]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/shmem.c
Merge tag 'trace-v5.14-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-jammy-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
101 */
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
117 bool full_inums;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 struct page **pagep, enum sgp_type sgp,
149 gfp_t gfp, struct vm_area_struct *vma,
150 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 struct page **pagep, enum sgp_type sgp)
154 {
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 return sb->s_fs_info;
162 }
163
164 /*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 return (flags & VM_NORESERVE) ?
173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 if (!(flags & VM_NORESERVE))
179 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
184 {
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 }
192 return 0;
193 }
194
195 /*
196 * ... whereas tmpfs objects are accounted incrementally as
197 * pages are allocated, in order to allow large sparse files.
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 if (!(flags & VM_NORESERVE))
204 return 0;
205
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221 if (shmem_acct_block(info->flags, pages))
222 return false;
223
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
227 goto unacct;
228 percpu_counter_add(&sbinfo->used_blocks, pages);
229 }
230
231 return true;
232
233 unacct:
234 shmem_unacct_blocks(info->flags, pages);
235 return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
268 *
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
273 */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 ino_t ino;
279
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
281 spin_lock(&sbinfo->stat_lock);
282 if (sbinfo->max_inodes) {
283 if (!sbinfo->free_inodes) {
284 spin_unlock(&sbinfo->stat_lock);
285 return -ENOSPC;
286 }
287 sbinfo->free_inodes--;
288 }
289 if (inop) {
290 ino = sbinfo->next_ino++;
291 if (unlikely(is_zero_ino(ino)))
292 ino = sbinfo->next_ino++;
293 if (unlikely(!sbinfo->full_inums &&
294 ino > UINT_MAX)) {
295 /*
296 * Emulate get_next_ino uint wraparound for
297 * compatibility
298 */
299 if (IS_ENABLED(CONFIG_64BIT))
300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 __func__, MINOR(sb->s_dev));
302 sbinfo->next_ino = 1;
303 ino = sbinfo->next_ino++;
304 }
305 *inop = ino;
306 }
307 spin_unlock(&sbinfo->stat_lock);
308 } else if (inop) {
309 /*
310 * __shmem_file_setup, one of our callers, is lock-free: it
311 * doesn't hold stat_lock in shmem_reserve_inode since
312 * max_inodes is always 0, and is called from potentially
313 * unknown contexts. As such, use a per-cpu batched allocator
314 * which doesn't require the per-sb stat_lock unless we are at
315 * the batch boundary.
316 *
317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 * shmem mounts are not exposed to userspace, so we don't need
319 * to worry about things like glibc compatibility.
320 */
321 ino_t *next_ino;
322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 ino = *next_ino;
324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 spin_lock(&sbinfo->stat_lock);
326 ino = sbinfo->next_ino;
327 sbinfo->next_ino += SHMEM_INO_BATCH;
328 spin_unlock(&sbinfo->stat_lock);
329 if (unlikely(is_zero_ino(ino)))
330 ino++;
331 }
332 *inop = ino;
333 *next_ino = ++ino;
334 put_cpu();
335 }
336
337 return 0;
338 }
339
340 static void shmem_free_inode(struct super_block *sb)
341 {
342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 if (sbinfo->max_inodes) {
344 spin_lock(&sbinfo->stat_lock);
345 sbinfo->free_inodes++;
346 spin_unlock(&sbinfo->stat_lock);
347 }
348 }
349
350 /**
351 * shmem_recalc_inode - recalculate the block usage of an inode
352 * @inode: inode to recalc
353 *
354 * We have to calculate the free blocks since the mm can drop
355 * undirtied hole pages behind our back.
356 *
357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359 *
360 * It has to be called with the spinlock held.
361 */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364 struct shmem_inode_info *info = SHMEM_I(inode);
365 long freed;
366
367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 if (freed > 0) {
369 info->alloced -= freed;
370 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 shmem_inode_unacct_blocks(inode, freed);
372 }
373 }
374
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377 struct shmem_inode_info *info = SHMEM_I(inode);
378 unsigned long flags;
379
380 if (!shmem_inode_acct_block(inode, pages))
381 return false;
382
383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 inode->i_mapping->nrpages += pages;
385
386 spin_lock_irqsave(&info->lock, flags);
387 info->alloced += pages;
388 inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 shmem_recalc_inode(inode);
390 spin_unlock_irqrestore(&info->lock, flags);
391
392 return true;
393 }
394
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397 struct shmem_inode_info *info = SHMEM_I(inode);
398 unsigned long flags;
399
400 /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
402 spin_lock_irqsave(&info->lock, flags);
403 info->alloced -= pages;
404 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 shmem_recalc_inode(inode);
406 spin_unlock_irqrestore(&info->lock, flags);
407
408 shmem_inode_unacct_blocks(inode, pages);
409 }
410
411 /*
412 * Replace item expected in xarray by a new item, while holding xa_lock.
413 */
414 static int shmem_replace_entry(struct address_space *mapping,
415 pgoff_t index, void *expected, void *replacement)
416 {
417 XA_STATE(xas, &mapping->i_pages, index);
418 void *item;
419
420 VM_BUG_ON(!expected);
421 VM_BUG_ON(!replacement);
422 item = xas_load(&xas);
423 if (item != expected)
424 return -ENOENT;
425 xas_store(&xas, replacement);
426 return 0;
427 }
428
429 /*
430 * Sometimes, before we decide whether to proceed or to fail, we must check
431 * that an entry was not already brought back from swap by a racing thread.
432 *
433 * Checking page is not enough: by the time a SwapCache page is locked, it
434 * might be reused, and again be SwapCache, using the same swap as before.
