]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/shmem.c
tmpfs: copy truncate_inode_pages_range
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/swap.h>
32
33 static struct vfsmount *shm_mnt;
34
35 #ifdef CONFIG_SHMEM
36 /*
37 * This virtual memory filesystem is heavily based on the ramfs. It
38 * extends ramfs by the ability to use swap and honor resource limits
39 * which makes it a completely usable filesystem.
40 */
41
42 #include <linux/xattr.h>
43 #include <linux/exportfs.h>
44 #include <linux/posix_acl.h>
45 #include <linux/generic_acl.h>
46 #include <linux/mman.h>
47 #include <linux/string.h>
48 #include <linux/slab.h>
49 #include <linux/backing-dev.h>
50 #include <linux/shmem_fs.h>
51 #include <linux/writeback.h>
52 #include <linux/blkdev.h>
53 #include <linux/pagevec.h>
54 #include <linux/percpu_counter.h>
55 #include <linux/splice.h>
56 #include <linux/security.h>
57 #include <linux/swapops.h>
58 #include <linux/mempolicy.h>
59 #include <linux/namei.h>
60 #include <linux/ctype.h>
61 #include <linux/migrate.h>
62 #include <linux/highmem.h>
63 #include <linux/seq_file.h>
64 #include <linux/magic.h>
65
66 #include <asm/uaccess.h>
67 #include <asm/pgtable.h>
68
69 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
70 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
71
72 /* Pretend that each entry is of this size in directory's i_size */
73 #define BOGO_DIRENT_SIZE 20
74
75 struct shmem_xattr {
76 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
77 char *name; /* xattr name */
78 size_t size;
79 char value[0];
80 };
81
82 /* Flag allocation requirements to shmem_getpage */
83 enum sgp_type {
84 SGP_READ, /* don't exceed i_size, don't allocate page */
85 SGP_CACHE, /* don't exceed i_size, may allocate page */
86 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
87 SGP_WRITE, /* may exceed i_size, may allocate page */
88 };
89
90 #ifdef CONFIG_TMPFS
91 static unsigned long shmem_default_max_blocks(void)
92 {
93 return totalram_pages / 2;
94 }
95
96 static unsigned long shmem_default_max_inodes(void)
97 {
98 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
99 }
100 #endif
101
102 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
103 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
104
105 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
106 struct page **pagep, enum sgp_type sgp, int *fault_type)
107 {
108 return shmem_getpage_gfp(inode, index, pagep, sgp,
109 mapping_gfp_mask(inode->i_mapping), fault_type);
110 }
111
112 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
113 {
114 return sb->s_fs_info;
115 }
116
117 /*
118 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
119 * for shared memory and for shared anonymous (/dev/zero) mappings
120 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
121 * consistent with the pre-accounting of private mappings ...
122 */
123 static inline int shmem_acct_size(unsigned long flags, loff_t size)
124 {
125 return (flags & VM_NORESERVE) ?
126 0 : security_vm_enough_memory_kern(VM_ACCT(size));
127 }
128
129 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
130 {
131 if (!(flags & VM_NORESERVE))
132 vm_unacct_memory(VM_ACCT(size));
133 }
134
135 /*
136 * ... whereas tmpfs objects are accounted incrementally as
137 * pages are allocated, in order to allow huge sparse files.
138 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
139 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
140 */
141 static inline int shmem_acct_block(unsigned long flags)
142 {
143 return (flags & VM_NORESERVE) ?
144 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
145 }
146
147 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
148 {
149 if (flags & VM_NORESERVE)
150 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
151 }
152
153 static const struct super_operations shmem_ops;
154 static const struct address_space_operations shmem_aops;
155 static const struct file_operations shmem_file_operations;
156 static const struct inode_operations shmem_inode_operations;
157 static const struct inode_operations shmem_dir_inode_operations;
158 static const struct inode_operations shmem_special_inode_operations;
159 static const struct vm_operations_struct shmem_vm_ops;
160
161 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
162 .ra_pages = 0, /* No readahead */
163 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
164 };
165
166 static LIST_HEAD(shmem_swaplist);
167 static DEFINE_MUTEX(shmem_swaplist_mutex);
168
169 static void shmem_free_blocks(struct inode *inode, long pages)
170 {
171 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
172 if (sbinfo->max_blocks) {
173 percpu_counter_add(&sbinfo->used_blocks, -pages);
174 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
175 }
176 }
177
178 static int shmem_reserve_inode(struct super_block *sb)
179 {
180 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
181 if (sbinfo->max_inodes) {
182 spin_lock(&sbinfo->stat_lock);
183 if (!sbinfo->free_inodes) {
184 spin_unlock(&sbinfo->stat_lock);
185 return -ENOSPC;
186 }
187 sbinfo->free_inodes--;
188 spin_unlock(&sbinfo->stat_lock);
189 }
190 return 0;
191 }
192
193 static void shmem_free_inode(struct super_block *sb)
194 {
195 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
196 if (sbinfo->max_inodes) {
197 spin_lock(&sbinfo->stat_lock);
198 sbinfo->free_inodes++;
199 spin_unlock(&sbinfo->stat_lock);
200 }
201 }
202
203 /**
204 * shmem_recalc_inode - recalculate the block usage of an inode
205 * @inode: inode to recalc
206 *
207 * We have to calculate the free blocks since the mm can drop
208 * undirtied hole pages behind our back.
209 *
210 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
211 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
212 *
213 * It has to be called with the spinlock held.
214 */
215 static void shmem_recalc_inode(struct inode *inode)
216 {
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 long freed;
219
220 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
221 if (freed > 0) {
222 info->alloced -= freed;
223 shmem_unacct_blocks(info->flags, freed);
224 shmem_free_blocks(inode, freed);
225 }
226 }
227
228 static void shmem_put_swap(struct shmem_inode_info *info, pgoff_t index,
229 swp_entry_t swap)
230 {
231 if (index < SHMEM_NR_DIRECT)
232 info->i_direct[index] = swap;
233 }
234
235 static swp_entry_t shmem_get_swap(struct shmem_inode_info *info, pgoff_t index)
236 {
237 return (index < SHMEM_NR_DIRECT) ?
238 info->i_direct[index] : (swp_entry_t){0};
239 }
240
241 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
242 {
243 struct address_space *mapping = inode->i_mapping;
244 struct shmem_inode_info *info = SHMEM_I(inode);
245 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
246 unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
247 pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
248 struct pagevec pvec;
249 pgoff_t index;
250 swp_entry_t swap;
251 int i;
252
253 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
254
255 pagevec_init(&pvec, 0);
256 index = start;
257 while (index <= end && pagevec_lookup(&pvec, mapping, index,
258 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
259 mem_cgroup_uncharge_start();
260 for (i = 0; i < pagevec_count(&pvec); i++) {
261 struct page *page = pvec.pages[i];
262
263 /* We rely upon deletion not changing page->index */
264 index = page->index;
265 if (index > end)
266 break;
267
268 if (!trylock_page(page))
269 continue;
270 WARN_ON(page->index != index);
271 if (PageWriteback(page)) {
272 unlock_page(page);
273 continue;
274 }
275 truncate_inode_page(mapping, page);
276 unlock_page(page);
277 }
278 pagevec_release(&pvec);
279 mem_cgroup_uncharge_end();
280 cond_resched();
281 index++;
282 }
283
284 if (partial) {
285 struct page *page = NULL;
286 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
287 if (page) {
288 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
289 set_page_dirty(page);
290 unlock_page(page);
291 page_cache_release(page);
292 }
293 }
294
295 index = start;
296 for ( ; ; ) {
297 cond_resched();
298 if (!pagevec_lookup(&pvec, mapping, index,
299 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
300 if (index == start)
301 break;
302 index = start;
303 continue;
304 }
305 if (index == start && pvec.pages[0]->index > end) {
306 pagevec_release(&pvec);
307 break;
308 }
309 mem_cgroup_uncharge_start();
310 for (i = 0; i < pagevec_count(&pvec); i++) {
311 struct page *page = pvec.pages[i];
312
313 /* We rely upon deletion not changing page->index */
314 index = page->index;
315 if (index > end)
316 break;
317
318 lock_page(page);
319 WARN_ON(page->index != index);
320 wait_on_page_writeback(page);
321 truncate_inode_page(mapping, page);
322 unlock_page(page);
323 }
324 pagevec_release(&pvec);
325 mem_cgroup_uncharge_end();
326 index++;
327 }
328
329 if (end > SHMEM_NR_DIRECT)
330 end = SHMEM_NR_DIRECT;
331
332 spin_lock(&info->lock);
333 for (index = start; index < end; index++) {
334 swap = shmem_get_swap(info, index);
335 if (swap.val) {
336 free_swap_and_cache(swap);
337 shmem_put_swap(info, index, (swp_entry_t){0});
338 info->swapped--;
339 }
340 }
341
342 if (mapping->nrpages) {
343 spin_unlock(&info->lock);
344 /*
345 * A page may have meanwhile sneaked in from swap.
