]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/shmem.c
mm/page_alloc: remove nr_free_pagecache_pages()
[mirror_ubuntu-jammy-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
101 */
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
117 bool full_inums;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 struct page **pagep, enum sgp_type sgp,
149 gfp_t gfp, struct vm_area_struct *vma,
150 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 struct page **pagep, enum sgp_type sgp)
154 {
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 return sb->s_fs_info;
162 }
163
164 /*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 return (flags & VM_NORESERVE) ?
173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 if (!(flags & VM_NORESERVE))
179 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
184 {
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 }
192 return 0;
193 }
194
195 /*
196 * ... whereas tmpfs objects are accounted incrementally as
197 * pages are allocated, in order to allow large sparse files.
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 if (!(flags & VM_NORESERVE))
204 return 0;
205
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221 if (shmem_acct_block(info->flags, pages))
222 return false;
223
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
227 goto unacct;
228 percpu_counter_add(&sbinfo->used_blocks, pages);
229 }
230
231 return true;
232
233 unacct:
234 shmem_unacct_blocks(info->flags, pages);
235 return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
268 *
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
273 */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 ino_t ino;
279
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
281 spin_lock(&sbinfo->stat_lock);
282 if (!sbinfo->free_inodes) {
283 spin_unlock(&sbinfo->stat_lock);
284 return -ENOSPC;
285 }
286 sbinfo->free_inodes--;
287 if (inop) {
288 ino = sbinfo->next_ino++;
289 if (unlikely(is_zero_ino(ino)))
290 ino = sbinfo->next_ino++;
291 if (unlikely(!sbinfo->full_inums &&
292 ino > UINT_MAX)) {
293 /*
294 * Emulate get_next_ino uint wraparound for
295 * compatibility
296 */
297 if (IS_ENABLED(CONFIG_64BIT))
298 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
299 __func__, MINOR(sb->s_dev));
300 sbinfo->next_ino = 1;
301 ino = sbinfo->next_ino++;
302 }
303 *inop = ino;
304 }
305 spin_unlock(&sbinfo->stat_lock);
306 } else if (inop) {
307 /*
308 * __shmem_file_setup, one of our callers, is lock-free: it
309 * doesn't hold stat_lock in shmem_reserve_inode since
310 * max_inodes is always 0, and is called from potentially
311 * unknown contexts. As such, use a per-cpu batched allocator
312 * which doesn't require the per-sb stat_lock unless we are at
313 * the batch boundary.
314 *
315 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
316 * shmem mounts are not exposed to userspace, so we don't need
317 * to worry about things like glibc compatibility.
318 */
319 ino_t *next_ino;
320 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
321 ino = *next_ino;
322 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
323 spin_lock(&sbinfo->stat_lock);
324 ino = sbinfo->next_ino;
325 sbinfo->next_ino += SHMEM_INO_BATCH;
326 spin_unlock(&sbinfo->stat_lock);
327 if (unlikely(is_zero_ino(ino)))
328 ino++;
329 }
330 *inop = ino;
331 *next_ino = ++ino;
332 put_cpu();
333 }
334
335 return 0;
336 }
337
338 static void shmem_free_inode(struct super_block *sb)
339 {
340 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
341 if (sbinfo->max_inodes) {
342 spin_lock(&sbinfo->stat_lock);
343 sbinfo->free_inodes++;
344 spin_unlock(&sbinfo->stat_lock);
345 }
346 }
347
348 /**
349 * shmem_recalc_inode - recalculate the block usage of an inode
350 * @inode: inode to recalc
351 *
352 * We have to calculate the free blocks since the mm can drop
353 * undirtied hole pages behind our back.
354 *
355 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
356 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
357 *
358 * It has to be called with the spinlock held.
359 */
360 static void shmem_recalc_inode(struct inode *inode)
361 {
362 struct shmem_inode_info *info = SHMEM_I(inode);
363 long freed;
364
365 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
366 if (freed > 0) {
367 info->alloced -= freed;
368 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
369 shmem_inode_unacct_blocks(inode, freed);
370 }
371 }
372
373 bool shmem_charge(struct inode *inode, long pages)
374 {
375 struct shmem_inode_info *info = SHMEM_I(inode);
376 unsigned long flags;
377
378 if (!shmem_inode_acct_block(inode, pages))
379 return false;
380
381 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
382 inode->i_mapping->nrpages += pages;
383
384 spin_lock_irqsave(&info->lock, flags);
385 info->alloced += pages;
386 inode->i_blocks += pages * BLOCKS_PER_PAGE;
387 shmem_recalc_inode(inode);
388 spin_unlock_irqrestore(&info->lock, flags);
389
390 return true;
391 }
392
393 void shmem_uncharge(struct inode *inode, long pages)
394 {
395 struct shmem_inode_info *info = SHMEM_I(inode);
396 unsigned long flags;
397
398 /* nrpages adjustment done by __delete_from_page_cache() or caller */
399
400 spin_lock_irqsave(&info->lock, flags);
401 info->alloced -= pages;
402 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
403 shmem_recalc_inode(inode);
404 spin_unlock_irqrestore(&info->lock, flags);
405
406 shmem_inode_unacct_blocks(inode, pages);
407 }
408
409 /*
410 * Replace item expected in xarray by a new item, while holding xa_lock.
411 */
412 static int shmem_replace_entry(struct address_space *mapping,
413 pgoff_t index, void *expected, void *replacement)
414 {
415 XA_STATE(xas, &mapping->i_pages, index);
416 void *item;
417
418 VM_BUG_ON(!expected);
419 VM_BUG_ON(!replacement);
420 item = xas_load(&xas);
421 if (item != expected)
422 return -ENOENT;
423 xas_store(&xas, replacement);
424 return 0;
425 }
426
427 /*
428 * Sometimes, before we decide whether to proceed or to fail, we must check
429 * that an entry was not already brought back from swap by a racing thread.
430 *
431 * Checking page is not enough: by the time a SwapCache page is locked, it
432 * might be reused, and again be SwapCache, using the same swap as before.
433 */
434 static bool shmem_confirm_swap(struct address_space *mapping,
435 pgoff_t index, swp_entry_t swap)
436 {
437 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
438 }
439
440 /*
441 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
442 *
443 * SHMEM_HUGE_NEVER:
444 * disables huge pages for the mount;
445 * SHMEM_HUGE_ALWAYS:
446 * enables huge pages for the mount;
447 * SHMEM_HUGE_WITHIN_SIZE:
448 * only allocate huge pages if the page will be fully within i_size,
449 * also respect fadvise()/madvise() hints;
450 * SHMEM_HUGE_ADVISE:
451 * only allocate huge pages if requested with fadvise()/madvise();
452 */
453
454 #define SHMEM_HUGE_NEVER 0
455 #define SHMEM_HUGE_ALWAYS 1
456 #define SHMEM_HUGE_WITHIN_SIZE 2
457 #define SHMEM_HUGE_ADVISE 3
458
459 /*
460 * Special values.
461 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
462 *
463 * SHMEM_HUGE_DENY:
464 * disables huge on shm_mnt and all mounts, for emergency use;
465 * SHMEM_HUGE_FORCE:
466 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
467 *
468 */
469 #define SHMEM_HUGE_DENY (-1)
470 #define SHMEM_HUGE_FORCE (-2)
471
472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
473 /* ifdef here to avoid bloating shmem.o when not necessary */
474
475 static int shmem_huge __read_mostly;
476
477 #if defined(CONFIG_SYSFS)
478 static int shmem_parse_huge(const char *str)
479 {
480 if (!strcmp(str, "never"))
481 return SHMEM_HUGE_NEVER;
482 if (!strcmp(str, "always"))
483 return SHMEM_HUGE_ALWAYS;
484 if (!strcmp(str, "within_size"))
485 return SHMEM_HUGE_WITHIN_SIZE;
486 if (!strcmp(str, "advise"))
487 return SHMEM_HUGE_ADVISE;
488 if (!strcmp(str, "deny"))
489 return SHMEM_HUGE_DENY;
490 if (!strcmp(str, "force"))
491 return SHMEM_HUGE_FORCE;
492 return -EINVAL;
493 }
494 #endif
495
496 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
497 static const char *shmem_format_huge(int huge)
498 {
499 switch (huge) {
500 case SHMEM_HUGE_NEVER:
501 return "never";
502 case SHMEM_HUGE_ALWAYS:
503 return "always";
504 case SHMEM_HUGE_WITHIN_SIZE:
505 return "within_size";
506 case SHMEM_HUGE_ADVISE:
507 return "advise";
508 case SHMEM_HUGE_DENY:
509 return "deny";
510 case SHMEM_HUGE_FORCE:
511 return "force";
512 default:
513 VM_BUG_ON(1);
514 return "bad_val";
515 }
516 }
517 #endif
518
519 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
520 struct shrink_control *sc, unsigned long nr_to_split)
521 {
522 LIST_HEAD(list), *pos, *next;
523 LIST_HEAD(to_remove);
524 struct inode *inode;
525 struct shmem_inode_info *info;
526 struct page *page;
527 unsigned long batch = sc ? sc->nr_to_scan : 128;
528 int removed = 0, split = 0;
529
530 if (list_empty(&sbinfo->shrinklist))
531 return SHRINK_STOP;
532
533 spin_lock(&sbinfo->shrinklist_lock);
534 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
535 info = list_entry(pos, struct shmem_inode_info, shrinklist);
536
537 /* pin the inode */
538 inode = igrab(&info->vfs_inode);
539
540 /* inode is about to be evicted */
541 if (!inode) {
542 list_del_init(&info->shrinklist);
543 removed++;
544 goto next;
545 }
546
547 /* Check if there's anything to gain */
548 if (round_up(inode->i_size, PAGE_SIZE) ==
549 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
550 list_move(&info->shrinklist, &to_remove);
551 removed++;
552 goto next;
553 }
554
555 list_move(&info->shrinklist, &list);
556 next:
557 if (!--batch)
558 break;
559 }
560 spin_unlock(&sbinfo->shrinklist_lock);
561
562 list_for_each_safe(pos, next, &to_remove) {
563 info = list_entry(pos, struct shmem_inode_info, shrinklist);
564 inode = &info->vfs_inode;
565 list_del_init(&info->shrinklist);
566 iput(inode);
567 }
568
569 list_for_each_safe(pos, next, &list) {
570 int ret;
571
572 info = list_entry(pos, struct shmem_inode_info, shrinklist);
573 inode = &info->vfs_inode;
574
575 if (nr_to_split && split >= nr_to_split)
576 goto leave;
577
578 page = find_get_page(inode->i_mapping,
579 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
580 if (!page)
581 goto drop;
582
583 /* No huge page at the end of the file: nothing to split */
584 if (!PageTransHuge(page)) {
585 put_page(page);
586 goto drop;
587 }
588
589 /*
590 * Leave the inode on the list if we failed to lock
591 * the page at this time.
592 *
593 * Waiting for the lock may lead to deadlock in the
594 * reclaim path.
595 */
596 if (!trylock_page(page)) {
597 put_page(page);
598 goto leave;
599 }
600
601 ret = split_huge_page(page);
602 unlock_page(page);
603 put_page(page);
604
605 /* If split failed leave the inode on the list */
606 if (ret)
607 goto leave;
608
609 split++;
610 drop:
611 list_del_init(&info->shrinklist);
612 removed++;
613 leave:
614 iput(inode);
615 }
616
617 spin_lock(&sbinfo->shrinklist_lock);
618 list_splice_tail(&list, &sbinfo->shrinklist);
619 sbinfo->shrinklist_len -= removed;
620 spin_unlock(&sbinfo->shrinklist_lock);
621
622 return split;
623 }
624
625 static long shmem_unused_huge_scan(struct super_block *sb,
626 struct shrink_control *sc)
627 {
628 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
629
630 if (!READ_ONCE(sbinfo->shrinklist_len))
631 return SHRINK_STOP;
632
633 return shmem_unused_huge_shrink(sbinfo, sc, 0);
634 }
635
636 static long shmem_unused_huge_count(struct super_block *sb,
637 struct shrink_control *sc)
638 {
639 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
640 return READ_ONCE(sbinfo->shrinklist_len);
641 }
642 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
643
644 #define shmem_huge SHMEM_HUGE_DENY
645
646 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
647 struct shrink_control *sc, unsigned long nr_to_split)
648 {
649 return 0;
650 }
651 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
652
653 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
654 {
655 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
656 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
657 shmem_huge != SHMEM_HUGE_DENY)
658 return true;
659 return false;
660 }
661
662 /*
663 * Like add_to_page_cache_locked, but error if expected item has gone.
664 */
665 static int shmem_add_to_page_cache(struct page *page,
666 struct address_space *mapping,
667 pgoff_t index, void *expected, gfp_t gfp,
668 struct mm_struct *charge_mm)
669 {
670 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
671 unsigned long i = 0;
672 unsigned long nr = compound_nr(page);
673 int error;
674
675 VM_BUG_ON_PAGE(PageTail(page), page);
676 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
677 VM_BUG_ON_PAGE(!PageLocked(page), page);
678 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
679 VM_BUG_ON(expected && PageTransHuge(page));
680
681 page_ref_add(page, nr);
682 page->mapping = mapping;
683 page->index = index;
684
685 if (!PageSwapCache(page)) {
686 error = mem_cgroup_charge(page, charge_mm, gfp);
687 if (error) {
688 if (PageTransHuge(page)) {
689 count_vm_event(THP_FILE_FALLBACK);
690 count_vm_event(THP_FILE_FALLBACK_CHARGE);
691 }
692 goto error;
693 }
694 }
695 cgroup_throttle_swaprate(page, gfp);
696
697 do {
698 void *entry;
699 xas_lock_irq(&xas);
700 entry = xas_find_conflict(&xas);
701 if (entry != expected)
702 xas_set_err(&xas, -EEXIST);
703 xas_create_range(&xas);
704 if (xas_error(&xas))
705 goto unlock;
706 next:
707 xas_store(&xas, page);
708 if (++i < nr) {
709 xas_next(&xas);
710 goto next;
711 }
712 if (PageTransHuge(page)) {
713 count_vm_event(THP_FILE_ALLOC);
714 __inc_node_page_state(page, NR_SHMEM_THPS);
715 }
716 mapping->nrpages += nr;
717 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
718 __mod_lruvec_page_state(page, NR_SHMEM, nr);
719 unlock:
720 xas_unlock_irq(&xas);
721 } while (xas_nomem(&xas, gfp));
722
723 if (xas_error(&xas)) {
724 error = xas_error(&xas);
725 goto error;
726 }
727
728 return 0;
729 error:
730 page->mapping = NULL;
731 page_ref_sub(page, nr);
732 return error;
733 }
734
735 /*
736 * Like delete_from_page_cache, but substitutes swap for page.
737 */
738 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
739 {
740 struct address_space *mapping = page->mapping;
741 int error;
742
743 VM_BUG_ON_PAGE(PageCompound(page), page);
744
745 xa_lock_irq(&mapping->i_pages);
746 error = shmem_replace_entry(mapping, page->index, page, radswap);
747 page->mapping = NULL;
748 mapping->nrpages--;
749 __dec_lruvec_page_state(page, NR_FILE_PAGES);
750 __dec_lruvec_page_state(page, NR_SHMEM);
751 xa_unlock_irq(&mapping->i_pages);
752 put_page(page);
753 BUG_ON(error);
754 }
755
756 /*
757 * Remove swap entry from page cache, free the swap and its page cache.
758 */
759 static int shmem_free_swap(struct address_space *mapping,
760 pgoff_t index, void *radswap)
761 {
762 void *old;
763
764 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
765 if (old != radswap)
766 return -ENOENT;
767 free_swap_and_cache(radix_to_swp_entry(radswap));
768 return 0;
769 }
770
771 /*
772 * Determine (in bytes) how many of the shmem object's pages mapped by the
773 * given offsets are swapped out.
