]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/shmem.c
Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[mirror_ubuntu-artful-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37
38 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
39
40 static struct vfsmount *shm_mnt;
41
42 #ifdef CONFIG_SHMEM
43 /*
44 * This virtual memory filesystem is heavily based on the ramfs. It
45 * extends ramfs by the ability to use swap and honor resource limits
46 * which makes it a completely usable filesystem.
47 */
48
49 #include <linux/xattr.h>
50 #include <linux/exportfs.h>
51 #include <linux/posix_acl.h>
52 #include <linux/posix_acl_xattr.h>
53 #include <linux/mman.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <linux/backing-dev.h>
57 #include <linux/shmem_fs.h>
58 #include <linux/writeback.h>
59 #include <linux/blkdev.h>
60 #include <linux/pagevec.h>
61 #include <linux/percpu_counter.h>
62 #include <linux/falloc.h>
63 #include <linux/splice.h>
64 #include <linux/security.h>
65 #include <linux/swapops.h>
66 #include <linux/mempolicy.h>
67 #include <linux/namei.h>
68 #include <linux/ctype.h>
69 #include <linux/migrate.h>
70 #include <linux/highmem.h>
71 #include <linux/seq_file.h>
72 #include <linux/magic.h>
73 #include <linux/syscalls.h>
74 #include <linux/fcntl.h>
75 #include <uapi/linux/memfd.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/rmap.h>
78 #include <linux/uuid.h>
79
80 #include <linux/uaccess.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
87
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93
94 /*
95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96 * inode->i_private (with i_mutex making sure that it has only one user at
97 * a time): we would prefer not to enlarge the shmem inode just for that.
98 */
99 struct shmem_falloc {
100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 pgoff_t start; /* start of range currently being fallocated */
102 pgoff_t next; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
105 };
106
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110 return totalram_pages / 2;
111 }
112
113 static unsigned long shmem_default_max_inodes(void)
114 {
115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp,
124 gfp_t gfp, struct vm_area_struct *vma,
125 struct vm_fault *vmf, int *fault_type);
126
127 int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp)
129 {
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 return sb->s_fs_info;
137 }
138
139 /*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159 {
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168 }
169
170 /*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow large sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176 static inline int shmem_acct_block(unsigned long flags, long pages)
177 {
178 if (!(flags & VM_NORESERVE))
179 return 0;
180
181 return security_vm_enough_memory_mm(current->mm,
182 pages * VM_ACCT(PAGE_SIZE));
183 }
184
185 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
186 {
187 if (flags & VM_NORESERVE)
188 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
189 }
190
191 static const struct super_operations shmem_ops;
192 static const struct address_space_operations shmem_aops;
193 static const struct file_operations shmem_file_operations;
194 static const struct inode_operations shmem_inode_operations;
195 static const struct inode_operations shmem_dir_inode_operations;
196 static const struct inode_operations shmem_special_inode_operations;
197 static const struct vm_operations_struct shmem_vm_ops;
198 static struct file_system_type shmem_fs_type;
199
200 bool vma_is_shmem(struct vm_area_struct *vma)
201 {
202 return vma->vm_ops == &shmem_vm_ops;
203 }
204
205 static LIST_HEAD(shmem_swaplist);
206 static DEFINE_MUTEX(shmem_swaplist_mutex);
207
208 static int shmem_reserve_inode(struct super_block *sb)
209 {
210 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
211 if (sbinfo->max_inodes) {
212 spin_lock(&sbinfo->stat_lock);
213 if (!sbinfo->free_inodes) {
214 spin_unlock(&sbinfo->stat_lock);
215 return -ENOSPC;
216 }
217 sbinfo->free_inodes--;
218 spin_unlock(&sbinfo->stat_lock);
219 }
220 return 0;
221 }
222
223 static void shmem_free_inode(struct super_block *sb)
224 {
225 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
226 if (sbinfo->max_inodes) {
227 spin_lock(&sbinfo->stat_lock);
228 sbinfo->free_inodes++;
229 spin_unlock(&sbinfo->stat_lock);
230 }
231 }
232
233 /**
234 * shmem_recalc_inode - recalculate the block usage of an inode
235 * @inode: inode to recalc
236 *
237 * We have to calculate the free blocks since the mm can drop
238 * undirtied hole pages behind our back.
239 *
240 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
241 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
242 *
243 * It has to be called with the spinlock held.
244 */
245 static void shmem_recalc_inode(struct inode *inode)
246 {
247 struct shmem_inode_info *info = SHMEM_I(inode);
248 long freed;
249
250 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
251 if (freed > 0) {
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 if (sbinfo->max_blocks)
254 percpu_counter_add(&sbinfo->used_blocks, -freed);
255 info->alloced -= freed;
256 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
257 shmem_unacct_blocks(info->flags, freed);
258 }
259 }
260
261 bool shmem_charge(struct inode *inode, long pages)
262 {
263 struct shmem_inode_info *info = SHMEM_I(inode);
264 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
265 unsigned long flags;
266
267 if (shmem_acct_block(info->flags, pages))
268 return false;
269 spin_lock_irqsave(&info->lock, flags);
270 info->alloced += pages;
271 inode->i_blocks += pages * BLOCKS_PER_PAGE;
272 shmem_recalc_inode(inode);
273 spin_unlock_irqrestore(&info->lock, flags);
274 inode->i_mapping->nrpages += pages;
275
276 if (!sbinfo->max_blocks)
277 return true;
278 if (percpu_counter_compare(&sbinfo->used_blocks,
279 sbinfo->max_blocks - pages) > 0) {
280 inode->i_mapping->nrpages -= pages;
281 spin_lock_irqsave(&info->lock, flags);
282 info->alloced -= pages;
283 shmem_recalc_inode(inode);
284 spin_unlock_irqrestore(&info->lock, flags);
285 shmem_unacct_blocks(info->flags, pages);
286 return false;
287 }
288 percpu_counter_add(&sbinfo->used_blocks, pages);
289 return true;
290 }
291
292 void shmem_uncharge(struct inode *inode, long pages)
293 {
294 struct shmem_inode_info *info = SHMEM_I(inode);
295 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
296 unsigned long flags;
297
298 spin_lock_irqsave(&info->lock, flags);
299 info->alloced -= pages;
300 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
301 shmem_recalc_inode(inode);
302 spin_unlock_irqrestore(&info->lock, flags);
303
304 if (sbinfo->max_blocks)
305 percpu_counter_sub(&sbinfo->used_blocks, pages);
306 shmem_unacct_blocks(info->flags, pages);
307 }
308
309 /*
310 * Replace item expected in radix tree by a new item, while holding tree lock.
311 */
312 static int shmem_radix_tree_replace(struct address_space *mapping,
313 pgoff_t index, void *expected, void *replacement)
314 {
315 struct radix_tree_node *node;
316 void **pslot;
317 void *item;
318
319 VM_BUG_ON(!expected);
320 VM_BUG_ON(!replacement);
321 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
322 if (!item)
323 return -ENOENT;
324 if (item != expected)
325 return -ENOENT;
326 __radix_tree_replace(&mapping->page_tree, node, pslot,
327 replacement, NULL, NULL);
328 return 0;
329 }
330
331 /*
332 * Sometimes, before we decide whether to proceed or to fail, we must check
333 * that an entry was not already brought back from swap by a racing thread.
334 *
335 * Checking page is not enough: by the time a SwapCache page is locked, it
336 * might be reused, and again be SwapCache, using the same swap as before.
337 */
338 static bool shmem_confirm_swap(struct address_space *mapping,
339 pgoff_t index, swp_entry_t swap)
340 {
341 void *item;
342
343 rcu_read_lock();
344 item = radix_tree_lookup(&mapping->page_tree, index);
345 rcu_read_unlock();
346 return item == swp_to_radix_entry(swap);
347 }
348
349 /*
350 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
351 *
352 * SHMEM_HUGE_NEVER:
353 * disables huge pages for the mount;
354 * SHMEM_HUGE_ALWAYS:
355 * enables huge pages for the mount;
356 * SHMEM_HUGE_WITHIN_SIZE:
357 * only allocate huge pages if the page will be fully within i_size,
358 * also respect fadvise()/madvise() hints;
359 * SHMEM_HUGE_ADVISE:
360 * only allocate huge pages if requested with fadvise()/madvise();
361 */
362
363 #define SHMEM_HUGE_NEVER 0
364 #define SHMEM_HUGE_ALWAYS 1
365 #define SHMEM_HUGE_WITHIN_SIZE 2
366 #define SHMEM_HUGE_ADVISE 3
367
368 /*
369 * Special values.
370 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
371 *
372 * SHMEM_HUGE_DENY:
373 * disables huge on shm_mnt and all mounts, for emergency use;
374 * SHMEM_HUGE_FORCE:
375 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
376 *
377 */
378 #define SHMEM_HUGE_DENY (-1)
379 #define SHMEM_HUGE_FORCE (-2)
380
381 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
382 /* ifdef here to avoid bloating shmem.o when not necessary */
383
384 int shmem_huge __read_mostly;
385
386 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
387 static int shmem_parse_huge(const char *str)
388 {
389 if (!strcmp(str, "never"))
390 return SHMEM_HUGE_NEVER;
391 if (!strcmp(str, "always"))
392 return SHMEM_HUGE_ALWAYS;
393 if (!strcmp(str, "within_size"))
394 return SHMEM_HUGE_WITHIN_SIZE;
395 if (!strcmp(str, "advise"))
396 return SHMEM_HUGE_ADVISE;
397 if (!strcmp(str, "deny"))
398 return SHMEM_HUGE_DENY;
399 if (!strcmp(str, "force"))
400 return SHMEM_HUGE_FORCE;
401 return -EINVAL;
402 }
403
404 static const char *shmem_format_huge(int huge)
405 {
406 switch (huge) {
407 case SHMEM_HUGE_NEVER:
408 return "never";
409 case SHMEM_HUGE_ALWAYS:
410 return "always";
411 case SHMEM_HUGE_WITHIN_SIZE:
412 return "within_size";
413 case SHMEM_HUGE_ADVISE:
414 return "advise";
415 case SHMEM_HUGE_DENY:
416 return "deny";
417 case SHMEM_HUGE_FORCE:
418 return "force";
419 default:
420 VM_BUG_ON(1);
421 return "bad_val";
422 }
423 }
424 #endif
425
426 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
427 struct shrink_control *sc, unsigned long nr_to_split)
428 {
429 LIST_HEAD(list), *pos, *next;
430 LIST_HEAD(to_remove);
431 struct inode *inode;
432 struct shmem_inode_info *info;
433 struct page *page;
434 unsigned long batch = sc ? sc->nr_to_scan : 128;
435 int removed = 0, split = 0;
436
437 if (list_empty(&sbinfo->shrinklist))
438 return SHRINK_STOP;
439
440 spin_lock(&sbinfo->shrinklist_lock);
441 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
442 info = list_entry(pos, struct shmem_inode_info, shrinklist);
443
444 /* pin the inode */
445 inode = igrab(&info->vfs_inode);
446
447 /* inode is about to be evicted */
448 if (!inode) {
449 list_del_init(&info->shrinklist);
450 removed++;
451 goto next;
452 }
453
454 /* Check if there's anything to gain */
455 if (round_up(inode->i_size, PAGE_SIZE) ==
456 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
457 list_move(&info->shrinklist, &to_remove);
458 removed++;
459 goto next;
460 }
461
462 list_move(&info->shrinklist, &list);
463 next:
464 if (!--batch)
465 break;
466 }
467 spin_unlock(&sbinfo->shrinklist_lock);
468
469 list_for_each_safe(pos, next, &to_remove) {
470 info = list_entry(pos, struct shmem_inode_info, shrinklist);
471 inode = &info->vfs_inode;
472 list_del_init(&info->shrinklist);
473 iput(inode);
474 }
475
476 list_for_each_safe(pos, next, &list) {
477 int ret;
478
479 info = list_entry(pos, struct shmem_inode_info, shrinklist);
480 inode = &info->vfs_inode;
481
482 if (nr_to_split && split >= nr_to_split) {
483 iput(inode);
484 continue;
485 }
486
487 page = find_lock_page(inode->i_mapping,
488 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
489 if (!page)
490 goto drop;
491
492 if (!PageTransHuge(page)) {
493 unlock_page(page);
494 put_page(page);
495 goto drop;
496 }
497
498 ret = split_huge_page(page);
499 unlock_page(page);
500 put_page(page);
501
502 if (ret) {
503 /* split failed: leave it on the list */
504 iput(inode);
505 continue;
506 }
507
508 split++;
509 drop:
510 list_del_init(&info->shrinklist);
511 removed++;
512 iput(inode);
513 }
514
515 spin_lock(&sbinfo->shrinklist_lock);
516 list_splice_tail(&list, &sbinfo->shrinklist);
517 sbinfo->shrinklist_len -= removed;
518 spin_unlock(&sbinfo->shrinklist_lock);
519
520 return split;
521 }
522
523 static long shmem_unused_huge_scan(struct super_block *sb,
524 struct shrink_control *sc)
525 {
526 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
527
528 if (!READ_ONCE(sbinfo->shrinklist_len))
529 return SHRINK_STOP;
530
531 return shmem_unused_huge_shrink(sbinfo, sc, 0);
532 }
533
534 static long shmem_unused_huge_count(struct super_block *sb,
535 struct shrink_control *sc)
536 {
537 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
538 return READ_ONCE(sbinfo->shrinklist_len);
539 }
540 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
541
542 #define shmem_huge SHMEM_HUGE_DENY
543
544 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
545 struct shrink_control *sc, unsigned long nr_to_split)
546 {
547 return 0;
548 }
549 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
550
551 /*
552 * Like add_to_page_cache_locked, but error if expected item has gone.
553 */
554 static int shmem_add_to_page_cache(struct page *page,
555 struct address_space *mapping,
556 pgoff_t index, void *expected)
557 {
558 int error, nr = hpage_nr_pages(page);
559
560 VM_BUG_ON_PAGE(PageTail(page), page);
561 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
562 VM_BUG_ON_PAGE(!PageLocked(page), page);
563 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
564 VM_BUG_ON(expected && PageTransHuge(page));
565
566 page_ref_add(page, nr);
567 page->mapping = mapping;
568 page->index = index;
569
570 spin_lock_irq(&mapping->tree_lock);
571 if (PageTransHuge(page)) {
572 void __rcu **results;
573 pgoff_t idx;
574 int i;
575
576 error = 0;
577 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
578 &results, &idx, index, 1) &&
579 idx < index + HPAGE_PMD_NR) {
580 error = -EEXIST;
581 }
582
583 if (!error) {
584 for (i = 0; i < HPAGE_PMD_NR; i++) {
585 error = radix_tree_insert(&mapping->page_tree,
586 index + i, page + i);
587 VM_BUG_ON(error);
588 }
589 count_vm_event(THP_FILE_ALLOC);
590 }
591 } else if (!expected) {
592 error = radix_tree_insert(&mapping->page_tree, index, page);
593 } else {
594 error = shmem_radix_tree_replace(mapping, index, expected,
595 page);
596 }
597
598 if (!error) {
599 mapping->nrpages += nr;
600 if (PageTransHuge(page))
601 __inc_node_page_state(page, NR_SHMEM_THPS);
602 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
603 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
604 spin_unlock_irq(&mapping->tree_lock);
605 } else {
606 page->mapping = NULL;
607 spin_unlock_irq(&mapping->tree_lock);
608 page_ref_sub(page, nr);
609 }
610 return error;
611 }
612
613 /*
614 * Like delete_from_page_cache, but substitutes swap for page.
615 */
616 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
617 {
618 struct address_space *mapping = page->mapping;
619 int error;
620
621 VM_BUG_ON_PAGE(PageCompound(page), page);
622
623 spin_lock_irq(&mapping->tree_lock);
624 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
625 page->mapping = NULL;
626 mapping->nrpages--;
627 __dec_node_page_state(page, NR_FILE_PAGES);
628 __dec_node_page_state(page, NR_SHMEM);
629 spin_unlock_irq(&mapping->tree_lock);
630 put_page(page);
631 BUG_ON(error);
632 }
633
634 /*
635 * Remove swap entry from radix tree, free the swap and its page cache.