435 */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437 pgoff_t index, swp_entry_t swap)
438 {
439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441
442 /*
443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444 *
445 * SHMEM_HUGE_NEVER:
446 * disables huge pages for the mount;
447 * SHMEM_HUGE_ALWAYS:
448 * enables huge pages for the mount;
449 * SHMEM_HUGE_WITHIN_SIZE:
450 * only allocate huge pages if the page will be fully within i_size,
451 * also respect fadvise()/madvise() hints;
452 * SHMEM_HUGE_ADVISE:
453 * only allocate huge pages if requested with fadvise()/madvise();
454 */
455
456 #define SHMEM_HUGE_NEVER 0
457 #define SHMEM_HUGE_ALWAYS 1
458 #define SHMEM_HUGE_WITHIN_SIZE 2
459 #define SHMEM_HUGE_ADVISE 3
460
461 /*
462 * Special values.
463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464 *
465 * SHMEM_HUGE_DENY:
466 * disables huge on shm_mnt and all mounts, for emergency use;
467 * SHMEM_HUGE_FORCE:
468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469 *
470 */
471 #define SHMEM_HUGE_DENY (-1)
472 #define SHMEM_HUGE_FORCE (-2)
473
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476
477 static int shmem_huge __read_mostly;
478
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482 if (!strcmp(str, "never"))
483 return SHMEM_HUGE_NEVER;
484 if (!strcmp(str, "always"))
485 return SHMEM_HUGE_ALWAYS;
486 if (!strcmp(str, "within_size"))
487 return SHMEM_HUGE_WITHIN_SIZE;
488 if (!strcmp(str, "advise"))
489 return SHMEM_HUGE_ADVISE;
490 if (!strcmp(str, "deny"))
491 return SHMEM_HUGE_DENY;
492 if (!strcmp(str, "force"))
493 return SHMEM_HUGE_FORCE;
494 return -EINVAL;
495 }
496 #endif
497
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501 switch (huge) {
502 case SHMEM_HUGE_NEVER:
503 return "never";
504 case SHMEM_HUGE_ALWAYS:
505 return "always";
506 case SHMEM_HUGE_WITHIN_SIZE:
507 return "within_size";
508 case SHMEM_HUGE_ADVISE:
509 return "advise";
510 case SHMEM_HUGE_DENY:
511 return "deny";
512 case SHMEM_HUGE_FORCE:
513 return "force";
514 default:
515 VM_BUG_ON(1);
516 return "bad_val";
517 }
518 }
519 #endif
520
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 LIST_HEAD(list), *pos, *next;
525 LIST_HEAD(to_remove);
526 struct inode *inode;
527 struct shmem_inode_info *info;
528 struct page *page;
529 unsigned long batch = sc ? sc->nr_to_scan : 128;
530 int removed = 0, split = 0;
531
532 if (list_empty(&sbinfo->shrinklist))
533 return SHRINK_STOP;
534
535 spin_lock(&sbinfo->shrinklist_lock);
536 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539 /* pin the inode */
540 inode = igrab(&info->vfs_inode);
541
542 /* inode is about to be evicted */
543 if (!inode) {
544 list_del_init(&info->shrinklist);
545 removed++;
546 goto next;
547 }
548
549 /* Check if there's anything to gain */
550 if (round_up(inode->i_size, PAGE_SIZE) ==
551 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552 list_move(&info->shrinklist, &to_remove);
553 removed++;
554 goto next;
555 }
556
557 list_move(&info->shrinklist, &list);
558 next:
559 if (!--batch)
560 break;
561 }
562 spin_unlock(&sbinfo->shrinklist_lock);
563
564 list_for_each_safe(pos, next, &to_remove) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 inode = &info->vfs_inode;
567 list_del_init(&info->shrinklist);
568 iput(inode);
569 }
570
571 list_for_each_safe(pos, next, &list) {
572 int ret;
573
574 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 inode = &info->vfs_inode;
576
577 if (nr_to_split && split >= nr_to_split)
578 goto leave;
579
580 page = find_get_page(inode->i_mapping,
581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 if (!page)
583 goto drop;
584
585 /* No huge page at the end of the file: nothing to split */
586 if (!PageTransHuge(page)) {
587 put_page(page);
588 goto drop;
589 }
590
591 /*
592 * Leave the inode on the list if we failed to lock
593 * the page at this time.
594 *
595 * Waiting for the lock may lead to deadlock in the
596 * reclaim path.
597 */
598 if (!trylock_page(page)) {
599 put_page(page);
600 goto leave;
601 }
602
603 ret = split_huge_page(page);
604 unlock_page(page);
605 put_page(page);
606
607 /* If split failed leave the inode on the list */
608 if (ret)
609 goto leave;
610
611 split++;
612 drop:
613 list_del_init(&info->shrinklist);
614 removed++;
615 leave:
616 iput(inode);
617 }
618
619 spin_lock(&sbinfo->shrinklist_lock);
620 list_splice_tail(&list, &sbinfo->shrinklist);
621 sbinfo->shrinklist_len -= removed;
622 spin_unlock(&sbinfo->shrinklist_lock);
623
624 return split;
625 }
626
627 static long shmem_unused_huge_scan(struct super_block *sb,
628 struct shrink_control *sc)
629 {
630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632 if (!READ_ONCE(sbinfo->shrinklist_len))
633 return SHRINK_STOP;
634
635 return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637
638 static long shmem_unused_huge_count(struct super_block *sb,
639 struct shrink_control *sc)
640 {
641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645
646 #define shmem_huge SHMEM_HUGE_DENY
647
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 struct shrink_control *sc, unsigned long nr_to_split)
650 {
651 return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 shmem_huge != SHMEM_HUGE_DENY)
660 return true;
661 return false;
662 }
663
664 /*
665 * Like add_to_page_cache_locked, but error if expected item has gone.
