]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/shmem.c
coresight: cti: Make some symbols static
[mirror_ubuntu-jammy-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97
98 /*
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
102 */
103 struct shmem_falloc {
104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109 };
110
111 struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
115 kuid_t uid;
116 kgid_t gid;
117 umode_t mode;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp,
148 gfp_t gfp, struct vm_area_struct *vma,
149 struct vm_fault *vmf, vm_fault_t *fault_type);
150
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152 struct page **pagep, enum sgp_type sgp)
153 {
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160 return sb->s_fs_info;
161 }
162
163 /*
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
168 */
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171 return (flags & VM_NORESERVE) ?
172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177 if (!(flags & VM_NORESERVE))
178 vm_unacct_memory(VM_ACCT(size));
179 }
180
181 static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
183 {
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 }
191 return 0;
192 }
193
194 /*
195 * ... whereas tmpfs objects are accounted incrementally as
196 * pages are allocated, in order to allow large sparse files.
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199 */
200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202 if (!(flags & VM_NORESERVE))
203 return 0;
204
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
207 }
208
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211 if (flags & VM_NORESERVE)
212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (shmem_acct_block(info->flags, pages))
221 return false;
222
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
226 goto unacct;
227 percpu_counter_add(&sbinfo->used_blocks, pages);
228 }
229
230 return true;
231
232 unacct:
233 shmem_unacct_blocks(info->flags, pages);
234 return false;
235 }
236
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
245 }
246
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255
256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258 return vma->vm_ops == &shmem_vm_ops;
259 }
260
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263
264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
271 return -ENOSPC;
272 }
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
275 }
276 return 0;
277 }
278
279 static void shmem_free_inode(struct super_block *sb)
280 {
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
286 }
287 }
288
289 /**
290 * shmem_recalc_inode - recalculate the block usage of an inode
291 * @inode: inode to recalc
292 *
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
295 *
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298 *
299 * It has to be called with the spinlock held.
300 */
301 static void shmem_recalc_inode(struct inode *inode)
302 {
303 struct shmem_inode_info *info = SHMEM_I(inode);
304 long freed;
305
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 if (freed > 0) {
308 info->alloced -= freed;
309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 shmem_inode_unacct_blocks(inode, freed);
311 }
312 }
313
314 bool shmem_charge(struct inode *inode, long pages)
315 {
316 struct shmem_inode_info *info = SHMEM_I(inode);
317 unsigned long flags;
318
319 if (!shmem_inode_acct_block(inode, pages))
320 return false;
321
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
324
325 spin_lock_irqsave(&info->lock, flags);
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
329 spin_unlock_irqrestore(&info->lock, flags);
330
331 return true;
332 }
333
334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336 struct shmem_inode_info *info = SHMEM_I(inode);
337 unsigned long flags;
338
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341 spin_lock_irqsave(&info->lock, flags);
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
345 spin_unlock_irqrestore(&info->lock, flags);
346
347 shmem_inode_unacct_blocks(inode, pages);
348 }
349
350 /*
351 * Replace item expected in xarray by a new item, while holding xa_lock.
352 */
353 static int shmem_replace_entry(struct address_space *mapping,
354 pgoff_t index, void *expected, void *replacement)
355 {
356 XA_STATE(xas, &mapping->i_pages, index);
357 void *item;
358
359 VM_BUG_ON(!expected);
360 VM_BUG_ON(!replacement);
361 item = xas_load(&xas);
362 if (item != expected)
363 return -ENOENT;
364 xas_store(&xas, replacement);
365 return 0;
366 }
367
368 /*
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
371 *
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
374 */
375 static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
377 {
378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380
381 /*
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383 *
384 * SHMEM_HUGE_NEVER:
385 * disables huge pages for the mount;
386 * SHMEM_HUGE_ALWAYS:
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
391 * SHMEM_HUGE_ADVISE:
392 * only allocate huge pages if requested with fadvise()/madvise();
393 */
394
395 #define SHMEM_HUGE_NEVER 0
396 #define SHMEM_HUGE_ALWAYS 1
397 #define SHMEM_HUGE_WITHIN_SIZE 2
398 #define SHMEM_HUGE_ADVISE 3
399
400 /*
401 * Special values.
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403 *
404 * SHMEM_HUGE_DENY:
405 * disables huge on shm_mnt and all mounts, for emergency use;
406 * SHMEM_HUGE_FORCE:
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408 *
409 */
410 #define SHMEM_HUGE_DENY (-1)
411 #define SHMEM_HUGE_FORCE (-2)
412
413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415
416 static int shmem_huge __read_mostly;
417
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
420 {
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
433 return -EINVAL;
434 }
435 #endif
436
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
439 {
440 switch (huge) {
441 case SHMEM_HUGE_NEVER:
442 return "never";
443 case SHMEM_HUGE_ALWAYS:
444 return "always";
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
448 return "advise";
449 case SHMEM_HUGE_DENY:
450 return "deny";
451 case SHMEM_HUGE_FORCE:
452 return "force";
453 default:
454 VM_BUG_ON(1);
455 return "bad_val";
456 }
457 }
458 #endif
459
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
462 {
463 LIST_HEAD(list), *pos, *next;
464 LIST_HEAD(to_remove);
465 struct inode *inode;
466 struct shmem_inode_info *info;
467 struct page *page;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int removed = 0, split = 0;
470
471 if (list_empty(&sbinfo->shrinklist))
472 return SHRINK_STOP;
473
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478 /* pin the inode */
479 inode = igrab(&info->vfs_inode);
480
481 /* inode is about to be evicted */
482 if (!inode) {
483 list_del_init(&info->shrinklist);
484 removed++;
485 goto next;
486 }
487
488 /* Check if there's anything to gain */
489 if (round_up(inode->i_size, PAGE_SIZE) ==
490 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491 list_move(&info->shrinklist, &to_remove);
492 removed++;
493 goto next;
494 }
495
496 list_move(&info->shrinklist, &list);
497 next:
498 if (!--batch)
499 break;
500 }
501 spin_unlock(&sbinfo->shrinklist_lock);
502
503 list_for_each_safe(pos, next, &to_remove) {
504 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 inode = &info->vfs_inode;
506 list_del_init(&info->shrinklist);
507 iput(inode);
508 }
509
510 list_for_each_safe(pos, next, &list) {
511 int ret;
512
513 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 inode = &info->vfs_inode;
515
516 if (nr_to_split && split >= nr_to_split)
517 goto leave;
518
519 page = find_get_page(inode->i_mapping,
520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521 if (!page)
522 goto drop;
523
524 /* No huge page at the end of the file: nothing to split */
525 if (!PageTransHuge(page)) {
526 put_page(page);
527 goto drop;
528 }
529
530 /*
531 * Leave the inode on the list if we failed to lock
532 * the page at this time.
533 *
534 * Waiting for the lock may lead to deadlock in the
535 * reclaim path.
536 */
537 if (!trylock_page(page)) {
538 put_page(page);
539 goto leave;
540 }
541
542 ret = split_huge_page(page);
543 unlock_page(page);
544 put_page(page);
545
546 /* If split failed leave the inode on the list */
547 if (ret)
548 goto leave;
549
550 split++;
551 drop:
552 list_del_init(&info->shrinklist);
553 removed++;
554 leave:
555 iput(inode);
556 }
557
558 spin_lock(&sbinfo->shrinklist_lock);
559 list_splice_tail(&list, &sbinfo->shrinklist);
560 sbinfo->shrinklist_len -= removed;
561 spin_unlock(&sbinfo->shrinklist_lock);
562
563 return split;
564 }
565
566 static long shmem_unused_huge_scan(struct super_block *sb,
567 struct shrink_control *sc)
568 {
569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571 if (!READ_ONCE(sbinfo->shrinklist_len))
572 return SHRINK_STOP;
573
574 return shmem_unused_huge_shrink(sbinfo, sc, 0);
575 }
576
577 static long shmem_unused_huge_count(struct super_block *sb,
578 struct shrink_control *sc)
579 {
580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 return READ_ONCE(sbinfo->shrinklist_len);
582 }
583 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
584
585 #define shmem_huge SHMEM_HUGE_DENY
586
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 struct shrink_control *sc, unsigned long nr_to_split)
589 {
590 return 0;
591 }
592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
593
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595 {
596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 shmem_huge != SHMEM_HUGE_DENY)
599 return true;
600 return false;
601 }
602
603 /*
604 * Like add_to_page_cache_locked, but error if expected item has gone.
605 */
606 static int shmem_add_to_page_cache(struct page *page,
607 struct address_space *mapping,
608 pgoff_t index, void *expected, gfp_t gfp)
609 {
610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611 unsigned long i = 0;
612 unsigned long nr = compound_nr(page);
613
614 VM_BUG_ON_PAGE(PageTail(page), page);
615 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
618 VM_BUG_ON(expected && PageTransHuge(page));
619
620 page_ref_add(page, nr);
621 page->mapping = mapping;
622 page->index = index;
623
624 do {
625 void *entry;
626 xas_lock_irq(&xas);
627 entry = xas_find_conflict(&xas);
628 if (entry != expected)
629 xas_set_err(&xas, -EEXIST);
630 xas_create_range(&xas);
631 if (xas_error(&xas))
632 goto unlock;
633 next:
634 xas_store(&xas, page);
635 if (++i < nr) {
636 xas_next(&xas);
637 goto next;
638 }
639 if (PageTransHuge(page)) {
640 count_vm_event(THP_FILE_ALLOC);
641 __inc_node_page_state(page, NR_SHMEM_THPS);
642 }
643 mapping->nrpages += nr;
644 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
646 unlock:
647 xas_unlock_irq(&xas);
648 } while (xas_nomem(&xas, gfp));
649
650 if (xas_error(&xas)) {
651 page->mapping = NULL;
652 page_ref_sub(page, nr);
653 return xas_error(&xas);
654 }
655
656 return 0;
657 }
658
659 /*
660 * Like delete_from_page_cache, but substitutes swap for page.
661 */
662 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
663 {
664 struct address_space *mapping = page->mapping;
665 int error;
666
667 VM_BUG_ON_PAGE(PageCompound(page), page);
668
669 xa_lock_irq(&mapping->i_pages);
670 error = shmem_replace_entry(mapping, page->index, page, radswap);
671 page->mapping = NULL;
672 mapping->nrpages--;
673 __dec_node_page_state(page, NR_FILE_PAGES);
674 __dec_node_page_state(page, NR_SHMEM);
675 xa_unlock_irq(&mapping->i_pages);
676 put_page(page);
677 BUG_ON(error);
678 }
679
680 /*
681 * Remove swap entry from page cache, free the swap and its page cache.
682 */
683 static int shmem_free_swap(struct address_space *mapping,
684 pgoff_t index, void *radswap)
685 {
686 void *old;
687
688 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
689 if (old != radswap)
690 return -ENOENT;
691 free_swap_and_cache(radix_to_swp_entry(radswap));
692 return 0;
693 }
694
695 /*
696 * Determine (in bytes) how many of the shmem object's pages mapped by the
697 * given offsets are swapped out.
698 *
699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
700 * as long as the inode doesn't go away and racy results are not a problem.
701 */
702 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703 pgoff_t start, pgoff_t end)
704 {
705 XA_STATE(xas, &mapping->i_pages, start);
706 struct page *page;
707 unsigned long swapped = 0;
708
709 rcu_read_lock();
710 xas_for_each(&xas, page, end - 1) {
711 if (xas_retry(&xas, page))
712 continue;
713 if (xa_is_value(page))
714 swapped++;
715
716 if (need_resched()) {
717 xas_pause(&xas);
718 cond_resched_rcu();
719 }
720 }
721
722 rcu_read_unlock();
723
724 return swapped << PAGE_SHIFT;
725 }
726
727 /*
728 * Determine (in bytes) how many of the shmem object's pages mapped by the
729 * given vma is swapped out.
730 *
731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
732 * as long as the inode doesn't go away and racy results are not a problem.
733 */
734 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
735 {
736 struct inode *inode = file_inode(vma->vm_file);
737 struct shmem_inode_info *info = SHMEM_I(inode);
738 struct address_space *mapping = inode->i_mapping;
739 unsigned long swapped;
740
741 /* Be careful as we don't hold info->lock */
742 swapped = READ_ONCE(info->swapped);
743
744 /*
745 * The easier cases are when the shmem object has nothing in swap, or
746 * the vma maps it whole. Then we can simply use the stats that we
747 * already track.
748 */
749 if (!swapped)
750 return 0;
751
752 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753 return swapped << PAGE_SHIFT;
754
755 /* Here comes the more involved part */
756 return shmem_partial_swap_usage(mapping,
757 linear_page_index(vma, vma->vm_start),
758 linear_page_index(vma, vma->vm_end));
759 }
760
761 /*
762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
763 */
764 void shmem_unlock_mapping(struct address_space *mapping)
765 {
766 struct pagevec pvec;
767 pgoff_t indices[PAGEVEC_SIZE];
768 pgoff_t index = 0;
769
770 pagevec_init(&pvec);
771 /*
772 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
773 */
774 while (!mapping_unevictable(mapping)) {
775 /*
776 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
778 */
779 pvec.nr = find_get_entries(mapping, index,
780 PAGEVEC_SIZE, pvec.pages, indices);
781 if (!pvec.nr)
782 break;
783 index = indices[pvec.nr - 1] + 1;
784 pagevec_remove_exceptionals(&pvec);
785 check_move_unevictable_pages(&pvec);
786 pagevec_release(&pvec);
787 cond_resched();
788 }
789 }
790
791 /*
792 * Check whether a hole-punch or truncation needs to split a huge page,
793 * returning true if no split was required, or the split has been successful.
794 *
795 * Eviction (or truncation to 0 size) should never need to split a huge page;
796 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
797 * head, and then succeeded to trylock on tail.
798 *
799 * A split can only succeed when there are no additional references on the
800 * huge page: so the split below relies upon find_get_entries() having stopped
801 * when it found a subpage of the huge page, without getting further references.
802 */
803 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
804 {
805 if (!PageTransCompound(page))
806 return true;
807
808 /* Just proceed to delete a huge page wholly within the range punched */
809 if (PageHead(page) &&
810 page->index >= start && page->index + HPAGE_PMD_NR <= end)
811 return true;
812
813 /* Try to split huge page, so we can truly punch the hole or truncate */
814 return split_huge_page(page) >= 0;
815 }
816
817 /*
818 * Remove range of pages and swap entries from page cache, and free them.
