]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/shmem.c
futex: arch_futex_atomic_op_inuser() calling conventions change
[mirror_ubuntu-jammy-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97
98 /*
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
102 */
103 struct shmem_falloc {
104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109 };
110
111 struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
115 kuid_t uid;
116 kgid_t gid;
117 umode_t mode;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp,
148 gfp_t gfp, struct vm_area_struct *vma,
149 struct vm_fault *vmf, vm_fault_t *fault_type);
150
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152 struct page **pagep, enum sgp_type sgp)
153 {
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160 return sb->s_fs_info;
161 }
162
163 /*
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
168 */
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171 return (flags & VM_NORESERVE) ?
172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177 if (!(flags & VM_NORESERVE))
178 vm_unacct_memory(VM_ACCT(size));
179 }
180
181 static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
183 {
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 }
191 return 0;
192 }
193
194 /*
195 * ... whereas tmpfs objects are accounted incrementally as
196 * pages are allocated, in order to allow large sparse files.
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199 */
200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202 if (!(flags & VM_NORESERVE))
203 return 0;
204
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
207 }
208
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211 if (flags & VM_NORESERVE)
212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (shmem_acct_block(info->flags, pages))
221 return false;
222
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
226 goto unacct;
227 percpu_counter_add(&sbinfo->used_blocks, pages);
228 }
229
230 return true;
231
232 unacct:
233 shmem_unacct_blocks(info->flags, pages);
234 return false;
235 }
236
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
245 }
246
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255
256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258 return vma->vm_ops == &shmem_vm_ops;
259 }
260
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263
264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
271 return -ENOSPC;
272 }
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
275 }
276 return 0;
277 }
278
279 static void shmem_free_inode(struct super_block *sb)
280 {
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
286 }
287 }
288
289 /**
290 * shmem_recalc_inode - recalculate the block usage of an inode
291 * @inode: inode to recalc
292 *
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
295 *
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298 *
299 * It has to be called with the spinlock held.
300 */
301 static void shmem_recalc_inode(struct inode *inode)
302 {
303 struct shmem_inode_info *info = SHMEM_I(inode);
304 long freed;
305
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 if (freed > 0) {
308 info->alloced -= freed;
309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 shmem_inode_unacct_blocks(inode, freed);
311 }
312 }
313
314 bool shmem_charge(struct inode *inode, long pages)
315 {
316 struct shmem_inode_info *info = SHMEM_I(inode);
317 unsigned long flags;
318
319 if (!shmem_inode_acct_block(inode, pages))
320 return false;
321
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
324
325 spin_lock_irqsave(&info->lock, flags);
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
329 spin_unlock_irqrestore(&info->lock, flags);
330
331 return true;
332 }
333
334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336 struct shmem_inode_info *info = SHMEM_I(inode);
337 unsigned long flags;
338
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341 spin_lock_irqsave(&info->lock, flags);
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
345 spin_unlock_irqrestore(&info->lock, flags);
346
347 shmem_inode_unacct_blocks(inode, pages);
348 }
349
350 /*
351 * Replace item expected in xarray by a new item, while holding xa_lock.
352 */
353 static int shmem_replace_entry(struct address_space *mapping,
354 pgoff_t index, void *expected, void *replacement)
355 {
356 XA_STATE(xas, &mapping->i_pages, index);
357 void *item;
358
359 VM_BUG_ON(!expected);
360 VM_BUG_ON(!replacement);
361 item = xas_load(&xas);
362 if (item != expected)
363 return -ENOENT;
364 xas_store(&xas, replacement);
365 return 0;
366 }
367
368 /*
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
371 *
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
374 */
375 static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
377 {
378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380
381 /*
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383 *
384 * SHMEM_HUGE_NEVER:
385 * disables huge pages for the mount;
386 * SHMEM_HUGE_ALWAYS:
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
391 * SHMEM_HUGE_ADVISE:
392 * only allocate huge pages if requested with fadvise()/madvise();
393 */
394
395 #define SHMEM_HUGE_NEVER 0
396 #define SHMEM_HUGE_ALWAYS 1
397 #define SHMEM_HUGE_WITHIN_SIZE 2
398 #define SHMEM_HUGE_ADVISE 3
399
400 /*
401 * Special values.
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403 *
404 * SHMEM_HUGE_DENY:
405 * disables huge on shm_mnt and all mounts, for emergency use;
406 * SHMEM_HUGE_FORCE:
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408 *
409 */
410 #define SHMEM_HUGE_DENY (-1)
411 #define SHMEM_HUGE_FORCE (-2)
412
413 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415
416 static int shmem_huge __read_mostly;
417
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
420 {
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
433 return -EINVAL;
434 }
435 #endif
436
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
439 {
440 switch (huge) {
441 case SHMEM_HUGE_NEVER:
442 return "never";
443 case SHMEM_HUGE_ALWAYS:
444 return "always";
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
448 return "advise";
449 case SHMEM_HUGE_DENY:
450 return "deny";
451 case SHMEM_HUGE_FORCE:
452 return "force";
453 default:
454 VM_BUG_ON(1);
455 return "bad_val";
456 }
457 }
458 #endif
459
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
462 {
463 LIST_HEAD(list), *pos, *next;
464 LIST_HEAD(to_remove);
465 struct inode *inode;
466 struct shmem_inode_info *info;
467 struct page *page;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int removed = 0, split = 0;
470
471 if (list_empty(&sbinfo->shrinklist))
472 return SHRINK_STOP;
473
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478 /* pin the inode */
479 inode = igrab(&info->vfs_inode);
480
481 /* inode is about to be evicted */
482 if (!inode) {
483 list_del_init(&info->shrinklist);
484 removed++;
485 goto next;
486 }
487
488 /* Check if there's anything to gain */
489 if (round_up(inode->i_size, PAGE_SIZE) ==
490 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491 list_move(&info->shrinklist, &to_remove);
492 removed++;
493 goto next;
494 }
495
496 list_move(&info->shrinklist, &list);
497 next:
498 if (!--batch)
499 break;
500 }
501 spin_unlock(&sbinfo->shrinklist_lock);
502
503 list_for_each_safe(pos, next, &to_remove) {
504 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 inode = &info->vfs_inode;
506 list_del_init(&info->shrinklist);
507 iput(inode);
508 }
509
510 list_for_each_safe(pos, next, &list) {
511 int ret;
512
513 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 inode = &info->vfs_inode;
515
516 if (nr_to_split && split >= nr_to_split)
517 goto leave;
518
519 page = find_get_page(inode->i_mapping,
520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521 if (!page)
522 goto drop;
523
524 /* No huge page at the end of the file: nothing to split */
525 if (!PageTransHuge(page)) {
526 put_page(page);
527 goto drop;
528 }
529
530 /*
531 * Leave the inode on the list if we failed to lock
532 * the page at this time.
533 *
534 * Waiting for the lock may lead to deadlock in the
535 * reclaim path.
536 */
537 if (!trylock_page(page)) {
538 put_page(page);
539 goto leave;
540 }
541
542 ret = split_huge_page(page);
543 unlock_page(page);
544 put_page(page);
545
546 /* If split failed leave the inode on the list */
547 if (ret)
548 goto leave;
549
550 split++;
551 drop:
552 list_del_init(&info->shrinklist);
553 removed++;
554 leave:
555 iput(inode);
556 }
557
558 spin_lock(&sbinfo->shrinklist_lock);
559 list_splice_tail(&list, &sbinfo->shrinklist);
560 sbinfo->shrinklist_len -= removed;
561 spin_unlock(&sbinfo->shrinklist_lock);
562
563 return split;
564 }
565
566 static long shmem_unused_huge_scan(struct super_block *sb,
567 struct shrink_control *sc)
568 {
569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571 if (!READ_ONCE(sbinfo->shrinklist_len))
572 return SHRINK_STOP;
573
574 return shmem_unused_huge_shrink(sbinfo, sc, 0);
575 }
576
577 static long shmem_unused_huge_count(struct super_block *sb,
578 struct shrink_control *sc)
579 {
580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 return READ_ONCE(sbinfo->shrinklist_len);
582 }
583 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
584
585 #define shmem_huge SHMEM_HUGE_DENY
586
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 struct shrink_control *sc, unsigned long nr_to_split)
589 {
590 return 0;
591 }
592 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
593
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595 {
596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 shmem_huge != SHMEM_HUGE_DENY)
599 return true;
600 return false;
601 }
602
603 /*
604 * Like add_to_page_cache_locked, but error if expected item has gone.
605 */
606 static int shmem_add_to_page_cache(struct page *page,
607 struct address_space *mapping,
608 pgoff_t index, void *expected, gfp_t gfp)
609 {
610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611 unsigned long i = 0;
612 unsigned long nr = compound_nr(page);
613
614 VM_BUG_ON_PAGE(PageTail(page), page);
615 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
618 VM_BUG_ON(expected && PageTransHuge(page));
619
620 page_ref_add(page, nr);
621 page->mapping = mapping;
622 page->index = index;
623
624 do {
625 void *entry;
626 xas_lock_irq(&xas);
627 entry = xas_find_conflict(&xas);
628 if (entry != expected)
629 xas_set_err(&xas, -EEXIST);
630 xas_create_range(&xas);
631 if (xas_error(&xas))
632 goto unlock;
633 next:
634 xas_store(&xas, page);
635 if (++i < nr) {
636 xas_next(&xas);
637 goto next;
638 }
639 if (PageTransHuge(page)) {
640 count_vm_event(THP_FILE_ALLOC);
641 __inc_node_page_state(page, NR_SHMEM_THPS);
642 }
643 mapping->nrpages += nr;
644 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
646 unlock:
647 xas_unlock_irq(&xas);
648 } while (xas_nomem(&xas, gfp));
649
650 if (xas_error(&xas)) {
651 page->mapping = NULL;
652 page_ref_sub(page, nr);
653 return xas_error(&xas);
654 }
655
656 return 0;
657 }
658
659 /*
660 * Like delete_from_page_cache, but substitutes swap for page.
661 */
662 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
663 {
664 struct address_space *mapping = page->mapping;
665 int error;
666
667 VM_BUG_ON_PAGE(PageCompound(page), page);
668
669 xa_lock_irq(&mapping->i_pages);
670 error = shmem_replace_entry(mapping, page->index, page, radswap);
671 page->mapping = NULL;
672 mapping->nrpages--;
673 __dec_node_page_state(page, NR_FILE_PAGES);
674 __dec_node_page_state(page, NR_SHMEM);
675 xa_unlock_irq(&mapping->i_pages);
676 put_page(page);
677 BUG_ON(error);
678 }
679
680 /*
681 * Remove swap entry from page cache, free the swap and its page cache.
682 */
683 static int shmem_free_swap(struct address_space *mapping,
684 pgoff_t index, void *radswap)
685 {
686 void *old;
687
688 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
689 if (old != radswap)
690 return -ENOENT;
691 free_swap_and_cache(radix_to_swp_entry(radswap));
692 return 0;
693 }
694
695 /*
696 * Determine (in bytes) how many of the shmem object's pages mapped by the
697 * given offsets are swapped out.
698 *
699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
700 * as long as the inode doesn't go away and racy results are not a problem.
701 */
702 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703 pgoff_t start, pgoff_t end)
704 {
705 XA_STATE(xas, &mapping->i_pages, start);
706 struct page *page;
707 unsigned long swapped = 0;
708
709 rcu_read_lock();
710 xas_for_each(&xas, page, end - 1) {
711 if (xas_retry(&xas, page))
712 continue;
713 if (xa_is_value(page))
714 swapped++;
715
716 if (need_resched()) {
717 xas_pause(&xas);
718 cond_resched_rcu();
719 }
720 }
721
722 rcu_read_unlock();
723
724 return swapped << PAGE_SHIFT;
725 }
726
727 /*
728 * Determine (in bytes) how many of the shmem object's pages mapped by the
729 * given vma is swapped out.
730 *
731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
732 * as long as the inode doesn't go away and racy results are not a problem.
733 */
734 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
735 {
736 struct inode *inode = file_inode(vma->vm_file);
737 struct shmem_inode_info *info = SHMEM_I(inode);
738 struct address_space *mapping = inode->i_mapping;
739 unsigned long swapped;
740
741 /* Be careful as we don't hold info->lock */
742 swapped = READ_ONCE(info->swapped);
743
744 /*
745 * The easier cases are when the shmem object has nothing in swap, or
746 * the vma maps it whole. Then we can simply use the stats that we
747 * already track.
748 */
749 if (!swapped)
750 return 0;
751
752 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753 return swapped << PAGE_SHIFT;
754
755 /* Here comes the more involved part */
756 return shmem_partial_swap_usage(mapping,
757 linear_page_index(vma, vma->vm_start),
758 linear_page_index(vma, vma->vm_end));
759 }
760
761 /*
762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
763 */
764 void shmem_unlock_mapping(struct address_space *mapping)
765 {
766 struct pagevec pvec;
767 pgoff_t indices[PAGEVEC_SIZE];
768 pgoff_t index = 0;
769
770 pagevec_init(&pvec);
771 /*
772 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
773 */
774 while (!mapping_unevictable(mapping)) {
775 /*
776 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
778 */
779 pvec.nr = find_get_entries(mapping, index,
780 PAGEVEC_SIZE, pvec.pages, indices);
781 if (!pvec.nr)
782 break;
783 index = indices[pvec.nr - 1] + 1;
784 pagevec_remove_exceptionals(&pvec);
785 check_move_unevictable_pages(&pvec);
786 pagevec_release(&pvec);
787 cond_resched();
788 }
789 }
790
791 /*
792 * Remove range of pages and swap entries from page cache, and free them.
