count == 0)
1589 continue;
1590 desc.error = 0;
1591 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1592 retval += desc.written;
1593 if (desc.error) {
1594 retval = retval ?: desc.error;
1595 break;
1596 }
1597 if (desc.count > 0)
1598 break;
1599 }
1600 return retval;
1601 }
1602
1603 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1604 struct pipe_inode_info *pipe, size_t len,
1605 unsigned int flags)
1606 {
1607 struct address_space *mapping = in->f_mapping;
1608 struct inode *inode = mapping->host;
1609 unsigned int loff, nr_pages, req_pages;
1610 struct page *pages[PIPE_DEF_BUFFERS];
1611 struct partial_page partial[PIPE_DEF_BUFFERS];
1612 struct page *page;
1613 pgoff_t index, end_index;
1614 loff_t isize, left;
1615 int error, page_nr;
1616 struct splice_pipe_desc spd = {
1617 .pages = pages,
1618 .partial = partial,
1619 .nr_pages_max = PIPE_DEF_BUFFERS,
1620 .flags = flags,
1621 .ops = &page_cache_pipe_buf_ops,
1622 .spd_release = spd_release_page,
1623 };
1624
1625 isize = i_size_read(inode);
1626 if (unlikely(*ppos >= isize))
1627 return 0;
1628
1629 left = isize - *ppos;
1630 if (unlikely(left < len))
1631 len = left;
1632
1633 if (splice_grow_spd(pipe, &spd))
1634 return -ENOMEM;
1635
1636 index = *ppos >> PAGE_CACHE_SHIFT;
1637 loff = *ppos & ~PAGE_CACHE_MASK;
1638 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1639 nr_pages = min(req_pages, pipe->buffers);
1640
1641 spd.nr_pages = find_get_pages_contig(mapping, index,
1642 nr_pages, spd.pages);
1643 index += spd.nr_pages;
1644 error = 0;
1645
1646 while (spd.nr_pages < nr_pages) {
1647 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1648 if (error)
1649 break;
1650 unlock_page(page);
1651 spd.pages[spd.nr_pages++] = page;
1652 index++;
1653 }
1654
1655 index = *ppos >> PAGE_CACHE_SHIFT;
1656 nr_pages = spd.nr_pages;
1657 spd.nr_pages = 0;
1658
1659 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1660 unsigned int this_len;
1661
1662 if (!len)
1663 break;
1664
1665 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1666 page = spd.pages[page_nr];
1667
1668 if (!PageUptodate(page) || page->mapping != mapping) {
1669 error = shmem_getpage(inode, index, &page,
1670 SGP_CACHE, NULL);
1671 if (error)
1672 break;
1673 unlock_page(page);
1674 page_cache_release(spd.pages[page_nr]);
1675 spd.pages[page_nr] = page;
1676 }
1677
1678 isize = i_size_read(inode);
1679 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1680 if (unlikely(!isize || index > end_index))
1681 break;
1682
1683 if (end_index == index) {
1684 unsigned int plen;
1685
1686 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1687 if (plen <= loff)
1688 break;
1689
1690 this_len = min(this_len, plen - loff);
1691 len = this_len;
1692 }
1693
1694 spd.partial[page_nr].offset = loff;
1695 spd.partial[page_nr].len = this_len;
1696 len -= this_len;
1697 loff = 0;
1698 spd.nr_pages++;
1699 index++;
1700 }
1701
1702 while (page_nr < nr_pages)
1703 page_cache_release(spd.pages[page_nr++]);
1704
1705 if (spd.nr_pages)
1706 error = splice_to_pipe(pipe, &spd);
1707
1708 splice_shrink_spd(&spd);
1709
1710 if (error > 0) {
1711 *ppos += error;
1712 file_accessed(in);
1713 }
1714 return error;
1715 }
1716
1717 /*
1718 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1719 */
1720 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1721 pgoff_t index, pgoff_t end, int whence)
1722 {
1723 struct page *page;
1724 struct pagevec pvec;
1725 pgoff_t indices[PAGEVEC_SIZE];
1726 bool done = false;
1727 int i;
1728
1729 pagevec_init(&pvec, 0);
1730 pvec.nr = 1; /* start small: we may be there already */
1731 while (!done) {
1732 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1733 pvec.nr, pvec.pages, indices);
1734 if (!pvec.nr) {
1735 if (whence == SEEK_DATA)
1736 index = end;
1737 break;
1738 }
1739 for (i = 0; i < pvec.nr; i++, index++) {
1740 if (index < indices[i]) {
1741 if (whence == SEEK_HOLE) {
1742 done = true;
1743 break;
1744 }
1745 index = indices[i];
1746 }
1747 page = pvec.pages[i];
1748 if (page && !radix_tree_exceptional_entry(page)) {
1749 if (!PageUptodate(page))
1750 page = NULL;
1751 }
1752 if (index >= end ||
1753 (page && whence == SEEK_DATA) ||
1754 (!page && whence == SEEK_HOLE)) {
1755 done = true;
1756 break;
1757 }
1758 }
1759 shmem_deswap_pagevec(&pvec);
1760 pagevec_release(&pvec);
1761 pvec.nr = PAGEVEC_SIZE;
1762 cond_resched();
1763 }
1764 return index;
1765 }
1766
1767 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1768 {
1769 struct address_space *mapping = file->f_mapping;
1770 struct inode *inode = mapping->host;
1771 pgoff_t start, end;
1772 loff_t new_offset;
1773
1774 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1775 return generic_file_llseek_size(file, offset, whence,