666 */
667 static int shmem_add_to_page_cache(struct page *page,
668 struct address_space *mapping,
669 pgoff_t index, void *expected, gfp_t gfp,
670 struct mm_struct *charge_mm)
671 {
672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 unsigned long i = 0;
674 unsigned long nr = compound_nr(page);
675 int error;
676
677 VM_BUG_ON_PAGE(PageTail(page), page);
678 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679 VM_BUG_ON_PAGE(!PageLocked(page), page);
680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681 VM_BUG_ON(expected && PageTransHuge(page));
682
683 page_ref_add(page, nr);
684 page->mapping = mapping;
685 page->index = index;
686
687 if (!PageSwapCache(page)) {
688 error = mem_cgroup_charge(page, charge_mm, gfp);
689 if (error) {
690 if (PageTransHuge(page)) {
691 count_vm_event(THP_FILE_FALLBACK);
692 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 }
694 goto error;
695 }
696 }
697 cgroup_throttle_swaprate(page, gfp);
698
699 do {
700 void *entry;
701 xas_lock_irq(&xas);
702 entry = xas_find_conflict(&xas);
703 if (entry != expected)
704 xas_set_err(&xas, -EEXIST);
705 xas_create_range(&xas);
706 if (xas_error(&xas))
707 goto unlock;
708 next:
709 xas_store(&xas, page);
710 if (++i < nr) {
711 xas_next(&xas);
712 goto next;
713 }
714 if (PageTransHuge(page)) {
715 count_vm_event(THP_FILE_ALLOC);
716 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
717 }
718 mapping->nrpages += nr;
719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 __mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722 xas_unlock_irq(&xas);
723 } while (xas_nomem(&xas, gfp));
724
725 if (xas_error(&xas)) {
726 error = xas_error(&xas);
727 goto error;
728 }
729
730 return 0;
731 error:
732 page->mapping = NULL;
733 page_ref_sub(page, nr);
734 return error;
735 }
736
737 /*
738 * Like delete_from_page_cache, but substitutes swap for page.
739 */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742 struct address_space *mapping = page->mapping;
743 int error;
744
745 VM_BUG_ON_PAGE(PageCompound(page), page);
746
747 xa_lock_irq(&mapping->i_pages);
748 error = shmem_replace_entry(mapping, page->index, page, radswap);
749 page->mapping = NULL;
750 mapping->nrpages--;
751 __dec_lruvec_page_state(page, NR_FILE_PAGES);
752 __dec_lruvec_page_state(page, NR_SHMEM);
753 xa_unlock_irq(&mapping->i_pages);
754 put_page(page);
755 BUG_ON(error);
756 }
757
758 /*
759 * Remove swap entry from page cache, free the swap and its page cache.
760 */
761 static int shmem_free_swap(struct address_space *mapping,
762 pgoff_t index, void *radswap)
763 {
764 void *old;
765
766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767 if (old != radswap)
768 return -ENOENT;
769 free_swap_and_cache(radix_to_swp_entry(radswap));
770 return 0;
771 }
772
773 /*
774 * Determine (in bytes) how many of the shmem object's pages mapped by the
775 * given offsets are swapped out.
776 *
777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778 * as long as the inode doesn't go away and racy results are not a problem.
779 */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 pgoff_t start, pgoff_t end)
782 {
783 XA_STATE(xas, &mapping->i_pages, start);
784 struct page *page;
785 unsigned long swapped = 0;
786
787 rcu_read_lock();
788 xas_for_each(&xas, page, end - 1) {
789 if (xas_retry(&xas, page))
790 continue;
791 if (xa_is_value(page))
792 swapped++;
793
794 if (need_resched()) {
795 xas_pause(&xas);
796 cond_resched_rcu();
797 }
798 }
799
800 rcu_read_unlock();
801
802 return swapped << PAGE_SHIFT;
803 }
804
805 /*
806 * Determine (in bytes) how many of the shmem object's pages mapped by the
807 * given vma is swapped out.
808 *
809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810 * as long as the inode doesn't go away and racy results are not a problem.
811 */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814 struct inode *inode = file_inode(vma->vm_file);
815 struct shmem_inode_info *info = SHMEM_I(inode);
816 struct address_space *mapping = inode->i_mapping;
817 unsigned long swapped;
818
819 /* Be careful as we don't hold info->lock */
820 swapped = READ_ONCE(info->swapped);
821
822 /*
823 * The easier cases are when the shmem object has nothing in swap, or
824 * the vma maps it whole. Then we can simply use the stats that we
825 * already track.
826 */
827 if (!swapped)
828 return 0;
829
830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 return swapped << PAGE_SHIFT;
832
833 /* Here comes the more involved part */
834 return shmem_partial_swap_usage(mapping,
835 linear_page_index(vma, vma->vm_start),
836 linear_page_index(vma, vma->vm_end));
837 }
838
839 /*
840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841 */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844 struct pagevec pvec;
845 pgoff_t index = 0;
846
847 pagevec_init(&pvec);
848 /*
849 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850 */
851 while (!mapping_unevictable(mapping)) {
852 if (!pagevec_lookup(&pvec, mapping, &index))
853 break;
854 check_move_unevictable_pages(&pvec);
855 pagevec_release(&pvec);
856 cond_resched();
857 }
858 }
859
860 /*
861 * Check whether a hole-punch or truncation needs to split a huge page,
862 * returning true if no split was required, or the split has been successful.
863 *
864 * Eviction (or truncation to 0 size) should never need to split a huge page;
865 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866 * head, and then succeeded to trylock on tail.
867 *
868 * A split can only succeed when there are no additional references on the
869 * huge page: so the split below relies upon find_get_entries() having stopped
870 * when it found a subpage of the huge page, without getting further references.
871 */
872 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873 {
874 if (!PageTransCompound(page))
875 return true;
876
877 /* Just proceed to delete a huge page wholly within the range punched */
878 if (PageHead(page) &&
879 page->index >= start && page->index + HPAGE_PMD_NR <= end)
880 return true;
881
882 /* Try to split huge page, so we can truly punch the hole or truncate */
883 return split_huge_page(page) >= 0;
884 }
885
886 /*
887 * Remove range of pages and swap entries from page cache, and free them.