346 */
347 truncate_inode_pages_range(mapping, lstart, lend);
348 spin_lock(&info->lock);
349 }
350
351 shmem_recalc_inode(inode);
352 spin_unlock(&info->lock);
353
354 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
355 }
356 EXPORT_SYMBOL_GPL(shmem_truncate_range);
357
358 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
359 {
360 struct inode *inode = dentry->d_inode;
361 int error;
362
363 error = inode_change_ok(inode, attr);
364 if (error)
365 return error;
366
367 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
368 loff_t oldsize = inode->i_size;
369 loff_t newsize = attr->ia_size;
370
371 if (newsize != oldsize) {
372 i_size_write(inode, newsize);
373 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
374 }
375 if (newsize < oldsize) {
376 loff_t holebegin = round_up(newsize, PAGE_SIZE);
377 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
378 shmem_truncate_range(inode, newsize, (loff_t)-1);
379 /* unmap again to remove racily COWed private pages */
380 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
381 }
382 }
383
384 setattr_copy(inode, attr);
385 #ifdef CONFIG_TMPFS_POSIX_ACL
386 if (attr->ia_valid & ATTR_MODE)
387 error = generic_acl_chmod(inode);
388 #endif
389 return error;
390 }
391
392 static void shmem_evict_inode(struct inode *inode)
393 {
394 struct shmem_inode_info *info = SHMEM_I(inode);
395 struct shmem_xattr *xattr, *nxattr;
396
397 if (inode->i_mapping->a_ops == &shmem_aops) {
398 shmem_unacct_size(info->flags, inode->i_size);
399 inode->i_size = 0;
400 shmem_truncate_range(inode, 0, (loff_t)-1);
401 if (!list_empty(&info->swaplist)) {
402 mutex_lock(&shmem_swaplist_mutex);
403 list_del_init(&info->swaplist);
404 mutex_unlock(&shmem_swaplist_mutex);
405 }
406 }
407
408 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
409 kfree(xattr->name);
410 kfree(xattr);
411 }
412 BUG_ON(inode->i_blocks);
413 shmem_free_inode(inode->i_sb);
414 end_writeback(inode);
415 }
416
417 static int shmem_unuse_inode(struct shmem_inode_info *info,
418 swp_entry_t swap, struct page *page)
419 {
420 struct address_space *mapping = info->vfs_inode.i_mapping;
421 pgoff_t index;
422 int error;
423
424 for (index = 0; index < SHMEM_NR_DIRECT; index++)
425 if (shmem_get_swap(info, index).val == swap.val)
426 goto found;
427 return 0;
428 found:
429 spin_lock(&info->lock);
430 if (shmem_get_swap(info, index).val != swap.val) {
431 spin_unlock(&info->lock);
432 return 0;
433 }
434
435 /*
436 * Move _head_ to start search for next from here.
437 * But be careful: shmem_evict_inode checks list_empty without taking
438 * mutex, and there's an instant in list_move_tail when info->swaplist
439 * would appear empty, if it were the only one on shmem_swaplist.
440 */
441 if (shmem_swaplist.next != &info->swaplist)
442 list_move_tail(&shmem_swaplist, &info->swaplist);
443
444 /*
445 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
446 * but also to hold up shmem_evict_inode(): so inode cannot be freed
447 * beneath us (pagelock doesn't help until the page is in pagecache).
448 */
449 error = add_to_page_cache_locked(page, mapping, index, GFP_NOWAIT);
450 /* which does mem_cgroup_uncharge_cache_page on error */
451
452 if (error != -ENOMEM) {
453 delete_from_swap_cache(page);
454 set_page_dirty(page);
455 shmem_put_swap(info, index, (swp_entry_t){0});
456 info->swapped--;
457 swap_free(swap);
458 error = 1; /* not an error, but entry was found */
459 }
460 spin_unlock(&info->lock);
461 return error;
462 }
463
464 /*
465 * shmem_unuse() search for an eventually swapped out shmem page.
466 */
467 int shmem_unuse(swp_entry_t swap, struct page *page)
468 {
469 struct list_head *this, *next;
470 struct shmem_inode_info *info;
471 int found = 0;
472 int error;
473
474 /*
475 * Charge page using GFP_KERNEL while we can wait, before taking
476 * the shmem_swaplist_mutex which might hold up shmem_writepage().
477 * Charged back to the user (not to caller) when swap account is used.
478 * add_to_page_cache() will be called with GFP_NOWAIT.
479 */
480 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
481 if (error)
482 goto out;
483 /*
484 * Try to preload while we can wait, to not make a habit of
485 * draining atomic reserves; but don't latch on to this cpu,
486 * it's okay if sometimes we get rescheduled after this.
487 */
488 error = radix_tree_preload(GFP_KERNEL);
489 if (error)
490 goto uncharge;
491 radix_tree_preload_end();
492
493 mutex_lock(&shmem_swaplist_mutex);
494 list_for_each_safe(this, next, &shmem_swaplist) {
495 info = list_entry(this, struct shmem_inode_info, swaplist);
496 if (!info->swapped) {
497 spin_lock(&info->lock);
498 if (!info->swapped)
499 list_del_init(&info->swaplist);
500 spin_unlock(&info->lock);
501 }
502 if (info->swapped)
503 found = shmem_unuse_inode(info, swap, page);
504 cond_resched();
505 if (found)
506 break;
507 }
508 mutex_unlock(&shmem_swaplist_mutex);
509
510 uncharge:
511 if (!found)
512 mem_cgroup_uncharge_cache_page(page);
513 if (found < 0)
514 error = found;
515 out:
516 unlock_page(page);
517 page_cache_release(page);
518 return error;
519 }
520
521 /*
522 * Move the page from the page cache to the swap cache.
523 */
524 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
525 {
526 struct shmem_inode_info *info;
527 swp_entry_t swap, oswap;
528 struct address_space *mapping;
529 pgoff_t index;
530 struct inode *inode;
531
532 BUG_ON(!PageLocked(page));
533 mapping = page->mapping;
534 index = page->index;
535 inode = mapping->host;
536 info = SHMEM_I(inode);
537 if (info->flags & VM_LOCKED)
538 goto redirty;
539 if (!total_swap_pages)
540 goto redirty;
541
542 /*
543 * shmem_backing_dev_info's capabilities prevent regular writeback or
544 * sync from ever calling shmem_writepage; but a stacking filesystem
545 * might use ->writepage of its underlying filesystem, in which case
546 * tmpfs should write out to swap only in response to memory pressure,
547 * and not for the writeback threads or sync.
548 */
549 if (!wbc->for_reclaim) {
550 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
551 goto redirty;
552 }
553
554 /*
555 * Just for this patch, we have a toy implementation,
556 * which can swap out only the first SHMEM_NR_DIRECT pages:
557 * for simple demonstration of where we need to think about swap.
558 */
559 if (index >= SHMEM_NR_DIRECT)
560 goto redirty;
561
562 swap = get_swap_page();
563 if (!swap.val)
564 goto redirty;
565
566 /*
567 * Add inode to shmem_unuse()'s list of swapped-out inodes,
568 * if it's not already there. Do it now because we cannot take
569 * mutex while holding spinlock, and must do so before the page
570 * is moved to swap cache, when its pagelock no longer protects
571 * the inode from eviction. But don't unlock the mutex until
572 * we've taken the spinlock, because shmem_unuse_inode() will
573 * prune a !swapped inode from the swaplist under both locks.
574 */
575 mutex_lock(&shmem_swaplist_mutex);
576 if (list_empty(&info->swaplist))
577 list_add_tail(&info->swaplist, &shmem_swaplist);
578
579 spin_lock(&info->lock);
580 mutex_unlock(&shmem_swaplist_mutex);
581
582 oswap = shmem_get_swap(info, index);
583 if (oswap.val) {
584 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
585 free_swap_and_cache(oswap);
586 shmem_put_swap(info, index, (swp_entry_t){0});
587 info->swapped--;
588 }
589 shmem_recalc_inode(inode);
590
591 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
592 delete_from_page_cache(page);
593 shmem_put_swap(info, index, swap);
594 info->swapped++;
595 swap_shmem_alloc(swap);
596 spin_unlock(&info->lock);
597 BUG_ON(page_mapped(page));
598 swap_writepage(page, wbc);
599 return 0;
600 }
601
602 spin_unlock(&info->lock);
603 swapcache_free(swap, NULL);
604 redirty:
605 set_page_dirty(page);
606 if (wbc->for_reclaim)
607 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
608 unlock_page(page);
609 return 0;
610 }
611
612 #ifdef CONFIG_NUMA
613 #ifdef CONFIG_TMPFS
614 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
615 {
616 char buffer[64];
617
618 if (!mpol || mpol->mode == MPOL_DEFAULT)
619 return; /* show nothing */
620
621 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
622
623 seq_printf(seq, ",mpol=%s", buffer);
624 }
625
626 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
627 {
628 struct mempolicy *mpol = NULL;
629 if (sbinfo->mpol) {
630 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
631 mpol = sbinfo->mpol;
632 mpol_get(mpol);
633 spin_unlock(&sbinfo->stat_lock);
634 }
635 return mpol;
636 }
637 #endif /* CONFIG_TMPFS */
638
639 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
640 struct shmem_inode_info *info, pgoff_t index)
641 {
642 struct mempolicy mpol, *spol;
643 struct vm_area_struct pvma;
644
645 spol = mpol_cond_copy(&mpol,
646 mpol_shared_policy_lookup(&info->policy, index));
647
648 /* Create a pseudo vma that just contains the policy */
649 pvma.vm_start = 0;
650 pvma.vm_pgoff = index;
651 pvma.vm_ops = NULL;
652 pvma.vm_policy = spol;
653 return swapin_readahead(swap, gfp, &pvma, 0);
654 }
655
656 static struct page *shmem_alloc_page(gfp_t gfp,
657 struct shmem_inode_info *info, pgoff_t index)
658 {
659 struct vm_area_struct pvma;
660
661 /* Create a pseudo vma that just contains the policy */
662 pvma.vm_start = 0;
663 pvma.vm_pgoff = index;
664 pvma.vm_ops = NULL;
665 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
666
667 /*
668 * alloc_page_vma() will drop the shared policy reference
669 */
670 return alloc_page_vma(gfp, &pvma, 0);
671 }
672 #else /* !CONFIG_NUMA */
673 #ifdef CONFIG_TMPFS
674 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
675 {
676 }
677 #endif /* CONFIG_TMPFS */
678
679 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
680 struct shmem_inode_info *info, pgoff_t index)
681 {
682 return swapin_readahead(swap, gfp, NULL, 0);
683 }
684
685 static inline struct page *shmem_alloc_page(gfp_t gfp,
686 struct shmem_inode_info *info, pgoff_t index)
687 {
688 return alloc_page(gfp);
689 }
690 #endif /* CONFIG_NUMA */
691
692 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
693 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
694 {
695 return NULL;
696 }
697 #endif
698
699 /*
700 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
701 *
702 * If we allocate a new one we do not mark it dirty. That's up to the
703 * vm. If we swap it in we mark it dirty since we also free the swap
704 * entry since a page cannot live in both the swap and page cache
705 */
706 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
707 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
708 {
709 struct address_space *mapping = inode->i_mapping;
710 struct shmem_inode_info *info = SHMEM_I(inode);
711 struct shmem_sb_info *sbinfo;
712 struct page *page;
713 struct page *prealloc_page = NULL;
714 swp_entry_t swap;
715 int error;
716
717 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
718 return -EFBIG;
719 repeat:
720 page = find_lock_page(mapping, index);
721 if (page) {
722 /*
723 * Once we can get the page lock, it must be uptodate:
724 * if there were an error in reading back from swap,
725 * the page would not be inserted into the filecache.