774 *
775 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
776 * as long as the inode doesn't go away and racy results are not a problem.
777 */
778 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
779 pgoff_t start, pgoff_t end)
780 {
781 XA_STATE(xas, &mapping->i_pages, start);
782 struct page *page;
783 unsigned long swapped = 0;
784
785 rcu_read_lock();
786 xas_for_each(&xas, page, end - 1) {
787 if (xas_retry(&xas, page))
788 continue;
789 if (xa_is_value(page))
790 swapped++;
791
792 if (need_resched()) {
793 xas_pause(&xas);
794 cond_resched_rcu();
795 }
796 }
797
798 rcu_read_unlock();
799
800 return swapped << PAGE_SHIFT;
801 }
802
803 /*
804 * Determine (in bytes) how many of the shmem object's pages mapped by the
805 * given vma is swapped out.
806 *
807 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
808 * as long as the inode doesn't go away and racy results are not a problem.
809 */
810 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
811 {
812 struct inode *inode = file_inode(vma->vm_file);
813 struct shmem_inode_info *info = SHMEM_I(inode);
814 struct address_space *mapping = inode->i_mapping;
815 unsigned long swapped;
816
817 /* Be careful as we don't hold info->lock */
818 swapped = READ_ONCE(info->swapped);
819
820 /*
821 * The easier cases are when the shmem object has nothing in swap, or
822 * the vma maps it whole. Then we can simply use the stats that we
823 * already track.
824 */
825 if (!swapped)
826 return 0;
827
828 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
829 return swapped << PAGE_SHIFT;
830
831 /* Here comes the more involved part */
832 return shmem_partial_swap_usage(mapping,
833 linear_page_index(vma, vma->vm_start),
834 linear_page_index(vma, vma->vm_end));
835 }
836
837 /*
838 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
839 */
840 void shmem_unlock_mapping(struct address_space *mapping)
841 {
842 struct pagevec pvec;
843 pgoff_t indices[PAGEVEC_SIZE];
844 pgoff_t index = 0;
845
846 pagevec_init(&pvec);
847 /*
848 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
849 */
850 while (!mapping_unevictable(mapping)) {
851 /*
852 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
853 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
854 */
855 pvec.nr = find_get_entries(mapping, index,
856 PAGEVEC_SIZE, pvec.pages, indices);
857 if (!pvec.nr)
858 break;
859 index = indices[pvec.nr - 1] + 1;
860 pagevec_remove_exceptionals(&pvec);
861 check_move_unevictable_pages(&pvec);
862 pagevec_release(&pvec);
863 cond_resched();
864 }
865 }
866
867 /*
868 * Check whether a hole-punch or truncation needs to split a huge page,
869 * returning true if no split was required, or the split has been successful.
870 *
871 * Eviction (or truncation to 0 size) should never need to split a huge page;
872 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
873 * head, and then succeeded to trylock on tail.
874 *
875 * A split can only succeed when there are no additional references on the
876 * huge page: so the split below relies upon find_get_entries() having stopped
877 * when it found a subpage of the huge page, without getting further references.
878 */
879 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
880 {
881 if (!PageTransCompound(page))
882 return true;
883
884 /* Just proceed to delete a huge page wholly within the range punched */
885 if (PageHead(page) &&
886 page->index >= start && page->index + HPAGE_PMD_NR <= end)
887 return true;
888
889 /* Try to split huge page, so we can truly punch the hole or truncate */
890 return split_huge_page(page) >= 0;
891 }
892
893 /*
894 * Remove range of pages and swap entries from page cache, and free them.
895 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
896 */
897 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
898 bool unfalloc)
899 {
900 struct address_space *mapping = inode->i_mapping;
901 struct shmem_inode_info *info = SHMEM_I(inode);
902 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
903 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
904 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
905 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
906 struct pagevec pvec;
907 pgoff_t indices[PAGEVEC_SIZE];
908 long nr_swaps_freed = 0;
909 pgoff_t index;
910 int i;
911
912 if (lend == -1)
913 end = -1; /* unsigned, so actually very big */
914
915 pagevec_init(&pvec);
916 index = start;
917 while (index < end) {
918 pvec.nr = find_get_entries(mapping, index,
919 min(end - index, (pgoff_t)PAGEVEC_SIZE),
920 pvec.pages, indices);
921 if (!pvec.nr)
922 break;
923 for (i = 0; i < pagevec_count(&pvec); i++) {
924 struct page *page = pvec.pages[i];
925
926 index = indices[i];
927 if (index >= end)
928 break;
929
930 if (xa_is_value(page)) {
931 if (unfalloc)
932 continue;
933 nr_swaps_freed += !shmem_free_swap(mapping,
934 index, page);
935 continue;
936 }
937
938 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
939
940 if (!trylock_page(page))
941 continue;
942
943 if ((!unfalloc || !PageUptodate(page)) &&
944 page_mapping(page) == mapping) {
945 VM_BUG_ON_PAGE(PageWriteback(page), page);
946 if (shmem_punch_compound(page, start, end))
947 truncate_inode_page(mapping, page);
948 }
949 unlock_page(page);
950 }
951 pagevec_remove_exceptionals(&pvec);
952 pagevec_release(&pvec);
953 cond_resched();
954 index++;
955 }
956
957 if (partial_start) {
958 struct page *page = NULL;
959 shmem_getpage(inode, start - 1, &page, SGP_READ);
960 if (page) {
961 unsigned int top = PAGE_SIZE;
962 if (start > end) {
963 top = partial_end;
964 partial_end = 0;
965 }
966 zero_user_segment(page, partial_start, top);
967 set_page_dirty(page);
968 unlock_page(page);
969 put_page(page);
970 }
971 }
972 if (partial_end) {
973 struct page *page = NULL;
974 shmem_getpage(inode, end, &page, SGP_READ);
975 if (page) {
976 zero_user_segment(page, 0, partial_end);
977 set_page_dirty(page);
978 unlock_page(page);
979 put_page(page);
980 }
981 }
982 if (start >= end)
983 return;
984
985 index = start;
986 while (index < end) {
987 cond_resched();
988
989 pvec.nr = find_get_entries(mapping, index,
990 min(end - index, (pgoff_t)PAGEVEC_SIZE),
991 pvec.pages, indices);
992 if (!pvec.nr) {
993 /* If all gone or hole-punch or unfalloc, we're done */
994 if (index == start || end != -1)
995 break;
996 /* But if truncating, restart to make sure all gone */
997 index = start;
998 continue;
999 }
1000 for (i = 0; i < pagevec_count(&pvec); i++) {
1001 struct page *page = pvec.pages[i];
1002
1003 index = indices[i];
1004 if (index >= end)
1005 break;
1006
1007 if (xa_is_value(page)) {
1008 if (unfalloc)
1009 continue;
1010 if (shmem_free_swap(mapping, index, page)) {
1011 /* Swap was replaced by page: retry */
1012 index--;
1013 break;
1014 }
1015 nr_swaps_freed++;
1016 continue;
1017 }
1018
1019 lock_page(page);
1020
1021 if (!unfalloc || !PageUptodate(page)) {
1022 if (page_mapping(page) != mapping) {
1023 /* Page was replaced by swap: retry */
1024 unlock_page(page);
1025 index--;
1026 break;
1027 }
1028 VM_BUG_ON_PAGE(PageWriteback(page), page);
1029 if (shmem_punch_compound(page, start, end))
1030 truncate_inode_page(mapping, page);
1031 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1032 /* Wipe the page and don't get stuck */
1033 clear_highpage(page);
1034 flush_dcache_page(page);
1035 set_page_dirty(page);
1036 if (index <
1037 round_up(start, HPAGE_PMD_NR))
1038 start = index + 1;
1039 }
1040 }
1041 unlock_page(page);
1042 }
1043 pagevec_remove_exceptionals(&pvec);
1044 pagevec_release(&pvec);
1045 index++;
1046 }
1047
1048 spin_lock_irq(&info->lock);
1049 info->swapped -= nr_swaps_freed;
1050 shmem_recalc_inode(inode);
1051 spin_unlock_irq(&info->lock);
1052 }
1053
1054 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1055 {
1056 shmem_undo_range(inode, lstart, lend, false);
1057 inode->i_ctime = inode->i_mtime = current_time(inode);
1058 }
1059 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1060
1061 static int shmem_getattr(const struct path *path, struct kstat *stat,
1062 u32 request_mask, unsigned int query_flags)
1063 {
1064 struct inode *inode = path->dentry->d_inode;
1065 struct shmem_inode_info *info = SHMEM_I(inode);
1066 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1067
1068 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1069 spin_lock_irq(&info->lock);
1070 shmem_recalc_inode(inode);
1071 spin_unlock_irq(&info->lock);
1072 }
1073 generic_fillattr(inode, stat);
1074
1075 if (is_huge_enabled(sb_info))
1076 stat->blksize = HPAGE_PMD_SIZE;
1077
1078 return 0;
1079 }
1080
1081 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1082 {
1083 struct inode *inode = d_inode(dentry);
1084 struct shmem_inode_info *info = SHMEM_I(inode);
1085 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1086 int error;
1087
1088 error = setattr_prepare(dentry, attr);
1089 if (error)
1090 return error;
1091
1092 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1093 loff_t oldsize = inode->i_size;
1094 loff_t newsize = attr->ia_size;
1095
1096 /* protected by i_mutex */
1097 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1098 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1099 return -EPERM;
1100
1101 if (newsize != oldsize) {
1102 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1103 oldsize, newsize);
1104 if (error)
1105 return error;
1106 i_size_write(inode, newsize);
1107 inode->i_ctime = inode->i_mtime = current_time(inode);
1108 }
1109 if (newsize <= oldsize) {
1110 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1111 if (oldsize > holebegin)
1112 unmap_mapping_range(inode->i_mapping,
1113 holebegin, 0, 1);
1114 if (info->alloced)
1115 shmem_truncate_range(inode,
1116 newsize, (loff_t)-1);
1117 /* unmap again to remove racily COWed private pages */
1118 if (oldsize > holebegin)
1119 unmap_mapping_range(inode->i_mapping,
1120 holebegin, 0, 1);
1121
1122 /*
1123 * Part of the huge page can be beyond i_size: subject
1124 * to shrink under memory pressure.
1125 */
1126 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1127 spin_lock(&sbinfo->shrinklist_lock);
1128 /*
1129 * _careful to defend against unlocked access to
1130 * ->shrink_list in shmem_unused_huge_shrink()
1131 */
1132 if (list_empty_careful(&info->shrinklist)) {
1133 list_add_tail(&info->shrinklist,
1134 &sbinfo->shrinklist);
1135 sbinfo->shrinklist_len++;
1136 }
1137 spin_unlock(&sbinfo->shrinklist_lock);
1138 }
1139 }
1140 }
1141
1142 setattr_copy(inode, attr);
1143 if (attr->ia_valid & ATTR_MODE)
1144 error = posix_acl_chmod(inode, inode->i_mode);
1145 return error;
1146 }
1147
1148 static void shmem_evict_inode(struct inode *inode)
1149 {
1150 struct shmem_inode_info *info = SHMEM_I(inode);
1151 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1152
1153 if (inode->i_mapping->a_ops == &shmem_aops) {
1154 shmem_unacct_size(info->flags, inode->i_size);
1155 inode->i_size = 0;
1156 shmem_truncate_range(inode, 0, (loff_t)-1);
1157 if (!list_empty(&info->shrinklist)) {
1158 spin_lock(&sbinfo->shrinklist_lock);
1159 if (!list_empty(&info->shrinklist)) {
1160 list_del_init(&info->shrinklist);
1161 sbinfo->shrinklist_len--;
1162 }
1163 spin_unlock(&sbinfo->shrinklist_lock);
1164 }
1165 while (!list_empty(&info->swaplist)) {
1166 /* Wait while shmem_unuse() is scanning this inode... */
1167 wait_var_event(&info->stop_eviction,
1168 !atomic_read(&info->stop_eviction));
1169 mutex_lock(&shmem_swaplist_mutex);
1170 /* ...but beware of the race if we peeked too early */
1171 if (!atomic_read(&info->stop_eviction))
1172 list_del_init(&info->swaplist);
1173 mutex_unlock(&shmem_swaplist_mutex);
1174 }
1175 }
1176
1177 simple_xattrs_free(&info->xattrs);
1178 WARN_ON(inode->i_blocks);
1179 shmem_free_inode(inode->i_sb);
1180 clear_inode(inode);
1181 }
1182
1183 extern struct swap_info_struct *swap_info[];
1184
1185 static int shmem_find_swap_entries(struct address_space *mapping,
1186 pgoff_t start, unsigned int nr_entries,
1187 struct page **entries, pgoff_t *indices,
1188 unsigned int type, bool frontswap)
1189 {
1190 XA_STATE(xas, &mapping->i_pages, start);
1191 struct page *page;
1192 swp_entry_t entry;
1193 unsigned int ret = 0;
1194
1195 if (!nr_entries)
1196 return 0;
1197
1198 rcu_read_lock();
1199 xas_for_each(&xas, page, ULONG_MAX) {
1200 if (xas_retry(&xas, page))
1201 continue;
1202
1203 if (!xa_is_value(page))
1204 continue;
1205
1206 entry = radix_to_swp_entry(page);
1207 if (swp_type(entry) != type)
1208 continue;
1209 if (frontswap &&
1210 !frontswap_test(swap_info[type], swp_offset(entry)))
1211 continue;
1212
1213 indices[ret] = xas.xa_index;
1214 entries[ret] = page;
1215
1216 if (need_resched()) {
1217 xas_pause(&xas);
1218 cond_resched_rcu();
1219 }
1220 if (++ret == nr_entries)
1221 break;
1222 }
1223 rcu_read_unlock();
1224
1225 return ret;
1226 }
1227
1228 /*
1229 * Move the swapped pages for an inode to page cache. Returns the count
1230 * of pages swapped in, or the error in case of failure.
1231 */
1232 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1233 pgoff_t *indices)
1234 {
1235 int i = 0;
1236 int ret = 0;
1237 int error = 0;
1238 struct address_space *mapping = inode->i_mapping;
1239
1240 for (i = 0; i < pvec.nr; i++) {
1241 struct page *page = pvec.pages[i];
1242
1243 if (!xa_is_value(page))
1244 continue;
1245 error = shmem_swapin_page(inode, indices[i],
1246 &page, SGP_CACHE,
1247 mapping_gfp_mask(mapping),
1248 NULL, NULL);
1249 if (error == 0) {
1250 unlock_page(page);
1251 put_page(page);
1252 ret++;
1253 }
1254 if (error == -ENOMEM)
1255 break;
1256 error = 0;
1257 }
1258 return error ? error : ret;
1259 }
1260
1261 /*
1262 * If swap found in inode, free it and move page from swapcache to filecache.
1263 */
1264 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1265 bool frontswap, unsigned long *fs_pages_to_unuse)
1266 {
1267 struct address_space *mapping = inode->i_mapping;
1268 pgoff_t start = 0;
1269 struct pagevec pvec;
1270 pgoff_t indices[PAGEVEC_SIZE];
1271 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1272 int ret = 0;
1273
1274 pagevec_init(&pvec);
1275 do {
1276 unsigned int nr_entries = PAGEVEC_SIZE;
1277
1278 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1279 nr_entries = *fs_pages_to_unuse;
1280
1281 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1282 pvec.pages, indices,
1283 type, frontswap);
1284 if (pvec.nr == 0) {
1285 ret = 0;
1286 break;
1287 }
1288
1289 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1290 if (ret < 0)
1291 break;
1292
1293 if (frontswap_partial) {
1294 *fs_pages_to_unuse -= ret;
1295 if (*fs_pages_to_unuse == 0) {
1296 ret = FRONTSWAP_PAGES_UNUSED;
1297 break;
1298 }
1299 }
1300
1301 start = indices[pvec.nr - 1];
1302 } while (true);
1303
1304 return ret;
1305 }
1306
1307 /*
1308 * Read all the shared memory data that resides in the swap
1309 * device 'type' back into memory, so the swap device can be
1310 * unused.