888 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
889 */
890 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891 bool unfalloc)
892 {
893 struct address_space *mapping = inode->i_mapping;
894 struct shmem_inode_info *info = SHMEM_I(inode);
895 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
899 struct pagevec pvec;
900 pgoff_t indices[PAGEVEC_SIZE];
901 long nr_swaps_freed = 0;
902 pgoff_t index;
903 int i;
904
905 if (lend == -1)
906 end = -1; /* unsigned, so actually very big */
907
908 pagevec_init(&pvec);
909 index = start;
910 while (index < end && find_lock_entries(mapping, index, end - 1,
911 &pvec, indices)) {
912 for (i = 0; i < pagevec_count(&pvec); i++) {
913 struct page *page = pvec.pages[i];
914
915 index = indices[i];
916
917 if (xa_is_value(page)) {
918 if (unfalloc)
919 continue;
920 nr_swaps_freed += !shmem_free_swap(mapping,
921 index, page);
922 continue;
923 }
924 index += thp_nr_pages(page) - 1;
925
926 if (!unfalloc || !PageUptodate(page))
927 truncate_inode_page(mapping, page);
928 unlock_page(page);
929 }
930 pagevec_remove_exceptionals(&pvec);
931 pagevec_release(&pvec);
932 cond_resched();
933 index++;
934 }
935
936 if (partial_start) {
937 struct page *page = NULL;
938 shmem_getpage(inode, start - 1, &page, SGP_READ);
939 if (page) {
940 unsigned int top = PAGE_SIZE;
941 if (start > end) {
942 top = partial_end;
943 partial_end = 0;
944 }
945 zero_user_segment(page, partial_start, top);
946 set_page_dirty(page);
947 unlock_page(page);
948 put_page(page);
949 }
950 }
951 if (partial_end) {
952 struct page *page = NULL;
953 shmem_getpage(inode, end, &page, SGP_READ);
954 if (page) {
955 zero_user_segment(page, 0, partial_end);
956 set_page_dirty(page);
957 unlock_page(page);
958 put_page(page);
959 }
960 }
961 if (start >= end)
962 return;
963
964 index = start;
965 while (index < end) {
966 cond_resched();
967
968 if (!find_get_entries(mapping, index, end - 1, &pvec,
969 indices)) {
970 /* If all gone or hole-punch or unfalloc, we're done */
971 if (index == start || end != -1)
972 break;
973 /* But if truncating, restart to make sure all gone */
974 index = start;
975 continue;
976 }
977 for (i = 0; i < pagevec_count(&pvec); i++) {
978 struct page *page = pvec.pages[i];
979
980 index = indices[i];
981 if (xa_is_value(page)) {
982 if (unfalloc)
983 continue;
984 if (shmem_free_swap(mapping, index, page)) {
985 /* Swap was replaced by page: retry */
986 index--;
987 break;
988 }
989 nr_swaps_freed++;
990 continue;
991 }
992
993 lock_page(page);
994
995 if (!unfalloc || !PageUptodate(page)) {
996 if (page_mapping(page) != mapping) {
997 /* Page was replaced by swap: retry */
998 unlock_page(page);
999 index--;
1000 break;
1001 }
1002 VM_BUG_ON_PAGE(PageWriteback(page), page);
1003 if (shmem_punch_compound(page, start, end))
1004 truncate_inode_page(mapping, page);
1005 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1006 /* Wipe the page and don't get stuck */
1007 clear_highpage(page);
1008 flush_dcache_page(page);
1009 set_page_dirty(page);
1010 if (index <
1011 round_up(start, HPAGE_PMD_NR))
1012 start = index + 1;
1013 }
1014 }
1015 unlock_page(page);
1016 }
1017 pagevec_remove_exceptionals(&pvec);
1018 pagevec_release(&pvec);
1019 index++;
1020 }
1021
1022 spin_lock_irq(&info->lock);
1023 info->swapped -= nr_swaps_freed;
1024 shmem_recalc_inode(inode);
1025 spin_unlock_irq(&info->lock);
1026 }
1027
1028 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029 {
1030 shmem_undo_range(inode, lstart, lend, false);
1031 inode->i_ctime = inode->i_mtime = current_time(inode);
1032 }
1033 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1034
1035 static int shmem_getattr(struct user_namespace *mnt_userns,
1036 const struct path *path, struct kstat *stat,
1037 u32 request_mask, unsigned int query_flags)
1038 {
1039 struct inode *inode = path->dentry->d_inode;
1040 struct shmem_inode_info *info = SHMEM_I(inode);
1041 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1042
1043 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1044 spin_lock_irq(&info->lock);
1045 shmem_recalc_inode(inode);
1046 spin_unlock_irq(&info->lock);
1047 }
1048 generic_fillattr(&init_user_ns, inode, stat);
1049
1050 if (is_huge_enabled(sb_info))
1051 stat->blksize = HPAGE_PMD_SIZE;
1052
1053 return 0;
1054 }
1055
1056 static int shmem_setattr(struct user_namespace *mnt_userns,
1057 struct dentry *dentry, struct iattr *attr)
1058 {
1059 struct inode *inode = d_inode(dentry);
1060 struct shmem_inode_info *info = SHMEM_I(inode);
1061 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062 int error;
1063
1064 error = setattr_prepare(&init_user_ns, dentry, attr);
1065 if (error)
1066 return error;
1067
1068 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069 loff_t oldsize = inode->i_size;
1070 loff_t newsize = attr->ia_size;
1071
1072 /* protected by i_mutex */
1073 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075 return -EPERM;
1076
1077 if (newsize != oldsize) {
1078 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079 oldsize, newsize);
1080 if (error)
1081 return error;
1082 i_size_write(inode, newsize);
1083 inode->i_ctime = inode->i_mtime = current_time(inode);
1084 }
1085 if (newsize <= oldsize) {
1086 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1087 if (oldsize > holebegin)
1088 unmap_mapping_range(inode->i_mapping,
1089 holebegin, 0, 1);
1090 if (info->alloced)
1091 shmem_truncate_range(inode,
1092 newsize, (loff_t)-1);
1093 /* unmap again to remove racily COWed private pages */
1094 if (oldsize > holebegin)
1095 unmap_mapping_range(inode->i_mapping,
1096 holebegin, 0, 1);
1097
1098 /*
1099 * Part of the huge page can be beyond i_size: subject
1100 * to shrink under memory pressure.