726 */
727 BUG_ON(!PageUptodate(page));
728 goto done;
729 }
730
731 /*
732 * Try to preload while we can wait, to not make a habit of
733 * draining atomic reserves; but don't latch on to this cpu.
734 */
735 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
736 if (error)
737 goto out;
738 radix_tree_preload_end();
739
740 if (sgp != SGP_READ && !prealloc_page) {
741 prealloc_page = shmem_alloc_page(gfp, info, index);
742 if (prealloc_page) {
743 SetPageSwapBacked(prealloc_page);
744 if (mem_cgroup_cache_charge(prealloc_page,
745 current->mm, GFP_KERNEL)) {
746 page_cache_release(prealloc_page);
747 prealloc_page = NULL;
748 }
749 }
750 }
751
752 spin_lock(&info->lock);
753 shmem_recalc_inode(inode);
754 swap = shmem_get_swap(info, index);
755 if (swap.val) {
756 /* Look it up and read it in.. */
757 page = lookup_swap_cache(swap);
758 if (!page) {
759 spin_unlock(&info->lock);
760 /* here we actually do the io */
761 if (fault_type)
762 *fault_type |= VM_FAULT_MAJOR;
763 page = shmem_swapin(swap, gfp, info, index);
764 if (!page) {
765 swp_entry_t nswap = shmem_get_swap(info, index);
766 if (nswap.val == swap.val) {
767 error = -ENOMEM;
768 goto out;
769 }
770 goto repeat;
771 }
772 wait_on_page_locked(page);
773 page_cache_release(page);
774 goto repeat;
775 }
776
777 /* We have to do this with page locked to prevent races */
778 if (!trylock_page(page)) {
779 spin_unlock(&info->lock);
780 wait_on_page_locked(page);
781 page_cache_release(page);
782 goto repeat;
783 }
784 if (PageWriteback(page)) {
785 spin_unlock(&info->lock);
786 wait_on_page_writeback(page);
787 unlock_page(page);
788 page_cache_release(page);
789 goto repeat;
790 }
791 if (!PageUptodate(page)) {
792 spin_unlock(&info->lock);
793 unlock_page(page);
794 page_cache_release(page);
795 error = -EIO;
796 goto out;
797 }
798
799 error = add_to_page_cache_locked(page, mapping,
800 index, GFP_NOWAIT);
801 if (error) {
802 spin_unlock(&info->lock);
803 if (error == -ENOMEM) {
804 /*
805 * reclaim from proper memory cgroup and
806 * call memcg's OOM if needed.
807 */
808 error = mem_cgroup_shmem_charge_fallback(
809 page, current->mm, gfp);
810 if (error) {
811 unlock_page(page);
812 page_cache_release(page);
813 goto out;
814 }
815 }
816 unlock_page(page);
817 page_cache_release(page);
818 goto repeat;
819 }
820
821 delete_from_swap_cache(page);
822 shmem_put_swap(info, index, (swp_entry_t){0});
823 info->swapped--;
824 spin_unlock(&info->lock);
825 set_page_dirty(page);
826 swap_free(swap);
827
828 } else if (sgp == SGP_READ) {
829 page = find_get_page(mapping, index);
830 if (page && !trylock_page(page)) {
831 spin_unlock(&info->lock);
832 wait_on_page_locked(page);
833 page_cache_release(page);
834 goto repeat;
835 }
836 spin_unlock(&info->lock);
837
838 } else if (prealloc_page) {
839 sbinfo = SHMEM_SB(inode->i_sb);
840 if (sbinfo->max_blocks) {
841 if (percpu_counter_compare(&sbinfo->used_blocks,
842 sbinfo->max_blocks) >= 0 ||
843 shmem_acct_block(info->flags))
844 goto nospace;
845 percpu_counter_inc(&sbinfo->used_blocks);
846 inode->i_blocks += BLOCKS_PER_PAGE;
847 } else if (shmem_acct_block(info->flags))
848 goto nospace;
849
850 page = prealloc_page;
851 prealloc_page = NULL;
852
853 swap = shmem_get_swap(info, index);
854 if (swap.val)
855 mem_cgroup_uncharge_cache_page(page);
856 else
857 error = add_to_page_cache_lru(page, mapping,
858 index, GFP_NOWAIT);
859 /*
860 * At add_to_page_cache_lru() failure,
861 * uncharge will be done automatically.
862 */
863 if (swap.val || error) {
864 shmem_unacct_blocks(info->flags, 1);
865 shmem_free_blocks(inode, 1);
866 spin_unlock(&info->lock);
867 page_cache_release(page);
868 goto repeat;
869 }
870
871 info->alloced++;
872 spin_unlock(&info->lock);
873 clear_highpage(page);
874 flush_dcache_page(page);
875 SetPageUptodate(page);
876 if (sgp == SGP_DIRTY)
877 set_page_dirty(page);
878
879 } else {
880 spin_unlock(&info->lock);
881 error = -ENOMEM;
882 goto out;
883 }
884 done:
885 *pagep = page;
886 error = 0;
887 out:
888 if (prealloc_page) {
889 mem_cgroup_uncharge_cache_page(prealloc_page);
890 page_cache_release(prealloc_page);
891 }
892 return error;
893
894 nospace:
895 /*
896 * Perhaps the page was brought in from swap between find_lock_page
897 * and taking info->lock? We allow for that at add_to_page_cache_lru,
898 * but must also avoid reporting a spurious ENOSPC while working on a
899 * full tmpfs.
900 */
901 page = find_get_page(mapping, index);
902 spin_unlock(&info->lock);
903 if (page) {
904 page_cache_release(page);
905 goto repeat;
906 }
907 error = -ENOSPC;
908 goto out;
909 }
910
911 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
912 {
913 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
914 int error;
915 int ret = VM_FAULT_LOCKED;
916
917 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
918 return VM_FAULT_SIGBUS;
919
920 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
921 if (error)
922 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
923
924 if (ret & VM_FAULT_MAJOR) {
925 count_vm_event(PGMAJFAULT);
926 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
927 }
928 return ret;
929 }
930
931 #ifdef CONFIG_NUMA
932 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
933 {
934 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
935 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
936 }
937
938 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
939 unsigned long addr)
940 {
941 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
942 pgoff_t index;
943
944 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
945 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
946 }
947 #endif
948
949 int shmem_lock(struct file *file, int lock, struct user_struct *user)
950 {
951 struct inode *inode = file->f_path.dentry->d_inode;
952 struct shmem_inode_info *info = SHMEM_I(inode);
953 int retval = -ENOMEM;
954
955 spin_lock(&info->lock);
956 if (lock && !(info->flags & VM_LOCKED)) {
957 if (!user_shm_lock(inode->i_size, user))
958 goto out_nomem;
959 info->flags |= VM_LOCKED;
960 mapping_set_unevictable(file->f_mapping);
961 }
962 if (!lock && (info->flags & VM_LOCKED) && user) {
963 user_shm_unlock(inode->i_size, user);
964 info->flags &= ~VM_LOCKED;
965 mapping_clear_unevictable(file->f_mapping);
966 scan_mapping_unevictable_pages(file->f_mapping);
967 }
968 retval = 0;
969
970 out_nomem:
971 spin_unlock(&info->lock);
972 return retval;
973 }
974
975 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
976 {
977 file_accessed(file);
978 vma->vm_ops = &shmem_vm_ops;
979 vma->vm_flags |= VM_CAN_NONLINEAR;
980 return 0;
981 }
982
983 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
984 int mode, dev_t dev, unsigned long flags)
985 {
986 struct inode *inode;
987 struct shmem_inode_info *info;
988 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
989
990 if (shmem_reserve_inode(sb))
991 return NULL;
992
993 inode = new_inode(sb);
994 if (inode) {
995 inode->i_ino = get_next_ino();
996 inode_init_owner(inode, dir, mode);
997 inode->i_blocks = 0;
998 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
999 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1000 inode->i_generation = get_seconds();
1001 info = SHMEM_I(inode);
1002 memset(info, 0, (char *)inode - (char *)info);
1003 spin_lock_init(&info->lock);
1004 info->flags = flags & VM_NORESERVE;
1005 INIT_LIST_HEAD(&info->swaplist);
1006 INIT_LIST_HEAD(&info->xattr_list);
1007 cache_no_acl(inode);
1008
1009 switch (mode & S_IFMT) {
1010 default:
1011 inode->i_op = &shmem_special_inode_operations;
1012 init_special_inode(inode, mode, dev);
1013 break;
1014 case S_IFREG:
1015 inode->i_mapping->a_ops = &shmem_aops;
1016 inode->i_op = &shmem_inode_operations;
1017 inode->i_fop = &shmem_file_operations;
1018 mpol_shared_policy_init(&info->policy,
1019 shmem_get_sbmpol(sbinfo));
1020 break;
1021 case S_IFDIR:
1022 inc_nlink(inode);
1023 /* Some things misbehave if size == 0 on a directory */
1024 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1025 inode->i_op = &shmem_dir_inode_operations;
1026 inode->i_fop = &simple_dir_operations;
1027 break;
1028 case S_IFLNK:
1029 /*
1030 * Must not load anything in the rbtree,
1031 * mpol_free_shared_policy will not be called.
