]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/shmem.c
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
[mirror_ubuntu-jammy-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
50 */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82
83 #include <linux/uaccess.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_rwsem making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
100 */
101 struct shmem_falloc {
102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 pgoff_t start; /* start of range currently being fallocated */
104 pgoff_t next; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
107 };
108
109 struct shmem_options {
110 unsigned long long blocks;
111 unsigned long long inodes;
112 struct mempolicy *mpol;
113 kuid_t uid;
114 kgid_t gid;
115 umode_t mode;
116 bool full_inums;
117 int huge;
118 int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
140 struct page **pagep, enum sgp_type sgp,
141 gfp_t gfp, struct vm_area_struct *vma,
142 vm_fault_t *fault_type);
143 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 struct vm_fault *vmf, vm_fault_t *fault_type);
147
148 int shmem_getpage(struct inode *inode, pgoff_t index,
149 struct page **pagep, enum sgp_type sgp)
150 {
151 return shmem_getpage_gfp(inode, index, pagep, sgp,
152 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
153 }
154
155 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
156 {
157 return sb->s_fs_info;
158 }
159
160 /*
161 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
162 * for shared memory and for shared anonymous (/dev/zero) mappings
163 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
164 * consistent with the pre-accounting of private mappings ...
165 */
166 static inline int shmem_acct_size(unsigned long flags, loff_t size)
167 {
168 return (flags & VM_NORESERVE) ?
169 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
170 }
171
172 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
173 {
174 if (!(flags & VM_NORESERVE))
175 vm_unacct_memory(VM_ACCT(size));
176 }
177
178 static inline int shmem_reacct_size(unsigned long flags,
179 loff_t oldsize, loff_t newsize)
180 {
181 if (!(flags & VM_NORESERVE)) {
182 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
183 return security_vm_enough_memory_mm(current->mm,
184 VM_ACCT(newsize) - VM_ACCT(oldsize));
185 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
186 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
187 }
188 return 0;
189 }
190
191 /*
192 * ... whereas tmpfs objects are accounted incrementally as
193 * pages are allocated, in order to allow large sparse files.
194 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
195 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
196 */
197 static inline int shmem_acct_block(unsigned long flags, long pages)
198 {
199 if (!(flags & VM_NORESERVE))
200 return 0;
201
202 return security_vm_enough_memory_mm(current->mm,
203 pages * VM_ACCT(PAGE_SIZE));
204 }
205
206 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
207 {
208 if (flags & VM_NORESERVE)
209 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
210 }
211
212 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
213 {
214 struct shmem_inode_info *info = SHMEM_I(inode);
215 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
216
217 if (shmem_acct_block(info->flags, pages))
218 return false;
219
220 if (sbinfo->max_blocks) {
221 if (percpu_counter_compare(&sbinfo->used_blocks,
222 sbinfo->max_blocks - pages) > 0)
223 goto unacct;
224 percpu_counter_add(&sbinfo->used_blocks, pages);
225 }
226
227 return true;
228
229 unacct:
230 shmem_unacct_blocks(info->flags, pages);
231 return false;
232 }
233
234 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
235 {
236 struct shmem_inode_info *info = SHMEM_I(inode);
237 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
238
239 if (sbinfo->max_blocks)
240 percpu_counter_sub(&sbinfo->used_blocks, pages);
241 shmem_unacct_blocks(info->flags, pages);
242 }
243
244 static const struct super_operations shmem_ops;
245 const struct address_space_operations shmem_aops;
246 static const struct file_operations shmem_file_operations;
247 static const struct inode_operations shmem_inode_operations;
248 static const struct inode_operations shmem_dir_inode_operations;
249 static const struct inode_operations shmem_special_inode_operations;
250 static const struct vm_operations_struct shmem_vm_ops;
251 static struct file_system_type shmem_fs_type;
252
253 bool vma_is_shmem(struct vm_area_struct *vma)
254 {
255 return vma->vm_ops == &shmem_vm_ops;
256 }
257
258 static LIST_HEAD(shmem_swaplist);
259 static DEFINE_MUTEX(shmem_swaplist_mutex);
260
261 /*
262 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
263 * produces a novel ino for the newly allocated inode.
264 *
265 * It may also be called when making a hard link to permit the space needed by
266 * each dentry. However, in that case, no new inode number is needed since that
267 * internally draws from another pool of inode numbers (currently global
268 * get_next_ino()). This case is indicated by passing NULL as inop.
269 */
270 #define SHMEM_INO_BATCH 1024
271 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
272 {
273 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
274 ino_t ino;
275
276 if (!(sb->s_flags & SB_KERNMOUNT)) {
277 raw_spin_lock(&sbinfo->stat_lock);
278 if (sbinfo->max_inodes) {
279 if (!sbinfo->free_inodes) {
280 raw_spin_unlock(&sbinfo->stat_lock);
281 return -ENOSPC;
282 }
283 sbinfo->free_inodes--;
284 }
285 if (inop) {
286 ino = sbinfo->next_ino++;
287 if (unlikely(is_zero_ino(ino)))
288 ino = sbinfo->next_ino++;
289 if (unlikely(!sbinfo->full_inums &&
290 ino > UINT_MAX)) {
291 /*
292 * Emulate get_next_ino uint wraparound for
293 * compatibility
294 */
295 if (IS_ENABLED(CONFIG_64BIT))
296 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
297 __func__, MINOR(sb->s_dev));
298 sbinfo->next_ino = 1;
299 ino = sbinfo->next_ino++;
300 }
301 *inop = ino;
302 }
303 raw_spin_unlock(&sbinfo->stat_lock);
304 } else if (inop) {
305 /*
306 * __shmem_file_setup, one of our callers, is lock-free: it
307 * doesn't hold stat_lock in shmem_reserve_inode since
308 * max_inodes is always 0, and is called from potentially
309 * unknown contexts. As such, use a per-cpu batched allocator
310 * which doesn't require the per-sb stat_lock unless we are at
311 * the batch boundary.
312 *
313 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
314 * shmem mounts are not exposed to userspace, so we don't need
315 * to worry about things like glibc compatibility.
316 */
317 ino_t *next_ino;
318
319 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
320 ino = *next_ino;
321 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
322 raw_spin_lock(&sbinfo->stat_lock);
323 ino = sbinfo->next_ino;
324 sbinfo->next_ino += SHMEM_INO_BATCH;
325 raw_spin_unlock(&sbinfo->stat_lock);
326 if (unlikely(is_zero_ino(ino)))
327 ino++;
328 }
329 *inop = ino;
330 *next_ino = ++ino;
331 put_cpu();
332 }
333
334 return 0;
335 }
336
337 static void shmem_free_inode(struct super_block *sb)
338 {
339 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
340 if (sbinfo->max_inodes) {
341 raw_spin_lock(&sbinfo->stat_lock);
342 sbinfo->free_inodes++;
343 raw_spin_unlock(&sbinfo->stat_lock);
344 }
345 }
346
347 /**
348 * shmem_recalc_inode - recalculate the block usage of an inode
349 * @inode: inode to recalc
350 *
351 * We have to calculate the free blocks since the mm can drop
352 * undirtied hole pages behind our back.
353 *
354 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
355 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
356 *
357 * It has to be called with the spinlock held.
358 */
359 static void shmem_recalc_inode(struct inode *inode)
360 {
361 struct shmem_inode_info *info = SHMEM_I(inode);
362 long freed;
363
364 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
365 if (freed > 0) {
366 info->alloced -= freed;
367 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
368 shmem_inode_unacct_blocks(inode, freed);
369 }
370 }
371
372 bool shmem_charge(struct inode *inode, long pages)
373 {
374 struct shmem_inode_info *info = SHMEM_I(inode);
375 unsigned long flags;
376
377 if (!shmem_inode_acct_block(inode, pages))
378 return false;
379
380 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
381 inode->i_mapping->nrpages += pages;
382
383 spin_lock_irqsave(&info->lock, flags);
384 info->alloced += pages;
385 inode->i_blocks += pages * BLOCKS_PER_PAGE;
386 shmem_recalc_inode(inode);
387 spin_unlock_irqrestore(&info->lock, flags);
388
389 return true;
390 }
391
392 void shmem_uncharge(struct inode *inode, long pages)
393 {
394 struct shmem_inode_info *info = SHMEM_I(inode);
395 unsigned long flags;
396
397 /* nrpages adjustment done by __delete_from_page_cache() or caller */
398
399 spin_lock_irqsave(&info->lock, flags);
400 info->alloced -= pages;
401 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
402 shmem_recalc_inode(inode);
403 spin_unlock_irqrestore(&info->lock, flags);
404
405 shmem_inode_unacct_blocks(inode, pages);
406 }
407
408 /*
409 * Replace item expected in xarray by a new item, while holding xa_lock.
410 */
411 static int shmem_replace_entry(struct address_space *mapping,
412 pgoff_t index, void *expected, void *replacement)
413 {
414 XA_STATE(xas, &mapping->i_pages, index);
415 void *item;
416
417 VM_BUG_ON(!expected);
418 VM_BUG_ON(!replacement);
419 item = xas_load(&xas);
420 if (item != expected)
421 return -ENOENT;
422 xas_store(&xas, replacement);
423 return 0;
424 }
425
426 /*
427 * Sometimes, before we decide whether to proceed or to fail, we must check
428 * that an entry was not already brought back from swap by a racing thread.
429 *
430 * Checking page is not enough: by the time a SwapCache page is locked, it
431 * might be reused, and again be SwapCache, using the same swap as before.
432 */
433 static bool shmem_confirm_swap(struct address_space *mapping,
434 pgoff_t index, swp_entry_t swap)
435 {
436 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
437 }
438
439 /*
440 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441 *
442 * SHMEM_HUGE_NEVER:
443 * disables huge pages for the mount;
444 * SHMEM_HUGE_ALWAYS:
445 * enables huge pages for the mount;
446 * SHMEM_HUGE_WITHIN_SIZE:
447 * only allocate huge pages if the page will be fully within i_size,
448 * also respect fadvise()/madvise() hints;
449 * SHMEM_HUGE_ADVISE:
450 * only allocate huge pages if requested with fadvise()/madvise();
451 */
452
453 #define SHMEM_HUGE_NEVER 0
454 #define SHMEM_HUGE_ALWAYS 1
455 #define SHMEM_HUGE_WITHIN_SIZE 2
456 #define SHMEM_HUGE_ADVISE 3
457
458 /*
459 * Special values.
460 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461 *
462 * SHMEM_HUGE_DENY:
463 * disables huge on shm_mnt and all mounts, for emergency use;
464 * SHMEM_HUGE_FORCE:
465 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466 *
467 */
468 #define SHMEM_HUGE_DENY (-1)
469 #define SHMEM_HUGE_FORCE (-2)
470
471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
472 /* ifdef here to avoid bloating shmem.o when not necessary */
473
474 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
475
476 bool shmem_is_huge(struct vm_area_struct *vma,
477 struct inode *inode, pgoff_t index)
478 {
479 loff_t i_size;
480
481 if (shmem_huge == SHMEM_HUGE_DENY)
482 return false;
483 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485 return false;
486 if (shmem_huge == SHMEM_HUGE_FORCE)
487 return true;
488
489 switch (SHMEM_SB(inode->i_sb)->huge) {
490 case SHMEM_HUGE_ALWAYS:
491 return true;
492 case SHMEM_HUGE_WITHIN_SIZE:
493 index = round_up(index + 1, HPAGE_PMD_NR);
494 i_size = round_up(i_size_read(inode), PAGE_SIZE);
495 if (i_size >> PAGE_SHIFT >= index)
496 return true;
497 fallthrough;
498 case SHMEM_HUGE_ADVISE:
499 if (vma && (vma->vm_flags & VM_HUGEPAGE))
500 return true;
501 fallthrough;
502 default:
503 return false;
504 }
505 }
506
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
509 {
510 if (!strcmp(str, "never"))
511 return SHMEM_HUGE_NEVER;
512 if (!strcmp(str, "always"))
513 return SHMEM_HUGE_ALWAYS;
514 if (!strcmp(str, "within_size"))
515 return SHMEM_HUGE_WITHIN_SIZE;
516 if (!strcmp(str, "advise"))
517 return SHMEM_HUGE_ADVISE;
518 if (!strcmp(str, "deny"))
519 return SHMEM_HUGE_DENY;
520 if (!strcmp(str, "force"))
521 return SHMEM_HUGE_FORCE;
522 return -EINVAL;
523 }
524 #endif
525
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
528 {
529 switch (huge) {
530 case SHMEM_HUGE_NEVER:
531 return "never";
532 case SHMEM_HUGE_ALWAYS:
533 return "always";
534 case SHMEM_HUGE_WITHIN_SIZE:
535 return "within_size";
536 case SHMEM_HUGE_ADVISE:
537 return "advise";
538 case SHMEM_HUGE_DENY:
539 return "deny";
540 case SHMEM_HUGE_FORCE:
541 return "force";
542 default:
543 VM_BUG_ON(1);
544 return "bad_val";
545 }
546 }
547 #endif
548
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 struct shrink_control *sc, unsigned long nr_to_split)
551 {
552 LIST_HEAD(list), *pos, *next;
553 LIST_HEAD(to_remove);
554 struct inode *inode;
555 struct shmem_inode_info *info;
556 struct page *page;
557 unsigned long batch = sc ? sc->nr_to_scan : 128;
558 int split = 0;
559
560 if (list_empty(&sbinfo->shrinklist))
561 return SHRINK_STOP;
562
563 spin_lock(&sbinfo->shrinklist_lock);
564 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566
567 /* pin the inode */
568 inode = igrab(&info->vfs_inode);
569
570 /* inode is about to be evicted */
571 if (!inode) {
572 list_del_init(&info->shrinklist);
573 goto next;
574 }
575
576 /* Check if there's anything to gain */
577 if (round_up(inode->i_size, PAGE_SIZE) ==
578 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 list_move(&info->shrinklist, &to_remove);
580 goto next;
581 }
582
583 list_move(&info->shrinklist, &list);
584 next:
585 sbinfo->shrinklist_len--;
586 if (!--batch)
587 break;
588 }
589 spin_unlock(&sbinfo->shrinklist_lock);
590
591 list_for_each_safe(pos, next, &to_remove) {
592 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 inode = &info->vfs_inode;
594 list_del_init(&info->shrinklist);
595 iput(inode);
596 }
597
598 list_for_each_safe(pos, next, &list) {
599 int ret;
600
601 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 inode = &info->vfs_inode;
603
604 if (nr_to_split && split >= nr_to_split)
605 goto move_back;
606
607 page = find_get_page(inode->i_mapping,
608 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609 if (!page)
610 goto drop;
611
612 /* No huge page at the end of the file: nothing to split */
613 if (!PageTransHuge(page)) {
614 put_page(page);
615 goto drop;
616 }
617
618 /*
619 * Move the inode on the list back to shrinklist if we failed
620 * to lock the page at this time.
621 *
622 * Waiting for the lock may lead to deadlock in the
623 * reclaim path.
624 */
625 if (!trylock_page(page)) {
626 put_page(page);
627 goto move_back;
628 }
629
630 ret = split_huge_page(page);
631 unlock_page(page);
632 put_page(page);
633
634 /* If split failed move the inode on the list back to shrinklist */
635 if (ret)
636 goto move_back;
637
638 split++;
639 drop:
640 list_del_init(&info->shrinklist);
641 goto put;
642 move_back:
643 /*
644 * Make sure the inode is either on the global list or deleted
645 * from any local list before iput() since it could be deleted
646 * in another thread once we put the inode (then the local list
647 * is corrupted).
