]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/shmem.c
UBUNTU: Start new release
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 return totalram_pages / 2;
113 }
114
115 static int shmem_default_max_inodes(void)
116 {
117 unsigned long ul;
118
119 ul = INT_MAX;
120 ul = min3(ul, totalram_pages - totalhigh_pages, totalram_pages / 2);
121 return ul;
122 }
123 #endif
124
125 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
126 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
127 struct shmem_inode_info *info, pgoff_t index);
128 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
129 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
130
131 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
132 struct page **pagep, enum sgp_type sgp, int *fault_type)
133 {
134 return shmem_getpage_gfp(inode, index, pagep, sgp,
135 mapping_gfp_mask(inode->i_mapping), fault_type);
136 }
137
138 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
139 {
140 return sb->s_fs_info;
141 }
142
143 /*
144 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
145 * for shared memory and for shared anonymous (/dev/zero) mappings
146 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
147 * consistent with the pre-accounting of private mappings ...
148 */
149 static inline int shmem_acct_size(unsigned long flags, loff_t size)
150 {
151 return (flags & VM_NORESERVE) ?
152 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
153 }
154
155 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
156 {
157 if (!(flags & VM_NORESERVE))
158 vm_unacct_memory(VM_ACCT(size));
159 }
160
161 static inline int shmem_reacct_size(unsigned long flags,
162 loff_t oldsize, loff_t newsize)
163 {
164 if (!(flags & VM_NORESERVE)) {
165 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
166 return security_vm_enough_memory_mm(current->mm,
167 VM_ACCT(newsize) - VM_ACCT(oldsize));
168 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
169 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
170 }
171 return 0;
172 }
173
174 /*
175 * ... whereas tmpfs objects are accounted incrementally as
176 * pages are allocated, in order to allow huge sparse files.
177 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
178 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
179 */
180 static inline int shmem_acct_block(unsigned long flags)
181 {
182 return (flags & VM_NORESERVE) ?
183 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
184 }
185
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187 {
188 if (flags & VM_NORESERVE)
189 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
190 }
191
192 static const struct super_operations shmem_ops;
193 static const struct address_space_operations shmem_aops;
194 static const struct file_operations shmem_file_operations;
195 static const struct inode_operations shmem_inode_operations;
196 static const struct inode_operations shmem_dir_inode_operations;
197 static const struct inode_operations shmem_special_inode_operations;
198 static const struct vm_operations_struct shmem_vm_ops;
199
200 static LIST_HEAD(shmem_swaplist);
201 static DEFINE_MUTEX(shmem_swaplist_mutex);
202
203 static int shmem_reserve_inode(struct super_block *sb)
204 {
205 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
206 if (sbinfo->max_inodes) {
207 spin_lock(&sbinfo->stat_lock);
208 if (!sbinfo->free_inodes) {
209 spin_unlock(&sbinfo->stat_lock);
210 return -ENOSPC;
211 }
212 sbinfo->free_inodes--;
213 spin_unlock(&sbinfo->stat_lock);
214 }
215 return 0;
216 }
217
218 static void shmem_free_inode(struct super_block *sb)
219 {
220 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
221 if (sbinfo->max_inodes) {
222 spin_lock(&sbinfo->stat_lock);
223 sbinfo->free_inodes++;
224 spin_unlock(&sbinfo->stat_lock);
225 }
226 }
227
228 /**
229 * shmem_recalc_inode - recalculate the block usage of an inode
230 * @inode: inode to recalc
231 *
232 * We have to calculate the free blocks since the mm can drop
233 * undirtied hole pages behind our back.
234 *
235 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
236 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
237 *
238 * It has to be called with the spinlock held.
239 */
240 static void shmem_recalc_inode(struct inode *inode)
241 {
242 struct shmem_inode_info *info = SHMEM_I(inode);
243 long freed;
244
245 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
246 if (freed > 0) {
247 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
248 if (sbinfo->max_blocks)
249 percpu_counter_add(&sbinfo->used_blocks, -freed);
250 info->alloced -= freed;
251 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
252 shmem_unacct_blocks(info->flags, freed);
253 }
254 }
255
256 /*
257 * Replace item expected in radix tree by a new item, while holding tree lock.
258 */
259 static int shmem_radix_tree_replace(struct address_space *mapping,
260 pgoff_t index, void *expected, void *replacement)
261 {
262 void **pslot;
263 void *item;
264
265 VM_BUG_ON(!expected);
266 VM_BUG_ON(!replacement);
267 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
268 if (!pslot)
269 return -ENOENT;
270 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
271 if (item != expected)
272 return -ENOENT;
273 radix_tree_replace_slot(pslot, replacement);
274 return 0;
275 }
276
277 /*
278 * Sometimes, before we decide whether to proceed or to fail, we must check
279 * that an entry was not already brought back from swap by a racing thread.
280 *
281 * Checking page is not enough: by the time a SwapCache page is locked, it
282 * might be reused, and again be SwapCache, using the same swap as before.
283 */
284 static bool shmem_confirm_swap(struct address_space *mapping,
285 pgoff_t index, swp_entry_t swap)
286 {
287 void *item;
288
289 rcu_read_lock();
290 item = radix_tree_lookup(&mapping->page_tree, index);
291 rcu_read_unlock();
292 return item == swp_to_radix_entry(swap);
293 }
294
295 /*
296 * Like add_to_page_cache_locked, but error if expected item has gone.
297 */
298 static int shmem_add_to_page_cache(struct page *page,
299 struct address_space *mapping,
300 pgoff_t index, void *expected)
301 {
302 int error;
303
304 VM_BUG_ON_PAGE(!PageLocked(page), page);
305 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
306
307 page_cache_get(page);
308 page->mapping = mapping;
309 page->index = index;
310
311 spin_lock_irq(&mapping->tree_lock);
312 if (!expected)
313 error = radix_tree_insert(&mapping->page_tree, index, page);
314 else
315 error = shmem_radix_tree_replace(mapping, index, expected,
316 page);
317 if (!error) {
318 mapping->nrpages++;
319 __inc_zone_page_state(page, NR_FILE_PAGES);
320 __inc_zone_page_state(page, NR_SHMEM);
321 spin_unlock_irq(&mapping->tree_lock);
322 } else {
323 page->mapping = NULL;
324 spin_unlock_irq(&mapping->tree_lock);
325 page_cache_release(page);
326 }
327 return error;
328 }
329
330 /*
331 * Like delete_from_page_cache, but substitutes swap for page.
332 */
333 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
334 {
335 struct address_space *mapping = page->mapping;
336 int error;
337
338 spin_lock_irq(&mapping->tree_lock);
339 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
340 page->mapping = NULL;
341 mapping->nrpages--;
342 __dec_zone_page_state(page, NR_FILE_PAGES);
343 __dec_zone_page_state(page, NR_SHMEM);
344 spin_unlock_irq(&mapping->tree_lock);
345 page_cache_release(page);
346 BUG_ON(error);
347 }
348
349 /*
350 * Remove swap entry from radix tree, free the swap and its page cache.
351 */
352 static int shmem_free_swap(struct address_space *mapping,
353 pgoff_t index, void *radswap)
354 {
355 void *old;
356
357 spin_lock_irq(&mapping->tree_lock);
358 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
359 spin_unlock_irq(&mapping->tree_lock);
360 if (old != radswap)
361 return -ENOENT;
362 free_swap_and_cache(radix_to_swp_entry(radswap));
363 return 0;
364 }
365
366 /*
367 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
368 */
369 void shmem_unlock_mapping(struct address_space *mapping)
370 {
371 struct pagevec pvec;
372 pgoff_t indices[PAGEVEC_SIZE];
373 pgoff_t index = 0;
374
375 pagevec_init(&pvec, 0);
376 /*
377 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
378 */
379 while (!mapping_unevictable(mapping)) {
380 /*
381 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
382 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
383 */
384 pvec.nr = find_get_entries(mapping, index,
385 PAGEVEC_SIZE, pvec.pages, indices);
386 if (!pvec.nr)
387 break;
388 index = indices[pvec.nr - 1] + 1;
389 pagevec_remove_exceptionals(&pvec);
390 check_move_unevictable_pages(pvec.pages, pvec.nr);
391 pagevec_release(&pvec);
392 cond_resched();
393 }
394 }
395
396 /*
397 * Remove range of pages and swap entries from radix tree, and free them.
398 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
399 */
400 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
401 bool unfalloc)
402 {
403 struct address_space *mapping = inode->i_mapping;
404 struct shmem_inode_info *info = SHMEM_I(inode);
405 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
406 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
407 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
408 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
409 struct pagevec pvec;
410 pgoff_t indices[PAGEVEC_SIZE];
411 long nr_swaps_freed = 0;
412 pgoff_t index;
413 int i;
414
415 if (lend == -1)
416 end = -1; /* unsigned, so actually very big */
417
418 pagevec_init(&pvec, 0);
419 index = start;
420 while (index < end) {
421 pvec.nr = find_get_entries(mapping, index,
422 min(end - index, (pgoff_t)PAGEVEC_SIZE),
423 pvec.pages, indices);
424 if (!pvec.nr)
425 break;
426 for (i = 0; i < pagevec_count(&pvec); i++) {
427 struct page *page = pvec.pages[i];
428
429 index = indices[i];
430 if (index >= end)
431 break;
432
433 if (radix_tree_exceptional_entry(page)) {
434 if (unfalloc)
435 continue;
436 nr_swaps_freed += !shmem_free_swap(mapping,
437 index, page);
438 continue;
439 }
440
441 if (!trylock_page(page))
442 continue;
443 if (!unfalloc || !PageUptodate(page)) {
444 if (page->mapping == mapping) {
445 VM_BUG_ON_PAGE(PageWriteback(page), page);
446 truncate_inode_page(mapping, page);
447 }
448 }
449 unlock_page(page);
450 }
451 pagevec_remove_exceptionals(&pvec);
452 pagevec_release(&pvec);
453 cond_resched();
454 index++;
455 }
456
457 if (partial_start) {
458 struct page *page = NULL;
459 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
460 if (page) {
461 unsigned int top = PAGE_CACHE_SIZE;
462 if (start > end) {
463 top = partial_end;
464 partial_end = 0;
465 }
466 zero_user_segment(page, partial_start, top);
467 set_page_dirty(page);
468 unlock_page(page);
469 page_cache_release(page);
470 }
471 }
472 if (partial_end) {
473 struct page *page = NULL;
474 shmem_getpage(inode, end, &page, SGP_READ, NULL);
475 if (page) {
476 zero_user_segment(page, 0, partial_end);
477 set_page_dirty(page);
478 unlock_page(page);
479 page_cache_release(page);
480 }
481 }
482 if (start >= end)
483 return;
484
485 index = start;
486 while (index < end) {
487 cond_resched();
488
489 pvec.nr = find_get_entries(mapping, index,
490 min(end - index, (pgoff_t)PAGEVEC_SIZE),
491 pvec.pages, indices);
492 if (!pvec.nr) {
493 /* If all gone or hole-punch or unfalloc, we're done */
494 if (index == start || end != -1)
495 break;
496 /* But if truncating, restart to make sure all gone */
497 index = start;
498 continue;
499 }
500 for (i = 0; i < pagevec_count(&pvec); i++) {
501 struct page *page = pvec.pages[i];
502
503 index = indices[i];
504 if (index >= end)
505 break;
506
507 if (radix_tree_exceptional_entry(page)) {
508 if (unfalloc)
509 continue;
510 if (shmem_free_swap(mapping, index, page)) {
511 /* Swap was replaced by page: retry */
512 index--;
513 break;
514 }
515 nr_swaps_freed++;
516 continue;
517 }
518
519 lock_page(page);
520 if (!unfalloc || !PageUptodate(page)) {
521 if (page->mapping == mapping) {
522 VM_BUG_ON_PAGE(PageWriteback(page), page);
523 truncate_inode_page(mapping, page);
524 } else {
525 /* Page was replaced by swap: retry */
526 unlock_page(page);
527 index--;
528 break;
529 }
530 }
531 unlock_page(page);
532 }
533 pagevec_remove_exceptionals(&pvec);
534 pagevec_release(&pvec);
535 index++;
536 }
537
538 spin_lock(&info->lock);
539 info->swapped -= nr_swaps_freed;
540 shmem_recalc_inode(inode);
541 spin_unlock(&info->lock);
542 }
543
544 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
545 {
546 shmem_undo_range(inode, lstart, lend, false);
547 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548 }
549 EXPORT_SYMBOL_GPL(shmem_truncate_range);
550
551 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
552 struct kstat *stat)
553 {
554 struct inode *inode = dentry->d_inode;
555 struct shmem_inode_info *info = SHMEM_I(inode);
556
557 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
558 spin_lock(&info->lock);
559 shmem_recalc_inode(inode);
560 spin_unlock(&info->lock);
561 }
562 generic_fillattr(inode, stat);
563 return 0;
564 }
565
566 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
567 {
568 struct inode *inode = d_inode(dentry);
569 struct shmem_inode_info *info = SHMEM_I(inode);
570 int error;
571
572 error = inode_change_ok(inode, attr);
573 if (error)
574 return error;
575
576 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
577 loff_t oldsize = inode->i_size;
578 loff_t newsize = attr->ia_size;
579
580 /* protected by i_mutex */
581 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
582 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
583 return -EPERM;
584
585 if (newsize != oldsize) {
586 error = shmem_reacct_size(SHMEM_I(inode)->flags,
587 oldsize, newsize);
588 if (error)
589 return error;
590 i_size_write(inode, newsize);
591 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
592 }
593 if (newsize <= oldsize) {
594 loff_t holebegin = round_up(newsize, PAGE_SIZE);
595 if (oldsize > holebegin)
596 unmap_mapping_range(inode->i_mapping,
597 holebegin, 0, 1);
598 if (info->alloced)
599 shmem_truncate_range(inode,
600 newsize, (loff_t)-1);
601 /* unmap again to remove racily COWed private pages */
602 if (oldsize > holebegin)
603 unmap_mapping_range(inode->i_mapping,
604 holebegin, 0, 1);
605 }
606 }
607
608 setattr_copy(inode, attr);
609 if (attr->ia_valid & ATTR_MODE)
610 error = posix_acl_chmod(inode, inode->i_mode);
611 return error;
612 }
613
614 static void shmem_evict_inode(struct inode *inode)
615 {
616 struct shmem_inode_info *info = SHMEM_I(inode);
617 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
618
619 if (inode->i_mapping->a_ops == &shmem_aops) {
620 shmem_unacct_size(info->flags, inode->i_size);
621 inode->i_size = 0;
622 shmem_truncate_range(inode, 0, (loff_t)-1);
623 if (!list_empty(&info->swaplist)) {
624 mutex_lock(&shmem_swaplist_mutex);
625 list_del_init(&info->swaplist);
626 mutex_unlock(&shmem_swaplist_mutex);
627 }
628 }
629
630 simple_xattrs_free(&info->xattrs);
631 WARN_ON(inode->i_blocks);
632 if (!sbinfo->idr_nouse && inode->i_ino) {
633 mutex_lock(&sbinfo->idr_lock);
634 idr_remove(&sbinfo->idr, inode->i_ino);
635 mutex_unlock(&sbinfo->idr_lock);
636 }
637 shmem_free_inode(inode->i_sb);
638 clear_inode(inode);
639 }
640
641 /*
642 * If swap found in inode, free it and move page from swapcache to filecache.