819 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
820 */
821 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
822 bool unfalloc)
823 {
824 struct address_space *mapping = inode->i_mapping;
825 struct shmem_inode_info *info = SHMEM_I(inode);
826 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
827 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
828 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
829 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
830 struct pagevec pvec;
831 pgoff_t indices[PAGEVEC_SIZE];
832 long nr_swaps_freed = 0;
833 pgoff_t index;
834 int i;
835
836 if (lend == -1)
837 end = -1; /* unsigned, so actually very big */
838
839 pagevec_init(&pvec);
840 index = start;
841 while (index < end) {
842 pvec.nr = find_get_entries(mapping, index,
843 min(end - index, (pgoff_t)PAGEVEC_SIZE),
844 pvec.pages, indices);
845 if (!pvec.nr)
846 break;
847 for (i = 0; i < pagevec_count(&pvec); i++) {
848 struct page *page = pvec.pages[i];
849
850 index = indices[i];
851 if (index >= end)
852 break;
853
854 if (xa_is_value(page)) {
855 if (unfalloc)
856 continue;
857 nr_swaps_freed += !shmem_free_swap(mapping,
858 index, page);
859 continue;
860 }
861
862 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
863
864 if (!trylock_page(page))
865 continue;
866
867 if ((!unfalloc || !PageUptodate(page)) &&
868 page_mapping(page) == mapping) {
869 VM_BUG_ON_PAGE(PageWriteback(page), page);
870 if (shmem_punch_compound(page, start, end))
871 truncate_inode_page(mapping, page);
872 }
873 unlock_page(page);
874 }
875 pagevec_remove_exceptionals(&pvec);
876 pagevec_release(&pvec);
877 cond_resched();
878 index++;
879 }
880
881 if (partial_start) {
882 struct page *page = NULL;
883 shmem_getpage(inode, start - 1, &page, SGP_READ);
884 if (page) {
885 unsigned int top = PAGE_SIZE;
886 if (start > end) {
887 top = partial_end;
888 partial_end = 0;
889 }
890 zero_user_segment(page, partial_start, top);
891 set_page_dirty(page);
892 unlock_page(page);
893 put_page(page);
894 }
895 }
896 if (partial_end) {
897 struct page *page = NULL;
898 shmem_getpage(inode, end, &page, SGP_READ);
899 if (page) {
900 zero_user_segment(page, 0, partial_end);
901 set_page_dirty(page);
902 unlock_page(page);
903 put_page(page);
904 }
905 }
906 if (start >= end)
907 return;
908
909 index = start;
910 while (index < end) {
911 cond_resched();
912
913 pvec.nr = find_get_entries(mapping, index,
914 min(end - index, (pgoff_t)PAGEVEC_SIZE),
915 pvec.pages, indices);
916 if (!pvec.nr) {
917 /* If all gone or hole-punch or unfalloc, we're done */
918 if (index == start || end != -1)
919 break;
920 /* But if truncating, restart to make sure all gone */
921 index = start;
922 continue;
923 }
924 for (i = 0; i < pagevec_count(&pvec); i++) {
925 struct page *page = pvec.pages[i];
926
927 index = indices[i];
928 if (index >= end)
929 break;
930
931 if (xa_is_value(page)) {
932 if (unfalloc)
933 continue;
934 if (shmem_free_swap(mapping, index, page)) {
935 /* Swap was replaced by page: retry */
936 index--;
937 break;
938 }
939 nr_swaps_freed++;
940 continue;
941 }
942
943 lock_page(page);
944
945 if (!unfalloc || !PageUptodate(page)) {
946 if (page_mapping(page) != mapping) {
947 /* Page was replaced by swap: retry */
948 unlock_page(page);
949 index--;
950 break;
951 }
952 VM_BUG_ON_PAGE(PageWriteback(page), page);
953 if (shmem_punch_compound(page, start, end))
954 truncate_inode_page(mapping, page);
955 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
956 /* Wipe the page and don't get stuck */
957 clear_highpage(page);
958 flush_dcache_page(page);
959 set_page_dirty(page);
960 if (index <
961 round_up(start, HPAGE_PMD_NR))
962 start = index + 1;
963 }
964 }
965 unlock_page(page);
966 }
967 pagevec_remove_exceptionals(&pvec);
968 pagevec_release(&pvec);
969 index++;
970 }
971
972 spin_lock_irq(&info->lock);
973 info->swapped -= nr_swaps_freed;
974 shmem_recalc_inode(inode);
975 spin_unlock_irq(&info->lock);
976 }
977
978 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
979 {
980 shmem_undo_range(inode, lstart, lend, false);
981 inode->i_ctime = inode->i_mtime = current_time(inode);
982 }
983 EXPORT_SYMBOL_GPL(shmem_truncate_range);
984
985 static int shmem_getattr(const struct path *path, struct kstat *stat,
986 u32 request_mask, unsigned int query_flags)
987 {
988 struct inode *inode = path->dentry->d_inode;
989 struct shmem_inode_info *info = SHMEM_I(inode);
990 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
991
992 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
993 spin_lock_irq(&info->lock);
994 shmem_recalc_inode(inode);
995 spin_unlock_irq(&info->lock);
996 }
997 generic_fillattr(inode, stat);
998
999 if (is_huge_enabled(sb_info))
1000 stat->blksize = HPAGE_PMD_SIZE;
1001
1002 return 0;
1003 }
1004
1005 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1006 {
1007 struct inode *inode = d_inode(dentry);
1008 struct shmem_inode_info *info = SHMEM_I(inode);
1009 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1010 int error;
1011
1012 error = setattr_prepare(dentry, attr);
1013 if (error)
1014 return error;
1015
1016 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1017 loff_t oldsize = inode->i_size;
1018 loff_t newsize = attr->ia_size;
1019
1020 /* protected by i_mutex */
1021 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1022 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1023 return -EPERM;
1024
1025 if (newsize != oldsize) {
1026 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1027 oldsize, newsize);
1028 if (error)
1029 return error;
1030 i_size_write(inode, newsize);
1031 inode->i_ctime = inode->i_mtime = current_time(inode);
1032 }
1033 if (newsize <= oldsize) {
1034 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1035 if (oldsize > holebegin)
1036 unmap_mapping_range(inode->i_mapping,
1037 holebegin, 0, 1);
1038 if (info->alloced)
1039 shmem_truncate_range(inode,
1040 newsize, (loff_t)-1);
1041 /* unmap again to remove racily COWed private pages */
1042 if (oldsize > holebegin)
1043 unmap_mapping_range(inode->i_mapping,
1044 holebegin, 0, 1);
1045
1046 /*
1047 * Part of the huge page can be beyond i_size: subject
1048 * to shrink under memory pressure.
1049 */
1050 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1051 spin_lock(&sbinfo->shrinklist_lock);
1052 /*
1053 * _careful to defend against unlocked access to
1054 * ->shrink_list in shmem_unused_huge_shrink()
1055 */
1056 if (list_empty_careful(&info->shrinklist)) {
1057 list_add_tail(&info->shrinklist,
1058 &sbinfo->shrinklist);
1059 sbinfo->shrinklist_len++;
1060 }
1061 spin_unlock(&sbinfo->shrinklist_lock);
1062 }
1063 }
1064 }
1065
1066 setattr_copy(inode, attr);
1067 if (attr->ia_valid & ATTR_MODE)
1068 error = posix_acl_chmod(inode, inode->i_mode);
1069 return error;
1070 }
1071
1072 static void shmem_evict_inode(struct inode *inode)
1073 {
1074 struct shmem_inode_info *info = SHMEM_I(inode);
1075 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1076
1077 if (inode->i_mapping->a_ops == &shmem_aops) {
1078 shmem_unacct_size(info->flags, inode->i_size);
1079 inode->i_size = 0;
1080 shmem_truncate_range(inode, 0, (loff_t)-1);
1081 if (!list_empty(&info->shrinklist)) {
1082 spin_lock(&sbinfo->shrinklist_lock);
1083 if (!list_empty(&info->shrinklist)) {
1084 list_del_init(&info->shrinklist);
1085 sbinfo->shrinklist_len--;
1086 }
1087 spin_unlock(&sbinfo->shrinklist_lock);
1088 }
1089 while (!list_empty(&info->swaplist)) {
1090 /* Wait while shmem_unuse() is scanning this inode... */
1091 wait_var_event(&info->stop_eviction,
1092 !atomic_read(&info->stop_eviction));
1093 mutex_lock(&shmem_swaplist_mutex);
1094 /* ...but beware of the race if we peeked too early */
1095 if (!atomic_read(&info->stop_eviction))
1096 list_del_init(&info->swaplist);
1097 mutex_unlock(&shmem_swaplist_mutex);
1098 }
1099 }
1100
1101 simple_xattrs_free(&info->xattrs);
1102 WARN_ON(inode->i_blocks);
1103 shmem_free_inode(inode->i_sb);
1104 clear_inode(inode);
1105 }
1106
1107 extern struct swap_info_struct *swap_info[];
1108
1109 static int shmem_find_swap_entries(struct address_space *mapping,
1110 pgoff_t start, unsigned int nr_entries,
1111 struct page **entries, pgoff_t *indices,
1112 unsigned int type, bool frontswap)
1113 {
1114 XA_STATE(xas, &mapping->i_pages, start);
1115 struct page *page;
1116 swp_entry_t entry;
1117 unsigned int ret = 0;
1118
1119 if (!nr_entries)
1120 return 0;
1121
1122 rcu_read_lock();
1123 xas_for_each(&xas, page, ULONG_MAX) {
1124 if (xas_retry(&xas, page))
1125 continue;
1126
1127 if (!xa_is_value(page))
1128 continue;
1129
1130 entry = radix_to_swp_entry(page);
1131 if (swp_type(entry) != type)
1132 continue;
1133 if (frontswap &&
1134 !frontswap_test(swap_info[type], swp_offset(entry)))
1135 continue;
1136
1137 indices[ret] = xas.xa_index;
1138 entries[ret] = page;
1139
1140 if (need_resched()) {
1141 xas_pause(&xas);
1142 cond_resched_rcu();
1143 }
1144 if (++ret == nr_entries)
1145 break;
1146 }
1147 rcu_read_unlock();
1148
1149 return ret;
1150 }
1151
1152 /*
1153 * Move the swapped pages for an inode to page cache. Returns the count
1154 * of pages swapped in, or the error in case of failure.
1155 */
1156 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1157 pgoff_t *indices)
1158 {
1159 int i = 0;
1160 int ret = 0;
1161 int error = 0;
1162 struct address_space *mapping = inode->i_mapping;
1163
1164 for (i = 0; i < pvec.nr; i++) {
1165 struct page *page = pvec.pages[i];
1166
1167 if (!xa_is_value(page))
1168 continue;
1169 error = shmem_swapin_page(inode, indices[i],
1170 &page, SGP_CACHE,
1171 mapping_gfp_mask(mapping),
1172 NULL, NULL);
1173 if (error == 0) {
1174 unlock_page(page);
1175 put_page(page);
1176 ret++;
1177 }
1178 if (error == -ENOMEM)
1179 break;
1180 error = 0;
1181 }
1182 return error ? error : ret;
1183 }
1184
1185 /*
1186 * If swap found in inode, free it and move page from swapcache to filecache.
1187 */
1188 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1189 bool frontswap, unsigned long *fs_pages_to_unuse)
1190 {
1191 struct address_space *mapping = inode->i_mapping;
1192 pgoff_t start = 0;
1193 struct pagevec pvec;
1194 pgoff_t indices[PAGEVEC_SIZE];
1195 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1196 int ret = 0;
1197
1198 pagevec_init(&pvec);
1199 do {
1200 unsigned int nr_entries = PAGEVEC_SIZE;
1201
1202 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1203 nr_entries = *fs_pages_to_unuse;
1204
1205 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1206 pvec.pages, indices,
1207 type, frontswap);
1208 if (pvec.nr == 0) {
1209 ret = 0;
1210 break;
1211 }
1212
1213 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1214 if (ret < 0)
1215 break;
1216
1217 if (frontswap_partial) {
1218 *fs_pages_to_unuse -= ret;
1219 if (*fs_pages_to_unuse == 0) {
1220 ret = FRONTSWAP_PAGES_UNUSED;
1221 break;
1222 }
1223 }
1224
1225 start = indices[pvec.nr - 1];
1226 } while (true);
1227
1228 return ret;
1229 }
1230
1231 /*
1232 * Read all the shared memory data that resides in the swap
1233 * device 'type' back into memory, so the swap device can be
1234 * unused.
1235 */
1236 int shmem_unuse(unsigned int type, bool frontswap,
1237 unsigned long *fs_pages_to_unuse)
1238 {
1239 struct shmem_inode_info *info, *next;
1240 int error = 0;
1241
1242 if (list_empty(&shmem_swaplist))
1243 return 0;
1244
1245 mutex_lock(&shmem_swaplist_mutex);
1246 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1247 if (!info->swapped) {
1248 list_del_init(&info->swaplist);
1249 continue;
1250 }
1251 /*
1252 * Drop the swaplist mutex while searching the inode for swap;
1253 * but before doing so, make sure shmem_evict_inode() will not
1254 * remove placeholder inode from swaplist, nor let it be freed
1255 * (igrab() would protect from unlink, but not from unmount).
1256 */
1257 atomic_inc(&info->stop_eviction);
1258 mutex_unlock(&shmem_swaplist_mutex);
1259
1260 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1261 fs_pages_to_unuse);
1262 cond_resched();
1263
1264 mutex_lock(&shmem_swaplist_mutex);
1265 next = list_next_entry(info, swaplist);
1266 if (!info->swapped)
1267 list_del_init(&info->swaplist);
1268 if (atomic_dec_and_test(&info->stop_eviction))
1269 wake_up_var(&info->stop_eviction);
1270 if (error)
1271 break;
1272 }
1273 mutex_unlock(&shmem_swaplist_mutex);
1274
1275 return error;
1276 }
1277
1278 /*
1279 * Move the page from the page cache to the swap cache.
1280 */
1281 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1282 {
1283 struct shmem_inode_info *info;
1284 struct address_space *mapping;
1285 struct inode *inode;
1286 swp_entry_t swap;
1287 pgoff_t index;
1288
1289 VM_BUG_ON_PAGE(PageCompound(page), page);
1290 BUG_ON(!PageLocked(page));
1291 mapping = page->mapping;
1292 index = page->index;
1293 inode = mapping->host;
1294 info = SHMEM_I(inode);
1295 if (info->flags & VM_LOCKED)
1296 goto redirty;
1297 if (!total_swap_pages)
1298 goto redirty;
1299
1300 /*
1301 * Our capabilities prevent regular writeback or sync from ever calling
1302 * shmem_writepage; but a stacking filesystem might use ->writepage of
1303 * its underlying filesystem, in which case tmpfs should write out to
1304 * swap only in response to memory pressure, and not for the writeback
1305 * threads or sync.
1306 */
1307 if (!wbc->for_reclaim) {
1308 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1309 goto redirty;
1310 }
1311
1312 /*
1313 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1314 * value into swapfile.c, the only way we can correctly account for a
1315 * fallocated page arriving here is now to initialize it and write it.
1316 *
1317 * That's okay for a page already fallocated earlier, but if we have
1318 * not yet completed the fallocation, then (a) we want to keep track
1319 * of this page in case we have to undo it, and (b) it may not be a
1320 * good idea to continue anyway, once we're pushing into swap. So
1321 * reactivate the page, and let shmem_fallocate() quit when too many.