1776 MAX_LFS_FILESIZE, i_size_read(inode));
1777 mutex_lock(&inode->i_mutex);
1778 /* We're holding i_mutex so we can access i_size directly */
1779
1780 if (offset < 0)
1781 offset = -EINVAL;
1782 else if (offset >= inode->i_size)
1783 offset = -ENXIO;
1784 else {
1785 start = offset >> PAGE_CACHE_SHIFT;
1786 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1787 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1788 new_offset <<= PAGE_CACHE_SHIFT;
1789 if (new_offset > offset) {
1790 if (new_offset < inode->i_size)
1791 offset = new_offset;
1792 else if (whence == SEEK_DATA)
1793 offset = -ENXIO;
1794 else
1795 offset = inode->i_size;
1796 }
1797 }
1798
1799 if (offset >= 0)
1800 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1801 mutex_unlock(&inode->i_mutex);
1802 return offset;
1803 }
1804
1805 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1806 loff_t len)
1807 {
1808 struct inode *inode = file_inode(file);
1809 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1810 struct shmem_falloc shmem_falloc;
1811 pgoff_t start, index, end;
1812 int error;
1813
1814 mutex_lock(&inode->i_mutex);
1815
1816 if (mode & FALLOC_FL_PUNCH_HOLE) {
1817 struct address_space *mapping = file->f_mapping;
1818 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1819 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1820
1821 if ((u64)unmap_end > (u64)unmap_start)
1822 unmap_mapping_range(mapping, unmap_start,
1823 1 + unmap_end - unmap_start, 0);
1824 shmem_truncate_range(inode, offset, offset + len - 1);
1825 /* No need to unmap again: hole-punching leaves COWed pages */
1826 error = 0;
1827 goto out;
1828 }
1829
1830 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1831 error = inode_newsize_ok(inode, offset + len);
1832 if (error)
1833 goto out;
1834
1835 start = offset >> PAGE_CACHE_SHIFT;
1836 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1837 /* Try to avoid a swapstorm if len is impossible to satisfy */
1838 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1839 error = -ENOSPC;
1840 goto out;
1841 }
1842
1843 shmem_falloc.start = start;
1844 shmem_falloc.next = start;
1845 shmem_falloc.nr_falloced = 0;
1846 shmem_falloc.nr_unswapped = 0;
1847 spin_lock(&inode->i_lock);
1848 inode->i_private = &shmem_falloc;
1849 spin_unlock(&inode->i_lock);
1850
1851 for (index = start; index < end; index++) {
1852 struct page *page;
1853
1854 /*
1855 * Good, the fallocate(2) manpage permits EINTR: we may have
1856 * been interrupted because we are using up too much memory.
1857 */
1858 if (signal_pending(current))
1859 error = -EINTR;
1860 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1861 error = -ENOMEM;
1862 else
1863 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1864 NULL);
1865 if (error) {
1866 /* Remove the !PageUptodate pages we added */
1867 shmem_undo_range(inode,
1868 (loff_t)start << PAGE_CACHE_SHIFT,
1869 (loff_t)index << PAGE_CACHE_SHIFT, true);
1870 goto undone;
1871 }
1872
1873 /*
1874 * Inform shmem_writepage() how far we have reached.
1875 * No need for lock or barrier: we have the page lock.
1876 */
1877 shmem_falloc.next++;
1878 if (!PageUptodate(page))
1879 shmem_falloc.nr_falloced++;
1880
1881 /*
1882 * If !PageUptodate, leave it that way so that freeable pages
1883 * can be recognized if we need to rollback on error later.
1884 * But set_page_dirty so that memory pressure will swap rather
1885 * than free the pages we are allocating (and SGP_CACHE pages
1886 * might still be clean: we now need to mark those dirty too).
1887 */
1888 set_page_dirty(page);
1889 unlock_page(page);
1890 page_cache_release(page);
1891 cond_resched();
1892 }
1893
1894 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1895 i_size_write(inode, offset + len);
1896 inode->i_ctime = CURRENT_TIME;
1897 undone:
1898 spin_lock(&inode->i_lock);
1899 inode->i_private = NULL;
1900 spin_unlock(&inode->i_lock);
1901 out:
1902 mutex_unlock(&inode->i_mutex);
1903 return error;
1904 }
1905
1906 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1907 {
1908 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1909
1910 buf->f_type = TMPFS_MAGIC;
1911 buf->f_bsize = PAGE_CACHE_SIZE;
1912 buf->f_namelen = NAME_MAX;
1913 if (sbinfo->max_blocks) {
1914 buf->f_blocks = sbinfo->max_blocks;
1915 buf->f_bavail =
1916 buf->f_bfree = sbinfo->max_blocks -
1917 percpu_counter_sum(&sbinfo->used_blocks);
1918 }
1919 if (sbinfo->max_inodes) {
1920 buf->f_files = sbinfo->max_inodes;
1921 buf->f_ffree = sbinfo->free_inodes;
1922 }
1923 /* else leave those fields 0 like simple_statfs */
1924 return 0;
1925 }
1926
1927 /*
1928 * File creation. Allocate an inode, and we're done..