648 */
649 spin_lock(&sbinfo->shrinklist_lock);
650 list_move(&info->shrinklist, &sbinfo->shrinklist);
651 sbinfo->shrinklist_len++;
652 spin_unlock(&sbinfo->shrinklist_lock);
653 put:
654 iput(inode);
655 }
656
657 return split;
658 }
659
660 static long shmem_unused_huge_scan(struct super_block *sb,
661 struct shrink_control *sc)
662 {
663 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
664
665 if (!READ_ONCE(sbinfo->shrinklist_len))
666 return SHRINK_STOP;
667
668 return shmem_unused_huge_shrink(sbinfo, sc, 0);
669 }
670
671 static long shmem_unused_huge_count(struct super_block *sb,
672 struct shrink_control *sc)
673 {
674 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
675 return READ_ONCE(sbinfo->shrinklist_len);
676 }
677 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
678
679 #define shmem_huge SHMEM_HUGE_DENY
680
681 bool shmem_is_huge(struct vm_area_struct *vma,
682 struct inode *inode, pgoff_t index)
683 {
684 return false;
685 }
686
687 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
688 struct shrink_control *sc, unsigned long nr_to_split)
689 {
690 return 0;
691 }
692 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
693
694 /*
695 * Like add_to_page_cache_locked, but error if expected item has gone.
696 */
697 static int shmem_add_to_page_cache(struct page *page,
698 struct address_space *mapping,
699 pgoff_t index, void *expected, gfp_t gfp,
700 struct mm_struct *charge_mm)
701 {
702 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
703 unsigned long i = 0;
704 unsigned long nr = compound_nr(page);
705 int error;
706
707 VM_BUG_ON_PAGE(PageTail(page), page);
708 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
709 VM_BUG_ON_PAGE(!PageLocked(page), page);
710 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
711 VM_BUG_ON(expected && PageTransHuge(page));
712
713 page_ref_add(page, nr);
714 page->mapping = mapping;
715 page->index = index;
716
717 if (!PageSwapCache(page)) {
718 error = mem_cgroup_charge(page, charge_mm, gfp);
719 if (error) {
720 if (PageTransHuge(page)) {
721 count_vm_event(THP_FILE_FALLBACK);
722 count_vm_event(THP_FILE_FALLBACK_CHARGE);
723 }
724 goto error;
725 }
726 }
727 cgroup_throttle_swaprate(page, gfp);
728
729 do {
730 void *entry;
731 xas_lock_irq(&xas);
732 entry = xas_find_conflict(&xas);
733 if (entry != expected)
734 xas_set_err(&xas, -EEXIST);
735 xas_create_range(&xas);
736 if (xas_error(&xas))
737 goto unlock;
738 next:
739 xas_store(&xas, page);
740 if (++i < nr) {
741 xas_next(&xas);
742 goto next;
743 }
744 if (PageTransHuge(page)) {
745 count_vm_event(THP_FILE_ALLOC);
746 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
747 }
748 mapping->nrpages += nr;
749 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
750 __mod_lruvec_page_state(page, NR_SHMEM, nr);
751 unlock:
752 xas_unlock_irq(&xas);
753 } while (xas_nomem(&xas, gfp));
754
755 if (xas_error(&xas)) {
756 error = xas_error(&xas);
757 goto error;
758 }
759
760 return 0;
761 error:
762 page->mapping = NULL;
763 page_ref_sub(page, nr);
764 return error;
765 }
766
767 /*
768 * Like delete_from_page_cache, but substitutes swap for page.
769 */
770 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
771 {
772 struct address_space *mapping = page->mapping;
773 int error;
774
775 VM_BUG_ON_PAGE(PageCompound(page), page);
776
777 xa_lock_irq(&mapping->i_pages);
778 error = shmem_replace_entry(mapping, page->index, page, radswap);
779 page->mapping = NULL;
780 mapping->nrpages--;
781 __dec_lruvec_page_state(page, NR_FILE_PAGES);
782 __dec_lruvec_page_state(page, NR_SHMEM);
783 xa_unlock_irq(&mapping->i_pages);
784 put_page(page);
785 BUG_ON(error);
786 }
787
788 /*
789 * Remove swap entry from page cache, free the swap and its page cache.
790 */
791 static int shmem_free_swap(struct address_space *mapping,
792 pgoff_t index, void *radswap)
793 {
794 void *old;
795
796 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
797 if (old != radswap)
798 return -ENOENT;
799 free_swap_and_cache(radix_to_swp_entry(radswap));
800 return 0;
801 }
802
803 /*
804 * Determine (in bytes) how many of the shmem object's pages mapped by the
805 * given offsets are swapped out.
806 *
807 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
808 * as long as the inode doesn't go away and racy results are not a problem.
809 */
810 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
811 pgoff_t start, pgoff_t end)
812 {
813 XA_STATE(xas, &mapping->i_pages, start);
814 struct page *page;
815 unsigned long swapped = 0;
816
817 rcu_read_lock();
818 xas_for_each(&xas, page, end - 1) {
819 if (xas_retry(&xas, page))
820 continue;
821 if (xa_is_value(page))
822 swapped++;
823
824 if (need_resched()) {
825 xas_pause(&xas);
826 cond_resched_rcu();
827 }
828 }
829
830 rcu_read_unlock();
831
832 return swapped << PAGE_SHIFT;
833 }
834
835 /*
836 * Determine (in bytes) how many of the shmem object's pages mapped by the
837 * given vma is swapped out.
838 *
839 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
840 * as long as the inode doesn't go away and racy results are not a problem.
841 */
842 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
843 {
844 struct inode *inode = file_inode(vma->vm_file);
845 struct shmem_inode_info *info = SHMEM_I(inode);
846 struct address_space *mapping = inode->i_mapping;
847 unsigned long swapped;
848
849 /* Be careful as we don't hold info->lock */
850 swapped = READ_ONCE(info->swapped);
851
852 /*
853 * The easier cases are when the shmem object has nothing in swap, or
854 * the vma maps it whole. Then we can simply use the stats that we
855 * already track.
856 */
857 if (!swapped)
858 return 0;
859
860 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
861 return swapped << PAGE_SHIFT;
862
863 /* Here comes the more involved part */
864 return shmem_partial_swap_usage(mapping,
865 linear_page_index(vma, vma->vm_start),
866 linear_page_index(vma, vma->vm_end));
867 }
868
869 /*
870 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
871 */
872 void shmem_unlock_mapping(struct address_space *mapping)
873 {
874 struct pagevec pvec;
875 pgoff_t index = 0;
876
877 pagevec_init(&pvec);
878 /*
879 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
880 */
881 while (!mapping_unevictable(mapping)) {
882 if (!pagevec_lookup(&pvec, mapping, &index))
883 break;
884 check_move_unevictable_pages(&pvec);
885 pagevec_release(&pvec);
886 cond_resched();
887 }
888 }
889
890 /*
891 * Check whether a hole-punch or truncation needs to split a huge page,
892 * returning true if no split was required, or the split has been successful.
893 *
894 * Eviction (or truncation to 0 size) should never need to split a huge page;
895 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
896 * head, and then succeeded to trylock on tail.
897 *
898 * A split can only succeed when there are no additional references on the
899 * huge page: so the split below relies upon find_get_entries() having stopped
900 * when it found a subpage of the huge page, without getting further references.
901 */
902 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
903 {
904 if (!PageTransCompound(page))
905 return true;
906
907 /* Just proceed to delete a huge page wholly within the range punched */
908 if (PageHead(page) &&
909 page->index >= start && page->index + HPAGE_PMD_NR <= end)
910 return true;
911
912 /* Try to split huge page, so we can truly punch the hole or truncate */
913 return split_huge_page(page) >= 0;
914 }
915
916 /*
917 * Remove range of pages and swap entries from page cache, and free them.
918 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
919 */
920 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
921 bool unfalloc)
922 {
923 struct address_space *mapping = inode->i_mapping;
924 struct shmem_inode_info *info = SHMEM_I(inode);
925 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
926 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
927 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
928 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
929 struct pagevec pvec;
930 pgoff_t indices[PAGEVEC_SIZE];
931 long nr_swaps_freed = 0;
932 pgoff_t index;
933 int i;
934
935 if (lend == -1)
936 end = -1; /* unsigned, so actually very big */
937
938 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
939 info->fallocend = start;
940
941 pagevec_init(&pvec);
942 index = start;
943 while (index < end && find_lock_entries(mapping, index, end - 1,
944 &pvec, indices)) {
945 for (i = 0; i < pagevec_count(&pvec); i++) {
946 struct page *page = pvec.pages[i];
947
948 index = indices[i];
949
950 if (xa_is_value(page)) {
951 if (unfalloc)
952 continue;
953 nr_swaps_freed += !shmem_free_swap(mapping,
954 index, page);
955 continue;
956 }
957 index += thp_nr_pages(page) - 1;
958
959 if (!unfalloc || !PageUptodate(page))
960 truncate_inode_page(mapping, page);
961 unlock_page(page);
962 }
963 pagevec_remove_exceptionals(&pvec);
964 pagevec_release(&pvec);
965 cond_resched();
966 index++;
967 }
968
969 if (partial_start) {
970 struct page *page = NULL;
971 shmem_getpage(inode, start - 1, &page, SGP_READ);
972 if (page) {
973 unsigned int top = PAGE_SIZE;
974 if (start > end) {
975 top = partial_end;
976 partial_end = 0;
977 }
978 zero_user_segment(page, partial_start, top);
979 set_page_dirty(page);
980 unlock_page(page);
981 put_page(page);
982 }
983 }
984 if (partial_end) {
985 struct page *page = NULL;
986 shmem_getpage(inode, end, &page, SGP_READ);
987 if (page) {
988 zero_user_segment(page, 0, partial_end);
989 set_page_dirty(page);
990 unlock_page(page);
991 put_page(page);
992 }
993 }
994 if (start >= end)
995 return;
996
997 index = start;
998 while (index < end) {
999 cond_resched();
1000
1001 if (!find_get_entries(mapping, index, end - 1, &pvec,
1002 indices)) {
1003 /* If all gone or hole-punch or unfalloc, we're done */
1004 if (index == start || end != -1)
1005 break;
1006 /* But if truncating, restart to make sure all gone */
1007 index = start;
1008 continue;
1009 }
1010 for (i = 0; i < pagevec_count(&pvec); i++) {
1011 struct page *page = pvec.pages[i];
1012
1013 index = indices[i];
1014 if (xa_is_value(page)) {
1015 if (unfalloc)
1016 continue;
1017 if (shmem_free_swap(mapping, index, page)) {
1018 /* Swap was replaced by page: retry */
1019 index--;
1020 break;
1021 }
1022 nr_swaps_freed++;
1023 continue;
1024 }
1025
1026 lock_page(page);
1027
1028 if (!unfalloc || !PageUptodate(page)) {
1029 if (page_mapping(page) != mapping) {
1030 /* Page was replaced by swap: retry */
1031 unlock_page(page);
1032 index--;
1033 break;
1034 }
1035 VM_BUG_ON_PAGE(PageWriteback(page), page);
1036 if (shmem_punch_compound(page, start, end))
1037 truncate_inode_page(mapping, page);
1038 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1039 /* Wipe the page and don't get stuck */
1040 clear_highpage(page);
1041 flush_dcache_page(page);
1042 set_page_dirty(page);
1043 if (index <
1044 round_up(start, HPAGE_PMD_NR))
1045 start = index + 1;
1046 }
1047 }
1048 unlock_page(page);
1049 }
1050 pagevec_remove_exceptionals(&pvec);
1051 pagevec_release(&pvec);
1052 index++;
1053 }
1054
1055 spin_lock_irq(&info->lock);
1056 info->swapped -= nr_swaps_freed;
1057 shmem_recalc_inode(inode);
1058 spin_unlock_irq(&info->lock);
1059 }
1060
1061 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1062 {
1063 shmem_undo_range(inode, lstart, lend, false);
1064 inode->i_ctime = inode->i_mtime = current_time(inode);
1065 }
1066 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1067
1068 static int shmem_getattr(struct user_namespace *mnt_userns,
1069 const struct path *path, struct kstat *stat,
1070 u32 request_mask, unsigned int query_flags)
1071 {
1072 struct inode *inode = path->dentry->d_inode;
1073 struct shmem_inode_info *info = SHMEM_I(inode);
1074
1075 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1076 spin_lock_irq(&info->lock);
1077 shmem_recalc_inode(inode);
1078 spin_unlock_irq(&info->lock);
1079 }
1080 generic_fillattr(&init_user_ns, inode, stat);
1081
1082 if (shmem_is_huge(NULL, inode, 0))
1083 stat->blksize = HPAGE_PMD_SIZE;
1084
1085 return 0;
1086 }
1087
1088 static int shmem_setattr(struct user_namespace *mnt_userns,
1089 struct dentry *dentry, struct iattr *attr)
1090 {
1091 struct inode *inode = d_inode(dentry);
1092 struct shmem_inode_info *info = SHMEM_I(inode);
1093 int error;
1094
1095 error = setattr_prepare(&init_user_ns, dentry, attr);
1096 if (error)
1097 return error;
1098
1099 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1100 loff_t oldsize = inode->i_size;
1101 loff_t newsize = attr->ia_size;
1102
1103 /* protected by i_rwsem */
1104 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1105 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1106 return -EPERM;
1107
1108 if (newsize != oldsize) {
1109 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1110 oldsize, newsize);
1111 if (error)
1112 return error;
1113 i_size_write(inode, newsize);
1114 inode->i_ctime = inode->i_mtime = current_time(inode);
1115 }
1116 if (newsize <= oldsize) {
1117 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1118 if (oldsize > holebegin)
1119 unmap_mapping_range(inode->i_mapping,
1120 holebegin, 0, 1);
1121 if (info->alloced)
1122 shmem_truncate_range(inode,
1123 newsize, (loff_t)-1);
1124 /* unmap again to remove racily COWed private pages */
1125 if (oldsize > holebegin)
1126 unmap_mapping_range(inode->i_mapping,
1127 holebegin, 0, 1);
1128 }
1129 }
1130
1131 setattr_copy(&init_user_ns, inode, attr);
1132 if (attr->ia_valid & ATTR_MODE)
1133 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1134 return error;
1135 }
1136
1137 static void shmem_evict_inode(struct inode *inode)
1138 {
1139 struct shmem_inode_info *info = SHMEM_I(inode);
1140 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1141
1142 if (shmem_mapping(inode->i_mapping)) {
1143 shmem_unacct_size(info->flags, inode->i_size);
1144 inode->i_size = 0;
1145 shmem_truncate_range(inode, 0, (loff_t)-1);
1146 if (!list_empty(&info->shrinklist)) {
1147 spin_lock(&sbinfo->shrinklist_lock);
1148 if (!list_empty(&info->shrinklist)) {
1149 list_del_init(&info->shrinklist);
1150 sbinfo->shrinklist_len--;
1151 }
1152 spin_unlock(&sbinfo->shrinklist_lock);
1153 }
1154 while (!list_empty(&info->swaplist)) {
1155 /* Wait while shmem_unuse() is scanning this inode... */
1156 wait_var_event(&info->stop_eviction,
1157 !atomic_read(&info->stop_eviction));
1158 mutex_lock(&shmem_swaplist_mutex);
1159 /* ...but beware of the race if we peeked too early */
1160 if (!atomic_read(&info->stop_eviction))
1161 list_del_init(&info->swaplist);
1162 mutex_unlock(&shmem_swaplist_mutex);
1163 }
1164 }
1165
1166 simple_xattrs_free(&info->xattrs);
1167 WARN_ON(inode->i_blocks);
1168 shmem_free_inode(inode->i_sb);
1169 clear_inode(inode);
1170 }
1171
1172 static int shmem_find_swap_entries(struct address_space *mapping,
1173 pgoff_t start, unsigned int nr_entries,
1174 struct page **entries, pgoff_t *indices,
1175 unsigned int type, bool frontswap)
1176 {
1177 XA_STATE(xas, &mapping->i_pages, start);
1178 struct page *page;
1179 swp_entry_t entry;
1180 unsigned int ret = 0;
1181
1182 if (!nr_entries)
1183 return 0;
1184
1185 rcu_read_lock();
1186 xas_for_each(&xas, page, ULONG_MAX) {
1187 if (xas_retry(&xas, page))
1188 continue;
1189
1190 if (!xa_is_value(page))
1191 continue;
1192
1193 entry = radix_to_swp_entry(page);
1194 if (swp_type(entry) != type)
1195 continue;
1196 if (frontswap &&
1197 !frontswap_test(swap_info[type], swp_offset(entry)))
1198 continue;
1199
1200 indices[ret] = xas.xa_index;
1201 entries[ret] = page;
1202
1203 if (need_resched()) {
1204 xas_pause(&xas);
1205 cond_resched_rcu();
1206 }
1207 if (++ret == nr_entries)
1208 break;
1209 }
1210 rcu_read_unlock();
1211
1212 return ret;
1213 }
1214
1215 /*
1216 * Move the swapped pages for an inode to page cache. Returns the count
1217 * of pages swapped in, or the error in case of failure.