1101 */
1102 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1103 spin_lock(&sbinfo->shrinklist_lock);
1104 /*
1105 * _careful to defend against unlocked access to
1106 * ->shrink_list in shmem_unused_huge_shrink()
1107 */
1108 if (list_empty_careful(&info->shrinklist)) {
1109 list_add_tail(&info->shrinklist,
1110 &sbinfo->shrinklist);
1111 sbinfo->shrinklist_len++;
1112 }
1113 spin_unlock(&sbinfo->shrinklist_lock);
1114 }
1115 }
1116 }
1117
1118 setattr_copy(&init_user_ns, inode, attr);
1119 if (attr->ia_valid & ATTR_MODE)
1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 return error;
1122 }
1123
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 struct shmem_inode_info *info = SHMEM_I(inode);
1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128
1129 if (shmem_mapping(inode->i_mapping)) {
1130 shmem_unacct_size(info->flags, inode->i_size);
1131 inode->i_size = 0;
1132 shmem_truncate_range(inode, 0, (loff_t)-1);
1133 if (!list_empty(&info->shrinklist)) {
1134 spin_lock(&sbinfo->shrinklist_lock);
1135 if (!list_empty(&info->shrinklist)) {
1136 list_del_init(&info->shrinklist);
1137 sbinfo->shrinklist_len--;
1138 }
1139 spin_unlock(&sbinfo->shrinklist_lock);
1140 }
1141 while (!list_empty(&info->swaplist)) {
1142 /* Wait while shmem_unuse() is scanning this inode... */
1143 wait_var_event(&info->stop_eviction,
1144 !atomic_read(&info->stop_eviction));
1145 mutex_lock(&shmem_swaplist_mutex);
1146 /* ...but beware of the race if we peeked too early */
1147 if (!atomic_read(&info->stop_eviction))
1148 list_del_init(&info->swaplist);
1149 mutex_unlock(&shmem_swaplist_mutex);
1150 }
1151 }
1152
1153 simple_xattrs_free(&info->xattrs);
1154 WARN_ON(inode->i_blocks);
1155 shmem_free_inode(inode->i_sb);
1156 clear_inode(inode);
1157 }
1158
1159 extern struct swap_info_struct *swap_info[];
1160
1161 static int shmem_find_swap_entries(struct address_space *mapping,
1162 pgoff_t start, unsigned int nr_entries,
1163 struct page **entries, pgoff_t *indices,
1164 unsigned int type, bool frontswap)
1165 {
1166 XA_STATE(xas, &mapping->i_pages, start);
1167 struct page *page;
1168 swp_entry_t entry;
1169 unsigned int ret = 0;
1170
1171 if (!nr_entries)
1172 return 0;
1173
1174 rcu_read_lock();
1175 xas_for_each(&xas, page, ULONG_MAX) {
1176 if (xas_retry(&xas, page))
1177 continue;
1178
1179 if (!xa_is_value(page))
1180 continue;
1181
1182 entry = radix_to_swp_entry(page);
1183 if (swp_type(entry) != type)
1184 continue;
1185 if (frontswap &&
1186 !frontswap_test(swap_info[type], swp_offset(entry)))
1187 continue;
1188
1189 indices[ret] = xas.xa_index;
1190 entries[ret] = page;
1191
1192 if (need_resched()) {
1193 xas_pause(&xas);
1194 cond_resched_rcu();
1195 }
1196 if (++ret == nr_entries)
1197 break;
1198 }
1199 rcu_read_unlock();
1200
1201 return ret;
1202 }
1203
1204 /*
1205 * Move the swapped pages for an inode to page cache. Returns the count
1206 * of pages swapped in, or the error in case of failure.
1207 */
1208 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209 pgoff_t *indices)
1210 {
1211 int i = 0;
1212 int ret = 0;
1213 int error = 0;
1214 struct address_space *mapping = inode->i_mapping;
1215
1216 for (i = 0; i < pvec.nr; i++) {
1217 struct page *page = pvec.pages[i];
1218
1219 if (!xa_is_value(page))
1220 continue;
1221 error = shmem_swapin_page(inode, indices[i],
1222 &page, SGP_CACHE,
1223 mapping_gfp_mask(mapping),
1224 NULL, NULL);
1225 if (error == 0) {
1226 unlock_page(page);
1227 put_page(page);
1228 ret++;
1229 }
1230 if (error == -ENOMEM)
1231 break;
1232 error = 0;
1233 }
1234 return error ? error : ret;
1235 }
1236
1237 /*
1238 * If swap found in inode, free it and move page from swapcache to filecache.
1239 */
1240 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241 bool frontswap, unsigned long *fs_pages_to_unuse)
1242 {
1243 struct address_space *mapping = inode->i_mapping;
1244 pgoff_t start = 0;
1245 struct pagevec pvec;
1246 pgoff_t indices[PAGEVEC_SIZE];
1247 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248 int ret = 0;
1249
1250 pagevec_init(&pvec);
1251 do {
1252 unsigned int nr_entries = PAGEVEC_SIZE;
1253
1254 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255 nr_entries = *fs_pages_to_unuse;
1256
1257 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258 pvec.pages, indices,
1259 type, frontswap);
1260 if (pvec.nr == 0) {
1261 ret = 0;
1262 break;
1263 }
1264
1265 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266 if (ret < 0)
1267 break;
1268
1269 if (frontswap_partial) {
1270 *fs_pages_to_unuse -= ret;
1271 if (*fs_pages_to_unuse == 0) {
1272 ret = FRONTSWAP_PAGES_UNUSED;
1273 break;
1274 }
1275 }
1276
1277 start = indices[pvec.nr - 1];
1278 } while (true);
1279
1280 return ret;
1281 }
1282
1283 /*
1284 * Read all the shared memory data that resides in the swap
1285 * device 'type' back into memory, so the swap device can be
1286 * unused.
