]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/shmem.c
mempolicy: rework shmem mpol parsing and display
[mirror_ubuntu-jammy-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20 /*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 #include <linux/seq_file.h>
53
54 #include <asm/uaccess.h>
55 #include <asm/div64.h>
56 #include <asm/pgtable.h>
57
58 /* This magic number is used in glibc for posix shared memory */
59 #define TMPFS_MAGIC 0x01021994
60
61 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
64
65 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67
68 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69
70 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71 #define SHMEM_PAGEIN VM_READ
72 #define SHMEM_TRUNCATE VM_WRITE
73
74 /* Definition to limit shmem_truncate's steps between cond_rescheds */
75 #define LATENCY_LIMIT 64
76
77 /* Pretend that each entry is of this size in directory's i_size */
78 #define BOGO_DIRENT_SIZE 20
79
80 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81 enum sgp_type {
82 SGP_READ, /* don't exceed i_size, don't allocate page */
83 SGP_CACHE, /* don't exceed i_size, may allocate page */
84 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
85 SGP_WRITE, /* may exceed i_size, may allocate page */
86 };
87
88 #ifdef CONFIG_TMPFS
89 static unsigned long shmem_default_max_blocks(void)
90 {
91 return totalram_pages / 2;
92 }
93
94 static unsigned long shmem_default_max_inodes(void)
95 {
96 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
97 }
98 #endif
99
100 static int shmem_getpage(struct inode *inode, unsigned long idx,
101 struct page **pagep, enum sgp_type sgp, int *type);
102
103 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
104 {
105 /*
106 * The above definition of ENTRIES_PER_PAGE, and the use of
107 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
108 * might be reconsidered if it ever diverges from PAGE_SIZE.
109 *
110 * Mobility flags are masked out as swap vectors cannot move
111 */
112 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
113 PAGE_CACHE_SHIFT-PAGE_SHIFT);
114 }
115
116 static inline void shmem_dir_free(struct page *page)
117 {
118 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
119 }
120
121 static struct page **shmem_dir_map(struct page *page)
122 {
123 return (struct page **)kmap_atomic(page, KM_USER0);
124 }
125
126 static inline void shmem_dir_unmap(struct page **dir)
127 {
128 kunmap_atomic(dir, KM_USER0);
129 }
130
131 static swp_entry_t *shmem_swp_map(struct page *page)
132 {
133 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
134 }
135
136 static inline void shmem_swp_balance_unmap(void)
137 {
138 /*
139 * When passing a pointer to an i_direct entry, to code which
140 * also handles indirect entries and so will shmem_swp_unmap,
141 * we must arrange for the preempt count to remain in balance.
142 * What kmap_atomic of a lowmem page does depends on config
143 * and architecture, so pretend to kmap_atomic some lowmem page.
144 */
145 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
146 }
147
148 static inline void shmem_swp_unmap(swp_entry_t *entry)
149 {
150 kunmap_atomic(entry, KM_USER1);
151 }
152
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 return sb->s_fs_info;
156 }
157
158 /*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 return (flags & VM_ACCOUNT)?
167 security_vm_enough_memory(VM_ACCT(size)): 0;
168 }
169
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 if (flags & VM_ACCOUNT)
173 vm_unacct_memory(VM_ACCT(size));
174 }
175
176 /*
177 * ... whereas tmpfs objects are accounted incrementally as
178 * pages are allocated, in order to allow huge sparse files.
179 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
180 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
181 */
182 static inline int shmem_acct_block(unsigned long flags)
183 {
184 return (flags & VM_ACCOUNT)?
185 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
186 }
187
188 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
189 {
190 if (!(flags & VM_ACCOUNT))
191 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
192 }
193
194 static const struct super_operations shmem_ops;
195 static const struct address_space_operations shmem_aops;
196 static const struct file_operations shmem_file_operations;
197 static const struct inode_operations shmem_inode_operations;
198 static const struct inode_operations shmem_dir_inode_operations;
199 static const struct inode_operations shmem_special_inode_operations;
200 static struct vm_operations_struct shmem_vm_ops;
201
202 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
203 .ra_pages = 0, /* No readahead */
204 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
205 .unplug_io_fn = default_unplug_io_fn,
206 };
207
208 static LIST_HEAD(shmem_swaplist);
209 static DEFINE_MUTEX(shmem_swaplist_mutex);
210
211 static void shmem_free_blocks(struct inode *inode, long pages)
212 {
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 if (sbinfo->max_blocks) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_blocks += pages;
217 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
218 spin_unlock(&sbinfo->stat_lock);
219 }
220 }
221
222 static int shmem_reserve_inode(struct super_block *sb)
223 {
224 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
225 if (sbinfo->max_inodes) {
226 spin_lock(&sbinfo->stat_lock);
227 if (!sbinfo->free_inodes) {
228 spin_unlock(&sbinfo->stat_lock);
229 return -ENOSPC;
230 }
231 sbinfo->free_inodes--;
232 spin_unlock(&sbinfo->stat_lock);
233 }
234 return 0;
235 }
236
237 static void shmem_free_inode(struct super_block *sb)
238 {
239 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
240 if (sbinfo->max_inodes) {
241 spin_lock(&sbinfo->stat_lock);
242 sbinfo->free_inodes++;
243 spin_unlock(&sbinfo->stat_lock);
244 }
245 }
246
247 /**
248 * shmem_recalc_inode - recalculate the size of an inode
249 * @inode: inode to recalc
250 *
251 * We have to calculate the free blocks since the mm can drop
252 * undirtied hole pages behind our back.
253 *
254 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
255 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
256 *
257 * It has to be called with the spinlock held.
258 */
259 static void shmem_recalc_inode(struct inode *inode)
260 {
261 struct shmem_inode_info *info = SHMEM_I(inode);
262 long freed;
263
264 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
265 if (freed > 0) {
266 info->alloced -= freed;
267 shmem_unacct_blocks(info->flags, freed);
268 shmem_free_blocks(inode, freed);
269 }
270 }
271
272 /**
273 * shmem_swp_entry - find the swap vector position in the info structure
274 * @info: info structure for the inode
275 * @index: index of the page to find
276 * @page: optional page to add to the structure. Has to be preset to
277 * all zeros
278 *
279 * If there is no space allocated yet it will return NULL when
280 * page is NULL, else it will use the page for the needed block,
281 * setting it to NULL on return to indicate that it has been used.
282 *
283 * The swap vector is organized the following way:
284 *
285 * There are SHMEM_NR_DIRECT entries directly stored in the
286 * shmem_inode_info structure. So small files do not need an addional
287 * allocation.
288 *
289 * For pages with index > SHMEM_NR_DIRECT there is the pointer
290 * i_indirect which points to a page which holds in the first half
291 * doubly indirect blocks, in the second half triple indirect blocks:
292 *
293 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
294 * following layout (for SHMEM_NR_DIRECT == 16):
295 *
296 * i_indirect -> dir --> 16-19
297 * | +-> 20-23
298 * |
299 * +-->dir2 --> 24-27
300 * | +-> 28-31
301 * | +-> 32-35
302 * | +-> 36-39
303 * |
304 * +-->dir3 --> 40-43
305 * +-> 44-47
306 * +-> 48-51
307 * +-> 52-55
308 */
309 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
310 {
311 unsigned long offset;
312 struct page **dir;
313 struct page *subdir;
314
315 if (index < SHMEM_NR_DIRECT) {
316 shmem_swp_balance_unmap();
317 return info->i_direct+index;
318 }
319 if (!info->i_indirect) {
320 if (page) {
321 info->i_indirect = *page;
322 *page = NULL;
323 }
324 return NULL; /* need another page */
325 }
326
327 index -= SHMEM_NR_DIRECT;
328 offset = index % ENTRIES_PER_PAGE;
329 index /= ENTRIES_PER_PAGE;
330 dir = shmem_dir_map(info->i_indirect);
331
332 if (index >= ENTRIES_PER_PAGE/2) {
333 index -= ENTRIES_PER_PAGE/2;
334 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
335 index %= ENTRIES_PER_PAGE;
336 subdir = *dir;
337 if (!subdir) {
338 if (page) {
339 *dir = *page;
340 *page = NULL;
341 }
342 shmem_dir_unmap(dir);
343 return NULL; /* need another page */
344 }
345 shmem_dir_unmap(dir);
346 dir = shmem_dir_map(subdir);
347 }
348
349 dir += index;
350 subdir = *dir;
351 if (!subdir) {
352 if (!page || !(subdir = *page)) {
353 shmem_dir_unmap(dir);
354 return NULL; /* need a page */
355 }
356 *dir = subdir;
357 *page = NULL;
358 }
359 shmem_dir_unmap(dir);
360 return shmem_swp_map(subdir) + offset;
361 }
362
363 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
364 {
365 long incdec = value? 1: -1;
366
367 entry->val = value;
368 info->swapped += incdec;
369 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
370 struct page *page = kmap_atomic_to_page(entry);
371 set_page_private(page, page_private(page) + incdec);
372 }
373 }
374
375 /**
376 * shmem_swp_alloc - get the position of the swap entry for the page.
377 * @info: info structure for the inode
378 * @index: index of the page to find
379 * @sgp: check and recheck i_size? skip allocation?
380 *
381 * If the entry does not exist, allocate it.
382 */
383 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
384 {
385 struct inode *inode = &info->vfs_inode;
386 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
387 struct page *page = NULL;
388 swp_entry_t *entry;
389
390 if (sgp != SGP_WRITE &&
391 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
392 return ERR_PTR(-EINVAL);
393
394 while (!(entry = shmem_swp_entry(info, index, &page))) {
395 if (sgp == SGP_READ)
396 return shmem_swp_map(ZERO_PAGE(0));
397 /*
398 * Test free_blocks against 1 not 0, since we have 1 data
399 * page (and perhaps indirect index pages) yet to allocate:
400 * a waste to allocate index if we cannot allocate data.