643 */
644 static int shmem_unuse_inode(struct shmem_inode_info *info,
645 swp_entry_t swap, struct page **pagep)
646 {
647 struct address_space *mapping = info->vfs_inode.i_mapping;
648 void *radswap;
649 pgoff_t index;
650 gfp_t gfp;
651 int error = 0;
652
653 radswap = swp_to_radix_entry(swap);
654 index = radix_tree_locate_item(&mapping->page_tree, radswap);
655 if (index == -1)
656 return -EAGAIN; /* tell shmem_unuse we found nothing */
657
658 /*
659 * Move _head_ to start search for next from here.
660 * But be careful: shmem_evict_inode checks list_empty without taking
661 * mutex, and there's an instant in list_move_tail when info->swaplist
662 * would appear empty, if it were the only one on shmem_swaplist.
663 */
664 if (shmem_swaplist.next != &info->swaplist)
665 list_move_tail(&shmem_swaplist, &info->swaplist);
666
667 gfp = mapping_gfp_mask(mapping);
668 if (shmem_should_replace_page(*pagep, gfp)) {
669 mutex_unlock(&shmem_swaplist_mutex);
670 error = shmem_replace_page(pagep, gfp, info, index);
671 mutex_lock(&shmem_swaplist_mutex);
672 /*
673 * We needed to drop mutex to make that restrictive page
674 * allocation, but the inode might have been freed while we
675 * dropped it: although a racing shmem_evict_inode() cannot
676 * complete without emptying the radix_tree, our page lock
677 * on this swapcache page is not enough to prevent that -
678 * free_swap_and_cache() of our swap entry will only
679 * trylock_page(), removing swap from radix_tree whatever.
680 *
681 * We must not proceed to shmem_add_to_page_cache() if the
682 * inode has been freed, but of course we cannot rely on
683 * inode or mapping or info to check that. However, we can
684 * safely check if our swap entry is still in use (and here
685 * it can't have got reused for another page): if it's still
686 * in use, then the inode cannot have been freed yet, and we
687 * can safely proceed (if it's no longer in use, that tells
688 * nothing about the inode, but we don't need to unuse swap).
689 */
690 if (!page_swapcount(*pagep))
691 error = -ENOENT;
692 }
693
694 /*
695 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
696 * but also to hold up shmem_evict_inode(): so inode cannot be freed
697 * beneath us (pagelock doesn't help until the page is in pagecache).
698 */
699 if (!error)
700 error = shmem_add_to_page_cache(*pagep, mapping, index,
701 radswap);
702 if (error != -ENOMEM) {
703 /*
704 * Truncation and eviction use free_swap_and_cache(), which
705 * only does trylock page: if we raced, best clean up here.
706 */
707 delete_from_swap_cache(*pagep);
708 set_page_dirty(*pagep);
709 if (!error) {
710 spin_lock(&info->lock);
711 info->swapped--;
712 spin_unlock(&info->lock);
713 swap_free(swap);
714 }
715 }
716 return error;
717 }
718
719 /*
720 * Search through swapped inodes to find and replace swap by page.
721 */
722 int shmem_unuse(swp_entry_t swap, struct page *page)
723 {
724 struct list_head *this, *next;
725 struct shmem_inode_info *info;
726 struct mem_cgroup *memcg;
727 int error = 0;
728
729 /*
730 * There's a faint possibility that swap page was replaced before
731 * caller locked it: caller will come back later with the right page.
732 */
733 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
734 goto out;
735
736 /*
737 * Charge page using GFP_KERNEL while we can wait, before taking
738 * the shmem_swaplist_mutex which might hold up shmem_writepage().
739 * Charged back to the user (not to caller) when swap account is used.
740 */
741 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
742 if (error)
743 goto out;
744 /* No radix_tree_preload: swap entry keeps a place for page in tree */
745 error = -EAGAIN;
746
747 mutex_lock(&shmem_swaplist_mutex);
748 list_for_each_safe(this, next, &shmem_swaplist) {
749 info = list_entry(this, struct shmem_inode_info, swaplist);
750 if (info->swapped)
751 error = shmem_unuse_inode(info, swap, &page);
752 else
753 list_del_init(&info->swaplist);
754 cond_resched();
755 if (error != -EAGAIN)
756 break;
757 /* found nothing in this: move on to search the next */
758 }
759 mutex_unlock(&shmem_swaplist_mutex);
760
761 if (error) {
762 if (error != -ENOMEM)
763 error = 0;
764 mem_cgroup_cancel_charge(page, memcg);
765 } else
766 mem_cgroup_commit_charge(page, memcg, true);
767 out:
768 unlock_page(page);
769 page_cache_release(page);
770 return error;
771 }
772
773 /*
774 * Move the page from the page cache to the swap cache.
775 */
776 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
777 {
778 struct shmem_inode_info *info;
779 struct address_space *mapping;
780 struct inode *inode;
781 swp_entry_t swap;
782 pgoff_t index;
783
784 BUG_ON(!PageLocked(page));
785 mapping = page->mapping;
786 index = page->index;
787 inode = mapping->host;
788 info = SHMEM_I(inode);
789 if (info->flags & VM_LOCKED)
790 goto redirty;
791 if (!total_swap_pages)
792 goto redirty;
793
794 /*
795 * Our capabilities prevent regular writeback or sync from ever calling
796 * shmem_writepage; but a stacking filesystem might use ->writepage of
797 * its underlying filesystem, in which case tmpfs should write out to
798 * swap only in response to memory pressure, and not for the writeback
799 * threads or sync.
800 */
801 if (!wbc->for_reclaim) {
802 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
803 goto redirty;
804 }
805
806 /*
807 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
808 * value into swapfile.c, the only way we can correctly account for a
809 * fallocated page arriving here is now to initialize it and write it.
810 *
811 * That's okay for a page already fallocated earlier, but if we have
812 * not yet completed the fallocation, then (a) we want to keep track
813 * of this page in case we have to undo it, and (b) it may not be a
814 * good idea to continue anyway, once we're pushing into swap. So
815 * reactivate the page, and let shmem_fallocate() quit when too many.
816 */
817 if (!PageUptodate(page)) {
818 if (inode->i_private) {
819 struct shmem_falloc *shmem_falloc;
820 spin_lock(&inode->i_lock);
821 shmem_falloc = inode->i_private;
822 if (shmem_falloc &&
823 !shmem_falloc->waitq &&
824 index >= shmem_falloc->start &&
825 index < shmem_falloc->next)
826 shmem_falloc->nr_unswapped++;
827 else
828 shmem_falloc = NULL;
829 spin_unlock(&inode->i_lock);
830 if (shmem_falloc)
831 goto redirty;
832 }
833 clear_highpage(page);
834 flush_dcache_page(page);
835 SetPageUptodate(page);
836 }
837
838 swap = get_swap_page();
839 if (!swap.val)
840 goto redirty;
841
842 /*
843 * Add inode to shmem_unuse()'s list of swapped-out inodes,
844 * if it's not already there. Do it now before the page is
845 * moved to swap cache, when its pagelock no longer protects
846 * the inode from eviction. But don't unlock the mutex until
847 * we've incremented swapped, because shmem_unuse_inode() will
848 * prune a !swapped inode from the swaplist under this mutex.
849 */
850 mutex_lock(&shmem_swaplist_mutex);
851 if (list_empty(&info->swaplist))
852 list_add_tail(&info->swaplist, &shmem_swaplist);
853
854 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
855 spin_lock(&info->lock);
856 shmem_recalc_inode(inode);
857 info->swapped++;
858 spin_unlock(&info->lock);
859
860 swap_shmem_alloc(swap);
861 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
862
863 mutex_unlock(&shmem_swaplist_mutex);
864 BUG_ON(page_mapped(page));
865 swap_writepage(page, wbc);
866 return 0;
867 }
868
869 mutex_unlock(&shmem_swaplist_mutex);
870 swapcache_free(swap);
871 redirty:
872 set_page_dirty(page);
873 if (wbc->for_reclaim)
874 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
875 unlock_page(page);
876 return 0;
877 }
878
879 #ifdef CONFIG_NUMA
880 #ifdef CONFIG_TMPFS
881 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
882 {
883 char buffer[64];
884
885 if (!mpol || mpol->mode == MPOL_DEFAULT)
886 return; /* show nothing */
887
888 mpol_to_str(buffer, sizeof(buffer), mpol);
889
890 seq_printf(seq, ",mpol=%s", buffer);
891 }
892
893 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
894 {
895 struct mempolicy *mpol = NULL;
896 if (sbinfo->mpol) {
897 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
898 mpol = sbinfo->mpol;
899 mpol_get(mpol);
900 spin_unlock(&sbinfo->stat_lock);
901 }
902 return mpol;
903 }
904 #endif /* CONFIG_TMPFS */
905
906 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
907 struct shmem_inode_info *info, pgoff_t index)
908 {
909 struct vm_area_struct pvma;
910 struct page *page;
911
912 /* Create a pseudo vma that just contains the policy */
913 pvma.vm_start = 0;
914 /* Bias interleave by inode number to distribute better across nodes */
915 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
916 pvma.vm_ops = NULL;
917 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
918
919 page = swapin_readahead(swap, gfp, &pvma, 0);
920
921 /* Drop reference taken by mpol_shared_policy_lookup() */
922 mpol_cond_put(pvma.vm_policy);
923
924 return page;
925 }
926
927 static struct page *shmem_alloc_page(gfp_t gfp,
928 struct shmem_inode_info *info, pgoff_t index)
929 {
930 struct vm_area_struct pvma;
931 struct page *page;
932
933 /* Create a pseudo vma that just contains the policy */
934 pvma.vm_start = 0;
935 /* Bias interleave by inode number to distribute better across nodes */
936 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
937 pvma.vm_ops = NULL;
938 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
939
940 page = alloc_page_vma(gfp, &pvma, 0);
941
942 /* Drop reference taken by mpol_shared_policy_lookup() */
943 mpol_cond_put(pvma.vm_policy);
944
945 return page;
946 }
947 #else /* !CONFIG_NUMA */
948 #ifdef CONFIG_TMPFS
949 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
950 {
951 }
952 #endif /* CONFIG_TMPFS */
953
954 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
955 struct shmem_inode_info *info, pgoff_t index)
956 {
957 return swapin_readahead(swap, gfp, NULL, 0);
958 }
959
960 static inline struct page *shmem_alloc_page(gfp_t gfp,
961 struct shmem_inode_info *info, pgoff_t index)
962 {
963 return alloc_page(gfp);
964 }
965 #endif /* CONFIG_NUMA */
966
967 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
968 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
969 {
970 return NULL;
971 }
972 #endif
973
974 /*
975 * When a page is moved from swapcache to shmem filecache (either by the
976 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
977 * shmem_unuse_inode()), it may have been read in earlier from swap, in
978 * ignorance of the mapping it belongs to. If that mapping has special
979 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
980 * we may need to copy to a suitable page before moving to filecache.