1218 */
1219 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1220 pgoff_t *indices)
1221 {
1222 int i = 0;
1223 int ret = 0;
1224 int error = 0;
1225 struct address_space *mapping = inode->i_mapping;
1226
1227 for (i = 0; i < pvec.nr; i++) {
1228 struct page *page = pvec.pages[i];
1229
1230 if (!xa_is_value(page))
1231 continue;
1232 error = shmem_swapin_page(inode, indices[i],
1233 &page, SGP_CACHE,
1234 mapping_gfp_mask(mapping),
1235 NULL, NULL);
1236 if (error == 0) {
1237 unlock_page(page);
1238 put_page(page);
1239 ret++;
1240 }
1241 if (error == -ENOMEM)
1242 break;
1243 error = 0;
1244 }
1245 return error ? error : ret;
1246 }
1247
1248 /*
1249 * If swap found in inode, free it and move page from swapcache to filecache.
1250 */
1251 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1252 bool frontswap, unsigned long *fs_pages_to_unuse)
1253 {
1254 struct address_space *mapping = inode->i_mapping;
1255 pgoff_t start = 0;
1256 struct pagevec pvec;
1257 pgoff_t indices[PAGEVEC_SIZE];
1258 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1259 int ret = 0;
1260
1261 pagevec_init(&pvec);
1262 do {
1263 unsigned int nr_entries = PAGEVEC_SIZE;
1264
1265 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1266 nr_entries = *fs_pages_to_unuse;
1267
1268 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1269 pvec.pages, indices,
1270 type, frontswap);
1271 if (pvec.nr == 0) {
1272 ret = 0;
1273 break;
1274 }
1275
1276 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1277 if (ret < 0)
1278 break;
1279
1280 if (frontswap_partial) {
1281 *fs_pages_to_unuse -= ret;
1282 if (*fs_pages_to_unuse == 0) {
1283 ret = FRONTSWAP_PAGES_UNUSED;
1284 break;
1285 }
1286 }
1287
1288 start = indices[pvec.nr - 1];
1289 } while (true);
1290
1291 return ret;
1292 }
1293
1294 /*
1295 * Read all the shared memory data that resides in the swap
1296 * device 'type' back into memory, so the swap device can be
1297 * unused.
1298 */
1299 int shmem_unuse(unsigned int type, bool frontswap,
1300 unsigned long *fs_pages_to_unuse)
1301 {
1302 struct shmem_inode_info *info, *next;
1303 int error = 0;
1304
1305 if (list_empty(&shmem_swaplist))
1306 return 0;
1307
1308 mutex_lock(&shmem_swaplist_mutex);
1309 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1310 if (!info->swapped) {
1311 list_del_init(&info->swaplist);
1312 continue;
1313 }
1314 /*
1315 * Drop the swaplist mutex while searching the inode for swap;
1316 * but before doing so, make sure shmem_evict_inode() will not
1317 * remove placeholder inode from swaplist, nor let it be freed
1318 * (igrab() would protect from unlink, but not from unmount).
1319 */
1320 atomic_inc(&info->stop_eviction);
1321 mutex_unlock(&shmem_swaplist_mutex);
1322
1323 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1324 fs_pages_to_unuse);
1325 cond_resched();
1326
1327 mutex_lock(&shmem_swaplist_mutex);
1328 next = list_next_entry(info, swaplist);
1329 if (!info->swapped)
1330 list_del_init(&info->swaplist);
1331 if (atomic_dec_and_test(&info->stop_eviction))
1332 wake_up_var(&info->stop_eviction);
1333 if (error)
1334 break;
1335 }
1336 mutex_unlock(&shmem_swaplist_mutex);
1337
1338 return error;
1339 }
1340
1341 /*
1342 * Move the page from the page cache to the swap cache.
1343 */
1344 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1345 {
1346 struct shmem_inode_info *info;
1347 struct address_space *mapping;
1348 struct inode *inode;
1349 swp_entry_t swap;
1350 pgoff_t index;
1351
1352 /*
1353 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1354 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1355 * and its shmem_writeback() needs them to be split when swapping.
1356 */
1357 if (PageTransCompound(page)) {
1358 /* Ensure the subpages are still dirty */
1359 SetPageDirty(page);
1360 if (split_huge_page(page) < 0)
1361 goto redirty;
1362 ClearPageDirty(page);
1363 }
1364
1365 BUG_ON(!PageLocked(page));
1366 mapping = page->mapping;
1367 index = page->index;
1368 inode = mapping->host;
1369 info = SHMEM_I(inode);
1370 if (info->flags & VM_LOCKED)
1371 goto redirty;
1372 if (!total_swap_pages)
1373 goto redirty;
1374
1375 /*
1376 * Our capabilities prevent regular writeback or sync from ever calling
1377 * shmem_writepage; but a stacking filesystem might use ->writepage of
1378 * its underlying filesystem, in which case tmpfs should write out to
1379 * swap only in response to memory pressure, and not for the writeback
1380 * threads or sync.
1381 */
1382 if (!wbc->for_reclaim) {
1383 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1384 goto redirty;
1385 }
1386
1387 /*
1388 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1389 * value into swapfile.c, the only way we can correctly account for a
1390 * fallocated page arriving here is now to initialize it and write it.
1391 *
1392 * That's okay for a page already fallocated earlier, but if we have
1393 * not yet completed the fallocation, then (a) we want to keep track
1394 * of this page in case we have to undo it, and (b) it may not be a
1395 * good idea to continue anyway, once we're pushing into swap. So
1396 * reactivate the page, and let shmem_fallocate() quit when too many.
1397 */
1398 if (!PageUptodate(page)) {
1399 if (inode->i_private) {
1400 struct shmem_falloc *shmem_falloc;
1401 spin_lock(&inode->i_lock);
1402 shmem_falloc = inode->i_private;
1403 if (shmem_falloc &&
1404 !shmem_falloc->waitq &&
1405 index >= shmem_falloc->start &&
1406 index < shmem_falloc->next)
1407 shmem_falloc->nr_unswapped++;
1408 else
1409 shmem_falloc = NULL;
1410 spin_unlock(&inode->i_lock);
1411 if (shmem_falloc)
1412 goto redirty;
1413 }
1414 clear_highpage(page);
1415 flush_dcache_page(page);
1416 SetPageUptodate(page);
1417 }
1418
1419 swap = get_swap_page(page);
1420 if (!swap.val)
1421 goto redirty;
1422
1423 /*
1424 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1425 * if it's not already there. Do it now before the page is
1426 * moved to swap cache, when its pagelock no longer protects
1427 * the inode from eviction. But don't unlock the mutex until
1428 * we've incremented swapped, because shmem_unuse_inode() will
1429 * prune a !swapped inode from the swaplist under this mutex.
1430 */
1431 mutex_lock(&shmem_swaplist_mutex);
1432 if (list_empty(&info->swaplist))
1433 list_add(&info->swaplist, &shmem_swaplist);
1434
1435 if (add_to_swap_cache(page, swap,
1436 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1437 NULL) == 0) {
1438 spin_lock_irq(&info->lock);
1439 shmem_recalc_inode(inode);
1440 info->swapped++;
1441 spin_unlock_irq(&info->lock);
1442
1443 swap_shmem_alloc(swap);
1444 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1445
1446 mutex_unlock(&shmem_swaplist_mutex);
1447 BUG_ON(page_mapped(page));
1448 swap_writepage(page, wbc);
1449 return 0;
1450 }
1451
1452 mutex_unlock(&shmem_swaplist_mutex);
1453 put_swap_page(page, swap);
1454 redirty:
1455 set_page_dirty(page);
1456 if (wbc->for_reclaim)
1457 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1458 unlock_page(page);
1459 return 0;
1460 }
1461
1462 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1463 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1464 {
1465 char buffer[64];
1466
1467 if (!mpol || mpol->mode == MPOL_DEFAULT)
1468 return; /* show nothing */
1469
1470 mpol_to_str(buffer, sizeof(buffer), mpol);
1471
1472 seq_printf(seq, ",mpol=%s", buffer);
1473 }
1474
1475 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1476 {
1477 struct mempolicy *mpol = NULL;
1478 if (sbinfo->mpol) {
1479 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1480 mpol = sbinfo->mpol;
1481 mpol_get(mpol);
1482 raw_spin_unlock(&sbinfo->stat_lock);
1483 }
1484 return mpol;
1485 }
1486 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1487 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1488 {
1489 }
1490 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1491 {
1492 return NULL;
1493 }
1494 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1495 #ifndef CONFIG_NUMA
1496 #define vm_policy vm_private_data
1497 #endif
1498
1499 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1500 struct shmem_inode_info *info, pgoff_t index)
1501 {
1502 /* Create a pseudo vma that just contains the policy */
1503 vma_init(vma, NULL);
1504 /* Bias interleave by inode number to distribute better across nodes */
1505 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1506 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1507 }
1508
1509 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1510 {
1511 /* Drop reference taken by mpol_shared_policy_lookup() */
1512 mpol_cond_put(vma->vm_policy);
1513 }
1514
1515 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1516 struct shmem_inode_info *info, pgoff_t index)
1517 {
1518 struct vm_area_struct pvma;
1519 struct page *page;
1520 struct vm_fault vmf = {
1521 .vma = &pvma,
1522 };
1523
1524 shmem_pseudo_vma_init(&pvma, info, index);
1525 page = swap_cluster_readahead(swap, gfp, &vmf);
1526 shmem_pseudo_vma_destroy(&pvma);
1527
1528 return page;
1529 }
1530
1531 /*
1532 * Make sure huge_gfp is always more limited than limit_gfp.
1533 * Some of the flags set permissions, while others set limitations.
1534 */
1535 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1536 {
1537 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1538 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1539 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1540 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1541
1542 /* Allow allocations only from the originally specified zones. */
1543 result |= zoneflags;
1544
1545 /*
1546 * Minimize the result gfp by taking the union with the deny flags,
1547 * and the intersection of the allow flags.
1548 */
1549 result |= (limit_gfp & denyflags);
1550 result |= (huge_gfp & limit_gfp) & allowflags;
1551
1552 return result;
1553 }
1554
1555 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1556 struct shmem_inode_info *info, pgoff_t index)
1557 {
1558 struct vm_area_struct pvma;
1559 struct address_space *mapping = info->vfs_inode.i_mapping;
1560 pgoff_t hindex;
1561 struct page *page;
1562
1563 hindex = round_down(index, HPAGE_PMD_NR);
1564 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1565 XA_PRESENT))
1566 return NULL;
1567
1568 shmem_pseudo_vma_init(&pvma, info, hindex);
1569 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1570 true);
1571 shmem_pseudo_vma_destroy(&pvma);
1572 if (page)
1573 prep_transhuge_page(page);
1574 else
1575 count_vm_event(THP_FILE_FALLBACK);
1576 return page;
1577 }
1578
1579 static struct page *shmem_alloc_page(gfp_t gfp,
1580 struct shmem_inode_info *info, pgoff_t index)
1581 {
1582 struct vm_area_struct pvma;
1583 struct page *page;
1584
1585 shmem_pseudo_vma_init(&pvma, info, index);
1586 page = alloc_page_vma(gfp, &pvma, 0);
1587 shmem_pseudo_vma_destroy(&pvma);
1588
1589 return page;
1590 }
1591
1592 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1593 struct inode *inode,
1594 pgoff_t index, bool huge)
1595 {
1596 struct shmem_inode_info *info = SHMEM_I(inode);
1597 struct page *page;
1598 int nr;
1599 int err = -ENOSPC;
1600
1601 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1602 huge = false;
1603 nr = huge ? HPAGE_PMD_NR : 1;
1604
1605 if (!shmem_inode_acct_block(inode, nr))
1606 goto failed;
1607
1608 if (huge)
1609 page = shmem_alloc_hugepage(gfp, info, index);
1610 else
1611 page = shmem_alloc_page(gfp, info, index);
1612 if (page) {
1613 __SetPageLocked(page);
1614 __SetPageSwapBacked(page);
1615 return page;
1616 }
1617
1618 err = -ENOMEM;
1619 shmem_inode_unacct_blocks(inode, nr);
1620 failed:
1621 return ERR_PTR(err);
1622 }
1623
1624 /*
1625 * When a page is moved from swapcache to shmem filecache (either by the
1626 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1627 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1628 * ignorance of the mapping it belongs to. If that mapping has special
1629 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1630 * we may need to copy to a suitable page before moving to filecache.
1631 *
1632 * In a future release, this may well be extended to respect cpuset and
1633 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1634 * but for now it is a simple matter of zone.
1635 */
1636 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1637 {
1638 return page_zonenum(page) > gfp_zone(gfp);
1639 }
1640
1641 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1642 struct shmem_inode_info *info, pgoff_t index)
1643 {
1644 struct page *oldpage, *newpage;
1645 struct address_space *swap_mapping;
1646 swp_entry_t entry;
1647 pgoff_t swap_index;
1648 int error;
1649
1650 oldpage = *pagep;
1651 entry.val = page_private(oldpage);
1652 swap_index = swp_offset(entry);
1653 swap_mapping = page_mapping(oldpage);
1654
1655 /*
1656 * We have arrived here because our zones are constrained, so don't
1657 * limit chance of success by further cpuset and node constraints.
1658 */
1659 gfp &= ~GFP_CONSTRAINT_MASK;
1660 newpage = shmem_alloc_page(gfp, info, index);
1661 if (!newpage)
1662 return -ENOMEM;
1663
1664 get_page(newpage);
1665 copy_highpage(newpage, oldpage);
1666 flush_dcache_page(newpage);
1667
1668 __SetPageLocked(newpage);
1669 __SetPageSwapBacked(newpage);
1670 SetPageUptodate(newpage);
1671 set_page_private(newpage, entry.val);
1672 SetPageSwapCache(newpage);
1673
1674 /*
1675 * Our caller will very soon move newpage out of swapcache, but it's
1676 * a nice clean interface for us to replace oldpage by newpage there.
1677 */
1678 xa_lock_irq(&swap_mapping->i_pages);
1679 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1680 if (!error) {
1681 mem_cgroup_migrate(oldpage, newpage);
1682 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1683 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1684 }
1685 xa_unlock_irq(&swap_mapping->i_pages);
1686
1687 if (unlikely(error)) {
1688 /*
1689 * Is this possible? I think not, now that our callers check
1690 * both PageSwapCache and page_private after getting page lock;
1691 * but be defensive. Reverse old to newpage for clear and free.