1929 */
1930 static int
1931 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1932 {
1933 struct inode *inode;
1934 int error = -ENOSPC;
1935
1936 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1937 if (inode) {
1938 error = simple_acl_create(dir, inode);
1939 if (error)
1940 goto out_iput;
1941 error = security_inode_init_security(inode, dir,
1942 &dentry->d_name,
1943 shmem_initxattrs, NULL);
1944 if (error && error != -EOPNOTSUPP)
1945 goto out_iput;
1946
1947 error = 0;
1948 dir->i_size += BOGO_DIRENT_SIZE;
1949 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1950 d_instantiate(dentry, inode);
1951 dget(dentry); /* Extra count - pin the dentry in core */
1952 }
1953 return error;
1954 out_iput:
1955 iput(inode);
1956 return error;
1957 }
1958
1959 static int
1960 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1961 {
1962 struct inode *inode;
1963 int error = -ENOSPC;
1964
1965 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1966 if (inode) {
1967 error = security_inode_init_security(inode, dir,
1968 NULL,
1969 shmem_initxattrs, NULL);
1970 if (error && error != -EOPNOTSUPP)
1971 goto out_iput;
1972 error = simple_acl_create(dir, inode);
1973 if (error)
1974 goto out_iput;
1975 d_tmpfile(dentry, inode);
1976 }
1977 return error;
1978 out_iput:
1979 iput(inode);
1980 return error;
1981 }
1982
1983 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1984 {
1985 int error;
1986
1987 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1988 return error;
1989 inc_nlink(dir);
1990 return 0;
1991 }
1992
1993 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1994 bool excl)
1995 {
1996 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1997 }
1998
1999 /*
2000 * Link a file..
2001 */
2002 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2003 {
2004 struct inode *inode = old_dentry->d_inode;
2005 int ret;
2006
2007 /*
2008 * No ordinary (disk based) filesystem counts links as inodes;
2009 * but each new link needs a new dentry, pinning lowmem, and
2010 * tmpfs dentries cannot be pruned until they are unlinked.
2011 */
2012 ret = shmem_reserve_inode(inode->i_sb);
2013 if (ret)
2014 goto out;
2015
2016 dir->i_size += BOGO_DIRENT_SIZE;
2017 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2018 inc_nlink(inode);
2019 ihold(inode); /* New dentry reference */
2020 dget(dentry); /* Extra pinning count for the created dentry */
2021 d_instantiate(dentry, inode);
2022 out:
2023 return ret;
2024 }
2025
2026 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2027 {
2028 struct inode *inode = dentry->d_inode;
2029
2030 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2031 shmem_free_inode(inode->i_sb);
2032
2033 dir->i_size -= BOGO_DIRENT_SIZE;
2034 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2035 drop_nlink(inode);
2036 dput(dentry); /* Undo the count from "create" - this does all the work */
2037 return 0;
2038 }
2039
2040 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2041 {
2042 if (!simple_empty(dentry))
2043 return -ENOTEMPTY;
2044
2045 drop_nlink(dentry->d_inode);
2046 drop_nlink(dir);
2047 return shmem_unlink(dir, dentry);
2048 }
2049
2050 /*
2051 * The VFS layer already does all the dentry stuff for rename,
2052 * we just have to decrement the usage count for the target if
2053 * it exists so that the VFS layer correctly free's it when it
2054 * gets overwritten.
2055 */
2056 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2057 {
2058 struct inode *inode = old_dentry->d_inode;
2059 int they_are_dirs = S_ISDIR(inode->i_mode);
2060
2061 if (!simple_empty(new_dentry))
2062 return -ENOTEMPTY;
2063
2064 if (new_dentry->d_inode) {
2065 (void) shmem_unlink(new_dir, new_dentry);
2066 if (they_are_dirs)
2067 drop_nlink(old_dir);
2068 } else if (they_are_dirs) {
2069 drop_nlink(old_dir);
2070 inc_nlink(new_dir);
2071 }
2072
2073 old_dir->i_size -= BOGO_DIRENT_SIZE;
2074 new_dir->i_size += BOGO_DIRENT_SIZE;
2075 old_dir->i_ctime = old_dir->i_mtime =
2076 new_dir->i_ctime = new_dir->i_mtime =
2077 inode->i_ctime = CURRENT_TIME;
2078 return 0;
2079 }
2080
2081 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2082 {
2083 int error;
2084 int len;
2085 struct inode *inode;
2086 struct page *page;
2087 char *kaddr;
2088 struct shmem_inode_info *info;
2089
2090 len = strlen(symname) + 1;
2091 if (len > PAGE_CACHE_SIZE)
2092 return -ENAMETOOLONG;
2093
2094 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2095 if (!inode)
2096 return -ENOSPC;
2097
2098 error = security_inode_init_security(inode, dir, &dentry->d_name,
2099 shmem_initxattrs, NULL);
2100 if (error) {
2101 if (error != -EOPNOTSUPP) {
2102 iput(inode);
2103 return error;
2104 }
2105 error = 0;
2106 }
2107
2108 info = SHMEM_I(inode);
2109 inode->i_size = len-1;
2110 if (len <= SHORT_SYMLINK_LEN) {
2111 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2112 if (!info->symlink) {
2113 iput(inode);
2114 return -ENOMEM;
2115 }
2116 inode->i_op = &shmem_short_symlink_operations;
2117 } else {
2118 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2119 if (error) {
2120 iput(inode);
2121 return error;
2122 }
2123 inode->i_mapping->a_ops = &shmem_aops;
2124 inode->i_op = &shmem_symlink_inode_operations;
2125 kaddr = kmap_atomic(page);
2126 memcpy(kaddr, symname, len);
2127 kunmap_atomic(kaddr);
2128 SetPageUptodate(page);
2129 set_page_dirty(page);
2130 unlock_page(page);
2131 page_cache_release(page);
2132 }
2133 dir->i_size += BOGO_DIRENT_SIZE;
2134 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2135 d_instantiate(dentry, inode);
2136 dget(dentry);
2137 return 0;
2138 }
2139
2140 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2141 {
2142 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2143 return NULL;
2144 }
2145
2146 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2147 {
2148 struct page *page = NULL;
2149 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2150 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2151 if (page)
2152 unlock_page(page);
2153 return page;
2154 }
2155
2156 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2157 {
2158 if (!IS_ERR(nd_get_link(nd))) {
2159 struct page *page = cookie;
2160 kunmap(page);
2161 mark_page_accessed(page);
2162 page_cache_release(page);
2163 }
2164 }
2165
2166 #ifdef CONFIG_TMPFS_XATTR
2167 /*
2168 * Superblocks without xattr inode operations may get some security.* xattr
2169 * support from the LSM "for free". As soon as we have any other xattrs
2170 * like ACLs, we also need to implement the security.* handlers at
2171 * filesystem level, though.