981 *
982 * In a future release, this may well be extended to respect cpuset and
983 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
984 * but for now it is a simple matter of zone.
985 */
986 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
987 {
988 return page_zonenum(page) > gfp_zone(gfp);
989 }
990
991 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
992 struct shmem_inode_info *info, pgoff_t index)
993 {
994 struct page *oldpage, *newpage;
995 struct address_space *swap_mapping;
996 pgoff_t swap_index;
997 int error;
998
999 oldpage = *pagep;
1000 swap_index = page_private(oldpage);
1001 swap_mapping = page_mapping(oldpage);
1002
1003 /*
1004 * We have arrived here because our zones are constrained, so don't
1005 * limit chance of success by further cpuset and node constraints.
1006 */
1007 gfp &= ~GFP_CONSTRAINT_MASK;
1008 newpage = shmem_alloc_page(gfp, info, index);
1009 if (!newpage)
1010 return -ENOMEM;
1011
1012 page_cache_get(newpage);
1013 copy_highpage(newpage, oldpage);
1014 flush_dcache_page(newpage);
1015
1016 __set_page_locked(newpage);
1017 SetPageUptodate(newpage);
1018 SetPageSwapBacked(newpage);
1019 set_page_private(newpage, swap_index);
1020 SetPageSwapCache(newpage);
1021
1022 /*
1023 * Our caller will very soon move newpage out of swapcache, but it's
1024 * a nice clean interface for us to replace oldpage by newpage there.
1025 */
1026 spin_lock_irq(&swap_mapping->tree_lock);
1027 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1028 newpage);
1029 if (!error) {
1030 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1031 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1032 }
1033 spin_unlock_irq(&swap_mapping->tree_lock);
1034
1035 if (unlikely(error)) {
1036 /*
1037 * Is this possible? I think not, now that our callers check
1038 * both PageSwapCache and page_private after getting page lock;
1039 * but be defensive. Reverse old to newpage for clear and free.
1040 */
1041 oldpage = newpage;
1042 } else {
1043 mem_cgroup_replace_page(oldpage, newpage);
1044 lru_cache_add_anon(newpage);
1045 *pagep = newpage;
1046 }
1047
1048 ClearPageSwapCache(oldpage);
1049 set_page_private(oldpage, 0);
1050
1051 unlock_page(oldpage);
1052 page_cache_release(oldpage);
1053 page_cache_release(oldpage);
1054 return error;
1055 }
1056
1057 /*
1058 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1059 *
1060 * If we allocate a new one we do not mark it dirty. That's up to the
1061 * vm. If we swap it in we mark it dirty since we also free the swap
1062 * entry since a page cannot live in both the swap and page cache
1063 */
1064 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1065 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1066 {
1067 struct address_space *mapping = inode->i_mapping;
1068 struct shmem_inode_info *info;
1069 struct shmem_sb_info *sbinfo;
1070 struct mem_cgroup *memcg;
1071 struct page *page;
1072 swp_entry_t swap;
1073 int error;
1074 int once = 0;
1075 int alloced = 0;
1076
1077 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1078 return -EFBIG;
1079 repeat:
1080 swap.val = 0;
1081 page = find_lock_entry(mapping, index);
1082 if (radix_tree_exceptional_entry(page)) {
1083 swap = radix_to_swp_entry(page);
1084 page = NULL;
1085 }
1086
1087 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1088 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1089 error = -EINVAL;
1090 goto unlock;
1091 }
1092
1093 if (page && sgp == SGP_WRITE)
1094 mark_page_accessed(page);
1095
1096 /* fallocated page? */
1097 if (page && !PageUptodate(page)) {
1098 if (sgp != SGP_READ)
1099 goto clear;
1100 unlock_page(page);
1101 page_cache_release(page);
1102 page = NULL;
1103 }
1104 if (page || (sgp == SGP_READ && !swap.val)) {
1105 *pagep = page;
1106 return 0;
1107 }
1108
1109 /*
1110 * Fast cache lookup did not find it:
1111 * bring it back from swap or allocate.
1112 */
1113 info = SHMEM_I(inode);
1114 sbinfo = SHMEM_SB(inode->i_sb);
1115
1116 if (swap.val) {
1117 /* Look it up and read it in.. */
1118 page = lookup_swap_cache(swap);
1119 if (!page) {
1120 /* here we actually do the io */
1121 if (fault_type)
1122 *fault_type |= VM_FAULT_MAJOR;
1123 page = shmem_swapin(swap, gfp, info, index);
1124 if (!page) {
1125 error = -ENOMEM;
1126 goto failed;
1127 }
1128 }
1129
1130 /* We have to do this with page locked to prevent races */
1131 lock_page(page);
1132 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1133 !shmem_confirm_swap(mapping, index, swap)) {
1134 error = -EEXIST; /* try again */
1135 goto unlock;
1136 }
1137 if (!PageUptodate(page)) {
1138 error = -EIO;
1139 goto failed;
1140 }
1141 wait_on_page_writeback(page);
1142
1143 if (shmem_should_replace_page(page, gfp)) {
1144 error = shmem_replace_page(&page, gfp, info, index);
1145 if (error)
1146 goto failed;
1147 }
1148
1149 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1150 if (!error) {
1151 error = shmem_add_to_page_cache(page, mapping, index,
1152 swp_to_radix_entry(swap));
1153 /*
1154 * We already confirmed swap under page lock, and make
1155 * no memory allocation here, so usually no possibility
1156 * of error; but free_swap_and_cache() only trylocks a
1157 * page, so it is just possible that the entry has been
1158 * truncated or holepunched since swap was confirmed.
1159 * shmem_undo_range() will have done some of the
1160 * unaccounting, now delete_from_swap_cache() will do
1161 * the rest.
1162 * Reset swap.val? No, leave it so "failed" goes back to
1163 * "repeat": reading a hole and writing should succeed.
1164 */
1165 if (error) {
1166 mem_cgroup_cancel_charge(page, memcg);
1167 delete_from_swap_cache(page);
1168 }
1169 }
1170 if (error)
1171 goto failed;
1172
1173 mem_cgroup_commit_charge(page, memcg, true);
1174
1175 spin_lock(&info->lock);
1176 info->swapped--;
1177 shmem_recalc_inode(inode);
1178 spin_unlock(&info->lock);
1179
1180 if (sgp == SGP_WRITE)
1181 mark_page_accessed(page);
1182
1183 delete_from_swap_cache(page);
1184 set_page_dirty(page);
1185 swap_free(swap);
1186
1187 } else {
1188 if (shmem_acct_block(info->flags)) {
1189 error = -ENOSPC;
1190 goto failed;
1191 }
1192 if (sbinfo->max_blocks) {
1193 if (percpu_counter_compare(&sbinfo->used_blocks,
1194 sbinfo->max_blocks) >= 0) {
1195 error = -ENOSPC;
1196 goto unacct;
1197 }
1198 percpu_counter_inc(&sbinfo->used_blocks);
1199 }
1200
1201 page = shmem_alloc_page(gfp, info, index);
1202 if (!page) {
1203 error = -ENOMEM;
1204 goto decused;
1205 }
1206
1207 __SetPageSwapBacked(page);
1208 __set_page_locked(page);
1209 if (sgp == SGP_WRITE)
1210 __SetPageReferenced(page);
1211
1212 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1213 if (error)
1214 goto decused;
1215 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1216 if (!error) {
1217 error = shmem_add_to_page_cache(page, mapping, index,
1218 NULL);
1219 radix_tree_preload_end();
1220 }
1221 if (error) {
1222 mem_cgroup_cancel_charge(page, memcg);
1223 goto decused;
1224 }
1225 mem_cgroup_commit_charge(page, memcg, false);
1226 lru_cache_add_anon(page);
1227
1228 spin_lock(&info->lock);
1229 info->alloced++;
1230 inode->i_blocks += BLOCKS_PER_PAGE;
1231 shmem_recalc_inode(inode);
1232 spin_unlock(&info->lock);
1233 alloced = true;
1234
1235 /*
1236 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1237 */
1238 if (sgp == SGP_FALLOC)
1239 sgp = SGP_WRITE;
1240 clear:
1241 /*
1242 * Let SGP_WRITE caller clear ends if write does not fill page;
1243 * but SGP_FALLOC on a page fallocated earlier must initialize
1244 * it now, lest undo on failure cancel our earlier guarantee.
1245 */
1246 if (sgp != SGP_WRITE) {
1247 clear_highpage(page);
1248 flush_dcache_page(page);
1249 SetPageUptodate(page);
1250 }
1251 if (sgp == SGP_DIRTY)
1252 set_page_dirty(page);
1253 }
1254
1255 /* Perhaps the file has been truncated since we checked */
1256 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1257 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1258 if (alloced) {
1259 ClearPageDirty(page);
1260 delete_from_page_cache(page);
1261 spin_lock(&info->lock);
1262 shmem_recalc_inode(inode);
1263 spin_unlock(&info->lock);
1264 }
1265 error = -EINVAL;
1266 goto unlock;
1267 }
1268 *pagep = page;
1269 return 0;
1270
1271 /*
1272 * Error recovery.
1273 */
1274 decused:
1275 if (sbinfo->max_blocks)
1276 percpu_counter_add(&sbinfo->used_blocks, -1);
1277 unacct:
1278 shmem_unacct_blocks(info->flags, 1);
1279 failed:
1280 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1281 error = -EEXIST;
1282 unlock:
1283 if (page) {
1284 unlock_page(page);
1285 page_cache_release(page);
1286 }
1287 if (error == -ENOSPC && !once++) {
1288 info = SHMEM_I(inode);
1289 spin_lock(&info->lock);
1290 shmem_recalc_inode(inode);
1291 spin_unlock(&info->lock);
1292 goto repeat;
1293 }
1294 if (error == -EEXIST) /* from above or from radix_tree_insert */
1295 goto repeat;
1296 return error;
1297 }
1298
1299 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1300 {
1301 struct inode *inode = file_inode(vma->vm_file);
1302 int error;
1303 int ret = VM_FAULT_LOCKED;
1304
1305 /*
1306 * Trinity finds that probing a hole which tmpfs is punching can
1307 * prevent the hole-punch from ever completing: which in turn
1308 * locks writers out with its hold on i_mutex. So refrain from
1309 * faulting pages into the hole while it's being punched. Although
1310 * shmem_undo_range() does remove the additions, it may be unable to
1311 * keep up, as each new page needs its own unmap_mapping_range() call,
1312 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1313 *
1314 * It does not matter if we sometimes reach this check just before the
1315 * hole-punch begins, so that one fault then races with the punch:
1316 * we just need to make racing faults a rare case.
1317 *
1318 * The implementation below would be much simpler if we just used a
1319 * standard mutex or completion: but we cannot take i_mutex in fault,
1320 * and bloating every shmem inode for this unlikely case would be sad.
1321 */
1322 if (unlikely(inode->i_private)) {
1323 struct shmem_falloc *shmem_falloc;
1324
1325 spin_lock(&inode->i_lock);
1326 shmem_falloc = inode->i_private;
1327 if (shmem_falloc &&
1328 shmem_falloc->waitq &&
1329 vmf->pgoff >= shmem_falloc->start &&
1330 vmf->pgoff < shmem_falloc->next) {
1331 wait_queue_head_t *shmem_falloc_waitq;
1332 DEFINE_WAIT(shmem_fault_wait);
1333
1334 ret = VM_FAULT_NOPAGE;
1335 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1336 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1337 /* It's polite to up mmap_sem if we can */
1338 up_read(&vma->vm_mm->mmap_sem);
1339 ret = VM_FAULT_RETRY;
1340 }
1341
1342 shmem_falloc_waitq = shmem_falloc->waitq;
1343 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1344 TASK_UNINTERRUPTIBLE);
1345 spin_unlock(&inode->i_lock);
1346 schedule();
1347
1348 /*
1349 * shmem_falloc_waitq points into the shmem_fallocate()
1350 * stack of the hole-punching task: shmem_falloc_waitq
1351 * is usually invalid by the time we reach here, but
1352 * finish_wait() does not dereference it in that case;
1353 * though i_lock needed lest racing with wake_up_all().