1692 */
1693 oldpage = newpage;
1694 } else {
1695 lru_cache_add(newpage);
1696 *pagep = newpage;
1697 }
1698
1699 ClearPageSwapCache(oldpage);
1700 set_page_private(oldpage, 0);
1701
1702 unlock_page(oldpage);
1703 put_page(oldpage);
1704 put_page(oldpage);
1705 return error;
1706 }
1707
1708 /*
1709 * Swap in the page pointed to by *pagep.
1710 * Caller has to make sure that *pagep contains a valid swapped page.
1711 * Returns 0 and the page in pagep if success. On failure, returns the
1712 * error code and NULL in *pagep.
1713 */
1714 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1715 struct page **pagep, enum sgp_type sgp,
1716 gfp_t gfp, struct vm_area_struct *vma,
1717 vm_fault_t *fault_type)
1718 {
1719 struct address_space *mapping = inode->i_mapping;
1720 struct shmem_inode_info *info = SHMEM_I(inode);
1721 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1722 struct page *page;
1723 swp_entry_t swap;
1724 int error;
1725
1726 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1727 swap = radix_to_swp_entry(*pagep);
1728 *pagep = NULL;
1729
1730 /* Look it up and read it in.. */
1731 page = lookup_swap_cache(swap, NULL, 0);
1732 if (!page) {
1733 /* Or update major stats only when swapin succeeds?? */
1734 if (fault_type) {
1735 *fault_type |= VM_FAULT_MAJOR;
1736 count_vm_event(PGMAJFAULT);
1737 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1738 }
1739 /* Here we actually start the io */
1740 page = shmem_swapin(swap, gfp, info, index);
1741 if (!page) {
1742 error = -ENOMEM;
1743 goto failed;
1744 }
1745 }
1746
1747 /* We have to do this with page locked to prevent races */
1748 lock_page(page);
1749 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1750 !shmem_confirm_swap(mapping, index, swap)) {
1751 error = -EEXIST;
1752 goto unlock;
1753 }
1754 if (!PageUptodate(page)) {
1755 error = -EIO;
1756 goto failed;
1757 }
1758 wait_on_page_writeback(page);
1759
1760 /*
1761 * Some architectures may have to restore extra metadata to the
1762 * physical page after reading from swap.
1763 */
1764 arch_swap_restore(swap, page);
1765
1766 if (shmem_should_replace_page(page, gfp)) {
1767 error = shmem_replace_page(&page, gfp, info, index);
1768 if (error)
1769 goto failed;
1770 }
1771
1772 error = shmem_add_to_page_cache(page, mapping, index,
1773 swp_to_radix_entry(swap), gfp,
1774 charge_mm);
1775 if (error)
1776 goto failed;
1777
1778 spin_lock_irq(&info->lock);
1779 info->swapped--;
1780 shmem_recalc_inode(inode);
1781 spin_unlock_irq(&info->lock);
1782
1783 if (sgp == SGP_WRITE)
1784 mark_page_accessed(page);
1785
1786 delete_from_swap_cache(page);
1787 set_page_dirty(page);
1788 swap_free(swap);
1789
1790 *pagep = page;
1791 return 0;
1792 failed:
1793 if (!shmem_confirm_swap(mapping, index, swap))
1794 error = -EEXIST;
1795 unlock:
1796 if (page) {
1797 unlock_page(page);
1798 put_page(page);
1799 }
1800
1801 return error;
1802 }
1803
1804 /*
1805 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1806 *
1807 * If we allocate a new one we do not mark it dirty. That's up to the
1808 * vm. If we swap it in we mark it dirty since we also free the swap
1809 * entry since a page cannot live in both the swap and page cache.
1810 *
1811 * vma, vmf, and fault_type are only supplied by shmem_fault:
1812 * otherwise they are NULL.
1813 */
1814 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1815 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1816 struct vm_area_struct *vma, struct vm_fault *vmf,
1817 vm_fault_t *fault_type)
1818 {
1819 struct address_space *mapping = inode->i_mapping;
1820 struct shmem_inode_info *info = SHMEM_I(inode);
1821 struct shmem_sb_info *sbinfo;
1822 struct mm_struct *charge_mm;
1823 struct page *page;
1824 pgoff_t hindex = index;
1825 gfp_t huge_gfp;
1826 int error;
1827 int once = 0;
1828 int alloced = 0;
1829
1830 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1831 return -EFBIG;
1832 repeat:
1833 if (sgp <= SGP_CACHE &&
1834 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1835 return -EINVAL;
1836 }
1837
1838 sbinfo = SHMEM_SB(inode->i_sb);
1839 charge_mm = vma ? vma->vm_mm : NULL;
1840
1841 page = pagecache_get_page(mapping, index,
1842 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1843
1844 if (page && vma && userfaultfd_minor(vma)) {
1845 if (!xa_is_value(page)) {
1846 unlock_page(page);
1847 put_page(page);
1848 }
1849 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1850 return 0;
1851 }
1852
1853 if (xa_is_value(page)) {
1854 error = shmem_swapin_page(inode, index, &page,
1855 sgp, gfp, vma, fault_type);
1856 if (error == -EEXIST)
1857 goto repeat;
1858
1859 *pagep = page;
1860 return error;
1861 }
1862
1863 if (page) {
1864 hindex = page->index;
1865 if (sgp == SGP_WRITE)
1866 mark_page_accessed(page);
1867 if (PageUptodate(page))
1868 goto out;
1869 /* fallocated page */
1870 if (sgp != SGP_READ)
1871 goto clear;
1872 unlock_page(page);
1873 put_page(page);
1874 }
1875
1876 /*
1877 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1878 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1879 */
1880 *pagep = NULL;
1881 if (sgp == SGP_READ)
1882 return 0;
1883 if (sgp == SGP_NOALLOC)
1884 return -ENOENT;
1885
1886 /*
1887 * Fast cache lookup and swap lookup did not find it: allocate.
1888 */
1889
1890 if (vma && userfaultfd_missing(vma)) {
1891 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1892 return 0;
1893 }
1894
1895 /* Never use a huge page for shmem_symlink() */
1896 if (S_ISLNK(inode->i_mode))
1897 goto alloc_nohuge;
1898 if (!shmem_is_huge(vma, inode, index))
1899 goto alloc_nohuge;
1900
1901 huge_gfp = vma_thp_gfp_mask(vma);
1902 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1903 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1904 if (IS_ERR(page)) {
1905 alloc_nohuge:
1906 page = shmem_alloc_and_acct_page(gfp, inode,
1907 index, false);
1908 }
1909 if (IS_ERR(page)) {
1910 int retry = 5;
1911
1912 error = PTR_ERR(page);
1913 page = NULL;
1914 if (error != -ENOSPC)
1915 goto unlock;
1916 /*
1917 * Try to reclaim some space by splitting a huge page
1918 * beyond i_size on the filesystem.
1919 */
1920 while (retry--) {
1921 int ret;
1922
1923 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1924 if (ret == SHRINK_STOP)
1925 break;
1926 if (ret)
1927 goto alloc_nohuge;
1928 }
1929 goto unlock;
1930 }
1931
1932 if (PageTransHuge(page))
1933 hindex = round_down(index, HPAGE_PMD_NR);
1934 else
1935 hindex = index;
1936
1937 if (sgp == SGP_WRITE)
1938 __SetPageReferenced(page);
1939
1940 error = shmem_add_to_page_cache(page, mapping, hindex,
1941 NULL, gfp & GFP_RECLAIM_MASK,
1942 charge_mm);
1943 if (error)
1944 goto unacct;
1945 lru_cache_add(page);
1946
1947 spin_lock_irq(&info->lock);
1948 info->alloced += compound_nr(page);
1949 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1950 shmem_recalc_inode(inode);
1951 spin_unlock_irq(&info->lock);
1952 alloced = true;
1953
1954 if (PageTransHuge(page) &&
1955 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1956 hindex + HPAGE_PMD_NR - 1) {
1957 /*
1958 * Part of the huge page is beyond i_size: subject
1959 * to shrink under memory pressure.
1960 */
1961 spin_lock(&sbinfo->shrinklist_lock);
1962 /*
1963 * _careful to defend against unlocked access to
1964 * ->shrink_list in shmem_unused_huge_shrink()
1965 */
1966 if (list_empty_careful(&info->shrinklist)) {
1967 list_add_tail(&info->shrinklist,
1968 &sbinfo->shrinklist);
1969 sbinfo->shrinklist_len++;
1970 }
1971 spin_unlock(&sbinfo->shrinklist_lock);
1972 }
1973
1974 /*
1975 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1976 */
1977 if (sgp == SGP_FALLOC)
1978 sgp = SGP_WRITE;
1979 clear:
1980 /*
1981 * Let SGP_WRITE caller clear ends if write does not fill page;
1982 * but SGP_FALLOC on a page fallocated earlier must initialize
1983 * it now, lest undo on failure cancel our earlier guarantee.
1984 */
1985 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1986 int i;
1987
1988 for (i = 0; i < compound_nr(page); i++) {
1989 clear_highpage(page + i);
1990 flush_dcache_page(page + i);
1991 }
1992 SetPageUptodate(page);
1993 }
1994
1995 /* Perhaps the file has been truncated since we checked */
1996 if (sgp <= SGP_CACHE &&
1997 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1998 if (alloced) {
1999 ClearPageDirty(page);
2000 delete_from_page_cache(page);
2001 spin_lock_irq(&info->lock);
2002 shmem_recalc_inode(inode);
2003 spin_unlock_irq(&info->lock);
2004 }
2005 error = -EINVAL;
2006 goto unlock;
2007 }
2008 out:
2009 *pagep = page + index - hindex;
2010 return 0;
2011
2012 /*
2013 * Error recovery.
2014 */
2015 unacct:
2016 shmem_inode_unacct_blocks(inode, compound_nr(page));
2017
2018 if (PageTransHuge(page)) {
2019 unlock_page(page);
2020 put_page(page);
2021 goto alloc_nohuge;
2022 }
2023 unlock:
2024 if (page) {
2025 unlock_page(page);
2026 put_page(page);
2027 }
2028 if (error == -ENOSPC && !once++) {
2029 spin_lock_irq(&info->lock);
2030 shmem_recalc_inode(inode);
2031 spin_unlock_irq(&info->lock);
2032 goto repeat;
2033 }
2034 if (error == -EEXIST)
2035 goto repeat;
2036 return error;
2037 }
2038
2039 /*
2040 * This is like autoremove_wake_function, but it removes the wait queue
2041 * entry unconditionally - even if something else had already woken the
2042 * target.
2043 */
2044 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2045 {
2046 int ret = default_wake_function(wait, mode, sync, key);
2047 list_del_init(&wait->entry);
2048 return ret;
2049 }
2050
2051 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2052 {
2053 struct vm_area_struct *vma = vmf->vma;
2054 struct inode *inode = file_inode(vma->vm_file);
2055 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2056 int err;
2057 vm_fault_t ret = VM_FAULT_LOCKED;
2058
2059 /*
2060 * Trinity finds that probing a hole which tmpfs is punching can
2061 * prevent the hole-punch from ever completing: which in turn
2062 * locks writers out with its hold on i_rwsem. So refrain from
2063 * faulting pages into the hole while it's being punched. Although
2064 * shmem_undo_range() does remove the additions, it may be unable to
2065 * keep up, as each new page needs its own unmap_mapping_range() call,
2066 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2067 *
2068 * It does not matter if we sometimes reach this check just before the
2069 * hole-punch begins, so that one fault then races with the punch:
2070 * we just need to make racing faults a rare case.
2071 *
2072 * The implementation below would be much simpler if we just used a
2073 * standard mutex or completion: but we cannot take i_rwsem in fault,
2074 * and bloating every shmem inode for this unlikely case would be sad.
2075 */
2076 if (unlikely(inode->i_private)) {
2077 struct shmem_falloc *shmem_falloc;
2078
2079 spin_lock(&inode->i_lock);
2080 shmem_falloc = inode->i_private;
2081 if (shmem_falloc &&
2082 shmem_falloc->waitq &&
2083 vmf->pgoff >= shmem_falloc->start &&
2084 vmf->pgoff < shmem_falloc->next) {
2085 struct file *fpin;
2086 wait_queue_head_t *shmem_falloc_waitq;
2087 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2088
2089 ret = VM_FAULT_NOPAGE;
2090 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2091 if (fpin)
2092 ret = VM_FAULT_RETRY;
2093
2094 shmem_falloc_waitq = shmem_falloc->waitq;
2095 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2096 TASK_UNINTERRUPTIBLE);
2097 spin_unlock(&inode->i_lock);
2098 schedule();
2099
2100 /*
2101 * shmem_falloc_waitq points into the shmem_fallocate()
2102 * stack of the hole-punching task: shmem_falloc_waitq
2103 * is usually invalid by the time we reach here, but
2104 * finish_wait() does not dereference it in that case;
2105 * though i_lock needed lest racing with wake_up_all().
2106 */
2107 spin_lock(&inode->i_lock);
2108 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2109 spin_unlock(&inode->i_lock);
2110
2111 if (fpin)
2112 fput(fpin);
2113 return ret;
2114 }
2115 spin_unlock(&inode->i_lock);
2116 }
2117
2118 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2119 gfp, vma, vmf, &ret);
2120 if (err)
2121 return vmf_error(err);
2122 return ret;
2123 }
2124
2125 unsigned long shmem_get_unmapped_area(struct file *file,
2126 unsigned long uaddr, unsigned long len,
2127 unsigned long pgoff, unsigned long flags)
2128 {
2129 unsigned long (*get_area)(struct file *,
2130 unsigned long, unsigned long, unsigned long, unsigned long);
2131 unsigned long addr;
2132 unsigned long offset;
2133 unsigned long inflated_len;
2134 unsigned long inflated_addr;
2135 unsigned long inflated_offset;
2136
2137 if (len > TASK_SIZE)
2138 return -ENOMEM;
2139
2140 get_area = current->mm->get_unmapped_area;
2141 addr = get_area(file, uaddr, len, pgoff, flags);
2142
2143 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2144 return addr;
2145 if (IS_ERR_VALUE(addr))
2146 return addr;
2147 if (addr & ~PAGE_MASK)
2148 return addr;
2149 if (addr > TASK_SIZE - len)
2150 return addr;
2151
2152 if (shmem_huge == SHMEM_HUGE_DENY)
2153 return addr;
2154 if (len < HPAGE_PMD_SIZE)
2155 return addr;
2156 if (flags & MAP_FIXED)
2157 return addr;
2158 /*
2159 * Our priority is to support MAP_SHARED mapped hugely;
2160 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2161 * But if caller specified an address hint and we allocated area there
2162 * successfully, respect that as before.
2163 */
2164 if (uaddr == addr)
2165 return addr;
2166
2167 if (shmem_huge != SHMEM_HUGE_FORCE) {
2168 struct super_block *sb;
2169
2170 if (file) {
2171 VM_BUG_ON(file->f_op != &shmem_file_operations);
2172 sb = file_inode(file)->i_sb;
2173 } else {
2174 /*
2175 * Called directly from mm/mmap.c, or drivers/char/mem.c
2176 * for "/dev/zero", to create a shared anonymous object.