793 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
794 */
795 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
796 bool unfalloc)
797 {
798 struct address_space *mapping = inode->i_mapping;
799 struct shmem_inode_info *info = SHMEM_I(inode);
800 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
801 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
802 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
803 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
804 struct pagevec pvec;
805 pgoff_t indices[PAGEVEC_SIZE];
806 long nr_swaps_freed = 0;
807 pgoff_t index;
808 int i;
809
810 if (lend == -1)
811 end = -1; /* unsigned, so actually very big */
812
813 pagevec_init(&pvec);
814 index = start;
815 while (index < end) {
816 pvec.nr = find_get_entries(mapping, index,
817 min(end - index, (pgoff_t)PAGEVEC_SIZE),
818 pvec.pages, indices);
819 if (!pvec.nr)
820 break;
821 for (i = 0; i < pagevec_count(&pvec); i++) {
822 struct page *page = pvec.pages[i];
823
824 index = indices[i];
825 if (index >= end)
826 break;
827
828 if (xa_is_value(page)) {
829 if (unfalloc)
830 continue;
831 nr_swaps_freed += !shmem_free_swap(mapping,
832 index, page);
833 continue;
834 }
835
836 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
837
838 if (!trylock_page(page))
839 continue;
840
841 if (PageTransTail(page)) {
842 /* Middle of THP: zero out the page */
843 clear_highpage(page);
844 unlock_page(page);
845 continue;
846 } else if (PageTransHuge(page)) {
847 if (index == round_down(end, HPAGE_PMD_NR)) {
848 /*
849 * Range ends in the middle of THP:
850 * zero out the page
851 */
852 clear_highpage(page);
853 unlock_page(page);
854 continue;
855 }
856 index += HPAGE_PMD_NR - 1;
857 i += HPAGE_PMD_NR - 1;
858 }
859
860 if (!unfalloc || !PageUptodate(page)) {
861 VM_BUG_ON_PAGE(PageTail(page), page);
862 if (page_mapping(page) == mapping) {
863 VM_BUG_ON_PAGE(PageWriteback(page), page);
864 truncate_inode_page(mapping, page);
865 }
866 }
867 unlock_page(page);
868 }
869 pagevec_remove_exceptionals(&pvec);
870 pagevec_release(&pvec);
871 cond_resched();
872 index++;
873 }
874
875 if (partial_start) {
876 struct page *page = NULL;
877 shmem_getpage(inode, start - 1, &page, SGP_READ);
878 if (page) {
879 unsigned int top = PAGE_SIZE;
880 if (start > end) {
881 top = partial_end;
882 partial_end = 0;
883 }
884 zero_user_segment(page, partial_start, top);
885 set_page_dirty(page);
886 unlock_page(page);
887 put_page(page);
888 }
889 }
890 if (partial_end) {
891 struct page *page = NULL;
892 shmem_getpage(inode, end, &page, SGP_READ);
893 if (page) {
894 zero_user_segment(page, 0, partial_end);
895 set_page_dirty(page);
896 unlock_page(page);
897 put_page(page);
898 }
899 }
900 if (start >= end)
901 return;
902
903 index = start;
904 while (index < end) {
905 cond_resched();
906
907 pvec.nr = find_get_entries(mapping, index,
908 min(end - index, (pgoff_t)PAGEVEC_SIZE),
909 pvec.pages, indices);
910 if (!pvec.nr) {
911 /* If all gone or hole-punch or unfalloc, we're done */
912 if (index == start || end != -1)
913 break;
914 /* But if truncating, restart to make sure all gone */
915 index = start;
916 continue;
917 }
918 for (i = 0; i < pagevec_count(&pvec); i++) {
919 struct page *page = pvec.pages[i];
920
921 index = indices[i];
922 if (index >= end)
923 break;
924
925 if (xa_is_value(page)) {
926 if (unfalloc)
927 continue;
928 if (shmem_free_swap(mapping, index, page)) {
929 /* Swap was replaced by page: retry */
930 index--;
931 break;
932 }
933 nr_swaps_freed++;
934 continue;
935 }
936
937 lock_page(page);
938
939 if (PageTransTail(page)) {
940 /* Middle of THP: zero out the page */
941 clear_highpage(page);
942 unlock_page(page);
943 /*
944 * Partial thp truncate due 'start' in middle
945 * of THP: don't need to look on these pages
946 * again on !pvec.nr restart.
947 */
948 if (index != round_down(end, HPAGE_PMD_NR))
949 start++;
950 continue;
951 } else if (PageTransHuge(page)) {
952 if (index == round_down(end, HPAGE_PMD_NR)) {
953 /*
954 * Range ends in the middle of THP:
955 * zero out the page
956 */
957 clear_highpage(page);
958 unlock_page(page);
959 continue;
960 }
961 index += HPAGE_PMD_NR - 1;
962 i += HPAGE_PMD_NR - 1;
963 }
964
965 if (!unfalloc || !PageUptodate(page)) {
966 VM_BUG_ON_PAGE(PageTail(page), page);
967 if (page_mapping(page) == mapping) {
968 VM_BUG_ON_PAGE(PageWriteback(page), page);
969 truncate_inode_page(mapping, page);
970 } else {
971 /* Page was replaced by swap: retry */
972 unlock_page(page);
973 index--;
974 break;
975 }
976 }
977 unlock_page(page);
978 }
979 pagevec_remove_exceptionals(&pvec);
980 pagevec_release(&pvec);
981 index++;
982 }
983
984 spin_lock_irq(&info->lock);
985 info->swapped -= nr_swaps_freed;
986 shmem_recalc_inode(inode);
987 spin_unlock_irq(&info->lock);
988 }
989
990 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
991 {
992 shmem_undo_range(inode, lstart, lend, false);
993 inode->i_ctime = inode->i_mtime = current_time(inode);
994 }
995 EXPORT_SYMBOL_GPL(shmem_truncate_range);
996
997 static int shmem_getattr(const struct path *path, struct kstat *stat,
998 u32 request_mask, unsigned int query_flags)
999 {
1000 struct inode *inode = path->dentry->d_inode;
1001 struct shmem_inode_info *info = SHMEM_I(inode);
1002 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1003
1004 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1005 spin_lock_irq(&info->lock);
1006 shmem_recalc_inode(inode);
1007 spin_unlock_irq(&info->lock);
1008 }
1009 generic_fillattr(inode, stat);
1010
1011 if (is_huge_enabled(sb_info))
1012 stat->blksize = HPAGE_PMD_SIZE;
1013
1014 return 0;
1015 }
1016
1017 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1018 {
1019 struct inode *inode = d_inode(dentry);
1020 struct shmem_inode_info *info = SHMEM_I(inode);
1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022 int error;
1023
1024 error = setattr_prepare(dentry, attr);
1025 if (error)
1026 return error;
1027
1028 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1029 loff_t oldsize = inode->i_size;
1030 loff_t newsize = attr->ia_size;
1031
1032 /* protected by i_mutex */
1033 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1034 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1035 return -EPERM;
1036
1037 if (newsize != oldsize) {
1038 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1039 oldsize, newsize);
1040 if (error)
1041 return error;
1042 i_size_write(inode, newsize);
1043 inode->i_ctime = inode->i_mtime = current_time(inode);
1044 }
1045 if (newsize <= oldsize) {
1046 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1047 if (oldsize > holebegin)
1048 unmap_mapping_range(inode->i_mapping,
1049 holebegin, 0, 1);
1050 if (info->alloced)
1051 shmem_truncate_range(inode,
1052 newsize, (loff_t)-1);
1053 /* unmap again to remove racily COWed private pages */
1054 if (oldsize > holebegin)
1055 unmap_mapping_range(inode->i_mapping,
1056 holebegin, 0, 1);
1057
1058 /*
1059 * Part of the huge page can be beyond i_size: subject
1060 * to shrink under memory pressure.
1061 */
1062 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1063 spin_lock(&sbinfo->shrinklist_lock);
1064 /*
1065 * _careful to defend against unlocked access to
1066 * ->shrink_list in shmem_unused_huge_shrink()
1067 */
1068 if (list_empty_careful(&info->shrinklist)) {
1069 list_add_tail(&info->shrinklist,
1070 &sbinfo->shrinklist);
1071 sbinfo->shrinklist_len++;
1072 }
1073 spin_unlock(&sbinfo->shrinklist_lock);
1074 }
1075 }
1076 }
1077
1078 setattr_copy(inode, attr);
1079 if (attr->ia_valid & ATTR_MODE)
1080 error = posix_acl_chmod(inode, inode->i_mode);
1081 return error;
1082 }
1083
1084 static void shmem_evict_inode(struct inode *inode)
1085 {
1086 struct shmem_inode_info *info = SHMEM_I(inode);
1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088
1089 if (inode->i_mapping->a_ops == &shmem_aops) {
1090 shmem_unacct_size(info->flags, inode->i_size);
1091 inode->i_size = 0;
1092 shmem_truncate_range(inode, 0, (loff_t)-1);
1093 if (!list_empty(&info->shrinklist)) {
1094 spin_lock(&sbinfo->shrinklist_lock);
1095 if (!list_empty(&info->shrinklist)) {
1096 list_del_init(&info->shrinklist);
1097 sbinfo->shrinklist_len--;
1098 }
1099 spin_unlock(&sbinfo->shrinklist_lock);
1100 }
1101 while (!list_empty(&info->swaplist)) {
1102 /* Wait while shmem_unuse() is scanning this inode... */
1103 wait_var_event(&info->stop_eviction,
1104 !atomic_read(&info->stop_eviction));
1105 mutex_lock(&shmem_swaplist_mutex);
1106 /* ...but beware of the race if we peeked too early */
1107 if (!atomic_read(&info->stop_eviction))
1108 list_del_init(&info->swaplist);
1109 mutex_unlock(&shmem_swaplist_mutex);
1110 }
1111 }
1112
1113 simple_xattrs_free(&info->xattrs);
1114 WARN_ON(inode->i_blocks);
1115 shmem_free_inode(inode->i_sb);
1116 clear_inode(inode);
1117 }
1118
1119 extern struct swap_info_struct *swap_info[];
1120
1121 static int shmem_find_swap_entries(struct address_space *mapping,
1122 pgoff_t start, unsigned int nr_entries,
1123 struct page **entries, pgoff_t *indices,
1124 unsigned int type, bool frontswap)
1125 {
1126 XA_STATE(xas, &mapping->i_pages, start);
1127 struct page *page;
1128 swp_entry_t entry;
1129 unsigned int ret = 0;
1130
1131 if (!nr_entries)
1132 return 0;
1133
1134 rcu_read_lock();
1135 xas_for_each(&xas, page, ULONG_MAX) {
1136 if (xas_retry(&xas, page))
1137 continue;
1138
1139 if (!xa_is_value(page))
1140 continue;
1141
1142 entry = radix_to_swp_entry(page);
1143 if (swp_type(entry) != type)
1144 continue;
1145 if (frontswap &&
1146 !frontswap_test(swap_info[type], swp_offset(entry)))
1147 continue;
1148
1149 indices[ret] = xas.xa_index;
1150 entries[ret] = page;
1151
1152 if (need_resched()) {
1153 xas_pause(&xas);
1154 cond_resched_rcu();
1155 }
1156 if (++ret == nr_entries)
1157 break;
1158 }
1159 rcu_read_unlock();
1160
1161 return ret;
1162 }
1163
1164 /*
1165 * Move the swapped pages for an inode to page cache. Returns the count
1166 * of pages swapped in, or the error in case of failure.
1167 */
1168 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1169 pgoff_t *indices)
1170 {
1171 int i = 0;
1172 int ret = 0;
1173 int error = 0;
1174 struct address_space *mapping = inode->i_mapping;
1175
1176 for (i = 0; i < pvec.nr; i++) {
1177 struct page *page = pvec.pages[i];
1178
1179 if (!xa_is_value(page))
1180 continue;
1181 error = shmem_swapin_page(inode, indices[i],
1182 &page, SGP_CACHE,
1183 mapping_gfp_mask(mapping),
1184 NULL, NULL);
1185 if (error == 0) {
1186 unlock_page(page);
1187 put_page(page);
1188 ret++;
1189 }
1190 if (error == -ENOMEM)
1191 break;
1192 error = 0;
1193 }
1194 return error ? error : ret;
1195 }
1196
1197 /*
1198 * If swap found in inode, free it and move page from swapcache to filecache.
1199 */
1200 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1201 bool frontswap, unsigned long *fs_pages_to_unuse)
1202 {
1203 struct address_space *mapping = inode->i_mapping;
1204 pgoff_t start = 0;
1205 struct pagevec pvec;
1206 pgoff_t indices[PAGEVEC_SIZE];
1207 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1208 int ret = 0;
1209
1210 pagevec_init(&pvec);
1211 do {
1212 unsigned int nr_entries = PAGEVEC_SIZE;
1213
1214 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1215 nr_entries = *fs_pages_to_unuse;
1216
1217 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1218 pvec.pages, indices,
1219 type, frontswap);
1220 if (pvec.nr == 0) {
1221 ret = 0;
1222 break;
1223 }
1224
1225 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1226 if (ret < 0)
1227 break;
1228
1229 if (frontswap_partial) {
1230 *fs_pages_to_unuse -= ret;
1231 if (*fs_pages_to_unuse == 0) {
1232 ret = FRONTSWAP_PAGES_UNUSED;
1233 break;
1234 }
1235 }
1236
1237 start = indices[pvec.nr - 1];
1238 } while (true);
1239
1240 return ret;
1241 }
1242
1243 /*
1244 * Read all the shared memory data that resides in the swap
1245 * device 'type' back into memory, so the swap device can be
1246 * unused.
1247 */
1248 int shmem_unuse(unsigned int type, bool frontswap,
1249 unsigned long *fs_pages_to_unuse)
1250 {
1251 struct shmem_inode_info *info, *next;
1252 int error = 0;
1253
1254 if (list_empty(&shmem_swaplist))
1255 return 0;
1256
1257 mutex_lock(&shmem_swaplist_mutex);
1258 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1259 if (!info->swapped) {
1260 list_del_init(&info->swaplist);
1261 continue;
1262 }
1263 /*
1264 * Drop the swaplist mutex while searching the inode for swap;
1265 * but before doing so, make sure shmem_evict_inode() will not
1266 * remove placeholder inode from swaplist, nor let it be freed
1267 * (igrab() would protect from unlink, but not from unmount).
1268 */
1269 atomic_inc(&info->stop_eviction);
1270 mutex_unlock(&shmem_swaplist_mutex);
1271
1272 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1273 fs_pages_to_unuse);
1274 cond_resched();
1275
1276 mutex_lock(&shmem_swaplist_mutex);
1277 next = list_next_entry(info, swaplist);
1278 if (!info->swapped)
1279 list_del_init(&info->swaplist);
1280 if (atomic_dec_and_test(&info->stop_eviction))
1281 wake_up_var(&info->stop_eviction);
1282 if (error)
1283 break;
1284 }
1285 mutex_unlock(&shmem_swaplist_mutex);
1286
1287 return error;
1288 }
1289
1290 /*
1291 * Move the page from the page cache to the swap cache.
1292 */
1293 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1294 {
1295 struct shmem_inode_info *info;
1296 struct address_space *mapping;
1297 struct inode *inode;
1298 swp_entry_t swap;
1299 pgoff_t index;
1300
1301 VM_BUG_ON_PAGE(PageCompound(page), page);
1302 BUG_ON(!PageLocked(page));
1303 mapping = page->mapping;
1304 index = page->index;
1305 inode = mapping->host;
1306 info = SHMEM_I(inode);
1307 if (info->flags & VM_LOCKED)
1308 goto redirty;
1309 if (!total_swap_pages)
1310 goto redirty;
1311
1312 /*
1313 * Our capabilities prevent regular writeback or sync from ever calling
1314 * shmem_writepage; but a stacking filesystem might use ->writepage of
1315 * its underlying filesystem, in which case tmpfs should write out to
1316 * swap only in response to memory pressure, and not for the writeback
1317 * threads or sync.
1318 */
1319 if (!wbc->for_reclaim) {
1320 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1321 goto redirty;
1322 }
1323
1324 /*
1325 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1326 * value into swapfile.c, the only way we can correctly account for a
1327 * fallocated page arriving here is now to initialize it and write it.