401 */
402 if (sbinfo->max_blocks) {
403 spin_lock(&sbinfo->stat_lock);
404 if (sbinfo->free_blocks <= 1) {
405 spin_unlock(&sbinfo->stat_lock);
406 return ERR_PTR(-ENOSPC);
407 }
408 sbinfo->free_blocks--;
409 inode->i_blocks += BLOCKS_PER_PAGE;
410 spin_unlock(&sbinfo->stat_lock);
411 }
412
413 spin_unlock(&info->lock);
414 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
415 if (page)
416 set_page_private(page, 0);
417 spin_lock(&info->lock);
418
419 if (!page) {
420 shmem_free_blocks(inode, 1);
421 return ERR_PTR(-ENOMEM);
422 }
423 if (sgp != SGP_WRITE &&
424 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
425 entry = ERR_PTR(-EINVAL);
426 break;
427 }
428 if (info->next_index <= index)
429 info->next_index = index + 1;
430 }
431 if (page) {
432 /* another task gave its page, or truncated the file */
433 shmem_free_blocks(inode, 1);
434 shmem_dir_free(page);
435 }
436 if (info->next_index <= index && !IS_ERR(entry))
437 info->next_index = index + 1;
438 return entry;
439 }
440
441 /**
442 * shmem_free_swp - free some swap entries in a directory
443 * @dir: pointer to the directory
444 * @edir: pointer after last entry of the directory
445 * @punch_lock: pointer to spinlock when needed for the holepunch case
446 */
447 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
448 spinlock_t *punch_lock)
449 {
450 spinlock_t *punch_unlock = NULL;
451 swp_entry_t *ptr;
452 int freed = 0;
453
454 for (ptr = dir; ptr < edir; ptr++) {
455 if (ptr->val) {
456 if (unlikely(punch_lock)) {
457 punch_unlock = punch_lock;
458 punch_lock = NULL;
459 spin_lock(punch_unlock);
460 if (!ptr->val)
461 continue;
462 }
463 free_swap_and_cache(*ptr);
464 *ptr = (swp_entry_t){0};
465 freed++;
466 }
467 }
468 if (punch_unlock)
469 spin_unlock(punch_unlock);
470 return freed;
471 }
472
473 static int shmem_map_and_free_swp(struct page *subdir, int offset,
474 int limit, struct page ***dir, spinlock_t *punch_lock)
475 {
476 swp_entry_t *ptr;
477 int freed = 0;
478
479 ptr = shmem_swp_map(subdir);
480 for (; offset < limit; offset += LATENCY_LIMIT) {
481 int size = limit - offset;
482 if (size > LATENCY_LIMIT)
483 size = LATENCY_LIMIT;
484 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
485 punch_lock);
486 if (need_resched()) {
487 shmem_swp_unmap(ptr);
488 if (*dir) {
489 shmem_dir_unmap(*dir);
490 *dir = NULL;
491 }
492 cond_resched();
493 ptr = shmem_swp_map(subdir);
494 }
495 }
496 shmem_swp_unmap(ptr);
497 return freed;
498 }
499
500 static void shmem_free_pages(struct list_head *next)
501 {
502 struct page *page;
503 int freed = 0;
504
505 do {
506 page = container_of(next, struct page, lru);
507 next = next->next;
508 shmem_dir_free(page);
509 freed++;
510 if (freed >= LATENCY_LIMIT) {
511 cond_resched();
512 freed = 0;
513 }
514 } while (next);
515 }
516
517 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
518 {
519 struct shmem_inode_info *info = SHMEM_I(inode);
520 unsigned long idx;
521 unsigned long size;
522 unsigned long limit;
523 unsigned long stage;
524 unsigned long diroff;
525 struct page **dir;
526 struct page *topdir;
527 struct page *middir;
528 struct page *subdir;
529 swp_entry_t *ptr;
530 LIST_HEAD(pages_to_free);
531 long nr_pages_to_free = 0;
532 long nr_swaps_freed = 0;
533 int offset;
534 int freed;
535 int punch_hole;
536 spinlock_t *needs_lock;
537 spinlock_t *punch_lock;
538 unsigned long upper_limit;
539
540 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
541 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
542 if (idx >= info->next_index)
543 return;
544
545 spin_lock(&info->lock);
546 info->flags |= SHMEM_TRUNCATE;
547 if (likely(end == (loff_t) -1)) {
548 limit = info->next_index;
549 upper_limit = SHMEM_MAX_INDEX;
550 info->next_index = idx;
551 needs_lock = NULL;
552 punch_hole = 0;
553 } else {
554 if (end + 1 >= inode->i_size) { /* we may free a little more */
555 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
556 PAGE_CACHE_SHIFT;
557 upper_limit = SHMEM_MAX_INDEX;
558 } else {
559 limit = (end + 1) >> PAGE_CACHE_SHIFT;
560 upper_limit = limit;
561 }
562 needs_lock = &info->lock;
563 punch_hole = 1;
564 }
565
566 topdir = info->i_indirect;
567 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
568 info->i_indirect = NULL;
569 nr_pages_to_free++;
570 list_add(&topdir->lru, &pages_to_free);
571 }
572 spin_unlock(&info->lock);
573
574 if (info->swapped && idx < SHMEM_NR_DIRECT) {
575 ptr = info->i_direct;
576 size = limit;
577 if (size > SHMEM_NR_DIRECT)
578 size = SHMEM_NR_DIRECT;
579 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
580 }
581
582 /*
583 * If there are no indirect blocks or we are punching a hole
584 * below indirect blocks, nothing to be done.
585 */
586 if (!topdir || limit <= SHMEM_NR_DIRECT)
587 goto done2;
588
589 /*
590 * The truncation case has already dropped info->lock, and we're safe
591 * because i_size and next_index have already been lowered, preventing
592 * access beyond. But in the punch_hole case, we still need to take
593 * the lock when updating the swap directory, because there might be
594 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
595 * shmem_writepage. However, whenever we find we can remove a whole
596 * directory page (not at the misaligned start or end of the range),
597 * we first NULLify its pointer in the level above, and then have no
598 * need to take the lock when updating its contents: needs_lock and
599 * punch_lock (either pointing to info->lock or NULL) manage this.
600 */
601
602 upper_limit -= SHMEM_NR_DIRECT;
603 limit -= SHMEM_NR_DIRECT;
604 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
605 offset = idx % ENTRIES_PER_PAGE;
606 idx -= offset;
607
608 dir = shmem_dir_map(topdir);
609 stage = ENTRIES_PER_PAGEPAGE/2;
610 if (idx < ENTRIES_PER_PAGEPAGE/2) {
611 middir = topdir;
612 diroff = idx/ENTRIES_PER_PAGE;
613 } else {
614 dir += ENTRIES_PER_PAGE/2;
615 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
616 while (stage <= idx)
617 stage += ENTRIES_PER_PAGEPAGE;
618 middir = *dir;
619 if (*dir) {
620 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
621 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
622 if (!diroff && !offset && upper_limit >= stage) {
623 if (needs_lock) {
624 spin_lock(needs_lock);
625 *dir = NULL;
626 spin_unlock(needs_lock);
627 needs_lock = NULL;
628 } else
629 *dir = NULL;
630 nr_pages_to_free++;
631 list_add(&middir->lru, &pages_to_free);
632 }
633 shmem_dir_unmap(dir);
634 dir = shmem_dir_map(middir);
635 } else {
636 diroff = 0;
637 offset = 0;
638 idx = stage;
639 }
640 }
641
642 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
643 if (unlikely(idx == stage)) {
644 shmem_dir_unmap(dir);
645 dir = shmem_dir_map(topdir) +
646 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
647 while (!*dir) {
648 dir++;
649 idx += ENTRIES_PER_PAGEPAGE;
650 if (idx >= limit)
651 goto done1;
652 }
653 stage = idx + ENTRIES_PER_PAGEPAGE;
654 middir = *dir;
655 if (punch_hole)
656 needs_lock = &info->lock;
657 if (upper_limit >= stage) {
658 if (needs_lock) {
659 spin_lock(needs_lock);
660 *dir = NULL;
661 spin_unlock(needs_lock);
662 needs_lock = NULL;
663 } else
664 *dir = NULL;
665 nr_pages_to_free++;
666 list_add(&middir->lru, &pages_to_free);
667 }
668 shmem_dir_unmap(dir);
669 cond_resched();
670 dir = shmem_dir_map(middir);
671 diroff = 0;
672 }
673 punch_lock = needs_lock;
674 subdir = dir[diroff];
675 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
676 if (needs_lock) {
677 spin_lock(needs_lock);
678 dir[diroff] = NULL;
679 spin_unlock(needs_lock);
680 punch_lock = NULL;
681 } else
682 dir[diroff] = NULL;
683 nr_pages_to_free++;
684 list_add(&subdir->lru, &pages_to_free);
685 }
686 if (subdir && page_private(subdir) /* has swap entries */) {
687 size = limit - idx;
688 if (size > ENTRIES_PER_PAGE)
689 size = ENTRIES_PER_PAGE;
690 freed = shmem_map_and_free_swp(subdir,
691 offset, size, &dir, punch_lock);
692 if (!dir)
693 dir = shmem_dir_map(middir);
694 nr_swaps_freed += freed;
695 if (offset || punch_lock) {
696 spin_lock(&info->lock);
697 set_page_private(subdir,
698 page_private(subdir) - freed);
699 spin_unlock(&info->lock);
700 } else
701 BUG_ON(page_private(subdir) != freed);
702 }
703 offset = 0;
704 }
705 done1:
706 shmem_dir_unmap(dir);
707 done2:
708 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
709 /*
710 * Call truncate_inode_pages again: racing shmem_unuse_inode
711 * may have swizzled a page in from swap since vmtruncate or
712 * generic_delete_inode did it, before we lowered next_index.
713 * Also, though shmem_getpage checks i_size before adding to
714 * cache, no recheck after: so fix the narrow window there too.