1287 */
1288 int shmem_unuse(unsigned int type, bool frontswap,
1289 unsigned long *fs_pages_to_unuse)
1290 {
1291 struct shmem_inode_info *info, *next;
1292 int error = 0;
1293
1294 if (list_empty(&shmem_swaplist))
1295 return 0;
1296
1297 mutex_lock(&shmem_swaplist_mutex);
1298 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299 if (!info->swapped) {
1300 list_del_init(&info->swaplist);
1301 continue;
1302 }
1303 /*
1304 * Drop the swaplist mutex while searching the inode for swap;
1305 * but before doing so, make sure shmem_evict_inode() will not
1306 * remove placeholder inode from swaplist, nor let it be freed
1307 * (igrab() would protect from unlink, but not from unmount).
1308 */
1309 atomic_inc(&info->stop_eviction);
1310 mutex_unlock(&shmem_swaplist_mutex);
1311
1312 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1313 fs_pages_to_unuse);
1314 cond_resched();
1315
1316 mutex_lock(&shmem_swaplist_mutex);
1317 next = list_next_entry(info, swaplist);
1318 if (!info->swapped)
1319 list_del_init(&info->swaplist);
1320 if (atomic_dec_and_test(&info->stop_eviction))
1321 wake_up_var(&info->stop_eviction);
1322 if (error)
1323 break;
1324 }
1325 mutex_unlock(&shmem_swaplist_mutex);
1326
1327 return error;
1328 }
1329
1330 /*
1331 * Move the page from the page cache to the swap cache.
1332 */
1333 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334 {
1335 struct shmem_inode_info *info;
1336 struct address_space *mapping;
1337 struct inode *inode;
1338 swp_entry_t swap;
1339 pgoff_t index;
1340
1341 VM_BUG_ON_PAGE(PageCompound(page), page);
1342 BUG_ON(!PageLocked(page));
1343 mapping = page->mapping;
1344 index = page->index;
1345 inode = mapping->host;
1346 info = SHMEM_I(inode);
1347 if (info->flags & VM_LOCKED)
1348 goto redirty;
1349 if (!total_swap_pages)
1350 goto redirty;
1351
1352 /*
1353 * Our capabilities prevent regular writeback or sync from ever calling
1354 * shmem_writepage; but a stacking filesystem might use ->writepage of
1355 * its underlying filesystem, in which case tmpfs should write out to
1356 * swap only in response to memory pressure, and not for the writeback
1357 * threads or sync.
1358 */
1359 if (!wbc->for_reclaim) {
1360 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1361 goto redirty;
1362 }
1363
1364 /*
1365 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366 * value into swapfile.c, the only way we can correctly account for a
1367 * fallocated page arriving here is now to initialize it and write it.
1368 *
1369 * That's okay for a page already fallocated earlier, but if we have
1370 * not yet completed the fallocation, then (a) we want to keep track
1371 * of this page in case we have to undo it, and (b) it may not be a
1372 * good idea to continue anyway, once we're pushing into swap. So
1373 * reactivate the page, and let shmem_fallocate() quit when too many.
1374 */
1375 if (!PageUptodate(page)) {
1376 if (inode->i_private) {
1377 struct shmem_falloc *shmem_falloc;
1378 spin_lock(&inode->i_lock);
1379 shmem_falloc = inode->i_private;
1380 if (shmem_falloc &&
1381 !shmem_falloc->waitq &&
1382 index >= shmem_falloc->start &&
1383 index < shmem_falloc->next)
1384 shmem_falloc->nr_unswapped++;
1385 else
1386 shmem_falloc = NULL;
1387 spin_unlock(&inode->i_lock);
1388 if (shmem_falloc)
1389 goto redirty;
1390 }
1391 clear_highpage(page);
1392 flush_dcache_page(page);
1393 SetPageUptodate(page);
1394 }
1395
1396 swap = get_swap_page(page);
1397 if (!swap.val)
1398 goto redirty;
1399
1400 /*
1401 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1402 * if it's not already there. Do it now before the page is
1403 * moved to swap cache, when its pagelock no longer protects
1404 * the inode from eviction. But don't unlock the mutex until
1405 * we've incremented swapped, because shmem_unuse_inode() will
1406 * prune a !swapped inode from the swaplist under this mutex.