2172 */
2173
2174 /*
2175 * Callback for security_inode_init_security() for acquiring xattrs.
2176 */
2177 static int shmem_initxattrs(struct inode *inode,
2178 const struct xattr *xattr_array,
2179 void *fs_info)
2180 {
2181 struct shmem_inode_info *info = SHMEM_I(inode);
2182 const struct xattr *xattr;
2183 struct simple_xattr *new_xattr;
2184 size_t len;
2185
2186 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2187 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2188 if (!new_xattr)
2189 return -ENOMEM;
2190
2191 len = strlen(xattr->name) + 1;
2192 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2193 GFP_KERNEL);
2194 if (!new_xattr->name) {
2195 kfree(new_xattr);
2196 return -ENOMEM;
2197 }
2198
2199 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2200 XATTR_SECURITY_PREFIX_LEN);
2201 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2202 xattr->name, len);
2203
2204 simple_xattr_list_add(&info->xattrs, new_xattr);
2205 }
2206
2207 return 0;
2208 }
2209
2210 static const struct xattr_handler *shmem_xattr_handlers[] = {
2211 #ifdef CONFIG_TMPFS_POSIX_ACL
2212 &posix_acl_access_xattr_handler,
2213 &posix_acl_default_xattr_handler,
2214 #endif
2215 NULL
2216 };
2217
2218 static int shmem_xattr_validate(const char *name)
2219 {
2220 struct { const char *prefix; size_t len; } arr[] = {
2221 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2222 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2223 };
2224 int i;
2225
2226 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2227 size_t preflen = arr[i].len;
2228 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2229 if (!name[preflen])
2230 return -EINVAL;
2231 return 0;
2232 }
2233 }
2234 return -EOPNOTSUPP;
2235 }
2236
2237 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2238 void *buffer, size_t size)
2239 {
2240 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2241 int err;
2242
2243 /*
2244 * If this is a request for a synthetic attribute in the system.*
2245 * namespace use the generic infrastructure to resolve a handler
2246 * for it via sb->s_xattr.
2247 */
2248 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2249 return generic_getxattr(dentry, name, buffer, size);
2250
2251 err = shmem_xattr_validate(name);
2252 if (err)
2253 return err;
2254
2255 return simple_xattr_get(&info->xattrs, name, buffer, size);
2256 }
2257
2258 static int shmem_setxattr(struct dentry *dentry, const char *name,
2259 const void *value, size_t size, int flags)
2260 {
2261 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2262 int err;
2263
2264 /*
2265 * If this is a request for a synthetic attribute in the system.*
2266 * namespace use the generic infrastructure to resolve a handler
2267 * for it via sb->s_xattr.
2268 */
2269 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2270 return generic_setxattr(dentry, name, value, size, flags);
2271
2272 err = shmem_xattr_validate(name);
2273 if (err)
2274 return err;
2275
2276 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2277 }
2278
2279 static int shmem_removexattr(struct dentry *dentry, const char *name)
2280 {
2281 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2282 int err;
2283
2284 /*
2285 * If this is a request for a synthetic attribute in the system.*
2286 * namespace use the generic infrastructure to resolve a handler
2287 * for it via sb->s_xattr.
2288 */
2289 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2290 return generic_removexattr(dentry, name);
2291
2292 err = shmem_xattr_validate(name);
2293 if (err)
2294 return err;
2295
2296 return simple_xattr_remove(&info->xattrs, name);
2297 }
2298
2299 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2300 {
2301 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2302 return simple_xattr_list(&info->xattrs, buffer, size);
2303 }
2304 #endif /* CONFIG_TMPFS_XATTR */
2305
2306 static const struct inode_operations shmem_short_symlink_operations = {
2307 .readlink = generic_readlink,
2308 .follow_link = shmem_follow_short_symlink,
2309 #ifdef CONFIG_TMPFS_XATTR
2310 .setxattr = shmem_setxattr,
2311 .getxattr = shmem_getxattr,
2312 .listxattr = shmem_listxattr,
2313 .removexattr = shmem_removexattr,
2314 #endif
2315 };
2316
2317 static const struct inode_operations shmem_symlink_inode_operations = {
2318 .readlink = generic_readlink,
2319 .follow_link = shmem_follow_link,
2320 .put_link = shmem_put_link,
2321 #ifdef CONFIG_TMPFS_XATTR
2322 .setxattr = shmem_setxattr,
2323 .getxattr = shmem_getxattr,
2324 .listxattr = shmem_listxattr,
2325 .removexattr = shmem_removexattr,
2326 #endif
2327 };
2328
2329 static struct dentry *shmem_get_parent(struct dentry *child)
2330 {
2331 return ERR_PTR(-ESTALE);
2332 }
2333
2334 static int shmem_match(struct inode *ino, void *vfh)
2335 {
2336 __u32 *fh = vfh;
2337 __u64 inum = fh[2];
2338 inum = (inum << 32) | fh[1];