715 *
716 * Recalling truncate_inode_pages_range and unmap_mapping_range
717 * every time for punch_hole (which never got a chance to clear
718 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
719 * yet hardly ever necessary: try to optimize them out later.
720 */
721 truncate_inode_pages_range(inode->i_mapping, start, end);
722 if (punch_hole)
723 unmap_mapping_range(inode->i_mapping, start,
724 end - start, 1);
725 }
726
727 spin_lock(&info->lock);
728 info->flags &= ~SHMEM_TRUNCATE;
729 info->swapped -= nr_swaps_freed;
730 if (nr_pages_to_free)
731 shmem_free_blocks(inode, nr_pages_to_free);
732 shmem_recalc_inode(inode);
733 spin_unlock(&info->lock);
734
735 /*
736 * Empty swap vector directory pages to be freed?
737 */
738 if (!list_empty(&pages_to_free)) {
739 pages_to_free.prev->next = NULL;
740 shmem_free_pages(pages_to_free.next);
741 }
742 }
743
744 static void shmem_truncate(struct inode *inode)
745 {
746 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
747 }
748
749 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
750 {
751 struct inode *inode = dentry->d_inode;
752 struct page *page = NULL;
753 int error;
754
755 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
756 if (attr->ia_size < inode->i_size) {
757 /*
758 * If truncating down to a partial page, then
759 * if that page is already allocated, hold it
760 * in memory until the truncation is over, so
761 * truncate_partial_page cannnot miss it were
762 * it assigned to swap.
763 */
764 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
765 (void) shmem_getpage(inode,
766 attr->ia_size>>PAGE_CACHE_SHIFT,
767 &page, SGP_READ, NULL);
768 if (page)
769 unlock_page(page);
770 }
771 /*
772 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
773 * detect if any pages might have been added to cache
774 * after truncate_inode_pages. But we needn't bother
775 * if it's being fully truncated to zero-length: the
776 * nrpages check is efficient enough in that case.
777 */
778 if (attr->ia_size) {
779 struct shmem_inode_info *info = SHMEM_I(inode);
780 spin_lock(&info->lock);
781 info->flags &= ~SHMEM_PAGEIN;
782 spin_unlock(&info->lock);
783 }
784 }
785 }
786
787 error = inode_change_ok(inode, attr);
788 if (!error)
789 error = inode_setattr(inode, attr);
790 #ifdef CONFIG_TMPFS_POSIX_ACL
791 if (!error && (attr->ia_valid & ATTR_MODE))
792 error = generic_acl_chmod(inode, &shmem_acl_ops);
793 #endif
794 if (page)
795 page_cache_release(page);
796 return error;
797 }
798
799 static void shmem_delete_inode(struct inode *inode)
800 {
801 struct shmem_inode_info *info = SHMEM_I(inode);
802
803 if (inode->i_op->truncate == shmem_truncate) {
804 truncate_inode_pages(inode->i_mapping, 0);
805 shmem_unacct_size(info->flags, inode->i_size);
806 inode->i_size = 0;
807 shmem_truncate(inode);
808 if (!list_empty(&info->swaplist)) {
809 mutex_lock(&shmem_swaplist_mutex);
810 list_del_init(&info->swaplist);
811 mutex_unlock(&shmem_swaplist_mutex);
812 }
813 }
814 BUG_ON(inode->i_blocks);
815 shmem_free_inode(inode->i_sb);
816 clear_inode(inode);
817 }
818
819 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
820 {
821 swp_entry_t *ptr;
822
823 for (ptr = dir; ptr < edir; ptr++) {
824 if (ptr->val == entry.val)
825 return ptr - dir;
826 }
827 return -1;
828 }
829
830 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
831 {
832 struct inode *inode;
833 unsigned long idx;
834 unsigned long size;
835 unsigned long limit;
836 unsigned long stage;
837 struct page **dir;
838 struct page *subdir;
839 swp_entry_t *ptr;
840 int offset;
841 int error;
842
843 idx = 0;
844 ptr = info->i_direct;
845 spin_lock(&info->lock);
846 if (!info->swapped) {
847 list_del_init(&info->swaplist);
848 goto lost2;
849 }
850 limit = info->next_index;
851 size = limit;
852 if (size > SHMEM_NR_DIRECT)
853 size = SHMEM_NR_DIRECT;
854 offset = shmem_find_swp(entry, ptr, ptr+size);
855 if (offset >= 0)
856 goto found;
857 if (!info->i_indirect)
858 goto lost2;
859
860 dir = shmem_dir_map(info->i_indirect);
861 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
862
863 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
864 if (unlikely(idx == stage)) {
865 shmem_dir_unmap(dir-1);
866 if (cond_resched_lock(&info->lock)) {
867 /* check it has not been truncated */
868 if (limit > info->next_index) {
869 limit = info->next_index;
870 if (idx >= limit)
871 goto lost2;
872 }
873 }
874 dir = shmem_dir_map(info->i_indirect) +
875 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
876 while (!*dir) {
877 dir++;
878 idx += ENTRIES_PER_PAGEPAGE;
879 if (idx >= limit)
880 goto lost1;
881 }
882 stage = idx + ENTRIES_PER_PAGEPAGE;
883 subdir = *dir;
884 shmem_dir_unmap(dir);
885 dir = shmem_dir_map(subdir);
886 }
887 subdir = *dir;
888 if (subdir && page_private(subdir)) {
889 ptr = shmem_swp_map(subdir);
890 size = limit - idx;
891 if (size > ENTRIES_PER_PAGE)
892 size = ENTRIES_PER_PAGE;
893 offset = shmem_find_swp(entry, ptr, ptr+size);
894 shmem_swp_unmap(ptr);
895 if (offset >= 0) {
896 shmem_dir_unmap(dir);
897 goto found;
898 }
899 }
900 }
901 lost1:
902 shmem_dir_unmap(dir-1);
903 lost2:
904 spin_unlock(&info->lock);
905 return 0;
906 found:
907 idx += offset;
908 inode = igrab(&info->vfs_inode);
909 spin_unlock(&info->lock);
910
911 /*
912 * Move _head_ to start search for next from here.
913 * But be careful: shmem_delete_inode checks list_empty without taking
914 * mutex, and there's an instant in list_move_tail when info->swaplist
915 * would appear empty, if it were the only one on shmem_swaplist. We
916 * could avoid doing it if inode NULL; or use this minor optimization.
917 */
918 if (shmem_swaplist.next != &info->swaplist)
919 list_move_tail(&shmem_swaplist, &info->swaplist);
920 mutex_unlock(&shmem_swaplist_mutex);
921
922 error = 1;
923 if (!inode)
924 goto out;
925 /* Precharge page while we can wait, compensate afterwards */
926 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
927 if (error)
928 goto out;
929 error = radix_tree_preload(GFP_KERNEL);
930 if (error)
931 goto uncharge;
932 error = 1;
933
934 spin_lock(&info->lock);
935 ptr = shmem_swp_entry(info, idx, NULL);
936 if (ptr && ptr->val == entry.val)
937 error = add_to_page_cache(page, inode->i_mapping,
938 idx, GFP_NOWAIT);
939 if (error == -EEXIST) {
940 struct page *filepage = find_get_page(inode->i_mapping, idx);
941 error = 1;
942 if (filepage) {
943 /*
944 * There might be a more uptodate page coming down
945 * from a stacked writepage: forget our swappage if so.
946 */
947 if (PageUptodate(filepage))
948 error = 0;
949 page_cache_release(filepage);
950 }
951 }
952 if (!error) {
953 delete_from_swap_cache(page);
954 set_page_dirty(page);
955 info->flags |= SHMEM_PAGEIN;
956 shmem_swp_set(info, ptr, 0);
957 swap_free(entry);
958 error = 1; /* not an error, but entry was found */
959 }
960 if (ptr)
961 shmem_swp_unmap(ptr);
962 spin_unlock(&info->lock);
963 radix_tree_preload_end();
964 uncharge:
965 mem_cgroup_uncharge_page(page);
966 out:
967 unlock_page(page);
968 page_cache_release(page);
969 iput(inode); /* allows for NULL */
970 return error;
971 }
972
973 /*
974 * shmem_unuse() search for an eventually swapped out shmem page.
975 */
976 int shmem_unuse(swp_entry_t entry, struct page *page)
977 {
978 struct list_head *p, *next;
979 struct shmem_inode_info *info;
980 int found = 0;
981
982 mutex_lock(&shmem_swaplist_mutex);
983 list_for_each_safe(p, next, &shmem_swaplist) {
984 info = list_entry(p, struct shmem_inode_info, swaplist);
985 found = shmem_unuse_inode(info, entry, page);
986 cond_resched();
987 if (found)
988 goto out;
989 }
990 mutex_unlock(&shmem_swaplist_mutex);
991 out: return found; /* 0 or 1 or -ENOMEM */
992 }
993
994 /*
995 * Move the page from the page cache to the swap cache.
996 */
997 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
998 {
999 struct shmem_inode_info *info;
1000 swp_entry_t *entry, swap;
1001 struct address_space *mapping;
1002 unsigned long index;
1003 struct inode *inode;
1004
1005 BUG_ON(!PageLocked(page));
1006 mapping = page->mapping;
1007 index = page->index;
1008 inode = mapping->host;
1009 info = SHMEM_I(inode);
1010 if (info->flags & VM_LOCKED)
1011 goto redirty;
1012 if (!total_swap_pages)
1013 goto redirty;
1014
1015 /*
1016 * shmem_backing_dev_info's capabilities prevent regular writeback or
1017 * sync from ever calling shmem_writepage; but a stacking filesystem
1018 * may use the ->writepage of its underlying filesystem, in which case
1019 * tmpfs should write out to swap only in response to memory pressure,
1020 * and not for pdflush or sync. However, in those cases, we do still
1021 * want to check if there's a redundant swappage to be discarded.