1407 */
1408 mutex_lock(&shmem_swaplist_mutex);
1409 if (list_empty(&info->swaplist))
1410 list_add(&info->swaplist, &shmem_swaplist);
1411
1412 if (add_to_swap_cache(page, swap,
1413 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414 NULL) == 0) {
1415 spin_lock_irq(&info->lock);
1416 shmem_recalc_inode(inode);
1417 info->swapped++;
1418 spin_unlock_irq(&info->lock);
1419
1420 swap_shmem_alloc(swap);
1421 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422
1423 mutex_unlock(&shmem_swaplist_mutex);
1424 BUG_ON(page_mapped(page));
1425 swap_writepage(page, wbc);
1426 return 0;
1427 }
1428
1429 mutex_unlock(&shmem_swaplist_mutex);
1430 put_swap_page(page, swap);
1431 redirty:
1432 set_page_dirty(page);
1433 if (wbc->for_reclaim)
1434 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1435 unlock_page(page);
1436 return 0;
1437 }
1438
1439 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1440 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1441 {
1442 char buffer[64];
1443
1444 if (!mpol || mpol->mode == MPOL_DEFAULT)
1445 return; /* show nothing */
1446
1447 mpol_to_str(buffer, sizeof(buffer), mpol);
1448
1449 seq_printf(seq, ",mpol=%s", buffer);
1450 }
1451
1452 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453 {
1454 struct mempolicy *mpol = NULL;
1455 if (sbinfo->mpol) {
1456 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1457 mpol = sbinfo->mpol;
1458 mpol_get(mpol);
1459 spin_unlock(&sbinfo->stat_lock);
1460 }
1461 return mpol;
1462 }
1463 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1464 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465 {
1466 }
1467 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468 {
1469 return NULL;
1470 }
1471 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472 #ifndef CONFIG_NUMA
1473 #define vm_policy vm_private_data
1474 #endif
1475
1476 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477 struct shmem_inode_info *info, pgoff_t index)
1478 {
1479 /* Create a pseudo vma that just contains the policy */
1480 vma_init(vma, NULL);
1481 /* Bias interleave by inode number to distribute better across nodes */
1482 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1483 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484 }
1485
1486 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487 {
1488 /* Drop reference taken by mpol_shared_policy_lookup() */
1489 mpol_cond_put(vma->vm_policy);
1490 }
1491
1492 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493 struct shmem_inode_info *info, pgoff_t index)
1494 {
1495 struct vm_area_struct pvma;
1496 struct page *page;
1497 struct vm_fault vmf = {
1498 .vma = &pvma,
1499 };
1500
1501 shmem_pseudo_vma_init(&pvma, info, index);
1502 page = swap_cluster_readahead(swap, gfp, &vmf);
1503 shmem_pseudo_vma_destroy(&pvma);
1504
1505 return page;
1506 }
1507
1508 /*
1509 * Make sure huge_gfp is always more limited than limit_gfp.
1510 * Some of the flags set permissions, while others set limitations.
1511 */
1512 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513 {
1514 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1516 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518
1519 /* Allow allocations only from the originally specified zones. */
1520 result |= zoneflags;
1521
1522 /*
1523 * Minimize the result gfp by taking the union with the deny flags,
1524 * and the intersection of the allow flags.
1525 */
1526 result |= (limit_gfp & denyflags);
1527 result |= (huge_gfp & limit_gfp) & allowflags;
1528
1529 return result;
1530 }
1531
1532 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533 struct shmem_inode_info *info, pgoff_t index)
1534 {
1535 struct vm_area_struct pvma;
1536 struct address_space *mapping = info->vfs_inode.i_mapping;
1537 pgoff_t hindex;
1538 struct page *page;
1539
1540 hindex = round_down(index, HPAGE_PMD_NR);
1541 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542 XA_PRESENT))
1543 return NULL;
1544
1545 shmem_pseudo_vma_init(&pvma, info, hindex);
1546 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547 true);
1548 shmem_pseudo_vma_destroy(&pvma);
1549 if (page)
1550 prep_transhuge_page(page);
1551 else
1552 count_vm_event(THP_FILE_FALLBACK);
1553 return page;
1554 }
1555
1556 static struct page *shmem_alloc_page(gfp_t gfp,
1557 struct shmem_inode_info *info, pgoff_t index)
1558 {
1559 struct vm_area_struct pvma;
1560 struct page *page;
1561
1562 shmem_pseudo_vma_init(&pvma, info, index);
1563 page = alloc_page_vma(gfp, &pvma, 0);
1564 shmem_pseudo_vma_destroy(&pvma);
1565
1566 return page;
1567 }
1568
1569 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570 struct inode *inode,
1571 pgoff_t index, bool huge)
1572 {
1573 struct shmem_inode_info *info = SHMEM_I(inode);
1574 struct page *page;
1575 int nr;
1576 int err = -ENOSPC;
1577
1578 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579 huge = false;
1580 nr = huge ? HPAGE_PMD_NR : 1;
1581
1582 if (!shmem_inode_acct_block(inode, nr))
1583 goto failed;
1584
1585 if (huge)
1586 page = shmem_alloc_hugepage(gfp, info, index);
1587 else
1588 page = shmem_alloc_page(gfp, info, index);
1589 if (page) {
1590 __SetPageLocked(page);
1591 __SetPageSwapBacked(page);
1592 return page;
1593 }
1594
1595 err = -ENOMEM;
1596 shmem_inode_unacct_blocks(inode, nr);
1597 failed:
1598 return ERR_PTR(err);
1599 }
1600
1601 /*
1602 * When a page is moved from swapcache to shmem filecache (either by the
1603 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605 * ignorance of the mapping it belongs to. If that mapping has special
1606 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607 * we may need to copy to a suitable page before moving to filecache.
1608 *
1609 * In a future release, this may well be extended to respect cpuset and
1610 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611 * but for now it is a simple matter of zone.
1612 */
1613 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614 {
1615 return page_zonenum(page) > gfp_zone(gfp);
1616 }
1617
1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619 struct shmem_inode_info *info, pgoff_t index)
1620 {
1621 struct page *oldpage, *newpage;
1622 struct address_space *swap_mapping;
1623 swp_entry_t entry;
1624 pgoff_t swap_index;
1625 int error;
1626
1627 oldpage = *pagep;
1628 entry.val = page_private(oldpage);
1629 swap_index = swp_offset(entry);
1630 swap_mapping = page_mapping(oldpage);
1631
1632 /*
1633 * We have arrived here because our zones are constrained, so don't
1634 * limit chance of success by further cpuset and node constraints.
1635 */
1636 gfp &= ~GFP_CONSTRAINT_MASK;
1637 newpage = shmem_alloc_page(gfp, info, index);
1638 if (!newpage)
1639 return -ENOMEM;
1640
1641 get_page(newpage);
1642 copy_highpage(newpage, oldpage);
1643 flush_dcache_page(newpage);
1644
1645 __SetPageLocked(newpage);
1646 __SetPageSwapBacked(newpage);
1647 SetPageUptodate(newpage);
1648 set_page_private(newpage, entry.val);
1649 SetPageSwapCache(newpage);
1650
1651 /*
1652 * Our caller will very soon move newpage out of swapcache, but it's
1653 * a nice clean interface for us to replace oldpage by newpage there.