1328 *
1329 * That's okay for a page already fallocated earlier, but if we have
1330 * not yet completed the fallocation, then (a) we want to keep track
1331 * of this page in case we have to undo it, and (b) it may not be a
1332 * good idea to continue anyway, once we're pushing into swap. So
1333 * reactivate the page, and let shmem_fallocate() quit when too many.
1334 */
1335 if (!PageUptodate(page)) {
1336 if (inode->i_private) {
1337 struct shmem_falloc *shmem_falloc;
1338 spin_lock(&inode->i_lock);
1339 shmem_falloc = inode->i_private;
1340 if (shmem_falloc &&
1341 !shmem_falloc->waitq &&
1342 index >= shmem_falloc->start &&
1343 index < shmem_falloc->next)
1344 shmem_falloc->nr_unswapped++;
1345 else
1346 shmem_falloc = NULL;
1347 spin_unlock(&inode->i_lock);
1348 if (shmem_falloc)
1349 goto redirty;
1350 }
1351 clear_highpage(page);
1352 flush_dcache_page(page);
1353 SetPageUptodate(page);
1354 }
1355
1356 swap = get_swap_page(page);
1357 if (!swap.val)
1358 goto redirty;
1359
1360 /*
1361 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1362 * if it's not already there. Do it now before the page is
1363 * moved to swap cache, when its pagelock no longer protects
1364 * the inode from eviction. But don't unlock the mutex until
1365 * we've incremented swapped, because shmem_unuse_inode() will
1366 * prune a !swapped inode from the swaplist under this mutex.
1367 */
1368 mutex_lock(&shmem_swaplist_mutex);
1369 if (list_empty(&info->swaplist))
1370 list_add(&info->swaplist, &shmem_swaplist);
1371
1372 if (add_to_swap_cache(page, swap,
1373 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1374 spin_lock_irq(&info->lock);
1375 shmem_recalc_inode(inode);
1376 info->swapped++;
1377 spin_unlock_irq(&info->lock);
1378
1379 swap_shmem_alloc(swap);
1380 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1381
1382 mutex_unlock(&shmem_swaplist_mutex);
1383 BUG_ON(page_mapped(page));
1384 swap_writepage(page, wbc);
1385 return 0;
1386 }
1387
1388 mutex_unlock(&shmem_swaplist_mutex);
1389 put_swap_page(page, swap);
1390 redirty:
1391 set_page_dirty(page);
1392 if (wbc->for_reclaim)
1393 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1394 unlock_page(page);
1395 return 0;
1396 }
1397
1398 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1399 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1400 {
1401 char buffer[64];
1402
1403 if (!mpol || mpol->mode == MPOL_DEFAULT)
1404 return; /* show nothing */
1405
1406 mpol_to_str(buffer, sizeof(buffer), mpol);
1407
1408 seq_printf(seq, ",mpol=%s", buffer);
1409 }
1410
1411 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1412 {
1413 struct mempolicy *mpol = NULL;
1414 if (sbinfo->mpol) {
1415 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1416 mpol = sbinfo->mpol;
1417 mpol_get(mpol);
1418 spin_unlock(&sbinfo->stat_lock);
1419 }
1420 return mpol;
1421 }
1422 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1423 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1424 {
1425 }
1426 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1427 {
1428 return NULL;
1429 }
1430 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1431 #ifndef CONFIG_NUMA
1432 #define vm_policy vm_private_data
1433 #endif
1434
1435 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1436 struct shmem_inode_info *info, pgoff_t index)
1437 {
1438 /* Create a pseudo vma that just contains the policy */
1439 vma_init(vma, NULL);
1440 /* Bias interleave by inode number to distribute better across nodes */
1441 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1442 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1443 }
1444
1445 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1446 {
1447 /* Drop reference taken by mpol_shared_policy_lookup() */
1448 mpol_cond_put(vma->vm_policy);
1449 }
1450
1451 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1452 struct shmem_inode_info *info, pgoff_t index)
1453 {
1454 struct vm_area_struct pvma;
1455 struct page *page;
1456 struct vm_fault vmf;
1457
1458 shmem_pseudo_vma_init(&pvma, info, index);
1459 vmf.vma = &pvma;
1460 vmf.address = 0;
1461 page = swap_cluster_readahead(swap, gfp, &vmf);
1462 shmem_pseudo_vma_destroy(&pvma);
1463
1464 return page;
1465 }
1466
1467 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1468 struct shmem_inode_info *info, pgoff_t index)
1469 {
1470 struct vm_area_struct pvma;
1471 struct address_space *mapping = info->vfs_inode.i_mapping;
1472 pgoff_t hindex;
1473 struct page *page;
1474
1475 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1476 return NULL;
1477
1478 hindex = round_down(index, HPAGE_PMD_NR);
1479 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1480 XA_PRESENT))
1481 return NULL;
1482
1483 shmem_pseudo_vma_init(&pvma, info, hindex);
1484 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1485 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1486 shmem_pseudo_vma_destroy(&pvma);
1487 if (page)
1488 prep_transhuge_page(page);
1489 return page;
1490 }
1491
1492 static struct page *shmem_alloc_page(gfp_t gfp,
1493 struct shmem_inode_info *info, pgoff_t index)
1494 {
1495 struct vm_area_struct pvma;
1496 struct page *page;
1497
1498 shmem_pseudo_vma_init(&pvma, info, index);
1499 page = alloc_page_vma(gfp, &pvma, 0);
1500 shmem_pseudo_vma_destroy(&pvma);
1501
1502 return page;
1503 }
1504
1505 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1506 struct inode *inode,
1507 pgoff_t index, bool huge)
1508 {
1509 struct shmem_inode_info *info = SHMEM_I(inode);
1510 struct page *page;
1511 int nr;
1512 int err = -ENOSPC;
1513
1514 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1515 huge = false;
1516 nr = huge ? HPAGE_PMD_NR : 1;
1517
1518 if (!shmem_inode_acct_block(inode, nr))
1519 goto failed;
1520
1521 if (huge)
1522 page = shmem_alloc_hugepage(gfp, info, index);
1523 else
1524 page = shmem_alloc_page(gfp, info, index);
1525 if (page) {
1526 __SetPageLocked(page);
1527 __SetPageSwapBacked(page);
1528 return page;
1529 }
1530
1531 err = -ENOMEM;
1532 shmem_inode_unacct_blocks(inode, nr);
1533 failed:
1534 return ERR_PTR(err);
1535 }
1536
1537 /*
1538 * When a page is moved from swapcache to shmem filecache (either by the
1539 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1540 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1541 * ignorance of the mapping it belongs to. If that mapping has special
1542 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1543 * we may need to copy to a suitable page before moving to filecache.
1544 *
1545 * In a future release, this may well be extended to respect cpuset and
1546 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1547 * but for now it is a simple matter of zone.
1548 */
1549 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1550 {
1551 return page_zonenum(page) > gfp_zone(gfp);
1552 }
1553
1554 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1555 struct shmem_inode_info *info, pgoff_t index)
1556 {
1557 struct page *oldpage, *newpage;
1558 struct address_space *swap_mapping;
1559 swp_entry_t entry;
1560 pgoff_t swap_index;
1561 int error;
1562
1563 oldpage = *pagep;
1564 entry.val = page_private(oldpage);
1565 swap_index = swp_offset(entry);
1566 swap_mapping = page_mapping(oldpage);
1567
1568 /*
1569 * We have arrived here because our zones are constrained, so don't
1570 * limit chance of success by further cpuset and node constraints.
1571 */
1572 gfp &= ~GFP_CONSTRAINT_MASK;
1573 newpage = shmem_alloc_page(gfp, info, index);
1574 if (!newpage)
1575 return -ENOMEM;
1576
1577 get_page(newpage);
1578 copy_highpage(newpage, oldpage);
1579 flush_dcache_page(newpage);
1580
1581 __SetPageLocked(newpage);
1582 __SetPageSwapBacked(newpage);
1583 SetPageUptodate(newpage);
1584 set_page_private(newpage, entry.val);
1585 SetPageSwapCache(newpage);
1586
1587 /*
1588 * Our caller will very soon move newpage out of swapcache, but it's
1589 * a nice clean interface for us to replace oldpage by newpage there.
1590 */
1591 xa_lock_irq(&swap_mapping->i_pages);
1592 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1593 if (!error) {
1594 __inc_node_page_state(newpage, NR_FILE_PAGES);
1595 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1596 }
1597 xa_unlock_irq(&swap_mapping->i_pages);
1598
1599 if (unlikely(error)) {
1600 /*
1601 * Is this possible? I think not, now that our callers check
1602 * both PageSwapCache and page_private after getting page lock;
1603 * but be defensive. Reverse old to newpage for clear and free.
1604 */
1605 oldpage = newpage;
1606 } else {
1607 mem_cgroup_migrate(oldpage, newpage);
1608 lru_cache_add_anon(newpage);
1609 *pagep = newpage;
1610 }
1611
1612 ClearPageSwapCache(oldpage);
1613 set_page_private(oldpage, 0);
1614
1615 unlock_page(oldpage);
1616 put_page(oldpage);
1617 put_page(oldpage);
1618 return error;
1619 }
1620
1621 /*
1622 * Swap in the page pointed to by *pagep.
1623 * Caller has to make sure that *pagep contains a valid swapped page.
1624 * Returns 0 and the page in pagep if success. On failure, returns the
1625 * the error code and NULL in *pagep.
1626 */
1627 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1628 struct page **pagep, enum sgp_type sgp,
1629 gfp_t gfp, struct vm_area_struct *vma,
1630 vm_fault_t *fault_type)
1631 {
1632 struct address_space *mapping = inode->i_mapping;
1633 struct shmem_inode_info *info = SHMEM_I(inode);
1634 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1635 struct mem_cgroup *memcg;
1636 struct page *page;
1637 swp_entry_t swap;
1638 int error;
1639
1640 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1641 swap = radix_to_swp_entry(*pagep);
1642 *pagep = NULL;
1643
1644 /* Look it up and read it in.. */
1645 page = lookup_swap_cache(swap, NULL, 0);
1646 if (!page) {
1647 /* Or update major stats only when swapin succeeds?? */
1648 if (fault_type) {
1649 *fault_type |= VM_FAULT_MAJOR;
1650 count_vm_event(PGMAJFAULT);
1651 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1652 }
1653 /* Here we actually start the io */
1654 page = shmem_swapin(swap, gfp, info, index);
1655 if (!page) {
1656 error = -ENOMEM;
1657 goto failed;
1658 }
1659 }
1660
1661 /* We have to do this with page locked to prevent races */
1662 lock_page(page);
1663 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1664 !shmem_confirm_swap(mapping, index, swap)) {
1665 error = -EEXIST;
1666 goto unlock;
1667 }
1668 if (!PageUptodate(page)) {
1669 error = -EIO;
1670 goto failed;
1671 }
1672 wait_on_page_writeback(page);
1673
1674 if (shmem_should_replace_page(page, gfp)) {
1675 error = shmem_replace_page(&page, gfp, info, index);
1676 if (error)
1677 goto failed;
1678 }
1679
1680 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1681 false);
1682 if (!error) {
1683 error = shmem_add_to_page_cache(page, mapping, index,
1684 swp_to_radix_entry(swap), gfp);
1685 /*
1686 * We already confirmed swap under page lock, and make
1687 * no memory allocation here, so usually no possibility
1688 * of error; but free_swap_and_cache() only trylocks a
1689 * page, so it is just possible that the entry has been
1690 * truncated or holepunched since swap was confirmed.
1691 * shmem_undo_range() will have done some of the
1692 * unaccounting, now delete_from_swap_cache() will do
1693 * the rest.
1694 */
1695 if (error) {
1696 mem_cgroup_cancel_charge(page, memcg, false);
1697 delete_from_swap_cache(page);
1698 }
1699 }
1700 if (error)
1701 goto failed;
1702
1703 mem_cgroup_commit_charge(page, memcg, true, false);
1704
1705 spin_lock_irq(&info->lock);
1706 info->swapped--;
1707 shmem_recalc_inode(inode);
1708 spin_unlock_irq(&info->lock);
1709
1710 if (sgp == SGP_WRITE)
1711 mark_page_accessed(page);
1712
1713 delete_from_swap_cache(page);
1714 set_page_dirty(page);
1715 swap_free(swap);
1716
1717 *pagep = page;
1718 return 0;
1719 failed:
1720 if (!shmem_confirm_swap(mapping, index, swap))
1721 error = -EEXIST;
1722 unlock:
1723 if (page) {
1724 unlock_page(page);
1725 put_page(page);
1726 }
1727
1728 return error;
1729 }
1730
1731 /*
1732 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1733 *
1734 * If we allocate a new one we do not mark it dirty. That's up to the
1735 * vm. If we swap it in we mark it dirty since we also free the swap
1736 * entry since a page cannot live in both the swap and page cache.
1737 *
1738 * vmf and fault_type are only supplied by shmem_fault:
1739 * otherwise they are NULL.
1740 */
1741 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1742 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1743 struct vm_area_struct *vma, struct vm_fault *vmf,
1744 vm_fault_t *fault_type)
1745 {
1746 struct address_space *mapping = inode->i_mapping;
1747 struct shmem_inode_info *info = SHMEM_I(inode);
1748 struct shmem_sb_info *sbinfo;
1749 struct mm_struct *charge_mm;
1750 struct mem_cgroup *memcg;
1751 struct page *page;
1752 enum sgp_type sgp_huge = sgp;
1753 pgoff_t hindex = index;
1754 int error;
1755 int once = 0;
1756 int alloced = 0;
1757
1758 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1759 return -EFBIG;
1760 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1761 sgp = SGP_CACHE;
1762 repeat:
1763 if (sgp <= SGP_CACHE &&
1764 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1765 return -EINVAL;
1766 }
1767
1768 sbinfo = SHMEM_SB(inode->i_sb);
1769 charge_mm = vma ? vma->vm_mm : current->mm;
1770
1771 page = find_lock_entry(mapping, index);
1772 if (xa_is_value(page)) {
1773 error = shmem_swapin_page(inode, index, &page,
1774 sgp, gfp, vma, fault_type);
1775 if (error == -EEXIST)
1776 goto repeat;
1777
1778 *pagep = page;
1779 return error;
1780 }
1781
1782 if (page && sgp == SGP_WRITE)
1783 mark_page_accessed(page);
1784
1785 /* fallocated page? */
1786 if (page && !PageUptodate(page)) {
1787 if (sgp != SGP_READ)
1788 goto clear;
1789 unlock_page(page);
1790 put_page(page);
1791 page = NULL;
1792 }
1793 if (page || sgp == SGP_READ) {
1794 *pagep = page;
1795 return 0;
1796 }
1797
1798 /*
1799 * Fast cache lookup did not find it:
1800 * bring it back from swap or allocate.