1354 */
1355 spin_lock(&inode->i_lock);
1356 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1357 spin_unlock(&inode->i_lock);
1358 return ret;
1359 }
1360 spin_unlock(&inode->i_lock);
1361 }
1362
1363 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1364 if (error)
1365 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1366
1367 if (ret & VM_FAULT_MAJOR) {
1368 count_vm_event(PGMAJFAULT);
1369 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1370 }
1371 return ret;
1372 }
1373
1374 #ifdef CONFIG_NUMA
1375 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1376 {
1377 struct inode *inode = file_inode(vma->vm_file);
1378 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1379 }
1380
1381 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1382 unsigned long addr)
1383 {
1384 struct inode *inode = file_inode(vma->vm_file);
1385 pgoff_t index;
1386
1387 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1388 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1389 }
1390 #endif
1391
1392 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1393 {
1394 struct inode *inode = file_inode(file);
1395 struct shmem_inode_info *info = SHMEM_I(inode);
1396 int retval = -ENOMEM;
1397
1398 spin_lock(&info->lock);
1399 if (lock && !(info->flags & VM_LOCKED)) {
1400 if (!user_shm_lock(inode->i_size, user))
1401 goto out_nomem;
1402 info->flags |= VM_LOCKED;
1403 mapping_set_unevictable(file->f_mapping);
1404 }
1405 if (!lock && (info->flags & VM_LOCKED) && user) {
1406 user_shm_unlock(inode->i_size, user);
1407 info->flags &= ~VM_LOCKED;
1408 mapping_clear_unevictable(file->f_mapping);
1409 }
1410 retval = 0;
1411
1412 out_nomem:
1413 spin_unlock(&info->lock);
1414 return retval;
1415 }
1416
1417 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1418 {
1419 file_accessed(file);
1420 vma->vm_ops = &shmem_vm_ops;
1421 return 0;
1422 }
1423
1424 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1425 umode_t mode, dev_t dev, unsigned long flags)
1426 {
1427 struct inode *inode;
1428 struct shmem_inode_info *info;
1429 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1430 int ino;
1431
1432 if (shmem_reserve_inode(sb))
1433 return NULL;
1434
1435 inode = new_inode(sb);
1436 if (inode) {
1437 inode_init_owner(inode, dir, mode);
1438 inode->i_blocks = 0;
1439 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1440 inode->i_generation = get_seconds();
1441 info = SHMEM_I(inode);
1442 memset(info, 0, (char *)inode - (char *)info);
1443 spin_lock_init(&info->lock);
1444 info->seals = F_SEAL_SEAL;
1445 info->flags = flags & VM_NORESERVE;
1446 INIT_LIST_HEAD(&info->swaplist);
1447 simple_xattrs_init(&info->xattrs);
1448 cache_no_acl(inode);
1449
1450 switch (mode & S_IFMT) {
1451 default:
1452 inode->i_op = &shmem_special_inode_operations;
1453 init_special_inode(inode, mode, dev);
1454 break;
1455 case S_IFREG:
1456 inode->i_mapping->a_ops = &shmem_aops;
1457 inode->i_op = &shmem_inode_operations;
1458 inode->i_fop = &shmem_file_operations;
1459 mpol_shared_policy_init(&info->policy,
1460 shmem_get_sbmpol(sbinfo));
1461 break;
1462 case S_IFDIR:
1463 inc_nlink(inode);
1464 /* Some things misbehave if size == 0 on a directory */
1465 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1466 inode->i_op = &shmem_dir_inode_operations;
1467 inode->i_fop = &simple_dir_operations;
1468 break;
1469 case S_IFLNK:
1470 /*
1471 * Must not load anything in the rbtree,
1472 * mpol_free_shared_policy will not be called.
1473 */
1474 mpol_shared_policy_init(&info->policy, NULL);
1475 break;
1476 }
1477
1478 if (!sbinfo->idr_nouse) {
1479 /* inum 0 and 1 are unused */
1480 mutex_lock(&sbinfo->idr_lock);
1481 ino = idr_alloc(&sbinfo->idr, inode, 2, INT_MAX,
1482 GFP_NOFS);
1483 if (ino > 0) {
1484 inode->i_ino = ino;
1485 mutex_unlock(&sbinfo->idr_lock);
1486 __insert_inode_hash(inode, inode->i_ino);
1487 } else {
1488 inode->i_ino = 0;
1489 mutex_unlock(&sbinfo->idr_lock);
1490 iput(inode);
1491 /* shmem_free_inode() will be called */
1492 inode = NULL;
1493 }
1494 } else
1495 inode->i_ino = get_next_ino();
1496 } else
1497 shmem_free_inode(sb);
1498 return inode;
1499 }
1500
1501 bool shmem_mapping(struct address_space *mapping)
1502 {
1503 if (!mapping->host)
1504 return false;
1505
1506 return mapping->host->i_sb->s_op == &shmem_ops;
1507 }
1508
1509 #ifdef CONFIG_TMPFS
1510 static const struct inode_operations shmem_symlink_inode_operations;
1511 static const struct inode_operations shmem_short_symlink_operations;
1512
1513 #ifdef CONFIG_TMPFS_XATTR
1514 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1515 #else
1516 #define shmem_initxattrs NULL
1517 #endif
1518
1519 static int
1520 shmem_write_begin(struct file *file, struct address_space *mapping,
1521 loff_t pos, unsigned len, unsigned flags,
1522 struct page **pagep, void **fsdata)
1523 {
1524 struct inode *inode = mapping->host;
1525 struct shmem_inode_info *info = SHMEM_I(inode);
1526 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1527
1528 /* i_mutex is held by caller */
1529 if (unlikely(info->seals)) {
1530 if (info->seals & F_SEAL_WRITE)
1531 return -EPERM;
1532 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1533 return -EPERM;
1534 }
1535
1536 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1537 }
1538
1539 static int
1540 shmem_write_end(struct file *file, struct address_space *mapping,
1541 loff_t pos, unsigned len, unsigned copied,
1542 struct page *page, void *fsdata)
1543 {
1544 struct inode *inode = mapping->host;
1545
1546 if (pos + copied > inode->i_size)
1547 i_size_write(inode, pos + copied);
1548
1549 if (!PageUptodate(page)) {
1550 if (copied < PAGE_CACHE_SIZE) {
1551 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1552 zero_user_segments(page, 0, from,
1553 from + copied, PAGE_CACHE_SIZE);
1554 }
1555 SetPageUptodate(page);
1556 }
1557 set_page_dirty(page);
1558 unlock_page(page);
1559 page_cache_release(page);
1560
1561 return copied;
1562 }
1563
1564 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1565 {
1566 struct file *file = iocb->ki_filp;
1567 struct inode *inode = file_inode(file);
1568 struct address_space *mapping = inode->i_mapping;
1569 pgoff_t index;
1570 unsigned long offset;
1571 enum sgp_type sgp = SGP_READ;
1572 int error = 0;
1573 ssize_t retval = 0;
1574 loff_t *ppos = &iocb->ki_pos;
1575
1576 /*
1577 * Might this read be for a stacking filesystem? Then when reading
1578 * holes of a sparse file, we actually need to allocate those pages,
1579 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1580 */
1581 if (!iter_is_iovec(to))
1582 sgp = SGP_DIRTY;
1583
1584 index = *ppos >> PAGE_CACHE_SHIFT;
1585 offset = *ppos & ~PAGE_CACHE_MASK;
1586
1587 for (;;) {
1588 struct page *page = NULL;
1589 pgoff_t end_index;
1590 unsigned long nr, ret;
1591 loff_t i_size = i_size_read(inode);
1592
1593 end_index = i_size >> PAGE_CACHE_SHIFT;
1594 if (index > end_index)
1595 break;
1596 if (index == end_index) {
1597 nr = i_size & ~PAGE_CACHE_MASK;
1598 if (nr <= offset)
1599 break;
1600 }
1601
1602 error = shmem_getpage(inode, index, &page, sgp, NULL);
1603 if (error) {
1604 if (error == -EINVAL)
1605 error = 0;
1606 break;
1607 }
1608 if (page)
1609 unlock_page(page);
1610
1611 /*
1612 * We must evaluate after, since reads (unlike writes)
1613 * are called without i_mutex protection against truncate
1614 */
1615 nr = PAGE_CACHE_SIZE;
1616 i_size = i_size_read(inode);
1617 end_index = i_size >> PAGE_CACHE_SHIFT;
1618 if (index == end_index) {
1619 nr = i_size & ~PAGE_CACHE_MASK;
1620 if (nr <= offset) {
1621 if (page)
1622 page_cache_release(page);
1623 break;
1624 }
1625 }
1626 nr -= offset;
1627
1628 if (page) {
1629 /*
1630 * If users can be writing to this page using arbitrary
1631 * virtual addresses, take care about potential aliasing
1632 * before reading the page on the kernel side.
1633 */
1634 if (mapping_writably_mapped(mapping))
1635 flush_dcache_page(page);
1636 /*
1637 * Mark the page accessed if we read the beginning.
1638 */
1639 if (!offset)
1640 mark_page_accessed(page);
1641 } else {
1642 page = ZERO_PAGE(0);
1643 page_cache_get(page);
1644 }
1645
1646 /*
1647 * Ok, we have the page, and it's up-to-date, so
1648 * now we can copy it to user space...
1649 */
1650 ret = copy_page_to_iter(page, offset, nr, to);
1651 retval += ret;
1652 offset += ret;
1653 index += offset >> PAGE_CACHE_SHIFT;
1654 offset &= ~PAGE_CACHE_MASK;
1655
1656 page_cache_release(page);
1657 if (!iov_iter_count(to))
1658 break;
1659 if (ret < nr) {
1660 error = -EFAULT;
1661 break;
1662 }
1663 cond_resched();
1664 }
1665
1666 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1667 file_accessed(file);
1668 return retval ? retval : error;
1669 }
1670
1671 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1672 struct pipe_inode_info *pipe, size_t len,
1673 unsigned int flags)
1674 {
1675 struct address_space *mapping = in->f_mapping;
1676 struct inode *inode = mapping->host;
1677 unsigned int loff, nr_pages, req_pages;
1678 struct page *pages[PIPE_DEF_BUFFERS];
1679 struct partial_page partial[PIPE_DEF_BUFFERS];
1680 struct page *page;
1681 pgoff_t index, end_index;
1682 loff_t isize, left;
1683 int error, page_nr;
1684 struct splice_pipe_desc spd = {
1685 .pages = pages,
1686 .partial = partial,
1687 .nr_pages_max = PIPE_DEF_BUFFERS,
1688 .flags = flags,
1689 .ops = &page_cache_pipe_buf_ops,
1690 .spd_release = spd_release_page,
1691 };
1692
1693 isize = i_size_read(inode);
1694 if (unlikely(*ppos >= isize))
1695 return 0;
1696
1697 left = isize - *ppos;
1698 if (unlikely(left < len))
1699 len = left;
1700
1701 if (splice_grow_spd(pipe, &spd))
1702 return -ENOMEM;
1703
1704 index = *ppos >> PAGE_CACHE_SHIFT;
1705 loff = *ppos & ~PAGE_CACHE_MASK;
1706 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1707 nr_pages = min(req_pages, spd.nr_pages_max);
1708
1709 spd.nr_pages = find_get_pages_contig(mapping, index,
1710 nr_pages, spd.pages);
1711 index += spd.nr_pages;
1712 error = 0;
1713
1714 while (spd.nr_pages < nr_pages) {
1715 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1716 if (error)
1717 break;
1718 unlock_page(page);
1719 spd.pages[spd.nr_pages++] = page;
1720 index++;
1721 }
1722
1723 index = *ppos >> PAGE_CACHE_SHIFT;
1724 nr_pages = spd.nr_pages;
1725 spd.nr_pages = 0;
1726
1727 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1728 unsigned int this_len;
1729
1730 if (!len)
1731 break;
1732
1733 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1734 page = spd.pages[page_nr];
1735
1736 if (!PageUptodate(page) || page->mapping != mapping) {
1737 error = shmem_getpage(inode, index, &page,
1738 SGP_CACHE, NULL);
1739 if (error)
1740 break;
1741 unlock_page(page);
1742 page_cache_release(spd.pages[page_nr]);
1743 spd.pages[page_nr] = page;
1744 }
1745
1746 isize = i_size_read(inode);
1747 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1748 if (unlikely(!isize || index > end_index))
1749 break;
1750
1751 if (end_index == index) {
1752 unsigned int plen;
1753
1754 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1755 if (plen <= loff)
1756 break;
1757
1758 this_len = min(this_len, plen - loff);
1759 len = this_len;
1760 }
1761
1762 spd.partial[page_nr].offset = loff;
1763 spd.partial[page_nr].len = this_len;
1764 len -= this_len;
1765 loff = 0;
1766 spd.nr_pages++;
1767 index++;
1768 }
1769
1770 while (page_nr < nr_pages)
1771 page_cache_release(spd.pages[page_nr++]);
1772
1773 if (spd.nr_pages)
1774 error = splice_to_pipe(pipe, &spd);
1775
1776 splice_shrink_spd(&spd);
1777
1778 if (error > 0) {
1779 *ppos += error;
1780 file_accessed(in);
1781 }
1782 return error;
1783 }
1784
1785 /*
1786 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1787 */
1788 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1789 pgoff_t index, pgoff_t end, int whence)
1790 {
1791 struct page *page;
1792 struct pagevec pvec;
1793 pgoff_t indices[PAGEVEC_SIZE];
1794 bool done = false;
1795 int i;
1796
1797 pagevec_init(&pvec, 0);
1798 pvec.nr = 1; /* start small: we may be there already */
1799 while (!done) {
1800 pvec.nr = find_get_entries(mapping, index,
1801 pvec.nr, pvec.pages, indices);
1802 if (!pvec.nr) {
1803 if (whence == SEEK_DATA)
1804 index = end;
1805 break;
1806 }
1807 for (i = 0; i < pvec.nr; i++, index++) {
1808 if (index < indices[i]) {
1809 if (whence == SEEK_HOLE) {
1810 done = true;
1811 break;
1812 }
1813 index = indices[i];
1814 }
1815 page = pvec.pages[i];
1816 if (page && !radix_tree_exceptional_entry(page)) {
1817 if (!PageUptodate(page))
1818 page = NULL;
1819 }
1820 if (index >= end ||
1821 (page && whence == SEEK_DATA) ||
1822 (!page && whence == SEEK_HOLE)) {
1823 done = true;
1824 break;
1825 }
1826 }
1827 pagevec_remove_exceptionals(&pvec);
1828 pagevec_release(&pvec);
1829 pvec.nr = PAGEVEC_SIZE;
1830 cond_resched();
1831 }
1832 return index;
1833 }
1834
1835 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1836 {
1837 struct address_space *mapping = file->f_mapping;
1838 struct inode *inode = mapping->host;
1839 pgoff_t start, end;
1840 loff_t new_offset;
1841
1842 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1843 return generic_file_llseek_size(file, offset, whence,
1844 MAX_LFS_FILESIZE, i_size_read(inode));
1845 mutex_lock(&inode->i_mutex);
1846 /* We're holding i_mutex so we can access i_size directly */
1847
1848 if (offset < 0)
1849 offset = -EINVAL;
1850 else if (offset >= inode->i_size)
1851 offset = -ENXIO;
1852 else {
1853 start = offset >> PAGE_CACHE_SHIFT;
1854 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1855 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1856 new_offset <<= PAGE_CACHE_SHIFT;
1857 if (new_offset > offset) {
1858 if (new_offset < inode->i_size)
1859 offset = new_offset;
1860 else if (whence == SEEK_DATA)
1861 offset = -ENXIO;
1862 else
1863 offset = inode->i_size;
1864 }
1865 }
1866
1867 if (offset >= 0)
1868 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1869 mutex_unlock(&inode->i_mutex);
1870 return offset;
1871 }
1872
1873 /*
1874 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1875 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1876 */
1877 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1878 #define LAST_SCAN 4 /* about 150ms max */
1879
1880 static void shmem_tag_pins(struct address_space *mapping)
1881 {
1882 struct radix_tree_iter iter;
1883 void **slot;
1884 pgoff_t start;
1885 struct page *page;
1886
1887 lru_add_drain();
1888 start = 0;
1889 rcu_read_lock();
1890
1891 restart:
1892 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1893 page = radix_tree_deref_slot(slot);
1894 if (!page || radix_tree_exception(page)) {
1895 if (radix_tree_deref_retry(page))
1896 goto restart;
1897 } else if (page_count(page) - page_mapcount(page) > 1) {
1898 spin_lock_irq(&mapping->tree_lock);
1899 radix_tree_tag_set(&mapping->page_tree, iter.index,
1900 SHMEM_TAG_PINNED);
1901 spin_unlock_irq(&mapping->tree_lock);
1902 }
1903
1904 if (need_resched()) {
1905 cond_resched_rcu();
1906 start = iter.index + 1;
1907 goto restart;
1908 }
1909 }
1910 rcu_read_unlock();
1911 }
1912
1913 /*
1914 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1915 * via get_user_pages(), drivers might have some pending I/O without any active
1916 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1917 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1918 * them to be dropped.