1032 */
1033 mpol_shared_policy_init(&info->policy, NULL);
1034 break;
1035 }
1036 } else
1037 shmem_free_inode(sb);
1038 return inode;
1039 }
1040
1041 #ifdef CONFIG_TMPFS
1042 static const struct inode_operations shmem_symlink_inode_operations;
1043 static const struct inode_operations shmem_symlink_inline_operations;
1044
1045 static int
1046 shmem_write_begin(struct file *file, struct address_space *mapping,
1047 loff_t pos, unsigned len, unsigned flags,
1048 struct page **pagep, void **fsdata)
1049 {
1050 struct inode *inode = mapping->host;
1051 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1052 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1053 }
1054
1055 static int
1056 shmem_write_end(struct file *file, struct address_space *mapping,
1057 loff_t pos, unsigned len, unsigned copied,
1058 struct page *page, void *fsdata)
1059 {
1060 struct inode *inode = mapping->host;
1061
1062 if (pos + copied > inode->i_size)
1063 i_size_write(inode, pos + copied);
1064
1065 set_page_dirty(page);
1066 unlock_page(page);
1067 page_cache_release(page);
1068
1069 return copied;
1070 }
1071
1072 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1073 {
1074 struct inode *inode = filp->f_path.dentry->d_inode;
1075 struct address_space *mapping = inode->i_mapping;
1076 pgoff_t index;
1077 unsigned long offset;
1078 enum sgp_type sgp = SGP_READ;
1079
1080 /*
1081 * Might this read be for a stacking filesystem? Then when reading
1082 * holes of a sparse file, we actually need to allocate those pages,
1083 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1084 */
1085 if (segment_eq(get_fs(), KERNEL_DS))
1086 sgp = SGP_DIRTY;
1087
1088 index = *ppos >> PAGE_CACHE_SHIFT;
1089 offset = *ppos & ~PAGE_CACHE_MASK;
1090
1091 for (;;) {
1092 struct page *page = NULL;
1093 pgoff_t end_index;
1094 unsigned long nr, ret;
1095 loff_t i_size = i_size_read(inode);
1096
1097 end_index = i_size >> PAGE_CACHE_SHIFT;
1098 if (index > end_index)
1099 break;
1100 if (index == end_index) {
1101 nr = i_size & ~PAGE_CACHE_MASK;
1102 if (nr <= offset)
1103 break;
1104 }
1105
1106 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1107 if (desc->error) {
1108 if (desc->error == -EINVAL)
1109 desc->error = 0;
1110 break;
1111 }
1112 if (page)
1113 unlock_page(page);
1114
1115 /*
1116 * We must evaluate after, since reads (unlike writes)
1117 * are called without i_mutex protection against truncate
1118 */
1119 nr = PAGE_CACHE_SIZE;
1120 i_size = i_size_read(inode);
1121 end_index = i_size >> PAGE_CACHE_SHIFT;
1122 if (index == end_index) {
1123 nr = i_size & ~PAGE_CACHE_MASK;
1124 if (nr <= offset) {
1125 if (page)
1126 page_cache_release(page);
1127 break;
1128 }
1129 }
1130 nr -= offset;
1131
1132 if (page) {
1133 /*
1134 * If users can be writing to this page using arbitrary
1135 * virtual addresses, take care about potential aliasing
1136 * before reading the page on the kernel side.
1137 */
1138 if (mapping_writably_mapped(mapping))
1139 flush_dcache_page(page);
1140 /*
1141 * Mark the page accessed if we read the beginning.
1142 */
1143 if (!offset)
1144 mark_page_accessed(page);
1145 } else {
1146 page = ZERO_PAGE(0);
1147 page_cache_get(page);
1148 }
1149
1150 /*
1151 * Ok, we have the page, and it's up-to-date, so
1152 * now we can copy it to user space...
1153 *
1154 * The actor routine returns how many bytes were actually used..
1155 * NOTE! This may not be the same as how much of a user buffer
1156 * we filled up (we may be padding etc), so we can only update
1157 * "pos" here (the actor routine has to update the user buffer
1158 * pointers and the remaining count).
1159 */
1160 ret = actor(desc, page, offset, nr);
1161 offset += ret;
1162 index += offset >> PAGE_CACHE_SHIFT;
1163 offset &= ~PAGE_CACHE_MASK;
1164
1165 page_cache_release(page);
1166 if (ret != nr || !desc->count)
1167 break;
1168
1169 cond_resched();
1170 }
1171
1172 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1173 file_accessed(filp);
1174 }
1175
1176 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1177 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1178 {
1179 struct file *filp = iocb->ki_filp;
1180 ssize_t retval;
1181 unsigned long seg;
1182 size_t count;
1183 loff_t *ppos = &iocb->ki_pos;
1184
1185 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1186 if (retval)
1187 return retval;
1188
1189 for (seg = 0; seg < nr_segs; seg++) {
1190 read_descriptor_t desc;
1191
1192 desc.written = 0;
1193 desc.arg.buf = iov[seg].iov_base;
1194 desc.count = iov[seg].iov_len;
1195 if (desc.count == 0)
1196 continue;
1197 desc.error = 0;
1198 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1199 retval += desc.written;
1200 if (desc.error) {
1201 retval = retval ?: desc.error;
1202 break;
1203 }
1204 if (desc.count > 0)
1205 break;
1206 }
1207 return retval;
1208 }
1209
1210 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1211 struct pipe_inode_info *pipe, size_t len,
1212 unsigned int flags)
1213 {
1214 struct address_space *mapping = in->f_mapping;
1215 struct inode *inode = mapping->host;
1216 unsigned int loff, nr_pages, req_pages;
1217 struct page *pages[PIPE_DEF_BUFFERS];
1218 struct partial_page partial[PIPE_DEF_BUFFERS];
1219 struct page *page;
1220 pgoff_t index, end_index;
1221 loff_t isize, left;
1222 int error, page_nr;
1223 struct splice_pipe_desc spd = {
1224 .pages = pages,
1225 .partial = partial,
1226 .flags = flags,
1227 .ops = &page_cache_pipe_buf_ops,
1228 .spd_release = spd_release_page,
1229 };
1230
1231 isize = i_size_read(inode);
1232 if (unlikely(*ppos >= isize))
1233 return 0;
1234
1235 left = isize - *ppos;
1236 if (unlikely(left < len))
1237 len = left;
1238
1239 if (splice_grow_spd(pipe, &spd))
1240 return -ENOMEM;
1241
1242 index = *ppos >> PAGE_CACHE_SHIFT;
1243 loff = *ppos & ~PAGE_CACHE_MASK;
1244 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1245 nr_pages = min(req_pages, pipe->buffers);
1246
1247 spd.nr_pages = find_get_pages_contig(mapping, index,
1248 nr_pages, spd.pages);
1249 index += spd.nr_pages;
1250 error = 0;
1251
1252 while (spd.nr_pages < nr_pages) {
1253 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1254 if (error)
1255 break;
1256 unlock_page(page);
1257 spd.pages[spd.nr_pages++] = page;
1258 index++;
1259 }
1260
1261 index = *ppos >> PAGE_CACHE_SHIFT;
1262 nr_pages = spd.nr_pages;
1263 spd.nr_pages = 0;
1264
1265 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1266 unsigned int this_len;
1267
1268 if (!len)
1269 break;
1270
1271 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1272 page = spd.pages[page_nr];
1273
1274 if (!PageUptodate(page) || page->mapping != mapping) {
1275 error = shmem_getpage(inode, index, &page,
1276 SGP_CACHE, NULL);
1277 if (error)
1278 break;
1279 unlock_page(page);
1280 page_cache_release(spd.pages[page_nr]);
1281 spd.pages[page_nr] = page;
1282 }
1283
1284 isize = i_size_read(inode);
1285 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1286 if (unlikely(!isize || index > end_index))
1287 break;
1288
1289 if (end_index == index) {
1290 unsigned int plen;
1291
1292 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1293 if (plen <= loff)
1294 break;
1295
1296 this_len = min(this_len, plen - loff);
1297 len = this_len;
1298 }
1299
1300 spd.partial[page_nr].offset = loff;
1301 spd.partial[page_nr].len = this_len;
1302 len -= this_len;
1303 loff = 0;
1304 spd.nr_pages++;
1305 index++;
1306 }
1307
1308 while (page_nr < nr_pages)
1309 page_cache_release(spd.pages[page_nr++]);
1310
1311 if (spd.nr_pages)
1312 error = splice_to_pipe(pipe, &spd);
1313
1314 splice_shrink_spd(pipe, &spd);
1315
1316 if (error > 0) {
1317 *ppos += error;
1318 file_accessed(in);
1319 }
1320 return error;
1321 }
1322
1323 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1324 {
1325 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1326
1327 buf->f_type = TMPFS_MAGIC;
1328 buf->f_bsize = PAGE_CACHE_SIZE;
1329 buf->f_namelen = NAME_MAX;
1330 if (sbinfo->max_blocks) {
1331 buf->f_blocks = sbinfo->max_blocks;
1332 buf->f_bavail =
1333 buf->f_bfree = sbinfo->max_blocks -
1334 percpu_counter_sum(&sbinfo->used_blocks);
1335 }
1336 if (sbinfo->max_inodes) {
1337 buf->f_files = sbinfo->max_inodes;
1338 buf->f_ffree = sbinfo->free_inodes;
1339 }
1340 /* else leave those fields 0 like simple_statfs */
1341 return 0;
1342 }
1343
1344 /*
1345 * File creation. Allocate an inode, and we're done..