1322 */
1323 if (!PageUptodate(page)) {
1324 if (inode->i_private) {
1325 struct shmem_falloc *shmem_falloc;
1326 spin_lock(&inode->i_lock);
1327 shmem_falloc = inode->i_private;
1328 if (shmem_falloc &&
1329 !shmem_falloc->waitq &&
1330 index >= shmem_falloc->start &&
1331 index < shmem_falloc->next)
1332 shmem_falloc->nr_unswapped++;
1333 else
1334 shmem_falloc = NULL;
1335 spin_unlock(&inode->i_lock);
1336 if (shmem_falloc)
1337 goto redirty;
1338 }
1339 clear_highpage(page);
1340 flush_dcache_page(page);
1341 SetPageUptodate(page);
1342 }
1343
1344 swap = get_swap_page(page);
1345 if (!swap.val)
1346 goto redirty;
1347
1348 /*
1349 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1350 * if it's not already there. Do it now before the page is
1351 * moved to swap cache, when its pagelock no longer protects
1352 * the inode from eviction. But don't unlock the mutex until
1353 * we've incremented swapped, because shmem_unuse_inode() will
1354 * prune a !swapped inode from the swaplist under this mutex.
1355 */
1356 mutex_lock(&shmem_swaplist_mutex);
1357 if (list_empty(&info->swaplist))
1358 list_add(&info->swaplist, &shmem_swaplist);
1359
1360 if (add_to_swap_cache(page, swap,
1361 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1362 spin_lock_irq(&info->lock);
1363 shmem_recalc_inode(inode);
1364 info->swapped++;
1365 spin_unlock_irq(&info->lock);
1366
1367 swap_shmem_alloc(swap);
1368 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1369
1370 mutex_unlock(&shmem_swaplist_mutex);
1371 BUG_ON(page_mapped(page));
1372 swap_writepage(page, wbc);
1373 return 0;
1374 }
1375
1376 mutex_unlock(&shmem_swaplist_mutex);
1377 put_swap_page(page, swap);
1378 redirty:
1379 set_page_dirty(page);
1380 if (wbc->for_reclaim)
1381 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1382 unlock_page(page);
1383 return 0;
1384 }
1385
1386 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1387 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1388 {
1389 char buffer[64];
1390
1391 if (!mpol || mpol->mode == MPOL_DEFAULT)
1392 return; /* show nothing */
1393
1394 mpol_to_str(buffer, sizeof(buffer), mpol);
1395
1396 seq_printf(seq, ",mpol=%s", buffer);
1397 }
1398
1399 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1400 {
1401 struct mempolicy *mpol = NULL;
1402 if (sbinfo->mpol) {
1403 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1404 mpol = sbinfo->mpol;
1405 mpol_get(mpol);
1406 spin_unlock(&sbinfo->stat_lock);
1407 }
1408 return mpol;
1409 }
1410 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1411 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1412 {
1413 }
1414 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1415 {
1416 return NULL;
1417 }
1418 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1419 #ifndef CONFIG_NUMA
1420 #define vm_policy vm_private_data
1421 #endif
1422
1423 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1424 struct shmem_inode_info *info, pgoff_t index)
1425 {
1426 /* Create a pseudo vma that just contains the policy */
1427 vma_init(vma, NULL);
1428 /* Bias interleave by inode number to distribute better across nodes */
1429 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1430 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1431 }
1432
1433 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1434 {
1435 /* Drop reference taken by mpol_shared_policy_lookup() */
1436 mpol_cond_put(vma->vm_policy);
1437 }
1438
1439 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1440 struct shmem_inode_info *info, pgoff_t index)
1441 {
1442 struct vm_area_struct pvma;
1443 struct page *page;
1444 struct vm_fault vmf;
1445
1446 shmem_pseudo_vma_init(&pvma, info, index);
1447 vmf.vma = &pvma;
1448 vmf.address = 0;
1449 page = swap_cluster_readahead(swap, gfp, &vmf);
1450 shmem_pseudo_vma_destroy(&pvma);
1451
1452 return page;
1453 }
1454
1455 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1456 struct shmem_inode_info *info, pgoff_t index)
1457 {
1458 struct vm_area_struct pvma;
1459 struct address_space *mapping = info->vfs_inode.i_mapping;
1460 pgoff_t hindex;
1461 struct page *page;
1462
1463 hindex = round_down(index, HPAGE_PMD_NR);
1464 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1465 XA_PRESENT))
1466 return NULL;
1467
1468 shmem_pseudo_vma_init(&pvma, info, hindex);
1469 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1470 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1471 shmem_pseudo_vma_destroy(&pvma);
1472 if (page)
1473 prep_transhuge_page(page);
1474 else
1475 count_vm_event(THP_FILE_FALLBACK);
1476 return page;
1477 }
1478
1479 static struct page *shmem_alloc_page(gfp_t gfp,
1480 struct shmem_inode_info *info, pgoff_t index)
1481 {
1482 struct vm_area_struct pvma;
1483 struct page *page;
1484
1485 shmem_pseudo_vma_init(&pvma, info, index);
1486 page = alloc_page_vma(gfp, &pvma, 0);
1487 shmem_pseudo_vma_destroy(&pvma);
1488
1489 return page;
1490 }
1491
1492 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1493 struct inode *inode,
1494 pgoff_t index, bool huge)
1495 {
1496 struct shmem_inode_info *info = SHMEM_I(inode);
1497 struct page *page;
1498 int nr;
1499 int err = -ENOSPC;
1500
1501 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1502 huge = false;
1503 nr = huge ? HPAGE_PMD_NR : 1;
1504
1505 if (!shmem_inode_acct_block(inode, nr))
1506 goto failed;
1507
1508 if (huge)
1509 page = shmem_alloc_hugepage(gfp, info, index);
1510 else
1511 page = shmem_alloc_page(gfp, info, index);
1512 if (page) {
1513 __SetPageLocked(page);
1514 __SetPageSwapBacked(page);
1515 return page;
1516 }
1517
1518 err = -ENOMEM;
1519 shmem_inode_unacct_blocks(inode, nr);
1520 failed:
1521 return ERR_PTR(err);
1522 }
1523
1524 /*
1525 * When a page is moved from swapcache to shmem filecache (either by the
1526 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1527 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1528 * ignorance of the mapping it belongs to. If that mapping has special
1529 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1530 * we may need to copy to a suitable page before moving to filecache.
1531 *
1532 * In a future release, this may well be extended to respect cpuset and
1533 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1534 * but for now it is a simple matter of zone.
1535 */
1536 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1537 {
1538 return page_zonenum(page) > gfp_zone(gfp);
1539 }
1540
1541 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1542 struct shmem_inode_info *info, pgoff_t index)
1543 {
1544 struct page *oldpage, *newpage;
1545 struct address_space *swap_mapping;
1546 swp_entry_t entry;
1547 pgoff_t swap_index;
1548 int error;
1549
1550 oldpage = *pagep;
1551 entry.val = page_private(oldpage);
1552 swap_index = swp_offset(entry);
1553 swap_mapping = page_mapping(oldpage);
1554
1555 /*
1556 * We have arrived here because our zones are constrained, so don't
1557 * limit chance of success by further cpuset and node constraints.
1558 */
1559 gfp &= ~GFP_CONSTRAINT_MASK;
1560 newpage = shmem_alloc_page(gfp, info, index);
1561 if (!newpage)
1562 return -ENOMEM;
1563
1564 get_page(newpage);
1565 copy_highpage(newpage, oldpage);
1566 flush_dcache_page(newpage);
1567
1568 __SetPageLocked(newpage);
1569 __SetPageSwapBacked(newpage);
1570 SetPageUptodate(newpage);
1571 set_page_private(newpage, entry.val);
1572 SetPageSwapCache(newpage);
1573
1574 /*
1575 * Our caller will very soon move newpage out of swapcache, but it's
1576 * a nice clean interface for us to replace oldpage by newpage there.
1577 */
1578 xa_lock_irq(&swap_mapping->i_pages);
1579 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1580 if (!error) {
1581 __inc_node_page_state(newpage, NR_FILE_PAGES);
1582 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1583 }
1584 xa_unlock_irq(&swap_mapping->i_pages);
1585
1586 if (unlikely(error)) {
1587 /*
1588 * Is this possible? I think not, now that our callers check
1589 * both PageSwapCache and page_private after getting page lock;
1590 * but be defensive. Reverse old to newpage for clear and free.
1591 */
1592 oldpage = newpage;
1593 } else {
1594 mem_cgroup_migrate(oldpage, newpage);
1595 lru_cache_add_anon(newpage);
1596 *pagep = newpage;
1597 }
1598
1599 ClearPageSwapCache(oldpage);
1600 set_page_private(oldpage, 0);
1601
1602 unlock_page(oldpage);
1603 put_page(oldpage);
1604 put_page(oldpage);
1605 return error;
1606 }
1607
1608 /*
1609 * Swap in the page pointed to by *pagep.
1610 * Caller has to make sure that *pagep contains a valid swapped page.
1611 * Returns 0 and the page in pagep if success. On failure, returns the
1612 * the error code and NULL in *pagep.
1613 */
1614 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1615 struct page **pagep, enum sgp_type sgp,
1616 gfp_t gfp, struct vm_area_struct *vma,
1617 vm_fault_t *fault_type)
1618 {
1619 struct address_space *mapping = inode->i_mapping;
1620 struct shmem_inode_info *info = SHMEM_I(inode);
1621 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1622 struct mem_cgroup *memcg;
1623 struct page *page;
1624 swp_entry_t swap;
1625 int error;
1626
1627 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1628 swap = radix_to_swp_entry(*pagep);
1629 *pagep = NULL;
1630
1631 /* Look it up and read it in.. */
1632 page = lookup_swap_cache(swap, NULL, 0);
1633 if (!page) {
1634 /* Or update major stats only when swapin succeeds?? */
1635 if (fault_type) {
1636 *fault_type |= VM_FAULT_MAJOR;
1637 count_vm_event(PGMAJFAULT);
1638 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1639 }
1640 /* Here we actually start the io */
1641 page = shmem_swapin(swap, gfp, info, index);
1642 if (!page) {
1643 error = -ENOMEM;
1644 goto failed;
1645 }
1646 }
1647
1648 /* We have to do this with page locked to prevent races */
1649 lock_page(page);
1650 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1651 !shmem_confirm_swap(mapping, index, swap)) {
1652 error = -EEXIST;
1653 goto unlock;
1654 }
1655 if (!PageUptodate(page)) {
1656 error = -EIO;
1657 goto failed;
1658 }
1659 wait_on_page_writeback(page);
1660
1661 if (shmem_should_replace_page(page, gfp)) {
1662 error = shmem_replace_page(&page, gfp, info, index);
1663 if (error)
1664 goto failed;
1665 }
1666
1667 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1668 false);
1669 if (!error) {
1670 error = shmem_add_to_page_cache(page, mapping, index,
1671 swp_to_radix_entry(swap), gfp);
1672 /*
1673 * We already confirmed swap under page lock, and make
1674 * no memory allocation here, so usually no possibility
1675 * of error; but free_swap_and_cache() only trylocks a
1676 * page, so it is just possible that the entry has been
1677 * truncated or holepunched since swap was confirmed.
1678 * shmem_undo_range() will have done some of the
1679 * unaccounting, now delete_from_swap_cache() will do
1680 * the rest.
1681 */
1682 if (error) {
1683 mem_cgroup_cancel_charge(page, memcg, false);
1684 delete_from_swap_cache(page);
1685 }
1686 }
1687 if (error)
1688 goto failed;
1689
1690 mem_cgroup_commit_charge(page, memcg, true, false);
1691
1692 spin_lock_irq(&info->lock);
1693 info->swapped--;
1694 shmem_recalc_inode(inode);
1695 spin_unlock_irq(&info->lock);
1696
1697 if (sgp == SGP_WRITE)
1698 mark_page_accessed(page);
1699
1700 delete_from_swap_cache(page);
1701 set_page_dirty(page);
1702 swap_free(swap);
1703
1704 *pagep = page;
1705 return 0;
1706 failed:
1707 if (!shmem_confirm_swap(mapping, index, swap))
1708 error = -EEXIST;
1709 unlock:
1710 if (page) {
1711 unlock_page(page);
1712 put_page(page);
1713 }
1714
1715 return error;
1716 }
1717
1718 /*
1719 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1720 *
1721 * If we allocate a new one we do not mark it dirty. That's up to the
1722 * vm. If we swap it in we mark it dirty since we also free the swap
1723 * entry since a page cannot live in both the swap and page cache.
1724 *
1725 * vmf and fault_type are only supplied by shmem_fault:
1726 * otherwise they are NULL.
1727 */
1728 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1729 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1730 struct vm_area_struct *vma, struct vm_fault *vmf,
1731 vm_fault_t *fault_type)
1732 {
1733 struct address_space *mapping = inode->i_mapping;
1734 struct shmem_inode_info *info = SHMEM_I(inode);
1735 struct shmem_sb_info *sbinfo;
1736 struct mm_struct *charge_mm;
1737 struct mem_cgroup *memcg;
1738 struct page *page;
1739 enum sgp_type sgp_huge = sgp;
1740 pgoff_t hindex = index;
1741 int error;
1742 int once = 0;
1743 int alloced = 0;
1744
1745 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1746 return -EFBIG;
1747 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1748 sgp = SGP_CACHE;
1749 repeat:
1750 if (sgp <= SGP_CACHE &&
1751 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1752 return -EINVAL;
1753 }
1754
1755 sbinfo = SHMEM_SB(inode->i_sb);
1756 charge_mm = vma ? vma->vm_mm : current->mm;
1757
1758 page = find_lock_entry(mapping, index);
1759 if (xa_is_value(page)) {
1760 error = shmem_swapin_page(inode, index, &page,
1761 sgp, gfp, vma, fault_type);
1762 if (error == -EEXIST)
1763 goto repeat;
1764
1765 *pagep = page;
1766 return error;
1767 }
1768
1769 if (page && sgp == SGP_WRITE)
1770 mark_page_accessed(page);
1771
1772 /* fallocated page? */
1773 if (page && !PageUptodate(page)) {
1774 if (sgp != SGP_READ)
1775 goto clear;
1776 unlock_page(page);
1777 put_page(page);
1778 page = NULL;
1779 }
1780 if (page || sgp == SGP_READ) {
1781 *pagep = page;
1782 return 0;
1783 }
1784
1785 /*
1786 * Fast cache lookup did not find it:
1787 * bring it back from swap or allocate.