636 */
637 static int shmem_free_swap(struct address_space *mapping,
638 pgoff_t index, void *radswap)
639 {
640 void *old;
641
642 spin_lock_irq(&mapping->tree_lock);
643 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
644 spin_unlock_irq(&mapping->tree_lock);
645 if (old != radswap)
646 return -ENOENT;
647 free_swap_and_cache(radix_to_swp_entry(radswap));
648 return 0;
649 }
650
651 /*
652 * Determine (in bytes) how many of the shmem object's pages mapped by the
653 * given offsets are swapped out.
654 *
655 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
656 * as long as the inode doesn't go away and racy results are not a problem.
657 */
658 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
659 pgoff_t start, pgoff_t end)
660 {
661 struct radix_tree_iter iter;
662 void **slot;
663 struct page *page;
664 unsigned long swapped = 0;
665
666 rcu_read_lock();
667
668 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
669 if (iter.index >= end)
670 break;
671
672 page = radix_tree_deref_slot(slot);
673
674 if (radix_tree_deref_retry(page)) {
675 slot = radix_tree_iter_retry(&iter);
676 continue;
677 }
678
679 if (radix_tree_exceptional_entry(page))
680 swapped++;
681
682 if (need_resched()) {
683 slot = radix_tree_iter_resume(slot, &iter);
684 cond_resched_rcu();
685 }
686 }
687
688 rcu_read_unlock();
689
690 return swapped << PAGE_SHIFT;
691 }
692
693 /*
694 * Determine (in bytes) how many of the shmem object's pages mapped by the
695 * given vma is swapped out.
696 *
697 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
698 * as long as the inode doesn't go away and racy results are not a problem.
699 */
700 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
701 {
702 struct inode *inode = file_inode(vma->vm_file);
703 struct shmem_inode_info *info = SHMEM_I(inode);
704 struct address_space *mapping = inode->i_mapping;
705 unsigned long swapped;
706
707 /* Be careful as we don't hold info->lock */
708 swapped = READ_ONCE(info->swapped);
709
710 /*
711 * The easier cases are when the shmem object has nothing in swap, or
712 * the vma maps it whole. Then we can simply use the stats that we
713 * already track.
714 */
715 if (!swapped)
716 return 0;
717
718 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
719 return swapped << PAGE_SHIFT;
720
721 /* Here comes the more involved part */
722 return shmem_partial_swap_usage(mapping,
723 linear_page_index(vma, vma->vm_start),
724 linear_page_index(vma, vma->vm_end));
725 }
726
727 /*
728 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
729 */
730 void shmem_unlock_mapping(struct address_space *mapping)
731 {
732 struct pagevec pvec;
733 pgoff_t indices[PAGEVEC_SIZE];
734 pgoff_t index = 0;
735
736 pagevec_init(&pvec, 0);
737 /*
738 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
739 */
740 while (!mapping_unevictable(mapping)) {
741 /*
742 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
743 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
744 */
745 pvec.nr = find_get_entries(mapping, index,
746 PAGEVEC_SIZE, pvec.pages, indices);
747 if (!pvec.nr)
748 break;
749 index = indices[pvec.nr - 1] + 1;
750 pagevec_remove_exceptionals(&pvec);
751 check_move_unevictable_pages(pvec.pages, pvec.nr);
752 pagevec_release(&pvec);
753 cond_resched();
754 }
755 }
756
757 /*
758 * Remove range of pages and swap entries from radix tree, and free them.
759 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
760 */
761 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
762 bool unfalloc)
763 {
764 struct address_space *mapping = inode->i_mapping;
765 struct shmem_inode_info *info = SHMEM_I(inode);
766 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
767 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
768 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
769 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
770 struct pagevec pvec;
771 pgoff_t indices[PAGEVEC_SIZE];
772 long nr_swaps_freed = 0;
773 pgoff_t index;
774 int i;
775
776 if (lend == -1)
777 end = -1; /* unsigned, so actually very big */
778
779 pagevec_init(&pvec, 0);
780 index = start;
781 while (index < end) {
782 pvec.nr = find_get_entries(mapping, index,
783 min(end - index, (pgoff_t)PAGEVEC_SIZE),
784 pvec.pages, indices);
785 if (!pvec.nr)
786 break;
787 for (i = 0; i < pagevec_count(&pvec); i++) {
788 struct page *page = pvec.pages[i];
789
790 index = indices[i];
791 if (index >= end)
792 break;
793
794 if (radix_tree_exceptional_entry(page)) {
795 if (unfalloc)
796 continue;
797 nr_swaps_freed += !shmem_free_swap(mapping,
798 index, page);
799 continue;
800 }
801
802 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
803
804 if (!trylock_page(page))
805 continue;
806
807 if (PageTransTail(page)) {
808 /* Middle of THP: zero out the page */
809 clear_highpage(page);
810 unlock_page(page);
811 continue;
812 } else if (PageTransHuge(page)) {
813 if (index == round_down(end, HPAGE_PMD_NR)) {
814 /*
815 * Range ends in the middle of THP:
816 * zero out the page
817 */
818 clear_highpage(page);
819 unlock_page(page);
820 continue;
821 }
822 index += HPAGE_PMD_NR - 1;
823 i += HPAGE_PMD_NR - 1;
824 }
825
826 if (!unfalloc || !PageUptodate(page)) {
827 VM_BUG_ON_PAGE(PageTail(page), page);
828 if (page_mapping(page) == mapping) {
829 VM_BUG_ON_PAGE(PageWriteback(page), page);
830 truncate_inode_page(mapping, page);
831 }
832 }
833 unlock_page(page);
834 }
835 pagevec_remove_exceptionals(&pvec);
836 pagevec_release(&pvec);
837 cond_resched();
838 index++;
839 }
840
841 if (partial_start) {
842 struct page *page = NULL;
843 shmem_getpage(inode, start - 1, &page, SGP_READ);
844 if (page) {
845 unsigned int top = PAGE_SIZE;
846 if (start > end) {
847 top = partial_end;
848 partial_end = 0;
849 }
850 zero_user_segment(page, partial_start, top);
851 set_page_dirty(page);
852 unlock_page(page);
853 put_page(page);
854 }
855 }
856 if (partial_end) {
857 struct page *page = NULL;
858 shmem_getpage(inode, end, &page, SGP_READ);
859 if (page) {
860 zero_user_segment(page, 0, partial_end);
861 set_page_dirty(page);
862 unlock_page(page);
863 put_page(page);
864 }
865 }
866 if (start >= end)
867 return;
868
869 index = start;
870 while (index < end) {
871 cond_resched();
872
873 pvec.nr = find_get_entries(mapping, index,
874 min(end - index, (pgoff_t)PAGEVEC_SIZE),
875 pvec.pages, indices);
876 if (!pvec.nr) {
877 /* If all gone or hole-punch or unfalloc, we're done */
878 if (index == start || end != -1)
879 break;
880 /* But if truncating, restart to make sure all gone */
881 index = start;
882 continue;
883 }
884 for (i = 0; i < pagevec_count(&pvec); i++) {
885 struct page *page = pvec.pages[i];
886
887 index = indices[i];
888 if (index >= end)
889 break;
890
891 if (radix_tree_exceptional_entry(page)) {
892 if (unfalloc)
893 continue;
894 if (shmem_free_swap(mapping, index, page)) {
895 /* Swap was replaced by page: retry */
896 index--;
897 break;
898 }
899 nr_swaps_freed++;
900 continue;
901 }
902
903 lock_page(page);
904
905 if (PageTransTail(page)) {
906 /* Middle of THP: zero out the page */
907 clear_highpage(page);
908 unlock_page(page);
909 /*
910 * Partial thp truncate due 'start' in middle
911 * of THP: don't need to look on these pages
912 * again on !pvec.nr restart.
913 */
914 if (index != round_down(end, HPAGE_PMD_NR))
915 start++;
916 continue;
917 } else if (PageTransHuge(page)) {
918 if (index == round_down(end, HPAGE_PMD_NR)) {
919 /*
920 * Range ends in the middle of THP:
921 * zero out the page
922 */
923 clear_highpage(page);
924 unlock_page(page);
925 continue;
926 }
927 index += HPAGE_PMD_NR - 1;
928 i += HPAGE_PMD_NR - 1;
929 }
930
931 if (!unfalloc || !PageUptodate(page)) {
932 VM_BUG_ON_PAGE(PageTail(page), page);
933 if (page_mapping(page) == mapping) {
934 VM_BUG_ON_PAGE(PageWriteback(page), page);
935 truncate_inode_page(mapping, page);
936 } else {
937 /* Page was replaced by swap: retry */
938 unlock_page(page);
939 index--;
940 break;
941 }
942 }
943 unlock_page(page);
944 }
945 pagevec_remove_exceptionals(&pvec);
946 pagevec_release(&pvec);
947 index++;
948 }
949
950 spin_lock_irq(&info->lock);
951 info->swapped -= nr_swaps_freed;
952 shmem_recalc_inode(inode);
953 spin_unlock_irq(&info->lock);
954 }
955
956 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
957 {
958 shmem_undo_range(inode, lstart, lend, false);
959 inode->i_ctime = inode->i_mtime = current_time(inode);
960 }
961 EXPORT_SYMBOL_GPL(shmem_truncate_range);
962
963 static int shmem_getattr(const struct path *path, struct kstat *stat,
964 u32 request_mask, unsigned int query_flags)
965 {
966 struct inode *inode = path->dentry->d_inode;
967 struct shmem_inode_info *info = SHMEM_I(inode);
968
969 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
970 spin_lock_irq(&info->lock);
971 shmem_recalc_inode(inode);
972 spin_unlock_irq(&info->lock);
973 }
974 generic_fillattr(inode, stat);
975 return 0;
976 }
977
978 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
979 {
980 struct inode *inode = d_inode(dentry);
981 struct shmem_inode_info *info = SHMEM_I(inode);
982 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
983 int error;
984
985 error = setattr_prepare(dentry, attr);
986 if (error)
987 return error;
988
989 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
990 loff_t oldsize = inode->i_size;
991 loff_t newsize = attr->ia_size;
992
993 /* protected by i_mutex */
994 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
995 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
996 return -EPERM;
997
998 if (newsize != oldsize) {
999 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1000 oldsize, newsize);
1001 if (error)
1002 return error;
1003 i_size_write(inode, newsize);
1004 inode->i_ctime = inode->i_mtime = current_time(inode);
1005 }
1006 if (newsize <= oldsize) {
1007 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1008 if (oldsize > holebegin)
1009 unmap_mapping_range(inode->i_mapping,
1010 holebegin, 0, 1);
1011 if (info->alloced)
1012 shmem_truncate_range(inode,
1013 newsize, (loff_t)-1);
1014 /* unmap again to remove racily COWed private pages */
1015 if (oldsize > holebegin)
1016 unmap_mapping_range(inode->i_mapping,
1017 holebegin, 0, 1);
1018
1019 /*
1020 * Part of the huge page can be beyond i_size: subject
1021 * to shrink under memory pressure.
1022 */
1023 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1024 spin_lock(&sbinfo->shrinklist_lock);
1025 /*
1026 * _careful to defend against unlocked access to
1027 * ->shrink_list in shmem_unused_huge_shrink()
1028 */
1029 if (list_empty_careful(&info->shrinklist)) {
1030 list_add_tail(&info->shrinklist,
1031 &sbinfo->shrinklist);
1032 sbinfo->shrinklist_len++;
1033 }
1034 spin_unlock(&sbinfo->shrinklist_lock);
1035 }
1036 }
1037 }
1038
1039 setattr_copy(inode, attr);
1040 if (attr->ia_valid & ATTR_MODE)
1041 error = posix_acl_chmod(inode, inode->i_mode);
1042 return error;
1043 }
1044
1045 static void shmem_evict_inode(struct inode *inode)
1046 {
1047 struct shmem_inode_info *info = SHMEM_I(inode);
1048 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1049
1050 if (inode->i_mapping->a_ops == &shmem_aops) {
1051 shmem_unacct_size(info->flags, inode->i_size);
1052 inode->i_size = 0;
1053 shmem_truncate_range(inode, 0, (loff_t)-1);
1054 if (!list_empty(&info->shrinklist)) {
1055 spin_lock(&sbinfo->shrinklist_lock);
1056 if (!list_empty(&info->shrinklist)) {
1057 list_del_init(&info->shrinklist);
1058 sbinfo->shrinklist_len--;
1059 }
1060 spin_unlock(&sbinfo->shrinklist_lock);
1061 }
1062 if (!list_empty(&info->swaplist)) {
1063 mutex_lock(&shmem_swaplist_mutex);
1064 list_del_init(&info->swaplist);
1065 mutex_unlock(&shmem_swaplist_mutex);
1066 }
1067 }
1068
1069 simple_xattrs_free(&info->xattrs);
1070 WARN_ON(inode->i_blocks);
1071 shmem_free_inode(inode->i_sb);
1072 clear_inode(inode);
1073 }
1074
1075 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1076 {
1077 struct radix_tree_iter iter;
1078 void **slot;
1079 unsigned long found = -1;
1080 unsigned int checked = 0;
1081
1082 rcu_read_lock();
1083 radix_tree_for_each_slot(slot, root, &iter, 0) {
1084 if (*slot == item) {
1085 found = iter.index;
1086 break;
1087 }
1088 checked++;
1089 if ((checked % 4096) != 0)
1090 continue;
1091 slot = radix_tree_iter_resume(slot, &iter);
1092 cond_resched_rcu();
1093 }
1094
1095 rcu_read_unlock();
1096 return found;
1097 }
1098
1099 /*
1100 * If swap found in inode, free it and move page from swapcache to filecache.
1101 */
1102 static int shmem_unuse_inode(struct shmem_inode_info *info,
1103 swp_entry_t swap, struct page **pagep)
1104 {
1105 struct address_space *mapping = info->vfs_inode.i_mapping;
1106 void *radswap;
1107 pgoff_t index;
1108 gfp_t gfp;
1109 int error = 0;
1110
1111 radswap = swp_to_radix_entry(swap);
1112 index = find_swap_entry(&mapping->page_tree, radswap);
1113 if (index == -1)
1114 return -EAGAIN; /* tell shmem_unuse we found nothing */
1115
1116 /*
1117 * Move _head_ to start search for next from here.
1118 * But be careful: shmem_evict_inode checks list_empty without taking
1119 * mutex, and there's an instant in list_move_tail when info->swaplist
1120 * would appear empty, if it were the only one on shmem_swaplist.
1121 */
1122 if (shmem_swaplist.next != &info->swaplist)
1123 list_move_tail(&shmem_swaplist, &info->swaplist);
1124
1125 gfp = mapping_gfp_mask(mapping);
1126 if (shmem_should_replace_page(*pagep, gfp)) {
1127 mutex_unlock(&shmem_swaplist_mutex);
1128 error = shmem_replace_page(pagep, gfp, info, index);
1129 mutex_lock(&shmem_swaplist_mutex);
1130 /*
1131 * We needed to drop mutex to make that restrictive page
1132 * allocation, but the inode might have been freed while we
1133 * dropped it: although a racing shmem_evict_inode() cannot
1134 * complete without emptying the radix_tree, our page lock
1135 * on this swapcache page is not enough to prevent that -
1136 * free_swap_and_cache() of our swap entry will only
1137 * trylock_page(), removing swap from radix_tree whatever.
1138 *
1139 * We must not proceed to shmem_add_to_page_cache() if the
1140 * inode has been freed, but of course we cannot rely on
1141 * inode or mapping or info to check that. However, we can
1142 * safely check if our swap entry is still in use (and here
1143 * it can't have got reused for another page): if it's still
1144 * in use, then the inode cannot have been freed yet, and we
1145 * can safely proceed (if it's no longer in use, that tells
1146 * nothing about the inode, but we don't need to unuse swap).
1147 */
1148 if (!page_swapcount(*pagep))
1149 error = -ENOENT;
1150 }
1151
1152 /*
1153 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1154 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1155 * beneath us (pagelock doesn't help until the page is in pagecache).
1156 */
1157 if (!error)
1158 error = shmem_add_to_page_cache(*pagep, mapping, index,
1159 radswap);
1160 if (error != -ENOMEM) {
1161 /*
1162 * Truncation and eviction use free_swap_and_cache(), which
1163 * only does trylock page: if we raced, best clean up here.