1346 */
1347 static int
1348 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1349 {
1350 struct inode *inode;
1351 int error = -ENOSPC;
1352
1353 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1354 if (inode) {
1355 error = security_inode_init_security(inode, dir,
1356 &dentry->d_name, NULL,
1357 NULL, NULL);
1358 if (error) {
1359 if (error != -EOPNOTSUPP) {
1360 iput(inode);
1361 return error;
1362 }
1363 }
1364 #ifdef CONFIG_TMPFS_POSIX_ACL
1365 error = generic_acl_init(inode, dir);
1366 if (error) {
1367 iput(inode);
1368 return error;
1369 }
1370 #else
1371 error = 0;
1372 #endif
1373 dir->i_size += BOGO_DIRENT_SIZE;
1374 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1375 d_instantiate(dentry, inode);
1376 dget(dentry); /* Extra count - pin the dentry in core */
1377 }
1378 return error;
1379 }
1380
1381 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1382 {
1383 int error;
1384
1385 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1386 return error;
1387 inc_nlink(dir);
1388 return 0;
1389 }
1390
1391 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1392 struct nameidata *nd)
1393 {
1394 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1395 }
1396
1397 /*
1398 * Link a file..
1399 */
1400 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1401 {
1402 struct inode *inode = old_dentry->d_inode;
1403 int ret;
1404
1405 /*
1406 * No ordinary (disk based) filesystem counts links as inodes;
1407 * but each new link needs a new dentry, pinning lowmem, and
1408 * tmpfs dentries cannot be pruned until they are unlinked.
1409 */
1410 ret = shmem_reserve_inode(inode->i_sb);
1411 if (ret)
1412 goto out;
1413
1414 dir->i_size += BOGO_DIRENT_SIZE;
1415 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1416 inc_nlink(inode);
1417 ihold(inode); /* New dentry reference */
1418 dget(dentry); /* Extra pinning count for the created dentry */
1419 d_instantiate(dentry, inode);
1420 out:
1421 return ret;
1422 }
1423
1424 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1425 {
1426 struct inode *inode = dentry->d_inode;
1427
1428 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1429 shmem_free_inode(inode->i_sb);
1430
1431 dir->i_size -= BOGO_DIRENT_SIZE;
1432 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1433 drop_nlink(inode);
1434 dput(dentry); /* Undo the count from "create" - this does all the work */
1435 return 0;
1436 }
1437
1438 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1439 {
1440 if (!simple_empty(dentry))
1441 return -ENOTEMPTY;
1442
1443 drop_nlink(dentry->d_inode);
1444 drop_nlink(dir);
1445 return shmem_unlink(dir, dentry);
1446 }
1447
1448 /*
1449 * The VFS layer already does all the dentry stuff for rename,
1450 * we just have to decrement the usage count for the target if
1451 * it exists so that the VFS layer correctly free's it when it
1452 * gets overwritten.
1453 */
1454 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1455 {
1456 struct inode *inode = old_dentry->d_inode;
1457 int they_are_dirs = S_ISDIR(inode->i_mode);
1458
1459 if (!simple_empty(new_dentry))
1460 return -ENOTEMPTY;
1461
1462 if (new_dentry->d_inode) {
1463 (void) shmem_unlink(new_dir, new_dentry);
1464 if (they_are_dirs)
1465 drop_nlink(old_dir);
1466 } else if (they_are_dirs) {
1467 drop_nlink(old_dir);
1468 inc_nlink(new_dir);
1469 }
1470
1471 old_dir->i_size -= BOGO_DIRENT_SIZE;
1472 new_dir->i_size += BOGO_DIRENT_SIZE;
1473 old_dir->i_ctime = old_dir->i_mtime =
1474 new_dir->i_ctime = new_dir->i_mtime =
1475 inode->i_ctime = CURRENT_TIME;
1476 return 0;
1477 }
1478
1479 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1480 {
1481 int error;
1482 int len;
1483 struct inode *inode;
1484 struct page *page;
1485 char *kaddr;
1486 struct shmem_inode_info *info;
1487
1488 len = strlen(symname) + 1;
1489 if (len > PAGE_CACHE_SIZE)
1490 return -ENAMETOOLONG;
1491
1492 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1493 if (!inode)
1494 return -ENOSPC;
1495
1496 error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
1497 NULL, NULL);
1498 if (error) {
1499 if (error != -EOPNOTSUPP) {
1500 iput(inode);
1501 return error;
1502 }
1503 error = 0;
1504 }
1505
1506 info = SHMEM_I(inode);
1507 inode->i_size = len-1;
1508 if (len <= SHMEM_SYMLINK_INLINE_LEN) {
1509 /* do it inline */
1510 memcpy(info->inline_symlink, symname, len);
1511 inode->i_op = &shmem_symlink_inline_operations;
1512 } else {
1513 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1514 if (error) {
1515 iput(inode);
1516 return error;
1517 }
1518 inode->i_mapping->a_ops = &shmem_aops;
1519 inode->i_op = &shmem_symlink_inode_operations;
1520 kaddr = kmap_atomic(page, KM_USER0);
1521 memcpy(kaddr, symname, len);
1522 kunmap_atomic(kaddr, KM_USER0);
1523 set_page_dirty(page);
1524 unlock_page(page);
1525 page_cache_release(page);
1526 }
1527 dir->i_size += BOGO_DIRENT_SIZE;
1528 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1529 d_instantiate(dentry, inode);
1530 dget(dentry);
1531 return 0;
1532 }
1533
1534 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1535 {
1536 nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
1537 return NULL;
1538 }
1539
1540 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1541 {
1542 struct page *page = NULL;
1543 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1544 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1545 if (page)
1546 unlock_page(page);
1547 return page;
1548 }
1549
1550 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1551 {
1552 if (!IS_ERR(nd_get_link(nd))) {
1553 struct page *page = cookie;
1554 kunmap(page);
1555 mark_page_accessed(page);
1556 page_cache_release(page);
1557 }
1558 }
1559
1560 #ifdef CONFIG_TMPFS_XATTR
1561 /*
1562 * Superblocks without xattr inode operations may get some security.* xattr
1563 * support from the LSM "for free". As soon as we have any other xattrs
1564 * like ACLs, we also need to implement the security.* handlers at
1565 * filesystem level, though.