2339 return ino->i_ino == inum && fh[0] == ino->i_generation;
2340 }
2341
2342 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2343 struct fid *fid, int fh_len, int fh_type)
2344 {
2345 struct inode *inode;
2346 struct dentry *dentry = NULL;
2347 u64 inum;
2348
2349 if (fh_len < 3)
2350 return NULL;
2351
2352 inum = fid->raw[2];
2353 inum = (inum << 32) | fid->raw[1];
2354
2355 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2356 shmem_match, fid->raw);
2357 if (inode) {
2358 dentry = d_find_alias(inode);
2359 iput(inode);
2360 }
2361
2362 return dentry;
2363 }
2364
2365 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2366 struct inode *parent)
2367 {
2368 if (*len < 3) {
2369 *len = 3;
2370 return FILEID_INVALID;
2371 }
2372
2373 if (inode_unhashed(inode)) {
2374 /* Unfortunately insert_inode_hash is not idempotent,
2375 * so as we hash inodes here rather than at creation
2376 * time, we need a lock to ensure we only try
2377 * to do it once
2378 */
2379 static DEFINE_SPINLOCK(lock);
2380 spin_lock(&lock);
2381 if (inode_unhashed(inode))
2382 __insert_inode_hash(inode,
2383 inode->i_ino + inode->i_generation);
2384 spin_unlock(&lock);
2385 }
2386
2387 fh[0] = inode->i_generation;
2388 fh[1] = inode->i_ino;
2389 fh[2] = ((__u64)inode->i_ino) >> 32;
2390
2391 *len = 3;
2392 return 1;
2393 }
2394
2395 static const struct export_operations shmem_export_ops = {
2396 .get_parent = shmem_get_parent,
2397 .encode_fh = shmem_encode_fh,
2398 .fh_to_dentry = shmem_fh_to_dentry,
2399 };
2400
2401 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2402 bool remount)
2403 {
2404 char *this_char, *value, *rest;
2405 struct mempolicy *mpol = NULL;
2406 uid_t uid;
2407 gid_t gid;
2408
2409 while (options != NULL) {
2410 this_char = options;
2411 for (;;) {
2412 /*
2413 * NUL-terminate this option: unfortunately,
2414 * mount options form a comma-separated list,
2415 * but mpol's nodelist may also contain commas.
2416 */
2417 options = strchr(options, ',');
2418 if (options == NULL)
2419 break;
2420 options++;
2421 if (!isdigit(*options)) {
2422 options[-1] = '\0';
2423 break;
2424 }
2425 }
2426 if (!*this_char)
2427 continue;
2428 if ((value = strchr(this_char,'=')) != NULL) {
2429 *value++ = 0;
2430 } else {
2431 printk(KERN_ERR
2432 "tmpfs: No value for mount option '%s'\n",
2433 this_char);
2434 goto error;
2435 }
2436
2437 if (!strcmp(this_char,"size")) {
2438 unsigned long long size;
2439 size = memparse(value,&rest);
2440 if (*rest == '%') {
2441 size <<= PAGE_SHIFT;
2442 size *= totalram_pages;
2443 do_div(size, 100);
2444 rest++;
2445 }
2446 if (*rest)
2447 goto bad_val;
2448 sbinfo->max_blocks =
2449 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2450 } else if (!strcmp(this_char,"nr_blocks")) {
2451 sbinfo->max_blocks = memparse(value, &rest);
2452 if (*rest)
2453 goto bad_val;
2454 } else if (!strcmp(this_char,"nr_inodes")) {
2455 sbinfo->max_inodes = memparse(value, &rest);
2456 if (*rest)
2457 goto bad_val;
2458 } else if (!strcmp(this_char,"mode")) {
2459 if (remount)
2460 continue;
2461 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2462 if (*rest)
2463 goto bad_val;
2464 } else if (!strcmp(this_char,"uid")) {
2465 if (remount)
2466 continue;
2467 uid = simple_strtoul(value, &rest, 0);
2468 if (*rest)
2469 goto bad_val;
2470 sbinfo->uid = make_kuid(current_user_ns(), uid);
2471 if (!uid_valid(sbinfo->uid))
2472 goto bad_val;
2473 } else if (!strcmp(this_char,"gid")) {
2474 if (remount)
2475 continue;
2476 gid = simple_strtoul(value, &rest, 0);
2477 if (*rest)
2478 goto bad_val;
2479 sbinfo->gid = make_kgid(current_user_ns(), gid);
2480 if (!gid_valid(sbinfo->gid))
2481 goto bad_val;
2482 } else if (!strcmp(this_char,"mpol")) {
2483 mpol_put(mpol);
2484 mpol = NULL;
2485 if (mpol_parse_str(value, &mpol))
2486 goto bad_val;
2487 } else {
2488 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2489 this_char);
2490 goto error;
2491 }
2492 }
2493 sbinfo->mpol = mpol;
2494 return 0;
2495
2496 bad_val:
2497 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2498 value, this_char);
2499 error:
2500 mpol_put(mpol);
2501 return 1;
2502
2503 }
2504
2505 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2506 {
2507 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2508 struct shmem_sb_info config = *sbinfo;
2509 unsigned long inodes;
2510 int error = -EINVAL;
2511
2512 config.mpol = NULL;
2513 if (shmem_parse_options(data, &config, true))
2514 return error;
2515
2516 spin_lock(&sbinfo->stat_lock);
2517 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2518 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2519 goto out;
2520 if (config.max_inodes < inodes)
2521 goto out;
2522 /*
2523 * Those tests disallow limited->unlimited while any are in use;
2524 * but we must separately disallow unlimited->limited, because
2525 * in that case we have no record of how much is already in use.