2177 */
2178 if (IS_ERR(shm_mnt))
2179 return addr;
2180 sb = shm_mnt->mnt_sb;
2181 }
2182 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2183 return addr;
2184 }
2185
2186 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2187 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2188 return addr;
2189 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2190 return addr;
2191
2192 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2193 if (inflated_len > TASK_SIZE)
2194 return addr;
2195 if (inflated_len < len)
2196 return addr;
2197
2198 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2199 if (IS_ERR_VALUE(inflated_addr))
2200 return addr;
2201 if (inflated_addr & ~PAGE_MASK)
2202 return addr;
2203
2204 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2205 inflated_addr += offset - inflated_offset;
2206 if (inflated_offset > offset)
2207 inflated_addr += HPAGE_PMD_SIZE;
2208
2209 if (inflated_addr > TASK_SIZE - len)
2210 return addr;
2211 return inflated_addr;
2212 }
2213
2214 #ifdef CONFIG_NUMA
2215 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2216 {
2217 struct inode *inode = file_inode(vma->vm_file);
2218 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2219 }
2220
2221 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2222 unsigned long addr)
2223 {
2224 struct inode *inode = file_inode(vma->vm_file);
2225 pgoff_t index;
2226
2227 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2228 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2229 }
2230 #endif
2231
2232 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2233 {
2234 struct inode *inode = file_inode(file);
2235 struct shmem_inode_info *info = SHMEM_I(inode);
2236 int retval = -ENOMEM;
2237
2238 /*
2239 * What serializes the accesses to info->flags?
2240 * ipc_lock_object() when called from shmctl_do_lock(),
2241 * no serialization needed when called from shm_destroy().
2242 */
2243 if (lock && !(info->flags & VM_LOCKED)) {
2244 if (!user_shm_lock(inode->i_size, ucounts))
2245 goto out_nomem;
2246 info->flags |= VM_LOCKED;
2247 mapping_set_unevictable(file->f_mapping);
2248 }
2249 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2250 user_shm_unlock(inode->i_size, ucounts);
2251 info->flags &= ~VM_LOCKED;
2252 mapping_clear_unevictable(file->f_mapping);
2253 }
2254 retval = 0;
2255
2256 out_nomem:
2257 return retval;
2258 }
2259
2260 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2261 {
2262 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2263 int ret;
2264
2265 ret = seal_check_future_write(info->seals, vma);
2266 if (ret)
2267 return ret;
2268
2269 /* arm64 - allow memory tagging on RAM-based files */
2270 vma->vm_flags |= VM_MTE_ALLOWED;
2271
2272 file_accessed(file);
2273 vma->vm_ops = &shmem_vm_ops;
2274 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2275 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2276 (vma->vm_end & HPAGE_PMD_MASK)) {
2277 khugepaged_enter(vma, vma->vm_flags);
2278 }
2279 return 0;
2280 }
2281
2282 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2283 umode_t mode, dev_t dev, unsigned long flags)
2284 {
2285 struct inode *inode;
2286 struct shmem_inode_info *info;
2287 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2288 ino_t ino;
2289
2290 if (shmem_reserve_inode(sb, &ino))
2291 return NULL;
2292
2293 inode = new_inode(sb);
2294 if (inode) {
2295 inode->i_ino = ino;
2296 inode_init_owner(&init_user_ns, inode, dir, mode);
2297 inode->i_blocks = 0;
2298 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2299 inode->i_generation = prandom_u32();
2300 info = SHMEM_I(inode);
2301 memset(info, 0, (char *)inode - (char *)info);
2302 spin_lock_init(&info->lock);
2303 atomic_set(&info->stop_eviction, 0);
2304 info->seals = F_SEAL_SEAL;
2305 info->flags = flags & VM_NORESERVE;
2306 INIT_LIST_HEAD(&info->shrinklist);
2307 INIT_LIST_HEAD(&info->swaplist);
2308 simple_xattrs_init(&info->xattrs);
2309 cache_no_acl(inode);
2310
2311 switch (mode & S_IFMT) {
2312 default:
2313 inode->i_op = &shmem_special_inode_operations;
2314 init_special_inode(inode, mode, dev);
2315 break;
2316 case S_IFREG:
2317 inode->i_mapping->a_ops = &shmem_aops;
2318 inode->i_op = &shmem_inode_operations;
2319 inode->i_fop = &shmem_file_operations;
2320 mpol_shared_policy_init(&info->policy,
2321 shmem_get_sbmpol(sbinfo));
2322 break;
2323 case S_IFDIR:
2324 inc_nlink(inode);
2325 /* Some things misbehave if size == 0 on a directory */
2326 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2327 inode->i_op = &shmem_dir_inode_operations;
2328 inode->i_fop = &simple_dir_operations;
2329 break;
2330 case S_IFLNK:
2331 /*
2332 * Must not load anything in the rbtree,
2333 * mpol_free_shared_policy will not be called.
2334 */
2335 mpol_shared_policy_init(&info->policy, NULL);
2336 break;
2337 }
2338
2339 lockdep_annotate_inode_mutex_key(inode);
2340 } else
2341 shmem_free_inode(sb);
2342 return inode;
2343 }
2344
2345 #ifdef CONFIG_USERFAULTFD
2346 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2347 pmd_t *dst_pmd,
2348 struct vm_area_struct *dst_vma,
2349 unsigned long dst_addr,
2350 unsigned long src_addr,
2351 bool zeropage,
2352 struct page **pagep)
2353 {
2354 struct inode *inode = file_inode(dst_vma->vm_file);
2355 struct shmem_inode_info *info = SHMEM_I(inode);
2356 struct address_space *mapping = inode->i_mapping;
2357 gfp_t gfp = mapping_gfp_mask(mapping);
2358 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2359 void *page_kaddr;
2360 struct page *page;
2361 int ret;
2362 pgoff_t max_off;
2363
2364 if (!shmem_inode_acct_block(inode, 1)) {
2365 /*
2366 * We may have got a page, returned -ENOENT triggering a retry,
2367 * and now we find ourselves with -ENOMEM. Release the page, to
2368 * avoid a BUG_ON in our caller.
2369 */
2370 if (unlikely(*pagep)) {
2371 put_page(*pagep);
2372 *pagep = NULL;
2373 }
2374 return -ENOMEM;
2375 }
2376
2377 if (!*pagep) {
2378 ret = -ENOMEM;
2379 page = shmem_alloc_page(gfp, info, pgoff);
2380 if (!page)
2381 goto out_unacct_blocks;
2382
2383 if (!zeropage) { /* COPY */
2384 page_kaddr = kmap_atomic(page);
2385 ret = copy_from_user(page_kaddr,
2386 (const void __user *)src_addr,
2387 PAGE_SIZE);
2388 kunmap_atomic(page_kaddr);
2389
2390 /* fallback to copy_from_user outside mmap_lock */
2391 if (unlikely(ret)) {
2392 *pagep = page;
2393 ret = -ENOENT;
2394 /* don't free the page */
2395 goto out_unacct_blocks;
2396 }
2397 } else { /* ZEROPAGE */
2398 clear_highpage(page);
2399 }
2400 } else {
2401 page = *pagep;
2402 *pagep = NULL;
2403 }
2404
2405 VM_BUG_ON(PageLocked(page));
2406 VM_BUG_ON(PageSwapBacked(page));
2407 __SetPageLocked(page);
2408 __SetPageSwapBacked(page);
2409 __SetPageUptodate(page);
2410
2411 ret = -EFAULT;
2412 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2413 if (unlikely(pgoff >= max_off))
2414 goto out_release;
2415
2416 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2417 gfp & GFP_RECLAIM_MASK, dst_mm);
2418 if (ret)
2419 goto out_release;
2420
2421 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2422 page, true, false);
2423 if (ret)
2424 goto out_delete_from_cache;
2425
2426 spin_lock_irq(&info->lock);
2427 info->alloced++;
2428 inode->i_blocks += BLOCKS_PER_PAGE;
2429 shmem_recalc_inode(inode);
2430 spin_unlock_irq(&info->lock);
2431
2432 SetPageDirty(page);
2433 unlock_page(page);
2434 return 0;
2435 out_delete_from_cache:
2436 delete_from_page_cache(page);
2437 out_release:
2438 unlock_page(page);
2439 put_page(page);
2440 out_unacct_blocks:
2441 shmem_inode_unacct_blocks(inode, 1);
2442 return ret;
2443 }
2444 #endif /* CONFIG_USERFAULTFD */
2445
2446 #ifdef CONFIG_TMPFS
2447 static const struct inode_operations shmem_symlink_inode_operations;
2448 static const struct inode_operations shmem_short_symlink_operations;
2449
2450 #ifdef CONFIG_TMPFS_XATTR
2451 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2452 #else
2453 #define shmem_initxattrs NULL
2454 #endif
2455
2456 static int
2457 shmem_write_begin(struct file *file, struct address_space *mapping,
2458 loff_t pos, unsigned len, unsigned flags,
2459 struct page **pagep, void **fsdata)
2460 {
2461 struct inode *inode = mapping->host;
2462 struct shmem_inode_info *info = SHMEM_I(inode);
2463 pgoff_t index = pos >> PAGE_SHIFT;
2464
2465 /* i_rwsem is held by caller */
2466 if (unlikely(info->seals & (F_SEAL_GROW |
2467 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2468 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2469 return -EPERM;
2470 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2471 return -EPERM;
2472 }
2473
2474 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2475 }
2476
2477 static int
2478 shmem_write_end(struct file *file, struct address_space *mapping,
2479 loff_t pos, unsigned len, unsigned copied,
2480 struct page *page, void *fsdata)
2481 {
2482 struct inode *inode = mapping->host;
2483
2484 if (pos + copied > inode->i_size)
2485 i_size_write(inode, pos + copied);
2486
2487 if (!PageUptodate(page)) {
2488 struct page *head = compound_head(page);
2489 if (PageTransCompound(page)) {
2490 int i;
2491
2492 for (i = 0; i < HPAGE_PMD_NR; i++) {
2493 if (head + i == page)
2494 continue;
2495 clear_highpage(head + i);
2496 flush_dcache_page(head + i);
2497 }
2498 }
2499 if (copied < PAGE_SIZE) {
2500 unsigned from = pos & (PAGE_SIZE - 1);
2501 zero_user_segments(page, 0, from,
2502 from + copied, PAGE_SIZE);
2503 }
2504 SetPageUptodate(head);
2505 }
2506 set_page_dirty(page);
2507 unlock_page(page);
2508 put_page(page);
2509
2510 return copied;
2511 }
2512
2513 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2514 {
2515 struct file *file = iocb->ki_filp;
2516 struct inode *inode = file_inode(file);
2517 struct address_space *mapping = inode->i_mapping;
2518 pgoff_t index;
2519 unsigned long offset;
2520 enum sgp_type sgp = SGP_READ;
2521 int error = 0;
2522 ssize_t retval = 0;
2523 loff_t *ppos = &iocb->ki_pos;
2524
2525 /*
2526 * Might this read be for a stacking filesystem? Then when reading
2527 * holes of a sparse file, we actually need to allocate those pages,
2528 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2529 */
2530 if (!iter_is_iovec(to))
2531 sgp = SGP_CACHE;
2532
2533 index = *ppos >> PAGE_SHIFT;
2534 offset = *ppos & ~PAGE_MASK;
2535
2536 for (;;) {
2537 struct page *page = NULL;
2538 pgoff_t end_index;
2539 unsigned long nr, ret;
2540 loff_t i_size = i_size_read(inode);
2541
2542 end_index = i_size >> PAGE_SHIFT;
2543 if (index > end_index)
2544 break;
2545 if (index == end_index) {
2546 nr = i_size & ~PAGE_MASK;
2547 if (nr <= offset)
2548 break;
2549 }
2550
2551 error = shmem_getpage(inode, index, &page, sgp);
2552 if (error) {
2553 if (error == -EINVAL)
2554 error = 0;
2555 break;
2556 }
2557 if (page) {
2558 if (sgp == SGP_CACHE)
2559 set_page_dirty(page);
2560 unlock_page(page);
2561 }
2562
2563 /*
2564 * We must evaluate after, since reads (unlike writes)
2565 * are called without i_rwsem protection against truncate
2566 */
2567 nr = PAGE_SIZE;
2568 i_size = i_size_read(inode);
2569 end_index = i_size >> PAGE_SHIFT;
2570 if (index == end_index) {
2571 nr = i_size & ~PAGE_MASK;
2572 if (nr <= offset) {
2573 if (page)
2574 put_page(page);
2575 break;
2576 }
2577 }
2578 nr -= offset;
2579
2580 if (page) {
2581 /*
2582 * If users can be writing to this page using arbitrary
2583 * virtual addresses, take care about potential aliasing
2584 * before reading the page on the kernel side.
2585 */
2586 if (mapping_writably_mapped(mapping))
2587 flush_dcache_page(page);
2588 /*
2589 * Mark the page accessed if we read the beginning.
2590 */
2591 if (!offset)
2592 mark_page_accessed(page);
2593 } else {
2594 page = ZERO_PAGE(0);
2595 get_page(page);
2596 }
2597
2598 /*
2599 * Ok, we have the page, and it's up-to-date, so
2600 * now we can copy it to user space...
2601 */
2602 ret = copy_page_to_iter(page, offset, nr, to);
2603 retval += ret;
2604 offset += ret;
2605 index += offset >> PAGE_SHIFT;
2606 offset &= ~PAGE_MASK;
2607
2608 put_page(page);
2609 if (!iov_iter_count(to))
2610 break;
2611 if (ret < nr) {
2612 error = -EFAULT;
2613 break;
2614 }
2615 cond_resched();
2616 }
2617
2618 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2619 file_accessed(file);
2620 return retval ? retval : error;
2621 }
2622
2623 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2624 {
2625 struct address_space *mapping = file->f_mapping;
2626 struct inode *inode = mapping->host;
2627
2628 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2629 return generic_file_llseek_size(file, offset, whence,
2630 MAX_LFS_FILESIZE, i_size_read(inode));
2631 if (offset < 0)
2632 return -ENXIO;
2633
2634 inode_lock(inode);
2635 /* We're holding i_rwsem so we can access i_size directly */
2636 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2637 if (offset >= 0)
2638 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2639 inode_unlock(inode);
2640 return offset;
2641 }
2642
2643 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2644 loff_t len)
2645 {
2646 struct inode *inode = file_inode(file);
2647 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2648 struct shmem_inode_info *info = SHMEM_I(inode);
2649 struct shmem_falloc shmem_falloc;
2650 pgoff_t start, index, end, undo_fallocend;
2651 int error;
2652
2653 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2654 return -EOPNOTSUPP;
2655
2656 inode_lock(inode);
2657
2658 if (mode & FALLOC_FL_PUNCH_HOLE) {
2659 struct address_space *mapping = file->f_mapping;
2660 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2661 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2662 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2663
2664 /* protected by i_rwsem */
2665 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2666 error = -EPERM;
2667 goto out;
2668 }
2669
2670 shmem_falloc.waitq = &shmem_falloc_waitq;
2671 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2672 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2673 spin_lock(&inode->i_lock);
2674 inode->i_private = &shmem_falloc;
2675 spin_unlock(&inode->i_lock);
2676
2677 if ((u64)unmap_end > (u64)unmap_start)
2678 unmap_mapping_range(mapping, unmap_start,
2679 1 + unmap_end - unmap_start, 0);
2680 shmem_truncate_range(inode, offset, offset + len - 1);
2681 /* No need to unmap again: hole-punching leaves COWed pages */
2682
2683 spin_lock(&inode->i_lock);
2684 inode->i_private = NULL;
2685 wake_up_all(&shmem_falloc_waitq);
2686 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2687 spin_unlock(&inode->i_lock);
2688 error = 0;
2689 goto out;
2690 }
2691
2692 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2693 error = inode_newsize_ok(inode, offset + len);
2694 if (error)
2695 goto out;
2696
2697 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2698 error = -EPERM;
2699 goto out;
2700 }
2701
2702 start = offset >> PAGE_SHIFT;
2703 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2704 /* Try to avoid a swapstorm if len is impossible to satisfy */
2705 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2706 error = -ENOSPC;
2707 goto out;
2708 }
2709
2710 shmem_falloc.waitq = NULL;
2711 shmem_falloc.start = start;
2712 shmem_falloc.next = start;
2713 shmem_falloc.nr_falloced = 0;
2714 shmem_falloc.nr_unswapped = 0;
2715 spin_lock(&inode->i_lock);
2716 inode->i_private = &shmem_falloc;
2717 spin_unlock(&inode->i_lock);
2718
2719 /*
2720 * info->fallocend is only relevant when huge pages might be
2721 * involved: to prevent split_huge_page() freeing fallocated
2722 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2723 */
2724 undo_fallocend = info->fallocend;
2725 if (info->fallocend < end)
2726 info->fallocend = end;
2727
2728 for (index = start; index < end; ) {
2729 struct page *page;
2730
2731 /*
2732 * Good, the fallocate(2) manpage permits EINTR: we may have
2733 * been interrupted because we are using up too much memory.