1919 * The caller must guarantee that no new user will acquire writable references
1920 * to those pages to avoid races.
1921 */
1922 static int shmem_wait_for_pins(struct address_space *mapping)
1923 {
1924 struct radix_tree_iter iter;
1925 void **slot;
1926 pgoff_t start;
1927 struct page *page;
1928 int error, scan;
1929
1930 shmem_tag_pins(mapping);
1931
1932 error = 0;
1933 for (scan = 0; scan <= LAST_SCAN; scan++) {
1934 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1935 break;
1936
1937 if (!scan)
1938 lru_add_drain_all();
1939 else if (schedule_timeout_killable((HZ << scan) / 200))
1940 scan = LAST_SCAN;
1941
1942 start = 0;
1943 rcu_read_lock();
1944 restart:
1945 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1946 start, SHMEM_TAG_PINNED) {
1947
1948 page = radix_tree_deref_slot(slot);
1949 if (radix_tree_exception(page)) {
1950 if (radix_tree_deref_retry(page))
1951 goto restart;
1952
1953 page = NULL;
1954 }
1955
1956 if (page &&
1957 page_count(page) - page_mapcount(page) != 1) {
1958 if (scan < LAST_SCAN)
1959 goto continue_resched;
1960
1961 /*
1962 * On the last scan, we clean up all those tags
1963 * we inserted; but make a note that we still
1964 * found pages pinned.
1965 */
1966 error = -EBUSY;
1967 }
1968
1969 spin_lock_irq(&mapping->tree_lock);
1970 radix_tree_tag_clear(&mapping->page_tree,
1971 iter.index, SHMEM_TAG_PINNED);
1972 spin_unlock_irq(&mapping->tree_lock);
1973 continue_resched:
1974 if (need_resched()) {
1975 cond_resched_rcu();
1976 start = iter.index + 1;
1977 goto restart;
1978 }
1979 }
1980 rcu_read_unlock();
1981 }
1982
1983 return error;
1984 }
1985
1986 #define F_ALL_SEALS (F_SEAL_SEAL | \
1987 F_SEAL_SHRINK | \
1988 F_SEAL_GROW | \
1989 F_SEAL_WRITE)
1990
1991 int shmem_add_seals(struct file *file, unsigned int seals)
1992 {
1993 struct inode *inode = file_inode(file);
1994 struct shmem_inode_info *info = SHMEM_I(inode);
1995 int error;
1996
1997 /*
1998 * SEALING
1999 * Sealing allows multiple parties to share a shmem-file but restrict
2000 * access to a specific subset of file operations. Seals can only be
2001 * added, but never removed. This way, mutually untrusted parties can
2002 * share common memory regions with a well-defined policy. A malicious
2003 * peer can thus never perform unwanted operations on a shared object.
2004 *
2005 * Seals are only supported on special shmem-files and always affect
2006 * the whole underlying inode. Once a seal is set, it may prevent some
2007 * kinds of access to the file. Currently, the following seals are
2008 * defined:
2009 * SEAL_SEAL: Prevent further seals from being set on this file
2010 * SEAL_SHRINK: Prevent the file from shrinking
2011 * SEAL_GROW: Prevent the file from growing
2012 * SEAL_WRITE: Prevent write access to the file
2013 *
2014 * As we don't require any trust relationship between two parties, we
2015 * must prevent seals from being removed. Therefore, sealing a file
2016 * only adds a given set of seals to the file, it never touches
2017 * existing seals. Furthermore, the "setting seals"-operation can be
2018 * sealed itself, which basically prevents any further seal from being
2019 * added.
2020 *
2021 * Semantics of sealing are only defined on volatile files. Only
2022 * anonymous shmem files support sealing. More importantly, seals are
2023 * never written to disk. Therefore, there's no plan to support it on
2024 * other file types.
2025 */
2026
2027 if (file->f_op != &shmem_file_operations)
2028 return -EINVAL;
2029 if (!(file->f_mode & FMODE_WRITE))
2030 return -EPERM;
2031 if (seals & ~(unsigned int)F_ALL_SEALS)
2032 return -EINVAL;
2033
2034 mutex_lock(&inode->i_mutex);
2035
2036 if (info->seals & F_SEAL_SEAL) {
2037 error = -EPERM;
2038 goto unlock;
2039 }
2040
2041 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2042 error = mapping_deny_writable(file->f_mapping);
2043 if (error)
2044 goto unlock;
2045
2046 error = shmem_wait_for_pins(file->f_mapping);
2047 if (error) {
2048 mapping_allow_writable(file->f_mapping);
2049 goto unlock;
2050 }
2051 }
2052
2053 info->seals |= seals;
2054 error = 0;
2055
2056 unlock:
2057 mutex_unlock(&inode->i_mutex);
2058 return error;
2059 }
2060 EXPORT_SYMBOL_GPL(shmem_add_seals);
2061
2062 int shmem_get_seals(struct file *file)
2063 {
2064 if (file->f_op != &shmem_file_operations)
2065 return -EINVAL;
2066
2067 return SHMEM_I(file_inode(file))->seals;
2068 }
2069 EXPORT_SYMBOL_GPL(shmem_get_seals);
2070
2071 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2072 {
2073 long error;
2074
2075 switch (cmd) {
2076 case F_ADD_SEALS:
2077 /* disallow upper 32bit */
2078 if (arg > UINT_MAX)
2079 return -EINVAL;
2080
2081 error = shmem_add_seals(file, arg);
2082 break;
2083 case F_GET_SEALS:
2084 error = shmem_get_seals(file);
2085 break;
2086 default:
2087 error = -EINVAL;
2088 break;
2089 }
2090
2091 return error;
2092 }
2093
2094 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2095 loff_t len)
2096 {
2097 struct inode *inode = file_inode(file);
2098 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2099 struct shmem_inode_info *info = SHMEM_I(inode);
2100 struct shmem_falloc shmem_falloc;
2101 pgoff_t start, index, end;
2102 int error;
2103
2104 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2105 return -EOPNOTSUPP;
2106
2107 mutex_lock(&inode->i_mutex);
2108
2109 if (mode & FALLOC_FL_PUNCH_HOLE) {
2110 struct address_space *mapping = file->f_mapping;
2111 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2112 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2113 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2114
2115 /* protected by i_mutex */
2116 if (info->seals & F_SEAL_WRITE) {
2117 error = -EPERM;
2118 goto out;
2119 }
2120
2121 shmem_falloc.waitq = &shmem_falloc_waitq;
2122 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2123 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2124 spin_lock(&inode->i_lock);
2125 inode->i_private = &shmem_falloc;
2126 spin_unlock(&inode->i_lock);
2127
2128 if ((u64)unmap_end > (u64)unmap_start)
2129 unmap_mapping_range(mapping, unmap_start,
2130 1 + unmap_end - unmap_start, 0);
2131 shmem_truncate_range(inode, offset, offset + len - 1);
2132 /* No need to unmap again: hole-punching leaves COWed pages */
2133
2134 spin_lock(&inode->i_lock);
2135 inode->i_private = NULL;
2136 wake_up_all(&shmem_falloc_waitq);
2137 spin_unlock(&inode->i_lock);
2138 error = 0;
2139 goto out;
2140 }
2141
2142 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2143 error = inode_newsize_ok(inode, offset + len);
2144 if (error)
2145 goto out;
2146
2147 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2148 error = -EPERM;
2149 goto out;
2150 }
2151
2152 start = offset >> PAGE_CACHE_SHIFT;
2153 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2154 /* Try to avoid a swapstorm if len is impossible to satisfy */
2155 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2156 error = -ENOSPC;
2157 goto out;
2158 }
2159
2160 shmem_falloc.waitq = NULL;
2161 shmem_falloc.start = start;
2162 shmem_falloc.next = start;
2163 shmem_falloc.nr_falloced = 0;
2164 shmem_falloc.nr_unswapped = 0;
2165 spin_lock(&inode->i_lock);
2166 inode->i_private = &shmem_falloc;
2167 spin_unlock(&inode->i_lock);
2168
2169 for (index = start; index < end; index++) {
2170 struct page *page;
2171
2172 /*
2173 * Good, the fallocate(2) manpage permits EINTR: we may have
2174 * been interrupted because we are using up too much memory.
2175 */
2176 if (signal_pending(current))
2177 error = -EINTR;
2178 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2179 error = -ENOMEM;
2180 else
2181 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2182 NULL);
2183 if (error) {
2184 /* Remove the !PageUptodate pages we added */
2185 if (index > start) {
2186 shmem_undo_range(inode,
2187 (loff_t)start << PAGE_CACHE_SHIFT,
2188 ((loff_t)index << PAGE_CACHE_SHIFT) - 1, true);
2189 }
2190 goto undone;
2191 }
2192
2193 /*
2194 * Inform shmem_writepage() how far we have reached.
2195 * No need for lock or barrier: we have the page lock.
2196 */
2197 shmem_falloc.next++;
2198 if (!PageUptodate(page))
2199 shmem_falloc.nr_falloced++;
2200
2201 /*
2202 * If !PageUptodate, leave it that way so that freeable pages
2203 * can be recognized if we need to rollback on error later.