1788 */
1789
1790 if (vma && userfaultfd_missing(vma)) {
1791 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1792 return 0;
1793 }
1794
1795 /* shmem_symlink() */
1796 if (mapping->a_ops != &shmem_aops)
1797 goto alloc_nohuge;
1798 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1799 goto alloc_nohuge;
1800 if (shmem_huge == SHMEM_HUGE_FORCE)
1801 goto alloc_huge;
1802 switch (sbinfo->huge) {
1803 case SHMEM_HUGE_NEVER:
1804 goto alloc_nohuge;
1805 case SHMEM_HUGE_WITHIN_SIZE: {
1806 loff_t i_size;
1807 pgoff_t off;
1808
1809 off = round_up(index, HPAGE_PMD_NR);
1810 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1811 if (i_size >= HPAGE_PMD_SIZE &&
1812 i_size >> PAGE_SHIFT >= off)
1813 goto alloc_huge;
1814
1815 fallthrough;
1816 }
1817 case SHMEM_HUGE_ADVISE:
1818 if (sgp_huge == SGP_HUGE)
1819 goto alloc_huge;
1820 /* TODO: implement fadvise() hints */
1821 goto alloc_nohuge;
1822 }
1823
1824 alloc_huge:
1825 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1826 if (IS_ERR(page)) {
1827 alloc_nohuge:
1828 page = shmem_alloc_and_acct_page(gfp, inode,
1829 index, false);
1830 }
1831 if (IS_ERR(page)) {
1832 int retry = 5;
1833
1834 error = PTR_ERR(page);
1835 page = NULL;
1836 if (error != -ENOSPC)
1837 goto unlock;
1838 /*
1839 * Try to reclaim some space by splitting a huge page
1840 * beyond i_size on the filesystem.
1841 */
1842 while (retry--) {
1843 int ret;
1844
1845 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1846 if (ret == SHRINK_STOP)
1847 break;
1848 if (ret)
1849 goto alloc_nohuge;
1850 }
1851 goto unlock;
1852 }
1853
1854 if (PageTransHuge(page))
1855 hindex = round_down(index, HPAGE_PMD_NR);
1856 else
1857 hindex = index;
1858
1859 if (sgp == SGP_WRITE)
1860 __SetPageReferenced(page);
1861
1862 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1863 PageTransHuge(page));
1864 if (error) {
1865 if (PageTransHuge(page)) {
1866 count_vm_event(THP_FILE_FALLBACK);
1867 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1868 }
1869 goto unacct;
1870 }
1871 error = shmem_add_to_page_cache(page, mapping, hindex,
1872 NULL, gfp & GFP_RECLAIM_MASK);
1873 if (error) {
1874 mem_cgroup_cancel_charge(page, memcg,
1875 PageTransHuge(page));
1876 goto unacct;
1877 }
1878 mem_cgroup_commit_charge(page, memcg, false,
1879 PageTransHuge(page));
1880 lru_cache_add_anon(page);
1881
1882 spin_lock_irq(&info->lock);
1883 info->alloced += compound_nr(page);
1884 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1885 shmem_recalc_inode(inode);
1886 spin_unlock_irq(&info->lock);
1887 alloced = true;
1888
1889 if (PageTransHuge(page) &&
1890 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1891 hindex + HPAGE_PMD_NR - 1) {
1892 /*
1893 * Part of the huge page is beyond i_size: subject
1894 * to shrink under memory pressure.
1895 */
1896 spin_lock(&sbinfo->shrinklist_lock);
1897 /*
1898 * _careful to defend against unlocked access to
1899 * ->shrink_list in shmem_unused_huge_shrink()
1900 */
1901 if (list_empty_careful(&info->shrinklist)) {
1902 list_add_tail(&info->shrinklist,
1903 &sbinfo->shrinklist);
1904 sbinfo->shrinklist_len++;
1905 }
1906 spin_unlock(&sbinfo->shrinklist_lock);
1907 }
1908
1909 /*
1910 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1911 */
1912 if (sgp == SGP_FALLOC)
1913 sgp = SGP_WRITE;
1914 clear:
1915 /*
1916 * Let SGP_WRITE caller clear ends if write does not fill page;
1917 * but SGP_FALLOC on a page fallocated earlier must initialize
1918 * it now, lest undo on failure cancel our earlier guarantee.
1919 */
1920 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1921 struct page *head = compound_head(page);
1922 int i;
1923
1924 for (i = 0; i < compound_nr(head); i++) {
1925 clear_highpage(head + i);
1926 flush_dcache_page(head + i);
1927 }
1928 SetPageUptodate(head);
1929 }
1930
1931 /* Perhaps the file has been truncated since we checked */
1932 if (sgp <= SGP_CACHE &&
1933 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1934 if (alloced) {
1935 ClearPageDirty(page);
1936 delete_from_page_cache(page);
1937 spin_lock_irq(&info->lock);
1938 shmem_recalc_inode(inode);
1939 spin_unlock_irq(&info->lock);
1940 }
1941 error = -EINVAL;
1942 goto unlock;
1943 }
1944 *pagep = page + index - hindex;
1945 return 0;
1946
1947 /*
1948 * Error recovery.
1949 */
1950 unacct:
1951 shmem_inode_unacct_blocks(inode, compound_nr(page));
1952
1953 if (PageTransHuge(page)) {
1954 unlock_page(page);
1955 put_page(page);
1956 goto alloc_nohuge;
1957 }
1958 unlock:
1959 if (page) {
1960 unlock_page(page);
1961 put_page(page);
1962 }
1963 if (error == -ENOSPC && !once++) {
1964 spin_lock_irq(&info->lock);
1965 shmem_recalc_inode(inode);
1966 spin_unlock_irq(&info->lock);
1967 goto repeat;
1968 }
1969 if (error == -EEXIST)
1970 goto repeat;
1971 return error;
1972 }
1973
1974 /*
1975 * This is like autoremove_wake_function, but it removes the wait queue
1976 * entry unconditionally - even if something else had already woken the
1977 * target.
1978 */
1979 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1980 {
1981 int ret = default_wake_function(wait, mode, sync, key);
1982 list_del_init(&wait->entry);
1983 return ret;
1984 }
1985
1986 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1987 {
1988 struct vm_area_struct *vma = vmf->vma;
1989 struct inode *inode = file_inode(vma->vm_file);
1990 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1991 enum sgp_type sgp;
1992 int err;
1993 vm_fault_t ret = VM_FAULT_LOCKED;
1994
1995 /*
1996 * Trinity finds that probing a hole which tmpfs is punching can
1997 * prevent the hole-punch from ever completing: which in turn
1998 * locks writers out with its hold on i_mutex. So refrain from
1999 * faulting pages into the hole while it's being punched. Although
2000 * shmem_undo_range() does remove the additions, it may be unable to
2001 * keep up, as each new page needs its own unmap_mapping_range() call,
2002 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2003 *
2004 * It does not matter if we sometimes reach this check just before the
2005 * hole-punch begins, so that one fault then races with the punch:
2006 * we just need to make racing faults a rare case.
2007 *
2008 * The implementation below would be much simpler if we just used a
2009 * standard mutex or completion: but we cannot take i_mutex in fault,
2010 * and bloating every shmem inode for this unlikely case would be sad.
2011 */
2012 if (unlikely(inode->i_private)) {
2013 struct shmem_falloc *shmem_falloc;
2014
2015 spin_lock(&inode->i_lock);
2016 shmem_falloc = inode->i_private;
2017 if (shmem_falloc &&
2018 shmem_falloc->waitq &&
2019 vmf->pgoff >= shmem_falloc->start &&
2020 vmf->pgoff < shmem_falloc->next) {
2021 struct file *fpin;
2022 wait_queue_head_t *shmem_falloc_waitq;
2023 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2024
2025 ret = VM_FAULT_NOPAGE;
2026 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2027 if (fpin)
2028 ret = VM_FAULT_RETRY;
2029
2030 shmem_falloc_waitq = shmem_falloc->waitq;
2031 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2032 TASK_UNINTERRUPTIBLE);
2033 spin_unlock(&inode->i_lock);
2034 schedule();
2035
2036 /*
2037 * shmem_falloc_waitq points into the shmem_fallocate()
2038 * stack of the hole-punching task: shmem_falloc_waitq
2039 * is usually invalid by the time we reach here, but
2040 * finish_wait() does not dereference it in that case;
2041 * though i_lock needed lest racing with wake_up_all().
2042 */
2043 spin_lock(&inode->i_lock);
2044 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2045 spin_unlock(&inode->i_lock);
2046
2047 if (fpin)
2048 fput(fpin);
2049 return ret;
2050 }
2051 spin_unlock(&inode->i_lock);
2052 }
2053
2054 sgp = SGP_CACHE;
2055
2056 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2057 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2058 sgp = SGP_NOHUGE;
2059 else if (vma->vm_flags & VM_HUGEPAGE)
2060 sgp = SGP_HUGE;
2061
2062 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2063 gfp, vma, vmf, &ret);
2064 if (err)
2065 return vmf_error(err);
2066 return ret;
2067 }
2068
2069 unsigned long shmem_get_unmapped_area(struct file *file,
2070 unsigned long uaddr, unsigned long len,
2071 unsigned long pgoff, unsigned long flags)
2072 {
2073 unsigned long (*get_area)(struct file *,
2074 unsigned long, unsigned long, unsigned long, unsigned long);
2075 unsigned long addr;
2076 unsigned long offset;
2077 unsigned long inflated_len;
2078 unsigned long inflated_addr;
2079 unsigned long inflated_offset;
2080
2081 if (len > TASK_SIZE)
2082 return -ENOMEM;
2083
2084 get_area = current->mm->get_unmapped_area;
2085 addr = get_area(file, uaddr, len, pgoff, flags);
2086
2087 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2088 return addr;
2089 if (IS_ERR_VALUE(addr))
2090 return addr;
2091 if (addr & ~PAGE_MASK)
2092 return addr;
2093 if (addr > TASK_SIZE - len)
2094 return addr;
2095
2096 if (shmem_huge == SHMEM_HUGE_DENY)
2097 return addr;
2098 if (len < HPAGE_PMD_SIZE)
2099 return addr;
2100 if (flags & MAP_FIXED)
2101 return addr;
2102 /*
2103 * Our priority is to support MAP_SHARED mapped hugely;
2104 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2105 * But if caller specified an address hint and we allocated area there
2106 * successfully, respect that as before.
2107 */
2108 if (uaddr == addr)
2109 return addr;
2110
2111 if (shmem_huge != SHMEM_HUGE_FORCE) {
2112 struct super_block *sb;
2113
2114 if (file) {
2115 VM_BUG_ON(file->f_op != &shmem_file_operations);
2116 sb = file_inode(file)->i_sb;
2117 } else {
2118 /*
2119 * Called directly from mm/mmap.c, or drivers/char/mem.c
2120 * for "/dev/zero", to create a shared anonymous object.
2121 */
2122 if (IS_ERR(shm_mnt))
2123 return addr;
2124 sb = shm_mnt->mnt_sb;
2125 }
2126 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2127 return addr;
2128 }
2129
2130 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2131 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2132 return addr;
2133 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2134 return addr;
2135
2136 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2137 if (inflated_len > TASK_SIZE)
2138 return addr;
2139 if (inflated_len < len)
2140 return addr;
2141
2142 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2143 if (IS_ERR_VALUE(inflated_addr))
2144 return addr;
2145 if (inflated_addr & ~PAGE_MASK)
2146 return addr;
2147
2148 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2149 inflated_addr += offset - inflated_offset;
2150 if (inflated_offset > offset)
2151 inflated_addr += HPAGE_PMD_SIZE;
2152
2153 if (inflated_addr > TASK_SIZE - len)
2154 return addr;
2155 return inflated_addr;
2156 }
2157
2158 #ifdef CONFIG_NUMA
2159 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2160 {
2161 struct inode *inode = file_inode(vma->vm_file);
2162 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2163 }
2164
2165 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2166 unsigned long addr)
2167 {
2168 struct inode *inode = file_inode(vma->vm_file);
2169 pgoff_t index;
2170
2171 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2172 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2173 }
2174 #endif
2175
2176 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2177 {
2178 struct inode *inode = file_inode(file);
2179 struct shmem_inode_info *info = SHMEM_I(inode);
2180 int retval = -ENOMEM;
2181
2182 /*
2183 * What serializes the accesses to info->flags?
2184 * ipc_lock_object() when called from shmctl_do_lock(),
2185 * no serialization needed when called from shm_destroy().
2186 */
2187 if (lock && !(info->flags & VM_LOCKED)) {
2188 if (!user_shm_lock(inode->i_size, user))
2189 goto out_nomem;
2190 info->flags |= VM_LOCKED;
2191 mapping_set_unevictable(file->f_mapping);
2192 }
2193 if (!lock && (info->flags & VM_LOCKED) && user) {
2194 user_shm_unlock(inode->i_size, user);
2195 info->flags &= ~VM_LOCKED;
2196 mapping_clear_unevictable(file->f_mapping);
2197 }
2198 retval = 0;
2199
2200 out_nomem:
2201 return retval;
2202 }
2203
2204 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2205 {
2206 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2207
2208 if (info->seals & F_SEAL_FUTURE_WRITE) {
2209 /*
2210 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2211 * "future write" seal active.
2212 */
2213 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2214 return -EPERM;
2215
2216 /*
2217 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2218 * MAP_SHARED and read-only, take care to not allow mprotect to
2219 * revert protections on such mappings. Do this only for shared
2220 * mappings. For private mappings, don't need to mask
2221 * VM_MAYWRITE as we still want them to be COW-writable.
2222 */
2223 if (vma->vm_flags & VM_SHARED)
2224 vma->vm_flags &= ~(VM_MAYWRITE);
2225 }
2226
2227 file_accessed(file);
2228 vma->vm_ops = &shmem_vm_ops;
2229 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2230 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2231 (vma->vm_end & HPAGE_PMD_MASK)) {
2232 khugepaged_enter(vma, vma->vm_flags);
2233 }
2234 return 0;
2235 }
2236
2237 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2238 umode_t mode, dev_t dev, unsigned long flags)
2239 {
2240 struct inode *inode;
2241 struct shmem_inode_info *info;
2242 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2243
2244 if (shmem_reserve_inode(sb))
2245 return NULL;
2246
2247 inode = new_inode(sb);
2248 if (inode) {
2249 inode->i_ino = get_next_ino();
2250 inode_init_owner(inode, dir, mode);
2251 inode->i_blocks = 0;
2252 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2253 inode->i_generation = prandom_u32();
2254 info = SHMEM_I(inode);
2255 memset(info, 0, (char *)inode - (char *)info);
2256 spin_lock_init(&info->lock);
2257 atomic_set(&info->stop_eviction, 0);
2258 info->seals = F_SEAL_SEAL;
2259 info->flags = flags & VM_NORESERVE;
2260 INIT_LIST_HEAD(&info->shrinklist);
2261 INIT_LIST_HEAD(&info->swaplist);
2262 simple_xattrs_init(&info->xattrs);
2263 cache_no_acl(inode);
2264
2265 switch (mode & S_IFMT) {
2266 default:
2267 inode->i_op = &shmem_special_inode_operations;
2268 init_special_inode(inode, mode, dev);
2269 break;
2270 case S_IFREG:
2271 inode->i_mapping->a_ops = &shmem_aops;
2272 inode->i_op = &shmem_inode_operations;
2273 inode->i_fop = &shmem_file_operations;
2274 mpol_shared_policy_init(&info->policy,
2275 shmem_get_sbmpol(sbinfo));
2276 break;
2277 case S_IFDIR:
2278 inc_nlink(inode);
2279 /* Some things misbehave if size == 0 on a directory */
2280 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2281 inode->i_op = &shmem_dir_inode_operations;
2282 inode->i_fop = &simple_dir_operations;
2283 break;
2284 case S_IFLNK:
2285 /*
2286 * Must not load anything in the rbtree,
2287 * mpol_free_shared_policy will not be called.