1164 */
1165 delete_from_swap_cache(*pagep);
1166 set_page_dirty(*pagep);
1167 if (!error) {
1168 spin_lock_irq(&info->lock);
1169 info->swapped--;
1170 spin_unlock_irq(&info->lock);
1171 swap_free(swap);
1172 }
1173 }
1174 return error;
1175 }
1176
1177 /*
1178 * Search through swapped inodes to find and replace swap by page.
1179 */
1180 int shmem_unuse(swp_entry_t swap, struct page *page)
1181 {
1182 struct list_head *this, *next;
1183 struct shmem_inode_info *info;
1184 struct mem_cgroup *memcg;
1185 int error = 0;
1186
1187 /*
1188 * There's a faint possibility that swap page was replaced before
1189 * caller locked it: caller will come back later with the right page.
1190 */
1191 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1192 goto out;
1193
1194 /*
1195 * Charge page using GFP_KERNEL while we can wait, before taking
1196 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1197 * Charged back to the user (not to caller) when swap account is used.
1198 */
1199 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1200 false);
1201 if (error)
1202 goto out;
1203 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1204 error = -EAGAIN;
1205
1206 mutex_lock(&shmem_swaplist_mutex);
1207 list_for_each_safe(this, next, &shmem_swaplist) {
1208 info = list_entry(this, struct shmem_inode_info, swaplist);
1209 if (info->swapped)
1210 error = shmem_unuse_inode(info, swap, &page);
1211 else
1212 list_del_init(&info->swaplist);
1213 cond_resched();
1214 if (error != -EAGAIN)
1215 break;
1216 /* found nothing in this: move on to search the next */
1217 }
1218 mutex_unlock(&shmem_swaplist_mutex);
1219
1220 if (error) {
1221 if (error != -ENOMEM)
1222 error = 0;
1223 mem_cgroup_cancel_charge(page, memcg, false);
1224 } else
1225 mem_cgroup_commit_charge(page, memcg, true, false);
1226 out:
1227 unlock_page(page);
1228 put_page(page);
1229 return error;
1230 }
1231
1232 /*
1233 * Move the page from the page cache to the swap cache.
1234 */
1235 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1236 {
1237 struct shmem_inode_info *info;
1238 struct address_space *mapping;
1239 struct inode *inode;
1240 swp_entry_t swap;
1241 pgoff_t index;
1242
1243 VM_BUG_ON_PAGE(PageCompound(page), page);
1244 BUG_ON(!PageLocked(page));
1245 mapping = page->mapping;
1246 index = page->index;
1247 inode = mapping->host;
1248 info = SHMEM_I(inode);
1249 if (info->flags & VM_LOCKED)
1250 goto redirty;
1251 if (!total_swap_pages)
1252 goto redirty;
1253
1254 /*
1255 * Our capabilities prevent regular writeback or sync from ever calling
1256 * shmem_writepage; but a stacking filesystem might use ->writepage of
1257 * its underlying filesystem, in which case tmpfs should write out to
1258 * swap only in response to memory pressure, and not for the writeback
1259 * threads or sync.
1260 */
1261 if (!wbc->for_reclaim) {
1262 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1263 goto redirty;
1264 }
1265
1266 /*
1267 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1268 * value into swapfile.c, the only way we can correctly account for a
1269 * fallocated page arriving here is now to initialize it and write it.
1270 *
1271 * That's okay for a page already fallocated earlier, but if we have
1272 * not yet completed the fallocation, then (a) we want to keep track
1273 * of this page in case we have to undo it, and (b) it may not be a
1274 * good idea to continue anyway, once we're pushing into swap. So
1275 * reactivate the page, and let shmem_fallocate() quit when too many.
1276 */
1277 if (!PageUptodate(page)) {
1278 if (inode->i_private) {
1279 struct shmem_falloc *shmem_falloc;
1280 spin_lock(&inode->i_lock);
1281 shmem_falloc = inode->i_private;
1282 if (shmem_falloc &&
1283 !shmem_falloc->waitq &&
1284 index >= shmem_falloc->start &&
1285 index < shmem_falloc->next)
1286 shmem_falloc->nr_unswapped++;
1287 else
1288 shmem_falloc = NULL;
1289 spin_unlock(&inode->i_lock);
1290 if (shmem_falloc)
1291 goto redirty;
1292 }
1293 clear_highpage(page);
1294 flush_dcache_page(page);
1295 SetPageUptodate(page);
1296 }
1297
1298 swap = get_swap_page(page);
1299 if (!swap.val)
1300 goto redirty;
1301
1302 if (mem_cgroup_try_charge_swap(page, swap))
1303 goto free_swap;
1304
1305 /*
1306 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1307 * if it's not already there. Do it now before the page is
1308 * moved to swap cache, when its pagelock no longer protects
1309 * the inode from eviction. But don't unlock the mutex until
1310 * we've incremented swapped, because shmem_unuse_inode() will
1311 * prune a !swapped inode from the swaplist under this mutex.
1312 */
1313 mutex_lock(&shmem_swaplist_mutex);
1314 if (list_empty(&info->swaplist))
1315 list_add_tail(&info->swaplist, &shmem_swaplist);
1316
1317 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1318 spin_lock_irq(&info->lock);
1319 shmem_recalc_inode(inode);
1320 info->swapped++;
1321 spin_unlock_irq(&info->lock);
1322
1323 swap_shmem_alloc(swap);
1324 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1325
1326 mutex_unlock(&shmem_swaplist_mutex);
1327 BUG_ON(page_mapped(page));
1328 swap_writepage(page, wbc);
1329 return 0;
1330 }
1331
1332 mutex_unlock(&shmem_swaplist_mutex);
1333 free_swap:
1334 put_swap_page(page, swap);
1335 redirty:
1336 set_page_dirty(page);
1337 if (wbc->for_reclaim)
1338 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1339 unlock_page(page);
1340 return 0;
1341 }
1342
1343 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1344 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1345 {
1346 char buffer[64];
1347
1348 if (!mpol || mpol->mode == MPOL_DEFAULT)
1349 return; /* show nothing */
1350
1351 mpol_to_str(buffer, sizeof(buffer), mpol);
1352
1353 seq_printf(seq, ",mpol=%s", buffer);
1354 }
1355
1356 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1357 {
1358 struct mempolicy *mpol = NULL;
1359 if (sbinfo->mpol) {
1360 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1361 mpol = sbinfo->mpol;
1362 mpol_get(mpol);
1363 spin_unlock(&sbinfo->stat_lock);
1364 }
1365 return mpol;
1366 }
1367 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1368 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1369 {
1370 }
1371 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1372 {
1373 return NULL;
1374 }
1375 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1376 #ifndef CONFIG_NUMA
1377 #define vm_policy vm_private_data
1378 #endif
1379
1380 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1381 struct shmem_inode_info *info, pgoff_t index)
1382 {
1383 /* Create a pseudo vma that just contains the policy */
1384 vma->vm_start = 0;
1385 /* Bias interleave by inode number to distribute better across nodes */
1386 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1387 vma->vm_ops = NULL;
1388 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1389 }
1390
1391 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1392 {
1393 /* Drop reference taken by mpol_shared_policy_lookup() */
1394 mpol_cond_put(vma->vm_policy);
1395 }
1396
1397 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1398 struct shmem_inode_info *info, pgoff_t index)
1399 {
1400 struct vm_area_struct pvma;
1401 struct page *page;
1402
1403 shmem_pseudo_vma_init(&pvma, info, index);
1404 page = swapin_readahead(swap, gfp, &pvma, 0);
1405 shmem_pseudo_vma_destroy(&pvma);
1406
1407 return page;
1408 }
1409
1410 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1411 struct shmem_inode_info *info, pgoff_t index)
1412 {
1413 struct vm_area_struct pvma;
1414 struct inode *inode = &info->vfs_inode;
1415 struct address_space *mapping = inode->i_mapping;
1416 pgoff_t idx, hindex;
1417 void __rcu **results;
1418 struct page *page;
1419
1420 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1421 return NULL;
1422
1423 hindex = round_down(index, HPAGE_PMD_NR);
1424 rcu_read_lock();
1425 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1426 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1427 rcu_read_unlock();
1428 return NULL;
1429 }
1430 rcu_read_unlock();
1431
1432 shmem_pseudo_vma_init(&pvma, info, hindex);
1433 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1434 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1435 shmem_pseudo_vma_destroy(&pvma);
1436 if (page)
1437 prep_transhuge_page(page);
1438 return page;
1439 }
1440
1441 static struct page *shmem_alloc_page(gfp_t gfp,
1442 struct shmem_inode_info *info, pgoff_t index)
1443 {
1444 struct vm_area_struct pvma;
1445 struct page *page;
1446
1447 shmem_pseudo_vma_init(&pvma, info, index);
1448 page = alloc_page_vma(gfp, &pvma, 0);
1449 shmem_pseudo_vma_destroy(&pvma);
1450
1451 return page;
1452 }
1453
1454 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1455 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1456 pgoff_t index, bool huge)
1457 {
1458 struct page *page;
1459 int nr;
1460 int err = -ENOSPC;
1461
1462 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1463 huge = false;
1464 nr = huge ? HPAGE_PMD_NR : 1;
1465
1466 if (shmem_acct_block(info->flags, nr))
1467 goto failed;
1468 if (sbinfo->max_blocks) {
1469 if (percpu_counter_compare(&sbinfo->used_blocks,
1470 sbinfo->max_blocks - nr) > 0)
1471 goto unacct;
1472 percpu_counter_add(&sbinfo->used_blocks, nr);
1473 }
1474
1475 if (huge)
1476 page = shmem_alloc_hugepage(gfp, info, index);
1477 else
1478 page = shmem_alloc_page(gfp, info, index);
1479 if (page) {
1480 __SetPageLocked(page);
1481 __SetPageSwapBacked(page);
1482 return page;
1483 }
1484
1485 err = -ENOMEM;
1486 if (sbinfo->max_blocks)
1487 percpu_counter_add(&sbinfo->used_blocks, -nr);
1488 unacct:
1489 shmem_unacct_blocks(info->flags, nr);
1490 failed:
1491 return ERR_PTR(err);
1492 }
1493
1494 /*
1495 * When a page is moved from swapcache to shmem filecache (either by the
1496 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1497 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1498 * ignorance of the mapping it belongs to. If that mapping has special
1499 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1500 * we may need to copy to a suitable page before moving to filecache.
1501 *
1502 * In a future release, this may well be extended to respect cpuset and
1503 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1504 * but for now it is a simple matter of zone.
1505 */
1506 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1507 {
1508 return page_zonenum(page) > gfp_zone(gfp);
1509 }
1510
1511 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1512 struct shmem_inode_info *info, pgoff_t index)
1513 {
1514 struct page *oldpage, *newpage;
1515 struct address_space *swap_mapping;
1516 pgoff_t swap_index;
1517 int error;
1518
1519 oldpage = *pagep;
1520 swap_index = page_private(oldpage);
1521 swap_mapping = page_mapping(oldpage);
1522
1523 /*
1524 * We have arrived here because our zones are constrained, so don't
1525 * limit chance of success by further cpuset and node constraints.
1526 */
1527 gfp &= ~GFP_CONSTRAINT_MASK;
1528 newpage = shmem_alloc_page(gfp, info, index);
1529 if (!newpage)
1530 return -ENOMEM;
1531
1532 get_page(newpage);
1533 copy_highpage(newpage, oldpage);
1534 flush_dcache_page(newpage);
1535
1536 __SetPageLocked(newpage);
1537 __SetPageSwapBacked(newpage);
1538 SetPageUptodate(newpage);
1539 set_page_private(newpage, swap_index);
1540 SetPageSwapCache(newpage);
1541
1542 /*
1543 * Our caller will very soon move newpage out of swapcache, but it's
1544 * a nice clean interface for us to replace oldpage by newpage there.
1545 */
1546 spin_lock_irq(&swap_mapping->tree_lock);
1547 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1548 newpage);
1549 if (!error) {
1550 __inc_node_page_state(newpage, NR_FILE_PAGES);
1551 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1552 }
1553 spin_unlock_irq(&swap_mapping->tree_lock);
1554
1555 if (unlikely(error)) {
1556 /*
1557 * Is this possible? I think not, now that our callers check
1558 * both PageSwapCache and page_private after getting page lock;
1559 * but be defensive. Reverse old to newpage for clear and free.
1560 */
1561 oldpage = newpage;
1562 } else {
1563 mem_cgroup_migrate(oldpage, newpage);
1564 lru_cache_add_anon(newpage);
1565 *pagep = newpage;
1566 }
1567
1568 ClearPageSwapCache(oldpage);
1569 set_page_private(oldpage, 0);
1570
1571 unlock_page(oldpage);
1572 put_page(oldpage);
1573 put_page(oldpage);
1574 return error;
1575 }
1576
1577 /*
1578 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1579 *
1580 * If we allocate a new one we do not mark it dirty. That's up to the
1581 * vm. If we swap it in we mark it dirty since we also free the swap
1582 * entry since a page cannot live in both the swap and page cache.
1583 *
1584 * fault_mm and fault_type are only supplied by shmem_fault:
1585 * otherwise they are NULL.
1586 */
1587 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1588 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1589 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1590 {
1591 struct address_space *mapping = inode->i_mapping;
1592 struct shmem_inode_info *info = SHMEM_I(inode);
1593 struct shmem_sb_info *sbinfo;
1594 struct mm_struct *charge_mm;
1595 struct mem_cgroup *memcg;
1596 struct page *page;
1597 swp_entry_t swap;
1598 enum sgp_type sgp_huge = sgp;
1599 pgoff_t hindex = index;
1600 int error;
1601 int once = 0;
1602 int alloced = 0;
1603
1604 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1605 return -EFBIG;
1606 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1607 sgp = SGP_CACHE;
1608 repeat:
1609 swap.val = 0;
1610 page = find_lock_entry(mapping, index);
1611 if (radix_tree_exceptional_entry(page)) {
1612 swap = radix_to_swp_entry(page);
1613 page = NULL;
1614 }
1615
1616 if (sgp <= SGP_CACHE &&
1617 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1618 error = -EINVAL;
1619 goto unlock;
1620 }
1621
1622 if (page && sgp == SGP_WRITE)
1623 mark_page_accessed(page);
1624
1625 /* fallocated page? */
1626 if (page && !PageUptodate(page)) {
1627 if (sgp != SGP_READ)
1628 goto clear;
1629 unlock_page(page);
1630 put_page(page);
1631 page = NULL;
1632 }
1633 if (page || (sgp == SGP_READ && !swap.val)) {
1634 *pagep = page;
1635 return 0;
1636 }
1637
1638 /*
1639 * Fast cache lookup did not find it:
1640 * bring it back from swap or allocate.
1641 */
1642 sbinfo = SHMEM_SB(inode->i_sb);
1643 charge_mm = vma ? vma->vm_mm : current->mm;
1644
1645 if (swap.val) {
1646 /* Look it up and read it in.. */
1647 page = lookup_swap_cache(swap);
1648 if (!page) {
1649 /* Or update major stats only when swapin succeeds?? */
1650 if (fault_type) {
1651 *fault_type |= VM_FAULT_MAJOR;
1652 count_vm_event(PGMAJFAULT);
1653 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1654 }
1655 /* Here we actually start the io */
1656 page = shmem_swapin(swap, gfp, info, index);
1657 if (!page) {
1658 error = -ENOMEM;
1659 goto failed;
1660 }
1661 }
1662
1663 /* We have to do this with page locked to prevent races */
1664 lock_page(page);
1665 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1666 !shmem_confirm_swap(mapping, index, swap)) {
1667 error = -EEXIST; /* try again */
1668 goto unlock;
1669 }
1670 if (!PageUptodate(page)) {
1671 error = -EIO;
1672 goto failed;
1673 }
1674 wait_on_page_writeback(page);
1675
1676 if (shmem_should_replace_page(page, gfp)) {
1677 error = shmem_replace_page(&page, gfp, info, index);
1678 if (error)
1679 goto failed;
1680 }
1681
1682 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1683 false);
1684 if (!error) {
1685 error = shmem_add_to_page_cache(page, mapping, index,
1686 swp_to_radix_entry(swap));
1687 /*
1688 * We already confirmed swap under page lock, and make
1689 * no memory allocation here, so usually no possibility
1690 * of error; but free_swap_and_cache() only trylocks a
1691 * page, so it is just possible that the entry has been
1692 * truncated or holepunched since swap was confirmed.