1022 */
1023 if (wbc->for_reclaim)
1024 swap = get_swap_page();
1025 else
1026 swap.val = 0;
1027
1028 spin_lock(&info->lock);
1029 if (index >= info->next_index) {
1030 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1031 goto unlock;
1032 }
1033 entry = shmem_swp_entry(info, index, NULL);
1034 if (entry->val) {
1035 /*
1036 * The more uptodate page coming down from a stacked
1037 * writepage should replace our old swappage.
1038 */
1039 free_swap_and_cache(*entry);
1040 shmem_swp_set(info, entry, 0);
1041 }
1042 shmem_recalc_inode(inode);
1043
1044 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1045 remove_from_page_cache(page);
1046 shmem_swp_set(info, entry, swap.val);
1047 shmem_swp_unmap(entry);
1048 if (list_empty(&info->swaplist))
1049 inode = igrab(inode);
1050 else
1051 inode = NULL;
1052 spin_unlock(&info->lock);
1053 swap_duplicate(swap);
1054 BUG_ON(page_mapped(page));
1055 page_cache_release(page); /* pagecache ref */
1056 set_page_dirty(page);
1057 unlock_page(page);
1058 if (inode) {
1059 mutex_lock(&shmem_swaplist_mutex);
1060 /* move instead of add in case we're racing */
1061 list_move_tail(&info->swaplist, &shmem_swaplist);
1062 mutex_unlock(&shmem_swaplist_mutex);
1063 iput(inode);
1064 }
1065 return 0;
1066 }
1067
1068 shmem_swp_unmap(entry);
1069 unlock:
1070 spin_unlock(&info->lock);
1071 swap_free(swap);
1072 redirty:
1073 set_page_dirty(page);
1074 if (wbc->for_reclaim)
1075 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1076 unlock_page(page);
1077 return 0;
1078 }
1079
1080 #ifdef CONFIG_NUMA
1081 #ifdef CONFIG_TMPFS
1082 static void shmem_show_mpol(struct seq_file *seq, unsigned short mode,
1083 unsigned short flags, const nodemask_t policy_nodes)
1084 {
1085 struct mempolicy temp;
1086 char buffer[64];
1087
1088 if (mode == MPOL_DEFAULT)
1089 return; /* show nothing */
1090
1091 temp.mode = mode;
1092 temp.flags = flags;
1093 temp.v.nodes = policy_nodes;
1094
1095 mpol_to_str(buffer, sizeof(buffer), &temp);
1096
1097 seq_printf(seq, ",mpol=%s", buffer);
1098 }
1099 #endif /* CONFIG_TMPFS */
1100
1101 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1102 struct shmem_inode_info *info, unsigned long idx)
1103 {
1104 struct mempolicy mpol, *spol;
1105 struct vm_area_struct pvma;
1106 struct page *page;
1107
1108 spol = mpol_cond_copy(&mpol,
1109 mpol_shared_policy_lookup(&info->policy, idx));
1110
1111 /* Create a pseudo vma that just contains the policy */
1112 pvma.vm_start = 0;
1113 pvma.vm_pgoff = idx;
1114 pvma.vm_ops = NULL;
1115 pvma.vm_policy = spol;
1116 page = swapin_readahead(entry, gfp, &pvma, 0);
1117 return page;
1118 }
1119
1120 static struct page *shmem_alloc_page(gfp_t gfp,
1121 struct shmem_inode_info *info, unsigned long idx)
1122 {
1123 struct vm_area_struct pvma;
1124
1125 /* Create a pseudo vma that just contains the policy */
1126 pvma.vm_start = 0;
1127 pvma.vm_pgoff = idx;
1128 pvma.vm_ops = NULL;
1129 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1130
1131 /*
1132 * alloc_page_vma() will drop the shared policy reference
1133 */
1134 return alloc_page_vma(gfp, &pvma, 0);
1135 }
1136 #else /* !CONFIG_NUMA */
1137 #ifdef CONFIG_TMPFS
1138 static inline void shmem_show_mpol(struct seq_file *seq, unsigned short policy,
1139 unsigned short flags, const nodemask_t policy_nodes)
1140 {
1141 }
1142 #endif /* CONFIG_TMPFS */
1143
1144 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1145 struct shmem_inode_info *info, unsigned long idx)
1146 {
1147 return swapin_readahead(entry, gfp, NULL, 0);
1148 }
1149
1150 static inline struct page *shmem_alloc_page(gfp_t gfp,
1151 struct shmem_inode_info *info, unsigned long idx)
1152 {
1153 return alloc_page(gfp);
1154 }
1155 #endif /* CONFIG_NUMA */
1156
1157 /*
1158 * shmem_getpage - either get the page from swap or allocate a new one
1159 *
1160 * If we allocate a new one we do not mark it dirty. That's up to the
1161 * vm. If we swap it in we mark it dirty since we also free the swap
1162 * entry since a page cannot live in both the swap and page cache
1163 */
1164 static int shmem_getpage(struct inode *inode, unsigned long idx,
1165 struct page **pagep, enum sgp_type sgp, int *type)
1166 {
1167 struct address_space *mapping = inode->i_mapping;
1168 struct shmem_inode_info *info = SHMEM_I(inode);
1169 struct shmem_sb_info *sbinfo;
1170 struct page *filepage = *pagep;
1171 struct page *swappage;
1172 swp_entry_t *entry;
1173 swp_entry_t swap;
1174 gfp_t gfp;
1175 int error;
1176
1177 if (idx >= SHMEM_MAX_INDEX)
1178 return -EFBIG;
1179
1180 if (type)
1181 *type = 0;
1182
1183 /*
1184 * Normally, filepage is NULL on entry, and either found
1185 * uptodate immediately, or allocated and zeroed, or read
1186 * in under swappage, which is then assigned to filepage.
1187 * But shmem_readpage (required for splice) passes in a locked
1188 * filepage, which may be found not uptodate by other callers
1189 * too, and may need to be copied from the swappage read in.
1190 */
1191 repeat:
1192 if (!filepage)
1193 filepage = find_lock_page(mapping, idx);
1194 if (filepage && PageUptodate(filepage))
1195 goto done;
1196 error = 0;
1197 gfp = mapping_gfp_mask(mapping);
1198 if (!filepage) {
1199 /*
1200 * Try to preload while we can wait, to not make a habit of
1201 * draining atomic reserves; but don't latch on to this cpu.
1202 */
1203 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1204 if (error)
1205 goto failed;
1206 radix_tree_preload_end();
1207 }
1208
1209 spin_lock(&info->lock);
1210 shmem_recalc_inode(inode);
1211 entry = shmem_swp_alloc(info, idx, sgp);
1212 if (IS_ERR(entry)) {
1213 spin_unlock(&info->lock);
1214 error = PTR_ERR(entry);
1215 goto failed;
1216 }
1217 swap = *entry;
1218
1219 if (swap.val) {
1220 /* Look it up and read it in.. */
1221 swappage = lookup_swap_cache(swap);
1222 if (!swappage) {
1223 shmem_swp_unmap(entry);
1224 /* here we actually do the io */
1225 if (type && !(*type & VM_FAULT_MAJOR)) {
1226 __count_vm_event(PGMAJFAULT);
1227 *type |= VM_FAULT_MAJOR;
1228 }
1229 spin_unlock(&info->lock);
1230 swappage = shmem_swapin(swap, gfp, info, idx);
1231 if (!swappage) {
1232 spin_lock(&info->lock);
1233 entry = shmem_swp_alloc(info, idx, sgp);
1234 if (IS_ERR(entry))
1235 error = PTR_ERR(entry);
1236 else {
1237 if (entry->val == swap.val)
1238 error = -ENOMEM;
1239 shmem_swp_unmap(entry);
1240 }
1241 spin_unlock(&info->lock);
1242 if (error)
1243 goto failed;
1244 goto repeat;
1245 }
1246 wait_on_page_locked(swappage);
1247 page_cache_release(swappage);
1248 goto repeat;
1249 }
1250
1251 /* We have to do this with page locked to prevent races */
1252 if (TestSetPageLocked(swappage)) {
1253 shmem_swp_unmap(entry);
1254 spin_unlock(&info->lock);
1255 wait_on_page_locked(swappage);
1256 page_cache_release(swappage);
1257 goto repeat;
1258 }
1259 if (PageWriteback(swappage)) {
1260 shmem_swp_unmap(entry);
1261 spin_unlock(&info->lock);
1262 wait_on_page_writeback(swappage);
1263 unlock_page(swappage);
1264 page_cache_release(swappage);
1265 goto repeat;
1266 }
1267 if (!PageUptodate(swappage)) {
1268 shmem_swp_unmap(entry);
1269 spin_unlock(&info->lock);
1270 unlock_page(swappage);
1271 page_cache_release(swappage);
1272 error = -EIO;
1273 goto failed;
1274 }
1275
1276 if (filepage) {
1277 shmem_swp_set(info, entry, 0);
1278 shmem_swp_unmap(entry);
1279 delete_from_swap_cache(swappage);
1280 spin_unlock(&info->lock);
1281 copy_highpage(filepage, swappage);
1282 unlock_page(swappage);
1283 page_cache_release(swappage);
1284 flush_dcache_page(filepage);
1285 SetPageUptodate(filepage);
1286 set_page_dirty(filepage);
1287 swap_free(swap);
1288 } else if (!(error = add_to_page_cache(
1289 swappage, mapping, idx, GFP_NOWAIT))) {
1290 info->flags |= SHMEM_PAGEIN;
1291 shmem_swp_set(info, entry, 0);
1292 shmem_swp_unmap(entry);
1293 delete_from_swap_cache(swappage);
1294 spin_unlock(&info->lock);
1295 filepage = swappage;
1296 set_page_dirty(filepage);
1297 swap_free(swap);
1298 } else {
1299 shmem_swp_unmap(entry);
1300 spin_unlock(&info->lock);
1301 unlock_page(swappage);
1302 if (error == -ENOMEM) {
1303 /* allow reclaim from this memory cgroup */
1304 error = mem_cgroup_cache_charge(swappage,
1305 current->mm, gfp & ~__GFP_HIGHMEM);
1306 if (error) {
1307 page_cache_release(swappage);
1308 goto failed;
1309 }
1310 mem_cgroup_uncharge_page(swappage);
1311 }
1312 page_cache_release(swappage);
1313 goto repeat;
1314 }
1315 } else if (sgp == SGP_READ && !filepage) {
1316 shmem_swp_unmap(entry);
1317 filepage = find_get_page(mapping, idx);
1318 if (filepage &&
1319 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1320 spin_unlock(&info->lock);
1321 wait_on_page_locked(filepage);
1322 page_cache_release(filepage);
1323 filepage = NULL;
1324 goto repeat;
1325 }
1326 spin_unlock(&info->lock);
1327 } else {
1328 shmem_swp_unmap(entry);
1329 sbinfo = SHMEM_SB(inode->i_sb);
1330 if (sbinfo->max_blocks) {