1311 */
1312 int shmem_unuse(unsigned int type, bool frontswap,
1313 unsigned long *fs_pages_to_unuse)
1314 {
1315 struct shmem_inode_info *info, *next;
1316 int error = 0;
1317
1318 if (list_empty(&shmem_swaplist))
1319 return 0;
1320
1321 mutex_lock(&shmem_swaplist_mutex);
1322 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1323 if (!info->swapped) {
1324 list_del_init(&info->swaplist);
1325 continue;
1326 }
1327 /*
1328 * Drop the swaplist mutex while searching the inode for swap;
1329 * but before doing so, make sure shmem_evict_inode() will not
1330 * remove placeholder inode from swaplist, nor let it be freed
1331 * (igrab() would protect from unlink, but not from unmount).
1332 */
1333 atomic_inc(&info->stop_eviction);
1334 mutex_unlock(&shmem_swaplist_mutex);
1335
1336 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1337 fs_pages_to_unuse);
1338 cond_resched();
1339
1340 mutex_lock(&shmem_swaplist_mutex);
1341 next = list_next_entry(info, swaplist);
1342 if (!info->swapped)
1343 list_del_init(&info->swaplist);
1344 if (atomic_dec_and_test(&info->stop_eviction))
1345 wake_up_var(&info->stop_eviction);
1346 if (error)
1347 break;
1348 }
1349 mutex_unlock(&shmem_swaplist_mutex);
1350
1351 return error;
1352 }
1353
1354 /*
1355 * Move the page from the page cache to the swap cache.
1356 */
1357 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1358 {
1359 struct shmem_inode_info *info;
1360 struct address_space *mapping;
1361 struct inode *inode;
1362 swp_entry_t swap;
1363 pgoff_t index;
1364
1365 VM_BUG_ON_PAGE(PageCompound(page), page);
1366 BUG_ON(!PageLocked(page));
1367 mapping = page->mapping;
1368 index = page->index;
1369 inode = mapping->host;
1370 info = SHMEM_I(inode);
1371 if (info->flags & VM_LOCKED)
1372 goto redirty;
1373 if (!total_swap_pages)
1374 goto redirty;
1375
1376 /*
1377 * Our capabilities prevent regular writeback or sync from ever calling
1378 * shmem_writepage; but a stacking filesystem might use ->writepage of
1379 * its underlying filesystem, in which case tmpfs should write out to
1380 * swap only in response to memory pressure, and not for the writeback
1381 * threads or sync.
1382 */
1383 if (!wbc->for_reclaim) {
1384 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1385 goto redirty;
1386 }
1387
1388 /*
1389 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1390 * value into swapfile.c, the only way we can correctly account for a
1391 * fallocated page arriving here is now to initialize it and write it.
1392 *
1393 * That's okay for a page already fallocated earlier, but if we have
1394 * not yet completed the fallocation, then (a) we want to keep track
1395 * of this page in case we have to undo it, and (b) it may not be a
1396 * good idea to continue anyway, once we're pushing into swap. So
1397 * reactivate the page, and let shmem_fallocate() quit when too many.
1398 */
1399 if (!PageUptodate(page)) {
1400 if (inode->i_private) {
1401 struct shmem_falloc *shmem_falloc;
1402 spin_lock(&inode->i_lock);
1403 shmem_falloc = inode->i_private;
1404 if (shmem_falloc &&
1405 !shmem_falloc->waitq &&
1406 index >= shmem_falloc->start &&
1407 index < shmem_falloc->next)
1408 shmem_falloc->nr_unswapped++;
1409 else
1410 shmem_falloc = NULL;
1411 spin_unlock(&inode->i_lock);
1412 if (shmem_falloc)
1413 goto redirty;
1414 }
1415 clear_highpage(page);
1416 flush_dcache_page(page);
1417 SetPageUptodate(page);
1418 }
1419
1420 swap = get_swap_page(page);
1421 if (!swap.val)
1422 goto redirty;
1423
1424 /*
1425 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1426 * if it's not already there. Do it now before the page is
1427 * moved to swap cache, when its pagelock no longer protects
1428 * the inode from eviction. But don't unlock the mutex until
1429 * we've incremented swapped, because shmem_unuse_inode() will
1430 * prune a !swapped inode from the swaplist under this mutex.
1431 */
1432 mutex_lock(&shmem_swaplist_mutex);
1433 if (list_empty(&info->swaplist))
1434 list_add(&info->swaplist, &shmem_swaplist);
1435
1436 if (add_to_swap_cache(page, swap,
1437 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1438 spin_lock_irq(&info->lock);
1439 shmem_recalc_inode(inode);
1440 info->swapped++;
1441 spin_unlock_irq(&info->lock);
1442
1443 swap_shmem_alloc(swap);
1444 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1445
1446 mutex_unlock(&shmem_swaplist_mutex);
1447 BUG_ON(page_mapped(page));
1448 swap_writepage(page, wbc);
1449 return 0;
1450 }
1451
1452 mutex_unlock(&shmem_swaplist_mutex);
1453 put_swap_page(page, swap);
1454 redirty:
1455 set_page_dirty(page);
1456 if (wbc->for_reclaim)
1457 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1458 unlock_page(page);
1459 return 0;
1460 }
1461
1462 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1463 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1464 {
1465 char buffer[64];
1466
1467 if (!mpol || mpol->mode == MPOL_DEFAULT)
1468 return; /* show nothing */
1469
1470 mpol_to_str(buffer, sizeof(buffer), mpol);
1471
1472 seq_printf(seq, ",mpol=%s", buffer);
1473 }
1474
1475 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1476 {
1477 struct mempolicy *mpol = NULL;
1478 if (sbinfo->mpol) {
1479 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1480 mpol = sbinfo->mpol;
1481 mpol_get(mpol);
1482 spin_unlock(&sbinfo->stat_lock);
1483 }
1484 return mpol;
1485 }
1486 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1487 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1488 {
1489 }
1490 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1491 {
1492 return NULL;
1493 }
1494 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1495 #ifndef CONFIG_NUMA
1496 #define vm_policy vm_private_data
1497 #endif
1498
1499 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1500 struct shmem_inode_info *info, pgoff_t index)
1501 {
1502 /* Create a pseudo vma that just contains the policy */
1503 vma_init(vma, NULL);
1504 /* Bias interleave by inode number to distribute better across nodes */
1505 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1506 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1507 }
1508
1509 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1510 {
1511 /* Drop reference taken by mpol_shared_policy_lookup() */
1512 mpol_cond_put(vma->vm_policy);
1513 }
1514
1515 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1516 struct shmem_inode_info *info, pgoff_t index)
1517 {
1518 struct vm_area_struct pvma;
1519 struct page *page;
1520 struct vm_fault vmf;
1521
1522 shmem_pseudo_vma_init(&pvma, info, index);
1523 vmf.vma = &pvma;
1524 vmf.address = 0;
1525 page = swap_cluster_readahead(swap, gfp, &vmf);
1526 shmem_pseudo_vma_destroy(&pvma);
1527
1528 return page;
1529 }
1530
1531 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1532 struct shmem_inode_info *info, pgoff_t index)
1533 {
1534 struct vm_area_struct pvma;
1535 struct address_space *mapping = info->vfs_inode.i_mapping;
1536 pgoff_t hindex;
1537 struct page *page;
1538
1539 hindex = round_down(index, HPAGE_PMD_NR);
1540 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1541 XA_PRESENT))
1542 return NULL;
1543
1544 shmem_pseudo_vma_init(&pvma, info, hindex);
1545 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1546 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1547 shmem_pseudo_vma_destroy(&pvma);
1548 if (page)
1549 prep_transhuge_page(page);
1550 else
1551 count_vm_event(THP_FILE_FALLBACK);
1552 return page;
1553 }
1554
1555 static struct page *shmem_alloc_page(gfp_t gfp,
1556 struct shmem_inode_info *info, pgoff_t index)
1557 {
1558 struct vm_area_struct pvma;
1559 struct page *page;
1560
1561 shmem_pseudo_vma_init(&pvma, info, index);
1562 page = alloc_page_vma(gfp, &pvma, 0);
1563 shmem_pseudo_vma_destroy(&pvma);
1564
1565 return page;
1566 }
1567
1568 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1569 struct inode *inode,
1570 pgoff_t index, bool huge)
1571 {
1572 struct shmem_inode_info *info = SHMEM_I(inode);
1573 struct page *page;
1574 int nr;
1575 int err = -ENOSPC;
1576
1577 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1578 huge = false;
1579 nr = huge ? HPAGE_PMD_NR : 1;
1580
1581 if (!shmem_inode_acct_block(inode, nr))
1582 goto failed;
1583
1584 if (huge)
1585 page = shmem_alloc_hugepage(gfp, info, index);
1586 else
1587 page = shmem_alloc_page(gfp, info, index);
1588 if (page) {
1589 __SetPageLocked(page);
1590 __SetPageSwapBacked(page);
1591 return page;
1592 }
1593
1594 err = -ENOMEM;
1595 shmem_inode_unacct_blocks(inode, nr);
1596 failed:
1597 return ERR_PTR(err);
1598 }
1599
1600 /*
1601 * When a page is moved from swapcache to shmem filecache (either by the
1602 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1603 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1604 * ignorance of the mapping it belongs to. If that mapping has special
1605 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1606 * we may need to copy to a suitable page before moving to filecache.
1607 *
1608 * In a future release, this may well be extended to respect cpuset and
1609 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1610 * but for now it is a simple matter of zone.
1611 */
1612 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1613 {
1614 return page_zonenum(page) > gfp_zone(gfp);
1615 }
1616
1617 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1618 struct shmem_inode_info *info, pgoff_t index)
1619 {
1620 struct page *oldpage, *newpage;
1621 struct address_space *swap_mapping;
1622 swp_entry_t entry;
1623 pgoff_t swap_index;
1624 int error;
1625
1626 oldpage = *pagep;
1627 entry.val = page_private(oldpage);
1628 swap_index = swp_offset(entry);
1629 swap_mapping = page_mapping(oldpage);
1630
1631 /*
1632 * We have arrived here because our zones are constrained, so don't
1633 * limit chance of success by further cpuset and node constraints.
1634 */
1635 gfp &= ~GFP_CONSTRAINT_MASK;
1636 newpage = shmem_alloc_page(gfp, info, index);
1637 if (!newpage)
1638 return -ENOMEM;
1639
1640 get_page(newpage);
1641 copy_highpage(newpage, oldpage);
1642 flush_dcache_page(newpage);
1643
1644 __SetPageLocked(newpage);
1645 __SetPageSwapBacked(newpage);
1646 SetPageUptodate(newpage);
1647 set_page_private(newpage, entry.val);
1648 SetPageSwapCache(newpage);
1649
1650 /*
1651 * Our caller will very soon move newpage out of swapcache, but it's
1652 * a nice clean interface for us to replace oldpage by newpage there.
1653 */
1654 xa_lock_irq(&swap_mapping->i_pages);
1655 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1656 if (!error) {
1657 mem_cgroup_migrate(oldpage, newpage);
1658 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1659 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1660 }
1661 xa_unlock_irq(&swap_mapping->i_pages);
1662
1663 if (unlikely(error)) {
1664 /*
1665 * Is this possible? I think not, now that our callers check
1666 * both PageSwapCache and page_private after getting page lock;
1667 * but be defensive. Reverse old to newpage for clear and free.
1668 */
1669 oldpage = newpage;
1670 } else {
1671 lru_cache_add(newpage);
1672 *pagep = newpage;
1673 }
1674
1675 ClearPageSwapCache(oldpage);
1676 set_page_private(oldpage, 0);
1677
1678 unlock_page(oldpage);
1679 put_page(oldpage);
1680 put_page(oldpage);
1681 return error;
1682 }
1683
1684 /*
1685 * Swap in the page pointed to by *pagep.
1686 * Caller has to make sure that *pagep contains a valid swapped page.
1687 * Returns 0 and the page in pagep if success. On failure, returns the
1688 * the error code and NULL in *pagep.
1689 */
1690 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1691 struct page **pagep, enum sgp_type sgp,
1692 gfp_t gfp, struct vm_area_struct *vma,
1693 vm_fault_t *fault_type)
1694 {
1695 struct address_space *mapping = inode->i_mapping;
1696 struct shmem_inode_info *info = SHMEM_I(inode);
1697 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1698 struct page *page;
1699 swp_entry_t swap;
1700 int error;
1701
1702 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1703 swap = radix_to_swp_entry(*pagep);
1704 *pagep = NULL;
1705
1706 /* Look it up and read it in.. */
1707 page = lookup_swap_cache(swap, NULL, 0);
1708 if (!page) {
1709 /* Or update major stats only when swapin succeeds?? */
1710 if (fault_type) {
1711 *fault_type |= VM_FAULT_MAJOR;
1712 count_vm_event(PGMAJFAULT);
1713 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1714 }
1715 /* Here we actually start the io */
1716 page = shmem_swapin(swap, gfp, info, index);
1717 if (!page) {
1718 error = -ENOMEM;
1719 goto failed;
1720 }
1721 }
1722
1723 /* We have to do this with page locked to prevent races */
1724 lock_page(page);
1725 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1726 !shmem_confirm_swap(mapping, index, swap)) {
1727 error = -EEXIST;
1728 goto unlock;
1729 }
1730 if (!PageUptodate(page)) {
1731 error = -EIO;
1732 goto failed;
1733 }
1734 wait_on_page_writeback(page);
1735
1736 if (shmem_should_replace_page(page, gfp)) {
1737 error = shmem_replace_page(&page, gfp, info, index);
1738 if (error)
1739 goto failed;
1740 }
1741
1742 error = shmem_add_to_page_cache(page, mapping, index,
1743 swp_to_radix_entry(swap), gfp,
1744 charge_mm);
1745 if (error)
1746 goto failed;
1747
1748 spin_lock_irq(&info->lock);
1749 info->swapped--;
1750 shmem_recalc_inode(inode);
1751 spin_unlock_irq(&info->lock);
1752
1753 if (sgp == SGP_WRITE)
1754 mark_page_accessed(page);
1755
1756 delete_from_swap_cache(page);
1757 set_page_dirty(page);
1758 swap_free(swap);
1759
1760 *pagep = page;
1761 return 0;
1762 failed:
1763 if (!shmem_confirm_swap(mapping, index, swap))
1764 error = -EEXIST;
1765 unlock:
1766 if (page) {
1767 unlock_page(page);
1768 put_page(page);
1769 }
1770
1771 return error;
1772 }
1773
1774 /*
1775 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1776 *
1777 * If we allocate a new one we do not mark it dirty. That's up to the
1778 * vm. If we swap it in we mark it dirty since we also free the swap
1779 * entry since a page cannot live in both the swap and page cache.
1780 *
1781 * vmf and fault_type are only supplied by shmem_fault:
1782 * otherwise they are NULL.