2526 */
2527 if (config.max_blocks && !sbinfo->max_blocks)
2528 goto out;
2529 if (config.max_inodes && !sbinfo->max_inodes)
2530 goto out;
2531
2532 error = 0;
2533 sbinfo->max_blocks = config.max_blocks;
2534 sbinfo->max_inodes = config.max_inodes;
2535 sbinfo->free_inodes = config.max_inodes - inodes;
2536
2537 /*
2538 * Preserve previous mempolicy unless mpol remount option was specified.
2539 */
2540 if (config.mpol) {
2541 mpol_put(sbinfo->mpol);
2542 sbinfo->mpol = config.mpol; /* transfers initial ref */
2543 }
2544 out:
2545 spin_unlock(&sbinfo->stat_lock);
2546 return error;
2547 }
2548
2549 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2550 {
2551 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2552
2553 if (sbinfo->max_blocks != shmem_default_max_blocks())
2554 seq_printf(seq, ",size=%luk",
2555 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2556 if (sbinfo->max_inodes != shmem_default_max_inodes())
2557 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2558 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2559 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2560 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2561 seq_printf(seq, ",uid=%u",
2562 from_kuid_munged(&init_user_ns, sbinfo->uid));
2563 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2564 seq_printf(seq, ",gid=%u",
2565 from_kgid_munged(&init_user_ns, sbinfo->gid));
2566 shmem_show_mpol(seq, sbinfo->mpol);
2567 return 0;
2568 }
2569 #endif /* CONFIG_TMPFS */
2570
2571 static void shmem_put_super(struct super_block *sb)
2572 {
2573 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2574
2575 percpu_counter_destroy(&sbinfo->used_blocks);
2576 mpol_put(sbinfo->mpol);
2577 kfree(sbinfo);
2578 sb->s_fs_info = NULL;
2579 }
2580
2581 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2582 {
2583 struct inode *inode;
2584 struct shmem_sb_info *sbinfo;
2585 int err = -ENOMEM;
2586
2587 /* Round up to L1_CACHE_BYTES to resist false sharing */
2588 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2589 L1_CACHE_BYTES), GFP_KERNEL);
2590 if (!sbinfo)
2591 return -ENOMEM;
2592
2593 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2594 sbinfo->uid = current_fsuid();
2595 sbinfo->gid = current_fsgid();
2596 sb->s_fs_info = sbinfo;
2597
2598 #ifdef CONFIG_TMPFS
2599 /*
2600 * Per default we only allow half of the physical ram per
2601 * tmpfs instance, limiting inodes to one per page of lowmem;
2602 * but the internal instance is left unlimited.
2603 */
2604 if (!(sb->s_flags & MS_KERNMOUNT)) {
2605 sbinfo->max_blocks = shmem_default_max_blocks();
2606 sbinfo->max_inodes = shmem_default_max_inodes();
2607 if (shmem_parse_options(data, sbinfo, false)) {
2608 err = -EINVAL;
2609 goto failed;
2610 }
2611 } else {
2612 sb->s_flags |= MS_NOUSER;
2613 }
2614 sb->s_export_op = &shmem_export_ops;
2615 sb->s_flags |= MS_NOSEC;
2616 #else
2617 sb->s_flags |= MS_NOUSER;
2618 #endif
2619
2620 spin_lock_init(&sbinfo->stat_lock);
2621 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2622 goto failed;
2623 sbinfo->free_inodes = sbinfo->max_inodes;
2624
2625 sb->s_maxbytes = MAX_LFS_FILESIZE;
2626 sb->s_blocksize = PAGE_CACHE_SIZE;
2627 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2628 sb->s_magic = TMPFS_MAGIC;
2629 sb->s_op = &shmem_ops;
2630 sb->s_time_gran = 1;
2631 #ifdef CONFIG_TMPFS_XATTR
2632 sb->s_xattr = shmem_xattr_handlers;
2633 #endif
2634 #ifdef CONFIG_TMPFS_POSIX_ACL
2635 sb->s_flags |= MS_POSIXACL;
2636 #endif
2637
2638 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2639 if (!inode)
2640 goto failed;
2641 inode->i_uid = sbinfo->uid;
2642 inode->i_gid = sbinfo->gid;
2643 sb->s_root = d_make_root(inode);
2644 if (!sb->s_root)
2645 goto failed;
2646 return 0;
2647
2648 failed:
2649 shmem_put_super(sb);
2650 return err;
2651 }
2652
2653 static struct kmem_cache *shmem_inode_cachep;
2654
2655 static struct inode *shmem_alloc_inode(struct super_block *sb)
2656 {
2657 struct shmem_inode_info *info;
2658 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2659 if (!info)
2660 return NULL;
2661 return &info->vfs_inode;
2662 }
2663
2664 static void shmem_destroy_callback(struct rcu_head *head)
2665 {
2666 struct inode *inode = container_of(head, struct inode, i_rcu);
2667 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2668 }
2669
2670 static void shmem_destroy_inode(struct inode *inode)
2671 {
2672 if (S_ISREG(inode->i_mode))
2673 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2674 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2675 }
2676
2677 static void shmem_init_inode(void *foo)
2678 {
2679 struct shmem_inode_info *info = foo;
2680 inode_init_once(&info->vfs_inode);
2681 }
2682
2683 static int shmem_init_inodecache(void)
2684 {
2685 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2686 sizeof(struct shmem_inode_info),