1693 * shmem_undo_range() will have done some of the
1694 * unaccounting, now delete_from_swap_cache() will do
1695 * the rest.
1696 * Reset swap.val? No, leave it so "failed" goes back to
1697 * "repeat": reading a hole and writing should succeed.
1698 */
1699 if (error) {
1700 mem_cgroup_cancel_charge(page, memcg, false);
1701 delete_from_swap_cache(page);
1702 }
1703 }
1704 if (error)
1705 goto failed;
1706
1707 mem_cgroup_commit_charge(page, memcg, true, false);
1708
1709 spin_lock_irq(&info->lock);
1710 info->swapped--;
1711 shmem_recalc_inode(inode);
1712 spin_unlock_irq(&info->lock);
1713
1714 if (sgp == SGP_WRITE)
1715 mark_page_accessed(page);
1716
1717 delete_from_swap_cache(page);
1718 set_page_dirty(page);
1719 swap_free(swap);
1720
1721 } else {
1722 if (vma && userfaultfd_missing(vma)) {
1723 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1724 return 0;
1725 }
1726
1727 /* shmem_symlink() */
1728 if (mapping->a_ops != &shmem_aops)
1729 goto alloc_nohuge;
1730 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1731 goto alloc_nohuge;
1732 if (shmem_huge == SHMEM_HUGE_FORCE)
1733 goto alloc_huge;
1734 switch (sbinfo->huge) {
1735 loff_t i_size;
1736 pgoff_t off;
1737 case SHMEM_HUGE_NEVER:
1738 goto alloc_nohuge;
1739 case SHMEM_HUGE_WITHIN_SIZE:
1740 off = round_up(index, HPAGE_PMD_NR);
1741 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1742 if (i_size >= HPAGE_PMD_SIZE &&
1743 i_size >> PAGE_SHIFT >= off)
1744 goto alloc_huge;
1745 /* fallthrough */
1746 case SHMEM_HUGE_ADVISE:
1747 if (sgp_huge == SGP_HUGE)
1748 goto alloc_huge;
1749 /* TODO: implement fadvise() hints */
1750 goto alloc_nohuge;
1751 }
1752
1753 alloc_huge:
1754 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1755 index, true);
1756 if (IS_ERR(page)) {
1757 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1758 index, false);
1759 }
1760 if (IS_ERR(page)) {
1761 int retry = 5;
1762 error = PTR_ERR(page);
1763 page = NULL;
1764 if (error != -ENOSPC)
1765 goto failed;
1766 /*
1767 * Try to reclaim some spece by splitting a huge page
1768 * beyond i_size on the filesystem.
1769 */
1770 while (retry--) {
1771 int ret;
1772 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1773 if (ret == SHRINK_STOP)
1774 break;
1775 if (ret)
1776 goto alloc_nohuge;
1777 }
1778 goto failed;
1779 }
1780
1781 if (PageTransHuge(page))
1782 hindex = round_down(index, HPAGE_PMD_NR);
1783 else
1784 hindex = index;
1785
1786 if (sgp == SGP_WRITE)
1787 __SetPageReferenced(page);
1788
1789 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1790 PageTransHuge(page));
1791 if (error)
1792 goto unacct;
1793 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1794 compound_order(page));
1795 if (!error) {
1796 error = shmem_add_to_page_cache(page, mapping, hindex,
1797 NULL);
1798 radix_tree_preload_end();
1799 }
1800 if (error) {
1801 mem_cgroup_cancel_charge(page, memcg,
1802 PageTransHuge(page));
1803 goto unacct;
1804 }
1805 mem_cgroup_commit_charge(page, memcg, false,
1806 PageTransHuge(page));
1807 lru_cache_add_anon(page);
1808
1809 spin_lock_irq(&info->lock);
1810 info->alloced += 1 << compound_order(page);
1811 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1812 shmem_recalc_inode(inode);
1813 spin_unlock_irq(&info->lock);
1814 alloced = true;
1815
1816 if (PageTransHuge(page) &&
1817 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1818 hindex + HPAGE_PMD_NR - 1) {
1819 /*
1820 * Part of the huge page is beyond i_size: subject
1821 * to shrink under memory pressure.
1822 */
1823 spin_lock(&sbinfo->shrinklist_lock);
1824 /*
1825 * _careful to defend against unlocked access to
1826 * ->shrink_list in shmem_unused_huge_shrink()
1827 */
1828 if (list_empty_careful(&info->shrinklist)) {
1829 list_add_tail(&info->shrinklist,
1830 &sbinfo->shrinklist);
1831 sbinfo->shrinklist_len++;
1832 }
1833 spin_unlock(&sbinfo->shrinklist_lock);
1834 }
1835
1836 /*
1837 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1838 */
1839 if (sgp == SGP_FALLOC)
1840 sgp = SGP_WRITE;
1841 clear:
1842 /*
1843 * Let SGP_WRITE caller clear ends if write does not fill page;
1844 * but SGP_FALLOC on a page fallocated earlier must initialize
1845 * it now, lest undo on failure cancel our earlier guarantee.
1846 */
1847 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1848 struct page *head = compound_head(page);
1849 int i;
1850
1851 for (i = 0; i < (1 << compound_order(head)); i++) {
1852 clear_highpage(head + i);
1853 flush_dcache_page(head + i);
1854 }
1855 SetPageUptodate(head);
1856 }
1857 }
1858
1859 /* Perhaps the file has been truncated since we checked */
1860 if (sgp <= SGP_CACHE &&
1861 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1862 if (alloced) {
1863 ClearPageDirty(page);
1864 delete_from_page_cache(page);
1865 spin_lock_irq(&info->lock);
1866 shmem_recalc_inode(inode);
1867 spin_unlock_irq(&info->lock);
1868 }
1869 error = -EINVAL;
1870 goto unlock;
1871 }
1872 *pagep = page + index - hindex;
1873 return 0;
1874
1875 /*
1876 * Error recovery.
1877 */
1878 unacct:
1879 if (sbinfo->max_blocks)
1880 percpu_counter_sub(&sbinfo->used_blocks,
1881 1 << compound_order(page));
1882 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1883
1884 if (PageTransHuge(page)) {
1885 unlock_page(page);
1886 put_page(page);
1887 goto alloc_nohuge;
1888 }
1889 failed:
1890 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1891 error = -EEXIST;
1892 unlock:
1893 if (page) {
1894 unlock_page(page);
1895 put_page(page);
1896 }
1897 if (error == -ENOSPC && !once++) {
1898 spin_lock_irq(&info->lock);
1899 shmem_recalc_inode(inode);
1900 spin_unlock_irq(&info->lock);
1901 goto repeat;
1902 }
1903 if (error == -EEXIST) /* from above or from radix_tree_insert */
1904 goto repeat;
1905 return error;
1906 }
1907
1908 /*
1909 * This is like autoremove_wake_function, but it removes the wait queue
1910 * entry unconditionally - even if something else had already woken the
1911 * target.
1912 */
1913 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1914 {
1915 int ret = default_wake_function(wait, mode, sync, key);
1916 list_del_init(&wait->entry);
1917 return ret;
1918 }
1919
1920 static int shmem_fault(struct vm_fault *vmf)
1921 {
1922 struct vm_area_struct *vma = vmf->vma;
1923 struct inode *inode = file_inode(vma->vm_file);
1924 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1925 enum sgp_type sgp;
1926 int error;
1927 int ret = VM_FAULT_LOCKED;
1928
1929 /*
1930 * Trinity finds that probing a hole which tmpfs is punching can
1931 * prevent the hole-punch from ever completing: which in turn
1932 * locks writers out with its hold on i_mutex. So refrain from
1933 * faulting pages into the hole while it's being punched. Although
1934 * shmem_undo_range() does remove the additions, it may be unable to
1935 * keep up, as each new page needs its own unmap_mapping_range() call,
1936 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1937 *
1938 * It does not matter if we sometimes reach this check just before the
1939 * hole-punch begins, so that one fault then races with the punch:
1940 * we just need to make racing faults a rare case.
1941 *
1942 * The implementation below would be much simpler if we just used a
1943 * standard mutex or completion: but we cannot take i_mutex in fault,
1944 * and bloating every shmem inode for this unlikely case would be sad.
1945 */
1946 if (unlikely(inode->i_private)) {
1947 struct shmem_falloc *shmem_falloc;
1948
1949 spin_lock(&inode->i_lock);
1950 shmem_falloc = inode->i_private;
1951 if (shmem_falloc &&
1952 shmem_falloc->waitq &&
1953 vmf->pgoff >= shmem_falloc->start &&
1954 vmf->pgoff < shmem_falloc->next) {
1955 wait_queue_head_t *shmem_falloc_waitq;
1956 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1957
1958 ret = VM_FAULT_NOPAGE;
1959 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1960 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1961 /* It's polite to up mmap_sem if we can */
1962 up_read(&vma->vm_mm->mmap_sem);
1963 ret = VM_FAULT_RETRY;
1964 }
1965
1966 shmem_falloc_waitq = shmem_falloc->waitq;
1967 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1968 TASK_UNINTERRUPTIBLE);
1969 spin_unlock(&inode->i_lock);
1970 schedule();
1971
1972 /*
1973 * shmem_falloc_waitq points into the shmem_fallocate()
1974 * stack of the hole-punching task: shmem_falloc_waitq
1975 * is usually invalid by the time we reach here, but
1976 * finish_wait() does not dereference it in that case;
1977 * though i_lock needed lest racing with wake_up_all().
1978 */
1979 spin_lock(&inode->i_lock);
1980 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1981 spin_unlock(&inode->i_lock);
1982 return ret;
1983 }
1984 spin_unlock(&inode->i_lock);
1985 }
1986
1987 sgp = SGP_CACHE;
1988
1989 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1990 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1991 sgp = SGP_NOHUGE;
1992 else if (vma->vm_flags & VM_HUGEPAGE)
1993 sgp = SGP_HUGE;
1994
1995 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1996 gfp, vma, vmf, &ret);
1997 if (error)
1998 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1999 return ret;
2000 }
2001
2002 unsigned long shmem_get_unmapped_area(struct file *file,
2003 unsigned long uaddr, unsigned long len,
2004 unsigned long pgoff, unsigned long flags)
2005 {
2006 unsigned long (*get_area)(struct file *,
2007 unsigned long, unsigned long, unsigned long, unsigned long);
2008 unsigned long addr;
2009 unsigned long offset;
2010 unsigned long inflated_len;
2011 unsigned long inflated_addr;
2012 unsigned long inflated_offset;
2013
2014 if (len > TASK_SIZE)
2015 return -ENOMEM;
2016
2017 get_area = current->mm->get_unmapped_area;
2018 addr = get_area(file, uaddr, len, pgoff, flags);
2019
2020 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2021 return addr;
2022 if (IS_ERR_VALUE(addr))
2023 return addr;
2024 if (addr & ~PAGE_MASK)
2025 return addr;
2026 if (addr > TASK_SIZE - len)
2027 return addr;
2028
2029 if (shmem_huge == SHMEM_HUGE_DENY)
2030 return addr;
2031 if (len < HPAGE_PMD_SIZE)
2032 return addr;
2033 if (flags & MAP_FIXED)
2034 return addr;
2035 /*
2036 * Our priority is to support MAP_SHARED mapped hugely;
2037 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2038 * But if caller specified an address hint, respect that as before.
2039 */
2040 if (uaddr)
2041 return addr;
2042
2043 if (shmem_huge != SHMEM_HUGE_FORCE) {
2044 struct super_block *sb;
2045
2046 if (file) {
2047 VM_BUG_ON(file->f_op != &shmem_file_operations);
2048 sb = file_inode(file)->i_sb;
2049 } else {
2050 /*
2051 * Called directly from mm/mmap.c, or drivers/char/mem.c
2052 * for "/dev/zero", to create a shared anonymous object.
2053 */
2054 if (IS_ERR(shm_mnt))
2055 return addr;
2056 sb = shm_mnt->mnt_sb;
2057 }
2058 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2059 return addr;
2060 }
2061
2062 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2063 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2064 return addr;
2065 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2066 return addr;
2067
2068 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2069 if (inflated_len > TASK_SIZE)
2070 return addr;
2071 if (inflated_len < len)
2072 return addr;
2073
2074 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2075 if (IS_ERR_VALUE(inflated_addr))
2076 return addr;
2077 if (inflated_addr & ~PAGE_MASK)
2078 return addr;
2079
2080 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2081 inflated_addr += offset - inflated_offset;
2082 if (inflated_offset > offset)
2083 inflated_addr += HPAGE_PMD_SIZE;
2084
2085 if (inflated_addr > TASK_SIZE - len)
2086 return addr;
2087 return inflated_addr;
2088 }
2089
2090 #ifdef CONFIG_NUMA
2091 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2092 {
2093 struct inode *inode = file_inode(vma->vm_file);
2094 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2095 }
2096
2097 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2098 unsigned long addr)
2099 {
2100 struct inode *inode = file_inode(vma->vm_file);
2101 pgoff_t index;
2102
2103 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2104 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2105 }
2106 #endif
2107
2108 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2109 {
2110 struct inode *inode = file_inode(file);
2111 struct shmem_inode_info *info = SHMEM_I(inode);
2112 int retval = -ENOMEM;
2113
2114 spin_lock_irq(&info->lock);
2115 if (lock && !(info->flags & VM_LOCKED)) {
2116 if (!user_shm_lock(inode->i_size, user))
2117 goto out_nomem;
2118 info->flags |= VM_LOCKED;
2119 mapping_set_unevictable(file->f_mapping);
2120 }
2121 if (!lock && (info->flags & VM_LOCKED) && user) {
2122 user_shm_unlock(inode->i_size, user);
2123 info->flags &= ~VM_LOCKED;
2124 mapping_clear_unevictable(file->f_mapping);
2125 }
2126 retval = 0;
2127
2128 out_nomem:
2129 spin_unlock_irq(&info->lock);
2130 return retval;
2131 }
2132
2133 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2134 {
2135 file_accessed(file);
2136 vma->vm_ops = &shmem_vm_ops;
2137 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2138 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2139 (vma->vm_end & HPAGE_PMD_MASK)) {
2140 khugepaged_enter(vma, vma->vm_flags);
2141 }
2142 return 0;
2143 }
2144
2145 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2146 umode_t mode, dev_t dev, unsigned long flags)
2147 {
2148 struct inode *inode;
2149 struct shmem_inode_info *info;
2150 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2151
2152 if (shmem_reserve_inode(sb))
2153 return NULL;
2154
2155 inode = new_inode(sb);
2156 if (inode) {
2157 inode->i_ino = get_next_ino();
2158 inode_init_owner(inode, dir, mode);
2159 inode->i_blocks = 0;
2160 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2161 inode->i_generation = get_seconds();
2162 info = SHMEM_I(inode);
2163 memset(info, 0, (char *)inode - (char *)info);
2164 spin_lock_init(&info->lock);
2165 info->seals = F_SEAL_SEAL;
2166 info->flags = flags & VM_NORESERVE;
2167 INIT_LIST_HEAD(&info->shrinklist);
2168 INIT_LIST_HEAD(&info->swaplist);
2169 simple_xattrs_init(&info->xattrs);
2170 cache_no_acl(inode);
2171
2172 switch (mode & S_IFMT) {
2173 default:
2174 inode->i_op = &shmem_special_inode_operations;
2175 init_special_inode(inode, mode, dev);
2176 break;
2177 case S_IFREG:
2178 inode->i_mapping->a_ops = &shmem_aops;
2179 inode->i_op = &shmem_inode_operations;
2180 inode->i_fop = &shmem_file_operations;
2181 mpol_shared_policy_init(&info->policy,
2182 shmem_get_sbmpol(sbinfo));
2183 break;
2184 case S_IFDIR:
2185 inc_nlink(inode);
2186 /* Some things misbehave if size == 0 on a directory */
2187 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2188 inode->i_op = &shmem_dir_inode_operations;
2189 inode->i_fop = &simple_dir_operations;
2190 break;
2191 case S_IFLNK:
2192 /*
2193 * Must not load anything in the rbtree,
2194 * mpol_free_shared_policy will not be called.