1331 spin_lock(&sbinfo->stat_lock);
1332 if (sbinfo->free_blocks == 0 ||
1333 shmem_acct_block(info->flags)) {
1334 spin_unlock(&sbinfo->stat_lock);
1335 spin_unlock(&info->lock);
1336 error = -ENOSPC;
1337 goto failed;
1338 }
1339 sbinfo->free_blocks--;
1340 inode->i_blocks += BLOCKS_PER_PAGE;
1341 spin_unlock(&sbinfo->stat_lock);
1342 } else if (shmem_acct_block(info->flags)) {
1343 spin_unlock(&info->lock);
1344 error = -ENOSPC;
1345 goto failed;
1346 }
1347
1348 if (!filepage) {
1349 spin_unlock(&info->lock);
1350 filepage = shmem_alloc_page(gfp, info, idx);
1351 if (!filepage) {
1352 shmem_unacct_blocks(info->flags, 1);
1353 shmem_free_blocks(inode, 1);
1354 error = -ENOMEM;
1355 goto failed;
1356 }
1357
1358 /* Precharge page while we can wait, compensate after */
1359 error = mem_cgroup_cache_charge(filepage, current->mm,
1360 gfp & ~__GFP_HIGHMEM);
1361 if (error) {
1362 page_cache_release(filepage);
1363 shmem_unacct_blocks(info->flags, 1);
1364 shmem_free_blocks(inode, 1);
1365 filepage = NULL;
1366 goto failed;
1367 }
1368
1369 spin_lock(&info->lock);
1370 entry = shmem_swp_alloc(info, idx, sgp);
1371 if (IS_ERR(entry))
1372 error = PTR_ERR(entry);
1373 else {
1374 swap = *entry;
1375 shmem_swp_unmap(entry);
1376 }
1377 if (error || swap.val || 0 != add_to_page_cache_lru(
1378 filepage, mapping, idx, GFP_NOWAIT)) {
1379 spin_unlock(&info->lock);
1380 mem_cgroup_uncharge_page(filepage);
1381 page_cache_release(filepage);
1382 shmem_unacct_blocks(info->flags, 1);
1383 shmem_free_blocks(inode, 1);
1384 filepage = NULL;
1385 if (error)
1386 goto failed;
1387 goto repeat;
1388 }
1389 mem_cgroup_uncharge_page(filepage);
1390 info->flags |= SHMEM_PAGEIN;
1391 }
1392
1393 info->alloced++;
1394 spin_unlock(&info->lock);
1395 clear_highpage(filepage);
1396 flush_dcache_page(filepage);
1397 SetPageUptodate(filepage);
1398 if (sgp == SGP_DIRTY)
1399 set_page_dirty(filepage);
1400 }
1401 done:
1402 *pagep = filepage;
1403 return 0;
1404
1405 failed:
1406 if (*pagep != filepage) {
1407 unlock_page(filepage);
1408 page_cache_release(filepage);
1409 }
1410 return error;
1411 }
1412
1413 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1414 {
1415 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1416 int error;
1417 int ret;
1418
1419 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1420 return VM_FAULT_SIGBUS;
1421
1422 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1423 if (error)
1424 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1425
1426 mark_page_accessed(vmf->page);
1427 return ret | VM_FAULT_LOCKED;
1428 }
1429
1430 #ifdef CONFIG_NUMA
1431 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1432 {
1433 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1434 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1435 }
1436
1437 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1438 unsigned long addr)
1439 {
1440 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1441 unsigned long idx;
1442
1443 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1444 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1445 }
1446 #endif
1447
1448 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1449 {
1450 struct inode *inode = file->f_path.dentry->d_inode;
1451 struct shmem_inode_info *info = SHMEM_I(inode);
1452 int retval = -ENOMEM;
1453
1454 spin_lock(&info->lock);
1455 if (lock && !(info->flags & VM_LOCKED)) {
1456 if (!user_shm_lock(inode->i_size, user))
1457 goto out_nomem;
1458 info->flags |= VM_LOCKED;
1459 }
1460 if (!lock && (info->flags & VM_LOCKED) && user) {
1461 user_shm_unlock(inode->i_size, user);
1462 info->flags &= ~VM_LOCKED;
1463 }
1464 retval = 0;
1465 out_nomem:
1466 spin_unlock(&info->lock);
1467 return retval;
1468 }
1469
1470 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1471 {
1472 file_accessed(file);
1473 vma->vm_ops = &shmem_vm_ops;
1474 vma->vm_flags |= VM_CAN_NONLINEAR;
1475 return 0;
1476 }
1477
1478 static struct inode *
1479 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1480 {
1481 struct inode *inode;
1482 struct shmem_inode_info *info;
1483 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1484
1485 if (shmem_reserve_inode(sb))
1486 return NULL;
1487
1488 inode = new_inode(sb);
1489 if (inode) {
1490 inode->i_mode = mode;
1491 inode->i_uid = current->fsuid;
1492 inode->i_gid = current->fsgid;
1493 inode->i_blocks = 0;
1494 inode->i_mapping->a_ops = &shmem_aops;
1495 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1496 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1497 inode->i_generation = get_seconds();
1498 info = SHMEM_I(inode);
1499 memset(info, 0, (char *)inode - (char *)info);
1500 spin_lock_init(&info->lock);
1501 INIT_LIST_HEAD(&info->swaplist);
1502
1503 switch (mode & S_IFMT) {
1504 default:
1505 inode->i_op = &shmem_special_inode_operations;
1506 init_special_inode(inode, mode, dev);
1507 break;
1508 case S_IFREG:
1509 inode->i_op = &shmem_inode_operations;
1510 inode->i_fop = &shmem_file_operations;
1511 mpol_shared_policy_init(&info->policy, sbinfo->policy,
1512 sbinfo->flags, &sbinfo->policy_nodes);
1513 break;
1514 case S_IFDIR:
1515 inc_nlink(inode);
1516 /* Some things misbehave if size == 0 on a directory */
1517 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1518 inode->i_op = &shmem_dir_inode_operations;
1519 inode->i_fop = &simple_dir_operations;
1520 break;
1521 case S_IFLNK:
1522 /*
1523 * Must not load anything in the rbtree,
1524 * mpol_free_shared_policy will not be called.
1525 */
1526 mpol_shared_policy_init(&info->policy, MPOL_DEFAULT, 0,
1527 NULL);
1528 break;
1529 }
1530 } else
1531 shmem_free_inode(sb);
1532 return inode;
1533 }
1534
1535 #ifdef CONFIG_TMPFS
1536 static const struct inode_operations shmem_symlink_inode_operations;
1537 static const struct inode_operations shmem_symlink_inline_operations;
1538
1539 /*
1540 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1541 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1542 * below the loop driver, in the generic fashion that many filesystems support.
1543 */
1544 static int shmem_readpage(struct file *file, struct page *page)
1545 {
1546 struct inode *inode = page->mapping->host;
1547 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1548 unlock_page(page);
1549 return error;
1550 }
1551
1552 static int
1553 shmem_write_begin(struct file *file, struct address_space *mapping,
1554 loff_t pos, unsigned len, unsigned flags,
1555 struct page **pagep, void **fsdata)
1556 {
1557 struct inode *inode = mapping->host;
1558 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1559 *pagep = NULL;
1560 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1561 }
1562
1563 static int
1564 shmem_write_end(struct file *file, struct address_space *mapping,
1565 loff_t pos, unsigned len, unsigned copied,
1566 struct page *page, void *fsdata)
1567 {
1568 struct inode *inode = mapping->host;
1569
1570 if (pos + copied > inode->i_size)
1571 i_size_write(inode, pos + copied);
1572
1573 unlock_page(page);
1574 set_page_dirty(page);
1575 page_cache_release(page);
1576
1577 return copied;
1578 }
1579
1580 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1581 {
1582 struct inode *inode = filp->f_path.dentry->d_inode;
1583 struct address_space *mapping = inode->i_mapping;
1584 unsigned long index, offset;
1585 enum sgp_type sgp = SGP_READ;
1586
1587 /*
1588 * Might this read be for a stacking filesystem? Then when reading
1589 * holes of a sparse file, we actually need to allocate those pages,
1590 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1591 */
1592 if (segment_eq(get_fs(), KERNEL_DS))
1593 sgp = SGP_DIRTY;
1594
1595 index = *ppos >> PAGE_CACHE_SHIFT;
1596 offset = *ppos & ~PAGE_CACHE_MASK;
1597
1598 for (;;) {
1599 struct page *page = NULL;
1600 unsigned long end_index, nr, ret;
1601 loff_t i_size = i_size_read(inode);
1602
1603 end_index = i_size >> PAGE_CACHE_SHIFT;
1604 if (index > end_index)
1605 break;
1606 if (index == end_index) {
1607 nr = i_size & ~PAGE_CACHE_MASK;
1608 if (nr <= offset)
1609 break;
1610 }
1611
1612 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1613 if (desc->error) {
1614 if (desc->error == -EINVAL)
1615 desc->error = 0;
1616 break;
1617 }
1618 if (page)
1619 unlock_page(page);
1620
1621 /*
1622 * We must evaluate after, since reads (unlike writes)
1623 * are called without i_mutex protection against truncate
1624 */
1625 nr = PAGE_CACHE_SIZE;
1626 i_size = i_size_read(inode);
1627 end_index = i_size >> PAGE_CACHE_SHIFT;
1628 if (index == end_index) {
1629 nr = i_size & ~PAGE_CACHE_MASK;
1630 if (nr <= offset) {
1631 if (page)
1632 page_cache_release(page);
1633 break;
1634 }
1635 }
1636 nr -= offset;
1637
1638 if (page) {
1639 /*
1640 * If users can be writing to this page using arbitrary
1641 * virtual addresses, take care about potential aliasing
1642 * before reading the page on the kernel side.