2687 0, SLAB_PANIC, shmem_init_inode);
2688 return 0;
2689 }
2690
2691 static void shmem_destroy_inodecache(void)
2692 {
2693 kmem_cache_destroy(shmem_inode_cachep);
2694 }
2695
2696 static const struct address_space_operations shmem_aops = {
2697 .writepage = shmem_writepage,
2698 .set_page_dirty = __set_page_dirty_no_writeback,
2699 #ifdef CONFIG_TMPFS
2700 .write_begin = shmem_write_begin,
2701 .write_end = shmem_write_end,
2702 #endif
2703 .migratepage = migrate_page,
2704 .error_remove_page = generic_error_remove_page,
2705 };
2706
2707 static const struct file_operations shmem_file_operations = {
2708 .mmap = shmem_mmap,
2709 #ifdef CONFIG_TMPFS
2710 .llseek = shmem_file_llseek,
2711 .read = do_sync_read,
2712 .write = do_sync_write,
2713 .aio_read = shmem_file_aio_read,
2714 .aio_write = generic_file_aio_write,
2715 .fsync = noop_fsync,
2716 .splice_read = shmem_file_splice_read,
2717 .splice_write = generic_file_splice_write,
2718 .fallocate = shmem_fallocate,
2719 #endif
2720 };
2721
2722 static const struct inode_operations shmem_inode_operations = {
2723 .setattr = shmem_setattr,
2724 #ifdef CONFIG_TMPFS_XATTR
2725 .setxattr = shmem_setxattr,
2726 .getxattr = shmem_getxattr,
2727 .listxattr = shmem_listxattr,
2728 .removexattr = shmem_removexattr,
2729 .set_acl = simple_set_acl,
2730 #endif
2731 };
2732
2733 static const struct inode_operations shmem_dir_inode_operations = {
2734 #ifdef CONFIG_TMPFS
2735 .create = shmem_create,
2736 .lookup = simple_lookup,
2737 .link = shmem_link,
2738 .unlink = shmem_unlink,
2739 .symlink = shmem_symlink,
2740 .mkdir = shmem_mkdir,
2741 .rmdir = shmem_rmdir,
2742 .mknod = shmem_mknod,
2743 .rename = shmem_rename,
2744 .tmpfile = shmem_tmpfile,
2745 #endif
2746 #ifdef CONFIG_TMPFS_XATTR
2747 .setxattr = shmem_setxattr,
2748 .getxattr = shmem_getxattr,
2749 .listxattr = shmem_listxattr,
2750 .removexattr = shmem_removexattr,
2751 #endif
2752 #ifdef CONFIG_TMPFS_POSIX_ACL
2753 .setattr = shmem_setattr,
2754 .set_acl = simple_set_acl,
2755 #endif
2756 };
2757
2758 static const struct inode_operations shmem_special_inode_operations = {
2759 #ifdef CONFIG_TMPFS_XATTR
2760 .setxattr = shmem_setxattr,
2761 .getxattr = shmem_getxattr,
2762 .listxattr = shmem_listxattr,
2763 .removexattr = shmem_removexattr,
2764 #endif
2765 #ifdef CONFIG_TMPFS_POSIX_ACL
2766 .setattr = shmem_setattr,
2767 .set_acl = simple_set_acl,
2768 #endif
2769 };
2770
2771 static const struct super_operations shmem_ops = {
2772 .alloc_inode = shmem_alloc_inode,
2773 .destroy_inode = shmem_destroy_inode,
2774 #ifdef CONFIG_TMPFS
2775 .statfs = shmem_statfs,
2776 .remount_fs = shmem_remount_fs,
2777 .show_options = shmem_show_options,
2778 #endif
2779 .evict_inode = shmem_evict_inode,
2780 .drop_inode = generic_delete_inode,
2781 .put_super = shmem_put_super,
2782 };
2783
2784 static const struct vm_operations_struct shmem_vm_ops = {
2785 .fault = shmem_fault,
2786 #ifdef CONFIG_NUMA
2787 .set_policy = shmem_set_policy,
2788 .get_policy = shmem_get_policy,
2789 #endif
2790 .remap_pages = generic_file_remap_pages,
2791 };
2792
2793 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2794 int flags, const char *dev_name, void *data)
2795 {
2796 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2797 }
2798
2799 static struct file_system_type shmem_fs_type = {
2800 .owner = THIS_MODULE,
2801 .name = "tmpfs",
2802 .mount = shmem_mount,
2803 .kill_sb = kill_litter_super,
2804 .fs_flags = FS_USERNS_MOUNT,
2805 };
2806
2807 int __init shmem_init(void)
2808 {
2809 int error;
2810
2811 /* If rootfs called this, don't re-init */
2812 if (shmem_inode_cachep)
2813 return 0;
2814
2815 error = bdi_init(&shmem_backing_dev_info);
2816 if (error)
2817 goto out4;
2818
2819 error = shmem_init_inodecache();
2820 if (error)
2821 goto out3;
2822
2823 error = register_filesystem(&shmem_fs_type);
2824 if (error) {
2825 printk(KERN_ERR "Could not register tmpfs\n");
2826 goto out2;
2827 }
2828
2829 shm_mnt = kern_mount(&shmem_fs_type);
2830 if (IS_ERR(shm_mnt)) {
2831 error = PTR_ERR(shm_mnt);
2832 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2833 goto out1;
2834 }
2835 return 0;
2836
2837 out1:
2838 unregister_filesystem(&shmem_fs_type);
2839 out2:
2840 shmem_destroy_inodecache();
2841 out3:
2842 bdi_destroy(&shmem_backing_dev_info);
2843 out4:
2844 shm_mnt = ERR_PTR(error);
2845 return error;
2846 }
2847
2848 #else /* !CONFIG_SHMEM */
2849
2850 /*
2851 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2852 *
2853 * This is intended for small system where the benefits of the full
2854 * shmem code (swap-backed and resource-limited) are outweighed by
2855 * their complexity. On systems without swap this code should be
2856 * effectively equivalent, but much lighter weight.