1783 */
1784 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1785 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1786 struct vm_area_struct *vma, struct vm_fault *vmf,
1787 vm_fault_t *fault_type)
1788 {
1789 struct address_space *mapping = inode->i_mapping;
1790 struct shmem_inode_info *info = SHMEM_I(inode);
1791 struct shmem_sb_info *sbinfo;
1792 struct mm_struct *charge_mm;
1793 struct page *page;
1794 enum sgp_type sgp_huge = sgp;
1795 pgoff_t hindex = index;
1796 int error;
1797 int once = 0;
1798 int alloced = 0;
1799
1800 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1801 return -EFBIG;
1802 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1803 sgp = SGP_CACHE;
1804 repeat:
1805 if (sgp <= SGP_CACHE &&
1806 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1807 return -EINVAL;
1808 }
1809
1810 sbinfo = SHMEM_SB(inode->i_sb);
1811 charge_mm = vma ? vma->vm_mm : current->mm;
1812
1813 page = find_lock_entry(mapping, index);
1814 if (xa_is_value(page)) {
1815 error = shmem_swapin_page(inode, index, &page,
1816 sgp, gfp, vma, fault_type);
1817 if (error == -EEXIST)
1818 goto repeat;
1819
1820 *pagep = page;
1821 return error;
1822 }
1823
1824 if (page && sgp == SGP_WRITE)
1825 mark_page_accessed(page);
1826
1827 /* fallocated page? */
1828 if (page && !PageUptodate(page)) {
1829 if (sgp != SGP_READ)
1830 goto clear;
1831 unlock_page(page);
1832 put_page(page);
1833 page = NULL;
1834 }
1835 if (page || sgp == SGP_READ) {
1836 *pagep = page;
1837 return 0;
1838 }
1839
1840 /*
1841 * Fast cache lookup did not find it:
1842 * bring it back from swap or allocate.
1843 */
1844
1845 if (vma && userfaultfd_missing(vma)) {
1846 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1847 return 0;
1848 }
1849
1850 /* shmem_symlink() */
1851 if (mapping->a_ops != &shmem_aops)
1852 goto alloc_nohuge;
1853 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1854 goto alloc_nohuge;
1855 if (shmem_huge == SHMEM_HUGE_FORCE)
1856 goto alloc_huge;
1857 switch (sbinfo->huge) {
1858 case SHMEM_HUGE_NEVER:
1859 goto alloc_nohuge;
1860 case SHMEM_HUGE_WITHIN_SIZE: {
1861 loff_t i_size;
1862 pgoff_t off;
1863
1864 off = round_up(index, HPAGE_PMD_NR);
1865 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1866 if (i_size >= HPAGE_PMD_SIZE &&
1867 i_size >> PAGE_SHIFT >= off)
1868 goto alloc_huge;
1869
1870 fallthrough;
1871 }
1872 case SHMEM_HUGE_ADVISE:
1873 if (sgp_huge == SGP_HUGE)
1874 goto alloc_huge;
1875 /* TODO: implement fadvise() hints */
1876 goto alloc_nohuge;
1877 }
1878
1879 alloc_huge:
1880 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1881 if (IS_ERR(page)) {
1882 alloc_nohuge:
1883 page = shmem_alloc_and_acct_page(gfp, inode,
1884 index, false);
1885 }
1886 if (IS_ERR(page)) {
1887 int retry = 5;
1888
1889 error = PTR_ERR(page);
1890 page = NULL;
1891 if (error != -ENOSPC)
1892 goto unlock;
1893 /*
1894 * Try to reclaim some space by splitting a huge page
1895 * beyond i_size on the filesystem.
1896 */
1897 while (retry--) {
1898 int ret;
1899
1900 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1901 if (ret == SHRINK_STOP)
1902 break;
1903 if (ret)
1904 goto alloc_nohuge;
1905 }
1906 goto unlock;
1907 }
1908
1909 if (PageTransHuge(page))
1910 hindex = round_down(index, HPAGE_PMD_NR);
1911 else
1912 hindex = index;
1913
1914 if (sgp == SGP_WRITE)
1915 __SetPageReferenced(page);
1916
1917 error = shmem_add_to_page_cache(page, mapping, hindex,
1918 NULL, gfp & GFP_RECLAIM_MASK,
1919 charge_mm);
1920 if (error)
1921 goto unacct;
1922 lru_cache_add(page);
1923
1924 spin_lock_irq(&info->lock);
1925 info->alloced += compound_nr(page);
1926 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1927 shmem_recalc_inode(inode);
1928 spin_unlock_irq(&info->lock);
1929 alloced = true;
1930
1931 if (PageTransHuge(page) &&
1932 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1933 hindex + HPAGE_PMD_NR - 1) {
1934 /*
1935 * Part of the huge page is beyond i_size: subject
1936 * to shrink under memory pressure.
1937 */
1938 spin_lock(&sbinfo->shrinklist_lock);
1939 /*
1940 * _careful to defend against unlocked access to
1941 * ->shrink_list in shmem_unused_huge_shrink()
1942 */
1943 if (list_empty_careful(&info->shrinklist)) {
1944 list_add_tail(&info->shrinklist,
1945 &sbinfo->shrinklist);
1946 sbinfo->shrinklist_len++;
1947 }
1948 spin_unlock(&sbinfo->shrinklist_lock);
1949 }
1950
1951 /*
1952 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1953 */
1954 if (sgp == SGP_FALLOC)
1955 sgp = SGP_WRITE;
1956 clear:
1957 /*
1958 * Let SGP_WRITE caller clear ends if write does not fill page;
1959 * but SGP_FALLOC on a page fallocated earlier must initialize
1960 * it now, lest undo on failure cancel our earlier guarantee.
1961 */
1962 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1963 struct page *head = compound_head(page);
1964 int i;
1965
1966 for (i = 0; i < compound_nr(head); i++) {
1967 clear_highpage(head + i);
1968 flush_dcache_page(head + i);
1969 }
1970 SetPageUptodate(head);
1971 }
1972
1973 /* Perhaps the file has been truncated since we checked */
1974 if (sgp <= SGP_CACHE &&
1975 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1976 if (alloced) {
1977 ClearPageDirty(page);
1978 delete_from_page_cache(page);
1979 spin_lock_irq(&info->lock);
1980 shmem_recalc_inode(inode);
1981 spin_unlock_irq(&info->lock);
1982 }
1983 error = -EINVAL;
1984 goto unlock;
1985 }
1986 *pagep = page + index - hindex;
1987 return 0;
1988
1989 /*
1990 * Error recovery.
1991 */
1992 unacct:
1993 shmem_inode_unacct_blocks(inode, compound_nr(page));
1994
1995 if (PageTransHuge(page)) {
1996 unlock_page(page);
1997 put_page(page);
1998 goto alloc_nohuge;
1999 }
2000 unlock:
2001 if (page) {
2002 unlock_page(page);
2003 put_page(page);
2004 }
2005 if (error == -ENOSPC && !once++) {
2006 spin_lock_irq(&info->lock);
2007 shmem_recalc_inode(inode);
2008 spin_unlock_irq(&info->lock);
2009 goto repeat;
2010 }
2011 if (error == -EEXIST)
2012 goto repeat;
2013 return error;
2014 }
2015
2016 /*
2017 * This is like autoremove_wake_function, but it removes the wait queue
2018 * entry unconditionally - even if something else had already woken the
2019 * target.
2020 */
2021 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2022 {
2023 int ret = default_wake_function(wait, mode, sync, key);
2024 list_del_init(&wait->entry);
2025 return ret;
2026 }
2027
2028 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2029 {
2030 struct vm_area_struct *vma = vmf->vma;
2031 struct inode *inode = file_inode(vma->vm_file);
2032 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2033 enum sgp_type sgp;
2034 int err;
2035 vm_fault_t ret = VM_FAULT_LOCKED;
2036
2037 /*
2038 * Trinity finds that probing a hole which tmpfs is punching can
2039 * prevent the hole-punch from ever completing: which in turn
2040 * locks writers out with its hold on i_mutex. So refrain from
2041 * faulting pages into the hole while it's being punched. Although
2042 * shmem_undo_range() does remove the additions, it may be unable to
2043 * keep up, as each new page needs its own unmap_mapping_range() call,
2044 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2045 *
2046 * It does not matter if we sometimes reach this check just before the
2047 * hole-punch begins, so that one fault then races with the punch:
2048 * we just need to make racing faults a rare case.
2049 *
2050 * The implementation below would be much simpler if we just used a
2051 * standard mutex or completion: but we cannot take i_mutex in fault,
2052 * and bloating every shmem inode for this unlikely case would be sad.
2053 */
2054 if (unlikely(inode->i_private)) {
2055 struct shmem_falloc *shmem_falloc;
2056
2057 spin_lock(&inode->i_lock);
2058 shmem_falloc = inode->i_private;
2059 if (shmem_falloc &&
2060 shmem_falloc->waitq &&
2061 vmf->pgoff >= shmem_falloc->start &&
2062 vmf->pgoff < shmem_falloc->next) {
2063 struct file *fpin;
2064 wait_queue_head_t *shmem_falloc_waitq;
2065 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2066
2067 ret = VM_FAULT_NOPAGE;
2068 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2069 if (fpin)
2070 ret = VM_FAULT_RETRY;
2071
2072 shmem_falloc_waitq = shmem_falloc->waitq;
2073 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2074 TASK_UNINTERRUPTIBLE);
2075 spin_unlock(&inode->i_lock);
2076 schedule();
2077
2078 /*
2079 * shmem_falloc_waitq points into the shmem_fallocate()
2080 * stack of the hole-punching task: shmem_falloc_waitq
2081 * is usually invalid by the time we reach here, but
2082 * finish_wait() does not dereference it in that case;
2083 * though i_lock needed lest racing with wake_up_all().
2084 */
2085 spin_lock(&inode->i_lock);
2086 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2087 spin_unlock(&inode->i_lock);
2088
2089 if (fpin)
2090 fput(fpin);
2091 return ret;
2092 }
2093 spin_unlock(&inode->i_lock);
2094 }
2095
2096 sgp = SGP_CACHE;
2097
2098 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2099 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2100 sgp = SGP_NOHUGE;
2101 else if (vma->vm_flags & VM_HUGEPAGE)
2102 sgp = SGP_HUGE;
2103
2104 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2105 gfp, vma, vmf, &ret);
2106 if (err)
2107 return vmf_error(err);
2108 return ret;
2109 }
2110
2111 unsigned long shmem_get_unmapped_area(struct file *file,
2112 unsigned long uaddr, unsigned long len,
2113 unsigned long pgoff, unsigned long flags)
2114 {
2115 unsigned long (*get_area)(struct file *,
2116 unsigned long, unsigned long, unsigned long, unsigned long);
2117 unsigned long addr;
2118 unsigned long offset;
2119 unsigned long inflated_len;
2120 unsigned long inflated_addr;
2121 unsigned long inflated_offset;
2122
2123 if (len > TASK_SIZE)
2124 return -ENOMEM;
2125
2126 get_area = current->mm->get_unmapped_area;
2127 addr = get_area(file, uaddr, len, pgoff, flags);
2128
2129 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2130 return addr;
2131 if (IS_ERR_VALUE(addr))
2132 return addr;
2133 if (addr & ~PAGE_MASK)
2134 return addr;
2135 if (addr > TASK_SIZE - len)
2136 return addr;
2137
2138 if (shmem_huge == SHMEM_HUGE_DENY)
2139 return addr;
2140 if (len < HPAGE_PMD_SIZE)
2141 return addr;
2142 if (flags & MAP_FIXED)
2143 return addr;
2144 /*
2145 * Our priority is to support MAP_SHARED mapped hugely;
2146 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2147 * But if caller specified an address hint and we allocated area there
2148 * successfully, respect that as before.
2149 */
2150 if (uaddr == addr)
2151 return addr;
2152
2153 if (shmem_huge != SHMEM_HUGE_FORCE) {
2154 struct super_block *sb;
2155
2156 if (file) {
2157 VM_BUG_ON(file->f_op != &shmem_file_operations);
2158 sb = file_inode(file)->i_sb;
2159 } else {
2160 /*
2161 * Called directly from mm/mmap.c, or drivers/char/mem.c
2162 * for "/dev/zero", to create a shared anonymous object.
2163 */
2164 if (IS_ERR(shm_mnt))
2165 return addr;
2166 sb = shm_mnt->mnt_sb;
2167 }
2168 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2169 return addr;
2170 }
2171
2172 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2173 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2174 return addr;
2175 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2176 return addr;
2177
2178 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2179 if (inflated_len > TASK_SIZE)
2180 return addr;
2181 if (inflated_len < len)
2182 return addr;
2183
2184 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2185 if (IS_ERR_VALUE(inflated_addr))
2186 return addr;
2187 if (inflated_addr & ~PAGE_MASK)
2188 return addr;
2189
2190 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2191 inflated_addr += offset - inflated_offset;
2192 if (inflated_offset > offset)
2193 inflated_addr += HPAGE_PMD_SIZE;
2194
2195 if (inflated_addr > TASK_SIZE - len)
2196 return addr;
2197 return inflated_addr;
2198 }
2199
2200 #ifdef CONFIG_NUMA
2201 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2202 {
2203 struct inode *inode = file_inode(vma->vm_file);
2204 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2205 }
2206
2207 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2208 unsigned long addr)
2209 {
2210 struct inode *inode = file_inode(vma->vm_file);
2211 pgoff_t index;
2212
2213 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2214 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2215 }
2216 #endif
2217
2218 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2219 {
2220 struct inode *inode = file_inode(file);
2221 struct shmem_inode_info *info = SHMEM_I(inode);
2222 int retval = -ENOMEM;
2223
2224 /*
2225 * What serializes the accesses to info->flags?
2226 * ipc_lock_object() when called from shmctl_do_lock(),
2227 * no serialization needed when called from shm_destroy().
2228 */
2229 if (lock && !(info->flags & VM_LOCKED)) {
2230 if (!user_shm_lock(inode->i_size, user))
2231 goto out_nomem;
2232 info->flags |= VM_LOCKED;
2233 mapping_set_unevictable(file->f_mapping);
2234 }
2235 if (!lock && (info->flags & VM_LOCKED) && user) {
2236 user_shm_unlock(inode->i_size, user);
2237 info->flags &= ~VM_LOCKED;
2238 mapping_clear_unevictable(file->f_mapping);
2239 }
2240 retval = 0;
2241
2242 out_nomem:
2243 return retval;
2244 }
2245
2246 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2247 {
2248 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2249
2250 if (info->seals & F_SEAL_FUTURE_WRITE) {
2251 /*
2252 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2253 * "future write" seal active.
2254 */
2255 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2256 return -EPERM;
2257
2258 /*
2259 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2260 * MAP_SHARED and read-only, take care to not allow mprotect to
2261 * revert protections on such mappings. Do this only for shared
2262 * mappings. For private mappings, don't need to mask
2263 * VM_MAYWRITE as we still want them to be COW-writable.