2734 */
2735 if (signal_pending(current))
2736 error = -EINTR;
2737 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2738 error = -ENOMEM;
2739 else
2740 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2741 if (error) {
2742 info->fallocend = undo_fallocend;
2743 /* Remove the !PageUptodate pages we added */
2744 if (index > start) {
2745 shmem_undo_range(inode,
2746 (loff_t)start << PAGE_SHIFT,
2747 ((loff_t)index << PAGE_SHIFT) - 1, true);
2748 }
2749 goto undone;
2750 }
2751
2752 index++;
2753 /*
2754 * Here is a more important optimization than it appears:
2755 * a second SGP_FALLOC on the same huge page will clear it,
2756 * making it PageUptodate and un-undoable if we fail later.
2757 */
2758 if (PageTransCompound(page)) {
2759 index = round_up(index, HPAGE_PMD_NR);
2760 /* Beware 32-bit wraparound */
2761 if (!index)
2762 index--;
2763 }
2764
2765 /*
2766 * Inform shmem_writepage() how far we have reached.
2767 * No need for lock or barrier: we have the page lock.
2768 */
2769 if (!PageUptodate(page))
2770 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2771 shmem_falloc.next = index;
2772
2773 /*
2774 * If !PageUptodate, leave it that way so that freeable pages
2775 * can be recognized if we need to rollback on error later.
2776 * But set_page_dirty so that memory pressure will swap rather
2777 * than free the pages we are allocating (and SGP_CACHE pages
2778 * might still be clean: we now need to mark those dirty too).
2779 */
2780 set_page_dirty(page);
2781 unlock_page(page);
2782 put_page(page);
2783 cond_resched();
2784 }
2785
2786 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2787 i_size_write(inode, offset + len);
2788 inode->i_ctime = current_time(inode);
2789 undone:
2790 spin_lock(&inode->i_lock);
2791 inode->i_private = NULL;
2792 spin_unlock(&inode->i_lock);
2793 out:
2794 inode_unlock(inode);
2795 return error;
2796 }
2797
2798 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2799 {
2800 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2801
2802 buf->f_type = TMPFS_MAGIC;
2803 buf->f_bsize = PAGE_SIZE;
2804 buf->f_namelen = NAME_MAX;
2805 if (sbinfo->max_blocks) {
2806 buf->f_blocks = sbinfo->max_blocks;
2807 buf->f_bavail =
2808 buf->f_bfree = sbinfo->max_blocks -
2809 percpu_counter_sum(&sbinfo->used_blocks);
2810 }
2811 if (sbinfo->max_inodes) {
2812 buf->f_files = sbinfo->max_inodes;
2813 buf->f_ffree = sbinfo->free_inodes;
2814 }
2815 /* else leave those fields 0 like simple_statfs */
2816
2817 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2818
2819 return 0;
2820 }
2821
2822 /*
2823 * File creation. Allocate an inode, and we're done..
2824 */
2825 static int
2826 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2827 struct dentry *dentry, umode_t mode, dev_t dev)
2828 {
2829 struct inode *inode;
2830 int error = -ENOSPC;
2831
2832 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2833 if (inode) {
2834 error = simple_acl_create(dir, inode);
2835 if (error)
2836 goto out_iput;
2837 error = security_inode_init_security(inode, dir,
2838 &dentry->d_name,
2839 shmem_initxattrs, NULL);
2840 if (error && error != -EOPNOTSUPP)
2841 goto out_iput;
2842
2843 error = 0;
2844 dir->i_size += BOGO_DIRENT_SIZE;
2845 dir->i_ctime = dir->i_mtime = current_time(dir);
2846 d_instantiate(dentry, inode);
2847 dget(dentry); /* Extra count - pin the dentry in core */
2848 }
2849 return error;
2850 out_iput:
2851 iput(inode);
2852 return error;
2853 }
2854
2855 static int
2856 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2857 struct dentry *dentry, umode_t mode)
2858 {
2859 struct inode *inode;
2860 int error = -ENOSPC;
2861
2862 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2863 if (inode) {
2864 error = security_inode_init_security(inode, dir,
2865 NULL,
2866 shmem_initxattrs, NULL);
2867 if (error && error != -EOPNOTSUPP)
2868 goto out_iput;
2869 error = simple_acl_create(dir, inode);
2870 if (error)
2871 goto out_iput;
2872 d_tmpfile(dentry, inode);
2873 }
2874 return error;
2875 out_iput:
2876 iput(inode);
2877 return error;
2878 }
2879
2880 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2881 struct dentry *dentry, umode_t mode)
2882 {
2883 int error;
2884
2885 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2886 mode | S_IFDIR, 0)))
2887 return error;
2888 inc_nlink(dir);
2889 return 0;
2890 }
2891
2892 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2893 struct dentry *dentry, umode_t mode, bool excl)
2894 {
2895 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2896 }
2897
2898 /*
2899 * Link a file..
2900 */
2901 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2902 {
2903 struct inode *inode = d_inode(old_dentry);
2904 int ret = 0;
2905
2906 /*
2907 * No ordinary (disk based) filesystem counts links as inodes;
2908 * but each new link needs a new dentry, pinning lowmem, and
2909 * tmpfs dentries cannot be pruned until they are unlinked.
2910 * But if an O_TMPFILE file is linked into the tmpfs, the
2911 * first link must skip that, to get the accounting right.
2912 */
2913 if (inode->i_nlink) {
2914 ret = shmem_reserve_inode(inode->i_sb, NULL);
2915 if (ret)
2916 goto out;
2917 }
2918
2919 dir->i_size += BOGO_DIRENT_SIZE;
2920 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2921 inc_nlink(inode);
2922 ihold(inode); /* New dentry reference */
2923 dget(dentry); /* Extra pinning count for the created dentry */
2924 d_instantiate(dentry, inode);
2925 out:
2926 return ret;
2927 }
2928
2929 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2930 {
2931 struct inode *inode = d_inode(dentry);
2932
2933 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2934 shmem_free_inode(inode->i_sb);
2935
2936 dir->i_size -= BOGO_DIRENT_SIZE;
2937 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2938 drop_nlink(inode);
2939 dput(dentry); /* Undo the count from "create" - this does all the work */
2940 return 0;
2941 }
2942
2943 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2944 {
2945 if (!simple_empty(dentry))
2946 return -ENOTEMPTY;
2947
2948 drop_nlink(d_inode(dentry));
2949 drop_nlink(dir);
2950 return shmem_unlink(dir, dentry);
2951 }
2952
2953 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2954 {
2955 bool old_is_dir = d_is_dir(old_dentry);
2956 bool new_is_dir = d_is_dir(new_dentry);
2957
2958 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2959 if (old_is_dir) {
2960 drop_nlink(old_dir);
2961 inc_nlink(new_dir);
2962 } else {
2963 drop_nlink(new_dir);
2964 inc_nlink(old_dir);
2965 }
2966 }
2967 old_dir->i_ctime = old_dir->i_mtime =
2968 new_dir->i_ctime = new_dir->i_mtime =
2969 d_inode(old_dentry)->i_ctime =
2970 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2971
2972 return 0;
2973 }
2974
2975 static int shmem_whiteout(struct user_namespace *mnt_userns,
2976 struct inode *old_dir, struct dentry *old_dentry)
2977 {
2978 struct dentry *whiteout;
2979 int error;
2980
2981 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2982 if (!whiteout)
2983 return -ENOMEM;
2984
2985 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2986 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2987 dput(whiteout);
2988 if (error)
2989 return error;
2990
2991 /*
2992 * Cheat and hash the whiteout while the old dentry is still in
2993 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2994 *
2995 * d_lookup() will consistently find one of them at this point,
2996 * not sure which one, but that isn't even important.
2997 */
2998 d_rehash(whiteout);
2999 return 0;
3000 }
3001
3002 /*
3003 * The VFS layer already does all the dentry stuff for rename,
3004 * we just have to decrement the usage count for the target if
3005 * it exists so that the VFS layer correctly free's it when it
3006 * gets overwritten.
3007 */
3008 static int shmem_rename2(struct user_namespace *mnt_userns,
3009 struct inode *old_dir, struct dentry *old_dentry,
3010 struct inode *new_dir, struct dentry *new_dentry,
3011 unsigned int flags)
3012 {
3013 struct inode *inode = d_inode(old_dentry);
3014 int they_are_dirs = S_ISDIR(inode->i_mode);
3015
3016 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3017 return -EINVAL;
3018
3019 if (flags & RENAME_EXCHANGE)
3020 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3021
3022 if (!simple_empty(new_dentry))
3023 return -ENOTEMPTY;
3024
3025 if (flags & RENAME_WHITEOUT) {
3026 int error;
3027
3028 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3029 if (error)
3030 return error;
3031 }
3032
3033 if (d_really_is_positive(new_dentry)) {
3034 (void) shmem_unlink(new_dir, new_dentry);
3035 if (they_are_dirs) {
3036 drop_nlink(d_inode(new_dentry));
3037 drop_nlink(old_dir);
3038 }
3039 } else if (they_are_dirs) {
3040 drop_nlink(old_dir);
3041 inc_nlink(new_dir);
3042 }
3043
3044 old_dir->i_size -= BOGO_DIRENT_SIZE;
3045 new_dir->i_size += BOGO_DIRENT_SIZE;
3046 old_dir->i_ctime = old_dir->i_mtime =
3047 new_dir->i_ctime = new_dir->i_mtime =
3048 inode->i_ctime = current_time(old_dir);
3049 return 0;
3050 }
3051
3052 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3053 struct dentry *dentry, const char *symname)
3054 {
3055 int error;
3056 int len;
3057 struct inode *inode;
3058 struct page *page;
3059
3060 len = strlen(symname) + 1;
3061 if (len > PAGE_SIZE)
3062 return -ENAMETOOLONG;
3063
3064 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3065 VM_NORESERVE);
3066 if (!inode)
3067 return -ENOSPC;
3068
3069 error = security_inode_init_security(inode, dir, &dentry->d_name,
3070 shmem_initxattrs, NULL);
3071 if (error && error != -EOPNOTSUPP) {
3072 iput(inode);
3073 return error;
3074 }
3075
3076 inode->i_size = len-1;
3077 if (len <= SHORT_SYMLINK_LEN) {
3078 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3079 if (!inode->i_link) {
3080 iput(inode);
3081 return -ENOMEM;
3082 }
3083 inode->i_op = &shmem_short_symlink_operations;
3084 } else {
3085 inode_nohighmem(inode);
3086 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3087 if (error) {
3088 iput(inode);
3089 return error;
3090 }
3091 inode->i_mapping->a_ops = &shmem_aops;
3092 inode->i_op = &shmem_symlink_inode_operations;
3093 memcpy(page_address(page), symname, len);
3094 SetPageUptodate(page);
3095 set_page_dirty(page);
3096 unlock_page(page);
3097 put_page(page);
3098 }
3099 dir->i_size += BOGO_DIRENT_SIZE;
3100 dir->i_ctime = dir->i_mtime = current_time(dir);
3101 d_instantiate(dentry, inode);
3102 dget(dentry);
3103 return 0;
3104 }
3105
3106 static void shmem_put_link(void *arg)
3107 {
3108 mark_page_accessed(arg);
3109 put_page(arg);
3110 }
3111
3112 static const char *shmem_get_link(struct dentry *dentry,
3113 struct inode *inode,
3114 struct delayed_call *done)
3115 {
3116 struct page *page = NULL;
3117 int error;
3118 if (!dentry) {
3119 page = find_get_page(inode->i_mapping, 0);
3120 if (!page)
3121 return ERR_PTR(-ECHILD);
3122 if (!PageUptodate(page)) {
3123 put_page(page);
3124 return ERR_PTR(-ECHILD);
3125 }
3126 } else {
3127 error = shmem_getpage(inode, 0, &page, SGP_READ);
3128 if (error)
3129 return ERR_PTR(error);
3130 unlock_page(page);
3131 }
3132 set_delayed_call(done, shmem_put_link, page);
3133 return page_address(page);
3134 }
3135
3136 #ifdef CONFIG_TMPFS_XATTR
3137 /*
3138 * Superblocks without xattr inode operations may get some security.* xattr
3139 * support from the LSM "for free". As soon as we have any other xattrs
3140 * like ACLs, we also need to implement the security.* handlers at
3141 * filesystem level, though.
3142 */
3143
3144 /*
3145 * Callback for security_inode_init_security() for acquiring xattrs.