2204 * But set_page_dirty so that memory pressure will swap rather
2205 * than free the pages we are allocating (and SGP_CACHE pages
2206 * might still be clean: we now need to mark those dirty too).
2207 */
2208 set_page_dirty(page);
2209 unlock_page(page);
2210 page_cache_release(page);
2211 cond_resched();
2212 }
2213
2214 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2215 i_size_write(inode, offset + len);
2216 inode->i_ctime = CURRENT_TIME;
2217 undone:
2218 spin_lock(&inode->i_lock);
2219 inode->i_private = NULL;
2220 spin_unlock(&inode->i_lock);
2221 out:
2222 mutex_unlock(&inode->i_mutex);
2223 return error;
2224 }
2225
2226 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2227 {
2228 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2229
2230 buf->f_type = TMPFS_MAGIC;
2231 buf->f_bsize = PAGE_CACHE_SIZE;
2232 buf->f_namelen = NAME_MAX;
2233 if (sbinfo->max_blocks) {
2234 buf->f_blocks = sbinfo->max_blocks;
2235 buf->f_bavail =
2236 buf->f_bfree = sbinfo->max_blocks -
2237 percpu_counter_sum(&sbinfo->used_blocks);
2238 }
2239 if (sbinfo->max_inodes) {
2240 buf->f_files = sbinfo->max_inodes;
2241 buf->f_ffree = sbinfo->free_inodes;
2242 }
2243 /* else leave those fields 0 like simple_statfs */
2244 return 0;
2245 }
2246
2247 /*
2248 * File creation. Allocate an inode, and we're done..
2249 */
2250 static int
2251 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2252 {
2253 struct inode *inode;
2254 int error = -ENOSPC;
2255
2256 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2257 if (inode) {
2258 error = simple_acl_create(dir, inode);
2259 if (error)
2260 goto out_iput;
2261 error = security_inode_init_security(inode, dir,
2262 &dentry->d_name,
2263 shmem_initxattrs, NULL);
2264 if (error && error != -EOPNOTSUPP)
2265 goto out_iput;
2266
2267 error = 0;
2268 dir->i_size += BOGO_DIRENT_SIZE;
2269 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2270 d_instantiate(dentry, inode);
2271 dget(dentry); /* Extra count - pin the dentry in core */
2272 }
2273 return error;
2274 out_iput:
2275 iput(inode);
2276 return error;
2277 }
2278
2279 static int
2280 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2281 {
2282 struct inode *inode;
2283 int error = -ENOSPC;
2284
2285 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2286 if (inode) {
2287 error = security_inode_init_security(inode, dir,
2288 NULL,
2289 shmem_initxattrs, NULL);
2290 if (error && error != -EOPNOTSUPP)
2291 goto out_iput;
2292 error = simple_acl_create(dir, inode);
2293 if (error)
2294 goto out_iput;
2295 d_tmpfile(dentry, inode);
2296 }
2297 return error;
2298 out_iput:
2299 iput(inode);
2300 return error;
2301 }
2302
2303 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2304 {
2305 int error;
2306
2307 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2308 return error;
2309 inc_nlink(dir);
2310 return 0;
2311 }
2312
2313 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2314 bool excl)
2315 {
2316 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2317 }
2318
2319 /*
2320 * Link a file..
2321 */
2322 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2323 {
2324 struct inode *inode = d_inode(old_dentry);
2325 int ret;
2326
2327 /*
2328 * No ordinary (disk based) filesystem counts links as inodes;
2329 * but each new link needs a new dentry, pinning lowmem, and
2330 * tmpfs dentries cannot be pruned until they are unlinked.
2331 */
2332 ret = shmem_reserve_inode(inode->i_sb);
2333 if (ret)
2334 goto out;
2335
2336 dir->i_size += BOGO_DIRENT_SIZE;
2337 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2338 inc_nlink(inode);
2339 ihold(inode); /* New dentry reference */
2340 dget(dentry); /* Extra pinning count for the created dentry */
2341 d_instantiate(dentry, inode);
2342 out:
2343 return ret;
2344 }
2345
2346 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2347 {
2348 struct inode *inode = d_inode(dentry);
2349
2350 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2351 shmem_free_inode(inode->i_sb);
2352
2353 dir->i_size -= BOGO_DIRENT_SIZE;
2354 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2355 drop_nlink(inode);
2356 dput(dentry); /* Undo the count from "create" - this does all the work */
2357 return 0;
2358 }
2359
2360 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2361 {
2362 if (!simple_empty(dentry))
2363 return -ENOTEMPTY;
2364
2365 drop_nlink(d_inode(dentry));
2366 drop_nlink(dir);
2367 return shmem_unlink(dir, dentry);
2368 }
2369
2370 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2371 {
2372 bool old_is_dir = d_is_dir(old_dentry);
2373 bool new_is_dir = d_is_dir(new_dentry);
2374
2375 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2376 if (old_is_dir) {
2377 drop_nlink(old_dir);
2378 inc_nlink(new_dir);
2379 } else {
2380 drop_nlink(new_dir);
2381 inc_nlink(old_dir);
2382 }
2383 }
2384 old_dir->i_ctime = old_dir->i_mtime =
2385 new_dir->i_ctime = new_dir->i_mtime =
2386 d_inode(old_dentry)->i_ctime =
2387 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2388
2389 return 0;
2390 }
2391
2392 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2393 {
2394 struct dentry *whiteout;
2395 int error;
2396
2397 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2398 if (!whiteout)
2399 return -ENOMEM;
2400
2401 error = shmem_mknod(old_dir, whiteout,
2402 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2403 dput(whiteout);
2404 if (error)
2405 return error;
2406
2407 /*
2408 * Cheat and hash the whiteout while the old dentry is still in
2409 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2410 *
2411 * d_lookup() will consistently find one of them at this point,
2412 * not sure which one, but that isn't even important.
2413 */
2414 d_rehash(whiteout);
2415 return 0;
2416 }
2417
2418 /*
2419 * The VFS layer already does all the dentry stuff for rename,
2420 * we just have to decrement the usage count for the target if
2421 * it exists so that the VFS layer correctly free's it when it
2422 * gets overwritten.
2423 */
2424 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2425 {
2426 struct inode *inode = d_inode(old_dentry);
2427 int they_are_dirs = S_ISDIR(inode->i_mode);
2428
2429 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2430 return -EINVAL;
2431
2432 if (flags & RENAME_EXCHANGE)
2433 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2434
2435 if (!simple_empty(new_dentry))
2436 return -ENOTEMPTY;
2437
2438 if (flags & RENAME_WHITEOUT) {
2439 int error;
2440
2441 error = shmem_whiteout(old_dir, old_dentry);
2442 if (error)
2443 return error;
2444 }
2445
2446 if (d_really_is_positive(new_dentry)) {
2447 (void) shmem_unlink(new_dir, new_dentry);
2448 if (they_are_dirs) {
2449 drop_nlink(d_inode(new_dentry));
2450 drop_nlink(old_dir);
2451 }
2452 } else if (they_are_dirs) {
2453 drop_nlink(old_dir);
2454 inc_nlink(new_dir);
2455 }
2456
2457 old_dir->i_size -= BOGO_DIRENT_SIZE;
2458 new_dir->i_size += BOGO_DIRENT_SIZE;
2459 old_dir->i_ctime = old_dir->i_mtime =
2460 new_dir->i_ctime = new_dir->i_mtime =
2461 inode->i_ctime = CURRENT_TIME;
2462 return 0;
2463 }
2464
2465 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2466 {
2467 int error;
2468 int len;
2469 struct inode *inode;
2470 struct page *page;
2471 char *kaddr;
2472 struct shmem_inode_info *info;
2473
2474 len = strlen(symname) + 1;
2475 if (len > PAGE_CACHE_SIZE)
2476 return -ENAMETOOLONG;
2477
2478 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2479 if (!inode)
2480 return -ENOSPC;
2481
2482 error = security_inode_init_security(inode, dir, &dentry->d_name,
2483 shmem_initxattrs, NULL);
2484 if (error) {
2485 if (error != -EOPNOTSUPP) {
2486 iput(inode);
2487 return error;
2488 }
2489 error = 0;
2490 }
2491
2492 info = SHMEM_I(inode);
2493 inode->i_size = len-1;
2494 if (len <= SHORT_SYMLINK_LEN) {
2495 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2496 if (!inode->i_link) {
2497 iput(inode);
2498 return -ENOMEM;
2499 }
2500 inode->i_op = &shmem_short_symlink_operations;
2501 } else {
2502 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2503 if (error) {
2504 iput(inode);
2505 return error;
2506 }
2507 inode->i_mapping->a_ops = &shmem_aops;
2508 inode->i_op = &shmem_symlink_inode_operations;
2509 kaddr = kmap_atomic(page);
2510 memcpy(kaddr, symname, len);
2511 kunmap_atomic(kaddr);
2512 SetPageUptodate(page);
2513 set_page_dirty(page);
2514 unlock_page(page);
2515 page_cache_release(page);
2516 }
2517 dir->i_size += BOGO_DIRENT_SIZE;
2518 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2519 d_instantiate(dentry, inode);
2520 dget(dentry);
2521 return 0;
2522 }
2523
2524 static const char *shmem_follow_link(struct dentry *dentry, void **cookie)
2525 {
2526 struct page *page = NULL;
2527 int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
2528 if (error)
2529 return ERR_PTR(error);
2530 unlock_page(page);
2531 *cookie = page;
2532 return kmap(page);
2533 }
2534
2535 static void shmem_put_link(struct inode *unused, void *cookie)
2536 {
2537 struct page *page = cookie;
2538 kunmap(page);
2539 mark_page_accessed(page);
2540 page_cache_release(page);
2541 }
2542
2543 #ifdef CONFIG_TMPFS_XATTR
2544 /*
2545 * Superblocks without xattr inode operations may get some security.* xattr
2546 * support from the LSM "for free". As soon as we have any other xattrs
2547 * like ACLs, we also need to implement the security.* handlers at
2548 * filesystem level, though.
2549 */
2550
2551 /*
2552 * Callback for security_inode_init_security() for acquiring xattrs.
2553 */
2554 static int shmem_initxattrs(struct inode *inode,
2555 const struct xattr *xattr_array,
2556 void *fs_info)
2557 {
2558 struct shmem_inode_info *info = SHMEM_I(inode);
2559 const struct xattr *xattr;
2560 struct simple_xattr *new_xattr;
2561 size_t len;
2562
2563 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2564 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2565 if (!new_xattr)
2566 return -ENOMEM;
2567
2568 len = strlen(xattr->name) + 1;
2569 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2570 GFP_KERNEL);
2571 if (!new_xattr->name) {
2572 kfree(new_xattr);
2573 return -ENOMEM;
2574 }
2575
2576 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2577 XATTR_SECURITY_PREFIX_LEN);
2578 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2579 xattr->name, len);
2580
2581 simple_xattr_list_add(&info->xattrs, new_xattr);
2582 }
2583
2584 return 0;
2585 }
2586
2587 static const struct xattr_handler *shmem_xattr_handlers[] = {
2588 #ifdef CONFIG_TMPFS_POSIX_ACL
2589 &posix_acl_access_xattr_handler,
2590 &posix_acl_default_xattr_handler,
2591 #endif
2592 NULL
2593 };
2594
2595 static int shmem_xattr_validate(const char *name)
2596 {
2597 struct { const char *prefix; size_t len; } arr[] = {
2598 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2599 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2600 };
2601 int i;
2602
2603 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2604 size_t preflen = arr[i].len;
2605 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2606 if (!name[preflen])
2607 return -EINVAL;
2608 return 0;
2609 }
2610 }
2611 return -EOPNOTSUPP;
2612 }
2613
2614 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2615 void *buffer, size_t size)
2616 {
2617 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2618 int err;
2619
2620 /*
2621 * If this is a request for a synthetic attribute in the system.*
2622 * namespace use the generic infrastructure to resolve a handler
2623 * for it via sb->s_xattr.
2624 */
2625 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2626 return generic_getxattr(dentry, name, buffer, size);
2627
2628 err = shmem_xattr_validate(name);
2629 if (err)
2630 return err;
2631
2632 return simple_xattr_get(&info->xattrs, name, buffer, size);
2633 }
2634
2635 static int shmem_setxattr(struct dentry *dentry, const char *name,
2636 const void *value, size_t size, int flags)
2637 {
2638 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2639 int err;
2640
2641 /*
2642 * If this is a request for a synthetic attribute in the system.*
2643 * namespace use the generic infrastructure to resolve a handler
2644 * for it via sb->s_xattr.
2645 */
2646 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2647 return generic_setxattr(dentry, name, value, size, flags);
2648
2649 err = shmem_xattr_validate(name);
2650 if (err)
2651 return err;
2652
2653 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2654 }
2655
2656 static int shmem_removexattr(struct dentry *dentry, const char *name)
2657 {
2658 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2659 int err;
2660
2661 /*
2662 * If this is a request for a synthetic attribute in the system.*
2663 * namespace use the generic infrastructure to resolve a handler
2664 * for it via sb->s_xattr.