2195 */
2196 mpol_shared_policy_init(&info->policy, NULL);
2197 break;
2198 }
2199 } else
2200 shmem_free_inode(sb);
2201 return inode;
2202 }
2203
2204 bool shmem_mapping(struct address_space *mapping)
2205 {
2206 return mapping->a_ops == &shmem_aops;
2207 }
2208
2209 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2210 pmd_t *dst_pmd,
2211 struct vm_area_struct *dst_vma,
2212 unsigned long dst_addr,
2213 unsigned long src_addr,
2214 struct page **pagep)
2215 {
2216 struct inode *inode = file_inode(dst_vma->vm_file);
2217 struct shmem_inode_info *info = SHMEM_I(inode);
2218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2219 struct address_space *mapping = inode->i_mapping;
2220 gfp_t gfp = mapping_gfp_mask(mapping);
2221 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2222 struct mem_cgroup *memcg;
2223 spinlock_t *ptl;
2224 void *page_kaddr;
2225 struct page *page;
2226 pte_t _dst_pte, *dst_pte;
2227 int ret;
2228
2229 ret = -ENOMEM;
2230 if (shmem_acct_block(info->flags, 1))
2231 goto out;
2232 if (sbinfo->max_blocks) {
2233 if (percpu_counter_compare(&sbinfo->used_blocks,
2234 sbinfo->max_blocks) >= 0)
2235 goto out_unacct_blocks;
2236 percpu_counter_inc(&sbinfo->used_blocks);
2237 }
2238
2239 if (!*pagep) {
2240 page = shmem_alloc_page(gfp, info, pgoff);
2241 if (!page)
2242 goto out_dec_used_blocks;
2243
2244 page_kaddr = kmap_atomic(page);
2245 ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2246 PAGE_SIZE);
2247 kunmap_atomic(page_kaddr);
2248
2249 /* fallback to copy_from_user outside mmap_sem */
2250 if (unlikely(ret)) {
2251 *pagep = page;
2252 if (sbinfo->max_blocks)
2253 percpu_counter_add(&sbinfo->used_blocks, -1);
2254 shmem_unacct_blocks(info->flags, 1);
2255 /* don't free the page */
2256 return -EFAULT;
2257 }
2258 } else {
2259 page = *pagep;
2260 *pagep = NULL;
2261 }
2262
2263 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2264 __SetPageLocked(page);
2265 __SetPageSwapBacked(page);
2266 __SetPageUptodate(page);
2267
2268 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2269 if (ret)
2270 goto out_release;
2271
2272 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2273 if (!ret) {
2274 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2275 radix_tree_preload_end();
2276 }
2277 if (ret)
2278 goto out_release_uncharge;
2279
2280 mem_cgroup_commit_charge(page, memcg, false, false);
2281
2282 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2283 if (dst_vma->vm_flags & VM_WRITE)
2284 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2285
2286 ret = -EEXIST;
2287 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2288 if (!pte_none(*dst_pte))
2289 goto out_release_uncharge_unlock;
2290
2291 lru_cache_add_anon(page);
2292
2293 spin_lock(&info->lock);
2294 info->alloced++;
2295 inode->i_blocks += BLOCKS_PER_PAGE;
2296 shmem_recalc_inode(inode);
2297 spin_unlock(&info->lock);
2298
2299 inc_mm_counter(dst_mm, mm_counter_file(page));
2300 page_add_file_rmap(page, false);
2301 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2302
2303 /* No need to invalidate - it was non-present before */
2304 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2305 unlock_page(page);
2306 pte_unmap_unlock(dst_pte, ptl);
2307 ret = 0;
2308 out:
2309 return ret;
2310 out_release_uncharge_unlock:
2311 pte_unmap_unlock(dst_pte, ptl);
2312 out_release_uncharge:
2313 mem_cgroup_cancel_charge(page, memcg, false);
2314 out_release:
2315 unlock_page(page);
2316 put_page(page);
2317 out_dec_used_blocks:
2318 if (sbinfo->max_blocks)
2319 percpu_counter_add(&sbinfo->used_blocks, -1);
2320 out_unacct_blocks:
2321 shmem_unacct_blocks(info->flags, 1);
2322 goto out;
2323 }
2324
2325 #ifdef CONFIG_TMPFS
2326 static const struct inode_operations shmem_symlink_inode_operations;
2327 static const struct inode_operations shmem_short_symlink_operations;
2328
2329 #ifdef CONFIG_TMPFS_XATTR
2330 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2331 #else
2332 #define shmem_initxattrs NULL
2333 #endif
2334
2335 static int
2336 shmem_write_begin(struct file *file, struct address_space *mapping,
2337 loff_t pos, unsigned len, unsigned flags,
2338 struct page **pagep, void **fsdata)
2339 {
2340 struct inode *inode = mapping->host;
2341 struct shmem_inode_info *info = SHMEM_I(inode);
2342 pgoff_t index = pos >> PAGE_SHIFT;
2343
2344 /* i_mutex is held by caller */
2345 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2346 if (info->seals & F_SEAL_WRITE)
2347 return -EPERM;
2348 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2349 return -EPERM;
2350 }
2351
2352 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2353 }
2354
2355 static int
2356 shmem_write_end(struct file *file, struct address_space *mapping,
2357 loff_t pos, unsigned len, unsigned copied,
2358 struct page *page, void *fsdata)
2359 {
2360 struct inode *inode = mapping->host;
2361
2362 if (pos + copied > inode->i_size)
2363 i_size_write(inode, pos + copied);
2364
2365 if (!PageUptodate(page)) {
2366 struct page *head = compound_head(page);
2367 if (PageTransCompound(page)) {
2368 int i;
2369
2370 for (i = 0; i < HPAGE_PMD_NR; i++) {
2371 if (head + i == page)
2372 continue;
2373 clear_highpage(head + i);
2374 flush_dcache_page(head + i);
2375 }
2376 }
2377 if (copied < PAGE_SIZE) {
2378 unsigned from = pos & (PAGE_SIZE - 1);
2379 zero_user_segments(page, 0, from,
2380 from + copied, PAGE_SIZE);
2381 }
2382 SetPageUptodate(head);
2383 }
2384 set_page_dirty(page);
2385 unlock_page(page);
2386 put_page(page);
2387
2388 return copied;
2389 }
2390
2391 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2392 {
2393 struct file *file = iocb->ki_filp;
2394 struct inode *inode = file_inode(file);
2395 struct address_space *mapping = inode->i_mapping;
2396 pgoff_t index;
2397 unsigned long offset;
2398 enum sgp_type sgp = SGP_READ;
2399 int error = 0;
2400 ssize_t retval = 0;
2401 loff_t *ppos = &iocb->ki_pos;
2402
2403 /*
2404 * Might this read be for a stacking filesystem? Then when reading
2405 * holes of a sparse file, we actually need to allocate those pages,
2406 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2407 */
2408 if (!iter_is_iovec(to))
2409 sgp = SGP_CACHE;
2410
2411 index = *ppos >> PAGE_SHIFT;
2412 offset = *ppos & ~PAGE_MASK;
2413
2414 for (;;) {
2415 struct page *page = NULL;
2416 pgoff_t end_index;
2417 unsigned long nr, ret;
2418 loff_t i_size = i_size_read(inode);
2419
2420 end_index = i_size >> PAGE_SHIFT;
2421 if (index > end_index)
2422 break;
2423 if (index == end_index) {
2424 nr = i_size & ~PAGE_MASK;
2425 if (nr <= offset)
2426 break;
2427 }
2428
2429 error = shmem_getpage(inode, index, &page, sgp);
2430 if (error) {
2431 if (error == -EINVAL)
2432 error = 0;
2433 break;
2434 }
2435 if (page) {
2436 if (sgp == SGP_CACHE)
2437 set_page_dirty(page);
2438 unlock_page(page);
2439 }
2440
2441 /*
2442 * We must evaluate after, since reads (unlike writes)
2443 * are called without i_mutex protection against truncate
2444 */
2445 nr = PAGE_SIZE;
2446 i_size = i_size_read(inode);
2447 end_index = i_size >> PAGE_SHIFT;
2448 if (index == end_index) {
2449 nr = i_size & ~PAGE_MASK;
2450 if (nr <= offset) {
2451 if (page)
2452 put_page(page);
2453 break;
2454 }
2455 }
2456 nr -= offset;
2457
2458 if (page) {
2459 /*
2460 * If users can be writing to this page using arbitrary
2461 * virtual addresses, take care about potential aliasing
2462 * before reading the page on the kernel side.
2463 */
2464 if (mapping_writably_mapped(mapping))
2465 flush_dcache_page(page);
2466 /*
2467 * Mark the page accessed if we read the beginning.
2468 */
2469 if (!offset)
2470 mark_page_accessed(page);
2471 } else {
2472 page = ZERO_PAGE(0);
2473 get_page(page);
2474 }
2475
2476 /*
2477 * Ok, we have the page, and it's up-to-date, so
2478 * now we can copy it to user space...
2479 */
2480 ret = copy_page_to_iter(page, offset, nr, to);
2481 retval += ret;
2482 offset += ret;
2483 index += offset >> PAGE_SHIFT;
2484 offset &= ~PAGE_MASK;
2485
2486 put_page(page);
2487 if (!iov_iter_count(to))
2488 break;
2489 if (ret < nr) {
2490 error = -EFAULT;
2491 break;
2492 }
2493 cond_resched();
2494 }
2495
2496 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2497 file_accessed(file);
2498 return retval ? retval : error;
2499 }
2500
2501 /*
2502 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2503 */
2504 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2505 pgoff_t index, pgoff_t end, int whence)
2506 {
2507 struct page *page;
2508 struct pagevec pvec;
2509 pgoff_t indices[PAGEVEC_SIZE];
2510 bool done = false;
2511 int i;
2512
2513 pagevec_init(&pvec, 0);
2514 pvec.nr = 1; /* start small: we may be there already */
2515 while (!done) {
2516 pvec.nr = find_get_entries(mapping, index,
2517 pvec.nr, pvec.pages, indices);
2518 if (!pvec.nr) {
2519 if (whence == SEEK_DATA)
2520 index = end;
2521 break;
2522 }
2523 for (i = 0; i < pvec.nr; i++, index++) {
2524 if (index < indices[i]) {
2525 if (whence == SEEK_HOLE) {
2526 done = true;
2527 break;
2528 }
2529 index = indices[i];
2530 }
2531 page = pvec.pages[i];
2532 if (page && !radix_tree_exceptional_entry(page)) {
2533 if (!PageUptodate(page))
2534 page = NULL;
2535 }
2536 if (index >= end ||
2537 (page && whence == SEEK_DATA) ||
2538 (!page && whence == SEEK_HOLE)) {
2539 done = true;
2540 break;
2541 }
2542 }
2543 pagevec_remove_exceptionals(&pvec);
2544 pagevec_release(&pvec);
2545 pvec.nr = PAGEVEC_SIZE;
2546 cond_resched();
2547 }
2548 return index;
2549 }
2550
2551 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2552 {
2553 struct address_space *mapping = file->f_mapping;
2554 struct inode *inode = mapping->host;
2555 pgoff_t start, end;
2556 loff_t new_offset;
2557
2558 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2559 return generic_file_llseek_size(file, offset, whence,
2560 MAX_LFS_FILESIZE, i_size_read(inode));
2561 inode_lock(inode);
2562 /* We're holding i_mutex so we can access i_size directly */
2563
2564 if (offset < 0)
2565 offset = -EINVAL;
2566 else if (offset >= inode->i_size)
2567 offset = -ENXIO;
2568 else {
2569 start = offset >> PAGE_SHIFT;
2570 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2571 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2572 new_offset <<= PAGE_SHIFT;
2573 if (new_offset > offset) {
2574 if (new_offset < inode->i_size)
2575 offset = new_offset;
2576 else if (whence == SEEK_DATA)
2577 offset = -ENXIO;
2578 else
2579 offset = inode->i_size;
2580 }
2581 }
2582
2583 if (offset >= 0)
2584 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2585 inode_unlock(inode);
2586 return offset;
2587 }
2588
2589 /*
2590 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2591 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2592 */
2593 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2594 #define LAST_SCAN 4 /* about 150ms max */
2595
2596 static void shmem_tag_pins(struct address_space *mapping)
2597 {
2598 struct radix_tree_iter iter;
2599 void **slot;
2600 pgoff_t start;
2601 struct page *page;
2602
2603 lru_add_drain();
2604 start = 0;
2605 rcu_read_lock();
2606
2607 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2608 page = radix_tree_deref_slot(slot);
2609 if (!page || radix_tree_exception(page)) {
2610 if (radix_tree_deref_retry(page)) {
2611 slot = radix_tree_iter_retry(&iter);
2612 continue;
2613 }
2614 } else if (page_count(page) - page_mapcount(page) > 1) {
2615 spin_lock_irq(&mapping->tree_lock);
2616 radix_tree_tag_set(&mapping->page_tree, iter.index,
2617 SHMEM_TAG_PINNED);
2618 spin_unlock_irq(&mapping->tree_lock);
2619 }
2620
2621 if (need_resched()) {
2622 slot = radix_tree_iter_resume(slot, &iter);
2623 cond_resched_rcu();
2624 }
2625 }
2626 rcu_read_unlock();
2627 }
2628
2629 /*
2630 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2631 * via get_user_pages(), drivers might have some pending I/O without any active
2632 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2633 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2634 * them to be dropped.
2635 * The caller must guarantee that no new user will acquire writable references
2636 * to those pages to avoid races.
2637 */
2638 static int shmem_wait_for_pins(struct address_space *mapping)
2639 {
2640 struct radix_tree_iter iter;
2641 void **slot;
2642 pgoff_t start;
2643 struct page *page;
2644 int error, scan;
2645
2646 shmem_tag_pins(mapping);
2647
2648 error = 0;
2649 for (scan = 0; scan <= LAST_SCAN; scan++) {
2650 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2651 break;
2652
2653 if (!scan)
2654 lru_add_drain_all();
2655 else if (schedule_timeout_killable((HZ << scan) / 200))
2656 scan = LAST_SCAN;
2657
2658 start = 0;
2659 rcu_read_lock();
2660 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2661 start, SHMEM_TAG_PINNED) {
2662
2663 page = radix_tree_deref_slot(slot);
2664 if (radix_tree_exception(page)) {
2665 if (radix_tree_deref_retry(page)) {
2666 slot = radix_tree_iter_retry(&iter);
2667 continue;
2668 }
2669
2670 page = NULL;
2671 }
2672
2673 if (page &&
2674 page_count(page) - page_mapcount(page) != 1) {
2675 if (scan < LAST_SCAN)
2676 goto continue_resched;
2677
2678 /*
2679 * On the last scan, we clean up all those tags
2680 * we inserted; but make a note that we still
2681 * found pages pinned.
2682 */
2683 error = -EBUSY;
2684 }
2685
2686 spin_lock_irq(&mapping->tree_lock);
2687 radix_tree_tag_clear(&mapping->page_tree,
2688 iter.index, SHMEM_TAG_PINNED);
2689 spin_unlock_irq(&mapping->tree_lock);
2690 continue_resched:
2691 if (need_resched()) {
2692 slot = radix_tree_iter_resume(slot, &iter);
2693 cond_resched_rcu();
2694 }
2695 }
2696 rcu_read_unlock();
2697 }
2698
2699 return error;
2700 }
2701
2702 #define F_ALL_SEALS (F_SEAL_SEAL | \
2703 F_SEAL_SHRINK | \
2704 F_SEAL_GROW | \
2705 F_SEAL_WRITE)
2706
2707 int shmem_add_seals(struct file *file, unsigned int seals)
2708 {
2709 struct inode *inode = file_inode(file);
2710 struct shmem_inode_info *info = SHMEM_I(inode);
2711 int error;
2712
2713 /*
2714 * SEALING
2715 * Sealing allows multiple parties to share a shmem-file but restrict
2716 * access to a specific subset of file operations. Seals can only be
2717 * added, but never removed. This way, mutually untrusted parties can
2718 * share common memory regions with a well-defined policy. A malicious
2719 * peer can thus never perform unwanted operations on a shared object.