1566 */
1567
1568 static int shmem_xattr_get(struct dentry *dentry, const char *name,
1569 void *buffer, size_t size)
1570 {
1571 struct shmem_inode_info *info;
1572 struct shmem_xattr *xattr;
1573 int ret = -ENODATA;
1574
1575 info = SHMEM_I(dentry->d_inode);
1576
1577 spin_lock(&info->lock);
1578 list_for_each_entry(xattr, &info->xattr_list, list) {
1579 if (strcmp(name, xattr->name))
1580 continue;
1581
1582 ret = xattr->size;
1583 if (buffer) {
1584 if (size < xattr->size)
1585 ret = -ERANGE;
1586 else
1587 memcpy(buffer, xattr->value, xattr->size);
1588 }
1589 break;
1590 }
1591 spin_unlock(&info->lock);
1592 return ret;
1593 }
1594
1595 static int shmem_xattr_set(struct dentry *dentry, const char *name,
1596 const void *value, size_t size, int flags)
1597 {
1598 struct inode *inode = dentry->d_inode;
1599 struct shmem_inode_info *info = SHMEM_I(inode);
1600 struct shmem_xattr *xattr;
1601 struct shmem_xattr *new_xattr = NULL;
1602 size_t len;
1603 int err = 0;
1604
1605 /* value == NULL means remove */
1606 if (value) {
1607 /* wrap around? */
1608 len = sizeof(*new_xattr) + size;
1609 if (len <= sizeof(*new_xattr))
1610 return -ENOMEM;
1611
1612 new_xattr = kmalloc(len, GFP_KERNEL);
1613 if (!new_xattr)
1614 return -ENOMEM;
1615
1616 new_xattr->name = kstrdup(name, GFP_KERNEL);
1617 if (!new_xattr->name) {
1618 kfree(new_xattr);
1619 return -ENOMEM;
1620 }
1621
1622 new_xattr->size = size;
1623 memcpy(new_xattr->value, value, size);
1624 }
1625
1626 spin_lock(&info->lock);
1627 list_for_each_entry(xattr, &info->xattr_list, list) {
1628 if (!strcmp(name, xattr->name)) {
1629 if (flags & XATTR_CREATE) {
1630 xattr = new_xattr;
1631 err = -EEXIST;
1632 } else if (new_xattr) {
1633 list_replace(&xattr->list, &new_xattr->list);
1634 } else {
1635 list_del(&xattr->list);
1636 }
1637 goto out;
1638 }
1639 }
1640 if (flags & XATTR_REPLACE) {
1641 xattr = new_xattr;
1642 err = -ENODATA;
1643 } else {
1644 list_add(&new_xattr->list, &info->xattr_list);
1645 xattr = NULL;
1646 }
1647 out:
1648 spin_unlock(&info->lock);
1649 if (xattr)
1650 kfree(xattr->name);
1651 kfree(xattr);
1652 return err;
1653 }
1654
1655 static const struct xattr_handler *shmem_xattr_handlers[] = {
1656 #ifdef CONFIG_TMPFS_POSIX_ACL
1657 &generic_acl_access_handler,
1658 &generic_acl_default_handler,
1659 #endif
1660 NULL
1661 };
1662
1663 static int shmem_xattr_validate(const char *name)
1664 {
1665 struct { const char *prefix; size_t len; } arr[] = {
1666 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1667 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1668 };
1669 int i;
1670
1671 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1672 size_t preflen = arr[i].len;
1673 if (strncmp(name, arr[i].prefix, preflen) == 0) {
1674 if (!name[preflen])
1675 return -EINVAL;
1676 return 0;
1677 }
1678 }
1679 return -EOPNOTSUPP;
1680 }
1681
1682 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1683 void *buffer, size_t size)
1684 {
1685 int err;
1686
1687 /*
1688 * If this is a request for a synthetic attribute in the system.*
1689 * namespace use the generic infrastructure to resolve a handler
1690 * for it via sb->s_xattr.
1691 */
1692 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1693 return generic_getxattr(dentry, name, buffer, size);
1694
1695 err = shmem_xattr_validate(name);
1696 if (err)
1697 return err;
1698
1699 return shmem_xattr_get(dentry, name, buffer, size);
1700 }
1701
1702 static int shmem_setxattr(struct dentry *dentry, const char *name,
1703 const void *value, size_t size, int flags)
1704 {
1705 int err;
1706
1707 /*
1708 * If this is a request for a synthetic attribute in the system.*
1709 * namespace use the generic infrastructure to resolve a handler
1710 * for it via sb->s_xattr.
1711 */
1712 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1713 return generic_setxattr(dentry, name, value, size, flags);
1714
1715 err = shmem_xattr_validate(name);
1716 if (err)
1717 return err;
1718
1719 if (size == 0)
1720 value = ""; /* empty EA, do not remove */
1721
1722 return shmem_xattr_set(dentry, name, value, size, flags);
1723
1724 }
1725
1726 static int shmem_removexattr(struct dentry *dentry, const char *name)
1727 {
1728 int err;
1729
1730 /*
1731 * If this is a request for a synthetic attribute in the system.*
1732 * namespace use the generic infrastructure to resolve a handler
1733 * for it via sb->s_xattr.
1734 */
1735 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1736 return generic_removexattr(dentry, name);
1737
1738 err = shmem_xattr_validate(name);
1739 if (err)
1740 return err;
1741
1742 return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1743 }
1744
1745 static bool xattr_is_trusted(const char *name)
1746 {
1747 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1748 }
1749
1750 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1751 {
1752 bool trusted = capable(CAP_SYS_ADMIN);
1753 struct shmem_xattr *xattr;
1754 struct shmem_inode_info *info;
1755 size_t used = 0;
1756
1757 info = SHMEM_I(dentry->d_inode);
1758
1759 spin_lock(&info->lock);
1760 list_for_each_entry(xattr, &info->xattr_list, list) {
1761 size_t len;
1762
1763 /* skip "trusted." attributes for unprivileged callers */
1764 if (!trusted && xattr_is_trusted(xattr->name))
1765 continue;
1766
1767 len = strlen(xattr->name) + 1;
1768 used += len;
1769 if (buffer) {
1770 if (size < used) {
1771 used = -ERANGE;
1772 break;
1773 }
1774 memcpy(buffer, xattr->name, len);
1775 buffer += len;
1776 }
1777 }
1778 spin_unlock(&info->lock);
1779
1780 return used;
1781 }
1782 #endif /* CONFIG_TMPFS_XATTR */
1783
1784 static const struct inode_operations shmem_symlink_inline_operations = {
1785 .readlink = generic_readlink,
1786 .follow_link = shmem_follow_link_inline,
1787 #ifdef CONFIG_TMPFS_XATTR
1788 .setxattr = shmem_setxattr,
1789 .getxattr = shmem_getxattr,
1790 .listxattr = shmem_listxattr,
1791 .removexattr = shmem_removexattr,
1792 #endif
1793 };
1794
1795 static const struct inode_operations shmem_symlink_inode_operations = {
1796 .readlink = generic_readlink,
1797 .follow_link = shmem_follow_link,
1798 .put_link = shmem_put_link,
1799 #ifdef CONFIG_TMPFS_XATTR
1800 .setxattr = shmem_setxattr,
1801 .getxattr = shmem_getxattr,
1802 .listxattr = shmem_listxattr,
1803 .removexattr = shmem_removexattr,
1804 #endif
1805 };
1806
1807 static struct dentry *shmem_get_parent(struct dentry *child)
1808 {
1809 return ERR_PTR(-ESTALE);
1810 }
1811
1812 static int shmem_match(struct inode *ino, void *vfh)
1813 {
1814 __u32 *fh = vfh;
1815 __u64 inum = fh[2];
1816 inum = (inum << 32) | fh[1];
1817 return ino->i_ino == inum && fh[0] == ino->i_generation;
1818 }
1819
1820 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1821 struct fid *fid, int fh_len, int fh_type)
1822 {
1823 struct inode *inode;
1824 struct dentry *dentry = NULL;
1825 u64 inum = fid->raw[2];
1826 inum = (inum << 32) | fid->raw[1];
1827
1828 if (fh_len < 3)
1829 return NULL;
1830
1831 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1832 shmem_match, fid->raw);
1833 if (inode) {
1834 dentry = d_find_alias(inode);
1835 iput(inode);
1836 }
1837
1838 return dentry;
1839 }
1840
1841 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1842 int connectable)
1843 {
1844 struct inode *inode = dentry->d_inode;
1845
1846 if (*len < 3) {
1847 *len = 3;
1848 return 255;
1849 }
1850
1851 if (inode_unhashed(inode)) {
1852 /* Unfortunately insert_inode_hash is not idempotent,
1853 * so as we hash inodes here rather than at creation
1854 * time, we need a lock to ensure we only try
1855 * to do it once
1856 */
1857 static DEFINE_SPINLOCK(lock);
1858 spin_lock(&lock);
1859 if (inode_unhashed(inode))
1860 __insert_inode_hash(inode,
1861 inode->i_ino + inode->i_generation);
1862 spin_unlock(&lock);
1863 }
1864
1865 fh[0] = inode->i_generation;
1866 fh[1] = inode->i_ino;
1867 fh[2] = ((__u64)inode->i_ino) >> 32;
1868
1869 *len = 3;
1870 return 1;
1871 }
1872
1873 static const struct export_operations shmem_export_ops = {
1874 .get_parent = shmem_get_parent,
1875 .encode_fh = shmem_encode_fh,
1876 .fh_to_dentry = shmem_fh_to_dentry,
1877 };
1878
1879 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
1880 bool remount)
1881 {
1882 char *this_char, *value, *rest;
1883
1884 while (options != NULL) {
1885 this_char = options;
1886 for (;;) {
1887 /*
1888 * NUL-terminate this option: unfortunately,
1889 * mount options form a comma-separated list,
1890 * but mpol's nodelist may also contain commas.