1643 */
1644 if (mapping_writably_mapped(mapping))
1645 flush_dcache_page(page);
1646 /*
1647 * Mark the page accessed if we read the beginning.
1648 */
1649 if (!offset)
1650 mark_page_accessed(page);
1651 } else {
1652 page = ZERO_PAGE(0);
1653 page_cache_get(page);
1654 }
1655
1656 /*
1657 * Ok, we have the page, and it's up-to-date, so
1658 * now we can copy it to user space...
1659 *
1660 * The actor routine returns how many bytes were actually used..
1661 * NOTE! This may not be the same as how much of a user buffer
1662 * we filled up (we may be padding etc), so we can only update
1663 * "pos" here (the actor routine has to update the user buffer
1664 * pointers and the remaining count).
1665 */
1666 ret = actor(desc, page, offset, nr);
1667 offset += ret;
1668 index += offset >> PAGE_CACHE_SHIFT;
1669 offset &= ~PAGE_CACHE_MASK;
1670
1671 page_cache_release(page);
1672 if (ret != nr || !desc->count)
1673 break;
1674
1675 cond_resched();
1676 }
1677
1678 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1679 file_accessed(filp);
1680 }
1681
1682 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1683 {
1684 read_descriptor_t desc;
1685
1686 if ((ssize_t) count < 0)
1687 return -EINVAL;
1688 if (!access_ok(VERIFY_WRITE, buf, count))
1689 return -EFAULT;
1690 if (!count)
1691 return 0;
1692
1693 desc.written = 0;
1694 desc.count = count;
1695 desc.arg.buf = buf;
1696 desc.error = 0;
1697
1698 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1699 if (desc.written)
1700 return desc.written;
1701 return desc.error;
1702 }
1703
1704 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1705 {
1706 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1707
1708 buf->f_type = TMPFS_MAGIC;
1709 buf->f_bsize = PAGE_CACHE_SIZE;
1710 buf->f_namelen = NAME_MAX;
1711 spin_lock(&sbinfo->stat_lock);
1712 if (sbinfo->max_blocks) {
1713 buf->f_blocks = sbinfo->max_blocks;
1714 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1715 }
1716 if (sbinfo->max_inodes) {
1717 buf->f_files = sbinfo->max_inodes;
1718 buf->f_ffree = sbinfo->free_inodes;
1719 }
1720 /* else leave those fields 0 like simple_statfs */
1721 spin_unlock(&sbinfo->stat_lock);
1722 return 0;
1723 }
1724
1725 /*
1726 * File creation. Allocate an inode, and we're done..
1727 */
1728 static int
1729 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1730 {
1731 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1732 int error = -ENOSPC;
1733
1734 if (inode) {
1735 error = security_inode_init_security(inode, dir, NULL, NULL,
1736 NULL);
1737 if (error) {
1738 if (error != -EOPNOTSUPP) {
1739 iput(inode);
1740 return error;
1741 }
1742 }
1743 error = shmem_acl_init(inode, dir);
1744 if (error) {
1745 iput(inode);
1746 return error;
1747 }
1748 if (dir->i_mode & S_ISGID) {
1749 inode->i_gid = dir->i_gid;
1750 if (S_ISDIR(mode))
1751 inode->i_mode |= S_ISGID;
1752 }
1753 dir->i_size += BOGO_DIRENT_SIZE;
1754 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1755 d_instantiate(dentry, inode);
1756 dget(dentry); /* Extra count - pin the dentry in core */
1757 }
1758 return error;
1759 }
1760
1761 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1762 {
1763 int error;
1764
1765 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1766 return error;
1767 inc_nlink(dir);
1768 return 0;
1769 }
1770
1771 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1772 struct nameidata *nd)
1773 {
1774 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1775 }
1776
1777 /*
1778 * Link a file..
1779 */
1780 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1781 {
1782 struct inode *inode = old_dentry->d_inode;
1783 int ret;
1784
1785 /*
1786 * No ordinary (disk based) filesystem counts links as inodes;
1787 * but each new link needs a new dentry, pinning lowmem, and
1788 * tmpfs dentries cannot be pruned until they are unlinked.
1789 */
1790 ret = shmem_reserve_inode(inode->i_sb);
1791 if (ret)
1792 goto out;
1793
1794 dir->i_size += BOGO_DIRENT_SIZE;
1795 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1796 inc_nlink(inode);
1797 atomic_inc(&inode->i_count); /* New dentry reference */
1798 dget(dentry); /* Extra pinning count for the created dentry */
1799 d_instantiate(dentry, inode);
1800 out:
1801 return ret;
1802 }
1803
1804 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1805 {
1806 struct inode *inode = dentry->d_inode;
1807
1808 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1809 shmem_free_inode(inode->i_sb);
1810
1811 dir->i_size -= BOGO_DIRENT_SIZE;
1812 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1813 drop_nlink(inode);
1814 dput(dentry); /* Undo the count from "create" - this does all the work */
1815 return 0;
1816 }
1817
1818 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1819 {
1820 if (!simple_empty(dentry))
1821 return -ENOTEMPTY;
1822
1823 drop_nlink(dentry->d_inode);
1824 drop_nlink(dir);
1825 return shmem_unlink(dir, dentry);
1826 }
1827
1828 /*
1829 * The VFS layer already does all the dentry stuff for rename,
1830 * we just have to decrement the usage count for the target if
1831 * it exists so that the VFS layer correctly free's it when it
1832 * gets overwritten.
1833 */
1834 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1835 {
1836 struct inode *inode = old_dentry->d_inode;
1837 int they_are_dirs = S_ISDIR(inode->i_mode);
1838
1839 if (!simple_empty(new_dentry))
1840 return -ENOTEMPTY;
1841
1842 if (new_dentry->d_inode) {
1843 (void) shmem_unlink(new_dir, new_dentry);
1844 if (they_are_dirs)
1845 drop_nlink(old_dir);
1846 } else if (they_are_dirs) {
1847 drop_nlink(old_dir);
1848 inc_nlink(new_dir);
1849 }
1850
1851 old_dir->i_size -= BOGO_DIRENT_SIZE;
1852 new_dir->i_size += BOGO_DIRENT_SIZE;
1853 old_dir->i_ctime = old_dir->i_mtime =
1854 new_dir->i_ctime = new_dir->i_mtime =
1855 inode->i_ctime = CURRENT_TIME;
1856 return 0;
1857 }
1858
1859 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1860 {
1861 int error;
1862 int len;
1863 struct inode *inode;
1864 struct page *page = NULL;
1865 char *kaddr;
1866 struct shmem_inode_info *info;
1867
1868 len = strlen(symname) + 1;
1869 if (len > PAGE_CACHE_SIZE)
1870 return -ENAMETOOLONG;
1871
1872 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1873 if (!inode)
1874 return -ENOSPC;
1875
1876 error = security_inode_init_security(inode, dir, NULL, NULL,
1877 NULL);
1878 if (error) {
1879 if (error != -EOPNOTSUPP) {
1880 iput(inode);
1881 return error;
1882 }
1883 error = 0;
1884 }
1885
1886 info = SHMEM_I(inode);
1887 inode->i_size = len-1;
1888 if (len <= (char *)inode - (char *)info) {
1889 /* do it inline */
1890 memcpy(info, symname, len);
1891 inode->i_op = &shmem_symlink_inline_operations;
1892 } else {
1893 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1894 if (error) {
1895 iput(inode);
1896 return error;
1897 }
1898 unlock_page(page);
1899 inode->i_op = &shmem_symlink_inode_operations;
1900 kaddr = kmap_atomic(page, KM_USER0);
1901 memcpy(kaddr, symname, len);
1902 kunmap_atomic(kaddr, KM_USER0);
1903 set_page_dirty(page);
1904 page_cache_release(page);
1905 }
1906 if (dir->i_mode & S_ISGID)
1907 inode->i_gid = dir->i_gid;
1908 dir->i_size += BOGO_DIRENT_SIZE;
1909 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1910 d_instantiate(dentry, inode);
1911 dget(dentry);
1912 return 0;
1913 }
1914
1915 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1916 {
1917 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1918 return NULL;
1919 }
1920
1921 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1922 {
1923 struct page *page = NULL;
1924 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1925 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1926 if (page)
1927 unlock_page(page);
1928 return page;
1929 }
1930
1931 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1932 {
1933 if (!IS_ERR(nd_get_link(nd))) {
1934 struct page *page = cookie;
1935 kunmap(page);
1936 mark_page_accessed(page);
1937 page_cache_release(page);
1938 }
1939 }
1940
1941 static const struct inode_operations shmem_symlink_inline_operations = {
1942 .readlink = generic_readlink,
1943 .follow_link = shmem_follow_link_inline,
1944 };
1945
1946 static const struct inode_operations shmem_symlink_inode_operations = {
1947 .truncate = shmem_truncate,
1948 .readlink = generic_readlink,
1949 .follow_link = shmem_follow_link,
1950 .put_link = shmem_put_link,
1951 };
1952
1953 #ifdef CONFIG_TMPFS_POSIX_ACL
1954 /*
1955 * Superblocks without xattr inode operations will get security.* xattr
1956 * support from the VFS "for free". As soon as we have any other xattrs
1957 * like ACLs, we also need to implement the security.* handlers at
1958 * filesystem level, though.