2720 *
2721 * Seals are only supported on special shmem-files and always affect
2722 * the whole underlying inode. Once a seal is set, it may prevent some
2723 * kinds of access to the file. Currently, the following seals are
2724 * defined:
2725 * SEAL_SEAL: Prevent further seals from being set on this file
2726 * SEAL_SHRINK: Prevent the file from shrinking
2727 * SEAL_GROW: Prevent the file from growing
2728 * SEAL_WRITE: Prevent write access to the file
2729 *
2730 * As we don't require any trust relationship between two parties, we
2731 * must prevent seals from being removed. Therefore, sealing a file
2732 * only adds a given set of seals to the file, it never touches
2733 * existing seals. Furthermore, the "setting seals"-operation can be
2734 * sealed itself, which basically prevents any further seal from being
2735 * added.
2736 *
2737 * Semantics of sealing are only defined on volatile files. Only
2738 * anonymous shmem files support sealing. More importantly, seals are
2739 * never written to disk. Therefore, there's no plan to support it on
2740 * other file types.
2741 */
2742
2743 if (file->f_op != &shmem_file_operations)
2744 return -EINVAL;
2745 if (!(file->f_mode & FMODE_WRITE))
2746 return -EPERM;
2747 if (seals & ~(unsigned int)F_ALL_SEALS)
2748 return -EINVAL;
2749
2750 inode_lock(inode);
2751
2752 if (info->seals & F_SEAL_SEAL) {
2753 error = -EPERM;
2754 goto unlock;
2755 }
2756
2757 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2758 error = mapping_deny_writable(file->f_mapping);
2759 if (error)
2760 goto unlock;
2761
2762 error = shmem_wait_for_pins(file->f_mapping);
2763 if (error) {
2764 mapping_allow_writable(file->f_mapping);
2765 goto unlock;
2766 }
2767 }
2768
2769 info->seals |= seals;
2770 error = 0;
2771
2772 unlock:
2773 inode_unlock(inode);
2774 return error;
2775 }
2776 EXPORT_SYMBOL_GPL(shmem_add_seals);
2777
2778 int shmem_get_seals(struct file *file)
2779 {
2780 if (file->f_op != &shmem_file_operations)
2781 return -EINVAL;
2782
2783 return SHMEM_I(file_inode(file))->seals;
2784 }
2785 EXPORT_SYMBOL_GPL(shmem_get_seals);
2786
2787 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2788 {
2789 long error;
2790
2791 switch (cmd) {
2792 case F_ADD_SEALS:
2793 /* disallow upper 32bit */
2794 if (arg > UINT_MAX)
2795 return -EINVAL;
2796
2797 error = shmem_add_seals(file, arg);
2798 break;
2799 case F_GET_SEALS:
2800 error = shmem_get_seals(file);
2801 break;
2802 default:
2803 error = -EINVAL;
2804 break;
2805 }
2806
2807 return error;
2808 }
2809
2810 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2811 loff_t len)
2812 {
2813 struct inode *inode = file_inode(file);
2814 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2815 struct shmem_inode_info *info = SHMEM_I(inode);
2816 struct shmem_falloc shmem_falloc;
2817 pgoff_t start, index, end;
2818 int error;
2819
2820 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2821 return -EOPNOTSUPP;
2822
2823 inode_lock(inode);
2824
2825 if (mode & FALLOC_FL_PUNCH_HOLE) {
2826 struct address_space *mapping = file->f_mapping;
2827 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2828 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2829 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2830
2831 /* protected by i_mutex */
2832 if (info->seals & F_SEAL_WRITE) {
2833 error = -EPERM;
2834 goto out;
2835 }
2836
2837 shmem_falloc.waitq = &shmem_falloc_waitq;
2838 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2839 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2840 spin_lock(&inode->i_lock);
2841 inode->i_private = &shmem_falloc;
2842 spin_unlock(&inode->i_lock);
2843
2844 if ((u64)unmap_end > (u64)unmap_start)
2845 unmap_mapping_range(mapping, unmap_start,
2846 1 + unmap_end - unmap_start, 0);
2847 shmem_truncate_range(inode, offset, offset + len - 1);
2848 /* No need to unmap again: hole-punching leaves COWed pages */
2849
2850 spin_lock(&inode->i_lock);
2851 inode->i_private = NULL;
2852 wake_up_all(&shmem_falloc_waitq);
2853 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2854 spin_unlock(&inode->i_lock);
2855 error = 0;
2856 goto out;
2857 }
2858
2859 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2860 error = inode_newsize_ok(inode, offset + len);
2861 if (error)
2862 goto out;
2863
2864 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2865 error = -EPERM;
2866 goto out;
2867 }
2868
2869 start = offset >> PAGE_SHIFT;
2870 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2871 /* Try to avoid a swapstorm if len is impossible to satisfy */
2872 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2873 error = -ENOSPC;
2874 goto out;
2875 }
2876
2877 shmem_falloc.waitq = NULL;
2878 shmem_falloc.start = start;
2879 shmem_falloc.next = start;
2880 shmem_falloc.nr_falloced = 0;
2881 shmem_falloc.nr_unswapped = 0;
2882 spin_lock(&inode->i_lock);
2883 inode->i_private = &shmem_falloc;
2884 spin_unlock(&inode->i_lock);
2885
2886 for (index = start; index < end; index++) {
2887 struct page *page;
2888
2889 /*
2890 * Good, the fallocate(2) manpage permits EINTR: we may have
2891 * been interrupted because we are using up too much memory.
2892 */
2893 if (signal_pending(current))
2894 error = -EINTR;
2895 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2896 error = -ENOMEM;
2897 else
2898 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2899 if (error) {
2900 /* Remove the !PageUptodate pages we added */
2901 if (index > start) {
2902 shmem_undo_range(inode,
2903 (loff_t)start << PAGE_SHIFT,
2904 ((loff_t)index << PAGE_SHIFT) - 1, true);
2905 }
2906 goto undone;
2907 }
2908
2909 /*
2910 * Inform shmem_writepage() how far we have reached.
2911 * No need for lock or barrier: we have the page lock.
2912 */
2913 shmem_falloc.next++;
2914 if (!PageUptodate(page))
2915 shmem_falloc.nr_falloced++;
2916
2917 /*
2918 * If !PageUptodate, leave it that way so that freeable pages
2919 * can be recognized if we need to rollback on error later.
2920 * But set_page_dirty so that memory pressure will swap rather
2921 * than free the pages we are allocating (and SGP_CACHE pages
2922 * might still be clean: we now need to mark those dirty too).
2923 */
2924 set_page_dirty(page);
2925 unlock_page(page);
2926 put_page(page);
2927 cond_resched();
2928 }
2929
2930 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2931 i_size_write(inode, offset + len);
2932 inode->i_ctime = current_time(inode);
2933 undone:
2934 spin_lock(&inode->i_lock);
2935 inode->i_private = NULL;
2936 spin_unlock(&inode->i_lock);
2937 out:
2938 inode_unlock(inode);
2939 return error;
2940 }
2941
2942 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2943 {
2944 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2945
2946 buf->f_type = TMPFS_MAGIC;
2947 buf->f_bsize = PAGE_SIZE;
2948 buf->f_namelen = NAME_MAX;
2949 if (sbinfo->max_blocks) {
2950 buf->f_blocks = sbinfo->max_blocks;
2951 buf->f_bavail =
2952 buf->f_bfree = sbinfo->max_blocks -
2953 percpu_counter_sum(&sbinfo->used_blocks);
2954 }
2955 if (sbinfo->max_inodes) {
2956 buf->f_files = sbinfo->max_inodes;
2957 buf->f_ffree = sbinfo->free_inodes;
2958 }
2959 /* else leave those fields 0 like simple_statfs */
2960 return 0;
2961 }
2962
2963 /*
2964 * File creation. Allocate an inode, and we're done..
2965 */
2966 static int
2967 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2968 {
2969 struct inode *inode;
2970 int error = -ENOSPC;
2971
2972 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2973 if (inode) {
2974 error = simple_acl_create(dir, inode);
2975 if (error)
2976 goto out_iput;
2977 error = security_inode_init_security(inode, dir,
2978 &dentry->d_name,
2979 shmem_initxattrs, NULL);
2980 if (error && error != -EOPNOTSUPP)
2981 goto out_iput;
2982
2983 error = 0;
2984 dir->i_size += BOGO_DIRENT_SIZE;
2985 dir->i_ctime = dir->i_mtime = current_time(dir);
2986 d_instantiate(dentry, inode);
2987 dget(dentry); /* Extra count - pin the dentry in core */
2988 }
2989 return error;
2990 out_iput:
2991 iput(inode);
2992 return error;
2993 }
2994
2995 static int
2996 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2997 {
2998 struct inode *inode;
2999 int error = -ENOSPC;
3000
3001 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3002 if (inode) {
3003 error = security_inode_init_security(inode, dir,
3004 NULL,
3005 shmem_initxattrs, NULL);
3006 if (error && error != -EOPNOTSUPP)
3007 goto out_iput;
3008 error = simple_acl_create(dir, inode);
3009 if (error)
3010 goto out_iput;
3011 d_tmpfile(dentry, inode);
3012 }
3013 return error;
3014 out_iput:
3015 iput(inode);
3016 return error;
3017 }
3018
3019 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3020 {
3021 int error;
3022
3023 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3024 return error;
3025 inc_nlink(dir);
3026 return 0;
3027 }
3028
3029 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3030 bool excl)
3031 {
3032 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3033 }
3034
3035 /*
3036 * Link a file..
3037 */
3038 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3039 {
3040 struct inode *inode = d_inode(old_dentry);
3041 int ret;
3042
3043 /*
3044 * No ordinary (disk based) filesystem counts links as inodes;
3045 * but each new link needs a new dentry, pinning lowmem, and
3046 * tmpfs dentries cannot be pruned until they are unlinked.
3047 */
3048 ret = shmem_reserve_inode(inode->i_sb);
3049 if (ret)
3050 goto out;
3051
3052 dir->i_size += BOGO_DIRENT_SIZE;
3053 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3054 inc_nlink(inode);
3055 ihold(inode); /* New dentry reference */
3056 dget(dentry); /* Extra pinning count for the created dentry */
3057 d_instantiate(dentry, inode);
3058 out:
3059 return ret;
3060 }
3061
3062 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3063 {
3064 struct inode *inode = d_inode(dentry);
3065
3066 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3067 shmem_free_inode(inode->i_sb);
3068
3069 dir->i_size -= BOGO_DIRENT_SIZE;
3070 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3071 drop_nlink(inode);
3072 dput(dentry); /* Undo the count from "create" - this does all the work */
3073 return 0;
3074 }
3075
3076 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3077 {
3078 if (!simple_empty(dentry))
3079 return -ENOTEMPTY;
3080
3081 drop_nlink(d_inode(dentry));
3082 drop_nlink(dir);
3083 return shmem_unlink(dir, dentry);
3084 }
3085
3086 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3087 {
3088 bool old_is_dir = d_is_dir(old_dentry);
3089 bool new_is_dir = d_is_dir(new_dentry);
3090
3091 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3092 if (old_is_dir) {
3093 drop_nlink(old_dir);
3094 inc_nlink(new_dir);
3095 } else {
3096 drop_nlink(new_dir);
3097 inc_nlink(old_dir);
3098 }
3099 }
3100 old_dir->i_ctime = old_dir->i_mtime =
3101 new_dir->i_ctime = new_dir->i_mtime =
3102 d_inode(old_dentry)->i_ctime =
3103 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3104
3105 return 0;
3106 }
3107
3108 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3109 {
3110 struct dentry *whiteout;
3111 int error;
3112
3113 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3114 if (!whiteout)
3115 return -ENOMEM;
3116
3117 error = shmem_mknod(old_dir, whiteout,
3118 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3119 dput(whiteout);
3120 if (error)
3121 return error;
3122
3123 /*
3124 * Cheat and hash the whiteout while the old dentry is still in
3125 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3126 *
3127 * d_lookup() will consistently find one of them at this point,
3128 * not sure which one, but that isn't even important.
3129 */
3130 d_rehash(whiteout);
3131 return 0;
3132 }
3133
3134 /*
3135 * The VFS layer already does all the dentry stuff for rename,
3136 * we just have to decrement the usage count for the target if
3137 * it exists so that the VFS layer correctly free's it when it
3138 * gets overwritten.
3139 */
3140 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3141 {
3142 struct inode *inode = d_inode(old_dentry);
3143 int they_are_dirs = S_ISDIR(inode->i_mode);
3144
3145 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3146 return -EINVAL;
3147
3148 if (flags & RENAME_EXCHANGE)
3149 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3150
3151 if (!simple_empty(new_dentry))
3152 return -ENOTEMPTY;
3153
3154 if (flags & RENAME_WHITEOUT) {
3155 int error;
3156
3157 error = shmem_whiteout(old_dir, old_dentry);
3158 if (error)
3159 return error;
3160 }
3161
3162 if (d_really_is_positive(new_dentry)) {
3163 (void) shmem_unlink(new_dir, new_dentry);
3164 if (they_are_dirs) {
3165 drop_nlink(d_inode(new_dentry));
3166 drop_nlink(old_dir);
3167 }
3168 } else if (they_are_dirs) {
3169 drop_nlink(old_dir);
3170 inc_nlink(new_dir);
3171 }
3172
3173 old_dir->i_size -= BOGO_DIRENT_SIZE;
3174 new_dir->i_size += BOGO_DIRENT_SIZE;
3175 old_dir->i_ctime = old_dir->i_mtime =
3176 new_dir->i_ctime = new_dir->i_mtime =
3177 inode->i_ctime = current_time(old_dir);
3178 return 0;
3179 }
3180
3181 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3182 {
3183 int error;
3184 int len;
3185 struct inode *inode;
3186 struct page *page;
3187 struct shmem_inode_info *info;
3188
3189 len = strlen(symname) + 1;
3190 if (len > PAGE_SIZE)
3191 return -ENAMETOOLONG;
3192
3193 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3194 if (!inode)
3195 return -ENOSPC;
3196
3197 error = security_inode_init_security(inode, dir, &dentry->d_name,
3198 shmem_initxattrs, NULL);
3199 if (error) {
3200 if (error != -EOPNOTSUPP) {
3201 iput(inode);
3202 return error;
3203 }
3204 error = 0;
3205 }
3206
3207 info = SHMEM_I(inode);
3208 inode->i_size = len-1;
3209 if (len <= SHORT_SYMLINK_LEN) {
3210 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3211 if (!inode->i_link) {
3212 iput(inode);
3213 return -ENOMEM;
3214 }
3215 inode->i_op = &shmem_short_symlink_operations;
3216 } else {
3217 inode_nohighmem(inode);
3218 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3219 if (error) {
3220 iput(inode);
3221 return error;
3222 }
3223 inode->i_mapping->a_ops = &shmem_aops;
3224 inode->i_op = &shmem_symlink_inode_operations;
3225 memcpy(page_address(page), symname, len);
3226 SetPageUptodate(page);
3227 set_page_dirty(page);
3228 unlock_page(page);
3229 put_page(page);
3230 }
3231 dir->i_size += BOGO_DIRENT_SIZE;
3232 dir->i_ctime = dir->i_mtime = current_time(dir);
3233 d_instantiate(dentry, inode);
3234 dget(dentry);
3235 return 0;
3236 }
3237
3238 static void shmem_put_link(void *arg)
3239 {
3240 mark_page_accessed(arg);
3241 put_page(arg);
3242 }
3243
3244 static const char *shmem_get_link(struct dentry *dentry,
3245 struct inode *inode,
3246 struct delayed_call *done)
3247 {
3248 struct page *page = NULL;
3249 int error;
3250 if (!dentry) {
3251 page = find_get_page(inode->i_mapping, 0);
3252 if (!page)
3253 return ERR_PTR(-ECHILD);
3254 if (!PageUptodate(page)) {
3255 put_page(page);
3256 return ERR_PTR(-ECHILD);
3257 }
3258 } else {
3259 error = shmem_getpage(inode, 0, &page, SGP_READ);
3260 if (error)
3261 return ERR_PTR(error);
3262 unlock_page(page);
3263 }
3264 set_delayed_call(done, shmem_put_link, page);
3265 return page_address(page);
3266 }
3267
3268 #ifdef CONFIG_TMPFS_XATTR
3269 /*
3270 * Superblocks without xattr inode operations may get some security.* xattr
3271 * support from the LSM "for free". As soon as we have any other xattrs
3272 * like ACLs, we also need to implement the security.* handlers at
3273 * filesystem level, though.