2665 */
2666 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2667 return generic_removexattr(dentry, name);
2668
2669 err = shmem_xattr_validate(name);
2670 if (err)
2671 return err;
2672
2673 return simple_xattr_remove(&info->xattrs, name);
2674 }
2675
2676 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2677 {
2678 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2679 return simple_xattr_list(&info->xattrs, buffer, size);
2680 }
2681 #endif /* CONFIG_TMPFS_XATTR */
2682
2683 static const struct inode_operations shmem_short_symlink_operations = {
2684 .readlink = generic_readlink,
2685 .follow_link = simple_follow_link,
2686 #ifdef CONFIG_TMPFS_XATTR
2687 .setxattr = shmem_setxattr,
2688 .getxattr = shmem_getxattr,
2689 .listxattr = shmem_listxattr,
2690 .removexattr = shmem_removexattr,
2691 #endif
2692 };
2693
2694 static const struct inode_operations shmem_symlink_inode_operations = {
2695 .readlink = generic_readlink,
2696 .follow_link = shmem_follow_link,
2697 .put_link = shmem_put_link,
2698 #ifdef CONFIG_TMPFS_XATTR
2699 .setxattr = shmem_setxattr,
2700 .getxattr = shmem_getxattr,
2701 .listxattr = shmem_listxattr,
2702 .removexattr = shmem_removexattr,
2703 #endif
2704 };
2705
2706 static struct dentry *shmem_get_parent(struct dentry *child)
2707 {
2708 return ERR_PTR(-ESTALE);
2709 }
2710
2711 static int shmem_match(struct inode *ino, void *vfh)
2712 {
2713 __u32 *fh = vfh;
2714 __u64 inum = fh[1];
2715 return ino->i_ino == inum && fh[0] == ino->i_generation;
2716 }
2717
2718 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2719 struct fid *fid, int fh_len, int fh_type)
2720 {
2721 struct inode *inode;
2722 struct dentry *dentry = NULL;
2723 u64 inum;
2724
2725 if (fh_len < 2)
2726 return NULL;
2727
2728 inum = fid->raw[1];
2729 inode = ilookup5(sb, inum, shmem_match, fid->raw);
2730 if (inode) {
2731 dentry = d_find_alias(inode);
2732 iput(inode);
2733 }
2734
2735 return dentry;
2736 }
2737
2738 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2739 struct inode *parent)
2740 {
2741 if (*len < 2) {
2742 *len = 2;
2743 return FILEID_INVALID;
2744 }
2745
2746 fh[0] = inode->i_generation;
2747 fh[1] = inode->i_ino;
2748
2749 *len = 2;
2750 return 1;
2751 }
2752
2753 static const struct export_operations shmem_export_ops = {
2754 .get_parent = shmem_get_parent,
2755 .encode_fh = shmem_encode_fh,
2756 .fh_to_dentry = shmem_fh_to_dentry,
2757 };
2758
2759 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2760 bool remount)
2761 {
2762 char *this_char, *value, *rest;
2763 struct mempolicy *mpol = NULL;
2764 uid_t uid;
2765 gid_t gid;
2766
2767 while (options != NULL) {
2768 this_char = options;
2769 for (;;) {
2770 /*
2771 * NUL-terminate this option: unfortunately,
2772 * mount options form a comma-separated list,
2773 * but mpol's nodelist may also contain commas.
2774 */
2775 options = strchr(options, ',');
2776 if (options == NULL)
2777 break;
2778 options++;
2779 if (!isdigit(*options)) {
2780 options[-1] = '\0';
2781 break;
2782 }
2783 }
2784 if (!*this_char)
2785 continue;
2786 if ((value = strchr(this_char,'=')) != NULL) {
2787 *value++ = 0;
2788 } else {
2789 printk(KERN_ERR
2790 "tmpfs: No value for mount option '%s'\n",
2791 this_char);
2792 goto error;
2793 }
2794
2795 if (!strcmp(this_char,"size")) {
2796 unsigned long long size;
2797 size = memparse(value,&rest);
2798 if (*rest == '%') {
2799 size <<= PAGE_SHIFT;
2800 size *= totalram_pages;
2801 do_div(size, 100);
2802 rest++;
2803 }
2804 if (*rest)
2805 goto bad_val;
2806 sbinfo->max_blocks =
2807 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2808 } else if (!strcmp(this_char,"nr_blocks")) {
2809 sbinfo->max_blocks = memparse(value, &rest);
2810 if (*rest)
2811 goto bad_val;
2812 } else if (!strcmp(this_char,"nr_inodes")) {
2813 sbinfo->max_inodes = memparse(value, &rest);
2814 if (*rest || sbinfo->max_inodes < 2)
2815 goto bad_val;
2816 } else if (!strcmp(this_char,"mode")) {
2817 if (remount)
2818 continue;
2819 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2820 if (*rest)
2821 goto bad_val;
2822 } else if (!strcmp(this_char,"uid")) {
2823 if (remount)
2824 continue;
2825 uid = simple_strtoul(value, &rest, 0);
2826 if (*rest)
2827 goto bad_val;
2828 sbinfo->uid = make_kuid(current_user_ns(), uid);
2829 if (!uid_valid(sbinfo->uid))
2830 goto bad_val;
2831 } else if (!strcmp(this_char,"gid")) {
2832 if (remount)
2833 continue;
2834 gid = simple_strtoul(value, &rest, 0);
2835 if (*rest)
2836 goto bad_val;
2837 sbinfo->gid = make_kgid(current_user_ns(), gid);
2838 if (!gid_valid(sbinfo->gid))
2839 goto bad_val;
2840 } else if (!strcmp(this_char,"mpol")) {
2841 mpol_put(mpol);
2842 mpol = NULL;
2843 if (mpol_parse_str(value, &mpol))
2844 goto bad_val;
2845 } else {
2846 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2847 this_char);
2848 goto error;
2849 }
2850 }
2851 sbinfo->mpol = mpol;
2852 return 0;
2853
2854 bad_val:
2855 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2856 value, this_char);
2857 error:
2858 mpol_put(mpol);
2859 return 1;
2860
2861 }
2862
2863 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2864 {
2865 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2866 struct shmem_sb_info config = *sbinfo;
2867 int inodes;
2868 int error = -EINVAL;
2869
2870 config.mpol = NULL;
2871 if (shmem_parse_options(data, &config, true))
2872 return error;
2873
2874 spin_lock(&sbinfo->stat_lock);
2875 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2876 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2877 goto out;
2878 if (config.max_inodes < inodes)
2879 goto out;
2880 /*
2881 * Those tests disallow limited->unlimited while any are in use;
2882 * but we must separately disallow unlimited->limited, because
2883 * in that case we have no record of how much is already in use.
2884 */
2885 if (config.max_blocks && !sbinfo->max_blocks)
2886 goto out;
2887 if (config.max_inodes && !sbinfo->max_inodes)
2888 goto out;
2889
2890 error = 0;
2891 sbinfo->max_blocks = config.max_blocks;
2892 sbinfo->max_inodes = config.max_inodes;
2893 sbinfo->free_inodes = config.max_inodes - inodes;
2894
2895 /*
2896 * Preserve previous mempolicy unless mpol remount option was specified.
2897 */
2898 if (config.mpol) {
2899 mpol_put(sbinfo->mpol);
2900 sbinfo->mpol = config.mpol; /* transfers initial ref */
2901 }
2902 out:
2903 spin_unlock(&sbinfo->stat_lock);
2904 return error;
2905 }
2906
2907 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2908 {
2909 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2910
2911 if (sbinfo->max_blocks != shmem_default_max_blocks())
2912 seq_printf(seq, ",size=%luk",
2913 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2914 if (sbinfo->max_inodes != shmem_default_max_inodes())
2915 seq_printf(seq, ",nr_inodes=%d", sbinfo->max_inodes);
2916 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2917 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2918 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2919 seq_printf(seq, ",uid=%u",
2920 from_kuid_munged(&init_user_ns, sbinfo->uid));
2921 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2922 seq_printf(seq, ",gid=%u",
2923 from_kgid_munged(&init_user_ns, sbinfo->gid));
2924 shmem_show_mpol(seq, sbinfo->mpol);
2925 return 0;
2926 }
2927
2928 #define MFD_NAME_PREFIX "memfd:"
2929 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2930 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2931
2932 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2933
2934 SYSCALL_DEFINE2(memfd_create,
2935 const char __user *, uname,
2936 unsigned int, flags)
2937 {
2938 struct shmem_inode_info *info;
2939 struct file *file;
2940 int fd, error;
2941 char *name;
2942 long len;
2943
2944 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2945 return -EINVAL;
2946
2947 /* length includes terminating zero */
2948 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2949 if (len <= 0)
2950 return -EFAULT;
2951 if (len > MFD_NAME_MAX_LEN + 1)
2952 return -EINVAL;
2953
2954 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2955 if (!name)
2956 return -ENOMEM;
2957
2958 strcpy(name, MFD_NAME_PREFIX);
2959 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2960 error = -EFAULT;
2961 goto err_name;
2962 }
2963
2964 /* terminating-zero may have changed after strnlen_user() returned */
2965 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2966 error = -EFAULT;
2967 goto err_name;
2968 }
2969
2970 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2971 if (fd < 0) {
2972 error = fd;
2973 goto err_name;
2974 }
2975
2976 file = shmem_file_setup(name, 0, VM_NORESERVE);
2977 if (IS_ERR(file)) {
2978 error = PTR_ERR(file);
2979 goto err_fd;
2980 }
2981 info = SHMEM_I(file_inode(file));
2982 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2983 file->f_flags |= O_RDWR | O_LARGEFILE;
2984 if (flags & MFD_ALLOW_SEALING)
2985 info->seals &= ~F_SEAL_SEAL;
2986
2987 fd_install(fd, file);
2988 kfree(name);
2989 return fd;
2990
2991 err_fd:
2992 put_unused_fd(fd);
2993 err_name:
2994 kfree(name);
2995 return error;
2996 }
2997
2998 #endif /* CONFIG_TMPFS */
2999
3000 static void shmem_put_super(struct super_block *sb)
3001 {
3002 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3003
3004 if (!sbinfo->idr_nouse)
3005 idr_destroy(&sbinfo->idr);
3006 percpu_counter_destroy(&sbinfo->used_blocks);
3007 mpol_put(sbinfo->mpol);
3008 kfree(sbinfo);
3009 sb->s_fs_info = NULL;
3010 }
3011
3012 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3013 {
3014 struct inode *inode;
3015 struct shmem_sb_info *sbinfo;
3016 int err = -ENOMEM;
3017
3018 /* Round up to L1_CACHE_BYTES to resist false sharing */
3019 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3020 L1_CACHE_BYTES), GFP_KERNEL);
3021 if (!sbinfo)
3022 return -ENOMEM;
3023
3024 mutex_init(&sbinfo->idr_lock);
3025 idr_init(&sbinfo->idr);
3026 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3027 sbinfo->uid = current_fsuid();
3028 sbinfo->gid = current_fsgid();
3029 sb->s_fs_info = sbinfo;
3030
3031 #ifdef CONFIG_TMPFS
3032 /*
3033 * Per default we only allow half of the physical ram per
3034 * tmpfs instance, limiting inodes to one per page of lowmem;
3035 * but the internal instance is left unlimited.