1959 */
1960
1961 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1962 size_t list_len, const char *name,
1963 size_t name_len)
1964 {
1965 return security_inode_listsecurity(inode, list, list_len);
1966 }
1967
1968 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1969 void *buffer, size_t size)
1970 {
1971 if (strcmp(name, "") == 0)
1972 return -EINVAL;
1973 return xattr_getsecurity(inode, name, buffer, size);
1974 }
1975
1976 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1977 const void *value, size_t size, int flags)
1978 {
1979 if (strcmp(name, "") == 0)
1980 return -EINVAL;
1981 return security_inode_setsecurity(inode, name, value, size, flags);
1982 }
1983
1984 static struct xattr_handler shmem_xattr_security_handler = {
1985 .prefix = XATTR_SECURITY_PREFIX,
1986 .list = shmem_xattr_security_list,
1987 .get = shmem_xattr_security_get,
1988 .set = shmem_xattr_security_set,
1989 };
1990
1991 static struct xattr_handler *shmem_xattr_handlers[] = {
1992 &shmem_xattr_acl_access_handler,
1993 &shmem_xattr_acl_default_handler,
1994 &shmem_xattr_security_handler,
1995 NULL
1996 };
1997 #endif
1998
1999 static struct dentry *shmem_get_parent(struct dentry *child)
2000 {
2001 return ERR_PTR(-ESTALE);
2002 }
2003
2004 static int shmem_match(struct inode *ino, void *vfh)
2005 {
2006 __u32 *fh = vfh;
2007 __u64 inum = fh[2];
2008 inum = (inum << 32) | fh[1];
2009 return ino->i_ino == inum && fh[0] == ino->i_generation;
2010 }
2011
2012 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2013 struct fid *fid, int fh_len, int fh_type)
2014 {
2015 struct inode *inode;
2016 struct dentry *dentry = NULL;
2017 u64 inum = fid->raw[2];
2018 inum = (inum << 32) | fid->raw[1];
2019
2020 if (fh_len < 3)
2021 return NULL;
2022
2023 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2024 shmem_match, fid->raw);
2025 if (inode) {
2026 dentry = d_find_alias(inode);
2027 iput(inode);
2028 }
2029
2030 return dentry;
2031 }
2032
2033 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2034 int connectable)
2035 {
2036 struct inode *inode = dentry->d_inode;
2037
2038 if (*len < 3)
2039 return 255;
2040
2041 if (hlist_unhashed(&inode->i_hash)) {
2042 /* Unfortunately insert_inode_hash is not idempotent,
2043 * so as we hash inodes here rather than at creation
2044 * time, we need a lock to ensure we only try
2045 * to do it once
2046 */
2047 static DEFINE_SPINLOCK(lock);
2048 spin_lock(&lock);
2049 if (hlist_unhashed(&inode->i_hash))
2050 __insert_inode_hash(inode,
2051 inode->i_ino + inode->i_generation);
2052 spin_unlock(&lock);
2053 }
2054
2055 fh[0] = inode->i_generation;
2056 fh[1] = inode->i_ino;
2057 fh[2] = ((__u64)inode->i_ino) >> 32;
2058
2059 *len = 3;
2060 return 1;
2061 }
2062
2063 static const struct export_operations shmem_export_ops = {
2064 .get_parent = shmem_get_parent,
2065 .encode_fh = shmem_encode_fh,
2066 .fh_to_dentry = shmem_fh_to_dentry,
2067 };
2068
2069 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2070 bool remount)
2071 {
2072 char *this_char, *value, *rest;
2073
2074 while (options != NULL) {
2075 this_char = options;
2076 for (;;) {
2077 /*
2078 * NUL-terminate this option: unfortunately,
2079 * mount options form a comma-separated list,
2080 * but mpol's nodelist may also contain commas.
2081 */
2082 options = strchr(options, ',');
2083 if (options == NULL)
2084 break;
2085 options++;
2086 if (!isdigit(*options)) {
2087 options[-1] = '\0';
2088 break;
2089 }
2090 }
2091 if (!*this_char)
2092 continue;
2093 if ((value = strchr(this_char,'=')) != NULL) {
2094 *value++ = 0;
2095 } else {
2096 printk(KERN_ERR
2097 "tmpfs: No value for mount option '%s'\n",
2098 this_char);
2099 return 1;
2100 }
2101
2102 if (!strcmp(this_char,"size")) {
2103 unsigned long long size;
2104 size = memparse(value,&rest);
2105 if (*rest == '%') {
2106 size <<= PAGE_SHIFT;
2107 size *= totalram_pages;
2108 do_div(size, 100);
2109 rest++;
2110 }
2111 if (*rest)
2112 goto bad_val;
2113 sbinfo->max_blocks =
2114 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2115 } else if (!strcmp(this_char,"nr_blocks")) {
2116 sbinfo->max_blocks = memparse(value, &rest);
2117 if (*rest)
2118 goto bad_val;
2119 } else if (!strcmp(this_char,"nr_inodes")) {
2120 sbinfo->max_inodes = memparse(value, &rest);
2121 if (*rest)
2122 goto bad_val;
2123 } else if (!strcmp(this_char,"mode")) {
2124 if (remount)
2125 continue;
2126 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2127 if (*rest)
2128 goto bad_val;
2129 } else if (!strcmp(this_char,"uid")) {
2130 if (remount)
2131 continue;
2132 sbinfo->uid = simple_strtoul(value, &rest, 0);
2133 if (*rest)
2134 goto bad_val;
2135 } else if (!strcmp(this_char,"gid")) {
2136 if (remount)
2137 continue;
2138 sbinfo->gid = simple_strtoul(value, &rest, 0);
2139 if (*rest)
2140 goto bad_val;
2141 } else if (!strcmp(this_char,"mpol")) {
2142 if (mpol_parse_str(value, &sbinfo->policy,
2143 &sbinfo->flags, &sbinfo->policy_nodes))
2144 goto bad_val;
2145 } else {
2146 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2147 this_char);
2148 return 1;
2149 }
2150 }
2151 return 0;
2152
2153 bad_val:
2154 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2155 value, this_char);
2156 return 1;
2157
2158 }
2159
2160 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2161 {
2162 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2163 struct shmem_sb_info config = *sbinfo;
2164 unsigned long blocks;
2165 unsigned long inodes;
2166 int error = -EINVAL;
2167
2168 if (shmem_parse_options(data, &config, true))
2169 return error;
2170
2171 spin_lock(&sbinfo->stat_lock);
2172 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2173 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2174 if (config.max_blocks < blocks)
2175 goto out;
2176 if (config.max_inodes < inodes)
2177 goto out;
2178 /*
2179 * Those tests also disallow limited->unlimited while any are in
2180 * use, so i_blocks will always be zero when max_blocks is zero;
2181 * but we must separately disallow unlimited->limited, because
2182 * in that case we have no record of how much is already in use.
2183 */
2184 if (config.max_blocks && !sbinfo->max_blocks)
2185 goto out;
2186 if (config.max_inodes && !sbinfo->max_inodes)
2187 goto out;
2188
2189 error = 0;
2190 sbinfo->max_blocks = config.max_blocks;
2191 sbinfo->free_blocks = config.max_blocks - blocks;
2192 sbinfo->max_inodes = config.max_inodes;
2193 sbinfo->free_inodes = config.max_inodes - inodes;
2194 sbinfo->policy = config.policy;
2195 sbinfo->flags = config.flags;
2196 sbinfo->policy_nodes = config.policy_nodes;
2197 out:
2198 spin_unlock(&sbinfo->stat_lock);
2199 return error;
2200 }
2201
2202 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2203 {
2204 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2205
2206 if (sbinfo->max_blocks != shmem_default_max_blocks())
2207 seq_printf(seq, ",size=%luk",
2208 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2209 if (sbinfo->max_inodes != shmem_default_max_inodes())
2210 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2211 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2212 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2213 if (sbinfo->uid != 0)
2214 seq_printf(seq, ",uid=%u", sbinfo->uid);
2215 if (sbinfo->gid != 0)
2216 seq_printf(seq, ",gid=%u", sbinfo->gid);
2217 shmem_show_mpol(seq, sbinfo->policy, sbinfo->flags,
2218 sbinfo->policy_nodes);
2219 return 0;
2220 }
2221 #endif /* CONFIG_TMPFS */
2222
2223 static void shmem_put_super(struct super_block *sb)
2224 {
2225 kfree(sb->s_fs_info);
2226 sb->s_fs_info = NULL;
2227 }
2228
2229 static int shmem_fill_super(struct super_block *sb,
2230 void *data, int silent)
2231 {
2232 struct inode *inode;
2233 struct dentry *root;
2234 struct shmem_sb_info *sbinfo;
2235 int err = -ENOMEM;
2236
2237 /* Round up to L1_CACHE_BYTES to resist false sharing */
2238 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2239 L1_CACHE_BYTES), GFP_KERNEL);
2240 if (!sbinfo)
2241 return -ENOMEM;
2242
2243 sbinfo->max_blocks = 0;
2244 sbinfo->max_inodes = 0;
2245 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2246 sbinfo->uid = current->fsuid;
2247 sbinfo->gid = current->fsgid;
2248 sbinfo->policy = MPOL_DEFAULT;
2249 sbinfo->flags = 0;
2250 sbinfo->policy_nodes = node_states[N_HIGH_MEMORY];
2251 sb->s_fs_info = sbinfo;
2252
2253 #ifdef CONFIG_TMPFS
2254 /*
2255 * Per default we only allow half of the physical ram per
2256 * tmpfs instance, limiting inodes to one per page of lowmem;
2257 * but the internal instance is left unlimited.