2264 */
2265 if (vma->vm_flags & VM_SHARED)
2266 vma->vm_flags &= ~(VM_MAYWRITE);
2267 }
2268
2269 file_accessed(file);
2270 vma->vm_ops = &shmem_vm_ops;
2271 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2272 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2273 (vma->vm_end & HPAGE_PMD_MASK)) {
2274 khugepaged_enter(vma, vma->vm_flags);
2275 }
2276 return 0;
2277 }
2278
2279 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2280 umode_t mode, dev_t dev, unsigned long flags)
2281 {
2282 struct inode *inode;
2283 struct shmem_inode_info *info;
2284 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2285 ino_t ino;
2286
2287 if (shmem_reserve_inode(sb, &ino))
2288 return NULL;
2289
2290 inode = new_inode(sb);
2291 if (inode) {
2292 inode->i_ino = ino;
2293 inode_init_owner(inode, dir, mode);
2294 inode->i_blocks = 0;
2295 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2296 inode->i_generation = prandom_u32();
2297 info = SHMEM_I(inode);
2298 memset(info, 0, (char *)inode - (char *)info);
2299 spin_lock_init(&info->lock);
2300 atomic_set(&info->stop_eviction, 0);
2301 info->seals = F_SEAL_SEAL;
2302 info->flags = flags & VM_NORESERVE;
2303 INIT_LIST_HEAD(&info->shrinklist);
2304 INIT_LIST_HEAD(&info->swaplist);
2305 simple_xattrs_init(&info->xattrs);
2306 cache_no_acl(inode);
2307
2308 switch (mode & S_IFMT) {
2309 default:
2310 inode->i_op = &shmem_special_inode_operations;
2311 init_special_inode(inode, mode, dev);
2312 break;
2313 case S_IFREG:
2314 inode->i_mapping->a_ops = &shmem_aops;
2315 inode->i_op = &shmem_inode_operations;
2316 inode->i_fop = &shmem_file_operations;
2317 mpol_shared_policy_init(&info->policy,
2318 shmem_get_sbmpol(sbinfo));
2319 break;
2320 case S_IFDIR:
2321 inc_nlink(inode);
2322 /* Some things misbehave if size == 0 on a directory */
2323 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2324 inode->i_op = &shmem_dir_inode_operations;
2325 inode->i_fop = &simple_dir_operations;
2326 break;
2327 case S_IFLNK:
2328 /*
2329 * Must not load anything in the rbtree,
2330 * mpol_free_shared_policy will not be called.
2331 */
2332 mpol_shared_policy_init(&info->policy, NULL);
2333 break;
2334 }
2335
2336 lockdep_annotate_inode_mutex_key(inode);
2337 } else
2338 shmem_free_inode(sb);
2339 return inode;
2340 }
2341
2342 bool shmem_mapping(struct address_space *mapping)
2343 {
2344 return mapping->a_ops == &shmem_aops;
2345 }
2346
2347 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2348 pmd_t *dst_pmd,
2349 struct vm_area_struct *dst_vma,
2350 unsigned long dst_addr,
2351 unsigned long src_addr,
2352 bool zeropage,
2353 struct page **pagep)
2354 {
2355 struct inode *inode = file_inode(dst_vma->vm_file);
2356 struct shmem_inode_info *info = SHMEM_I(inode);
2357 struct address_space *mapping = inode->i_mapping;
2358 gfp_t gfp = mapping_gfp_mask(mapping);
2359 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2360 spinlock_t *ptl;
2361 void *page_kaddr;
2362 struct page *page;
2363 pte_t _dst_pte, *dst_pte;
2364 int ret;
2365 pgoff_t offset, max_off;
2366
2367 ret = -ENOMEM;
2368 if (!shmem_inode_acct_block(inode, 1))
2369 goto out;
2370
2371 if (!*pagep) {
2372 page = shmem_alloc_page(gfp, info, pgoff);
2373 if (!page)
2374 goto out_unacct_blocks;
2375
2376 if (!zeropage) { /* mcopy_atomic */
2377 page_kaddr = kmap_atomic(page);
2378 ret = copy_from_user(page_kaddr,
2379 (const void __user *)src_addr,
2380 PAGE_SIZE);
2381 kunmap_atomic(page_kaddr);
2382
2383 /* fallback to copy_from_user outside mmap_lock */
2384 if (unlikely(ret)) {
2385 *pagep = page;
2386 shmem_inode_unacct_blocks(inode, 1);
2387 /* don't free the page */
2388 return -ENOENT;
2389 }
2390 } else { /* mfill_zeropage_atomic */
2391 clear_highpage(page);
2392 }
2393 } else {
2394 page = *pagep;
2395 *pagep = NULL;
2396 }
2397
2398 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2399 __SetPageLocked(page);
2400 __SetPageSwapBacked(page);
2401 __SetPageUptodate(page);
2402
2403 ret = -EFAULT;
2404 offset = linear_page_index(dst_vma, dst_addr);
2405 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2406 if (unlikely(offset >= max_off))
2407 goto out_release;
2408
2409 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2410 gfp & GFP_RECLAIM_MASK, dst_mm);
2411 if (ret)
2412 goto out_release;
2413
2414 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2415 if (dst_vma->vm_flags & VM_WRITE)
2416 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2417 else {
2418 /*
2419 * We don't set the pte dirty if the vma has no
2420 * VM_WRITE permission, so mark the page dirty or it
2421 * could be freed from under us. We could do it
2422 * unconditionally before unlock_page(), but doing it
2423 * only if VM_WRITE is not set is faster.
2424 */
2425 set_page_dirty(page);
2426 }
2427
2428 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2429
2430 ret = -EFAULT;
2431 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2432 if (unlikely(offset >= max_off))
2433 goto out_release_unlock;
2434
2435 ret = -EEXIST;
2436 if (!pte_none(*dst_pte))
2437 goto out_release_unlock;
2438
2439 lru_cache_add(page);
2440
2441 spin_lock_irq(&info->lock);
2442 info->alloced++;
2443 inode->i_blocks += BLOCKS_PER_PAGE;
2444 shmem_recalc_inode(inode);
2445 spin_unlock_irq(&info->lock);
2446
2447 inc_mm_counter(dst_mm, mm_counter_file(page));
2448 page_add_file_rmap(page, false);
2449 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2450
2451 /* No need to invalidate - it was non-present before */
2452 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2453 pte_unmap_unlock(dst_pte, ptl);
2454 unlock_page(page);
2455 ret = 0;
2456 out:
2457 return ret;
2458 out_release_unlock:
2459 pte_unmap_unlock(dst_pte, ptl);
2460 ClearPageDirty(page);
2461 delete_from_page_cache(page);
2462 out_release:
2463 unlock_page(page);
2464 put_page(page);
2465 out_unacct_blocks:
2466 shmem_inode_unacct_blocks(inode, 1);
2467 goto out;
2468 }
2469
2470 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2471 pmd_t *dst_pmd,
2472 struct vm_area_struct *dst_vma,
2473 unsigned long dst_addr,
2474 unsigned long src_addr,
2475 struct page **pagep)
2476 {
2477 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2478 dst_addr, src_addr, false, pagep);
2479 }
2480
2481 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2482 pmd_t *dst_pmd,
2483 struct vm_area_struct *dst_vma,
2484 unsigned long dst_addr)
2485 {
2486 struct page *page = NULL;
2487
2488 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2489 dst_addr, 0, true, &page);
2490 }
2491
2492 #ifdef CONFIG_TMPFS
2493 static const struct inode_operations shmem_symlink_inode_operations;
2494 static const struct inode_operations shmem_short_symlink_operations;
2495
2496 #ifdef CONFIG_TMPFS_XATTR
2497 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2498 #else
2499 #define shmem_initxattrs NULL
2500 #endif
2501
2502 static int
2503 shmem_write_begin(struct file *file, struct address_space *mapping,
2504 loff_t pos, unsigned len, unsigned flags,
2505 struct page **pagep, void **fsdata)
2506 {
2507 struct inode *inode = mapping->host;
2508 struct shmem_inode_info *info = SHMEM_I(inode);
2509 pgoff_t index = pos >> PAGE_SHIFT;
2510
2511 /* i_mutex is held by caller */
2512 if (unlikely(info->seals & (F_SEAL_GROW |
2513 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2514 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2515 return -EPERM;
2516 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2517 return -EPERM;
2518 }
2519
2520 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2521 }
2522
2523 static int
2524 shmem_write_end(struct file *file, struct address_space *mapping,
2525 loff_t pos, unsigned len, unsigned copied,
2526 struct page *page, void *fsdata)
2527 {
2528 struct inode *inode = mapping->host;
2529
2530 if (pos + copied > inode->i_size)
2531 i_size_write(inode, pos + copied);
2532
2533 if (!PageUptodate(page)) {
2534 struct page *head = compound_head(page);
2535 if (PageTransCompound(page)) {
2536 int i;
2537
2538 for (i = 0; i < HPAGE_PMD_NR; i++) {
2539 if (head + i == page)
2540 continue;
2541 clear_highpage(head + i);
2542 flush_dcache_page(head + i);
2543 }
2544 }
2545 if (copied < PAGE_SIZE) {
2546 unsigned from = pos & (PAGE_SIZE - 1);
2547 zero_user_segments(page, 0, from,
2548 from + copied, PAGE_SIZE);
2549 }
2550 SetPageUptodate(head);
2551 }
2552 set_page_dirty(page);
2553 unlock_page(page);
2554 put_page(page);
2555
2556 return copied;
2557 }
2558
2559 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2560 {
2561 struct file *file = iocb->ki_filp;
2562 struct inode *inode = file_inode(file);
2563 struct address_space *mapping = inode->i_mapping;
2564 pgoff_t index;
2565 unsigned long offset;
2566 enum sgp_type sgp = SGP_READ;
2567 int error = 0;
2568 ssize_t retval = 0;
2569 loff_t *ppos = &iocb->ki_pos;
2570
2571 /*
2572 * Might this read be for a stacking filesystem? Then when reading
2573 * holes of a sparse file, we actually need to allocate those pages,
2574 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2575 */
2576 if (!iter_is_iovec(to))
2577 sgp = SGP_CACHE;
2578
2579 index = *ppos >> PAGE_SHIFT;
2580 offset = *ppos & ~PAGE_MASK;
2581
2582 for (;;) {
2583 struct page *page = NULL;
2584 pgoff_t end_index;
2585 unsigned long nr, ret;
2586 loff_t i_size = i_size_read(inode);
2587
2588 end_index = i_size >> PAGE_SHIFT;
2589 if (index > end_index)
2590 break;
2591 if (index == end_index) {
2592 nr = i_size & ~PAGE_MASK;
2593 if (nr <= offset)
2594 break;
2595 }
2596
2597 error = shmem_getpage(inode, index, &page, sgp);
2598 if (error) {
2599 if (error == -EINVAL)
2600 error = 0;
2601 break;
2602 }
2603 if (page) {
2604 if (sgp == SGP_CACHE)
2605 set_page_dirty(page);
2606 unlock_page(page);
2607 }
2608
2609 /*
2610 * We must evaluate after, since reads (unlike writes)
2611 * are called without i_mutex protection against truncate
2612 */
2613 nr = PAGE_SIZE;
2614 i_size = i_size_read(inode);
2615 end_index = i_size >> PAGE_SHIFT;
2616 if (index == end_index) {
2617 nr = i_size & ~PAGE_MASK;
2618 if (nr <= offset) {
2619 if (page)
2620 put_page(page);
2621 break;
2622 }
2623 }
2624 nr -= offset;
2625
2626 if (page) {
2627 /*
2628 * If users can be writing to this page using arbitrary
2629 * virtual addresses, take care about potential aliasing
2630 * before reading the page on the kernel side.
2631 */
2632 if (mapping_writably_mapped(mapping))
2633 flush_dcache_page(page);
2634 /*
2635 * Mark the page accessed if we read the beginning.
2636 */
2637 if (!offset)
2638 mark_page_accessed(page);
2639 } else {
2640 page = ZERO_PAGE(0);
2641 get_page(page);
2642 }
2643
2644 /*
2645 * Ok, we have the page, and it's up-to-date, so
2646 * now we can copy it to user space...
2647 */
2648 ret = copy_page_to_iter(page, offset, nr, to);
2649 retval += ret;
2650 offset += ret;
2651 index += offset >> PAGE_SHIFT;
2652 offset &= ~PAGE_MASK;
2653
2654 put_page(page);
2655 if (!iov_iter_count(to))
2656 break;
2657 if (ret < nr) {
2658 error = -EFAULT;
2659 break;
2660 }
2661 cond_resched();
2662 }
2663
2664 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2665 file_accessed(file);
2666 return retval ? retval : error;
2667 }
2668
2669 /*
2670 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2671 */
2672 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2673 pgoff_t index, pgoff_t end, int whence)
2674 {
2675 struct page *page;
2676 struct pagevec pvec;
2677 pgoff_t indices[PAGEVEC_SIZE];
2678 bool done = false;
2679 int i;
2680
2681 pagevec_init(&pvec);
2682 pvec.nr = 1; /* start small: we may be there already */
2683 while (!done) {
2684 pvec.nr = find_get_entries(mapping, index,
2685 pvec.nr, pvec.pages, indices);
2686 if (!pvec.nr) {
2687 if (whence == SEEK_DATA)
2688 index = end;
2689 break;
2690 }
2691 for (i = 0; i < pvec.nr; i++, index++) {
2692 if (index < indices[i]) {
2693 if (whence == SEEK_HOLE) {
2694 done = true;
2695 break;
2696 }
2697 index = indices[i];
2698 }
2699 page = pvec.pages[i];
2700 if (page && !xa_is_value(page)) {
2701 if (!PageUptodate(page))
2702 page = NULL;
2703 }
2704 if (index >= end ||
2705 (page && whence == SEEK_DATA) ||
2706 (!page && whence == SEEK_HOLE)) {
2707 done = true;
2708 break;
2709 }
2710 }
2711 pagevec_remove_exceptionals(&pvec);
2712 pagevec_release(&pvec);
2713 pvec.nr = PAGEVEC_SIZE;
2714 cond_resched();
2715 }
2716 return index;
2717 }
2718
2719 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2720 {
2721 struct address_space *mapping = file->f_mapping;
2722 struct inode *inode = mapping->host;
2723 pgoff_t start, end;
2724 loff_t new_offset;
2725
2726 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2727 return generic_file_llseek_size(file, offset, whence,
2728 MAX_LFS_FILESIZE, i_size_read(inode));
2729 inode_lock(inode);
2730 /* We're holding i_mutex so we can access i_size directly */
2731
2732 if (offset < 0 || offset >= inode->i_size)
2733 offset = -ENXIO;
2734 else {
2735 start = offset >> PAGE_SHIFT;
2736 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2737 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2738 new_offset <<= PAGE_SHIFT;
2739 if (new_offset > offset) {
2740 if (new_offset < inode->i_size)
2741 offset = new_offset;
2742 else if (whence == SEEK_DATA)
2743 offset = -ENXIO;
2744 else
2745 offset = inode->i_size;
2746 }
2747 }
2748
2749 if (offset >= 0)
2750 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2751 inode_unlock(inode);
2752 return offset;
2753 }
2754
2755 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2756 loff_t len)
2757 {
2758 struct inode *inode = file_inode(file);
2759 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2760 struct shmem_inode_info *info = SHMEM_I(inode);
2761 struct shmem_falloc shmem_falloc;
2762 pgoff_t start, index, end;
2763 int error;
2764
2765 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2766 return -EOPNOTSUPP;
2767
2768 inode_lock(inode);
2769
2770 if (mode & FALLOC_FL_PUNCH_HOLE) {
2771 struct address_space *mapping = file->f_mapping;
2772 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2773 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2774 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2775
2776 /* protected by i_mutex */
2777 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2778 error = -EPERM;
2779 goto out;
2780 }
2781
2782 shmem_falloc.waitq = &shmem_falloc_waitq;
2783 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2784 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2785 spin_lock(&inode->i_lock);
2786 inode->i_private = &shmem_falloc;
2787 spin_unlock(&inode->i_lock);
2788
2789 if ((u64)unmap_end > (u64)unmap_start)
2790 unmap_mapping_range(mapping, unmap_start,
2791 1 + unmap_end - unmap_start, 0);
2792 shmem_truncate_range(inode, offset, offset + len - 1);
2793 /* No need to unmap again: hole-punching leaves COWed pages */
2794
2795 spin_lock(&inode->i_lock);
2796 inode->i_private = NULL;
2797 wake_up_all(&shmem_falloc_waitq);
2798 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2799 spin_unlock(&inode->i_lock);
2800 error = 0;
2801 goto out;
2802 }
2803
2804 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2805 error = inode_newsize_ok(inode, offset + len);
2806 if (error)
2807 goto out;
2808
2809 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2810 error = -EPERM;
2811 goto out;
2812 }
2813
2814 start = offset >> PAGE_SHIFT;
2815 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2816 /* Try to avoid a swapstorm if len is impossible to satisfy */
2817 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2818 error = -ENOSPC;
2819 goto out;
2820 }
2821
2822 shmem_falloc.waitq = NULL;
2823 shmem_falloc.start = start;
2824 shmem_falloc.next = start;
2825 shmem_falloc.nr_falloced = 0;
2826 shmem_falloc.nr_unswapped = 0;
2827 spin_lock(&inode->i_lock);
2828 inode->i_private = &shmem_falloc;
2829 spin_unlock(&inode->i_lock);
2830
2831 for (index = start; index < end; index++) {
2832 struct page *page;
2833
2834 /*
2835 * Good, the fallocate(2) manpage permits EINTR: we may have
2836 * been interrupted because we are using up too much memory.