3036 */
3037 if (!(sb->s_flags & MS_KERNMOUNT)) {
3038 sbinfo->max_blocks = shmem_default_max_blocks();
3039 sbinfo->max_inodes = shmem_default_max_inodes();
3040 if (shmem_parse_options(data, sbinfo, false)) {
3041 err = -EINVAL;
3042 goto failed;
3043 }
3044 } else {
3045 sb->s_flags |= MS_NOUSER;
3046 }
3047 sb->s_export_op = &shmem_export_ops;
3048 sb->s_flags |= MS_NOSEC;
3049 #else
3050 sb->s_flags |= MS_NOUSER;
3051 #endif
3052
3053 spin_lock_init(&sbinfo->stat_lock);
3054 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3055 goto failed;
3056 sbinfo->free_inodes = sbinfo->max_inodes;
3057
3058 sb->s_maxbytes = MAX_LFS_FILESIZE;
3059 sb->s_blocksize = PAGE_CACHE_SIZE;
3060 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3061 sb->s_magic = TMPFS_MAGIC;
3062 sb->s_op = &shmem_ops;
3063 sb->s_time_gran = 1;
3064 #ifdef CONFIG_TMPFS_XATTR
3065 sb->s_xattr = shmem_xattr_handlers;
3066 #endif
3067 #ifdef CONFIG_TMPFS_POSIX_ACL
3068 sb->s_flags |= MS_POSIXACL;
3069 #endif
3070
3071 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3072 if (!inode)
3073 goto failed;
3074 inode->i_uid = sbinfo->uid;
3075 inode->i_gid = sbinfo->gid;
3076 sb->s_root = d_make_root(inode);
3077 if (!sb->s_root)
3078 goto failed;
3079 return 0;
3080
3081 failed:
3082 shmem_put_super(sb);
3083 return err;
3084 }
3085
3086 static struct kmem_cache *shmem_inode_cachep;
3087
3088 static struct inode *shmem_alloc_inode(struct super_block *sb)
3089 {
3090 struct shmem_inode_info *info;
3091 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3092 if (!info)
3093 return NULL;
3094 return &info->vfs_inode;
3095 }
3096
3097 static void shmem_destroy_callback(struct rcu_head *head)
3098 {
3099 struct inode *inode = container_of(head, struct inode, i_rcu);
3100 kfree(inode->i_link);
3101 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3102 }
3103
3104 static void shmem_destroy_inode(struct inode *inode)
3105 {
3106 if (S_ISREG(inode->i_mode))
3107 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3108 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3109 }
3110
3111 static void shmem_init_inode(void *foo)
3112 {
3113 struct shmem_inode_info *info = foo;
3114 inode_init_once(&info->vfs_inode);
3115 }
3116
3117 static int shmem_init_inodecache(void)
3118 {
3119 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3120 sizeof(struct shmem_inode_info),
3121 0, SLAB_PANIC, shmem_init_inode);
3122 return 0;
3123 }
3124
3125 static void shmem_destroy_inodecache(void)
3126 {
3127 kmem_cache_destroy(shmem_inode_cachep);
3128 }
3129
3130 static __init void shmem_no_idr(struct super_block *sb)
3131 {
3132 struct shmem_sb_info *sbinfo;
3133
3134 sbinfo = SHMEM_SB(sb);
3135 sbinfo->idr_nouse = true;
3136 idr_destroy(&sbinfo->idr);
3137 }
3138
3139 static const struct address_space_operations shmem_aops = {
3140 .writepage = shmem_writepage,
3141 .set_page_dirty = __set_page_dirty_no_writeback,
3142 #ifdef CONFIG_TMPFS
3143 .write_begin = shmem_write_begin,
3144 .write_end = shmem_write_end,
3145 #endif
3146 #ifdef CONFIG_MIGRATION
3147 .migratepage = migrate_page,
3148 #endif
3149 .error_remove_page = generic_error_remove_page,
3150 };
3151
3152 static const struct file_operations shmem_file_operations = {
3153 .mmap = shmem_mmap,
3154 #ifdef CONFIG_TMPFS
3155 .llseek = shmem_file_llseek,
3156 .read_iter = shmem_file_read_iter,
3157 .write_iter = generic_file_write_iter,
3158 .fsync = noop_fsync,
3159 .splice_read = shmem_file_splice_read,
3160 .splice_write = iter_file_splice_write,
3161 .fallocate = shmem_fallocate,
3162 #endif
3163 };
3164
3165 static const struct inode_operations shmem_inode_operations = {
3166 .getattr = shmem_getattr,
3167 .setattr = shmem_setattr,
3168 #ifdef CONFIG_TMPFS_XATTR
3169 .setxattr = shmem_setxattr,
3170 .getxattr = shmem_getxattr,
3171 .listxattr = shmem_listxattr,
3172 .removexattr = shmem_removexattr,
3173 .set_acl = simple_set_acl,
3174 #endif
3175 };
3176
3177 static const struct inode_operations shmem_dir_inode_operations = {
3178 #ifdef CONFIG_TMPFS
3179 .create = shmem_create,
3180 .lookup = simple_lookup,
3181 .link = shmem_link,
3182 .unlink = shmem_unlink,
3183 .symlink = shmem_symlink,
3184 .mkdir = shmem_mkdir,
3185 .rmdir = shmem_rmdir,
3186 .mknod = shmem_mknod,
3187 .rename2 = shmem_rename2,
3188 .tmpfile = shmem_tmpfile,
3189 #endif
3190 #ifdef CONFIG_TMPFS_XATTR
3191 .setxattr = shmem_setxattr,
3192 .getxattr = shmem_getxattr,
3193 .listxattr = shmem_listxattr,
3194 .removexattr = shmem_removexattr,
3195 #endif
3196 #ifdef CONFIG_TMPFS_POSIX_ACL
3197 .setattr = shmem_setattr,
3198 .set_acl = simple_set_acl,
3199 #endif
3200 };
3201
3202 static const struct inode_operations shmem_special_inode_operations = {
3203 #ifdef CONFIG_TMPFS_XATTR
3204 .setxattr = shmem_setxattr,
3205 .getxattr = shmem_getxattr,
3206 .listxattr = shmem_listxattr,
3207 .removexattr = shmem_removexattr,
3208 #endif
3209 #ifdef CONFIG_TMPFS_POSIX_ACL
3210 .setattr = shmem_setattr,
3211 .set_acl = simple_set_acl,
3212 #endif
3213 };
3214
3215 static const struct super_operations shmem_ops = {
3216 .alloc_inode = shmem_alloc_inode,
3217 .destroy_inode = shmem_destroy_inode,
3218 #ifdef CONFIG_TMPFS
3219 .statfs = shmem_statfs,
3220 .remount_fs = shmem_remount_fs,
3221 .show_options = shmem_show_options,
3222 #endif
3223 .evict_inode = shmem_evict_inode,
3224 .drop_inode = generic_delete_inode,
3225 .put_super = shmem_put_super,
3226 };
3227
3228 static const struct vm_operations_struct shmem_vm_ops = {
3229 .fault = shmem_fault,
3230 .map_pages = filemap_map_pages,
3231 #ifdef CONFIG_NUMA
3232 .set_policy = shmem_set_policy,
3233 .get_policy = shmem_get_policy,
3234 #endif
3235 };
3236
3237 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3238 int flags, const char *dev_name, void *data)
3239 {
3240 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3241 }
3242
3243 static struct file_system_type shmem_fs_type = {
3244 .owner = THIS_MODULE,
3245 .name = "tmpfs",
3246 .mount = shmem_mount,
3247 .kill_sb = kill_litter_super,
3248 .fs_flags = FS_USERNS_MOUNT,
3249 };
3250
3251 int __init shmem_init(void)
3252 {
3253 int error;
3254
3255 /* If rootfs called this, don't re-init */
3256 if (shmem_inode_cachep)
3257 return 0;
3258
3259 error = shmem_init_inodecache();
3260 if (error)
3261 goto out3;
3262
3263 error = register_filesystem(&shmem_fs_type);
3264 if (error) {
3265 printk(KERN_ERR "Could not register tmpfs\n");
3266 goto out2;
3267 }
3268
3269 shm_mnt = kern_mount(&shmem_fs_type);
3270 if (IS_ERR(shm_mnt)) {
3271 error = PTR_ERR(shm_mnt);
3272 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3273 goto out1;
3274 }
3275 shmem_no_idr(shm_mnt->mnt_sb);
3276 return 0;
3277
3278 out1:
3279 unregister_filesystem(&shmem_fs_type);
3280 out2:
3281 shmem_destroy_inodecache();
3282 out3:
3283 shm_mnt = ERR_PTR(error);
3284 return error;
3285 }
3286
3287 #else /* !CONFIG_SHMEM */
3288
3289 /*
3290 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3291 *
3292 * This is intended for small system where the benefits of the full
3293 * shmem code (swap-backed and resource-limited) are outweighed by
3294 * their complexity. On systems without swap this code should be
3295 * effectively equivalent, but much lighter weight.
3296 */
3297
3298 static struct file_system_type shmem_fs_type = {
3299 .name = "tmpfs",
3300 .mount = ramfs_mount,
3301 .kill_sb = kill_litter_super,
3302 .fs_flags = FS_USERNS_MOUNT,
3303 };
3304
3305 int __init shmem_init(void)
3306 {
3307 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3308
3309 shm_mnt = kern_mount(&shmem_fs_type);
3310 BUG_ON(IS_ERR(shm_mnt));
3311
3312 return 0;
3313 }
3314
3315 int shmem_unuse(swp_entry_t swap, struct page *page)
3316 {
3317 return 0;
3318 }
3319
3320 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3321 {
3322 return 0;
3323 }
3324
3325 void shmem_unlock_mapping(struct address_space *mapping)
3326 {
3327 }
3328
3329 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3330 {
3331 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3332 }
3333 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3334
3335 #define shmem_vm_ops generic_file_vm_ops
3336 #define shmem_file_operations ramfs_file_operations
3337 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3338 #define shmem_acct_size(flags, size) 0
3339 #define shmem_unacct_size(flags, size) do {} while (0)
3340
3341 #endif /* CONFIG_SHMEM */
3342
3343 /* common code */
3344
3345 static struct dentry_operations anon_ops = {
3346 .d_dname = simple_dname
3347 };
3348
3349 static struct file *__shmem_file_setup(const char *name, loff_t size,
3350 unsigned long flags, unsigned int i_flags)
3351 {
3352 struct file *res;
3353 struct inode *inode;
3354 struct path path;
3355 struct super_block *sb;
3356 struct qstr this;
3357
3358 if (IS_ERR(shm_mnt))
3359 return ERR_CAST(shm_mnt);
3360
3361 if (size < 0 || size > MAX_LFS_FILESIZE)
3362 return ERR_PTR(-EINVAL);
3363
3364 if (shmem_acct_size(flags, size))
3365 return ERR_PTR(-ENOMEM);
3366
3367 res = ERR_PTR(-ENOMEM);
3368 this.name = name;
3369 this.len = strlen(name);
3370 this.hash = 0; /* will go */
3371 sb = shm_mnt->mnt_sb;
3372 path.mnt = mntget(shm_mnt);
3373 path.dentry = d_alloc_pseudo(sb, &this);
3374 if (!path.dentry)
3375 goto put_memory;
3376 d_set_d_op(path.dentry, &anon_ops);
3377
3378 res = ERR_PTR(-ENOSPC);
3379 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3380 if (!inode)
3381 goto put_memory;
3382
3383 inode->i_flags |= i_flags;
3384 d_instantiate(path.dentry, inode);
3385 inode->i_size = size;
3386 clear_nlink(inode); /* It is unlinked */
3387 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3388 if (IS_ERR(res))
3389 goto put_path;
3390
3391 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3392 &shmem_file_operations);
3393 if (IS_ERR(res))
3394 goto put_path;
3395
3396 return res;
3397
3398 put_memory:
3399 shmem_unacct_size(flags, size);
3400 put_path:
3401 path_put(&path);
3402 return res;
3403 }
3404
3405 /**
3406 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3407 * kernel internal. There will be NO LSM permission checks against the
3408 * underlying inode. So users of this interface must do LSM checks at a
3409 * higher layer. The users are the big_key and shm implementations. LSM
3410 * checks are provided at the key or shm level rather than the inode.
3411 * @name: name for dentry (to be seen in /proc/<pid>/maps
3412 * @size: size to be set for the file
3413 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3414 */
3415 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3416 {
3417 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3418 }
3419
3420 /**
3421 * shmem_file_setup - get an unlinked file living in tmpfs
3422 * @name: name for dentry (to be seen in /proc/<pid>/maps
3423 * @size: size to be set for the file
3424 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3425 */
3426 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3427 {
3428 return __shmem_file_setup(name, size, flags, 0);
3429 }
3430 EXPORT_SYMBOL_GPL(shmem_file_setup);
3431
3432 /**
3433 * shmem_zero_setup - setup a shared anonymous mapping
3434 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3435 */
3436 int shmem_zero_setup(struct vm_area_struct *vma)
3437 {
3438 struct file *file;
3439 loff_t size = vma->vm_end - vma->vm_start;
3440
3441 /*
3442 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3443 * between XFS directory reading and selinux: since this file is only
3444 * accessible to the user through its mapping, use S_PRIVATE flag to
3445 * bypass file security, in the same way as shmem_kernel_file_setup().
3446 */
3447 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3448 if (IS_ERR(file))
3449 return PTR_ERR(file);
3450
3451 if (vma->vm_file)
3452 fput(vma->vm_file);
3453 vma->vm_file = file;
3454 vma->vm_ops = &shmem_vm_ops;
3455 return 0;
3456 }
3457
3458 /**
3459 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3460 * @mapping: the page's address_space
3461 * @index: the page index
3462 * @gfp: the page allocator flags to use if allocating
3463 *
3464 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3465 * with any new page allocations done using the specified allocation flags.
3466 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3467 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3468 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3469 *
3470 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3471 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3472 */
3473 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3474 pgoff_t index, gfp_t gfp)
3475 {
3476 #ifdef CONFIG_SHMEM
3477 struct inode *inode = mapping->host;
3478 struct page *page;
3479 int error;
3480
3481 BUG_ON(mapping->a_ops != &shmem_aops);
3482 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3483 if (error)
3484 page = ERR_PTR(error);
3485 else
3486 unlock_page(page);
3487 return page;
3488 #else
3489 /*
3490 * The tiny !SHMEM case uses ramfs without swap
3491 */
3492 return read_cache_page_gfp(mapping, index, gfp);
3493 #endif
3494 }
3495 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);