1801 */
1802
1803 if (vma && userfaultfd_missing(vma)) {
1804 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1805 return 0;
1806 }
1807
1808 /* shmem_symlink() */
1809 if (mapping->a_ops != &shmem_aops)
1810 goto alloc_nohuge;
1811 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1812 goto alloc_nohuge;
1813 if (shmem_huge == SHMEM_HUGE_FORCE)
1814 goto alloc_huge;
1815 switch (sbinfo->huge) {
1816 loff_t i_size;
1817 pgoff_t off;
1818 case SHMEM_HUGE_NEVER:
1819 goto alloc_nohuge;
1820 case SHMEM_HUGE_WITHIN_SIZE:
1821 off = round_up(index, HPAGE_PMD_NR);
1822 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1823 if (i_size >= HPAGE_PMD_SIZE &&
1824 i_size >> PAGE_SHIFT >= off)
1825 goto alloc_huge;
1826 /* fallthrough */
1827 case SHMEM_HUGE_ADVISE:
1828 if (sgp_huge == SGP_HUGE)
1829 goto alloc_huge;
1830 /* TODO: implement fadvise() hints */
1831 goto alloc_nohuge;
1832 }
1833
1834 alloc_huge:
1835 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1836 if (IS_ERR(page)) {
1837 alloc_nohuge:
1838 page = shmem_alloc_and_acct_page(gfp, inode,
1839 index, false);
1840 }
1841 if (IS_ERR(page)) {
1842 int retry = 5;
1843
1844 error = PTR_ERR(page);
1845 page = NULL;
1846 if (error != -ENOSPC)
1847 goto unlock;
1848 /*
1849 * Try to reclaim some space by splitting a huge page
1850 * beyond i_size on the filesystem.
1851 */
1852 while (retry--) {
1853 int ret;
1854
1855 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1856 if (ret == SHRINK_STOP)
1857 break;
1858 if (ret)
1859 goto alloc_nohuge;
1860 }
1861 goto unlock;
1862 }
1863
1864 if (PageTransHuge(page))
1865 hindex = round_down(index, HPAGE_PMD_NR);
1866 else
1867 hindex = index;
1868
1869 if (sgp == SGP_WRITE)
1870 __SetPageReferenced(page);
1871
1872 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1873 PageTransHuge(page));
1874 if (error)
1875 goto unacct;
1876 error = shmem_add_to_page_cache(page, mapping, hindex,
1877 NULL, gfp & GFP_RECLAIM_MASK);
1878 if (error) {
1879 mem_cgroup_cancel_charge(page, memcg,
1880 PageTransHuge(page));
1881 goto unacct;
1882 }
1883 mem_cgroup_commit_charge(page, memcg, false,
1884 PageTransHuge(page));
1885 lru_cache_add_anon(page);
1886
1887 spin_lock_irq(&info->lock);
1888 info->alloced += compound_nr(page);
1889 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1890 shmem_recalc_inode(inode);
1891 spin_unlock_irq(&info->lock);
1892 alloced = true;
1893
1894 if (PageTransHuge(page) &&
1895 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1896 hindex + HPAGE_PMD_NR - 1) {
1897 /*
1898 * Part of the huge page is beyond i_size: subject
1899 * to shrink under memory pressure.
1900 */
1901 spin_lock(&sbinfo->shrinklist_lock);
1902 /*
1903 * _careful to defend against unlocked access to
1904 * ->shrink_list in shmem_unused_huge_shrink()
1905 */
1906 if (list_empty_careful(&info->shrinklist)) {
1907 list_add_tail(&info->shrinklist,
1908 &sbinfo->shrinklist);
1909 sbinfo->shrinklist_len++;
1910 }
1911 spin_unlock(&sbinfo->shrinklist_lock);
1912 }
1913
1914 /*
1915 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1916 */
1917 if (sgp == SGP_FALLOC)
1918 sgp = SGP_WRITE;
1919 clear:
1920 /*
1921 * Let SGP_WRITE caller clear ends if write does not fill page;
1922 * but SGP_FALLOC on a page fallocated earlier must initialize
1923 * it now, lest undo on failure cancel our earlier guarantee.
1924 */
1925 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1926 struct page *head = compound_head(page);
1927 int i;
1928
1929 for (i = 0; i < compound_nr(head); i++) {
1930 clear_highpage(head + i);
1931 flush_dcache_page(head + i);
1932 }
1933 SetPageUptodate(head);
1934 }
1935
1936 /* Perhaps the file has been truncated since we checked */
1937 if (sgp <= SGP_CACHE &&
1938 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1939 if (alloced) {
1940 ClearPageDirty(page);
1941 delete_from_page_cache(page);
1942 spin_lock_irq(&info->lock);
1943 shmem_recalc_inode(inode);
1944 spin_unlock_irq(&info->lock);
1945 }
1946 error = -EINVAL;
1947 goto unlock;
1948 }
1949 *pagep = page + index - hindex;
1950 return 0;
1951
1952 /*
1953 * Error recovery.
1954 */
1955 unacct:
1956 shmem_inode_unacct_blocks(inode, compound_nr(page));
1957
1958 if (PageTransHuge(page)) {
1959 unlock_page(page);
1960 put_page(page);
1961 goto alloc_nohuge;
1962 }
1963 unlock:
1964 if (page) {
1965 unlock_page(page);
1966 put_page(page);
1967 }
1968 if (error == -ENOSPC && !once++) {
1969 spin_lock_irq(&info->lock);
1970 shmem_recalc_inode(inode);
1971 spin_unlock_irq(&info->lock);
1972 goto repeat;
1973 }
1974 if (error == -EEXIST)
1975 goto repeat;
1976 return error;
1977 }
1978
1979 /*
1980 * This is like autoremove_wake_function, but it removes the wait queue
1981 * entry unconditionally - even if something else had already woken the
1982 * target.
1983 */
1984 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1985 {
1986 int ret = default_wake_function(wait, mode, sync, key);
1987 list_del_init(&wait->entry);
1988 return ret;
1989 }
1990
1991 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1992 {
1993 struct vm_area_struct *vma = vmf->vma;
1994 struct inode *inode = file_inode(vma->vm_file);
1995 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1996 enum sgp_type sgp;
1997 int err;
1998 vm_fault_t ret = VM_FAULT_LOCKED;
1999
2000 /*
2001 * Trinity finds that probing a hole which tmpfs is punching can
2002 * prevent the hole-punch from ever completing: which in turn
2003 * locks writers out with its hold on i_mutex. So refrain from
2004 * faulting pages into the hole while it's being punched. Although
2005 * shmem_undo_range() does remove the additions, it may be unable to
2006 * keep up, as each new page needs its own unmap_mapping_range() call,
2007 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2008 *
2009 * It does not matter if we sometimes reach this check just before the
2010 * hole-punch begins, so that one fault then races with the punch:
2011 * we just need to make racing faults a rare case.
2012 *
2013 * The implementation below would be much simpler if we just used a
2014 * standard mutex or completion: but we cannot take i_mutex in fault,
2015 * and bloating every shmem inode for this unlikely case would be sad.
2016 */
2017 if (unlikely(inode->i_private)) {
2018 struct shmem_falloc *shmem_falloc;
2019
2020 spin_lock(&inode->i_lock);
2021 shmem_falloc = inode->i_private;
2022 if (shmem_falloc &&
2023 shmem_falloc->waitq &&
2024 vmf->pgoff >= shmem_falloc->start &&
2025 vmf->pgoff < shmem_falloc->next) {
2026 struct file *fpin;
2027 wait_queue_head_t *shmem_falloc_waitq;
2028 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2029
2030 ret = VM_FAULT_NOPAGE;
2031 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2032 if (fpin)
2033 ret = VM_FAULT_RETRY;
2034
2035 shmem_falloc_waitq = shmem_falloc->waitq;
2036 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2037 TASK_UNINTERRUPTIBLE);
2038 spin_unlock(&inode->i_lock);
2039 schedule();
2040
2041 /*
2042 * shmem_falloc_waitq points into the shmem_fallocate()
2043 * stack of the hole-punching task: shmem_falloc_waitq
2044 * is usually invalid by the time we reach here, but
2045 * finish_wait() does not dereference it in that case;
2046 * though i_lock needed lest racing with wake_up_all().
2047 */
2048 spin_lock(&inode->i_lock);
2049 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2050 spin_unlock(&inode->i_lock);
2051
2052 if (fpin)
2053 fput(fpin);
2054 return ret;
2055 }
2056 spin_unlock(&inode->i_lock);
2057 }
2058
2059 sgp = SGP_CACHE;
2060
2061 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2062 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2063 sgp = SGP_NOHUGE;
2064 else if (vma->vm_flags & VM_HUGEPAGE)
2065 sgp = SGP_HUGE;
2066
2067 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2068 gfp, vma, vmf, &ret);
2069 if (err)
2070 return vmf_error(err);
2071 return ret;
2072 }
2073
2074 unsigned long shmem_get_unmapped_area(struct file *file,
2075 unsigned long uaddr, unsigned long len,
2076 unsigned long pgoff, unsigned long flags)
2077 {
2078 unsigned long (*get_area)(struct file *,
2079 unsigned long, unsigned long, unsigned long, unsigned long);
2080 unsigned long addr;
2081 unsigned long offset;
2082 unsigned long inflated_len;
2083 unsigned long inflated_addr;
2084 unsigned long inflated_offset;
2085
2086 if (len > TASK_SIZE)
2087 return -ENOMEM;
2088
2089 get_area = current->mm->get_unmapped_area;
2090 addr = get_area(file, uaddr, len, pgoff, flags);
2091
2092 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2093 return addr;
2094 if (IS_ERR_VALUE(addr))
2095 return addr;
2096 if (addr & ~PAGE_MASK)
2097 return addr;
2098 if (addr > TASK_SIZE - len)
2099 return addr;
2100
2101 if (shmem_huge == SHMEM_HUGE_DENY)
2102 return addr;
2103 if (len < HPAGE_PMD_SIZE)
2104 return addr;
2105 if (flags & MAP_FIXED)
2106 return addr;
2107 /*
2108 * Our priority is to support MAP_SHARED mapped hugely;
2109 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2110 * But if caller specified an address hint and we allocated area there
2111 * successfully, respect that as before.
2112 */
2113 if (uaddr == addr)
2114 return addr;
2115
2116 if (shmem_huge != SHMEM_HUGE_FORCE) {
2117 struct super_block *sb;
2118
2119 if (file) {
2120 VM_BUG_ON(file->f_op != &shmem_file_operations);
2121 sb = file_inode(file)->i_sb;
2122 } else {
2123 /*
2124 * Called directly from mm/mmap.c, or drivers/char/mem.c
2125 * for "/dev/zero", to create a shared anonymous object.
2126 */
2127 if (IS_ERR(shm_mnt))
2128 return addr;
2129 sb = shm_mnt->mnt_sb;
2130 }
2131 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2132 return addr;
2133 }
2134
2135 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2136 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2137 return addr;
2138 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2139 return addr;
2140
2141 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2142 if (inflated_len > TASK_SIZE)
2143 return addr;
2144 if (inflated_len < len)
2145 return addr;
2146
2147 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2148 if (IS_ERR_VALUE(inflated_addr))
2149 return addr;
2150 if (inflated_addr & ~PAGE_MASK)
2151 return addr;
2152
2153 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2154 inflated_addr += offset - inflated_offset;
2155 if (inflated_offset > offset)
2156 inflated_addr += HPAGE_PMD_SIZE;
2157
2158 if (inflated_addr > TASK_SIZE - len)
2159 return addr;
2160 return inflated_addr;
2161 }
2162
2163 #ifdef CONFIG_NUMA
2164 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2165 {
2166 struct inode *inode = file_inode(vma->vm_file);
2167 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2168 }
2169
2170 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2171 unsigned long addr)
2172 {
2173 struct inode *inode = file_inode(vma->vm_file);
2174 pgoff_t index;
2175
2176 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2177 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2178 }
2179 #endif
2180
2181 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2182 {
2183 struct inode *inode = file_inode(file);
2184 struct shmem_inode_info *info = SHMEM_I(inode);
2185 int retval = -ENOMEM;
2186
2187 spin_lock_irq(&info->lock);
2188 if (lock && !(info->flags & VM_LOCKED)) {
2189 if (!user_shm_lock(inode->i_size, user))
2190 goto out_nomem;
2191 info->flags |= VM_LOCKED;
2192 mapping_set_unevictable(file->f_mapping);
2193 }
2194 if (!lock && (info->flags & VM_LOCKED) && user) {
2195 user_shm_unlock(inode->i_size, user);
2196 info->flags &= ~VM_LOCKED;
2197 mapping_clear_unevictable(file->f_mapping);
2198 }
2199 retval = 0;
2200
2201 out_nomem:
2202 spin_unlock_irq(&info->lock);
2203 return retval;
2204 }
2205
2206 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2207 {
2208 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2209
2210 if (info->seals & F_SEAL_FUTURE_WRITE) {
2211 /*
2212 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2213 * "future write" seal active.
2214 */
2215 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2216 return -EPERM;
2217
2218 /*
2219 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2220 * MAP_SHARED and read-only, take care to not allow mprotect to
2221 * revert protections on such mappings. Do this only for shared
2222 * mappings. For private mappings, don't need to mask
2223 * VM_MAYWRITE as we still want them to be COW-writable.
2224 */
2225 if (vma->vm_flags & VM_SHARED)
2226 vma->vm_flags &= ~(VM_MAYWRITE);
2227 }
2228
2229 file_accessed(file);
2230 vma->vm_ops = &shmem_vm_ops;
2231 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2232 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2233 (vma->vm_end & HPAGE_PMD_MASK)) {
2234 khugepaged_enter(vma, vma->vm_flags);
2235 }
2236 return 0;
2237 }
2238
2239 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2240 umode_t mode, dev_t dev, unsigned long flags)
2241 {
2242 struct inode *inode;
2243 struct shmem_inode_info *info;
2244 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2245
2246 if (shmem_reserve_inode(sb))
2247 return NULL;
2248
2249 inode = new_inode(sb);
2250 if (inode) {
2251 inode->i_ino = get_next_ino();
2252 inode_init_owner(inode, dir, mode);
2253 inode->i_blocks = 0;
2254 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2255 inode->i_generation = prandom_u32();
2256 info = SHMEM_I(inode);
2257 memset(info, 0, (char *)inode - (char *)info);
2258 spin_lock_init(&info->lock);
2259 atomic_set(&info->stop_eviction, 0);
2260 info->seals = F_SEAL_SEAL;
2261 info->flags = flags & VM_NORESERVE;
2262 INIT_LIST_HEAD(&info->shrinklist);
2263 INIT_LIST_HEAD(&info->swaplist);
2264 simple_xattrs_init(&info->xattrs);
2265 cache_no_acl(inode);
2266
2267 switch (mode & S_IFMT) {
2268 default:
2269 inode->i_op = &shmem_special_inode_operations;
2270 init_special_inode(inode, mode, dev);
2271 break;
2272 case S_IFREG:
2273 inode->i_mapping->a_ops = &shmem_aops;
2274 inode->i_op = &shmem_inode_operations;
2275 inode->i_fop = &shmem_file_operations;
2276 mpol_shared_policy_init(&info->policy,
2277 shmem_get_sbmpol(sbinfo));
2278 break;
2279 case S_IFDIR:
2280 inc_nlink(inode);
2281 /* Some things misbehave if size == 0 on a directory */
2282 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2283 inode->i_op = &shmem_dir_inode_operations;
2284 inode->i_fop = &simple_dir_operations;
2285 break;
2286 case S_IFLNK:
2287 /*
2288 * Must not load anything in the rbtree,
2289 * mpol_free_shared_policy will not be called.