2837 */
2838 if (signal_pending(current))
2839 error = -EINTR;
2840 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2841 error = -ENOMEM;
2842 else
2843 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2844 if (error) {
2845 /* Remove the !PageUptodate pages we added */
2846 if (index > start) {
2847 shmem_undo_range(inode,
2848 (loff_t)start << PAGE_SHIFT,
2849 ((loff_t)index << PAGE_SHIFT) - 1, true);
2850 }
2851 goto undone;
2852 }
2853
2854 /*
2855 * Inform shmem_writepage() how far we have reached.
2856 * No need for lock or barrier: we have the page lock.
2857 */
2858 shmem_falloc.next++;
2859 if (!PageUptodate(page))
2860 shmem_falloc.nr_falloced++;
2861
2862 /*
2863 * If !PageUptodate, leave it that way so that freeable pages
2864 * can be recognized if we need to rollback on error later.
2865 * But set_page_dirty so that memory pressure will swap rather
2866 * than free the pages we are allocating (and SGP_CACHE pages
2867 * might still be clean: we now need to mark those dirty too).
2868 */
2869 set_page_dirty(page);
2870 unlock_page(page);
2871 put_page(page);
2872 cond_resched();
2873 }
2874
2875 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2876 i_size_write(inode, offset + len);
2877 inode->i_ctime = current_time(inode);
2878 undone:
2879 spin_lock(&inode->i_lock);
2880 inode->i_private = NULL;
2881 spin_unlock(&inode->i_lock);
2882 out:
2883 inode_unlock(inode);
2884 return error;
2885 }
2886
2887 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2888 {
2889 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2890
2891 buf->f_type = TMPFS_MAGIC;
2892 buf->f_bsize = PAGE_SIZE;
2893 buf->f_namelen = NAME_MAX;
2894 if (sbinfo->max_blocks) {
2895 buf->f_blocks = sbinfo->max_blocks;
2896 buf->f_bavail =
2897 buf->f_bfree = sbinfo->max_blocks -
2898 percpu_counter_sum(&sbinfo->used_blocks);
2899 }
2900 if (sbinfo->max_inodes) {
2901 buf->f_files = sbinfo->max_inodes;
2902 buf->f_ffree = sbinfo->free_inodes;
2903 }
2904 /* else leave those fields 0 like simple_statfs */
2905 return 0;
2906 }
2907
2908 /*
2909 * File creation. Allocate an inode, and we're done..
2910 */
2911 static int
2912 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2913 {
2914 struct inode *inode;
2915 int error = -ENOSPC;
2916
2917 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2918 if (inode) {
2919 error = simple_acl_create(dir, inode);
2920 if (error)
2921 goto out_iput;
2922 error = security_inode_init_security(inode, dir,
2923 &dentry->d_name,
2924 shmem_initxattrs, NULL);
2925 if (error && error != -EOPNOTSUPP)
2926 goto out_iput;
2927
2928 error = 0;
2929 dir->i_size += BOGO_DIRENT_SIZE;
2930 dir->i_ctime = dir->i_mtime = current_time(dir);
2931 d_instantiate(dentry, inode);
2932 dget(dentry); /* Extra count - pin the dentry in core */
2933 }
2934 return error;
2935 out_iput:
2936 iput(inode);
2937 return error;
2938 }
2939
2940 static int
2941 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2942 {
2943 struct inode *inode;
2944 int error = -ENOSPC;
2945
2946 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2947 if (inode) {
2948 error = security_inode_init_security(inode, dir,
2949 NULL,
2950 shmem_initxattrs, NULL);
2951 if (error && error != -EOPNOTSUPP)
2952 goto out_iput;
2953 error = simple_acl_create(dir, inode);
2954 if (error)
2955 goto out_iput;
2956 d_tmpfile(dentry, inode);
2957 }
2958 return error;
2959 out_iput:
2960 iput(inode);
2961 return error;
2962 }
2963
2964 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2965 {
2966 int error;
2967
2968 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2969 return error;
2970 inc_nlink(dir);
2971 return 0;
2972 }
2973
2974 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2975 bool excl)
2976 {
2977 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2978 }
2979
2980 /*
2981 * Link a file..
2982 */
2983 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2984 {
2985 struct inode *inode = d_inode(old_dentry);
2986 int ret = 0;
2987
2988 /*
2989 * No ordinary (disk based) filesystem counts links as inodes;
2990 * but each new link needs a new dentry, pinning lowmem, and
2991 * tmpfs dentries cannot be pruned until they are unlinked.
2992 * But if an O_TMPFILE file is linked into the tmpfs, the
2993 * first link must skip that, to get the accounting right.
2994 */
2995 if (inode->i_nlink) {
2996 ret = shmem_reserve_inode(inode->i_sb, NULL);
2997 if (ret)
2998 goto out;
2999 }
3000
3001 dir->i_size += BOGO_DIRENT_SIZE;
3002 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3003 inc_nlink(inode);
3004 ihold(inode); /* New dentry reference */
3005 dget(dentry); /* Extra pinning count for the created dentry */
3006 d_instantiate(dentry, inode);
3007 out:
3008 return ret;
3009 }
3010
3011 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3012 {
3013 struct inode *inode = d_inode(dentry);
3014
3015 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3016 shmem_free_inode(inode->i_sb);
3017
3018 dir->i_size -= BOGO_DIRENT_SIZE;
3019 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3020 drop_nlink(inode);
3021 dput(dentry); /* Undo the count from "create" - this does all the work */
3022 return 0;
3023 }
3024
3025 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3026 {
3027 if (!simple_empty(dentry))
3028 return -ENOTEMPTY;
3029
3030 drop_nlink(d_inode(dentry));
3031 drop_nlink(dir);
3032 return shmem_unlink(dir, dentry);
3033 }
3034
3035 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3036 {
3037 bool old_is_dir = d_is_dir(old_dentry);
3038 bool new_is_dir = d_is_dir(new_dentry);
3039
3040 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3041 if (old_is_dir) {
3042 drop_nlink(old_dir);
3043 inc_nlink(new_dir);
3044 } else {
3045 drop_nlink(new_dir);
3046 inc_nlink(old_dir);
3047 }
3048 }
3049 old_dir->i_ctime = old_dir->i_mtime =
3050 new_dir->i_ctime = new_dir->i_mtime =
3051 d_inode(old_dentry)->i_ctime =
3052 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3053
3054 return 0;
3055 }
3056
3057 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3058 {
3059 struct dentry *whiteout;
3060 int error;
3061
3062 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3063 if (!whiteout)
3064 return -ENOMEM;
3065
3066 error = shmem_mknod(old_dir, whiteout,
3067 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3068 dput(whiteout);
3069 if (error)
3070 return error;
3071
3072 /*
3073 * Cheat and hash the whiteout while the old dentry is still in
3074 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3075 *
3076 * d_lookup() will consistently find one of them at this point,
3077 * not sure which one, but that isn't even important.
3078 */
3079 d_rehash(whiteout);
3080 return 0;
3081 }
3082
3083 /*
3084 * The VFS layer already does all the dentry stuff for rename,
3085 * we just have to decrement the usage count for the target if
3086 * it exists so that the VFS layer correctly free's it when it
3087 * gets overwritten.
3088 */
3089 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3090 {
3091 struct inode *inode = d_inode(old_dentry);
3092 int they_are_dirs = S_ISDIR(inode->i_mode);
3093
3094 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3095 return -EINVAL;
3096
3097 if (flags & RENAME_EXCHANGE)
3098 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3099
3100 if (!simple_empty(new_dentry))
3101 return -ENOTEMPTY;
3102
3103 if (flags & RENAME_WHITEOUT) {
3104 int error;
3105
3106 error = shmem_whiteout(old_dir, old_dentry);
3107 if (error)
3108 return error;
3109 }
3110
3111 if (d_really_is_positive(new_dentry)) {
3112 (void) shmem_unlink(new_dir, new_dentry);
3113 if (they_are_dirs) {
3114 drop_nlink(d_inode(new_dentry));
3115 drop_nlink(old_dir);
3116 }
3117 } else if (they_are_dirs) {
3118 drop_nlink(old_dir);
3119 inc_nlink(new_dir);
3120 }
3121
3122 old_dir->i_size -= BOGO_DIRENT_SIZE;
3123 new_dir->i_size += BOGO_DIRENT_SIZE;
3124 old_dir->i_ctime = old_dir->i_mtime =
3125 new_dir->i_ctime = new_dir->i_mtime =
3126 inode->i_ctime = current_time(old_dir);
3127 return 0;
3128 }
3129
3130 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3131 {
3132 int error;
3133 int len;
3134 struct inode *inode;
3135 struct page *page;
3136
3137 len = strlen(symname) + 1;
3138 if (len > PAGE_SIZE)
3139 return -ENAMETOOLONG;
3140
3141 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3142 VM_NORESERVE);
3143 if (!inode)
3144 return -ENOSPC;
3145
3146 error = security_inode_init_security(inode, dir, &dentry->d_name,
3147 shmem_initxattrs, NULL);
3148 if (error && error != -EOPNOTSUPP) {
3149 iput(inode);
3150 return error;
3151 }
3152
3153 inode->i_size = len-1;
3154 if (len <= SHORT_SYMLINK_LEN) {
3155 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3156 if (!inode->i_link) {
3157 iput(inode);
3158 return -ENOMEM;
3159 }
3160 inode->i_op = &shmem_short_symlink_operations;
3161 } else {
3162 inode_nohighmem(inode);
3163 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3164 if (error) {
3165 iput(inode);
3166 return error;
3167 }
3168 inode->i_mapping->a_ops = &shmem_aops;
3169 inode->i_op = &shmem_symlink_inode_operations;
3170 memcpy(page_address(page), symname, len);
3171 SetPageUptodate(page);
3172 set_page_dirty(page);
3173 unlock_page(page);
3174 put_page(page);
3175 }
3176 dir->i_size += BOGO_DIRENT_SIZE;
3177 dir->i_ctime = dir->i_mtime = current_time(dir);
3178 d_instantiate(dentry, inode);
3179 dget(dentry);
3180 return 0;
3181 }
3182
3183 static void shmem_put_link(void *arg)
3184 {
3185 mark_page_accessed(arg);
3186 put_page(arg);
3187 }
3188
3189 static const char *shmem_get_link(struct dentry *dentry,
3190 struct inode *inode,
3191 struct delayed_call *done)
3192 {
3193 struct page *page = NULL;
3194 int error;
3195 if (!dentry) {
3196 page = find_get_page(inode->i_mapping, 0);
3197 if (!page)
3198 return ERR_PTR(-ECHILD);
3199 if (!PageUptodate(page)) {
3200 put_page(page);
3201 return ERR_PTR(-ECHILD);
3202 }
3203 } else {
3204 error = shmem_getpage(inode, 0, &page, SGP_READ);
3205 if (error)
3206 return ERR_PTR(error);
3207 unlock_page(page);
3208 }
3209 set_delayed_call(done, shmem_put_link, page);
3210 return page_address(page);
3211 }
3212
3213 #ifdef CONFIG_TMPFS_XATTR
3214 /*
3215 * Superblocks without xattr inode operations may get some security.* xattr
3216 * support from the LSM "for free". As soon as we have any other xattrs
3217 * like ACLs, we also need to implement the security.* handlers at
3218 * filesystem level, though.
3219 */
3220
3221 /*
3222 * Callback for security_inode_init_security() for acquiring xattrs.