2258 */
2259 if (!(sb->s_flags & MS_NOUSER)) {
2260 sbinfo->max_blocks = shmem_default_max_blocks();
2261 sbinfo->max_inodes = shmem_default_max_inodes();
2262 if (shmem_parse_options(data, sbinfo, false)) {
2263 err = -EINVAL;
2264 goto failed;
2265 }
2266 }
2267 sb->s_export_op = &shmem_export_ops;
2268 #else
2269 sb->s_flags |= MS_NOUSER;
2270 #endif
2271
2272 spin_lock_init(&sbinfo->stat_lock);
2273 sbinfo->free_blocks = sbinfo->max_blocks;
2274 sbinfo->free_inodes = sbinfo->max_inodes;
2275
2276 sb->s_maxbytes = SHMEM_MAX_BYTES;
2277 sb->s_blocksize = PAGE_CACHE_SIZE;
2278 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2279 sb->s_magic = TMPFS_MAGIC;
2280 sb->s_op = &shmem_ops;
2281 sb->s_time_gran = 1;
2282 #ifdef CONFIG_TMPFS_POSIX_ACL
2283 sb->s_xattr = shmem_xattr_handlers;
2284 sb->s_flags |= MS_POSIXACL;
2285 #endif
2286
2287 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2288 if (!inode)
2289 goto failed;
2290 inode->i_uid = sbinfo->uid;
2291 inode->i_gid = sbinfo->gid;
2292 root = d_alloc_root(inode);
2293 if (!root)
2294 goto failed_iput;
2295 sb->s_root = root;
2296 return 0;
2297
2298 failed_iput:
2299 iput(inode);
2300 failed:
2301 shmem_put_super(sb);
2302 return err;
2303 }
2304
2305 static struct kmem_cache *shmem_inode_cachep;
2306
2307 static struct inode *shmem_alloc_inode(struct super_block *sb)
2308 {
2309 struct shmem_inode_info *p;
2310 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2311 if (!p)
2312 return NULL;
2313 return &p->vfs_inode;
2314 }
2315
2316 static void shmem_destroy_inode(struct inode *inode)
2317 {
2318 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2319 /* only struct inode is valid if it's an inline symlink */
2320 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2321 }
2322 shmem_acl_destroy_inode(inode);
2323 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2324 }
2325
2326 static void init_once(struct kmem_cache *cachep, void *foo)
2327 {
2328 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2329
2330 inode_init_once(&p->vfs_inode);
2331 #ifdef CONFIG_TMPFS_POSIX_ACL
2332 p->i_acl = NULL;
2333 p->i_default_acl = NULL;
2334 #endif
2335 }
2336
2337 static int init_inodecache(void)
2338 {
2339 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2340 sizeof(struct shmem_inode_info),
2341 0, SLAB_PANIC, init_once);
2342 return 0;
2343 }
2344
2345 static void destroy_inodecache(void)
2346 {
2347 kmem_cache_destroy(shmem_inode_cachep);
2348 }
2349
2350 static const struct address_space_operations shmem_aops = {
2351 .writepage = shmem_writepage,
2352 .set_page_dirty = __set_page_dirty_no_writeback,
2353 #ifdef CONFIG_TMPFS
2354 .readpage = shmem_readpage,
2355 .write_begin = shmem_write_begin,
2356 .write_end = shmem_write_end,
2357 #endif
2358 .migratepage = migrate_page,
2359 };
2360
2361 static const struct file_operations shmem_file_operations = {
2362 .mmap = shmem_mmap,
2363 #ifdef CONFIG_TMPFS
2364 .llseek = generic_file_llseek,
2365 .read = shmem_file_read,
2366 .write = do_sync_write,
2367 .aio_write = generic_file_aio_write,
2368 .fsync = simple_sync_file,
2369 .splice_read = generic_file_splice_read,
2370 .splice_write = generic_file_splice_write,
2371 #endif
2372 };
2373
2374 static const struct inode_operations shmem_inode_operations = {
2375 .truncate = shmem_truncate,
2376 .setattr = shmem_notify_change,
2377 .truncate_range = shmem_truncate_range,
2378 #ifdef CONFIG_TMPFS_POSIX_ACL
2379 .setxattr = generic_setxattr,
2380 .getxattr = generic_getxattr,
2381 .listxattr = generic_listxattr,
2382 .removexattr = generic_removexattr,
2383 .permission = shmem_permission,
2384 #endif
2385
2386 };
2387
2388 static const struct inode_operations shmem_dir_inode_operations = {
2389 #ifdef CONFIG_TMPFS
2390 .create = shmem_create,
2391 .lookup = simple_lookup,
2392 .link = shmem_link,
2393 .unlink = shmem_unlink,
2394 .symlink = shmem_symlink,
2395 .mkdir = shmem_mkdir,
2396 .rmdir = shmem_rmdir,
2397 .mknod = shmem_mknod,
2398 .rename = shmem_rename,
2399 #endif
2400 #ifdef CONFIG_TMPFS_POSIX_ACL
2401 .setattr = shmem_notify_change,
2402 .setxattr = generic_setxattr,
2403 .getxattr = generic_getxattr,
2404 .listxattr = generic_listxattr,
2405 .removexattr = generic_removexattr,
2406 .permission = shmem_permission,
2407 #endif
2408 };
2409
2410 static const struct inode_operations shmem_special_inode_operations = {
2411 #ifdef CONFIG_TMPFS_POSIX_ACL
2412 .setattr = shmem_notify_change,
2413 .setxattr = generic_setxattr,
2414 .getxattr = generic_getxattr,
2415 .listxattr = generic_listxattr,
2416 .removexattr = generic_removexattr,
2417 .permission = shmem_permission,
2418 #endif
2419 };
2420
2421 static const struct super_operations shmem_ops = {
2422 .alloc_inode = shmem_alloc_inode,
2423 .destroy_inode = shmem_destroy_inode,
2424 #ifdef CONFIG_TMPFS
2425 .statfs = shmem_statfs,
2426 .remount_fs = shmem_remount_fs,
2427 .show_options = shmem_show_options,
2428 #endif
2429 .delete_inode = shmem_delete_inode,
2430 .drop_inode = generic_delete_inode,
2431 .put_super = shmem_put_super,
2432 };
2433
2434 static struct vm_operations_struct shmem_vm_ops = {
2435 .fault = shmem_fault,
2436 #ifdef CONFIG_NUMA
2437 .set_policy = shmem_set_policy,
2438 .get_policy = shmem_get_policy,
2439 #endif
2440 };
2441
2442
2443 static int shmem_get_sb(struct file_system_type *fs_type,
2444 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2445 {
2446 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2447 }
2448
2449 static struct file_system_type tmpfs_fs_type = {
2450 .owner = THIS_MODULE,
2451 .name = "tmpfs",
2452 .get_sb = shmem_get_sb,
2453 .kill_sb = kill_litter_super,
2454 };
2455 static struct vfsmount *shm_mnt;
2456
2457 static int __init init_tmpfs(void)
2458 {
2459 int error;
2460
2461 error = bdi_init(&shmem_backing_dev_info);
2462 if (error)
2463 goto out4;
2464
2465 error = init_inodecache();
2466 if (error)
2467 goto out3;
2468
2469 error = register_filesystem(&tmpfs_fs_type);
2470 if (error) {
2471 printk(KERN_ERR "Could not register tmpfs\n");
2472 goto out2;
2473 }
2474
2475 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2476 tmpfs_fs_type.name, NULL);
2477 if (IS_ERR(shm_mnt)) {
2478 error = PTR_ERR(shm_mnt);
2479 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2480 goto out1;
2481 }
2482 return 0;
2483
2484 out1:
2485 unregister_filesystem(&tmpfs_fs_type);
2486 out2:
2487 destroy_inodecache();
2488 out3:
2489 bdi_destroy(&shmem_backing_dev_info);
2490 out4:
2491 shm_mnt = ERR_PTR(error);
2492 return error;
2493 }
2494 module_init(init_tmpfs)
2495
2496 /**
2497 * shmem_file_setup - get an unlinked file living in tmpfs
2498 * @name: name for dentry (to be seen in /proc/<pid>/maps
2499 * @size: size to be set for the file
2500 * @flags: vm_flags
2501 */
2502 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2503 {
2504 int error;
2505 struct file *file;
2506 struct inode *inode;
2507 struct dentry *dentry, *root;
2508 struct qstr this;
2509
2510 if (IS_ERR(shm_mnt))
2511 return (void *)shm_mnt;
2512
2513 if (size < 0 || size > SHMEM_MAX_BYTES)
2514 return ERR_PTR(-EINVAL);
2515
2516 if (shmem_acct_size(flags, size))
2517 return ERR_PTR(-ENOMEM);
2518
2519 error = -ENOMEM;
2520 this.name = name;
2521 this.len = strlen(name);
2522 this.hash = 0; /* will go */
2523 root = shm_mnt->mnt_root;
2524 dentry = d_alloc(root, &this);
2525 if (!dentry)
2526 goto put_memory;
2527
2528 error = -ENFILE;
2529 file = get_empty_filp();
2530 if (!file)
2531 goto put_dentry;
2532
2533 error = -ENOSPC;
2534 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2535 if (!inode)
2536 goto close_file;
2537
2538 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2539 d_instantiate(dentry, inode);
2540 inode->i_size = size;
2541 inode->i_nlink = 0; /* It is unlinked */
2542 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2543 &shmem_file_operations);
2544 return file;
2545
2546 close_file:
2547 put_filp(file);
2548 put_dentry:
2549 dput(dentry);
2550 put_memory:
2551 shmem_unacct_size(flags, size);
2552 return ERR_PTR(error);
2553 }
2554
2555 /**
2556 * shmem_zero_setup - setup a shared anonymous mapping
2557 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2558 */
2559 int shmem_zero_setup(struct vm_area_struct *vma)
2560 {
2561 struct file *file;
2562 loff_t size = vma->vm_end - vma->vm_start;
2563
2564 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2565 if (IS_ERR(file))
2566 return PTR_ERR(file);
2567
2568 if (vma->vm_file)
2569 fput(vma->vm_file);
2570 vma->vm_file = file;
2571 vma->vm_ops = &shmem_vm_ops;
2572 return 0;
2573 }