2290 */
2291 mpol_shared_policy_init(&info->policy, NULL);
2292 break;
2293 }
2294
2295 lockdep_annotate_inode_mutex_key(inode);
2296 } else
2297 shmem_free_inode(sb);
2298 return inode;
2299 }
2300
2301 bool shmem_mapping(struct address_space *mapping)
2302 {
2303 return mapping->a_ops == &shmem_aops;
2304 }
2305
2306 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2307 pmd_t *dst_pmd,
2308 struct vm_area_struct *dst_vma,
2309 unsigned long dst_addr,
2310 unsigned long src_addr,
2311 bool zeropage,
2312 struct page **pagep)
2313 {
2314 struct inode *inode = file_inode(dst_vma->vm_file);
2315 struct shmem_inode_info *info = SHMEM_I(inode);
2316 struct address_space *mapping = inode->i_mapping;
2317 gfp_t gfp = mapping_gfp_mask(mapping);
2318 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2319 struct mem_cgroup *memcg;
2320 spinlock_t *ptl;
2321 void *page_kaddr;
2322 struct page *page;
2323 pte_t _dst_pte, *dst_pte;
2324 int ret;
2325 pgoff_t offset, max_off;
2326
2327 ret = -ENOMEM;
2328 if (!shmem_inode_acct_block(inode, 1))
2329 goto out;
2330
2331 if (!*pagep) {
2332 page = shmem_alloc_page(gfp, info, pgoff);
2333 if (!page)
2334 goto out_unacct_blocks;
2335
2336 if (!zeropage) { /* mcopy_atomic */
2337 page_kaddr = kmap_atomic(page);
2338 ret = copy_from_user(page_kaddr,
2339 (const void __user *)src_addr,
2340 PAGE_SIZE);
2341 kunmap_atomic(page_kaddr);
2342
2343 /* fallback to copy_from_user outside mmap_sem */
2344 if (unlikely(ret)) {
2345 *pagep = page;
2346 shmem_inode_unacct_blocks(inode, 1);
2347 /* don't free the page */
2348 return -ENOENT;
2349 }
2350 } else { /* mfill_zeropage_atomic */
2351 clear_highpage(page);
2352 }
2353 } else {
2354 page = *pagep;
2355 *pagep = NULL;
2356 }
2357
2358 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2359 __SetPageLocked(page);
2360 __SetPageSwapBacked(page);
2361 __SetPageUptodate(page);
2362
2363 ret = -EFAULT;
2364 offset = linear_page_index(dst_vma, dst_addr);
2365 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2366 if (unlikely(offset >= max_off))
2367 goto out_release;
2368
2369 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2370 if (ret)
2371 goto out_release;
2372
2373 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2374 gfp & GFP_RECLAIM_MASK);
2375 if (ret)
2376 goto out_release_uncharge;
2377
2378 mem_cgroup_commit_charge(page, memcg, false, false);
2379
2380 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2381 if (dst_vma->vm_flags & VM_WRITE)
2382 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2383 else {
2384 /*
2385 * We don't set the pte dirty if the vma has no
2386 * VM_WRITE permission, so mark the page dirty or it
2387 * could be freed from under us. We could do it
2388 * unconditionally before unlock_page(), but doing it
2389 * only if VM_WRITE is not set is faster.
2390 */
2391 set_page_dirty(page);
2392 }
2393
2394 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2395
2396 ret = -EFAULT;
2397 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2398 if (unlikely(offset >= max_off))
2399 goto out_release_uncharge_unlock;
2400
2401 ret = -EEXIST;
2402 if (!pte_none(*dst_pte))
2403 goto out_release_uncharge_unlock;
2404
2405 lru_cache_add_anon(page);
2406
2407 spin_lock(&info->lock);
2408 info->alloced++;
2409 inode->i_blocks += BLOCKS_PER_PAGE;
2410 shmem_recalc_inode(inode);
2411 spin_unlock(&info->lock);
2412
2413 inc_mm_counter(dst_mm, mm_counter_file(page));
2414 page_add_file_rmap(page, false);
2415 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2416
2417 /* No need to invalidate - it was non-present before */
2418 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2419 pte_unmap_unlock(dst_pte, ptl);
2420 unlock_page(page);
2421 ret = 0;
2422 out:
2423 return ret;
2424 out_release_uncharge_unlock:
2425 pte_unmap_unlock(dst_pte, ptl);
2426 ClearPageDirty(page);
2427 delete_from_page_cache(page);
2428 out_release_uncharge:
2429 mem_cgroup_cancel_charge(page, memcg, false);
2430 out_release:
2431 unlock_page(page);
2432 put_page(page);
2433 out_unacct_blocks:
2434 shmem_inode_unacct_blocks(inode, 1);
2435 goto out;
2436 }
2437
2438 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2439 pmd_t *dst_pmd,
2440 struct vm_area_struct *dst_vma,
2441 unsigned long dst_addr,
2442 unsigned long src_addr,
2443 struct page **pagep)
2444 {
2445 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2446 dst_addr, src_addr, false, pagep);
2447 }
2448
2449 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2450 pmd_t *dst_pmd,
2451 struct vm_area_struct *dst_vma,
2452 unsigned long dst_addr)
2453 {
2454 struct page *page = NULL;
2455
2456 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2457 dst_addr, 0, true, &page);
2458 }
2459
2460 #ifdef CONFIG_TMPFS
2461 static const struct inode_operations shmem_symlink_inode_operations;
2462 static const struct inode_operations shmem_short_symlink_operations;
2463
2464 #ifdef CONFIG_TMPFS_XATTR
2465 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2466 #else
2467 #define shmem_initxattrs NULL
2468 #endif
2469
2470 static int
2471 shmem_write_begin(struct file *file, struct address_space *mapping,
2472 loff_t pos, unsigned len, unsigned flags,
2473 struct page **pagep, void **fsdata)
2474 {
2475 struct inode *inode = mapping->host;
2476 struct shmem_inode_info *info = SHMEM_I(inode);
2477 pgoff_t index = pos >> PAGE_SHIFT;
2478
2479 /* i_mutex is held by caller */
2480 if (unlikely(info->seals & (F_SEAL_GROW |
2481 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2482 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2483 return -EPERM;
2484 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2485 return -EPERM;
2486 }
2487
2488 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2489 }
2490
2491 static int
2492 shmem_write_end(struct file *file, struct address_space *mapping,
2493 loff_t pos, unsigned len, unsigned copied,
2494 struct page *page, void *fsdata)
2495 {
2496 struct inode *inode = mapping->host;
2497
2498 if (pos + copied > inode->i_size)
2499 i_size_write(inode, pos + copied);
2500
2501 if (!PageUptodate(page)) {
2502 struct page *head = compound_head(page);
2503 if (PageTransCompound(page)) {
2504 int i;
2505
2506 for (i = 0; i < HPAGE_PMD_NR; i++) {
2507 if (head + i == page)
2508 continue;
2509 clear_highpage(head + i);
2510 flush_dcache_page(head + i);
2511 }
2512 }
2513 if (copied < PAGE_SIZE) {
2514 unsigned from = pos & (PAGE_SIZE - 1);
2515 zero_user_segments(page, 0, from,
2516 from + copied, PAGE_SIZE);
2517 }
2518 SetPageUptodate(head);
2519 }
2520 set_page_dirty(page);
2521 unlock_page(page);
2522 put_page(page);
2523
2524 return copied;
2525 }
2526
2527 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2528 {
2529 struct file *file = iocb->ki_filp;
2530 struct inode *inode = file_inode(file);
2531 struct address_space *mapping = inode->i_mapping;
2532 pgoff_t index;
2533 unsigned long offset;
2534 enum sgp_type sgp = SGP_READ;
2535 int error = 0;
2536 ssize_t retval = 0;
2537 loff_t *ppos = &iocb->ki_pos;
2538
2539 /*
2540 * Might this read be for a stacking filesystem? Then when reading
2541 * holes of a sparse file, we actually need to allocate those pages,
2542 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2543 */
2544 if (!iter_is_iovec(to))
2545 sgp = SGP_CACHE;
2546
2547 index = *ppos >> PAGE_SHIFT;
2548 offset = *ppos & ~PAGE_MASK;
2549
2550 for (;;) {
2551 struct page *page = NULL;
2552 pgoff_t end_index;
2553 unsigned long nr, ret;
2554 loff_t i_size = i_size_read(inode);
2555
2556 end_index = i_size >> PAGE_SHIFT;
2557 if (index > end_index)
2558 break;
2559 if (index == end_index) {
2560 nr = i_size & ~PAGE_MASK;
2561 if (nr <= offset)
2562 break;
2563 }
2564
2565 error = shmem_getpage(inode, index, &page, sgp);
2566 if (error) {
2567 if (error == -EINVAL)
2568 error = 0;
2569 break;
2570 }
2571 if (page) {
2572 if (sgp == SGP_CACHE)
2573 set_page_dirty(page);
2574 unlock_page(page);
2575 }
2576
2577 /*
2578 * We must evaluate after, since reads (unlike writes)
2579 * are called without i_mutex protection against truncate
2580 */
2581 nr = PAGE_SIZE;
2582 i_size = i_size_read(inode);
2583 end_index = i_size >> PAGE_SHIFT;
2584 if (index == end_index) {
2585 nr = i_size & ~PAGE_MASK;
2586 if (nr <= offset) {
2587 if (page)
2588 put_page(page);
2589 break;
2590 }
2591 }
2592 nr -= offset;
2593
2594 if (page) {
2595 /*
2596 * If users can be writing to this page using arbitrary
2597 * virtual addresses, take care about potential aliasing
2598 * before reading the page on the kernel side.
2599 */
2600 if (mapping_writably_mapped(mapping))
2601 flush_dcache_page(page);
2602 /*
2603 * Mark the page accessed if we read the beginning.
2604 */
2605 if (!offset)
2606 mark_page_accessed(page);
2607 } else {
2608 page = ZERO_PAGE(0);
2609 get_page(page);
2610 }
2611
2612 /*
2613 * Ok, we have the page, and it's up-to-date, so
2614 * now we can copy it to user space...
2615 */
2616 ret = copy_page_to_iter(page, offset, nr, to);
2617 retval += ret;
2618 offset += ret;
2619 index += offset >> PAGE_SHIFT;
2620 offset &= ~PAGE_MASK;
2621
2622 put_page(page);
2623 if (!iov_iter_count(to))
2624 break;
2625 if (ret < nr) {
2626 error = -EFAULT;
2627 break;
2628 }
2629 cond_resched();
2630 }
2631
2632 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2633 file_accessed(file);
2634 return retval ? retval : error;
2635 }
2636
2637 /*
2638 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2639 */
2640 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2641 pgoff_t index, pgoff_t end, int whence)
2642 {
2643 struct page *page;
2644 struct pagevec pvec;
2645 pgoff_t indices[PAGEVEC_SIZE];
2646 bool done = false;
2647 int i;
2648
2649 pagevec_init(&pvec);
2650 pvec.nr = 1; /* start small: we may be there already */
2651 while (!done) {
2652 pvec.nr = find_get_entries(mapping, index,
2653 pvec.nr, pvec.pages, indices);
2654 if (!pvec.nr) {
2655 if (whence == SEEK_DATA)
2656 index = end;
2657 break;
2658 }
2659 for (i = 0; i < pvec.nr; i++, index++) {
2660 if (index < indices[i]) {
2661 if (whence == SEEK_HOLE) {
2662 done = true;
2663 break;
2664 }
2665 index = indices[i];
2666 }
2667 page = pvec.pages[i];
2668 if (page && !xa_is_value(page)) {
2669 if (!PageUptodate(page))
2670 page = NULL;
2671 }
2672 if (index >= end ||
2673 (page && whence == SEEK_DATA) ||
2674 (!page && whence == SEEK_HOLE)) {
2675 done = true;
2676 break;
2677 }
2678 }
2679 pagevec_remove_exceptionals(&pvec);
2680 pagevec_release(&pvec);
2681 pvec.nr = PAGEVEC_SIZE;
2682 cond_resched();
2683 }
2684 return index;
2685 }
2686
2687 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2688 {
2689 struct address_space *mapping = file->f_mapping;
2690 struct inode *inode = mapping->host;
2691 pgoff_t start, end;
2692 loff_t new_offset;
2693
2694 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2695 return generic_file_llseek_size(file, offset, whence,
2696 MAX_LFS_FILESIZE, i_size_read(inode));
2697 inode_lock(inode);
2698 /* We're holding i_mutex so we can access i_size directly */
2699
2700 if (offset < 0 || offset >= inode->i_size)
2701 offset = -ENXIO;
2702 else {
2703 start = offset >> PAGE_SHIFT;
2704 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2705 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2706 new_offset <<= PAGE_SHIFT;
2707 if (new_offset > offset) {
2708 if (new_offset < inode->i_size)
2709 offset = new_offset;
2710 else if (whence == SEEK_DATA)
2711 offset = -ENXIO;
2712 else
2713 offset = inode->i_size;
2714 }
2715 }
2716
2717 if (offset >= 0)
2718 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2719 inode_unlock(inode);
2720 return offset;
2721 }
2722
2723 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2724 loff_t len)
2725 {
2726 struct inode *inode = file_inode(file);
2727 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2728 struct shmem_inode_info *info = SHMEM_I(inode);
2729 struct shmem_falloc shmem_falloc;
2730 pgoff_t start, index, end;
2731 int error;
2732
2733 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2734 return -EOPNOTSUPP;
2735
2736 inode_lock(inode);
2737
2738 if (mode & FALLOC_FL_PUNCH_HOLE) {
2739 struct address_space *mapping = file->f_mapping;
2740 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2741 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2742 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2743
2744 /* protected by i_mutex */
2745 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2746 error = -EPERM;
2747 goto out;
2748 }
2749
2750 shmem_falloc.waitq = &shmem_falloc_waitq;
2751 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2752 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2753 spin_lock(&inode->i_lock);
2754 inode->i_private = &shmem_falloc;
2755 spin_unlock(&inode->i_lock);
2756
2757 if ((u64)unmap_end > (u64)unmap_start)
2758 unmap_mapping_range(mapping, unmap_start,
2759 1 + unmap_end - unmap_start, 0);
2760 shmem_truncate_range(inode, offset, offset + len - 1);
2761 /* No need to unmap again: hole-punching leaves COWed pages */
2762
2763 spin_lock(&inode->i_lock);
2764 inode->i_private = NULL;
2765 wake_up_all(&shmem_falloc_waitq);
2766 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2767 spin_unlock(&inode->i_lock);
2768 error = 0;
2769 goto out;
2770 }
2771
2772 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2773 error = inode_newsize_ok(inode, offset + len);
2774 if (error)
2775 goto out;
2776
2777 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2778 error = -EPERM;
2779 goto out;
2780 }
2781
2782 start = offset >> PAGE_SHIFT;
2783 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2784 /* Try to avoid a swapstorm if len is impossible to satisfy */
2785 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2786 error = -ENOSPC;
2787 goto out;
2788 }
2789
2790 shmem_falloc.waitq = NULL;
2791 shmem_falloc.start = start;
2792 shmem_falloc.next = start;
2793 shmem_falloc.nr_falloced = 0;
2794 shmem_falloc.nr_unswapped = 0;
2795 spin_lock(&inode->i_lock);
2796 inode->i_private = &shmem_falloc;
2797 spin_unlock(&inode->i_lock);
2798
2799 for (index = start; index < end; index++) {
2800 struct page *page;
2801
2802 /*
2803 * Good, the fallocate(2) manpage permits EINTR: we may have
2804 * been interrupted because we are using up too much memory.