3223 */
3224 static int shmem_initxattrs(struct inode *inode,
3225 const struct xattr *xattr_array,
3226 void *fs_info)
3227 {
3228 struct shmem_inode_info *info = SHMEM_I(inode);
3229 const struct xattr *xattr;
3230 struct simple_xattr *new_xattr;
3231 size_t len;
3232
3233 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3234 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3235 if (!new_xattr)
3236 return -ENOMEM;
3237
3238 len = strlen(xattr->name) + 1;
3239 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3240 GFP_KERNEL);
3241 if (!new_xattr->name) {
3242 kvfree(new_xattr);
3243 return -ENOMEM;
3244 }
3245
3246 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3247 XATTR_SECURITY_PREFIX_LEN);
3248 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3249 xattr->name, len);
3250
3251 simple_xattr_list_add(&info->xattrs, new_xattr);
3252 }
3253
3254 return 0;
3255 }
3256
3257 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3258 struct dentry *unused, struct inode *inode,
3259 const char *name, void *buffer, size_t size)
3260 {
3261 struct shmem_inode_info *info = SHMEM_I(inode);
3262
3263 name = xattr_full_name(handler, name);
3264 return simple_xattr_get(&info->xattrs, name, buffer, size);
3265 }
3266
3267 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3268 struct dentry *unused, struct inode *inode,
3269 const char *name, const void *value,
3270 size_t size, int flags)
3271 {
3272 struct shmem_inode_info *info = SHMEM_I(inode);
3273
3274 name = xattr_full_name(handler, name);
3275 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3276 }
3277
3278 static const struct xattr_handler shmem_security_xattr_handler = {
3279 .prefix = XATTR_SECURITY_PREFIX,
3280 .get = shmem_xattr_handler_get,
3281 .set = shmem_xattr_handler_set,
3282 };
3283
3284 static const struct xattr_handler shmem_trusted_xattr_handler = {
3285 .prefix = XATTR_TRUSTED_PREFIX,
3286 .get = shmem_xattr_handler_get,
3287 .set = shmem_xattr_handler_set,
3288 };
3289
3290 static const struct xattr_handler *shmem_xattr_handlers[] = {
3291 #ifdef CONFIG_TMPFS_POSIX_ACL
3292 &posix_acl_access_xattr_handler,
3293 &posix_acl_default_xattr_handler,
3294 #endif
3295 &shmem_security_xattr_handler,
3296 &shmem_trusted_xattr_handler,
3297 NULL
3298 };
3299
3300 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3301 {
3302 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3303 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3304 }
3305 #endif /* CONFIG_TMPFS_XATTR */
3306
3307 static const struct inode_operations shmem_short_symlink_operations = {
3308 .get_link = simple_get_link,
3309 #ifdef CONFIG_TMPFS_XATTR
3310 .listxattr = shmem_listxattr,
3311 #endif
3312 };
3313
3314 static const struct inode_operations shmem_symlink_inode_operations = {
3315 .get_link = shmem_get_link,
3316 #ifdef CONFIG_TMPFS_XATTR
3317 .listxattr = shmem_listxattr,
3318 #endif
3319 };
3320
3321 static struct dentry *shmem_get_parent(struct dentry *child)
3322 {
3323 return ERR_PTR(-ESTALE);
3324 }
3325
3326 static int shmem_match(struct inode *ino, void *vfh)
3327 {
3328 __u32 *fh = vfh;
3329 __u64 inum = fh[2];
3330 inum = (inum << 32) | fh[1];
3331 return ino->i_ino == inum && fh[0] == ino->i_generation;
3332 }
3333
3334 /* Find any alias of inode, but prefer a hashed alias */
3335 static struct dentry *shmem_find_alias(struct inode *inode)
3336 {
3337 struct dentry *alias = d_find_alias(inode);
3338
3339 return alias ?: d_find_any_alias(inode);
3340 }
3341
3342
3343 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3344 struct fid *fid, int fh_len, int fh_type)
3345 {
3346 struct inode *inode;
3347 struct dentry *dentry = NULL;
3348 u64 inum;
3349
3350 if (fh_len < 3)
3351 return NULL;
3352
3353 inum = fid->raw[2];
3354 inum = (inum << 32) | fid->raw[1];
3355
3356 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3357 shmem_match, fid->raw);
3358 if (inode) {
3359 dentry = shmem_find_alias(inode);
3360 iput(inode);
3361 }
3362
3363 return dentry;
3364 }
3365
3366 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3367 struct inode *parent)
3368 {
3369 if (*len < 3) {
3370 *len = 3;
3371 return FILEID_INVALID;
3372 }
3373
3374 if (inode_unhashed(inode)) {
3375 /* Unfortunately insert_inode_hash is not idempotent,
3376 * so as we hash inodes here rather than at creation
3377 * time, we need a lock to ensure we only try
3378 * to do it once
3379 */
3380 static DEFINE_SPINLOCK(lock);
3381 spin_lock(&lock);
3382 if (inode_unhashed(inode))
3383 __insert_inode_hash(inode,
3384 inode->i_ino + inode->i_generation);
3385 spin_unlock(&lock);
3386 }
3387
3388 fh[0] = inode->i_generation;
3389 fh[1] = inode->i_ino;
3390 fh[2] = ((__u64)inode->i_ino) >> 32;
3391
3392 *len = 3;
3393 return 1;
3394 }
3395
3396 static const struct export_operations shmem_export_ops = {
3397 .get_parent = shmem_get_parent,
3398 .encode_fh = shmem_encode_fh,
3399 .fh_to_dentry = shmem_fh_to_dentry,
3400 };
3401
3402 enum shmem_param {
3403 Opt_gid,
3404 Opt_huge,
3405 Opt_mode,
3406 Opt_mpol,
3407 Opt_nr_blocks,
3408 Opt_nr_inodes,
3409 Opt_size,
3410 Opt_uid,
3411 Opt_inode32,
3412 Opt_inode64,
3413 };
3414
3415 static const struct constant_table shmem_param_enums_huge[] = {
3416 {"never", SHMEM_HUGE_NEVER },
3417 {"always", SHMEM_HUGE_ALWAYS },
3418 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3419 {"advise", SHMEM_HUGE_ADVISE },
3420 {}
3421 };
3422
3423 const struct fs_parameter_spec shmem_fs_parameters[] = {
3424 fsparam_u32 ("gid", Opt_gid),
3425 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3426 fsparam_u32oct("mode", Opt_mode),
3427 fsparam_string("mpol", Opt_mpol),
3428 fsparam_string("nr_blocks", Opt_nr_blocks),
3429 fsparam_string("nr_inodes", Opt_nr_inodes),
3430 fsparam_string("size", Opt_size),
3431 fsparam_u32 ("uid", Opt_uid),
3432 fsparam_flag ("inode32", Opt_inode32),
3433 fsparam_flag ("inode64", Opt_inode64),
3434 {}
3435 };
3436
3437 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3438 {
3439 struct shmem_options *ctx = fc->fs_private;
3440 struct fs_parse_result result;
3441 unsigned long long size;
3442 char *rest;
3443 int opt;
3444
3445 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3446 if (opt < 0)
3447 return opt;
3448
3449 switch (opt) {
3450 case Opt_size:
3451 size = memparse(param->string, &rest);
3452 if (*rest == '%') {
3453 size <<= PAGE_SHIFT;
3454 size *= totalram_pages();
3455 do_div(size, 100);
3456 rest++;
3457 }
3458 if (*rest)
3459 goto bad_value;
3460 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3461 ctx->seen |= SHMEM_SEEN_BLOCKS;
3462 break;
3463 case Opt_nr_blocks:
3464 ctx->blocks = memparse(param->string, &rest);
3465 if (*rest)
3466 goto bad_value;
3467 ctx->seen |= SHMEM_SEEN_BLOCKS;
3468 break;
3469 case Opt_nr_inodes:
3470 ctx->inodes = memparse(param->string, &rest);
3471 if (*rest)
3472 goto bad_value;
3473 ctx->seen |= SHMEM_SEEN_INODES;
3474 break;
3475 case Opt_mode:
3476 ctx->mode = result.uint_32 & 07777;
3477 break;
3478 case Opt_uid:
3479 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3480 if (!uid_valid(ctx->uid))
3481 goto bad_value;
3482 break;
3483 case Opt_gid:
3484 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3485 if (!gid_valid(ctx->gid))
3486 goto bad_value;
3487 break;
3488 case Opt_huge:
3489 ctx->huge = result.uint_32;
3490 if (ctx->huge != SHMEM_HUGE_NEVER &&
3491 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3492 has_transparent_hugepage()))
3493 goto unsupported_parameter;
3494 ctx->seen |= SHMEM_SEEN_HUGE;
3495 break;
3496 case Opt_mpol:
3497 if (IS_ENABLED(CONFIG_NUMA)) {
3498 mpol_put(ctx->mpol);
3499 ctx->mpol = NULL;
3500 if (mpol_parse_str(param->string, &ctx->mpol))
3501 goto bad_value;
3502 break;
3503 }
3504 goto unsupported_parameter;
3505 case Opt_inode32:
3506 ctx->full_inums = false;
3507 ctx->seen |= SHMEM_SEEN_INUMS;
3508 break;
3509 case Opt_inode64:
3510 if (sizeof(ino_t) < 8) {
3511 return invalfc(fc,
3512 "Cannot use inode64 with <64bit inums in kernel\n");
3513 }
3514 ctx->full_inums = true;
3515 ctx->seen |= SHMEM_SEEN_INUMS;
3516 break;
3517 }
3518 return 0;
3519
3520 unsupported_parameter:
3521 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3522 bad_value:
3523 return invalfc(fc, "Bad value for '%s'", param->key);
3524 }
3525
3526 static int shmem_parse_options(struct fs_context *fc, void *data)
3527 {
3528 char *options = data;
3529
3530 if (options) {
3531 int err = security_sb_eat_lsm_opts(options, &fc->security);
3532 if (err)
3533 return err;
3534 }
3535
3536 while (options != NULL) {
3537 char *this_char = options;
3538 for (;;) {
3539 /*
3540 * NUL-terminate this option: unfortunately,
3541 * mount options form a comma-separated list,
3542 * but mpol's nodelist may also contain commas.
3543 */
3544 options = strchr(options, ',');
3545 if (options == NULL)
3546 break;
3547 options++;
3548 if (!isdigit(*options)) {
3549 options[-1] = '\0';
3550 break;
3551 }
3552 }
3553 if (*this_char) {
3554 char *value = strchr(this_char,'=');
3555 size_t len = 0;
3556 int err;
3557
3558 if (value) {
3559 *value++ = '\0';
3560 len = strlen(value);
3561 }
3562 err = vfs_parse_fs_string(fc, this_char, value, len);
3563 if (err < 0)
3564 return err;
3565 }
3566 }
3567 return 0;
3568 }
3569
3570 /*
3571 * Reconfigure a shmem filesystem.
3572 *
3573 * Note that we disallow change from limited->unlimited blocks/inodes while any
3574 * are in use; but we must separately disallow unlimited->limited, because in
3575 * that case we have no record of how much is already in use.
3576 */
3577 static int shmem_reconfigure(struct fs_context *fc)
3578 {
3579 struct shmem_options *ctx = fc->fs_private;
3580 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3581 unsigned long inodes;
3582 const char *err;
3583
3584 spin_lock(&sbinfo->stat_lock);
3585 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3586 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3587 if (!sbinfo->max_blocks) {
3588 err = "Cannot retroactively limit size";
3589 goto out;
3590 }
3591 if (percpu_counter_compare(&sbinfo->used_blocks,
3592 ctx->blocks) > 0) {
3593 err = "Too small a size for current use";
3594 goto out;
3595 }
3596 }
3597 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3598 if (!sbinfo->max_inodes) {
3599 err = "Cannot retroactively limit inodes";
3600 goto out;
3601 }
3602 if (ctx->inodes < inodes) {
3603 err = "Too few inodes for current use";
3604 goto out;
3605 }
3606 }
3607
3608 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3609 sbinfo->next_ino > UINT_MAX) {
3610 err = "Current inum too high to switch to 32-bit inums";
3611 goto out;
3612 }
3613
3614 if (ctx->seen & SHMEM_SEEN_HUGE)
3615 sbinfo->huge = ctx->huge;
3616 if (ctx->seen & SHMEM_SEEN_INUMS)
3617 sbinfo->full_inums = ctx->full_inums;
3618 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3619 sbinfo->max_blocks = ctx->blocks;
3620 if (ctx->seen & SHMEM_SEEN_INODES) {
3621 sbinfo->max_inodes = ctx->inodes;
3622 sbinfo->free_inodes = ctx->inodes - inodes;
3623 }
3624
3625 /*
3626 * Preserve previous mempolicy unless mpol remount option was specified.
3627 */
3628 if (ctx->mpol) {
3629 mpol_put(sbinfo->mpol);
3630 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3631 ctx->mpol = NULL;
3632 }
3633 spin_unlock(&sbinfo->stat_lock);
3634 return 0;
3635 out:
3636 spin_unlock(&sbinfo->stat_lock);
3637 return invalfc(fc, "%s", err);
3638 }
3639
3640 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3641 {
3642 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3643
3644 if (sbinfo->max_blocks != shmem_default_max_blocks())
3645 seq_printf(seq, ",size=%luk",
3646 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3647 if (sbinfo->max_inodes != shmem_default_max_inodes())
3648 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3649 if (sbinfo->mode != (0777 | S_ISVTX))
3650 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3651 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3652 seq_printf(seq, ",uid=%u",
3653 from_kuid_munged(&init_user_ns, sbinfo->uid));
3654 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3655 seq_printf(seq, ",gid=%u",
3656 from_kgid_munged(&init_user_ns, sbinfo->gid));
3657
3658 /*
3659 * Showing inode{64,32} might be useful even if it's the system default,
3660 * since then people don't have to resort to checking both here and
3661 * /proc/config.gz to confirm 64-bit inums were successfully applied
3662 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3663 *
3664 * We hide it when inode64 isn't the default and we are using 32-bit
3665 * inodes, since that probably just means the feature isn't even under
3666 * consideration.
3667 *
3668 * As such:
3669 *
3670 * +-----------------+-----------------+
3671 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3672 * +------------------+-----------------+-----------------+
3673 * | full_inums=true | show | show |
3674 * | full_inums=false | show | hide |
3675 * +------------------+-----------------+-----------------+
3676 *
3677 */
3678 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3679 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3681 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3682 if (sbinfo->huge)
3683 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3684 #endif
3685 shmem_show_mpol(seq, sbinfo->mpol);
3686 return 0;
3687 }
3688
3689 #endif /* CONFIG_TMPFS */
3690
3691 static void shmem_put_super(struct super_block *sb)
3692 {
3693 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3694
3695 free_percpu(sbinfo->ino_batch);
3696 percpu_counter_destroy(&sbinfo->used_blocks);
3697 mpol_put(sbinfo->mpol);
3698 kfree(sbinfo);
3699 sb->s_fs_info = NULL;
3700 }
3701
3702 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3703 {
3704 struct shmem_options *ctx = fc->fs_private;
3705 struct inode *inode;
3706 struct shmem_sb_info *sbinfo;
3707 int err = -ENOMEM;
3708
3709 /* Round up to L1_CACHE_BYTES to resist false sharing */
3710 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3711 L1_CACHE_BYTES), GFP_KERNEL);
3712 if (!sbinfo)
3713 return -ENOMEM;
3714
3715 sb->s_fs_info = sbinfo;
3716
3717 #ifdef CONFIG_TMPFS
3718 /*
3719 * Per default we only allow half of the physical ram per
3720 * tmpfs instance, limiting inodes to one per page of lowmem;
3721 * but the internal instance is left unlimited.