3274 */
3275
3276 /*
3277 * Callback for security_inode_init_security() for acquiring xattrs.
3278 */
3279 static int shmem_initxattrs(struct inode *inode,
3280 const struct xattr *xattr_array,
3281 void *fs_info)
3282 {
3283 struct shmem_inode_info *info = SHMEM_I(inode);
3284 const struct xattr *xattr;
3285 struct simple_xattr *new_xattr;
3286 size_t len;
3287
3288 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3289 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3290 if (!new_xattr)
3291 return -ENOMEM;
3292
3293 len = strlen(xattr->name) + 1;
3294 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3295 GFP_KERNEL);
3296 if (!new_xattr->name) {
3297 kfree(new_xattr);
3298 return -ENOMEM;
3299 }
3300
3301 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3302 XATTR_SECURITY_PREFIX_LEN);
3303 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3304 xattr->name, len);
3305
3306 simple_xattr_list_add(&info->xattrs, new_xattr);
3307 }
3308
3309 return 0;
3310 }
3311
3312 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3313 struct dentry *unused, struct inode *inode,
3314 const char *name, void *buffer, size_t size)
3315 {
3316 struct shmem_inode_info *info = SHMEM_I(inode);
3317
3318 name = xattr_full_name(handler, name);
3319 return simple_xattr_get(&info->xattrs, name, buffer, size);
3320 }
3321
3322 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3323 struct dentry *unused, struct inode *inode,
3324 const char *name, const void *value,
3325 size_t size, int flags)
3326 {
3327 struct shmem_inode_info *info = SHMEM_I(inode);
3328
3329 name = xattr_full_name(handler, name);
3330 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3331 }
3332
3333 static const struct xattr_handler shmem_security_xattr_handler = {
3334 .prefix = XATTR_SECURITY_PREFIX,
3335 .get = shmem_xattr_handler_get,
3336 .set = shmem_xattr_handler_set,
3337 };
3338
3339 static const struct xattr_handler shmem_trusted_xattr_handler = {
3340 .prefix = XATTR_TRUSTED_PREFIX,
3341 .get = shmem_xattr_handler_get,
3342 .set = shmem_xattr_handler_set,
3343 };
3344
3345 static const struct xattr_handler *shmem_xattr_handlers[] = {
3346 #ifdef CONFIG_TMPFS_POSIX_ACL
3347 &posix_acl_access_xattr_handler,
3348 &posix_acl_default_xattr_handler,
3349 #endif
3350 &shmem_security_xattr_handler,
3351 &shmem_trusted_xattr_handler,
3352 NULL
3353 };
3354
3355 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3356 {
3357 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3358 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3359 }
3360 #endif /* CONFIG_TMPFS_XATTR */
3361
3362 static const struct inode_operations shmem_short_symlink_operations = {
3363 .get_link = simple_get_link,
3364 #ifdef CONFIG_TMPFS_XATTR
3365 .listxattr = shmem_listxattr,
3366 #endif
3367 };
3368
3369 static const struct inode_operations shmem_symlink_inode_operations = {
3370 .get_link = shmem_get_link,
3371 #ifdef CONFIG_TMPFS_XATTR
3372 .listxattr = shmem_listxattr,
3373 #endif
3374 };
3375
3376 static struct dentry *shmem_get_parent(struct dentry *child)
3377 {
3378 return ERR_PTR(-ESTALE);
3379 }
3380
3381 static int shmem_match(struct inode *ino, void *vfh)
3382 {
3383 __u32 *fh = vfh;
3384 __u64 inum = fh[2];
3385 inum = (inum << 32) | fh[1];
3386 return ino->i_ino == inum && fh[0] == ino->i_generation;
3387 }
3388
3389 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3390 struct fid *fid, int fh_len, int fh_type)
3391 {
3392 struct inode *inode;
3393 struct dentry *dentry = NULL;
3394 u64 inum;
3395
3396 if (fh_len < 3)
3397 return NULL;
3398
3399 inum = fid->raw[2];
3400 inum = (inum << 32) | fid->raw[1];
3401
3402 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3403 shmem_match, fid->raw);
3404 if (inode) {
3405 dentry = d_find_alias(inode);
3406 iput(inode);
3407 }
3408
3409 return dentry;
3410 }
3411
3412 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3413 struct inode *parent)
3414 {
3415 if (*len < 3) {
3416 *len = 3;
3417 return FILEID_INVALID;
3418 }
3419
3420 if (inode_unhashed(inode)) {
3421 /* Unfortunately insert_inode_hash is not idempotent,
3422 * so as we hash inodes here rather than at creation
3423 * time, we need a lock to ensure we only try
3424 * to do it once
3425 */
3426 static DEFINE_SPINLOCK(lock);
3427 spin_lock(&lock);
3428 if (inode_unhashed(inode))
3429 __insert_inode_hash(inode,
3430 inode->i_ino + inode->i_generation);
3431 spin_unlock(&lock);
3432 }
3433
3434 fh[0] = inode->i_generation;
3435 fh[1] = inode->i_ino;
3436 fh[2] = ((__u64)inode->i_ino) >> 32;
3437
3438 *len = 3;
3439 return 1;
3440 }
3441
3442 static const struct export_operations shmem_export_ops = {
3443 .get_parent = shmem_get_parent,
3444 .encode_fh = shmem_encode_fh,
3445 .fh_to_dentry = shmem_fh_to_dentry,
3446 };
3447
3448 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3449 bool remount)
3450 {
3451 char *this_char, *value, *rest;
3452 struct mempolicy *mpol = NULL;
3453 uid_t uid;
3454 gid_t gid;
3455
3456 while (options != NULL) {
3457 this_char = options;
3458 for (;;) {
3459 /*
3460 * NUL-terminate this option: unfortunately,
3461 * mount options form a comma-separated list,
3462 * but mpol's nodelist may also contain commas.
3463 */
3464 options = strchr(options, ',');
3465 if (options == NULL)
3466 break;
3467 options++;
3468 if (!isdigit(*options)) {
3469 options[-1] = '\0';
3470 break;
3471 }
3472 }
3473 if (!*this_char)
3474 continue;
3475 if ((value = strchr(this_char,'=')) != NULL) {
3476 *value++ = 0;
3477 } else {
3478 pr_err("tmpfs: No value for mount option '%s'\n",
3479 this_char);
3480 goto error;
3481 }
3482
3483 if (!strcmp(this_char,"size")) {
3484 unsigned long long size;
3485 size = memparse(value,&rest);
3486 if (*rest == '%') {
3487 size <<= PAGE_SHIFT;
3488 size *= totalram_pages;
3489 do_div(size, 100);
3490 rest++;
3491 }
3492 if (*rest)
3493 goto bad_val;
3494 sbinfo->max_blocks =
3495 DIV_ROUND_UP(size, PAGE_SIZE);
3496 } else if (!strcmp(this_char,"nr_blocks")) {
3497 sbinfo->max_blocks = memparse(value, &rest);
3498 if (*rest)
3499 goto bad_val;
3500 } else if (!strcmp(this_char,"nr_inodes")) {
3501 sbinfo->max_inodes = memparse(value, &rest);
3502 if (*rest)
3503 goto bad_val;
3504 } else if (!strcmp(this_char,"mode")) {
3505 if (remount)
3506 continue;
3507 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3508 if (*rest)
3509 goto bad_val;
3510 } else if (!strcmp(this_char,"uid")) {
3511 if (remount)
3512 continue;
3513 uid = simple_strtoul(value, &rest, 0);
3514 if (*rest)
3515 goto bad_val;
3516 sbinfo->uid = make_kuid(current_user_ns(), uid);
3517 if (!uid_valid(sbinfo->uid))
3518 goto bad_val;
3519 } else if (!strcmp(this_char,"gid")) {
3520 if (remount)
3521 continue;
3522 gid = simple_strtoul(value, &rest, 0);
3523 if (*rest)
3524 goto bad_val;
3525 sbinfo->gid = make_kgid(current_user_ns(), gid);
3526 if (!gid_valid(sbinfo->gid))
3527 goto bad_val;
3528 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3529 } else if (!strcmp(this_char, "huge")) {
3530 int huge;
3531 huge = shmem_parse_huge(value);
3532 if (huge < 0)
3533 goto bad_val;
3534 if (!has_transparent_hugepage() &&
3535 huge != SHMEM_HUGE_NEVER)
3536 goto bad_val;
3537 sbinfo->huge = huge;
3538 #endif
3539 #ifdef CONFIG_NUMA
3540 } else if (!strcmp(this_char,"mpol")) {
3541 mpol_put(mpol);
3542 mpol = NULL;
3543 if (mpol_parse_str(value, &mpol))
3544 goto bad_val;
3545 #endif
3546 } else {
3547 pr_err("tmpfs: Bad mount option %s\n", this_char);
3548 goto error;
3549 }
3550 }
3551 sbinfo->mpol = mpol;
3552 return 0;
3553
3554 bad_val:
3555 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3556 value, this_char);
3557 error:
3558 mpol_put(mpol);
3559 return 1;
3560
3561 }
3562
3563 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3564 {
3565 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3566 struct shmem_sb_info config = *sbinfo;
3567 unsigned long inodes;
3568 int error = -EINVAL;
3569
3570 config.mpol = NULL;
3571 if (shmem_parse_options(data, &config, true))
3572 return error;
3573
3574 spin_lock(&sbinfo->stat_lock);
3575 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3576 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3577 goto out;
3578 if (config.max_inodes < inodes)
3579 goto out;
3580 /*
3581 * Those tests disallow limited->unlimited while any are in use;
3582 * but we must separately disallow unlimited->limited, because
3583 * in that case we have no record of how much is already in use.
3584 */
3585 if (config.max_blocks && !sbinfo->max_blocks)
3586 goto out;
3587 if (config.max_inodes && !sbinfo->max_inodes)
3588 goto out;
3589
3590 error = 0;
3591 sbinfo->huge = config.huge;
3592 sbinfo->max_blocks = config.max_blocks;
3593 sbinfo->max_inodes = config.max_inodes;
3594 sbinfo->free_inodes = config.max_inodes - inodes;
3595
3596 /*
3597 * Preserve previous mempolicy unless mpol remount option was specified.
3598 */
3599 if (config.mpol) {
3600 mpol_put(sbinfo->mpol);
3601 sbinfo->mpol = config.mpol; /* transfers initial ref */
3602 }
3603 out:
3604 spin_unlock(&sbinfo->stat_lock);
3605 return error;
3606 }
3607
3608 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3609 {
3610 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3611
3612 if (sbinfo->max_blocks != shmem_default_max_blocks())
3613 seq_printf(seq, ",size=%luk",
3614 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3615 if (sbinfo->max_inodes != shmem_default_max_inodes())
3616 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3617 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3618 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3619 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3620 seq_printf(seq, ",uid=%u",
3621 from_kuid_munged(&init_user_ns, sbinfo->uid));
3622 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3623 seq_printf(seq, ",gid=%u",
3624 from_kgid_munged(&init_user_ns, sbinfo->gid));
3625 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3626 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3627 if (sbinfo->huge)
3628 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3629 #endif
3630 shmem_show_mpol(seq, sbinfo->mpol);
3631 return 0;
3632 }
3633
3634 #define MFD_NAME_PREFIX "memfd:"
3635 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3636 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3637
3638 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3639
3640 SYSCALL_DEFINE2(memfd_create,
3641 const char __user *, uname,
3642 unsigned int, flags)
3643 {
3644 struct shmem_inode_info *info;
3645 struct file *file;
3646 int fd, error;
3647 char *name;
3648 long len;
3649
3650 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3651 return -EINVAL;
3652
3653 /* length includes terminating zero */
3654 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3655 if (len <= 0)
3656 return -EFAULT;
3657 if (len > MFD_NAME_MAX_LEN + 1)
3658 return -EINVAL;
3659
3660 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3661 if (!name)
3662 return -ENOMEM;
3663
3664 strcpy(name, MFD_NAME_PREFIX);
3665 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3666 error = -EFAULT;
3667 goto err_name;
3668 }
3669
3670 /* terminating-zero may have changed after strnlen_user() returned */
3671 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3672 error = -EFAULT;
3673 goto err_name;
3674 }
3675
3676 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3677 if (fd < 0) {
3678 error = fd;
3679 goto err_name;
3680 }
3681
3682 file = shmem_file_setup(name, 0, VM_NORESERVE);
3683 if (IS_ERR(file)) {
3684 error = PTR_ERR(file);
3685 goto err_fd;
3686 }
3687 info = SHMEM_I(file_inode(file));
3688 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3689 file->f_flags |= O_RDWR | O_LARGEFILE;
3690 if (flags & MFD_ALLOW_SEALING)
3691 info->seals &= ~F_SEAL_SEAL;
3692
3693 fd_install(fd, file);
3694 kfree(name);
3695 return fd;
3696
3697 err_fd:
3698 put_unused_fd(fd);
3699 err_name:
3700 kfree(name);
3701 return error;
3702 }
3703
3704 #endif /* CONFIG_TMPFS */
3705
3706 static void shmem_put_super(struct super_block *sb)
3707 {
3708 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3709
3710 percpu_counter_destroy(&sbinfo->used_blocks);
3711 mpol_put(sbinfo->mpol);
3712 kfree(sbinfo);
3713 sb->s_fs_info = NULL;
3714 }
3715
3716 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3717 {
3718 struct inode *inode;
3719 struct shmem_sb_info *sbinfo;
3720 int err = -ENOMEM;
3721
3722 /* Round up to L1_CACHE_BYTES to resist false sharing */
3723 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3724 L1_CACHE_BYTES), GFP_KERNEL);
3725 if (!sbinfo)
3726 return -ENOMEM;
3727
3728 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3729 sbinfo->uid = current_fsuid();
3730 sbinfo->gid = current_fsgid();
3731 sb->s_fs_info = sbinfo;
3732
3733 #ifdef CONFIG_TMPFS
3734 /*
3735 * Per default we only allow half of the physical ram per
3736 * tmpfs instance, limiting inodes to one per page of lowmem;
3737 * but the internal instance is left unlimited.