2288 */
2289 mpol_shared_policy_init(&info->policy, NULL);
2290 break;
2291 }
2292
2293 lockdep_annotate_inode_mutex_key(inode);
2294 } else
2295 shmem_free_inode(sb);
2296 return inode;
2297 }
2298
2299 bool shmem_mapping(struct address_space *mapping)
2300 {
2301 return mapping->a_ops == &shmem_aops;
2302 }
2303
2304 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2305 pmd_t *dst_pmd,
2306 struct vm_area_struct *dst_vma,
2307 unsigned long dst_addr,
2308 unsigned long src_addr,
2309 bool zeropage,
2310 struct page **pagep)
2311 {
2312 struct inode *inode = file_inode(dst_vma->vm_file);
2313 struct shmem_inode_info *info = SHMEM_I(inode);
2314 struct address_space *mapping = inode->i_mapping;
2315 gfp_t gfp = mapping_gfp_mask(mapping);
2316 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2317 struct mem_cgroup *memcg;
2318 spinlock_t *ptl;
2319 void *page_kaddr;
2320 struct page *page;
2321 pte_t _dst_pte, *dst_pte;
2322 int ret;
2323 pgoff_t offset, max_off;
2324
2325 ret = -ENOMEM;
2326 if (!shmem_inode_acct_block(inode, 1))
2327 goto out;
2328
2329 if (!*pagep) {
2330 page = shmem_alloc_page(gfp, info, pgoff);
2331 if (!page)
2332 goto out_unacct_blocks;
2333
2334 if (!zeropage) { /* mcopy_atomic */
2335 page_kaddr = kmap_atomic(page);
2336 ret = copy_from_user(page_kaddr,
2337 (const void __user *)src_addr,
2338 PAGE_SIZE);
2339 kunmap_atomic(page_kaddr);
2340
2341 /* fallback to copy_from_user outside mmap_sem */
2342 if (unlikely(ret)) {
2343 *pagep = page;
2344 shmem_inode_unacct_blocks(inode, 1);
2345 /* don't free the page */
2346 return -ENOENT;
2347 }
2348 } else { /* mfill_zeropage_atomic */
2349 clear_highpage(page);
2350 }
2351 } else {
2352 page = *pagep;
2353 *pagep = NULL;
2354 }
2355
2356 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2357 __SetPageLocked(page);
2358 __SetPageSwapBacked(page);
2359 __SetPageUptodate(page);
2360
2361 ret = -EFAULT;
2362 offset = linear_page_index(dst_vma, dst_addr);
2363 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2364 if (unlikely(offset >= max_off))
2365 goto out_release;
2366
2367 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2368 if (ret)
2369 goto out_release;
2370
2371 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2372 gfp & GFP_RECLAIM_MASK);
2373 if (ret)
2374 goto out_release_uncharge;
2375
2376 mem_cgroup_commit_charge(page, memcg, false, false);
2377
2378 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2379 if (dst_vma->vm_flags & VM_WRITE)
2380 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2381 else {
2382 /*
2383 * We don't set the pte dirty if the vma has no
2384 * VM_WRITE permission, so mark the page dirty or it
2385 * could be freed from under us. We could do it
2386 * unconditionally before unlock_page(), but doing it
2387 * only if VM_WRITE is not set is faster.
2388 */
2389 set_page_dirty(page);
2390 }
2391
2392 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2393
2394 ret = -EFAULT;
2395 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2396 if (unlikely(offset >= max_off))
2397 goto out_release_uncharge_unlock;
2398
2399 ret = -EEXIST;
2400 if (!pte_none(*dst_pte))
2401 goto out_release_uncharge_unlock;
2402
2403 lru_cache_add_anon(page);
2404
2405 spin_lock_irq(&info->lock);
2406 info->alloced++;
2407 inode->i_blocks += BLOCKS_PER_PAGE;
2408 shmem_recalc_inode(inode);
2409 spin_unlock_irq(&info->lock);
2410
2411 inc_mm_counter(dst_mm, mm_counter_file(page));
2412 page_add_file_rmap(page, false);
2413 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2414
2415 /* No need to invalidate - it was non-present before */
2416 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2417 pte_unmap_unlock(dst_pte, ptl);
2418 unlock_page(page);
2419 ret = 0;
2420 out:
2421 return ret;
2422 out_release_uncharge_unlock:
2423 pte_unmap_unlock(dst_pte, ptl);
2424 ClearPageDirty(page);
2425 delete_from_page_cache(page);
2426 out_release_uncharge:
2427 mem_cgroup_cancel_charge(page, memcg, false);
2428 out_release:
2429 unlock_page(page);
2430 put_page(page);
2431 out_unacct_blocks:
2432 shmem_inode_unacct_blocks(inode, 1);
2433 goto out;
2434 }
2435
2436 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2437 pmd_t *dst_pmd,
2438 struct vm_area_struct *dst_vma,
2439 unsigned long dst_addr,
2440 unsigned long src_addr,
2441 struct page **pagep)
2442 {
2443 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2444 dst_addr, src_addr, false, pagep);
2445 }
2446
2447 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2448 pmd_t *dst_pmd,
2449 struct vm_area_struct *dst_vma,
2450 unsigned long dst_addr)
2451 {
2452 struct page *page = NULL;
2453
2454 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2455 dst_addr, 0, true, &page);
2456 }
2457
2458 #ifdef CONFIG_TMPFS
2459 static const struct inode_operations shmem_symlink_inode_operations;
2460 static const struct inode_operations shmem_short_symlink_operations;
2461
2462 #ifdef CONFIG_TMPFS_XATTR
2463 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2464 #else
2465 #define shmem_initxattrs NULL
2466 #endif
2467
2468 static int
2469 shmem_write_begin(struct file *file, struct address_space *mapping,
2470 loff_t pos, unsigned len, unsigned flags,
2471 struct page **pagep, void **fsdata)
2472 {
2473 struct inode *inode = mapping->host;
2474 struct shmem_inode_info *info = SHMEM_I(inode);
2475 pgoff_t index = pos >> PAGE_SHIFT;
2476
2477 /* i_mutex is held by caller */
2478 if (unlikely(info->seals & (F_SEAL_GROW |
2479 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2480 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2481 return -EPERM;
2482 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2483 return -EPERM;
2484 }
2485
2486 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2487 }
2488
2489 static int
2490 shmem_write_end(struct file *file, struct address_space *mapping,
2491 loff_t pos, unsigned len, unsigned copied,
2492 struct page *page, void *fsdata)
2493 {
2494 struct inode *inode = mapping->host;
2495
2496 if (pos + copied > inode->i_size)
2497 i_size_write(inode, pos + copied);
2498
2499 if (!PageUptodate(page)) {
2500 struct page *head = compound_head(page);
2501 if (PageTransCompound(page)) {
2502 int i;
2503
2504 for (i = 0; i < HPAGE_PMD_NR; i++) {
2505 if (head + i == page)
2506 continue;
2507 clear_highpage(head + i);
2508 flush_dcache_page(head + i);
2509 }
2510 }
2511 if (copied < PAGE_SIZE) {
2512 unsigned from = pos & (PAGE_SIZE - 1);
2513 zero_user_segments(page, 0, from,
2514 from + copied, PAGE_SIZE);
2515 }
2516 SetPageUptodate(head);
2517 }
2518 set_page_dirty(page);
2519 unlock_page(page);
2520 put_page(page);
2521
2522 return copied;
2523 }
2524
2525 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2526 {
2527 struct file *file = iocb->ki_filp;
2528 struct inode *inode = file_inode(file);
2529 struct address_space *mapping = inode->i_mapping;
2530 pgoff_t index;
2531 unsigned long offset;
2532 enum sgp_type sgp = SGP_READ;
2533 int error = 0;
2534 ssize_t retval = 0;
2535 loff_t *ppos = &iocb->ki_pos;
2536
2537 /*
2538 * Might this read be for a stacking filesystem? Then when reading
2539 * holes of a sparse file, we actually need to allocate those pages,
2540 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2541 */
2542 if (!iter_is_iovec(to))
2543 sgp = SGP_CACHE;
2544
2545 index = *ppos >> PAGE_SHIFT;
2546 offset = *ppos & ~PAGE_MASK;
2547
2548 for (;;) {
2549 struct page *page = NULL;
2550 pgoff_t end_index;
2551 unsigned long nr, ret;
2552 loff_t i_size = i_size_read(inode);
2553
2554 end_index = i_size >> PAGE_SHIFT;
2555 if (index > end_index)
2556 break;
2557 if (index == end_index) {
2558 nr = i_size & ~PAGE_MASK;
2559 if (nr <= offset)
2560 break;
2561 }
2562
2563 error = shmem_getpage(inode, index, &page, sgp);
2564 if (error) {
2565 if (error == -EINVAL)
2566 error = 0;
2567 break;
2568 }
2569 if (page) {
2570 if (sgp == SGP_CACHE)
2571 set_page_dirty(page);
2572 unlock_page(page);
2573 }
2574
2575 /*
2576 * We must evaluate after, since reads (unlike writes)
2577 * are called without i_mutex protection against truncate
2578 */
2579 nr = PAGE_SIZE;
2580 i_size = i_size_read(inode);
2581 end_index = i_size >> PAGE_SHIFT;
2582 if (index == end_index) {
2583 nr = i_size & ~PAGE_MASK;
2584 if (nr <= offset) {
2585 if (page)
2586 put_page(page);
2587 break;
2588 }
2589 }
2590 nr -= offset;
2591
2592 if (page) {
2593 /*
2594 * If users can be writing to this page using arbitrary
2595 * virtual addresses, take care about potential aliasing
2596 * before reading the page on the kernel side.
2597 */
2598 if (mapping_writably_mapped(mapping))
2599 flush_dcache_page(page);
2600 /*
2601 * Mark the page accessed if we read the beginning.
2602 */
2603 if (!offset)
2604 mark_page_accessed(page);
2605 } else {
2606 page = ZERO_PAGE(0);
2607 get_page(page);
2608 }
2609
2610 /*
2611 * Ok, we have the page, and it's up-to-date, so
2612 * now we can copy it to user space...
2613 */
2614 ret = copy_page_to_iter(page, offset, nr, to);
2615 retval += ret;
2616 offset += ret;
2617 index += offset >> PAGE_SHIFT;
2618 offset &= ~PAGE_MASK;
2619
2620 put_page(page);
2621 if (!iov_iter_count(to))
2622 break;
2623 if (ret < nr) {
2624 error = -EFAULT;
2625 break;
2626 }
2627 cond_resched();
2628 }
2629
2630 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2631 file_accessed(file);
2632 return retval ? retval : error;
2633 }
2634
2635 /*
2636 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2637 */
2638 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2639 pgoff_t index, pgoff_t end, int whence)
2640 {
2641 struct page *page;
2642 struct pagevec pvec;
2643 pgoff_t indices[PAGEVEC_SIZE];
2644 bool done = false;
2645 int i;
2646
2647 pagevec_init(&pvec);
2648 pvec.nr = 1; /* start small: we may be there already */
2649 while (!done) {
2650 pvec.nr = find_get_entries(mapping, index,
2651 pvec.nr, pvec.pages, indices);
2652 if (!pvec.nr) {
2653 if (whence == SEEK_DATA)
2654 index = end;
2655 break;
2656 }
2657 for (i = 0; i < pvec.nr; i++, index++) {
2658 if (index < indices[i]) {
2659 if (whence == SEEK_HOLE) {
2660 done = true;
2661 break;
2662 }
2663 index = indices[i];
2664 }
2665 page = pvec.pages[i];
2666 if (page && !xa_is_value(page)) {
2667 if (!PageUptodate(page))
2668 page = NULL;
2669 }
2670 if (index >= end ||
2671 (page && whence == SEEK_DATA) ||
2672 (!page && whence == SEEK_HOLE)) {
2673 done = true;
2674 break;
2675 }
2676 }
2677 pagevec_remove_exceptionals(&pvec);
2678 pagevec_release(&pvec);
2679 pvec.nr = PAGEVEC_SIZE;
2680 cond_resched();
2681 }
2682 return index;
2683 }
2684
2685 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2686 {
2687 struct address_space *mapping = file->f_mapping;
2688 struct inode *inode = mapping->host;
2689 pgoff_t start, end;
2690 loff_t new_offset;
2691
2692 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2693 return generic_file_llseek_size(file, offset, whence,
2694 MAX_LFS_FILESIZE, i_size_read(inode));
2695 inode_lock(inode);
2696 /* We're holding i_mutex so we can access i_size directly */
2697
2698 if (offset < 0 || offset >= inode->i_size)
2699 offset = -ENXIO;
2700 else {
2701 start = offset >> PAGE_SHIFT;
2702 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2703 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2704 new_offset <<= PAGE_SHIFT;
2705 if (new_offset > offset) {
2706 if (new_offset < inode->i_size)
2707 offset = new_offset;
2708 else if (whence == SEEK_DATA)
2709 offset = -ENXIO;
2710 else
2711 offset = inode->i_size;
2712 }
2713 }
2714
2715 if (offset >= 0)
2716 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2717 inode_unlock(inode);
2718 return offset;
2719 }
2720
2721 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2722 loff_t len)
2723 {
2724 struct inode *inode = file_inode(file);
2725 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2726 struct shmem_inode_info *info = SHMEM_I(inode);
2727 struct shmem_falloc shmem_falloc;
2728 pgoff_t start, index, end;
2729 int error;
2730
2731 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2732 return -EOPNOTSUPP;
2733
2734 inode_lock(inode);
2735
2736 if (mode & FALLOC_FL_PUNCH_HOLE) {
2737 struct address_space *mapping = file->f_mapping;
2738 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2739 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2740 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2741
2742 /* protected by i_mutex */
2743 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2744 error = -EPERM;
2745 goto out;
2746 }
2747
2748 shmem_falloc.waitq = &shmem_falloc_waitq;
2749 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2750 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2751 spin_lock(&inode->i_lock);
2752 inode->i_private = &shmem_falloc;
2753 spin_unlock(&inode->i_lock);
2754
2755 if ((u64)unmap_end > (u64)unmap_start)
2756 unmap_mapping_range(mapping, unmap_start,
2757 1 + unmap_end - unmap_start, 0);
2758 shmem_truncate_range(inode, offset, offset + len - 1);
2759 /* No need to unmap again: hole-punching leaves COWed pages */
2760
2761 spin_lock(&inode->i_lock);
2762 inode->i_private = NULL;
2763 wake_up_all(&shmem_falloc_waitq);
2764 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2765 spin_unlock(&inode->i_lock);
2766 error = 0;
2767 goto out;
2768 }
2769
2770 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2771 error = inode_newsize_ok(inode, offset + len);
2772 if (error)
2773 goto out;
2774
2775 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2776 error = -EPERM;
2777 goto out;
2778 }
2779
2780 start = offset >> PAGE_SHIFT;
2781 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2782 /* Try to avoid a swapstorm if len is impossible to satisfy */
2783 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2784 error = -ENOSPC;
2785 goto out;
2786 }
2787
2788 shmem_falloc.waitq = NULL;
2789 shmem_falloc.start = start;
2790 shmem_falloc.next = start;
2791 shmem_falloc.nr_falloced = 0;
2792 shmem_falloc.nr_unswapped = 0;
2793 spin_lock(&inode->i_lock);
2794 inode->i_private = &shmem_falloc;
2795 spin_unlock(&inode->i_lock);
2796
2797 for (index = start; index < end; index++) {
2798 struct page *page;
2799
2800 /*
2801 * Good, the fallocate(2) manpage permits EINTR: we may have
2802 * been interrupted because we are using up too much memory.