2805 */
2806 if (signal_pending(current))
2807 error = -EINTR;
2808 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2809 error = -ENOMEM;
2810 else
2811 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2812 if (error) {
2813 /* Remove the !PageUptodate pages we added */
2814 if (index > start) {
2815 shmem_undo_range(inode,
2816 (loff_t)start << PAGE_SHIFT,
2817 ((loff_t)index << PAGE_SHIFT) - 1, true);
2818 }
2819 goto undone;
2820 }
2821
2822 /*
2823 * Inform shmem_writepage() how far we have reached.
2824 * No need for lock or barrier: we have the page lock.
2825 */
2826 shmem_falloc.next++;
2827 if (!PageUptodate(page))
2828 shmem_falloc.nr_falloced++;
2829
2830 /*
2831 * If !PageUptodate, leave it that way so that freeable pages
2832 * can be recognized if we need to rollback on error later.
2833 * But set_page_dirty so that memory pressure will swap rather
2834 * than free the pages we are allocating (and SGP_CACHE pages
2835 * might still be clean: we now need to mark those dirty too).
2836 */
2837 set_page_dirty(page);
2838 unlock_page(page);
2839 put_page(page);
2840 cond_resched();
2841 }
2842
2843 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2844 i_size_write(inode, offset + len);
2845 inode->i_ctime = current_time(inode);
2846 undone:
2847 spin_lock(&inode->i_lock);
2848 inode->i_private = NULL;
2849 spin_unlock(&inode->i_lock);
2850 out:
2851 inode_unlock(inode);
2852 return error;
2853 }
2854
2855 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2856 {
2857 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2858
2859 buf->f_type = TMPFS_MAGIC;
2860 buf->f_bsize = PAGE_SIZE;
2861 buf->f_namelen = NAME_MAX;
2862 if (sbinfo->max_blocks) {
2863 buf->f_blocks = sbinfo->max_blocks;
2864 buf->f_bavail =
2865 buf->f_bfree = sbinfo->max_blocks -
2866 percpu_counter_sum(&sbinfo->used_blocks);
2867 }
2868 if (sbinfo->max_inodes) {
2869 buf->f_files = sbinfo->max_inodes;
2870 buf->f_ffree = sbinfo->free_inodes;
2871 }
2872 /* else leave those fields 0 like simple_statfs */
2873 return 0;
2874 }
2875
2876 /*
2877 * File creation. Allocate an inode, and we're done..
2878 */
2879 static int
2880 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2881 {
2882 struct inode *inode;
2883 int error = -ENOSPC;
2884
2885 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2886 if (inode) {
2887 error = simple_acl_create(dir, inode);
2888 if (error)
2889 goto out_iput;
2890 error = security_inode_init_security(inode, dir,
2891 &dentry->d_name,
2892 shmem_initxattrs, NULL);
2893 if (error && error != -EOPNOTSUPP)
2894 goto out_iput;
2895
2896 error = 0;
2897 dir->i_size += BOGO_DIRENT_SIZE;
2898 dir->i_ctime = dir->i_mtime = current_time(dir);
2899 d_instantiate(dentry, inode);
2900 dget(dentry); /* Extra count - pin the dentry in core */
2901 }
2902 return error;
2903 out_iput:
2904 iput(inode);
2905 return error;
2906 }
2907
2908 static int
2909 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2910 {
2911 struct inode *inode;
2912 int error = -ENOSPC;
2913
2914 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2915 if (inode) {
2916 error = security_inode_init_security(inode, dir,
2917 NULL,
2918 shmem_initxattrs, NULL);
2919 if (error && error != -EOPNOTSUPP)
2920 goto out_iput;
2921 error = simple_acl_create(dir, inode);
2922 if (error)
2923 goto out_iput;
2924 d_tmpfile(dentry, inode);
2925 }
2926 return error;
2927 out_iput:
2928 iput(inode);
2929 return error;
2930 }
2931
2932 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2933 {
2934 int error;
2935
2936 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2937 return error;
2938 inc_nlink(dir);
2939 return 0;
2940 }
2941
2942 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2943 bool excl)
2944 {
2945 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2946 }
2947
2948 /*
2949 * Link a file..
2950 */
2951 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2952 {
2953 struct inode *inode = d_inode(old_dentry);
2954 int ret = 0;
2955
2956 /*
2957 * No ordinary (disk based) filesystem counts links as inodes;
2958 * but each new link needs a new dentry, pinning lowmem, and
2959 * tmpfs dentries cannot be pruned until they are unlinked.
2960 * But if an O_TMPFILE file is linked into the tmpfs, the
2961 * first link must skip that, to get the accounting right.
2962 */
2963 if (inode->i_nlink) {
2964 ret = shmem_reserve_inode(inode->i_sb);
2965 if (ret)
2966 goto out;
2967 }
2968
2969 dir->i_size += BOGO_DIRENT_SIZE;
2970 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2971 inc_nlink(inode);
2972 ihold(inode); /* New dentry reference */
2973 dget(dentry); /* Extra pinning count for the created dentry */
2974 d_instantiate(dentry, inode);
2975 out:
2976 return ret;
2977 }
2978
2979 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2980 {
2981 struct inode *inode = d_inode(dentry);
2982
2983 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2984 shmem_free_inode(inode->i_sb);
2985
2986 dir->i_size -= BOGO_DIRENT_SIZE;
2987 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2988 drop_nlink(inode);
2989 dput(dentry); /* Undo the count from "create" - this does all the work */
2990 return 0;
2991 }
2992
2993 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2994 {
2995 if (!simple_empty(dentry))
2996 return -ENOTEMPTY;
2997
2998 drop_nlink(d_inode(dentry));
2999 drop_nlink(dir);
3000 return shmem_unlink(dir, dentry);
3001 }
3002
3003 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3004 {
3005 bool old_is_dir = d_is_dir(old_dentry);
3006 bool new_is_dir = d_is_dir(new_dentry);
3007
3008 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3009 if (old_is_dir) {
3010 drop_nlink(old_dir);
3011 inc_nlink(new_dir);
3012 } else {
3013 drop_nlink(new_dir);
3014 inc_nlink(old_dir);
3015 }
3016 }
3017 old_dir->i_ctime = old_dir->i_mtime =
3018 new_dir->i_ctime = new_dir->i_mtime =
3019 d_inode(old_dentry)->i_ctime =
3020 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3021
3022 return 0;
3023 }
3024
3025 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3026 {
3027 struct dentry *whiteout;
3028 int error;
3029
3030 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3031 if (!whiteout)
3032 return -ENOMEM;
3033
3034 error = shmem_mknod(old_dir, whiteout,
3035 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3036 dput(whiteout);
3037 if (error)
3038 return error;
3039
3040 /*
3041 * Cheat and hash the whiteout while the old dentry is still in
3042 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3043 *
3044 * d_lookup() will consistently find one of them at this point,
3045 * not sure which one, but that isn't even important.
3046 */
3047 d_rehash(whiteout);
3048 return 0;
3049 }
3050
3051 /*
3052 * The VFS layer already does all the dentry stuff for rename,
3053 * we just have to decrement the usage count for the target if
3054 * it exists so that the VFS layer correctly free's it when it
3055 * gets overwritten.
3056 */
3057 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3058 {
3059 struct inode *inode = d_inode(old_dentry);
3060 int they_are_dirs = S_ISDIR(inode->i_mode);
3061
3062 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3063 return -EINVAL;
3064
3065 if (flags & RENAME_EXCHANGE)
3066 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3067
3068 if (!simple_empty(new_dentry))
3069 return -ENOTEMPTY;
3070
3071 if (flags & RENAME_WHITEOUT) {
3072 int error;
3073
3074 error = shmem_whiteout(old_dir, old_dentry);
3075 if (error)
3076 return error;
3077 }
3078
3079 if (d_really_is_positive(new_dentry)) {
3080 (void) shmem_unlink(new_dir, new_dentry);
3081 if (they_are_dirs) {
3082 drop_nlink(d_inode(new_dentry));
3083 drop_nlink(old_dir);
3084 }
3085 } else if (they_are_dirs) {
3086 drop_nlink(old_dir);
3087 inc_nlink(new_dir);
3088 }
3089
3090 old_dir->i_size -= BOGO_DIRENT_SIZE;
3091 new_dir->i_size += BOGO_DIRENT_SIZE;
3092 old_dir->i_ctime = old_dir->i_mtime =
3093 new_dir->i_ctime = new_dir->i_mtime =
3094 inode->i_ctime = current_time(old_dir);
3095 return 0;
3096 }
3097
3098 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3099 {
3100 int error;
3101 int len;
3102 struct inode *inode;
3103 struct page *page;
3104
3105 len = strlen(symname) + 1;
3106 if (len > PAGE_SIZE)
3107 return -ENAMETOOLONG;
3108
3109 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3110 VM_NORESERVE);
3111 if (!inode)
3112 return -ENOSPC;
3113
3114 error = security_inode_init_security(inode, dir, &dentry->d_name,
3115 shmem_initxattrs, NULL);
3116 if (error) {
3117 if (error != -EOPNOTSUPP) {
3118 iput(inode);
3119 return error;
3120 }
3121 error = 0;
3122 }
3123
3124 inode->i_size = len-1;
3125 if (len <= SHORT_SYMLINK_LEN) {
3126 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3127 if (!inode->i_link) {
3128 iput(inode);
3129 return -ENOMEM;
3130 }
3131 inode->i_op = &shmem_short_symlink_operations;
3132 } else {
3133 inode_nohighmem(inode);
3134 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3135 if (error) {
3136 iput(inode);
3137 return error;
3138 }
3139 inode->i_mapping->a_ops = &shmem_aops;
3140 inode->i_op = &shmem_symlink_inode_operations;
3141 memcpy(page_address(page), symname, len);
3142 SetPageUptodate(page);
3143 set_page_dirty(page);
3144 unlock_page(page);
3145 put_page(page);
3146 }
3147 dir->i_size += BOGO_DIRENT_SIZE;
3148 dir->i_ctime = dir->i_mtime = current_time(dir);
3149 d_instantiate(dentry, inode);
3150 dget(dentry);
3151 return 0;
3152 }
3153
3154 static void shmem_put_link(void *arg)
3155 {
3156 mark_page_accessed(arg);
3157 put_page(arg);
3158 }
3159
3160 static const char *shmem_get_link(struct dentry *dentry,
3161 struct inode *inode,
3162 struct delayed_call *done)
3163 {
3164 struct page *page = NULL;
3165 int error;
3166 if (!dentry) {
3167 page = find_get_page(inode->i_mapping, 0);
3168 if (!page)
3169 return ERR_PTR(-ECHILD);
3170 if (!PageUptodate(page)) {
3171 put_page(page);
3172 return ERR_PTR(-ECHILD);
3173 }
3174 } else {
3175 error = shmem_getpage(inode, 0, &page, SGP_READ);
3176 if (error)
3177 return ERR_PTR(error);
3178 unlock_page(page);
3179 }
3180 set_delayed_call(done, shmem_put_link, page);
3181 return page_address(page);
3182 }
3183
3184 #ifdef CONFIG_TMPFS_XATTR
3185 /*
3186 * Superblocks without xattr inode operations may get some security.* xattr
3187 * support from the LSM "for free". As soon as we have any other xattrs
3188 * like ACLs, we also need to implement the security.* handlers at
3189 * filesystem level, though.
3190 */
3191
3192 /*
3193 * Callback for security_inode_init_security() for acquiring xattrs.