3146 */
3147 static int shmem_initxattrs(struct inode *inode,
3148 const struct xattr *xattr_array,
3149 void *fs_info)
3150 {
3151 struct shmem_inode_info *info = SHMEM_I(inode);
3152 const struct xattr *xattr;
3153 struct simple_xattr *new_xattr;
3154 size_t len;
3155
3156 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3157 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3158 if (!new_xattr)
3159 return -ENOMEM;
3160
3161 len = strlen(xattr->name) + 1;
3162 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3163 GFP_KERNEL);
3164 if (!new_xattr->name) {
3165 kvfree(new_xattr);
3166 return -ENOMEM;
3167 }
3168
3169 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3170 XATTR_SECURITY_PREFIX_LEN);
3171 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3172 xattr->name, len);
3173
3174 simple_xattr_list_add(&info->xattrs, new_xattr);
3175 }
3176
3177 return 0;
3178 }
3179
3180 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3181 struct dentry *unused, struct inode *inode,
3182 const char *name, void *buffer, size_t size)
3183 {
3184 struct shmem_inode_info *info = SHMEM_I(inode);
3185
3186 name = xattr_full_name(handler, name);
3187 return simple_xattr_get(&info->xattrs, name, buffer, size);
3188 }
3189
3190 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3191 struct user_namespace *mnt_userns,
3192 struct dentry *unused, struct inode *inode,
3193 const char *name, const void *value,
3194 size_t size, int flags)
3195 {
3196 struct shmem_inode_info *info = SHMEM_I(inode);
3197
3198 name = xattr_full_name(handler, name);
3199 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3200 }
3201
3202 static const struct xattr_handler shmem_security_xattr_handler = {
3203 .prefix = XATTR_SECURITY_PREFIX,
3204 .get = shmem_xattr_handler_get,
3205 .set = shmem_xattr_handler_set,
3206 };
3207
3208 static const struct xattr_handler shmem_trusted_xattr_handler = {
3209 .prefix = XATTR_TRUSTED_PREFIX,
3210 .get = shmem_xattr_handler_get,
3211 .set = shmem_xattr_handler_set,
3212 };
3213
3214 static const struct xattr_handler *shmem_xattr_handlers[] = {
3215 #ifdef CONFIG_TMPFS_POSIX_ACL
3216 &posix_acl_access_xattr_handler,
3217 &posix_acl_default_xattr_handler,
3218 #endif
3219 &shmem_security_xattr_handler,
3220 &shmem_trusted_xattr_handler,
3221 NULL
3222 };
3223
3224 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3225 {
3226 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3227 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3228 }
3229 #endif /* CONFIG_TMPFS_XATTR */
3230
3231 static const struct inode_operations shmem_short_symlink_operations = {
3232 .get_link = simple_get_link,
3233 #ifdef CONFIG_TMPFS_XATTR
3234 .listxattr = shmem_listxattr,
3235 #endif
3236 };
3237
3238 static const struct inode_operations shmem_symlink_inode_operations = {
3239 .get_link = shmem_get_link,
3240 #ifdef CONFIG_TMPFS_XATTR
3241 .listxattr = shmem_listxattr,
3242 #endif
3243 };
3244
3245 static struct dentry *shmem_get_parent(struct dentry *child)
3246 {
3247 return ERR_PTR(-ESTALE);
3248 }
3249
3250 static int shmem_match(struct inode *ino, void *vfh)
3251 {
3252 __u32 *fh = vfh;
3253 __u64 inum = fh[2];
3254 inum = (inum << 32) | fh[1];
3255 return ino->i_ino == inum && fh[0] == ino->i_generation;
3256 }
3257
3258 /* Find any alias of inode, but prefer a hashed alias */
3259 static struct dentry *shmem_find_alias(struct inode *inode)
3260 {
3261 struct dentry *alias = d_find_alias(inode);
3262
3263 return alias ?: d_find_any_alias(inode);
3264 }
3265
3266
3267 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3268 struct fid *fid, int fh_len, int fh_type)
3269 {
3270 struct inode *inode;
3271 struct dentry *dentry = NULL;
3272 u64 inum;
3273
3274 if (fh_len < 3)
3275 return NULL;
3276
3277 inum = fid->raw[2];
3278 inum = (inum << 32) | fid->raw[1];
3279
3280 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3281 shmem_match, fid->raw);
3282 if (inode) {
3283 dentry = shmem_find_alias(inode);
3284 iput(inode);
3285 }
3286
3287 return dentry;
3288 }
3289
3290 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3291 struct inode *parent)
3292 {
3293 if (*len < 3) {
3294 *len = 3;
3295 return FILEID_INVALID;
3296 }
3297
3298 if (inode_unhashed(inode)) {
3299 /* Unfortunately insert_inode_hash is not idempotent,
3300 * so as we hash inodes here rather than at creation
3301 * time, we need a lock to ensure we only try
3302 * to do it once
3303 */
3304 static DEFINE_SPINLOCK(lock);
3305 spin_lock(&lock);
3306 if (inode_unhashed(inode))
3307 __insert_inode_hash(inode,
3308 inode->i_ino + inode->i_generation);
3309 spin_unlock(&lock);
3310 }
3311
3312 fh[0] = inode->i_generation;
3313 fh[1] = inode->i_ino;
3314 fh[2] = ((__u64)inode->i_ino) >> 32;
3315
3316 *len = 3;
3317 return 1;
3318 }
3319
3320 static const struct export_operations shmem_export_ops = {
3321 .get_parent = shmem_get_parent,
3322 .encode_fh = shmem_encode_fh,
3323 .fh_to_dentry = shmem_fh_to_dentry,
3324 };
3325
3326 enum shmem_param {
3327 Opt_gid,
3328 Opt_huge,
3329 Opt_mode,
3330 Opt_mpol,
3331 Opt_nr_blocks,
3332 Opt_nr_inodes,
3333 Opt_size,
3334 Opt_uid,
3335 Opt_inode32,
3336 Opt_inode64,
3337 };
3338
3339 static const struct constant_table shmem_param_enums_huge[] = {
3340 {"never", SHMEM_HUGE_NEVER },
3341 {"always", SHMEM_HUGE_ALWAYS },
3342 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3343 {"advise", SHMEM_HUGE_ADVISE },
3344 {}
3345 };
3346
3347 const struct fs_parameter_spec shmem_fs_parameters[] = {
3348 fsparam_u32 ("gid", Opt_gid),
3349 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3350 fsparam_u32oct("mode", Opt_mode),
3351 fsparam_string("mpol", Opt_mpol),
3352 fsparam_string("nr_blocks", Opt_nr_blocks),
3353 fsparam_string("nr_inodes", Opt_nr_inodes),
3354 fsparam_string("size", Opt_size),
3355 fsparam_u32 ("uid", Opt_uid),
3356 fsparam_flag ("inode32", Opt_inode32),
3357 fsparam_flag ("inode64", Opt_inode64),
3358 {}
3359 };
3360
3361 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3362 {
3363 struct shmem_options *ctx = fc->fs_private;
3364 struct fs_parse_result result;
3365 unsigned long long size;
3366 char *rest;
3367 int opt;
3368
3369 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3370 if (opt < 0)
3371 return opt;
3372
3373 switch (opt) {
3374 case Opt_size:
3375 size = memparse(param->string, &rest);
3376 if (*rest == '%') {
3377 size <<= PAGE_SHIFT;
3378 size *= totalram_pages();
3379 do_div(size, 100);
3380 rest++;
3381 }
3382 if (*rest)
3383 goto bad_value;
3384 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3385 ctx->seen |= SHMEM_SEEN_BLOCKS;
3386 break;
3387 case Opt_nr_blocks:
3388 ctx->blocks = memparse(param->string, &rest);
3389 if (*rest)
3390 goto bad_value;
3391 ctx->seen |= SHMEM_SEEN_BLOCKS;
3392 break;
3393 case Opt_nr_inodes:
3394 ctx->inodes = memparse(param->string, &rest);
3395 if (*rest)
3396 goto bad_value;
3397 ctx->seen |= SHMEM_SEEN_INODES;
3398 break;
3399 case Opt_mode:
3400 ctx->mode = result.uint_32 & 07777;
3401 break;
3402 case Opt_uid:
3403 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3404 if (!uid_valid(ctx->uid))
3405 goto bad_value;
3406 break;
3407 case Opt_gid:
3408 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3409 if (!gid_valid(ctx->gid))
3410 goto bad_value;
3411 break;
3412 case Opt_huge:
3413 ctx->huge = result.uint_32;
3414 if (ctx->huge != SHMEM_HUGE_NEVER &&
3415 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3416 has_transparent_hugepage()))
3417 goto unsupported_parameter;
3418 ctx->seen |= SHMEM_SEEN_HUGE;
3419 break;
3420 case Opt_mpol:
3421 if (IS_ENABLED(CONFIG_NUMA)) {
3422 mpol_put(ctx->mpol);
3423 ctx->mpol = NULL;
3424 if (mpol_parse_str(param->string, &ctx->mpol))
3425 goto bad_value;
3426 break;
3427 }
3428 goto unsupported_parameter;
3429 case Opt_inode32:
3430 ctx->full_inums = false;
3431 ctx->seen |= SHMEM_SEEN_INUMS;
3432 break;
3433 case Opt_inode64:
3434 if (sizeof(ino_t) < 8) {
3435 return invalfc(fc,
3436 "Cannot use inode64 with <64bit inums in kernel\n");
3437 }
3438 ctx->full_inums = true;
3439 ctx->seen |= SHMEM_SEEN_INUMS;
3440 break;
3441 }
3442 return 0;
3443
3444 unsupported_parameter:
3445 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3446 bad_value:
3447 return invalfc(fc, "Bad value for '%s'", param->key);
3448 }
3449
3450 static int shmem_parse_options(struct fs_context *fc, void *data)
3451 {
3452 char *options = data;
3453
3454 if (options) {
3455 int err = security_sb_eat_lsm_opts(options, &fc->security);
3456 if (err)
3457 return err;
3458 }
3459
3460 while (options != NULL) {
3461 char *this_char = options;
3462 for (;;) {
3463 /*
3464 * NUL-terminate this option: unfortunately,
3465 * mount options form a comma-separated list,
3466 * but mpol's nodelist may also contain commas.
3467 */
3468 options = strchr(options, ',');
3469 if (options == NULL)
3470 break;
3471 options++;
3472 if (!isdigit(*options)) {
3473 options[-1] = '\0';
3474 break;
3475 }
3476 }
3477 if (*this_char) {
3478 char *value = strchr(this_char, '=');
3479 size_t len = 0;
3480 int err;
3481
3482 if (value) {
3483 *value++ = '\0';
3484 len = strlen(value);
3485 }
3486 err = vfs_parse_fs_string(fc, this_char, value, len);
3487 if (err < 0)
3488 return err;
3489 }
3490 }
3491 return 0;
3492 }
3493
3494 /*
3495 * Reconfigure a shmem filesystem.
3496 *
3497 * Note that we disallow change from limited->unlimited blocks/inodes while any
3498 * are in use; but we must separately disallow unlimited->limited, because in
3499 * that case we have no record of how much is already in use.
3500 */
3501 static int shmem_reconfigure(struct fs_context *fc)
3502 {
3503 struct shmem_options *ctx = fc->fs_private;
3504 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3505 unsigned long inodes;
3506 struct mempolicy *mpol = NULL;
3507 const char *err;
3508
3509 raw_spin_lock(&sbinfo->stat_lock);
3510 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3511 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3512 if (!sbinfo->max_blocks) {
3513 err = "Cannot retroactively limit size";
3514 goto out;
3515 }
3516 if (percpu_counter_compare(&sbinfo->used_blocks,
3517 ctx->blocks) > 0) {
3518 err = "Too small a size for current use";
3519 goto out;
3520 }
3521 }
3522 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3523 if (!sbinfo->max_inodes) {
3524 err = "Cannot retroactively limit inodes";
3525 goto out;
3526 }
3527 if (ctx->inodes < inodes) {
3528 err = "Too few inodes for current use";
3529 goto out;
3530 }
3531 }
3532
3533 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3534 sbinfo->next_ino > UINT_MAX) {
3535 err = "Current inum too high to switch to 32-bit inums";
3536 goto out;
3537 }
3538
3539 if (ctx->seen & SHMEM_SEEN_HUGE)
3540 sbinfo->huge = ctx->huge;
3541 if (ctx->seen & SHMEM_SEEN_INUMS)
3542 sbinfo->full_inums = ctx->full_inums;
3543 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3544 sbinfo->max_blocks = ctx->blocks;
3545 if (ctx->seen & SHMEM_SEEN_INODES) {
3546 sbinfo->max_inodes = ctx->inodes;
3547 sbinfo->free_inodes = ctx->inodes - inodes;
3548 }
3549
3550 /*
3551 * Preserve previous mempolicy unless mpol remount option was specified.
3552 */
3553 if (ctx->mpol) {
3554 mpol = sbinfo->mpol;
3555 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3556 ctx->mpol = NULL;
3557 }
3558 raw_spin_unlock(&sbinfo->stat_lock);
3559 mpol_put(mpol);
3560 return 0;
3561 out:
3562 raw_spin_unlock(&sbinfo->stat_lock);
3563 return invalfc(fc, "%s", err);
3564 }
3565
3566 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3567 {
3568 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3569
3570 if (sbinfo->max_blocks != shmem_default_max_blocks())
3571 seq_printf(seq, ",size=%luk",
3572 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3573 if (sbinfo->max_inodes != shmem_default_max_inodes())
3574 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3575 if (sbinfo->mode != (0777 | S_ISVTX))
3576 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3577 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3578 seq_printf(seq, ",uid=%u",
3579 from_kuid_munged(&init_user_ns, sbinfo->uid));
3580 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3581 seq_printf(seq, ",gid=%u",
3582 from_kgid_munged(&init_user_ns, sbinfo->gid));
3583
3584 /*
3585 * Showing inode{64,32} might be useful even if it's the system default,
3586 * since then people don't have to resort to checking both here and
3587 * /proc/config.gz to confirm 64-bit inums were successfully applied
3588 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3589 *
3590 * We hide it when inode64 isn't the default and we are using 32-bit
3591 * inodes, since that probably just means the feature isn't even under
3592 * consideration.
3593 *
3594 * As such:
3595 *
3596 * +-----------------+-----------------+
3597 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3598 * +------------------+-----------------+-----------------+
3599 * | full_inums=true | show | show |
3600 * | full_inums=false | show | hide |
3601 * +------------------+-----------------+-----------------+
3602 *
3603 */
3604 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3605 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3606 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3607 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3608 if (sbinfo->huge)
3609 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3610 #endif
3611 shmem_show_mpol(seq, sbinfo->mpol);
3612 return 0;
3613 }
3614
3615 #endif /* CONFIG_TMPFS */
3616
3617 static void shmem_put_super(struct super_block *sb)
3618 {
3619 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3620
3621 free_percpu(sbinfo->ino_batch);
3622 percpu_counter_destroy(&sbinfo->used_blocks);
3623 mpol_put(sbinfo->mpol);
3624 kfree(sbinfo);
3625 sb->s_fs_info = NULL;
3626 }
3627
3628 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3629 {
3630 struct shmem_options *ctx = fc->fs_private;
3631 struct inode *inode;
3632 struct shmem_sb_info *sbinfo;
3633
3634 /* Round up to L1_CACHE_BYTES to resist false sharing */
3635 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3636 L1_CACHE_BYTES), GFP_KERNEL);
3637 if (!sbinfo)
3638 return -ENOMEM;
3639
3640 sb->s_fs_info = sbinfo;
3641
3642 #ifdef CONFIG_TMPFS
3643 /*
3644 * Per default we only allow half of the physical ram per
3645 * tmpfs instance, limiting inodes to one per page of lowmem;
3646 * but the internal instance is left unlimited.