2803 */
2804 if (signal_pending(current))
2805 error = -EINTR;
2806 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2807 error = -ENOMEM;
2808 else
2809 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2810 if (error) {
2811 /* Remove the !PageUptodate pages we added */
2812 if (index > start) {
2813 shmem_undo_range(inode,
2814 (loff_t)start << PAGE_SHIFT,
2815 ((loff_t)index << PAGE_SHIFT) - 1, true);
2816 }
2817 goto undone;
2818 }
2819
2820 /*
2821 * Inform shmem_writepage() how far we have reached.
2822 * No need for lock or barrier: we have the page lock.
2823 */
2824 shmem_falloc.next++;
2825 if (!PageUptodate(page))
2826 shmem_falloc.nr_falloced++;
2827
2828 /*
2829 * If !PageUptodate, leave it that way so that freeable pages
2830 * can be recognized if we need to rollback on error later.
2831 * But set_page_dirty so that memory pressure will swap rather
2832 * than free the pages we are allocating (and SGP_CACHE pages
2833 * might still be clean: we now need to mark those dirty too).
2834 */
2835 set_page_dirty(page);
2836 unlock_page(page);
2837 put_page(page);
2838 cond_resched();
2839 }
2840
2841 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2842 i_size_write(inode, offset + len);
2843 inode->i_ctime = current_time(inode);
2844 undone:
2845 spin_lock(&inode->i_lock);
2846 inode->i_private = NULL;
2847 spin_unlock(&inode->i_lock);
2848 out:
2849 inode_unlock(inode);
2850 return error;
2851 }
2852
2853 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2854 {
2855 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2856
2857 buf->f_type = TMPFS_MAGIC;
2858 buf->f_bsize = PAGE_SIZE;
2859 buf->f_namelen = NAME_MAX;
2860 if (sbinfo->max_blocks) {
2861 buf->f_blocks = sbinfo->max_blocks;
2862 buf->f_bavail =
2863 buf->f_bfree = sbinfo->max_blocks -
2864 percpu_counter_sum(&sbinfo->used_blocks);
2865 }
2866 if (sbinfo->max_inodes) {
2867 buf->f_files = sbinfo->max_inodes;
2868 buf->f_ffree = sbinfo->free_inodes;
2869 }
2870 /* else leave those fields 0 like simple_statfs */
2871 return 0;
2872 }
2873
2874 /*
2875 * File creation. Allocate an inode, and we're done..
2876 */
2877 static int
2878 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2879 {
2880 struct inode *inode;
2881 int error = -ENOSPC;
2882
2883 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2884 if (inode) {
2885 error = simple_acl_create(dir, inode);
2886 if (error)
2887 goto out_iput;
2888 error = security_inode_init_security(inode, dir,
2889 &dentry->d_name,
2890 shmem_initxattrs, NULL);
2891 if (error && error != -EOPNOTSUPP)
2892 goto out_iput;
2893
2894 error = 0;
2895 dir->i_size += BOGO_DIRENT_SIZE;
2896 dir->i_ctime = dir->i_mtime = current_time(dir);
2897 d_instantiate(dentry, inode);
2898 dget(dentry); /* Extra count - pin the dentry in core */
2899 }
2900 return error;
2901 out_iput:
2902 iput(inode);
2903 return error;
2904 }
2905
2906 static int
2907 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2908 {
2909 struct inode *inode;
2910 int error = -ENOSPC;
2911
2912 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2913 if (inode) {
2914 error = security_inode_init_security(inode, dir,
2915 NULL,
2916 shmem_initxattrs, NULL);
2917 if (error && error != -EOPNOTSUPP)
2918 goto out_iput;
2919 error = simple_acl_create(dir, inode);
2920 if (error)
2921 goto out_iput;
2922 d_tmpfile(dentry, inode);
2923 }
2924 return error;
2925 out_iput:
2926 iput(inode);
2927 return error;
2928 }
2929
2930 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2931 {
2932 int error;
2933
2934 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2935 return error;
2936 inc_nlink(dir);
2937 return 0;
2938 }
2939
2940 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2941 bool excl)
2942 {
2943 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2944 }
2945
2946 /*
2947 * Link a file..
2948 */
2949 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2950 {
2951 struct inode *inode = d_inode(old_dentry);
2952 int ret = 0;
2953
2954 /*
2955 * No ordinary (disk based) filesystem counts links as inodes;
2956 * but each new link needs a new dentry, pinning lowmem, and
2957 * tmpfs dentries cannot be pruned until they are unlinked.
2958 * But if an O_TMPFILE file is linked into the tmpfs, the
2959 * first link must skip that, to get the accounting right.
2960 */
2961 if (inode->i_nlink) {
2962 ret = shmem_reserve_inode(inode->i_sb);
2963 if (ret)
2964 goto out;
2965 }
2966
2967 dir->i_size += BOGO_DIRENT_SIZE;
2968 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2969 inc_nlink(inode);
2970 ihold(inode); /* New dentry reference */
2971 dget(dentry); /* Extra pinning count for the created dentry */
2972 d_instantiate(dentry, inode);
2973 out:
2974 return ret;
2975 }
2976
2977 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2978 {
2979 struct inode *inode = d_inode(dentry);
2980
2981 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2982 shmem_free_inode(inode->i_sb);
2983
2984 dir->i_size -= BOGO_DIRENT_SIZE;
2985 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2986 drop_nlink(inode);
2987 dput(dentry); /* Undo the count from "create" - this does all the work */
2988 return 0;
2989 }
2990
2991 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2992 {
2993 if (!simple_empty(dentry))
2994 return -ENOTEMPTY;
2995
2996 drop_nlink(d_inode(dentry));
2997 drop_nlink(dir);
2998 return shmem_unlink(dir, dentry);
2999 }
3000
3001 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3002 {
3003 bool old_is_dir = d_is_dir(old_dentry);
3004 bool new_is_dir = d_is_dir(new_dentry);
3005
3006 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3007 if (old_is_dir) {
3008 drop_nlink(old_dir);
3009 inc_nlink(new_dir);
3010 } else {
3011 drop_nlink(new_dir);
3012 inc_nlink(old_dir);
3013 }
3014 }
3015 old_dir->i_ctime = old_dir->i_mtime =
3016 new_dir->i_ctime = new_dir->i_mtime =
3017 d_inode(old_dentry)->i_ctime =
3018 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3019
3020 return 0;
3021 }
3022
3023 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3024 {
3025 struct dentry *whiteout;
3026 int error;
3027
3028 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3029 if (!whiteout)
3030 return -ENOMEM;
3031
3032 error = shmem_mknod(old_dir, whiteout,
3033 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3034 dput(whiteout);
3035 if (error)
3036 return error;
3037
3038 /*
3039 * Cheat and hash the whiteout while the old dentry is still in
3040 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3041 *
3042 * d_lookup() will consistently find one of them at this point,
3043 * not sure which one, but that isn't even important.
3044 */
3045 d_rehash(whiteout);
3046 return 0;
3047 }
3048
3049 /*
3050 * The VFS layer already does all the dentry stuff for rename,
3051 * we just have to decrement the usage count for the target if
3052 * it exists so that the VFS layer correctly free's it when it
3053 * gets overwritten.
3054 */
3055 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3056 {
3057 struct inode *inode = d_inode(old_dentry);
3058 int they_are_dirs = S_ISDIR(inode->i_mode);
3059
3060 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3061 return -EINVAL;
3062
3063 if (flags & RENAME_EXCHANGE)
3064 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3065
3066 if (!simple_empty(new_dentry))
3067 return -ENOTEMPTY;
3068
3069 if (flags & RENAME_WHITEOUT) {
3070 int error;
3071
3072 error = shmem_whiteout(old_dir, old_dentry);
3073 if (error)
3074 return error;
3075 }
3076
3077 if (d_really_is_positive(new_dentry)) {
3078 (void) shmem_unlink(new_dir, new_dentry);
3079 if (they_are_dirs) {
3080 drop_nlink(d_inode(new_dentry));
3081 drop_nlink(old_dir);
3082 }
3083 } else if (they_are_dirs) {
3084 drop_nlink(old_dir);
3085 inc_nlink(new_dir);
3086 }
3087
3088 old_dir->i_size -= BOGO_DIRENT_SIZE;
3089 new_dir->i_size += BOGO_DIRENT_SIZE;
3090 old_dir->i_ctime = old_dir->i_mtime =
3091 new_dir->i_ctime = new_dir->i_mtime =
3092 inode->i_ctime = current_time(old_dir);
3093 return 0;
3094 }
3095
3096 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3097 {
3098 int error;
3099 int len;
3100 struct inode *inode;
3101 struct page *page;
3102
3103 len = strlen(symname) + 1;
3104 if (len > PAGE_SIZE)
3105 return -ENAMETOOLONG;
3106
3107 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3108 VM_NORESERVE);
3109 if (!inode)
3110 return -ENOSPC;
3111
3112 error = security_inode_init_security(inode, dir, &dentry->d_name,
3113 shmem_initxattrs, NULL);
3114 if (error && error != -EOPNOTSUPP) {
3115 iput(inode);
3116 return error;
3117 }
3118
3119 inode->i_size = len-1;
3120 if (len <= SHORT_SYMLINK_LEN) {
3121 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3122 if (!inode->i_link) {
3123 iput(inode);
3124 return -ENOMEM;
3125 }
3126 inode->i_op = &shmem_short_symlink_operations;
3127 } else {
3128 inode_nohighmem(inode);
3129 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3130 if (error) {
3131 iput(inode);
3132 return error;
3133 }
3134 inode->i_mapping->a_ops = &shmem_aops;
3135 inode->i_op = &shmem_symlink_inode_operations;
3136 memcpy(page_address(page), symname, len);
3137 SetPageUptodate(page);
3138 set_page_dirty(page);
3139 unlock_page(page);
3140 put_page(page);
3141 }
3142 dir->i_size += BOGO_DIRENT_SIZE;
3143 dir->i_ctime = dir->i_mtime = current_time(dir);
3144 d_instantiate(dentry, inode);
3145 dget(dentry);
3146 return 0;
3147 }
3148
3149 static void shmem_put_link(void *arg)
3150 {
3151 mark_page_accessed(arg);
3152 put_page(arg);
3153 }
3154
3155 static const char *shmem_get_link(struct dentry *dentry,
3156 struct inode *inode,
3157 struct delayed_call *done)
3158 {
3159 struct page *page = NULL;
3160 int error;
3161 if (!dentry) {
3162 page = find_get_page(inode->i_mapping, 0);
3163 if (!page)
3164 return ERR_PTR(-ECHILD);
3165 if (!PageUptodate(page)) {
3166 put_page(page);
3167 return ERR_PTR(-ECHILD);
3168 }
3169 } else {
3170 error = shmem_getpage(inode, 0, &page, SGP_READ);
3171 if (error)
3172 return ERR_PTR(error);
3173 unlock_page(page);
3174 }
3175 set_delayed_call(done, shmem_put_link, page);
3176 return page_address(page);
3177 }
3178
3179 #ifdef CONFIG_TMPFS_XATTR
3180 /*
3181 * Superblocks without xattr inode operations may get some security.* xattr
3182 * support from the LSM "for free". As soon as we have any other xattrs
3183 * like ACLs, we also need to implement the security.* handlers at
3184 * filesystem level, though.
3185 */
3186
3187 /*
3188 * Callback for security_inode_init_security() for acquiring xattrs.