3194 */
3195 static int shmem_initxattrs(struct inode *inode,
3196 const struct xattr *xattr_array,
3197 void *fs_info)
3198 {
3199 struct shmem_inode_info *info = SHMEM_I(inode);
3200 const struct xattr *xattr;
3201 struct simple_xattr *new_xattr;
3202 size_t len;
3203
3204 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3205 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3206 if (!new_xattr)
3207 return -ENOMEM;
3208
3209 len = strlen(xattr->name) + 1;
3210 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3211 GFP_KERNEL);
3212 if (!new_xattr->name) {
3213 kfree(new_xattr);
3214 return -ENOMEM;
3215 }
3216
3217 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3218 XATTR_SECURITY_PREFIX_LEN);
3219 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3220 xattr->name, len);
3221
3222 simple_xattr_list_add(&info->xattrs, new_xattr);
3223 }
3224
3225 return 0;
3226 }
3227
3228 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3229 struct dentry *unused, struct inode *inode,
3230 const char *name, void *buffer, size_t size)
3231 {
3232 struct shmem_inode_info *info = SHMEM_I(inode);
3233
3234 name = xattr_full_name(handler, name);
3235 return simple_xattr_get(&info->xattrs, name, buffer, size);
3236 }
3237
3238 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3239 struct dentry *unused, struct inode *inode,
3240 const char *name, const void *value,
3241 size_t size, int flags)
3242 {
3243 struct shmem_inode_info *info = SHMEM_I(inode);
3244
3245 name = xattr_full_name(handler, name);
3246 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3247 }
3248
3249 static const struct xattr_handler shmem_security_xattr_handler = {
3250 .prefix = XATTR_SECURITY_PREFIX,
3251 .get = shmem_xattr_handler_get,
3252 .set = shmem_xattr_handler_set,
3253 };
3254
3255 static const struct xattr_handler shmem_trusted_xattr_handler = {
3256 .prefix = XATTR_TRUSTED_PREFIX,
3257 .get = shmem_xattr_handler_get,
3258 .set = shmem_xattr_handler_set,
3259 };
3260
3261 static const struct xattr_handler *shmem_xattr_handlers[] = {
3262 #ifdef CONFIG_TMPFS_POSIX_ACL
3263 &posix_acl_access_xattr_handler,
3264 &posix_acl_default_xattr_handler,
3265 #endif
3266 &shmem_security_xattr_handler,
3267 &shmem_trusted_xattr_handler,
3268 NULL
3269 };
3270
3271 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3272 {
3273 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3274 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3275 }
3276 #endif /* CONFIG_TMPFS_XATTR */
3277
3278 static const struct inode_operations shmem_short_symlink_operations = {
3279 .get_link = simple_get_link,
3280 #ifdef CONFIG_TMPFS_XATTR
3281 .listxattr = shmem_listxattr,
3282 #endif
3283 };
3284
3285 static const struct inode_operations shmem_symlink_inode_operations = {
3286 .get_link = shmem_get_link,
3287 #ifdef CONFIG_TMPFS_XATTR
3288 .listxattr = shmem_listxattr,
3289 #endif
3290 };
3291
3292 static struct dentry *shmem_get_parent(struct dentry *child)
3293 {
3294 return ERR_PTR(-ESTALE);
3295 }
3296
3297 static int shmem_match(struct inode *ino, void *vfh)
3298 {
3299 __u32 *fh = vfh;
3300 __u64 inum = fh[2];
3301 inum = (inum << 32) | fh[1];
3302 return ino->i_ino == inum && fh[0] == ino->i_generation;
3303 }
3304
3305 /* Find any alias of inode, but prefer a hashed alias */
3306 static struct dentry *shmem_find_alias(struct inode *inode)
3307 {
3308 struct dentry *alias = d_find_alias(inode);
3309
3310 return alias ?: d_find_any_alias(inode);
3311 }
3312
3313
3314 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3315 struct fid *fid, int fh_len, int fh_type)
3316 {
3317 struct inode *inode;
3318 struct dentry *dentry = NULL;
3319 u64 inum;
3320
3321 if (fh_len < 3)
3322 return NULL;
3323
3324 inum = fid->raw[2];
3325 inum = (inum << 32) | fid->raw[1];
3326
3327 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3328 shmem_match, fid->raw);
3329 if (inode) {
3330 dentry = shmem_find_alias(inode);
3331 iput(inode);
3332 }
3333
3334 return dentry;
3335 }
3336
3337 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3338 struct inode *parent)
3339 {
3340 if (*len < 3) {
3341 *len = 3;
3342 return FILEID_INVALID;
3343 }
3344
3345 if (inode_unhashed(inode)) {
3346 /* Unfortunately insert_inode_hash is not idempotent,
3347 * so as we hash inodes here rather than at creation
3348 * time, we need a lock to ensure we only try
3349 * to do it once
3350 */
3351 static DEFINE_SPINLOCK(lock);
3352 spin_lock(&lock);
3353 if (inode_unhashed(inode))
3354 __insert_inode_hash(inode,
3355 inode->i_ino + inode->i_generation);
3356 spin_unlock(&lock);
3357 }
3358
3359 fh[0] = inode->i_generation;
3360 fh[1] = inode->i_ino;
3361 fh[2] = ((__u64)inode->i_ino) >> 32;
3362
3363 *len = 3;
3364 return 1;
3365 }
3366
3367 static const struct export_operations shmem_export_ops = {
3368 .get_parent = shmem_get_parent,
3369 .encode_fh = shmem_encode_fh,
3370 .fh_to_dentry = shmem_fh_to_dentry,
3371 };
3372
3373 enum shmem_param {
3374 Opt_gid,
3375 Opt_huge,
3376 Opt_mode,
3377 Opt_mpol,
3378 Opt_nr_blocks,
3379 Opt_nr_inodes,
3380 Opt_size,
3381 Opt_uid,
3382 };
3383
3384 static const struct constant_table shmem_param_enums_huge[] = {
3385 {"never", SHMEM_HUGE_NEVER },
3386 {"always", SHMEM_HUGE_ALWAYS },
3387 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3388 {"advise", SHMEM_HUGE_ADVISE },
3389 {"deny", SHMEM_HUGE_DENY },
3390 {"force", SHMEM_HUGE_FORCE },
3391 {}
3392 };
3393
3394 const struct fs_parameter_spec shmem_fs_parameters[] = {
3395 fsparam_u32 ("gid", Opt_gid),
3396 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3397 fsparam_u32oct("mode", Opt_mode),
3398 fsparam_string("mpol", Opt_mpol),
3399 fsparam_string("nr_blocks", Opt_nr_blocks),
3400 fsparam_string("nr_inodes", Opt_nr_inodes),
3401 fsparam_string("size", Opt_size),
3402 fsparam_u32 ("uid", Opt_uid),
3403 {}
3404 };
3405
3406 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3407 {
3408 struct shmem_options *ctx = fc->fs_private;
3409 struct fs_parse_result result;
3410 unsigned long long size;
3411 char *rest;
3412 int opt;
3413
3414 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3415 if (opt < 0)
3416 return opt;
3417
3418 switch (opt) {
3419 case Opt_size:
3420 size = memparse(param->string, &rest);
3421 if (*rest == '%') {
3422 size <<= PAGE_SHIFT;
3423 size *= totalram_pages();
3424 do_div(size, 100);
3425 rest++;
3426 }
3427 if (*rest)
3428 goto bad_value;
3429 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3430 ctx->seen |= SHMEM_SEEN_BLOCKS;
3431 break;
3432 case Opt_nr_blocks:
3433 ctx->blocks = memparse(param->string, &rest);
3434 if (*rest)
3435 goto bad_value;
3436 ctx->seen |= SHMEM_SEEN_BLOCKS;
3437 break;
3438 case Opt_nr_inodes:
3439 ctx->inodes = memparse(param->string, &rest);
3440 if (*rest)
3441 goto bad_value;
3442 ctx->seen |= SHMEM_SEEN_INODES;
3443 break;
3444 case Opt_mode:
3445 ctx->mode = result.uint_32 & 07777;
3446 break;
3447 case Opt_uid:
3448 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3449 if (!uid_valid(ctx->uid))
3450 goto bad_value;
3451 break;
3452 case Opt_gid:
3453 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3454 if (!gid_valid(ctx->gid))
3455 goto bad_value;
3456 break;
3457 case Opt_huge:
3458 ctx->huge = result.uint_32;
3459 if (ctx->huge != SHMEM_HUGE_NEVER &&
3460 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3461 has_transparent_hugepage()))
3462 goto unsupported_parameter;
3463 ctx->seen |= SHMEM_SEEN_HUGE;
3464 break;
3465 case Opt_mpol:
3466 if (IS_ENABLED(CONFIG_NUMA)) {
3467 mpol_put(ctx->mpol);
3468 ctx->mpol = NULL;
3469 if (mpol_parse_str(param->string, &ctx->mpol))
3470 goto bad_value;
3471 break;
3472 }
3473 goto unsupported_parameter;
3474 }
3475 return 0;
3476
3477 unsupported_parameter:
3478 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3479 bad_value:
3480 return invalfc(fc, "Bad value for '%s'", param->key);
3481 }
3482
3483 static int shmem_parse_options(struct fs_context *fc, void *data)
3484 {
3485 char *options = data;
3486
3487 if (options) {
3488 int err = security_sb_eat_lsm_opts(options, &fc->security);
3489 if (err)
3490 return err;
3491 }
3492
3493 while (options != NULL) {
3494 char *this_char = options;
3495 for (;;) {
3496 /*
3497 * NUL-terminate this option: unfortunately,
3498 * mount options form a comma-separated list,
3499 * but mpol's nodelist may also contain commas.
3500 */
3501 options = strchr(options, ',');
3502 if (options == NULL)
3503 break;
3504 options++;
3505 if (!isdigit(*options)) {
3506 options[-1] = '\0';
3507 break;
3508 }
3509 }
3510 if (*this_char) {
3511 char *value = strchr(this_char,'=');
3512 size_t len = 0;
3513 int err;
3514
3515 if (value) {
3516 *value++ = '\0';
3517 len = strlen(value);
3518 }
3519 err = vfs_parse_fs_string(fc, this_char, value, len);
3520 if (err < 0)
3521 return err;
3522 }
3523 }
3524 return 0;
3525 }
3526
3527 /*
3528 * Reconfigure a shmem filesystem.
3529 *
3530 * Note that we disallow change from limited->unlimited blocks/inodes while any
3531 * are in use; but we must separately disallow unlimited->limited, because in
3532 * that case we have no record of how much is already in use.
3533 */
3534 static int shmem_reconfigure(struct fs_context *fc)
3535 {
3536 struct shmem_options *ctx = fc->fs_private;
3537 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3538 unsigned long inodes;
3539 const char *err;
3540
3541 spin_lock(&sbinfo->stat_lock);
3542 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3543 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3544 if (!sbinfo->max_blocks) {
3545 err = "Cannot retroactively limit size";
3546 goto out;
3547 }
3548 if (percpu_counter_compare(&sbinfo->used_blocks,
3549 ctx->blocks) > 0) {
3550 err = "Too small a size for current use";
3551 goto out;
3552 }
3553 }
3554 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3555 if (!sbinfo->max_inodes) {
3556 err = "Cannot retroactively limit inodes";
3557 goto out;
3558 }
3559 if (ctx->inodes < inodes) {
3560 err = "Too few inodes for current use";
3561 goto out;
3562 }
3563 }
3564
3565 if (ctx->seen & SHMEM_SEEN_HUGE)
3566 sbinfo->huge = ctx->huge;
3567 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3568 sbinfo->max_blocks = ctx->blocks;
3569 if (ctx->seen & SHMEM_SEEN_INODES) {
3570 sbinfo->max_inodes = ctx->inodes;
3571 sbinfo->free_inodes = ctx->inodes - inodes;
3572 }
3573
3574 /*
3575 * Preserve previous mempolicy unless mpol remount option was specified.
3576 */
3577 if (ctx->mpol) {
3578 mpol_put(sbinfo->mpol);
3579 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3580 ctx->mpol = NULL;
3581 }
3582 spin_unlock(&sbinfo->stat_lock);
3583 return 0;
3584 out:
3585 spin_unlock(&sbinfo->stat_lock);
3586 return invalfc(fc, "%s", err);
3587 }
3588
3589 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3590 {
3591 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3592
3593 if (sbinfo->max_blocks != shmem_default_max_blocks())
3594 seq_printf(seq, ",size=%luk",
3595 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3596 if (sbinfo->max_inodes != shmem_default_max_inodes())
3597 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3598 if (sbinfo->mode != (0777 | S_ISVTX))
3599 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3600 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3601 seq_printf(seq, ",uid=%u",
3602 from_kuid_munged(&init_user_ns, sbinfo->uid));
3603 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3604 seq_printf(seq, ",gid=%u",
3605 from_kgid_munged(&init_user_ns, sbinfo->gid));
3606 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3607 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3608 if (sbinfo->huge)
3609 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3610 #endif
3611 shmem_show_mpol(seq, sbinfo->mpol);
3612 return 0;
3613 }
3614
3615 #endif /* CONFIG_TMPFS */
3616
3617 static void shmem_put_super(struct super_block *sb)
3618 {
3619 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3620
3621 percpu_counter_destroy(&sbinfo->used_blocks);
3622 mpol_put(sbinfo->mpol);
3623 kfree(sbinfo);
3624 sb->s_fs_info = NULL;
3625 }
3626
3627 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3628 {
3629 struct shmem_options *ctx = fc->fs_private;
3630 struct inode *inode;
3631 struct shmem_sb_info *sbinfo;
3632 int err = -ENOMEM;
3633
3634 /* Round up to L1_CACHE_BYTES to resist false sharing */
3635 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3636 L1_CACHE_BYTES), GFP_KERNEL);
3637 if (!sbinfo)
3638 return -ENOMEM;
3639
3640 sb->s_fs_info = sbinfo;
3641
3642 #ifdef CONFIG_TMPFS
3643 /*
3644 * Per default we only allow half of the physical ram per
3645 * tmpfs instance, limiting inodes to one per page of lowmem;
3646 * but the internal instance is left unlimited.