1891 */
1892 options = strchr(options, ',');
1893 if (options == NULL)
1894 break;
1895 options++;
1896 if (!isdigit(*options)) {
1897 options[-1] = '\0';
1898 break;
1899 }
1900 }
1901 if (!*this_char)
1902 continue;
1903 if ((value = strchr(this_char,'=')) != NULL) {
1904 *value++ = 0;
1905 } else {
1906 printk(KERN_ERR
1907 "tmpfs: No value for mount option '%s'\n",
1908 this_char);
1909 return 1;
1910 }
1911
1912 if (!strcmp(this_char,"size")) {
1913 unsigned long long size;
1914 size = memparse(value,&rest);
1915 if (*rest == '%') {
1916 size <<= PAGE_SHIFT;
1917 size *= totalram_pages;
1918 do_div(size, 100);
1919 rest++;
1920 }
1921 if (*rest)
1922 goto bad_val;
1923 sbinfo->max_blocks =
1924 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1925 } else if (!strcmp(this_char,"nr_blocks")) {
1926 sbinfo->max_blocks = memparse(value, &rest);
1927 if (*rest)
1928 goto bad_val;
1929 } else if (!strcmp(this_char,"nr_inodes")) {
1930 sbinfo->max_inodes = memparse(value, &rest);
1931 if (*rest)
1932 goto bad_val;
1933 } else if (!strcmp(this_char,"mode")) {
1934 if (remount)
1935 continue;
1936 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1937 if (*rest)
1938 goto bad_val;
1939 } else if (!strcmp(this_char,"uid")) {
1940 if (remount)
1941 continue;
1942 sbinfo->uid = simple_strtoul(value, &rest, 0);
1943 if (*rest)
1944 goto bad_val;
1945 } else if (!strcmp(this_char,"gid")) {
1946 if (remount)
1947 continue;
1948 sbinfo->gid = simple_strtoul(value, &rest, 0);
1949 if (*rest)
1950 goto bad_val;
1951 } else if (!strcmp(this_char,"mpol")) {
1952 if (mpol_parse_str(value, &sbinfo->mpol, 1))
1953 goto bad_val;
1954 } else {
1955 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
1956 this_char);
1957 return 1;
1958 }
1959 }
1960 return 0;
1961
1962 bad_val:
1963 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
1964 value, this_char);
1965 return 1;
1966
1967 }
1968
1969 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
1970 {
1971 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1972 struct shmem_sb_info config = *sbinfo;
1973 unsigned long inodes;
1974 int error = -EINVAL;
1975
1976 if (shmem_parse_options(data, &config, true))
1977 return error;
1978
1979 spin_lock(&sbinfo->stat_lock);
1980 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
1981 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
1982 goto out;
1983 if (config.max_inodes < inodes)
1984 goto out;
1985 /*
1986 * Those tests also disallow limited->unlimited while any are in
1987 * use, so i_blocks will always be zero when max_blocks is zero;
1988 * but we must separately disallow unlimited->limited, because
1989 * in that case we have no record of how much is already in use.
1990 */
1991 if (config.max_blocks && !sbinfo->max_blocks)
1992 goto out;
1993 if (config.max_inodes && !sbinfo->max_inodes)
1994 goto out;
1995
1996 error = 0;
1997 sbinfo->max_blocks = config.max_blocks;
1998 sbinfo->max_inodes = config.max_inodes;
1999 sbinfo->free_inodes = config.max_inodes - inodes;
2000
2001 mpol_put(sbinfo->mpol);
2002 sbinfo->mpol = config.mpol; /* transfers initial ref */
2003 out:
2004 spin_unlock(&sbinfo->stat_lock);
2005 return error;
2006 }
2007
2008 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2009 {
2010 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2011
2012 if (sbinfo->max_blocks != shmem_default_max_blocks())
2013 seq_printf(seq, ",size=%luk",
2014 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2015 if (sbinfo->max_inodes != shmem_default_max_inodes())
2016 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2017 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2018 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2019 if (sbinfo->uid != 0)
2020 seq_printf(seq, ",uid=%u", sbinfo->uid);
2021 if (sbinfo->gid != 0)
2022 seq_printf(seq, ",gid=%u", sbinfo->gid);
2023 shmem_show_mpol(seq, sbinfo->mpol);
2024 return 0;
2025 }
2026 #endif /* CONFIG_TMPFS */
2027
2028 static void shmem_put_super(struct super_block *sb)
2029 {
2030 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2031
2032 percpu_counter_destroy(&sbinfo->used_blocks);
2033 kfree(sbinfo);
2034 sb->s_fs_info = NULL;
2035 }
2036
2037 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2038 {
2039 struct inode *inode;
2040 struct dentry *root;
2041 struct shmem_sb_info *sbinfo;
2042 int err = -ENOMEM;
2043
2044 /* Round up to L1_CACHE_BYTES to resist false sharing */
2045 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2046 L1_CACHE_BYTES), GFP_KERNEL);
2047 if (!sbinfo)
2048 return -ENOMEM;
2049
2050 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2051 sbinfo->uid = current_fsuid();
2052 sbinfo->gid = current_fsgid();
2053 sb->s_fs_info = sbinfo;
2054
2055 #ifdef CONFIG_TMPFS
2056 /*
2057 * Per default we only allow half of the physical ram per
2058 * tmpfs instance, limiting inodes to one per page of lowmem;
2059 * but the internal instance is left unlimited.
2060 */
2061 if (!(sb->s_flags & MS_NOUSER)) {
2062 sbinfo->max_blocks = shmem_default_max_blocks();
2063 sbinfo->max_inodes = shmem_default_max_inodes();
2064 if (shmem_parse_options(data, sbinfo, false)) {
2065 err = -EINVAL;
2066 goto failed;
2067 }
2068 }
2069 sb->s_export_op = &shmem_export_ops;
2070 #else
2071 sb->s_flags |= MS_NOUSER;
2072 #endif
2073
2074 spin_lock_init(&sbinfo->stat_lock);
2075 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2076 goto failed;
2077 sbinfo->free_inodes = sbinfo->max_inodes;
2078
2079 sb->s_maxbytes = MAX_LFS_FILESIZE;
2080 sb->s_blocksize = PAGE_CACHE_SIZE;
2081 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2082 sb->s_magic = TMPFS_MAGIC;
2083 sb->s_op = &shmem_ops;
2084 sb->s_time_gran = 1;
2085 #ifdef CONFIG_TMPFS_XATTR
2086 sb->s_xattr = shmem_xattr_handlers;
2087 #endif
2088 #ifdef CONFIG_TMPFS_POSIX_ACL
2089 sb->s_flags |= MS_POSIXACL;
2090 #endif
2091
2092 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2093 if (!inode)
2094 goto failed;
2095 inode->i_uid = sbinfo->uid;
2096 inode->i_gid = sbinfo->gid;
2097 root = d_alloc_root(inode);
2098 if (!root)
2099 goto failed_iput;
2100 sb->s_root = root;
2101 return 0;
2102
2103 failed_iput:
2104 iput(inode);
2105 failed:
2106 shmem_put_super(sb);
2107 return err;
2108 }
2109
2110 static struct kmem_cache *shmem_inode_cachep;
2111
2112 static struct inode *shmem_alloc_inode(struct super_block *sb)
2113 {
2114 struct shmem_inode_info *info;
2115 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2116 if (!info)
2117 return NULL;
2118 return &info->vfs_inode;
2119 }
2120
2121 static void shmem_destroy_callback(struct rcu_head *head)
2122 {
2123 struct inode *inode = container_of(head, struct inode, i_rcu);
2124 INIT_LIST_HEAD(&inode->i_dentry);
2125 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2126 }
2127
2128 static void shmem_destroy_inode(struct inode *inode)
2129 {
2130 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2131 /* only struct inode is valid if it's an inline symlink */
2132 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2133 }
2134 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2135 }
2136
2137 static void shmem_init_inode(void *foo)
2138 {
2139 struct shmem_inode_info *info = foo;
2140 inode_init_once(&info->vfs_inode);
2141 }
2142
2143 static int shmem_init_inodecache(void)
2144 {
2145 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2146 sizeof(struct shmem_inode_info),
2147 0, SLAB_PANIC, shmem_init_inode);
2148 return 0;
2149 }
2150
2151 static void shmem_destroy_inodecache(void)
2152 {
2153 kmem_cache_destroy(shmem_inode_cachep);
2154 }
2155
2156 static const struct address_space_operations shmem_aops = {
2157 .writepage = shmem_writepage,
2158 .set_page_dirty = __set_page_dirty_no_writeback,
2159 #ifdef CONFIG_TMPFS
2160 .write_begin = shmem_write_begin,
2161 .write_end = shmem_write_end,
2162 #endif
2163 .migratepage = migrate_page,
2164 .error_remove_page = generic_error_remove_page,
2165 };
2166
2167 static const struct file_operations shmem_file_operations = {
2168 .mmap = shmem_mmap,
2169 #ifdef CONFIG_TMPFS
2170 .llseek = generic_file_llseek,
2171 .read = do_sync_read,
2172 .write = do_sync_write,
2173 .aio_read = shmem_file_aio_read,
2174 .aio_write = generic_file_aio_write,
2175 .fsync = noop_fsync,
2176 .splice_read = shmem_file_splice_read,
2177 .splice_write = generic_file_splice_write,
2178 #endif
2179 };
2180
2181 static const struct inode_operations shmem_inode_operations = {
2182 .setattr = shmem_setattr,
2183 .truncate_range = shmem_truncate_range,
2184 #ifdef CONFIG_TMPFS_XATTR
2185 .setxattr = shmem_setxattr,
2186 .getxattr = shmem_getxattr,
2187 .listxattr = shmem_listxattr,
2188 .removexattr = shmem_removexattr,
2189 #endif
2190 };
2191
2192 static const struct inode_operations shmem_dir_inode_operations = {
2193 #ifdef CONFIG_TMPFS
2194 .create = shmem_create,
2195 .lookup = simple_lookup,
2196 .link = shmem_link,
2197 .unlink = shmem_unlink,
2198 .symlink = shmem_symlink,
2199 .mkdir = shmem_mkdir,
2200 .rmdir = shmem_rmdir,
2201 .mknod = shmem_mknod,
2202 .rename = shmem_rename,
2203 #endif
2204 #ifdef CONFIG_TMPFS_XATTR
2205 .setxattr = shmem_setxattr,
2206 .getxattr = shmem_getxattr,
2207 .listxattr = shmem_listxattr,
2208 .removexattr = shmem_removexattr,