3189 */
3190 static int shmem_initxattrs(struct inode *inode,
3191 const struct xattr *xattr_array,
3192 void *fs_info)
3193 {
3194 struct shmem_inode_info *info = SHMEM_I(inode);
3195 const struct xattr *xattr;
3196 struct simple_xattr *new_xattr;
3197 size_t len;
3198
3199 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3200 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3201 if (!new_xattr)
3202 return -ENOMEM;
3203
3204 len = strlen(xattr->name) + 1;
3205 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3206 GFP_KERNEL);
3207 if (!new_xattr->name) {
3208 kfree(new_xattr);
3209 return -ENOMEM;
3210 }
3211
3212 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3213 XATTR_SECURITY_PREFIX_LEN);
3214 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3215 xattr->name, len);
3216
3217 simple_xattr_list_add(&info->xattrs, new_xattr);
3218 }
3219
3220 return 0;
3221 }
3222
3223 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3224 struct dentry *unused, struct inode *inode,
3225 const char *name, void *buffer, size_t size)
3226 {
3227 struct shmem_inode_info *info = SHMEM_I(inode);
3228
3229 name = xattr_full_name(handler, name);
3230 return simple_xattr_get(&info->xattrs, name, buffer, size);
3231 }
3232
3233 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3234 struct dentry *unused, struct inode *inode,
3235 const char *name, const void *value,
3236 size_t size, int flags)
3237 {
3238 struct shmem_inode_info *info = SHMEM_I(inode);
3239
3240 name = xattr_full_name(handler, name);
3241 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3242 }
3243
3244 static const struct xattr_handler shmem_security_xattr_handler = {
3245 .prefix = XATTR_SECURITY_PREFIX,
3246 .get = shmem_xattr_handler_get,
3247 .set = shmem_xattr_handler_set,
3248 };
3249
3250 static const struct xattr_handler shmem_trusted_xattr_handler = {
3251 .prefix = XATTR_TRUSTED_PREFIX,
3252 .get = shmem_xattr_handler_get,
3253 .set = shmem_xattr_handler_set,
3254 };
3255
3256 static const struct xattr_handler *shmem_xattr_handlers[] = {
3257 #ifdef CONFIG_TMPFS_POSIX_ACL
3258 &posix_acl_access_xattr_handler,
3259 &posix_acl_default_xattr_handler,
3260 #endif
3261 &shmem_security_xattr_handler,
3262 &shmem_trusted_xattr_handler,
3263 NULL
3264 };
3265
3266 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3267 {
3268 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3269 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3270 }
3271 #endif /* CONFIG_TMPFS_XATTR */
3272
3273 static const struct inode_operations shmem_short_symlink_operations = {
3274 .get_link = simple_get_link,
3275 #ifdef CONFIG_TMPFS_XATTR
3276 .listxattr = shmem_listxattr,
3277 #endif
3278 };
3279
3280 static const struct inode_operations shmem_symlink_inode_operations = {
3281 .get_link = shmem_get_link,
3282 #ifdef CONFIG_TMPFS_XATTR
3283 .listxattr = shmem_listxattr,
3284 #endif
3285 };
3286
3287 static struct dentry *shmem_get_parent(struct dentry *child)
3288 {
3289 return ERR_PTR(-ESTALE);
3290 }
3291
3292 static int shmem_match(struct inode *ino, void *vfh)
3293 {
3294 __u32 *fh = vfh;
3295 __u64 inum = fh[2];
3296 inum = (inum << 32) | fh[1];
3297 return ino->i_ino == inum && fh[0] == ino->i_generation;
3298 }
3299
3300 /* Find any alias of inode, but prefer a hashed alias */
3301 static struct dentry *shmem_find_alias(struct inode *inode)
3302 {
3303 struct dentry *alias = d_find_alias(inode);
3304
3305 return alias ?: d_find_any_alias(inode);
3306 }
3307
3308
3309 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3310 struct fid *fid, int fh_len, int fh_type)
3311 {
3312 struct inode *inode;
3313 struct dentry *dentry = NULL;
3314 u64 inum;
3315
3316 if (fh_len < 3)
3317 return NULL;
3318
3319 inum = fid->raw[2];
3320 inum = (inum << 32) | fid->raw[1];
3321
3322 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3323 shmem_match, fid->raw);
3324 if (inode) {
3325 dentry = shmem_find_alias(inode);
3326 iput(inode);
3327 }
3328
3329 return dentry;
3330 }
3331
3332 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3333 struct inode *parent)
3334 {
3335 if (*len < 3) {
3336 *len = 3;
3337 return FILEID_INVALID;
3338 }
3339
3340 if (inode_unhashed(inode)) {
3341 /* Unfortunately insert_inode_hash is not idempotent,
3342 * so as we hash inodes here rather than at creation
3343 * time, we need a lock to ensure we only try
3344 * to do it once
3345 */
3346 static DEFINE_SPINLOCK(lock);
3347 spin_lock(&lock);
3348 if (inode_unhashed(inode))
3349 __insert_inode_hash(inode,
3350 inode->i_ino + inode->i_generation);
3351 spin_unlock(&lock);
3352 }
3353
3354 fh[0] = inode->i_generation;
3355 fh[1] = inode->i_ino;
3356 fh[2] = ((__u64)inode->i_ino) >> 32;
3357
3358 *len = 3;
3359 return 1;
3360 }
3361
3362 static const struct export_operations shmem_export_ops = {
3363 .get_parent = shmem_get_parent,
3364 .encode_fh = shmem_encode_fh,
3365 .fh_to_dentry = shmem_fh_to_dentry,
3366 };
3367
3368 enum shmem_param {
3369 Opt_gid,
3370 Opt_huge,
3371 Opt_mode,
3372 Opt_mpol,
3373 Opt_nr_blocks,
3374 Opt_nr_inodes,
3375 Opt_size,
3376 Opt_uid,
3377 };
3378
3379 static const struct constant_table shmem_param_enums_huge[] = {
3380 {"never", SHMEM_HUGE_NEVER },
3381 {"always", SHMEM_HUGE_ALWAYS },
3382 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3383 {"advise", SHMEM_HUGE_ADVISE },
3384 {}
3385 };
3386
3387 const struct fs_parameter_spec shmem_fs_parameters[] = {
3388 fsparam_u32 ("gid", Opt_gid),
3389 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3390 fsparam_u32oct("mode", Opt_mode),
3391 fsparam_string("mpol", Opt_mpol),
3392 fsparam_string("nr_blocks", Opt_nr_blocks),
3393 fsparam_string("nr_inodes", Opt_nr_inodes),
3394 fsparam_string("size", Opt_size),
3395 fsparam_u32 ("uid", Opt_uid),
3396 {}
3397 };
3398
3399 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3400 {
3401 struct shmem_options *ctx = fc->fs_private;
3402 struct fs_parse_result result;
3403 unsigned long long size;
3404 char *rest;
3405 int opt;
3406
3407 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3408 if (opt < 0)
3409 return opt;
3410
3411 switch (opt) {
3412 case Opt_size:
3413 size = memparse(param->string, &rest);
3414 if (*rest == '%') {
3415 size <<= PAGE_SHIFT;
3416 size *= totalram_pages();
3417 do_div(size, 100);
3418 rest++;
3419 }
3420 if (*rest)
3421 goto bad_value;
3422 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3423 ctx->seen |= SHMEM_SEEN_BLOCKS;
3424 break;
3425 case Opt_nr_blocks:
3426 ctx->blocks = memparse(param->string, &rest);
3427 if (*rest)
3428 goto bad_value;
3429 ctx->seen |= SHMEM_SEEN_BLOCKS;
3430 break;
3431 case Opt_nr_inodes:
3432 ctx->inodes = memparse(param->string, &rest);
3433 if (*rest)
3434 goto bad_value;
3435 ctx->seen |= SHMEM_SEEN_INODES;
3436 break;
3437 case Opt_mode:
3438 ctx->mode = result.uint_32 & 07777;
3439 break;
3440 case Opt_uid:
3441 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3442 if (!uid_valid(ctx->uid))
3443 goto bad_value;
3444 break;
3445 case Opt_gid:
3446 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3447 if (!gid_valid(ctx->gid))
3448 goto bad_value;
3449 break;
3450 case Opt_huge:
3451 ctx->huge = result.uint_32;
3452 if (ctx->huge != SHMEM_HUGE_NEVER &&
3453 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3454 has_transparent_hugepage()))
3455 goto unsupported_parameter;
3456 ctx->seen |= SHMEM_SEEN_HUGE;
3457 break;
3458 case Opt_mpol:
3459 if (IS_ENABLED(CONFIG_NUMA)) {
3460 mpol_put(ctx->mpol);
3461 ctx->mpol = NULL;
3462 if (mpol_parse_str(param->string, &ctx->mpol))
3463 goto bad_value;
3464 break;
3465 }
3466 goto unsupported_parameter;
3467 }
3468 return 0;
3469
3470 unsupported_parameter:
3471 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3472 bad_value:
3473 return invalfc(fc, "Bad value for '%s'", param->key);
3474 }
3475
3476 static int shmem_parse_options(struct fs_context *fc, void *data)
3477 {
3478 char *options = data;
3479
3480 if (options) {
3481 int err = security_sb_eat_lsm_opts(options, &fc->security);
3482 if (err)
3483 return err;
3484 }
3485
3486 while (options != NULL) {
3487 char *this_char = options;
3488 for (;;) {
3489 /*
3490 * NUL-terminate this option: unfortunately,
3491 * mount options form a comma-separated list,
3492 * but mpol's nodelist may also contain commas.
3493 */
3494 options = strchr(options, ',');
3495 if (options == NULL)
3496 break;
3497 options++;
3498 if (!isdigit(*options)) {
3499 options[-1] = '\0';
3500 break;
3501 }
3502 }
3503 if (*this_char) {
3504 char *value = strchr(this_char,'=');
3505 size_t len = 0;
3506 int err;
3507
3508 if (value) {
3509 *value++ = '\0';
3510 len = strlen(value);
3511 }
3512 err = vfs_parse_fs_string(fc, this_char, value, len);
3513 if (err < 0)
3514 return err;
3515 }
3516 }
3517 return 0;
3518 }
3519
3520 /*
3521 * Reconfigure a shmem filesystem.
3522 *
3523 * Note that we disallow change from limited->unlimited blocks/inodes while any
3524 * are in use; but we must separately disallow unlimited->limited, because in
3525 * that case we have no record of how much is already in use.
3526 */
3527 static int shmem_reconfigure(struct fs_context *fc)
3528 {
3529 struct shmem_options *ctx = fc->fs_private;
3530 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3531 unsigned long inodes;
3532 const char *err;
3533
3534 spin_lock(&sbinfo->stat_lock);
3535 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3536 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3537 if (!sbinfo->max_blocks) {
3538 err = "Cannot retroactively limit size";
3539 goto out;
3540 }
3541 if (percpu_counter_compare(&sbinfo->used_blocks,
3542 ctx->blocks) > 0) {
3543 err = "Too small a size for current use";
3544 goto out;
3545 }
3546 }
3547 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3548 if (!sbinfo->max_inodes) {
3549 err = "Cannot retroactively limit inodes";
3550 goto out;
3551 }
3552 if (ctx->inodes < inodes) {
3553 err = "Too few inodes for current use";
3554 goto out;
3555 }
3556 }
3557
3558 if (ctx->seen & SHMEM_SEEN_HUGE)
3559 sbinfo->huge = ctx->huge;
3560 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3561 sbinfo->max_blocks = ctx->blocks;
3562 if (ctx->seen & SHMEM_SEEN_INODES) {
3563 sbinfo->max_inodes = ctx->inodes;
3564 sbinfo->free_inodes = ctx->inodes - inodes;
3565 }
3566
3567 /*
3568 * Preserve previous mempolicy unless mpol remount option was specified.
3569 */
3570 if (ctx->mpol) {
3571 mpol_put(sbinfo->mpol);
3572 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3573 ctx->mpol = NULL;
3574 }
3575 spin_unlock(&sbinfo->stat_lock);
3576 return 0;
3577 out:
3578 spin_unlock(&sbinfo->stat_lock);
3579 return invalfc(fc, "%s", err);
3580 }
3581
3582 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3583 {
3584 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3585
3586 if (sbinfo->max_blocks != shmem_default_max_blocks())
3587 seq_printf(seq, ",size=%luk",
3588 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3589 if (sbinfo->max_inodes != shmem_default_max_inodes())
3590 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3591 if (sbinfo->mode != (0777 | S_ISVTX))
3592 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3593 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3594 seq_printf(seq, ",uid=%u",
3595 from_kuid_munged(&init_user_ns, sbinfo->uid));
3596 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3597 seq_printf(seq, ",gid=%u",
3598 from_kgid_munged(&init_user_ns, sbinfo->gid));
3599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3600 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3601 if (sbinfo->huge)
3602 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3603 #endif
3604 shmem_show_mpol(seq, sbinfo->mpol);
3605 return 0;
3606 }
3607
3608 #endif /* CONFIG_TMPFS */
3609
3610 static void shmem_put_super(struct super_block *sb)
3611 {
3612 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3613
3614 percpu_counter_destroy(&sbinfo->used_blocks);
3615 mpol_put(sbinfo->mpol);
3616 kfree(sbinfo);
3617 sb->s_fs_info = NULL;
3618 }
3619
3620 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3621 {
3622 struct shmem_options *ctx = fc->fs_private;
3623 struct inode *inode;
3624 struct shmem_sb_info *sbinfo;
3625 int err = -ENOMEM;
3626
3627 /* Round up to L1_CACHE_BYTES to resist false sharing */
3628 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3629 L1_CACHE_BYTES), GFP_KERNEL);
3630 if (!sbinfo)
3631 return -ENOMEM;
3632
3633 sb->s_fs_info = sbinfo;
3634
3635 #ifdef CONFIG_TMPFS
3636 /*
3637 * Per default we only allow half of the physical ram per
3638 * tmpfs instance, limiting inodes to one per page of lowmem;
3639 * but the internal instance is left unlimited.