3647 */
3648 if (!(sb->s_flags & SB_KERNMOUNT)) {
3649 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3650 ctx->blocks = shmem_default_max_blocks();
3651 if (!(ctx->seen & SHMEM_SEEN_INODES))
3652 ctx->inodes = shmem_default_max_inodes();
3653 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3654 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3655 } else {
3656 sb->s_flags |= SB_NOUSER;
3657 }
3658 sb->s_export_op = &shmem_export_ops;
3659 sb->s_flags |= SB_NOSEC;
3660 #else
3661 sb->s_flags |= SB_NOUSER;
3662 #endif
3663 sbinfo->max_blocks = ctx->blocks;
3664 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3665 if (sb->s_flags & SB_KERNMOUNT) {
3666 sbinfo->ino_batch = alloc_percpu(ino_t);
3667 if (!sbinfo->ino_batch)
3668 goto failed;
3669 }
3670 sbinfo->uid = ctx->uid;
3671 sbinfo->gid = ctx->gid;
3672 sbinfo->full_inums = ctx->full_inums;
3673 sbinfo->mode = ctx->mode;
3674 sbinfo->huge = ctx->huge;
3675 sbinfo->mpol = ctx->mpol;
3676 ctx->mpol = NULL;
3677
3678 raw_spin_lock_init(&sbinfo->stat_lock);
3679 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3680 goto failed;
3681 spin_lock_init(&sbinfo->shrinklist_lock);
3682 INIT_LIST_HEAD(&sbinfo->shrinklist);
3683
3684 sb->s_maxbytes = MAX_LFS_FILESIZE;
3685 sb->s_blocksize = PAGE_SIZE;
3686 sb->s_blocksize_bits = PAGE_SHIFT;
3687 sb->s_magic = TMPFS_MAGIC;
3688 sb->s_op = &shmem_ops;
3689 sb->s_time_gran = 1;
3690 #ifdef CONFIG_TMPFS_XATTR
3691 sb->s_xattr = shmem_xattr_handlers;
3692 #endif
3693 #ifdef CONFIG_TMPFS_POSIX_ACL
3694 sb->s_flags |= SB_POSIXACL;
3695 #endif
3696 uuid_gen(&sb->s_uuid);
3697
3698 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3699 if (!inode)
3700 goto failed;
3701 inode->i_uid = sbinfo->uid;
3702 inode->i_gid = sbinfo->gid;
3703 sb->s_root = d_make_root(inode);
3704 if (!sb->s_root)
3705 goto failed;
3706 return 0;
3707
3708 failed:
3709 shmem_put_super(sb);
3710 return -ENOMEM;
3711 }
3712
3713 static int shmem_get_tree(struct fs_context *fc)
3714 {
3715 return get_tree_nodev(fc, shmem_fill_super);
3716 }
3717
3718 static void shmem_free_fc(struct fs_context *fc)
3719 {
3720 struct shmem_options *ctx = fc->fs_private;
3721
3722 if (ctx) {
3723 mpol_put(ctx->mpol);
3724 kfree(ctx);
3725 }
3726 }
3727
3728 static const struct fs_context_operations shmem_fs_context_ops = {
3729 .free = shmem_free_fc,
3730 .get_tree = shmem_get_tree,
3731 #ifdef CONFIG_TMPFS
3732 .parse_monolithic = shmem_parse_options,
3733 .parse_param = shmem_parse_one,
3734 .reconfigure = shmem_reconfigure,
3735 #endif
3736 };
3737
3738 static struct kmem_cache *shmem_inode_cachep;
3739
3740 static struct inode *shmem_alloc_inode(struct super_block *sb)
3741 {
3742 struct shmem_inode_info *info;
3743 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3744 if (!info)
3745 return NULL;
3746 return &info->vfs_inode;
3747 }
3748
3749 static void shmem_free_in_core_inode(struct inode *inode)
3750 {
3751 if (S_ISLNK(inode->i_mode))
3752 kfree(inode->i_link);
3753 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3754 }
3755
3756 static void shmem_destroy_inode(struct inode *inode)
3757 {
3758 if (S_ISREG(inode->i_mode))
3759 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3760 }
3761
3762 static void shmem_init_inode(void *foo)
3763 {
3764 struct shmem_inode_info *info = foo;
3765 inode_init_once(&info->vfs_inode);
3766 }
3767
3768 static void shmem_init_inodecache(void)
3769 {
3770 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3771 sizeof(struct shmem_inode_info),
3772 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3773 }
3774
3775 static void shmem_destroy_inodecache(void)
3776 {
3777 kmem_cache_destroy(shmem_inode_cachep);
3778 }
3779
3780 const struct address_space_operations shmem_aops = {
3781 .writepage = shmem_writepage,
3782 .set_page_dirty = __set_page_dirty_no_writeback,
3783 #ifdef CONFIG_TMPFS
3784 .write_begin = shmem_write_begin,
3785 .write_end = shmem_write_end,
3786 #endif
3787 #ifdef CONFIG_MIGRATION
3788 .migratepage = migrate_page,
3789 #endif
3790 .error_remove_page = generic_error_remove_page,
3791 };
3792 EXPORT_SYMBOL(shmem_aops);
3793
3794 static const struct file_operations shmem_file_operations = {
3795 .mmap = shmem_mmap,
3796 .get_unmapped_area = shmem_get_unmapped_area,
3797 #ifdef CONFIG_TMPFS
3798 .llseek = shmem_file_llseek,
3799 .read_iter = shmem_file_read_iter,
3800 .write_iter = generic_file_write_iter,
3801 .fsync = noop_fsync,
3802 .splice_read = generic_file_splice_read,
3803 .splice_write = iter_file_splice_write,
3804 .fallocate = shmem_fallocate,
3805 #endif
3806 };
3807
3808 static const struct inode_operations shmem_inode_operations = {
3809 .getattr = shmem_getattr,
3810 .setattr = shmem_setattr,
3811 #ifdef CONFIG_TMPFS_XATTR
3812 .listxattr = shmem_listxattr,
3813 .set_acl = simple_set_acl,
3814 #endif
3815 };
3816
3817 static const struct inode_operations shmem_dir_inode_operations = {
3818 #ifdef CONFIG_TMPFS
3819 .create = shmem_create,
3820 .lookup = simple_lookup,
3821 .link = shmem_link,
3822 .unlink = shmem_unlink,
3823 .symlink = shmem_symlink,
3824 .mkdir = shmem_mkdir,
3825 .rmdir = shmem_rmdir,
3826 .mknod = shmem_mknod,
3827 .rename = shmem_rename2,
3828 .tmpfile = shmem_tmpfile,
3829 #endif
3830 #ifdef CONFIG_TMPFS_XATTR
3831 .listxattr = shmem_listxattr,
3832 #endif
3833 #ifdef CONFIG_TMPFS_POSIX_ACL
3834 .setattr = shmem_setattr,
3835 .set_acl = simple_set_acl,
3836 #endif
3837 };
3838
3839 static const struct inode_operations shmem_special_inode_operations = {
3840 #ifdef CONFIG_TMPFS_XATTR
3841 .listxattr = shmem_listxattr,
3842 #endif
3843 #ifdef CONFIG_TMPFS_POSIX_ACL
3844 .setattr = shmem_setattr,
3845 .set_acl = simple_set_acl,
3846 #endif
3847 };
3848
3849 static const struct super_operations shmem_ops = {
3850 .alloc_inode = shmem_alloc_inode,
3851 .free_inode = shmem_free_in_core_inode,
3852 .destroy_inode = shmem_destroy_inode,
3853 #ifdef CONFIG_TMPFS
3854 .statfs = shmem_statfs,
3855 .show_options = shmem_show_options,
3856 #endif
3857 .evict_inode = shmem_evict_inode,
3858 .drop_inode = generic_delete_inode,
3859 .put_super = shmem_put_super,
3860 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3861 .nr_cached_objects = shmem_unused_huge_count,
3862 .free_cached_objects = shmem_unused_huge_scan,
3863 #endif
3864 };
3865
3866 static const struct vm_operations_struct shmem_vm_ops = {
3867 .fault = shmem_fault,
3868 .map_pages = filemap_map_pages,
3869 #ifdef CONFIG_NUMA
3870 .set_policy = shmem_set_policy,
3871 .get_policy = shmem_get_policy,
3872 #endif
3873 };
3874
3875 int shmem_init_fs_context(struct fs_context *fc)
3876 {
3877 struct shmem_options *ctx;
3878
3879 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3880 if (!ctx)
3881 return -ENOMEM;
3882
3883 ctx->mode = 0777 | S_ISVTX;
3884 ctx->uid = current_fsuid();
3885 ctx->gid = current_fsgid();
3886
3887 fc->fs_private = ctx;
3888 fc->ops = &shmem_fs_context_ops;
3889 return 0;
3890 }
3891
3892 static struct file_system_type shmem_fs_type = {
3893 .owner = THIS_MODULE,
3894 .name = "tmpfs",
3895 .init_fs_context = shmem_init_fs_context,
3896 #ifdef CONFIG_TMPFS
3897 .parameters = shmem_fs_parameters,
3898 #endif
3899 .kill_sb = kill_litter_super,
3900 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3901 };
3902
3903 int __init shmem_init(void)
3904 {
3905 int error;
3906
3907 shmem_init_inodecache();
3908
3909 error = register_filesystem(&shmem_fs_type);
3910 if (error) {
3911 pr_err("Could not register tmpfs\n");
3912 goto out2;
3913 }
3914
3915 shm_mnt = kern_mount(&shmem_fs_type);
3916 if (IS_ERR(shm_mnt)) {
3917 error = PTR_ERR(shm_mnt);
3918 pr_err("Could not kern_mount tmpfs\n");
3919 goto out1;
3920 }
3921
3922 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3923 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3924 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3925 else
3926 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3927 #endif
3928 return 0;
3929
3930 out1:
3931 unregister_filesystem(&shmem_fs_type);
3932 out2:
3933 shmem_destroy_inodecache();
3934 shm_mnt = ERR_PTR(error);
3935 return error;
3936 }
3937
3938 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3939 static ssize_t shmem_enabled_show(struct kobject *kobj,
3940 struct kobj_attribute *attr, char *buf)
3941 {
3942 static const int values[] = {
3943 SHMEM_HUGE_ALWAYS,
3944 SHMEM_HUGE_WITHIN_SIZE,
3945 SHMEM_HUGE_ADVISE,
3946 SHMEM_HUGE_NEVER,
3947 SHMEM_HUGE_DENY,
3948 SHMEM_HUGE_FORCE,
3949 };
3950 int len = 0;
3951 int i;
3952
3953 for (i = 0; i < ARRAY_SIZE(values); i++) {
3954 len += sysfs_emit_at(buf, len,
3955 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3956 i ? " " : "",
3957 shmem_format_huge(values[i]));
3958 }
3959
3960 len += sysfs_emit_at(buf, len, "\n");
3961
3962 return len;
3963 }
3964
3965 static ssize_t shmem_enabled_store(struct kobject *kobj,
3966 struct kobj_attribute *attr, const char *buf, size_t count)
3967 {
3968 char tmp[16];
3969 int huge;
3970
3971 if (count + 1 > sizeof(tmp))
3972 return -EINVAL;
3973 memcpy(tmp, buf, count);
3974 tmp[count] = '\0';
3975 if (count && tmp[count - 1] == '\n')
3976 tmp[count - 1] = '\0';
3977
3978 huge = shmem_parse_huge(tmp);
3979 if (huge == -EINVAL)
3980 return -EINVAL;
3981 if (!has_transparent_hugepage() &&
3982 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3983 return -EINVAL;
3984
3985 shmem_huge = huge;
3986 if (shmem_huge > SHMEM_HUGE_DENY)
3987 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3988 return count;
3989 }
3990
3991 struct kobj_attribute shmem_enabled_attr =
3992 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3993 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3994
3995 #else /* !CONFIG_SHMEM */
3996
3997 /*
3998 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3999 *
4000 * This is intended for small system where the benefits of the full
4001 * shmem code (swap-backed and resource-limited) are outweighed by
4002 * their complexity. On systems without swap this code should be
4003 * effectively equivalent, but much lighter weight.
4004 */
4005
4006 static struct file_system_type shmem_fs_type = {
4007 .name = "tmpfs",
4008 .init_fs_context = ramfs_init_fs_context,
4009 .parameters = ramfs_fs_parameters,
4010 .kill_sb = kill_litter_super,
4011 .fs_flags = FS_USERNS_MOUNT,
4012 };
4013
4014 int __init shmem_init(void)
4015 {
4016 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4017
4018 shm_mnt = kern_mount(&shmem_fs_type);
4019 BUG_ON(IS_ERR(shm_mnt));
4020
4021 return 0;
4022 }
4023
4024 int shmem_unuse(unsigned int type, bool frontswap,
4025 unsigned long *fs_pages_to_unuse)
4026 {
4027 return 0;
4028 }
4029
4030 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4031 {
4032 return 0;
4033 }
4034
4035 void shmem_unlock_mapping(struct address_space *mapping)
4036 {
4037 }
4038
4039 #ifdef CONFIG_MMU
4040 unsigned long shmem_get_unmapped_area(struct file *file,
4041 unsigned long addr, unsigned long len,
4042 unsigned long pgoff, unsigned long flags)
4043 {
4044 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4045 }
4046 #endif
4047
4048 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4049 {
4050 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4051 }
4052 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4053
4054 #define shmem_vm_ops generic_file_vm_ops
4055 #define shmem_file_operations ramfs_file_operations
4056 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4057 #define shmem_acct_size(flags, size) 0
4058 #define shmem_unacct_size(flags, size) do {} while (0)
4059
4060 #endif /* CONFIG_SHMEM */
4061
4062 /* common code */
4063
4064 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4065 unsigned long flags, unsigned int i_flags)
4066 {
4067 struct inode *inode;
4068 struct file *res;
4069
4070 if (IS_ERR(mnt))
4071 return ERR_CAST(mnt);
4072
4073 if (size < 0 || size > MAX_LFS_FILESIZE)
4074 return ERR_PTR(-EINVAL);
4075
4076 if (shmem_acct_size(flags, size))
4077 return ERR_PTR(-ENOMEM);
4078
4079 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4080 flags);
4081 if (unlikely(!inode)) {
4082 shmem_unacct_size(flags, size);
4083 return ERR_PTR(-ENOSPC);
4084 }
4085 inode->i_flags |= i_flags;
4086 inode->i_size = size;
4087 clear_nlink(inode); /* It is unlinked */
4088 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4089 if (!IS_ERR(res))
4090 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4091 &shmem_file_operations);
4092 if (IS_ERR(res))
4093 iput(inode);
4094 return res;
4095 }
4096
4097 /**
4098 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4099 * kernel internal. There will be NO LSM permission checks against the
4100 * underlying inode. So users of this interface must do LSM checks at a
4101 * higher layer. The users are the big_key and shm implementations. LSM
4102 * checks are provided at the key or shm level rather than the inode.
4103 * @name: name for dentry (to be seen in /proc/<pid>/maps
4104 * @size: size to be set for the file
4105 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4106 */
4107 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4108 {
4109 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4110 }
4111
4112 /**
4113 * shmem_file_setup - get an unlinked file living in tmpfs
4114 * @name: name for dentry (to be seen in /proc/<pid>/maps
4115 * @size: size to be set for the file
4116 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4117 */
4118 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4119 {
4120 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4121 }
4122 EXPORT_SYMBOL_GPL(shmem_file_setup);
4123
4124 /**
4125 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4126 * @mnt: the tmpfs mount where the file will be created
4127 * @name: name for dentry (to be seen in /proc/<pid>/maps
4128 * @size: size to be set for the file
4129 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4130 */
4131 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4132 loff_t size, unsigned long flags)
4133 {
4134 return __shmem_file_setup(mnt, name, size, flags, 0);
4135 }
4136 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4137
4138 /**
4139 * shmem_zero_setup - setup a shared anonymous mapping
4140 * @vma: the vma to be mmapped is prepared by do_mmap
4141 */
4142 int shmem_zero_setup(struct vm_area_struct *vma)
4143 {
4144 struct file *file;
4145 loff_t size = vma->vm_end - vma->vm_start;
4146
4147 /*
4148 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4149 * between XFS directory reading and selinux: since this file is only
4150 * accessible to the user through its mapping, use S_PRIVATE flag to
4151 * bypass file security, in the same way as shmem_kernel_file_setup().
4152 */
4153 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4154 if (IS_ERR(file))
4155 return PTR_ERR(file);
4156
4157 if (vma->vm_file)
4158 fput(vma->vm_file);
4159 vma->vm_file = file;
4160 vma->vm_ops = &shmem_vm_ops;
4161
4162 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4163 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4164 (vma->vm_end & HPAGE_PMD_MASK)) {
4165 khugepaged_enter(vma, vma->vm_flags);
4166 }
4167
4168 return 0;
4169 }
4170 EXPORT_SYMBOL_GPL(shmem_zero_setup);
4171
4172 /**
4173 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4174 * @mapping: the page's address_space
4175 * @index: the page index
4176 * @gfp: the page allocator flags to use if allocating
4177 *
4178 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4179 * with any new page allocations done using the specified allocation flags.
4180 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4181 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4182 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4183 *
4184 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4185 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4186 */
4187 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4188 pgoff_t index, gfp_t gfp)
4189 {
4190 #ifdef CONFIG_SHMEM
4191 struct inode *inode = mapping->host;
4192 struct page *page;
4193 int error;
4194
4195 BUG_ON(!shmem_mapping(mapping));
4196 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4197 gfp, NULL, NULL, NULL);
4198 if (error)
4199 page = ERR_PTR(error);
4200 else
4201 unlock_page(page);
4202 return page;
4203 #else
4204 /*
4205 * The tiny !SHMEM case uses ramfs without swap
4206 */
4207 return read_cache_page_gfp(mapping, index, gfp);
4208 #endif
4209 }
4210 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);