3738 */
3739 if (!(sb->s_flags & MS_KERNMOUNT)) {
3740 sbinfo->max_blocks = shmem_default_max_blocks();
3741 sbinfo->max_inodes = shmem_default_max_inodes();
3742 if (shmem_parse_options(data, sbinfo, false)) {
3743 err = -EINVAL;
3744 goto failed;
3745 }
3746 } else {
3747 sb->s_flags |= MS_NOUSER;
3748 }
3749 sb->s_export_op = &shmem_export_ops;
3750 sb->s_flags |= MS_NOSEC;
3751 #else
3752 sb->s_flags |= MS_NOUSER;
3753 #endif
3754
3755 spin_lock_init(&sbinfo->stat_lock);
3756 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3757 goto failed;
3758 sbinfo->free_inodes = sbinfo->max_inodes;
3759 spin_lock_init(&sbinfo->shrinklist_lock);
3760 INIT_LIST_HEAD(&sbinfo->shrinklist);
3761
3762 sb->s_maxbytes = MAX_LFS_FILESIZE;
3763 sb->s_blocksize = PAGE_SIZE;
3764 sb->s_blocksize_bits = PAGE_SHIFT;
3765 sb->s_magic = TMPFS_MAGIC;
3766 sb->s_op = &shmem_ops;
3767 sb->s_time_gran = 1;
3768 #ifdef CONFIG_TMPFS_XATTR
3769 sb->s_xattr = shmem_xattr_handlers;
3770 #endif
3771 #ifdef CONFIG_TMPFS_POSIX_ACL
3772 sb->s_flags |= MS_POSIXACL;
3773 #endif
3774 uuid_gen(&sb->s_uuid);
3775
3776 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3777 if (!inode)
3778 goto failed;
3779 inode->i_uid = sbinfo->uid;
3780 inode->i_gid = sbinfo->gid;
3781 sb->s_root = d_make_root(inode);
3782 if (!sb->s_root)
3783 goto failed;
3784 return 0;
3785
3786 failed:
3787 shmem_put_super(sb);
3788 return err;
3789 }
3790
3791 static struct kmem_cache *shmem_inode_cachep;
3792
3793 static struct inode *shmem_alloc_inode(struct super_block *sb)
3794 {
3795 struct shmem_inode_info *info;
3796 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3797 if (!info)
3798 return NULL;
3799 return &info->vfs_inode;
3800 }
3801
3802 static void shmem_destroy_callback(struct rcu_head *head)
3803 {
3804 struct inode *inode = container_of(head, struct inode, i_rcu);
3805 if (S_ISLNK(inode->i_mode))
3806 kfree(inode->i_link);
3807 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3808 }
3809
3810 static void shmem_destroy_inode(struct inode *inode)
3811 {
3812 if (S_ISREG(inode->i_mode))
3813 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3814 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3815 }
3816
3817 static void shmem_init_inode(void *foo)
3818 {
3819 struct shmem_inode_info *info = foo;
3820 inode_init_once(&info->vfs_inode);
3821 }
3822
3823 static int shmem_init_inodecache(void)
3824 {
3825 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3826 sizeof(struct shmem_inode_info),
3827 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3828 return 0;
3829 }
3830
3831 static void shmem_destroy_inodecache(void)
3832 {
3833 kmem_cache_destroy(shmem_inode_cachep);
3834 }
3835
3836 static const struct address_space_operations shmem_aops = {
3837 .writepage = shmem_writepage,
3838 .set_page_dirty = __set_page_dirty_no_writeback,
3839 #ifdef CONFIG_TMPFS
3840 .write_begin = shmem_write_begin,
3841 .write_end = shmem_write_end,
3842 #endif
3843 #ifdef CONFIG_MIGRATION
3844 .migratepage = migrate_page,
3845 #endif
3846 .error_remove_page = generic_error_remove_page,
3847 };
3848
3849 static const struct file_operations shmem_file_operations = {
3850 .mmap = shmem_mmap,
3851 .get_unmapped_area = shmem_get_unmapped_area,
3852 #ifdef CONFIG_TMPFS
3853 .llseek = shmem_file_llseek,
3854 .read_iter = shmem_file_read_iter,
3855 .write_iter = generic_file_write_iter,
3856 .fsync = noop_fsync,
3857 .splice_read = generic_file_splice_read,
3858 .splice_write = iter_file_splice_write,
3859 .fallocate = shmem_fallocate,
3860 #endif
3861 };
3862
3863 static const struct inode_operations shmem_inode_operations = {
3864 .getattr = shmem_getattr,
3865 .setattr = shmem_setattr,
3866 #ifdef CONFIG_TMPFS_XATTR
3867 .listxattr = shmem_listxattr,
3868 .set_acl = simple_set_acl,
3869 #endif
3870 };
3871
3872 static const struct inode_operations shmem_dir_inode_operations = {
3873 #ifdef CONFIG_TMPFS
3874 .create = shmem_create,
3875 .lookup = simple_lookup,
3876 .link = shmem_link,
3877 .unlink = shmem_unlink,
3878 .symlink = shmem_symlink,
3879 .mkdir = shmem_mkdir,
3880 .rmdir = shmem_rmdir,
3881 .mknod = shmem_mknod,
3882 .rename = shmem_rename2,
3883 .tmpfile = shmem_tmpfile,
3884 #endif
3885 #ifdef CONFIG_TMPFS_XATTR
3886 .listxattr = shmem_listxattr,
3887 #endif
3888 #ifdef CONFIG_TMPFS_POSIX_ACL
3889 .setattr = shmem_setattr,
3890 .set_acl = simple_set_acl,
3891 #endif
3892 };
3893
3894 static const struct inode_operations shmem_special_inode_operations = {
3895 #ifdef CONFIG_TMPFS_XATTR
3896 .listxattr = shmem_listxattr,
3897 #endif
3898 #ifdef CONFIG_TMPFS_POSIX_ACL
3899 .setattr = shmem_setattr,
3900 .set_acl = simple_set_acl,
3901 #endif
3902 };
3903
3904 static const struct super_operations shmem_ops = {
3905 .alloc_inode = shmem_alloc_inode,
3906 .destroy_inode = shmem_destroy_inode,
3907 #ifdef CONFIG_TMPFS
3908 .statfs = shmem_statfs,
3909 .remount_fs = shmem_remount_fs,
3910 .show_options = shmem_show_options,
3911 #endif
3912 .evict_inode = shmem_evict_inode,
3913 .drop_inode = generic_delete_inode,
3914 .put_super = shmem_put_super,
3915 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3916 .nr_cached_objects = shmem_unused_huge_count,
3917 .free_cached_objects = shmem_unused_huge_scan,
3918 #endif
3919 };
3920
3921 static const struct vm_operations_struct shmem_vm_ops = {
3922 .fault = shmem_fault,
3923 .map_pages = filemap_map_pages,
3924 #ifdef CONFIG_NUMA
3925 .set_policy = shmem_set_policy,
3926 .get_policy = shmem_get_policy,
3927 #endif
3928 };
3929
3930 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3931 int flags, const char *dev_name, void *data)
3932 {
3933 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3934 }
3935
3936 static struct file_system_type shmem_fs_type = {
3937 .owner = THIS_MODULE,
3938 .name = "tmpfs",
3939 .mount = shmem_mount,
3940 .kill_sb = kill_litter_super,
3941 .fs_flags = FS_USERNS_MOUNT,
3942 };
3943
3944 int __init shmem_init(void)
3945 {
3946 int error;
3947
3948 /* If rootfs called this, don't re-init */
3949 if (shmem_inode_cachep)
3950 return 0;
3951
3952 error = shmem_init_inodecache();
3953 if (error)
3954 goto out3;
3955
3956 error = register_filesystem(&shmem_fs_type);
3957 if (error) {
3958 pr_err("Could not register tmpfs\n");
3959 goto out2;
3960 }
3961
3962 shm_mnt = kern_mount(&shmem_fs_type);
3963 if (IS_ERR(shm_mnt)) {
3964 error = PTR_ERR(shm_mnt);
3965 pr_err("Could not kern_mount tmpfs\n");
3966 goto out1;
3967 }
3968
3969 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3970 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3971 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3972 else
3973 shmem_huge = 0; /* just in case it was patched */
3974 #endif
3975 return 0;
3976
3977 out1:
3978 unregister_filesystem(&shmem_fs_type);
3979 out2:
3980 shmem_destroy_inodecache();
3981 out3:
3982 shm_mnt = ERR_PTR(error);
3983 return error;
3984 }
3985
3986 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3987 static ssize_t shmem_enabled_show(struct kobject *kobj,
3988 struct kobj_attribute *attr, char *buf)
3989 {
3990 int values[] = {
3991 SHMEM_HUGE_ALWAYS,
3992 SHMEM_HUGE_WITHIN_SIZE,
3993 SHMEM_HUGE_ADVISE,
3994 SHMEM_HUGE_NEVER,
3995 SHMEM_HUGE_DENY,
3996 SHMEM_HUGE_FORCE,
3997 };
3998 int i, count;
3999
4000 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4001 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4002
4003 count += sprintf(buf + count, fmt,
4004 shmem_format_huge(values[i]));
4005 }
4006 buf[count - 1] = '\n';
4007 return count;
4008 }
4009
4010 static ssize_t shmem_enabled_store(struct kobject *kobj,
4011 struct kobj_attribute *attr, const char *buf, size_t count)
4012 {
4013 char tmp[16];
4014 int huge;
4015
4016 if (count + 1 > sizeof(tmp))
4017 return -EINVAL;
4018 memcpy(tmp, buf, count);
4019 tmp[count] = '\0';
4020 if (count && tmp[count - 1] == '\n')
4021 tmp[count - 1] = '\0';
4022
4023 huge = shmem_parse_huge(tmp);
4024 if (huge == -EINVAL)
4025 return -EINVAL;
4026 if (!has_transparent_hugepage() &&
4027 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4028 return -EINVAL;
4029
4030 shmem_huge = huge;
4031 if (shmem_huge > SHMEM_HUGE_DENY)
4032 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4033 return count;
4034 }
4035
4036 struct kobj_attribute shmem_enabled_attr =
4037 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4038 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4039
4040 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4041 bool shmem_huge_enabled(struct vm_area_struct *vma)
4042 {
4043 struct inode *inode = file_inode(vma->vm_file);
4044 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4045 loff_t i_size;
4046 pgoff_t off;
4047
4048 if (shmem_huge == SHMEM_HUGE_FORCE)
4049 return true;
4050 if (shmem_huge == SHMEM_HUGE_DENY)
4051 return false;
4052 switch (sbinfo->huge) {
4053 case SHMEM_HUGE_NEVER:
4054 return false;
4055 case SHMEM_HUGE_ALWAYS:
4056 return true;
4057 case SHMEM_HUGE_WITHIN_SIZE:
4058 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4059 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4060 if (i_size >= HPAGE_PMD_SIZE &&
4061 i_size >> PAGE_SHIFT >= off)
4062 return true;
4063 case SHMEM_HUGE_ADVISE:
4064 /* TODO: implement fadvise() hints */
4065 return (vma->vm_flags & VM_HUGEPAGE);
4066 default:
4067 VM_BUG_ON(1);
4068 return false;
4069 }
4070 }
4071 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4072
4073 #else /* !CONFIG_SHMEM */
4074
4075 /*
4076 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4077 *
4078 * This is intended for small system where the benefits of the full
4079 * shmem code (swap-backed and resource-limited) are outweighed by
4080 * their complexity. On systems without swap this code should be
4081 * effectively equivalent, but much lighter weight.
4082 */
4083
4084 static struct file_system_type shmem_fs_type = {
4085 .name = "tmpfs",
4086 .mount = ramfs_mount,
4087 .kill_sb = kill_litter_super,
4088 .fs_flags = FS_USERNS_MOUNT,
4089 };
4090
4091 int __init shmem_init(void)
4092 {
4093 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4094
4095 shm_mnt = kern_mount(&shmem_fs_type);
4096 BUG_ON(IS_ERR(shm_mnt));
4097
4098 return 0;
4099 }
4100
4101 int shmem_unuse(swp_entry_t swap, struct page *page)
4102 {
4103 return 0;
4104 }
4105
4106 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4107 {
4108 return 0;
4109 }
4110
4111 void shmem_unlock_mapping(struct address_space *mapping)
4112 {
4113 }
4114
4115 #ifdef CONFIG_MMU
4116 unsigned long shmem_get_unmapped_area(struct file *file,
4117 unsigned long addr, unsigned long len,
4118 unsigned long pgoff, unsigned long flags)
4119 {
4120 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4121 }
4122 #endif
4123
4124 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4125 {
4126 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4127 }
4128 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4129
4130 #define shmem_vm_ops generic_file_vm_ops
4131 #define shmem_file_operations ramfs_file_operations
4132 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4133 #define shmem_acct_size(flags, size) 0
4134 #define shmem_unacct_size(flags, size) do {} while (0)
4135
4136 #endif /* CONFIG_SHMEM */
4137
4138 /* common code */
4139
4140 static const struct dentry_operations anon_ops = {
4141 .d_dname = simple_dname
4142 };
4143
4144 static struct file *__shmem_file_setup(const char *name, loff_t size,
4145 unsigned long flags, unsigned int i_flags)
4146 {
4147 struct file *res;
4148 struct inode *inode;
4149 struct path path;
4150 struct super_block *sb;
4151 struct qstr this;
4152
4153 if (IS_ERR(shm_mnt))
4154 return ERR_CAST(shm_mnt);
4155
4156 if (size < 0 || size > MAX_LFS_FILESIZE)
4157 return ERR_PTR(-EINVAL);
4158
4159 if (shmem_acct_size(flags, size))
4160 return ERR_PTR(-ENOMEM);
4161
4162 res = ERR_PTR(-ENOMEM);
4163 this.name = name;
4164 this.len = strlen(name);
4165 this.hash = 0; /* will go */
4166 sb = shm_mnt->mnt_sb;
4167 path.mnt = mntget(shm_mnt);
4168 path.dentry = d_alloc_pseudo(sb, &this);
4169 if (!path.dentry)
4170 goto put_memory;
4171 d_set_d_op(path.dentry, &anon_ops);
4172
4173 res = ERR_PTR(-ENOSPC);
4174 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4175 if (!inode)
4176 goto put_memory;
4177
4178 inode->i_flags |= i_flags;
4179 d_instantiate(path.dentry, inode);
4180 inode->i_size = size;
4181 clear_nlink(inode); /* It is unlinked */
4182 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4183 if (IS_ERR(res))
4184 goto put_path;
4185
4186 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4187 &shmem_file_operations);
4188 if (IS_ERR(res))
4189 goto put_path;
4190
4191 return res;
4192
4193 put_memory:
4194 shmem_unacct_size(flags, size);
4195 put_path:
4196 path_put(&path);
4197 return res;
4198 }
4199
4200 /**
4201 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4202 * kernel internal. There will be NO LSM permission checks against the
4203 * underlying inode. So users of this interface must do LSM checks at a
4204 * higher layer. The users are the big_key and shm implementations. LSM
4205 * checks are provided at the key or shm level rather than the inode.
4206 * @name: name for dentry (to be seen in /proc/<pid>/maps
4207 * @size: size to be set for the file
4208 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4209 */
4210 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4211 {
4212 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4213 }
4214
4215 /**
4216 * shmem_file_setup - get an unlinked file living in tmpfs
4217 * @name: name for dentry (to be seen in /proc/<pid>/maps
4218 * @size: size to be set for the file
4219 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4220 */
4221 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4222 {
4223 return __shmem_file_setup(name, size, flags, 0);
4224 }
4225 EXPORT_SYMBOL_GPL(shmem_file_setup);
4226
4227 /**
4228 * shmem_zero_setup - setup a shared anonymous mapping
4229 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4230 */
4231 int shmem_zero_setup(struct vm_area_struct *vma)
4232 {
4233 struct file *file;
4234 loff_t size = vma->vm_end - vma->vm_start;
4235
4236 /*
4237 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4238 * between XFS directory reading and selinux: since this file is only
4239 * accessible to the user through its mapping, use S_PRIVATE flag to
4240 * bypass file security, in the same way as shmem_kernel_file_setup().
4241 */
4242 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4243 if (IS_ERR(file))
4244 return PTR_ERR(file);
4245
4246 if (vma->vm_file)
4247 fput(vma->vm_file);
4248 vma->vm_file = file;
4249 vma->vm_ops = &shmem_vm_ops;
4250
4251 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4252 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4253 (vma->vm_end & HPAGE_PMD_MASK)) {
4254 khugepaged_enter(vma, vma->vm_flags);
4255 }
4256
4257 return 0;
4258 }
4259
4260 /**
4261 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4262 * @mapping: the page's address_space
4263 * @index: the page index
4264 * @gfp: the page allocator flags to use if allocating
4265 *
4266 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4267 * with any new page allocations done using the specified allocation flags.
4268 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4269 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4270 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4271 *
4272 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4273 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4274 */
4275 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4276 pgoff_t index, gfp_t gfp)
4277 {
4278 #ifdef CONFIG_SHMEM
4279 struct inode *inode = mapping->host;
4280 struct page *page;
4281 int error;
4282
4283 BUG_ON(mapping->a_ops != &shmem_aops);
4284 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4285 gfp, NULL, NULL, NULL);
4286 if (error)
4287 page = ERR_PTR(error);
4288 else
4289 unlock_page(page);
4290 return page;
4291 #else
4292 /*
4293 * The tiny !SHMEM case uses ramfs without swap
4294 */
4295 return read_cache_page_gfp(mapping, index, gfp);
4296 #endif
4297 }
4298 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);