3640 */
3641 if (!(sb->s_flags & SB_KERNMOUNT)) {
3642 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3643 ctx->blocks = shmem_default_max_blocks();
3644 if (!(ctx->seen & SHMEM_SEEN_INODES))
3645 ctx->inodes = shmem_default_max_inodes();
3646 } else {
3647 sb->s_flags |= SB_NOUSER;
3648 }
3649 sb->s_export_op = &shmem_export_ops;
3650 sb->s_flags |= SB_NOSEC;
3651 #else
3652 sb->s_flags |= SB_NOUSER;
3653 #endif
3654 sbinfo->max_blocks = ctx->blocks;
3655 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3656 sbinfo->uid = ctx->uid;
3657 sbinfo->gid = ctx->gid;
3658 sbinfo->mode = ctx->mode;
3659 sbinfo->huge = ctx->huge;
3660 sbinfo->mpol = ctx->mpol;
3661 ctx->mpol = NULL;
3662
3663 spin_lock_init(&sbinfo->stat_lock);
3664 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3665 goto failed;
3666 spin_lock_init(&sbinfo->shrinklist_lock);
3667 INIT_LIST_HEAD(&sbinfo->shrinklist);
3668
3669 sb->s_maxbytes = MAX_LFS_FILESIZE;
3670 sb->s_blocksize = PAGE_SIZE;
3671 sb->s_blocksize_bits = PAGE_SHIFT;
3672 sb->s_magic = TMPFS_MAGIC;
3673 sb->s_op = &shmem_ops;
3674 sb->s_time_gran = 1;
3675 #ifdef CONFIG_TMPFS_XATTR
3676 sb->s_xattr = shmem_xattr_handlers;
3677 #endif
3678 #ifdef CONFIG_TMPFS_POSIX_ACL
3679 sb->s_flags |= SB_POSIXACL;
3680 #endif
3681 uuid_gen(&sb->s_uuid);
3682
3683 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3684 if (!inode)
3685 goto failed;
3686 inode->i_uid = sbinfo->uid;
3687 inode->i_gid = sbinfo->gid;
3688 sb->s_root = d_make_root(inode);
3689 if (!sb->s_root)
3690 goto failed;
3691 return 0;
3692
3693 failed:
3694 shmem_put_super(sb);
3695 return err;
3696 }
3697
3698 static int shmem_get_tree(struct fs_context *fc)
3699 {
3700 return get_tree_nodev(fc, shmem_fill_super);
3701 }
3702
3703 static void shmem_free_fc(struct fs_context *fc)
3704 {
3705 struct shmem_options *ctx = fc->fs_private;
3706
3707 if (ctx) {
3708 mpol_put(ctx->mpol);
3709 kfree(ctx);
3710 }
3711 }
3712
3713 static const struct fs_context_operations shmem_fs_context_ops = {
3714 .free = shmem_free_fc,
3715 .get_tree = shmem_get_tree,
3716 #ifdef CONFIG_TMPFS
3717 .parse_monolithic = shmem_parse_options,
3718 .parse_param = shmem_parse_one,
3719 .reconfigure = shmem_reconfigure,
3720 #endif
3721 };
3722
3723 static struct kmem_cache *shmem_inode_cachep;
3724
3725 static struct inode *shmem_alloc_inode(struct super_block *sb)
3726 {
3727 struct shmem_inode_info *info;
3728 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3729 if (!info)
3730 return NULL;
3731 return &info->vfs_inode;
3732 }
3733
3734 static void shmem_free_in_core_inode(struct inode *inode)
3735 {
3736 if (S_ISLNK(inode->i_mode))
3737 kfree(inode->i_link);
3738 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3739 }
3740
3741 static void shmem_destroy_inode(struct inode *inode)
3742 {
3743 if (S_ISREG(inode->i_mode))
3744 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3745 }
3746
3747 static void shmem_init_inode(void *foo)
3748 {
3749 struct shmem_inode_info *info = foo;
3750 inode_init_once(&info->vfs_inode);
3751 }
3752
3753 static void shmem_init_inodecache(void)
3754 {
3755 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3756 sizeof(struct shmem_inode_info),
3757 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3758 }
3759
3760 static void shmem_destroy_inodecache(void)
3761 {
3762 kmem_cache_destroy(shmem_inode_cachep);
3763 }
3764
3765 static const struct address_space_operations shmem_aops = {
3766 .writepage = shmem_writepage,
3767 .set_page_dirty = __set_page_dirty_no_writeback,
3768 #ifdef CONFIG_TMPFS
3769 .write_begin = shmem_write_begin,
3770 .write_end = shmem_write_end,
3771 #endif
3772 #ifdef CONFIG_MIGRATION
3773 .migratepage = migrate_page,
3774 #endif
3775 .error_remove_page = generic_error_remove_page,
3776 };
3777
3778 static const struct file_operations shmem_file_operations = {
3779 .mmap = shmem_mmap,
3780 .get_unmapped_area = shmem_get_unmapped_area,
3781 #ifdef CONFIG_TMPFS
3782 .llseek = shmem_file_llseek,
3783 .read_iter = shmem_file_read_iter,
3784 .write_iter = generic_file_write_iter,
3785 .fsync = noop_fsync,
3786 .splice_read = generic_file_splice_read,
3787 .splice_write = iter_file_splice_write,
3788 .fallocate = shmem_fallocate,
3789 #endif
3790 };
3791
3792 static const struct inode_operations shmem_inode_operations = {
3793 .getattr = shmem_getattr,
3794 .setattr = shmem_setattr,
3795 #ifdef CONFIG_TMPFS_XATTR
3796 .listxattr = shmem_listxattr,
3797 .set_acl = simple_set_acl,
3798 #endif
3799 };
3800
3801 static const struct inode_operations shmem_dir_inode_operations = {
3802 #ifdef CONFIG_TMPFS
3803 .create = shmem_create,
3804 .lookup = simple_lookup,
3805 .link = shmem_link,
3806 .unlink = shmem_unlink,
3807 .symlink = shmem_symlink,
3808 .mkdir = shmem_mkdir,
3809 .rmdir = shmem_rmdir,
3810 .mknod = shmem_mknod,
3811 .rename = shmem_rename2,
3812 .tmpfile = shmem_tmpfile,
3813 #endif
3814 #ifdef CONFIG_TMPFS_XATTR
3815 .listxattr = shmem_listxattr,
3816 #endif
3817 #ifdef CONFIG_TMPFS_POSIX_ACL
3818 .setattr = shmem_setattr,
3819 .set_acl = simple_set_acl,
3820 #endif
3821 };
3822
3823 static const struct inode_operations shmem_special_inode_operations = {
3824 #ifdef CONFIG_TMPFS_XATTR
3825 .listxattr = shmem_listxattr,
3826 #endif
3827 #ifdef CONFIG_TMPFS_POSIX_ACL
3828 .setattr = shmem_setattr,
3829 .set_acl = simple_set_acl,
3830 #endif
3831 };
3832
3833 static const struct super_operations shmem_ops = {
3834 .alloc_inode = shmem_alloc_inode,
3835 .free_inode = shmem_free_in_core_inode,
3836 .destroy_inode = shmem_destroy_inode,
3837 #ifdef CONFIG_TMPFS
3838 .statfs = shmem_statfs,
3839 .show_options = shmem_show_options,
3840 #endif
3841 .evict_inode = shmem_evict_inode,
3842 .drop_inode = generic_delete_inode,
3843 .put_super = shmem_put_super,
3844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3845 .nr_cached_objects = shmem_unused_huge_count,
3846 .free_cached_objects = shmem_unused_huge_scan,
3847 #endif
3848 };
3849
3850 static const struct vm_operations_struct shmem_vm_ops = {
3851 .fault = shmem_fault,
3852 .map_pages = filemap_map_pages,
3853 #ifdef CONFIG_NUMA
3854 .set_policy = shmem_set_policy,
3855 .get_policy = shmem_get_policy,
3856 #endif
3857 };
3858
3859 int shmem_init_fs_context(struct fs_context *fc)
3860 {
3861 struct shmem_options *ctx;
3862
3863 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3864 if (!ctx)
3865 return -ENOMEM;
3866
3867 ctx->mode = 0777 | S_ISVTX;
3868 ctx->uid = current_fsuid();
3869 ctx->gid = current_fsgid();
3870
3871 fc->fs_private = ctx;
3872 fc->ops = &shmem_fs_context_ops;
3873 return 0;
3874 }
3875
3876 static struct file_system_type shmem_fs_type = {
3877 .owner = THIS_MODULE,
3878 .name = "tmpfs",
3879 .init_fs_context = shmem_init_fs_context,
3880 #ifdef CONFIG_TMPFS
3881 .parameters = shmem_fs_parameters,
3882 #endif
3883 .kill_sb = kill_litter_super,
3884 .fs_flags = FS_USERNS_MOUNT,
3885 };
3886
3887 int __init shmem_init(void)
3888 {
3889 int error;
3890
3891 shmem_init_inodecache();
3892
3893 error = register_filesystem(&shmem_fs_type);
3894 if (error) {
3895 pr_err("Could not register tmpfs\n");
3896 goto out2;
3897 }
3898
3899 shm_mnt = kern_mount(&shmem_fs_type);
3900 if (IS_ERR(shm_mnt)) {
3901 error = PTR_ERR(shm_mnt);
3902 pr_err("Could not kern_mount tmpfs\n");
3903 goto out1;
3904 }
3905
3906 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3907 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3908 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3909 else
3910 shmem_huge = 0; /* just in case it was patched */
3911 #endif
3912 return 0;
3913
3914 out1:
3915 unregister_filesystem(&shmem_fs_type);
3916 out2:
3917 shmem_destroy_inodecache();
3918 shm_mnt = ERR_PTR(error);
3919 return error;
3920 }
3921
3922 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3923 static ssize_t shmem_enabled_show(struct kobject *kobj,
3924 struct kobj_attribute *attr, char *buf)
3925 {
3926 static const int values[] = {
3927 SHMEM_HUGE_ALWAYS,
3928 SHMEM_HUGE_WITHIN_SIZE,
3929 SHMEM_HUGE_ADVISE,
3930 SHMEM_HUGE_NEVER,
3931 SHMEM_HUGE_DENY,
3932 SHMEM_HUGE_FORCE,
3933 };
3934 int i, count;
3935
3936 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3937 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3938
3939 count += sprintf(buf + count, fmt,
3940 shmem_format_huge(values[i]));
3941 }
3942 buf[count - 1] = '\n';
3943 return count;
3944 }
3945
3946 static ssize_t shmem_enabled_store(struct kobject *kobj,
3947 struct kobj_attribute *attr, const char *buf, size_t count)
3948 {
3949 char tmp[16];
3950 int huge;
3951
3952 if (count + 1 > sizeof(tmp))
3953 return -EINVAL;
3954 memcpy(tmp, buf, count);
3955 tmp[count] = '\0';
3956 if (count && tmp[count - 1] == '\n')
3957 tmp[count - 1] = '\0';
3958
3959 huge = shmem_parse_huge(tmp);
3960 if (huge == -EINVAL)
3961 return -EINVAL;
3962 if (!has_transparent_hugepage() &&
3963 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3964 return -EINVAL;
3965
3966 shmem_huge = huge;
3967 if (shmem_huge > SHMEM_HUGE_DENY)
3968 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3969 return count;
3970 }
3971
3972 struct kobj_attribute shmem_enabled_attr =
3973 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3974 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3975
3976 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3977 bool shmem_huge_enabled(struct vm_area_struct *vma)
3978 {
3979 struct inode *inode = file_inode(vma->vm_file);
3980 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3981 loff_t i_size;
3982 pgoff_t off;
3983
3984 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3985 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3986 return false;
3987 if (shmem_huge == SHMEM_HUGE_FORCE)
3988 return true;
3989 if (shmem_huge == SHMEM_HUGE_DENY)
3990 return false;
3991 switch (sbinfo->huge) {
3992 case SHMEM_HUGE_NEVER:
3993 return false;
3994 case SHMEM_HUGE_ALWAYS:
3995 return true;
3996 case SHMEM_HUGE_WITHIN_SIZE:
3997 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3998 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3999 if (i_size >= HPAGE_PMD_SIZE &&
4000 i_size >> PAGE_SHIFT >= off)
4001 return true;
4002 fallthrough;
4003 case SHMEM_HUGE_ADVISE:
4004 /* TODO: implement fadvise() hints */
4005 return (vma->vm_flags & VM_HUGEPAGE);
4006 default:
4007 VM_BUG_ON(1);
4008 return false;
4009 }
4010 }
4011 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4012
4013 #else /* !CONFIG_SHMEM */
4014
4015 /*
4016 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4017 *
4018 * This is intended for small system where the benefits of the full
4019 * shmem code (swap-backed and resource-limited) are outweighed by
4020 * their complexity. On systems without swap this code should be
4021 * effectively equivalent, but much lighter weight.
4022 */
4023
4024 static struct file_system_type shmem_fs_type = {
4025 .name = "tmpfs",
4026 .init_fs_context = ramfs_init_fs_context,
4027 .parameters = ramfs_fs_parameters,
4028 .kill_sb = kill_litter_super,
4029 .fs_flags = FS_USERNS_MOUNT,
4030 };
4031
4032 int __init shmem_init(void)
4033 {
4034 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4035
4036 shm_mnt = kern_mount(&shmem_fs_type);
4037 BUG_ON(IS_ERR(shm_mnt));
4038
4039 return 0;
4040 }
4041
4042 int shmem_unuse(unsigned int type, bool frontswap,
4043 unsigned long *fs_pages_to_unuse)
4044 {
4045 return 0;
4046 }
4047
4048 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4049 {
4050 return 0;
4051 }
4052
4053 void shmem_unlock_mapping(struct address_space *mapping)
4054 {
4055 }
4056
4057 #ifdef CONFIG_MMU
4058 unsigned long shmem_get_unmapped_area(struct file *file,
4059 unsigned long addr, unsigned long len,
4060 unsigned long pgoff, unsigned long flags)
4061 {
4062 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4063 }
4064 #endif
4065
4066 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4067 {
4068 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4069 }
4070 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4071
4072 #define shmem_vm_ops generic_file_vm_ops
4073 #define shmem_file_operations ramfs_file_operations
4074 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4075 #define shmem_acct_size(flags, size) 0
4076 #define shmem_unacct_size(flags, size) do {} while (0)
4077
4078 #endif /* CONFIG_SHMEM */
4079
4080 /* common code */
4081
4082 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4083 unsigned long flags, unsigned int i_flags)
4084 {
4085 struct inode *inode;
4086 struct file *res;
4087
4088 if (IS_ERR(mnt))
4089 return ERR_CAST(mnt);
4090
4091 if (size < 0 || size > MAX_LFS_FILESIZE)
4092 return ERR_PTR(-EINVAL);
4093
4094 if (shmem_acct_size(flags, size))
4095 return ERR_PTR(-ENOMEM);
4096
4097 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4098 flags);
4099 if (unlikely(!inode)) {
4100 shmem_unacct_size(flags, size);
4101 return ERR_PTR(-ENOSPC);
4102 }
4103 inode->i_flags |= i_flags;
4104 inode->i_size = size;
4105 clear_nlink(inode); /* It is unlinked */
4106 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4107 if (!IS_ERR(res))
4108 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4109 &shmem_file_operations);
4110 if (IS_ERR(res))
4111 iput(inode);
4112 return res;
4113 }
4114
4115 /**
4116 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4117 * kernel internal. There will be NO LSM permission checks against the
4118 * underlying inode. So users of this interface must do LSM checks at a
4119 * higher layer. The users are the big_key and shm implementations. LSM
4120 * checks are provided at the key or shm level rather than the inode.
4121 * @name: name for dentry (to be seen in /proc/<pid>/maps
4122 * @size: size to be set for the file
4123 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4124 */
4125 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4126 {
4127 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4128 }
4129
4130 /**
4131 * shmem_file_setup - get an unlinked file living in tmpfs
4132 * @name: name for dentry (to be seen in /proc/<pid>/maps
4133 * @size: size to be set for the file
4134 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4135 */
4136 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4137 {
4138 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4139 }
4140 EXPORT_SYMBOL_GPL(shmem_file_setup);
4141
4142 /**
4143 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4144 * @mnt: the tmpfs mount where the file will be created
4145 * @name: name for dentry (to be seen in /proc/<pid>/maps
4146 * @size: size to be set for the file
4147 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4148 */
4149 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4150 loff_t size, unsigned long flags)
4151 {
4152 return __shmem_file_setup(mnt, name, size, flags, 0);
4153 }
4154 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4155
4156 /**
4157 * shmem_zero_setup - setup a shared anonymous mapping
4158 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4159 */
4160 int shmem_zero_setup(struct vm_area_struct *vma)
4161 {
4162 struct file *file;
4163 loff_t size = vma->vm_end - vma->vm_start;
4164
4165 /*
4166 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4167 * between XFS directory reading and selinux: since this file is only
4168 * accessible to the user through its mapping, use S_PRIVATE flag to
4169 * bypass file security, in the same way as shmem_kernel_file_setup().
4170 */
4171 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4172 if (IS_ERR(file))
4173 return PTR_ERR(file);
4174
4175 if (vma->vm_file)
4176 fput(vma->vm_file);
4177 vma->vm_file = file;
4178 vma->vm_ops = &shmem_vm_ops;
4179
4180 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4181 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4182 (vma->vm_end & HPAGE_PMD_MASK)) {
4183 khugepaged_enter(vma, vma->vm_flags);
4184 }
4185
4186 return 0;
4187 }
4188
4189 /**
4190 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4191 * @mapping: the page's address_space
4192 * @index: the page index
4193 * @gfp: the page allocator flags to use if allocating
4194 *
4195 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4196 * with any new page allocations done using the specified allocation flags.
4197 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4198 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4199 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4200 *
4201 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4202 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4203 */
4204 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4205 pgoff_t index, gfp_t gfp)
4206 {
4207 #ifdef CONFIG_SHMEM
4208 struct inode *inode = mapping->host;
4209 struct page *page;
4210 int error;
4211
4212 BUG_ON(mapping->a_ops != &shmem_aops);
4213 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4214 gfp, NULL, NULL, NULL);
4215 if (error)
4216 page = ERR_PTR(error);
4217 else
4218 unlock_page(page);
4219 return page;
4220 #else
4221 /*
4222 * The tiny !SHMEM case uses ramfs without swap
4223 */
4224 return read_cache_page_gfp(mapping, index, gfp);
4225 #endif
4226 }
4227 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);