2209 #endif
2210 #ifdef CONFIG_TMPFS_POSIX_ACL
2211 .setattr = shmem_setattr,
2212 #endif
2213 };
2214
2215 static const struct inode_operations shmem_special_inode_operations = {
2216 #ifdef CONFIG_TMPFS_XATTR
2217 .setxattr = shmem_setxattr,
2218 .getxattr = shmem_getxattr,
2219 .listxattr = shmem_listxattr,
2220 .removexattr = shmem_removexattr,
2221 #endif
2222 #ifdef CONFIG_TMPFS_POSIX_ACL
2223 .setattr = shmem_setattr,
2224 #endif
2225 };
2226
2227 static const struct super_operations shmem_ops = {
2228 .alloc_inode = shmem_alloc_inode,
2229 .destroy_inode = shmem_destroy_inode,
2230 #ifdef CONFIG_TMPFS
2231 .statfs = shmem_statfs,
2232 .remount_fs = shmem_remount_fs,
2233 .show_options = shmem_show_options,
2234 #endif
2235 .evict_inode = shmem_evict_inode,
2236 .drop_inode = generic_delete_inode,
2237 .put_super = shmem_put_super,
2238 };
2239
2240 static const struct vm_operations_struct shmem_vm_ops = {
2241 .fault = shmem_fault,
2242 #ifdef CONFIG_NUMA
2243 .set_policy = shmem_set_policy,
2244 .get_policy = shmem_get_policy,
2245 #endif
2246 };
2247
2248 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2249 int flags, const char *dev_name, void *data)
2250 {
2251 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2252 }
2253
2254 static struct file_system_type shmem_fs_type = {
2255 .owner = THIS_MODULE,
2256 .name = "tmpfs",
2257 .mount = shmem_mount,
2258 .kill_sb = kill_litter_super,
2259 };
2260
2261 int __init shmem_init(void)
2262 {
2263 int error;
2264
2265 error = bdi_init(&shmem_backing_dev_info);
2266 if (error)
2267 goto out4;
2268
2269 error = shmem_init_inodecache();
2270 if (error)
2271 goto out3;
2272
2273 error = register_filesystem(&shmem_fs_type);
2274 if (error) {
2275 printk(KERN_ERR "Could not register tmpfs\n");
2276 goto out2;
2277 }
2278
2279 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2280 shmem_fs_type.name, NULL);
2281 if (IS_ERR(shm_mnt)) {
2282 error = PTR_ERR(shm_mnt);
2283 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2284 goto out1;
2285 }
2286 return 0;
2287
2288 out1:
2289 unregister_filesystem(&shmem_fs_type);
2290 out2:
2291 shmem_destroy_inodecache();
2292 out3:
2293 bdi_destroy(&shmem_backing_dev_info);
2294 out4:
2295 shm_mnt = ERR_PTR(error);
2296 return error;
2297 }
2298
2299 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2300 /**
2301 * mem_cgroup_get_shmem_target - find page or swap assigned to the shmem file
2302 * @inode: the inode to be searched
2303 * @index: the page offset to be searched
2304 * @pagep: the pointer for the found page to be stored
2305 * @swapp: the pointer for the found swap entry to be stored
2306 *
2307 * If a page is found, refcount of it is incremented. Callers should handle
2308 * these refcount.
2309 */
2310 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t index,
2311 struct page **pagep, swp_entry_t *swapp)
2312 {
2313 struct shmem_inode_info *info = SHMEM_I(inode);
2314 struct page *page = NULL;
2315 swp_entry_t swap = {0};
2316
2317 if ((index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2318 goto out;
2319
2320 spin_lock(&info->lock);
2321 #ifdef CONFIG_SWAP
2322 swap = shmem_get_swap(info, index);
2323 if (swap.val)
2324 page = find_get_page(&swapper_space, swap.val);
2325 else
2326 #endif
2327 page = find_get_page(inode->i_mapping, index);
2328 spin_unlock(&info->lock);
2329 out:
2330 *pagep = page;
2331 *swapp = swap;
2332 }
2333 #endif
2334
2335 #else /* !CONFIG_SHMEM */
2336
2337 /*
2338 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2339 *
2340 * This is intended for small system where the benefits of the full
2341 * shmem code (swap-backed and resource-limited) are outweighed by
2342 * their complexity. On systems without swap this code should be
2343 * effectively equivalent, but much lighter weight.
2344 */
2345
2346 #include <linux/ramfs.h>
2347
2348 static struct file_system_type shmem_fs_type = {
2349 .name = "tmpfs",
2350 .mount = ramfs_mount,
2351 .kill_sb = kill_litter_super,
2352 };
2353
2354 int __init shmem_init(void)
2355 {
2356 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2357
2358 shm_mnt = kern_mount(&shmem_fs_type);
2359 BUG_ON(IS_ERR(shm_mnt));
2360
2361 return 0;
2362 }
2363
2364 int shmem_unuse(swp_entry_t swap, struct page *page)
2365 {
2366 return 0;
2367 }
2368
2369 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2370 {
2371 return 0;
2372 }
2373
2374 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2375 {
2376 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2377 }
2378 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2379
2380 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2381 /**
2382 * mem_cgroup_get_shmem_target - find page or swap assigned to the shmem file
2383 * @inode: the inode to be searched
2384 * @index: the page offset to be searched
2385 * @pagep: the pointer for the found page to be stored
2386 * @swapp: the pointer for the found swap entry to be stored
2387 *
2388 * If a page is found, refcount of it is incremented. Callers should handle
2389 * these refcount.
2390 */
2391 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t index,
2392 struct page **pagep, swp_entry_t *swapp)
2393 {
2394 struct page *page = NULL;
2395
2396 if ((index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2397 goto out;
2398 page = find_get_page(inode->i_mapping, index);
2399 out:
2400 *pagep = page;
2401 *swapp = (swp_entry_t){0};
2402 }
2403 #endif
2404
2405 #define shmem_vm_ops generic_file_vm_ops
2406 #define shmem_file_operations ramfs_file_operations
2407 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2408 #define shmem_acct_size(flags, size) 0
2409 #define shmem_unacct_size(flags, size) do {} while (0)
2410
2411 #endif /* CONFIG_SHMEM */
2412
2413 /* common code */
2414
2415 /**
2416 * shmem_file_setup - get an unlinked file living in tmpfs
2417 * @name: name for dentry (to be seen in /proc/<pid>/maps
2418 * @size: size to be set for the file
2419 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2420 */
2421 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2422 {
2423 int error;
2424 struct file *file;
2425 struct inode *inode;
2426 struct path path;
2427 struct dentry *root;
2428 struct qstr this;
2429
2430 if (IS_ERR(shm_mnt))
2431 return (void *)shm_mnt;
2432
2433 if (size < 0 || size > MAX_LFS_FILESIZE)
2434 return ERR_PTR(-EINVAL);
2435
2436 if (shmem_acct_size(flags, size))
2437 return ERR_PTR(-ENOMEM);
2438
2439 error = -ENOMEM;
2440 this.name = name;
2441 this.len = strlen(name);
2442 this.hash = 0; /* will go */
2443 root = shm_mnt->mnt_root;
2444 path.dentry = d_alloc(root, &this);
2445 if (!path.dentry)
2446 goto put_memory;
2447 path.mnt = mntget(shm_mnt);
2448
2449 error = -ENOSPC;
2450 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2451 if (!inode)
2452 goto put_dentry;
2453
2454 d_instantiate(path.dentry, inode);
2455 inode->i_size = size;
2456 inode->i_nlink = 0; /* It is unlinked */
2457 #ifndef CONFIG_MMU
2458 error = ramfs_nommu_expand_for_mapping(inode, size);
2459 if (error)
2460 goto put_dentry;
2461 #endif
2462
2463 error = -ENFILE;
2464 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2465 &shmem_file_operations);
2466 if (!file)
2467 goto put_dentry;
2468
2469 return file;
2470
2471 put_dentry:
2472 path_put(&path);
2473 put_memory:
2474 shmem_unacct_size(flags, size);
2475 return ERR_PTR(error);
2476 }
2477 EXPORT_SYMBOL_GPL(shmem_file_setup);
2478
2479 /**
2480 * shmem_zero_setup - setup a shared anonymous mapping
2481 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2482 */
2483 int shmem_zero_setup(struct vm_area_struct *vma)
2484 {
2485 struct file *file;
2486 loff_t size = vma->vm_end - vma->vm_start;
2487
2488 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2489 if (IS_ERR(file))
2490 return PTR_ERR(file);
2491
2492 if (vma->vm_file)
2493 fput(vma->vm_file);
2494 vma->vm_file = file;
2495 vma->vm_ops = &shmem_vm_ops;
2496 vma->vm_flags |= VM_CAN_NONLINEAR;
2497 return 0;
2498 }
2499
2500 /**
2501 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2502 * @mapping: the page's address_space
2503 * @index: the page index
2504 * @gfp: the page allocator flags to use if allocating
2505 *
2506 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2507 * with any new page allocations done using the specified allocation flags.
2508 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2509 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2510 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2511 *
2512 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2513 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2514 */
2515 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2516 pgoff_t index, gfp_t gfp)
2517 {
2518 #ifdef CONFIG_SHMEM
2519 struct inode *inode = mapping->host;
2520 struct page *page;
2521 int error;
2522
2523 BUG_ON(mapping->a_ops != &shmem_aops);
2524 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2525 if (error)
2526 page = ERR_PTR(error);
2527 else
2528 unlock_page(page);
2529 return page;
2530 #else
2531 /*
2532 * The tiny !SHMEM case uses ramfs without swap
2533 */
2534 return read_cache_page_gfp(mapping, index, gfp);
2535 #endif
2536 }
2537 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);