3722 */
3723 if (!(sb->s_flags & SB_KERNMOUNT)) {
3724 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3725 ctx->blocks = shmem_default_max_blocks();
3726 if (!(ctx->seen & SHMEM_SEEN_INODES))
3727 ctx->inodes = shmem_default_max_inodes();
3728 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3729 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3730 } else {
3731 sb->s_flags |= SB_NOUSER;
3732 }
3733 sb->s_export_op = &shmem_export_ops;
3734 sb->s_flags |= SB_NOSEC;
3735 #else
3736 sb->s_flags |= SB_NOUSER;
3737 #endif
3738 sbinfo->max_blocks = ctx->blocks;
3739 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3740 if (sb->s_flags & SB_KERNMOUNT) {
3741 sbinfo->ino_batch = alloc_percpu(ino_t);
3742 if (!sbinfo->ino_batch)
3743 goto failed;
3744 }
3745 sbinfo->uid = ctx->uid;
3746 sbinfo->gid = ctx->gid;
3747 sbinfo->full_inums = ctx->full_inums;
3748 sbinfo->mode = ctx->mode;
3749 sbinfo->huge = ctx->huge;
3750 sbinfo->mpol = ctx->mpol;
3751 ctx->mpol = NULL;
3752
3753 spin_lock_init(&sbinfo->stat_lock);
3754 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3755 goto failed;
3756 spin_lock_init(&sbinfo->shrinklist_lock);
3757 INIT_LIST_HEAD(&sbinfo->shrinklist);
3758
3759 sb->s_maxbytes = MAX_LFS_FILESIZE;
3760 sb->s_blocksize = PAGE_SIZE;
3761 sb->s_blocksize_bits = PAGE_SHIFT;
3762 sb->s_magic = TMPFS_MAGIC;
3763 sb->s_op = &shmem_ops;
3764 sb->s_time_gran = 1;
3765 #ifdef CONFIG_TMPFS_XATTR
3766 sb->s_xattr = shmem_xattr_handlers;
3767 #endif
3768 #ifdef CONFIG_TMPFS_POSIX_ACL
3769 sb->s_flags |= SB_POSIXACL;
3770 #endif
3771 uuid_gen(&sb->s_uuid);
3772
3773 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3774 if (!inode)
3775 goto failed;
3776 inode->i_uid = sbinfo->uid;
3777 inode->i_gid = sbinfo->gid;
3778 sb->s_root = d_make_root(inode);
3779 if (!sb->s_root)
3780 goto failed;
3781 return 0;
3782
3783 failed:
3784 shmem_put_super(sb);
3785 return err;
3786 }
3787
3788 static int shmem_get_tree(struct fs_context *fc)
3789 {
3790 return get_tree_nodev(fc, shmem_fill_super);
3791 }
3792
3793 static void shmem_free_fc(struct fs_context *fc)
3794 {
3795 struct shmem_options *ctx = fc->fs_private;
3796
3797 if (ctx) {
3798 mpol_put(ctx->mpol);
3799 kfree(ctx);
3800 }
3801 }
3802
3803 static const struct fs_context_operations shmem_fs_context_ops = {
3804 .free = shmem_free_fc,
3805 .get_tree = shmem_get_tree,
3806 #ifdef CONFIG_TMPFS
3807 .parse_monolithic = shmem_parse_options,
3808 .parse_param = shmem_parse_one,
3809 .reconfigure = shmem_reconfigure,
3810 #endif
3811 };
3812
3813 static struct kmem_cache *shmem_inode_cachep;
3814
3815 static struct inode *shmem_alloc_inode(struct super_block *sb)
3816 {
3817 struct shmem_inode_info *info;
3818 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3819 if (!info)
3820 return NULL;
3821 return &info->vfs_inode;
3822 }
3823
3824 static void shmem_free_in_core_inode(struct inode *inode)
3825 {
3826 if (S_ISLNK(inode->i_mode))
3827 kfree(inode->i_link);
3828 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3829 }
3830
3831 static void shmem_destroy_inode(struct inode *inode)
3832 {
3833 if (S_ISREG(inode->i_mode))
3834 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3835 }
3836
3837 static void shmem_init_inode(void *foo)
3838 {
3839 struct shmem_inode_info *info = foo;
3840 inode_init_once(&info->vfs_inode);
3841 }
3842
3843 static void shmem_init_inodecache(void)
3844 {
3845 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3846 sizeof(struct shmem_inode_info),
3847 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3848 }
3849
3850 static void shmem_destroy_inodecache(void)
3851 {
3852 kmem_cache_destroy(shmem_inode_cachep);
3853 }
3854
3855 static const struct address_space_operations shmem_aops = {
3856 .writepage = shmem_writepage,
3857 .set_page_dirty = __set_page_dirty_no_writeback,
3858 #ifdef CONFIG_TMPFS
3859 .write_begin = shmem_write_begin,
3860 .write_end = shmem_write_end,
3861 #endif
3862 #ifdef CONFIG_MIGRATION
3863 .migratepage = migrate_page,
3864 #endif
3865 .error_remove_page = generic_error_remove_page,
3866 };
3867
3868 static const struct file_operations shmem_file_operations = {
3869 .mmap = shmem_mmap,
3870 .get_unmapped_area = shmem_get_unmapped_area,
3871 #ifdef CONFIG_TMPFS
3872 .llseek = shmem_file_llseek,
3873 .read_iter = shmem_file_read_iter,
3874 .write_iter = generic_file_write_iter,
3875 .fsync = noop_fsync,
3876 .splice_read = generic_file_splice_read,
3877 .splice_write = iter_file_splice_write,
3878 .fallocate = shmem_fallocate,
3879 #endif
3880 };
3881
3882 static const struct inode_operations shmem_inode_operations = {
3883 .getattr = shmem_getattr,
3884 .setattr = shmem_setattr,
3885 #ifdef CONFIG_TMPFS_XATTR
3886 .listxattr = shmem_listxattr,
3887 .set_acl = simple_set_acl,
3888 #endif
3889 };
3890
3891 static const struct inode_operations shmem_dir_inode_operations = {
3892 #ifdef CONFIG_TMPFS
3893 .create = shmem_create,
3894 .lookup = simple_lookup,
3895 .link = shmem_link,
3896 .unlink = shmem_unlink,
3897 .symlink = shmem_symlink,
3898 .mkdir = shmem_mkdir,
3899 .rmdir = shmem_rmdir,
3900 .mknod = shmem_mknod,
3901 .rename = shmem_rename2,
3902 .tmpfile = shmem_tmpfile,
3903 #endif
3904 #ifdef CONFIG_TMPFS_XATTR
3905 .listxattr = shmem_listxattr,
3906 #endif
3907 #ifdef CONFIG_TMPFS_POSIX_ACL
3908 .setattr = shmem_setattr,
3909 .set_acl = simple_set_acl,
3910 #endif
3911 };
3912
3913 static const struct inode_operations shmem_special_inode_operations = {
3914 #ifdef CONFIG_TMPFS_XATTR
3915 .listxattr = shmem_listxattr,
3916 #endif
3917 #ifdef CONFIG_TMPFS_POSIX_ACL
3918 .setattr = shmem_setattr,
3919 .set_acl = simple_set_acl,
3920 #endif
3921 };
3922
3923 static const struct super_operations shmem_ops = {
3924 .alloc_inode = shmem_alloc_inode,
3925 .free_inode = shmem_free_in_core_inode,
3926 .destroy_inode = shmem_destroy_inode,
3927 #ifdef CONFIG_TMPFS
3928 .statfs = shmem_statfs,
3929 .show_options = shmem_show_options,
3930 #endif
3931 .evict_inode = shmem_evict_inode,
3932 .drop_inode = generic_delete_inode,
3933 .put_super = shmem_put_super,
3934 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3935 .nr_cached_objects = shmem_unused_huge_count,
3936 .free_cached_objects = shmem_unused_huge_scan,
3937 #endif
3938 };
3939
3940 static const struct vm_operations_struct shmem_vm_ops = {
3941 .fault = shmem_fault,
3942 .map_pages = filemap_map_pages,
3943 #ifdef CONFIG_NUMA
3944 .set_policy = shmem_set_policy,
3945 .get_policy = shmem_get_policy,
3946 #endif
3947 };
3948
3949 int shmem_init_fs_context(struct fs_context *fc)
3950 {
3951 struct shmem_options *ctx;
3952
3953 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3954 if (!ctx)
3955 return -ENOMEM;
3956
3957 ctx->mode = 0777 | S_ISVTX;
3958 ctx->uid = current_fsuid();
3959 ctx->gid = current_fsgid();
3960
3961 fc->fs_private = ctx;
3962 fc->ops = &shmem_fs_context_ops;
3963 return 0;
3964 }
3965
3966 static struct file_system_type shmem_fs_type = {
3967 .owner = THIS_MODULE,
3968 .name = "tmpfs",
3969 .init_fs_context = shmem_init_fs_context,
3970 #ifdef CONFIG_TMPFS
3971 .parameters = shmem_fs_parameters,
3972 #endif
3973 .kill_sb = kill_litter_super,
3974 .fs_flags = FS_USERNS_MOUNT,
3975 };
3976
3977 int __init shmem_init(void)
3978 {
3979 int error;
3980
3981 shmem_init_inodecache();
3982
3983 error = register_filesystem(&shmem_fs_type);
3984 if (error) {
3985 pr_err("Could not register tmpfs\n");
3986 goto out2;
3987 }
3988
3989 shm_mnt = kern_mount(&shmem_fs_type);
3990 if (IS_ERR(shm_mnt)) {
3991 error = PTR_ERR(shm_mnt);
3992 pr_err("Could not kern_mount tmpfs\n");
3993 goto out1;
3994 }
3995
3996 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3997 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3998 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3999 else
4000 shmem_huge = 0; /* just in case it was patched */
4001 #endif
4002 return 0;
4003
4004 out1:
4005 unregister_filesystem(&shmem_fs_type);
4006 out2:
4007 shmem_destroy_inodecache();
4008 shm_mnt = ERR_PTR(error);
4009 return error;
4010 }
4011
4012 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4013 static ssize_t shmem_enabled_show(struct kobject *kobj,
4014 struct kobj_attribute *attr, char *buf)
4015 {
4016 static const int values[] = {
4017 SHMEM_HUGE_ALWAYS,
4018 SHMEM_HUGE_WITHIN_SIZE,
4019 SHMEM_HUGE_ADVISE,
4020 SHMEM_HUGE_NEVER,
4021 SHMEM_HUGE_DENY,
4022 SHMEM_HUGE_FORCE,
4023 };
4024 int i, count;
4025
4026 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4027 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4028
4029 count += sprintf(buf + count, fmt,
4030 shmem_format_huge(values[i]));
4031 }
4032 buf[count - 1] = '\n';
4033 return count;
4034 }
4035
4036 static ssize_t shmem_enabled_store(struct kobject *kobj,
4037 struct kobj_attribute *attr, const char *buf, size_t count)
4038 {
4039 char tmp[16];
4040 int huge;
4041
4042 if (count + 1 > sizeof(tmp))
4043 return -EINVAL;
4044 memcpy(tmp, buf, count);
4045 tmp[count] = '\0';
4046 if (count && tmp[count - 1] == '\n')
4047 tmp[count - 1] = '\0';
4048
4049 huge = shmem_parse_huge(tmp);
4050 if (huge == -EINVAL)
4051 return -EINVAL;
4052 if (!has_transparent_hugepage() &&
4053 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4054 return -EINVAL;
4055
4056 shmem_huge = huge;
4057 if (shmem_huge > SHMEM_HUGE_DENY)
4058 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4059 return count;
4060 }
4061
4062 struct kobj_attribute shmem_enabled_attr =
4063 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4064 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4065
4066 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4067 bool shmem_huge_enabled(struct vm_area_struct *vma)
4068 {
4069 struct inode *inode = file_inode(vma->vm_file);
4070 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4071 loff_t i_size;
4072 pgoff_t off;
4073
4074 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4075 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4076 return false;
4077 if (shmem_huge == SHMEM_HUGE_FORCE)
4078 return true;
4079 if (shmem_huge == SHMEM_HUGE_DENY)
4080 return false;
4081 switch (sbinfo->huge) {
4082 case SHMEM_HUGE_NEVER:
4083 return false;
4084 case SHMEM_HUGE_ALWAYS:
4085 return true;
4086 case SHMEM_HUGE_WITHIN_SIZE:
4087 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4088 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4089 if (i_size >= HPAGE_PMD_SIZE &&
4090 i_size >> PAGE_SHIFT >= off)
4091 return true;
4092 fallthrough;
4093 case SHMEM_HUGE_ADVISE:
4094 /* TODO: implement fadvise() hints */
4095 return (vma->vm_flags & VM_HUGEPAGE);
4096 default:
4097 VM_BUG_ON(1);
4098 return false;
4099 }
4100 }
4101 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4102
4103 #else /* !CONFIG_SHMEM */
4104
4105 /*
4106 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4107 *
4108 * This is intended for small system where the benefits of the full
4109 * shmem code (swap-backed and resource-limited) are outweighed by
4110 * their complexity. On systems without swap this code should be
4111 * effectively equivalent, but much lighter weight.
4112 */
4113
4114 static struct file_system_type shmem_fs_type = {
4115 .name = "tmpfs",
4116 .init_fs_context = ramfs_init_fs_context,
4117 .parameters = ramfs_fs_parameters,
4118 .kill_sb = kill_litter_super,
4119 .fs_flags = FS_USERNS_MOUNT,
4120 };
4121
4122 int __init shmem_init(void)
4123 {
4124 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4125
4126 shm_mnt = kern_mount(&shmem_fs_type);
4127 BUG_ON(IS_ERR(shm_mnt));
4128
4129 return 0;
4130 }
4131
4132 int shmem_unuse(unsigned int type, bool frontswap,
4133 unsigned long *fs_pages_to_unuse)
4134 {
4135 return 0;
4136 }
4137
4138 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4139 {
4140 return 0;
4141 }
4142
4143 void shmem_unlock_mapping(struct address_space *mapping)
4144 {
4145 }
4146
4147 #ifdef CONFIG_MMU
4148 unsigned long shmem_get_unmapped_area(struct file *file,
4149 unsigned long addr, unsigned long len,
4150 unsigned long pgoff, unsigned long flags)
4151 {
4152 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4153 }
4154 #endif
4155
4156 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4157 {
4158 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4159 }
4160 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4161
4162 #define shmem_vm_ops generic_file_vm_ops
4163 #define shmem_file_operations ramfs_file_operations
4164 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4165 #define shmem_acct_size(flags, size) 0
4166 #define shmem_unacct_size(flags, size) do {} while (0)
4167
4168 #endif /* CONFIG_SHMEM */
4169
4170 /* common code */
4171
4172 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4173 unsigned long flags, unsigned int i_flags)
4174 {
4175 struct inode *inode;
4176 struct file *res;
4177
4178 if (IS_ERR(mnt))
4179 return ERR_CAST(mnt);
4180
4181 if (size < 0 || size > MAX_LFS_FILESIZE)
4182 return ERR_PTR(-EINVAL);
4183
4184 if (shmem_acct_size(flags, size))
4185 return ERR_PTR(-ENOMEM);
4186
4187 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4188 flags);
4189 if (unlikely(!inode)) {
4190 shmem_unacct_size(flags, size);
4191 return ERR_PTR(-ENOSPC);
4192 }
4193 inode->i_flags |= i_flags;
4194 inode->i_size = size;
4195 clear_nlink(inode); /* It is unlinked */
4196 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4197 if (!IS_ERR(res))
4198 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4199 &shmem_file_operations);
4200 if (IS_ERR(res))
4201 iput(inode);
4202 return res;
4203 }
4204
4205 /**
4206 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4207 * kernel internal. There will be NO LSM permission checks against the
4208 * underlying inode. So users of this interface must do LSM checks at a
4209 * higher layer. The users are the big_key and shm implementations. LSM
4210 * checks are provided at the key or shm level rather than the inode.
4211 * @name: name for dentry (to be seen in /proc/<pid>/maps
4212 * @size: size to be set for the file
4213 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4214 */
4215 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4216 {
4217 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4218 }
4219
4220 /**
4221 * shmem_file_setup - get an unlinked file living in tmpfs
4222 * @name: name for dentry (to be seen in /proc/<pid>/maps
4223 * @size: size to be set for the file
4224 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4225 */
4226 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4227 {
4228 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4229 }
4230 EXPORT_SYMBOL_GPL(shmem_file_setup);
4231
4232 /**
4233 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4234 * @mnt: the tmpfs mount where the file will be created
4235 * @name: name for dentry (to be seen in /proc/<pid>/maps
4236 * @size: size to be set for the file
4237 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4238 */
4239 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4240 loff_t size, unsigned long flags)
4241 {
4242 return __shmem_file_setup(mnt, name, size, flags, 0);
4243 }
4244 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4245
4246 /**
4247 * shmem_zero_setup - setup a shared anonymous mapping
4248 * @vma: the vma to be mmapped is prepared by do_mmap
4249 */
4250 int shmem_zero_setup(struct vm_area_struct *vma)
4251 {
4252 struct file *file;
4253 loff_t size = vma->vm_end - vma->vm_start;
4254
4255 /*
4256 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4257 * between XFS directory reading and selinux: since this file is only
4258 * accessible to the user through its mapping, use S_PRIVATE flag to
4259 * bypass file security, in the same way as shmem_kernel_file_setup().
4260 */
4261 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4262 if (IS_ERR(file))
4263 return PTR_ERR(file);
4264
4265 if (vma->vm_file)
4266 fput(vma->vm_file);
4267 vma->vm_file = file;
4268 vma->vm_ops = &shmem_vm_ops;
4269
4270 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4271 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4272 (vma->vm_end & HPAGE_PMD_MASK)) {
4273 khugepaged_enter(vma, vma->vm_flags);
4274 }
4275
4276 return 0;
4277 }
4278
4279 /**
4280 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4281 * @mapping: the page's address_space
4282 * @index: the page index
4283 * @gfp: the page allocator flags to use if allocating
4284 *
4285 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4286 * with any new page allocations done using the specified allocation flags.
4287 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4288 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4289 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4290 *
4291 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4292 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4293 */
4294 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4295 pgoff_t index, gfp_t gfp)
4296 {
4297 #ifdef CONFIG_SHMEM
4298 struct inode *inode = mapping->host;
4299 struct page *page;
4300 int error;
4301
4302 BUG_ON(mapping->a_ops != &shmem_aops);
4303 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4304 gfp, NULL, NULL, NULL);
4305 if (error)
4306 page = ERR_PTR(error);
4307 else
4308 unlock_page(page);
4309 return page;
4310 #else
4311 /*
4312 * The tiny !SHMEM case uses ramfs without swap
4313 */
4314 return read_cache_page_gfp(mapping, index, gfp);
4315 #endif
4316 }
4317 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);