3647 */
3648 if (!(sb->s_flags & SB_KERNMOUNT)) {
3649 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3650 ctx->blocks = shmem_default_max_blocks();
3651 if (!(ctx->seen & SHMEM_SEEN_INODES))
3652 ctx->inodes = shmem_default_max_inodes();
3653 } else {
3654 sb->s_flags |= SB_NOUSER;
3655 }
3656 sb->s_export_op = &shmem_export_ops;
3657 sb->s_flags |= SB_NOSEC;
3658 #else
3659 sb->s_flags |= SB_NOUSER;
3660 #endif
3661 sbinfo->max_blocks = ctx->blocks;
3662 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3663 sbinfo->uid = ctx->uid;
3664 sbinfo->gid = ctx->gid;
3665 sbinfo->mode = ctx->mode;
3666 sbinfo->huge = ctx->huge;
3667 sbinfo->mpol = ctx->mpol;
3668 ctx->mpol = NULL;
3669
3670 spin_lock_init(&sbinfo->stat_lock);
3671 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3672 goto failed;
3673 spin_lock_init(&sbinfo->shrinklist_lock);
3674 INIT_LIST_HEAD(&sbinfo->shrinklist);
3675
3676 sb->s_maxbytes = MAX_LFS_FILESIZE;
3677 sb->s_blocksize = PAGE_SIZE;
3678 sb->s_blocksize_bits = PAGE_SHIFT;
3679 sb->s_magic = TMPFS_MAGIC;
3680 sb->s_op = &shmem_ops;
3681 sb->s_time_gran = 1;
3682 #ifdef CONFIG_TMPFS_XATTR
3683 sb->s_xattr = shmem_xattr_handlers;
3684 #endif
3685 #ifdef CONFIG_TMPFS_POSIX_ACL
3686 sb->s_flags |= SB_POSIXACL;
3687 #endif
3688 uuid_gen(&sb->s_uuid);
3689
3690 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3691 if (!inode)
3692 goto failed;
3693 inode->i_uid = sbinfo->uid;
3694 inode->i_gid = sbinfo->gid;
3695 sb->s_root = d_make_root(inode);
3696 if (!sb->s_root)
3697 goto failed;
3698 return 0;
3699
3700 failed:
3701 shmem_put_super(sb);
3702 return err;
3703 }
3704
3705 static int shmem_get_tree(struct fs_context *fc)
3706 {
3707 return get_tree_nodev(fc, shmem_fill_super);
3708 }
3709
3710 static void shmem_free_fc(struct fs_context *fc)
3711 {
3712 struct shmem_options *ctx = fc->fs_private;
3713
3714 if (ctx) {
3715 mpol_put(ctx->mpol);
3716 kfree(ctx);
3717 }
3718 }
3719
3720 static const struct fs_context_operations shmem_fs_context_ops = {
3721 .free = shmem_free_fc,
3722 .get_tree = shmem_get_tree,
3723 #ifdef CONFIG_TMPFS
3724 .parse_monolithic = shmem_parse_options,
3725 .parse_param = shmem_parse_one,
3726 .reconfigure = shmem_reconfigure,
3727 #endif
3728 };
3729
3730 static struct kmem_cache *shmem_inode_cachep;
3731
3732 static struct inode *shmem_alloc_inode(struct super_block *sb)
3733 {
3734 struct shmem_inode_info *info;
3735 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3736 if (!info)
3737 return NULL;
3738 return &info->vfs_inode;
3739 }
3740
3741 static void shmem_free_in_core_inode(struct inode *inode)
3742 {
3743 if (S_ISLNK(inode->i_mode))
3744 kfree(inode->i_link);
3745 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3746 }
3747
3748 static void shmem_destroy_inode(struct inode *inode)
3749 {
3750 if (S_ISREG(inode->i_mode))
3751 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3752 }
3753
3754 static void shmem_init_inode(void *foo)
3755 {
3756 struct shmem_inode_info *info = foo;
3757 inode_init_once(&info->vfs_inode);
3758 }
3759
3760 static void shmem_init_inodecache(void)
3761 {
3762 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3763 sizeof(struct shmem_inode_info),
3764 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3765 }
3766
3767 static void shmem_destroy_inodecache(void)
3768 {
3769 kmem_cache_destroy(shmem_inode_cachep);
3770 }
3771
3772 static const struct address_space_operations shmem_aops = {
3773 .writepage = shmem_writepage,
3774 .set_page_dirty = __set_page_dirty_no_writeback,
3775 #ifdef CONFIG_TMPFS
3776 .write_begin = shmem_write_begin,
3777 .write_end = shmem_write_end,
3778 #endif
3779 #ifdef CONFIG_MIGRATION
3780 .migratepage = migrate_page,
3781 #endif
3782 .error_remove_page = generic_error_remove_page,
3783 };
3784
3785 static const struct file_operations shmem_file_operations = {
3786 .mmap = shmem_mmap,
3787 .get_unmapped_area = shmem_get_unmapped_area,
3788 #ifdef CONFIG_TMPFS
3789 .llseek = shmem_file_llseek,
3790 .read_iter = shmem_file_read_iter,
3791 .write_iter = generic_file_write_iter,
3792 .fsync = noop_fsync,
3793 .splice_read = generic_file_splice_read,
3794 .splice_write = iter_file_splice_write,
3795 .fallocate = shmem_fallocate,
3796 #endif
3797 };
3798
3799 static const struct inode_operations shmem_inode_operations = {
3800 .getattr = shmem_getattr,
3801 .setattr = shmem_setattr,
3802 #ifdef CONFIG_TMPFS_XATTR
3803 .listxattr = shmem_listxattr,
3804 .set_acl = simple_set_acl,
3805 #endif
3806 };
3807
3808 static const struct inode_operations shmem_dir_inode_operations = {
3809 #ifdef CONFIG_TMPFS
3810 .create = shmem_create,
3811 .lookup = simple_lookup,
3812 .link = shmem_link,
3813 .unlink = shmem_unlink,
3814 .symlink = shmem_symlink,
3815 .mkdir = shmem_mkdir,
3816 .rmdir = shmem_rmdir,
3817 .mknod = shmem_mknod,
3818 .rename = shmem_rename2,
3819 .tmpfile = shmem_tmpfile,
3820 #endif
3821 #ifdef CONFIG_TMPFS_XATTR
3822 .listxattr = shmem_listxattr,
3823 #endif
3824 #ifdef CONFIG_TMPFS_POSIX_ACL
3825 .setattr = shmem_setattr,
3826 .set_acl = simple_set_acl,
3827 #endif
3828 };
3829
3830 static const struct inode_operations shmem_special_inode_operations = {
3831 #ifdef CONFIG_TMPFS_XATTR
3832 .listxattr = shmem_listxattr,
3833 #endif
3834 #ifdef CONFIG_TMPFS_POSIX_ACL
3835 .setattr = shmem_setattr,
3836 .set_acl = simple_set_acl,
3837 #endif
3838 };
3839
3840 static const struct super_operations shmem_ops = {
3841 .alloc_inode = shmem_alloc_inode,
3842 .free_inode = shmem_free_in_core_inode,
3843 .destroy_inode = shmem_destroy_inode,
3844 #ifdef CONFIG_TMPFS
3845 .statfs = shmem_statfs,
3846 .show_options = shmem_show_options,
3847 #endif
3848 .evict_inode = shmem_evict_inode,
3849 .drop_inode = generic_delete_inode,
3850 .put_super = shmem_put_super,
3851 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3852 .nr_cached_objects = shmem_unused_huge_count,
3853 .free_cached_objects = shmem_unused_huge_scan,
3854 #endif
3855 };
3856
3857 static const struct vm_operations_struct shmem_vm_ops = {
3858 .fault = shmem_fault,
3859 .map_pages = filemap_map_pages,
3860 #ifdef CONFIG_NUMA
3861 .set_policy = shmem_set_policy,
3862 .get_policy = shmem_get_policy,
3863 #endif
3864 };
3865
3866 int shmem_init_fs_context(struct fs_context *fc)
3867 {
3868 struct shmem_options *ctx;
3869
3870 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3871 if (!ctx)
3872 return -ENOMEM;
3873
3874 ctx->mode = 0777 | S_ISVTX;
3875 ctx->uid = current_fsuid();
3876 ctx->gid = current_fsgid();
3877
3878 fc->fs_private = ctx;
3879 fc->ops = &shmem_fs_context_ops;
3880 return 0;
3881 }
3882
3883 static struct file_system_type shmem_fs_type = {
3884 .owner = THIS_MODULE,
3885 .name = "tmpfs",
3886 .init_fs_context = shmem_init_fs_context,
3887 #ifdef CONFIG_TMPFS
3888 .parameters = shmem_fs_parameters,
3889 #endif
3890 .kill_sb = kill_litter_super,
3891 .fs_flags = FS_USERNS_MOUNT,
3892 };
3893
3894 int __init shmem_init(void)
3895 {
3896 int error;
3897
3898 shmem_init_inodecache();
3899
3900 error = register_filesystem(&shmem_fs_type);
3901 if (error) {
3902 pr_err("Could not register tmpfs\n");
3903 goto out2;
3904 }
3905
3906 shm_mnt = kern_mount(&shmem_fs_type);
3907 if (IS_ERR(shm_mnt)) {
3908 error = PTR_ERR(shm_mnt);
3909 pr_err("Could not kern_mount tmpfs\n");
3910 goto out1;
3911 }
3912
3913 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3914 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3915 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3916 else
3917 shmem_huge = 0; /* just in case it was patched */
3918 #endif
3919 return 0;
3920
3921 out1:
3922 unregister_filesystem(&shmem_fs_type);
3923 out2:
3924 shmem_destroy_inodecache();
3925 shm_mnt = ERR_PTR(error);
3926 return error;
3927 }
3928
3929 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3930 static ssize_t shmem_enabled_show(struct kobject *kobj,
3931 struct kobj_attribute *attr, char *buf)
3932 {
3933 static const int values[] = {
3934 SHMEM_HUGE_ALWAYS,
3935 SHMEM_HUGE_WITHIN_SIZE,
3936 SHMEM_HUGE_ADVISE,
3937 SHMEM_HUGE_NEVER,
3938 SHMEM_HUGE_DENY,
3939 SHMEM_HUGE_FORCE,
3940 };
3941 int i, count;
3942
3943 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3944 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3945
3946 count += sprintf(buf + count, fmt,
3947 shmem_format_huge(values[i]));
3948 }
3949 buf[count - 1] = '\n';
3950 return count;
3951 }
3952
3953 static ssize_t shmem_enabled_store(struct kobject *kobj,
3954 struct kobj_attribute *attr, const char *buf, size_t count)
3955 {
3956 char tmp[16];
3957 int huge;
3958
3959 if (count + 1 > sizeof(tmp))
3960 return -EINVAL;
3961 memcpy(tmp, buf, count);
3962 tmp[count] = '\0';
3963 if (count && tmp[count - 1] == '\n')
3964 tmp[count - 1] = '\0';
3965
3966 huge = shmem_parse_huge(tmp);
3967 if (huge == -EINVAL)
3968 return -EINVAL;
3969 if (!has_transparent_hugepage() &&
3970 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3971 return -EINVAL;
3972
3973 shmem_huge = huge;
3974 if (shmem_huge > SHMEM_HUGE_DENY)
3975 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3976 return count;
3977 }
3978
3979 struct kobj_attribute shmem_enabled_attr =
3980 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3981 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3982
3983 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3984 bool shmem_huge_enabled(struct vm_area_struct *vma)
3985 {
3986 struct inode *inode = file_inode(vma->vm_file);
3987 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3988 loff_t i_size;
3989 pgoff_t off;
3990
3991 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3992 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3993 return false;
3994 if (shmem_huge == SHMEM_HUGE_FORCE)
3995 return true;
3996 if (shmem_huge == SHMEM_HUGE_DENY)
3997 return false;
3998 switch (sbinfo->huge) {
3999 case SHMEM_HUGE_NEVER:
4000 return false;
4001 case SHMEM_HUGE_ALWAYS:
4002 return true;
4003 case SHMEM_HUGE_WITHIN_SIZE:
4004 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4005 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4006 if (i_size >= HPAGE_PMD_SIZE &&
4007 i_size >> PAGE_SHIFT >= off)
4008 return true;
4009 /* fall through */
4010 case SHMEM_HUGE_ADVISE:
4011 /* TODO: implement fadvise() hints */
4012 return (vma->vm_flags & VM_HUGEPAGE);
4013 default:
4014 VM_BUG_ON(1);
4015 return false;
4016 }
4017 }
4018 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4019
4020 #else /* !CONFIG_SHMEM */
4021
4022 /*
4023 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4024 *
4025 * This is intended for small system where the benefits of the full
4026 * shmem code (swap-backed and resource-limited) are outweighed by
4027 * their complexity. On systems without swap this code should be
4028 * effectively equivalent, but much lighter weight.
4029 */
4030
4031 static struct file_system_type shmem_fs_type = {
4032 .name = "tmpfs",
4033 .init_fs_context = ramfs_init_fs_context,
4034 .parameters = ramfs_fs_parameters,
4035 .kill_sb = kill_litter_super,
4036 .fs_flags = FS_USERNS_MOUNT,
4037 };
4038
4039 int __init shmem_init(void)
4040 {
4041 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4042
4043 shm_mnt = kern_mount(&shmem_fs_type);
4044 BUG_ON(IS_ERR(shm_mnt));
4045
4046 return 0;
4047 }
4048
4049 int shmem_unuse(unsigned int type, bool frontswap,
4050 unsigned long *fs_pages_to_unuse)
4051 {
4052 return 0;
4053 }
4054
4055 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4056 {
4057 return 0;
4058 }
4059
4060 void shmem_unlock_mapping(struct address_space *mapping)
4061 {
4062 }
4063
4064 #ifdef CONFIG_MMU
4065 unsigned long shmem_get_unmapped_area(struct file *file,
4066 unsigned long addr, unsigned long len,
4067 unsigned long pgoff, unsigned long flags)
4068 {
4069 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4070 }
4071 #endif
4072
4073 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4074 {
4075 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4076 }
4077 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4078
4079 #define shmem_vm_ops generic_file_vm_ops
4080 #define shmem_file_operations ramfs_file_operations
4081 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4082 #define shmem_acct_size(flags, size) 0
4083 #define shmem_unacct_size(flags, size) do {} while (0)
4084
4085 #endif /* CONFIG_SHMEM */
4086
4087 /* common code */
4088
4089 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4090 unsigned long flags, unsigned int i_flags)
4091 {
4092 struct inode *inode;
4093 struct file *res;
4094
4095 if (IS_ERR(mnt))
4096 return ERR_CAST(mnt);
4097
4098 if (size < 0 || size > MAX_LFS_FILESIZE)
4099 return ERR_PTR(-EINVAL);
4100
4101 if (shmem_acct_size(flags, size))
4102 return ERR_PTR(-ENOMEM);
4103
4104 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4105 flags);
4106 if (unlikely(!inode)) {
4107 shmem_unacct_size(flags, size);
4108 return ERR_PTR(-ENOSPC);
4109 }
4110 inode->i_flags |= i_flags;
4111 inode->i_size = size;
4112 clear_nlink(inode); /* It is unlinked */
4113 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4114 if (!IS_ERR(res))
4115 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4116 &shmem_file_operations);
4117 if (IS_ERR(res))
4118 iput(inode);
4119 return res;
4120 }
4121
4122 /**
4123 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4124 * kernel internal. There will be NO LSM permission checks against the
4125 * underlying inode. So users of this interface must do LSM checks at a
4126 * higher layer. The users are the big_key and shm implementations. LSM
4127 * checks are provided at the key or shm level rather than the inode.
4128 * @name: name for dentry (to be seen in /proc/<pid>/maps
4129 * @size: size to be set for the file
4130 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4131 */
4132 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4133 {
4134 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4135 }
4136
4137 /**
4138 * shmem_file_setup - get an unlinked file living in tmpfs
4139 * @name: name for dentry (to be seen in /proc/<pid>/maps
4140 * @size: size to be set for the file
4141 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4142 */
4143 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4144 {
4145 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4146 }
4147 EXPORT_SYMBOL_GPL(shmem_file_setup);
4148
4149 /**
4150 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4151 * @mnt: the tmpfs mount where the file will be created
4152 * @name: name for dentry (to be seen in /proc/<pid>/maps
4153 * @size: size to be set for the file
4154 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4155 */
4156 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4157 loff_t size, unsigned long flags)
4158 {
4159 return __shmem_file_setup(mnt, name, size, flags, 0);
4160 }
4161 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4162
4163 /**
4164 * shmem_zero_setup - setup a shared anonymous mapping
4165 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4166 */
4167 int shmem_zero_setup(struct vm_area_struct *vma)
4168 {
4169 struct file *file;
4170 loff_t size = vma->vm_end - vma->vm_start;
4171
4172 /*
4173 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4174 * between XFS directory reading and selinux: since this file is only
4175 * accessible to the user through its mapping, use S_PRIVATE flag to
4176 * bypass file security, in the same way as shmem_kernel_file_setup().
4177 */
4178 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4179 if (IS_ERR(file))
4180 return PTR_ERR(file);
4181
4182 if (vma->vm_file)
4183 fput(vma->vm_file);
4184 vma->vm_file = file;
4185 vma->vm_ops = &shmem_vm_ops;
4186
4187 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4188 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4189 (vma->vm_end & HPAGE_PMD_MASK)) {
4190 khugepaged_enter(vma, vma->vm_flags);
4191 }
4192
4193 return 0;
4194 }
4195
4196 /**
4197 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4198 * @mapping: the page's address_space
4199 * @index: the page index
4200 * @gfp: the page allocator flags to use if allocating
4201 *
4202 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4203 * with any new page allocations done using the specified allocation flags.
4204 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4205 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4206 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4207 *
4208 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4209 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4210 */
4211 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4212 pgoff_t index, gfp_t gfp)
4213 {
4214 #ifdef CONFIG_SHMEM
4215 struct inode *inode = mapping->host;
4216 struct page *page;
4217 int error;
4218
4219 BUG_ON(mapping->a_ops != &shmem_aops);
4220 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4221 gfp, NULL, NULL, NULL);
4222 if (error)
4223 page = ERR_PTR(error);
4224 else
4225 unlock_page(page);
4226 return page;
4227 #else
4228 /*
4229 * The tiny !SHMEM case uses ramfs without swap
4230 */
4231 return read_cache_page_gfp(mapping, index, gfp);
4232 #endif
4233 }
4234 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);