2857 */
2858
2859 static struct file_system_type shmem_fs_type = {
2860 .name = "tmpfs",
2861 .mount = ramfs_mount,
2862 .kill_sb = kill_litter_super,
2863 .fs_flags = FS_USERNS_MOUNT,
2864 };
2865
2866 int __init shmem_init(void)
2867 {
2868 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2869
2870 shm_mnt = kern_mount(&shmem_fs_type);
2871 BUG_ON(IS_ERR(shm_mnt));
2872
2873 return 0;
2874 }
2875
2876 int shmem_unuse(swp_entry_t swap, struct page *page)
2877 {
2878 return 0;
2879 }
2880
2881 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2882 {
2883 return 0;
2884 }
2885
2886 void shmem_unlock_mapping(struct address_space *mapping)
2887 {
2888 }
2889
2890 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2891 {
2892 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2893 }
2894 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2895
2896 #define shmem_vm_ops generic_file_vm_ops
2897 #define shmem_file_operations ramfs_file_operations
2898 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2899 #define shmem_acct_size(flags, size) 0
2900 #define shmem_unacct_size(flags, size) do {} while (0)
2901
2902 #endif /* CONFIG_SHMEM */
2903
2904 /* common code */
2905
2906 static struct dentry_operations anon_ops = {
2907 .d_dname = simple_dname
2908 };
2909
2910 static struct file *__shmem_file_setup(const char *name, loff_t size,
2911 unsigned long flags, unsigned int i_flags)
2912 {
2913 struct file *res;
2914 struct inode *inode;
2915 struct path path;
2916 struct super_block *sb;
2917 struct qstr this;
2918
2919 if (IS_ERR(shm_mnt))
2920 return ERR_CAST(shm_mnt);
2921
2922 if (size < 0 || size > MAX_LFS_FILESIZE)
2923 return ERR_PTR(-EINVAL);
2924
2925 if (shmem_acct_size(flags, size))
2926 return ERR_PTR(-ENOMEM);
2927
2928 res = ERR_PTR(-ENOMEM);
2929 this.name = name;
2930 this.len = strlen(name);
2931 this.hash = 0; /* will go */
2932 sb = shm_mnt->mnt_sb;
2933 path.dentry = d_alloc_pseudo(sb, &this);
2934 if (!path.dentry)
2935 goto put_memory;
2936 d_set_d_op(path.dentry, &anon_ops);
2937 path.mnt = mntget(shm_mnt);
2938
2939 res = ERR_PTR(-ENOSPC);
2940 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2941 if (!inode)
2942 goto put_dentry;
2943
2944 inode->i_flags |= i_flags;
2945 d_instantiate(path.dentry, inode);
2946 inode->i_size = size;
2947 clear_nlink(inode); /* It is unlinked */
2948 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2949 if (IS_ERR(res))
2950 goto put_dentry;
2951
2952 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2953 &shmem_file_operations);
2954 if (IS_ERR(res))
2955 goto put_dentry;
2956
2957 return res;
2958
2959 put_dentry:
2960 path_put(&path);
2961 put_memory:
2962 shmem_unacct_size(flags, size);
2963 return res;
2964 }
2965
2966 /**
2967 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2968 * kernel internal. There will be NO LSM permission checks against the
2969 * underlying inode. So users of this interface must do LSM checks at a
2970 * higher layer. The one user is the big_key implementation. LSM checks
2971 * are provided at the key level rather than the inode level.
2972 * @name: name for dentry (to be seen in /proc/<pid>/maps
2973 * @size: size to be set for the file
2974 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2975 */
2976 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2977 {
2978 return __shmem_file_setup(name, size, flags, S_PRIVATE);
2979 }
2980
2981 /**
2982 * shmem_file_setup - get an unlinked file living in tmpfs
2983 * @name: name for dentry (to be seen in /proc/<pid>/maps
2984 * @size: size to be set for the file
2985 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2986 */
2987 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2988 {
2989 return __shmem_file_setup(name, size, flags, 0);
2990 }
2991 EXPORT_SYMBOL_GPL(shmem_file_setup);
2992
2993 /**
2994 * shmem_zero_setup - setup a shared anonymous mapping
2995 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2996 */
2997 int shmem_zero_setup(struct vm_area_struct *vma)
2998 {
2999 struct file *file;
3000 loff_t size = vma->vm_end - vma->vm_start;
3001
3002 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3003 if (IS_ERR(file))
3004 return PTR_ERR(file);
3005
3006 if (vma->vm_file)
3007 fput(vma->vm_file);
3008 vma->vm_file = file;
3009 vma->vm_ops = &shmem_vm_ops;
3010 return 0;
3011 }
3012
3013 /**
3014 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3015 * @mapping: the page's address_space
3016 * @index: the page index
3017 * @gfp: the page allocator flags to use if allocating
3018 *
3019 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3020 * with any new page allocations done using the specified allocation flags.
3021 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3022 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3023 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3024 *
3025 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3026 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3027 */
3028 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3029 pgoff_t index, gfp_t gfp)
3030 {
3031 #ifdef CONFIG_SHMEM
3032 struct inode *inode = mapping->host;
3033 struct page *page;
3034 int error;
3035
3036 BUG_ON(mapping->a_ops != &shmem_aops);
3037 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3038 if (error)
3039 page = ERR_PTR(error);
3040 else
3041 unlock_page(page);
3042 return page;
3043 #else
3044 /*
3045 * The tiny !SHMEM case uses ramfs without swap
3046 */
3047 return read_cache_page_gfp(mapping, index, gfp);
3048 #endif
3049 }
3050 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);