1654 */
1655 xa_lock_irq(&swap_mapping->i_pages);
1656 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657 if (!error) {
1658 mem_cgroup_migrate(oldpage, newpage);
1659 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1661 }
1662 xa_unlock_irq(&swap_mapping->i_pages);
1663
1664 if (unlikely(error)) {
1665 /*
1666 * Is this possible? I think not, now that our callers check
1667 * both PageSwapCache and page_private after getting page lock;
1668 * but be defensive. Reverse old to newpage for clear and free.
1669 */
1670 oldpage = newpage;
1671 } else {
1672 lru_cache_add(newpage);
1673 *pagep = newpage;
1674 }
1675
1676 ClearPageSwapCache(oldpage);
1677 set_page_private(oldpage, 0);
1678
1679 unlock_page(oldpage);
1680 put_page(oldpage);
1681 put_page(oldpage);
1682 return error;
1683 }
1684
1685 /*
1686 * Swap in the page pointed to by *pagep.
1687 * Caller has to make sure that *pagep contains a valid swapped page.
1688 * Returns 0 and the page in pagep if success. On failure, returns the
1689 * error code and NULL in *pagep.
1690 */
1691 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692 struct page **pagep, enum sgp_type sgp,
1693 gfp_t gfp, struct vm_area_struct *vma,
1694 vm_fault_t *fault_type)
1695 {
1696 struct address_space *mapping = inode->i_mapping;
1697 struct shmem_inode_info *info = SHMEM_I(inode);
1698 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1699 struct swap_info_struct *si;
1700 struct page *page = NULL;
1701 swp_entry_t swap;
1702 int error;
1703
1704 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1705 swap = radix_to_swp_entry(*pagep);
1706 *pagep = NULL;
1707
1708 /* Prevent swapoff from happening to us. */
1709 si = get_swap_device(swap);
1710 if (!si) {
1711 error = EINVAL;
1712 goto failed;
1713 }
1714 /* Look it up and read it in.. */
1715 page = lookup_swap_cache(swap, NULL, 0);
1716 if (!page) {
1717 /* Or update major stats only when swapin succeeds?? */
1718 if (fault_type) {
1719 *fault_type |= VM_FAULT_MAJOR;
1720 count_vm_event(PGMAJFAULT);
1721 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1722 }
1723 /* Here we actually start the io */
1724 page = shmem_swapin(swap, gfp, info, index);
1725 if (!page) {
1726 error = -ENOMEM;
1727 goto failed;
1728 }
1729 }
1730
1731 /* We have to do this with page locked to prevent races */
1732 lock_page(page);
1733 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1734 !shmem_confirm_swap(mapping, index, swap)) {
1735 error = -EEXIST;
1736 goto unlock;
1737 }
1738 if (!PageUptodate(page)) {
1739 error = -EIO;
1740 goto failed;
1741 }
1742 wait_on_page_writeback(page);
1743
1744 /*
1745 * Some architectures may have to restore extra metadata to the
1746 * physical page after reading from swap.
1747 */
1748 arch_swap_restore(swap, page);
1749
1750 if (shmem_should_replace_page(page, gfp)) {
1751 error = shmem_replace_page(&page, gfp, info, index);
1752 if (error)
1753 goto failed;
1754 }
1755
1756 error = shmem_add_to_page_cache(page, mapping, index,
1757 swp_to_radix_entry(swap), gfp,
1758 charge_mm);
1759 if (error)
1760 goto failed;
1761
1762 spin_lock_irq(&info->lock);
1763 info->swapped--;
1764 shmem_recalc_inode(inode);
1765 spin_unlock_irq(&info->lock);
1766
1767 if (sgp == SGP_WRITE)
1768 mark_page_accessed(page);
1769
1770 delete_from_swap_cache(page);
1771 set_page_dirty(page);
1772 swap_free(swap);
1773
1774 *pagep = page;
1775 if (si)
1776 put_swap_device(si);
1777 return 0;
1778 failed:
1779 if (!shmem_confirm_swap(mapping, index, swap))
1780 error = -EEXIST;
1781 unlock:
1782 if (page) {
1783 unlock_page(page);
1784 put_page(page);
1785 }
1786
1787 if (si)
1788 put_swap_device(si);
1789
1790 return error;
1791 }
1792
1793 /*
1794 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1795 *
1796 * If we allocate a new one we do not mark it dirty. That's up to the
1797 * vm. If we swap it in we mark it dirty since we also free the swap
1798 * entry since a page cannot live in both the swap and page cache.
1799 *
1800 * vma, vmf, and fault_type are only supplied by shmem_fault:
1801 * otherwise they are NULL.
1802 */
1803 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1804 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1805 struct vm_area_struct *vma, struct vm_fault *vmf,
1806 vm_fault_t *fault_type)
1807 {
1808 struct address_space *mapping = inode->i_mapping;
1809 struct shmem_inode_info *info = SHMEM_I(inode);
1810 struct shmem_sb_info *sbinfo;
1811 struct mm_struct *charge_mm;
1812 struct page *page;
1813 enum sgp_type sgp_huge = sgp;
1814 pgoff_t hindex = index;
1815 gfp_t huge_gfp;
1816 int error;
1817 int once = 0;
1818 int alloced = 0;
1819
1820 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1821 return -EFBIG;
1822 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1823 sgp = SGP_CACHE;
1824 repeat:
1825 if (sgp <= SGP_CACHE &&
1826 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1827 return -EINVAL;
1828 }
1829
1830 sbinfo = SHMEM_SB(inode->i_sb);
1831 charge_mm = vma ? vma->vm_mm : NULL;
1832
1833 page = pagecache_get_page(mapping, index,
1834 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1835
1836 if (page && vma && userfaultfd_minor(vma)) {
1837 if (!xa_is_value(page)) {
1838 unlock_page(page);
1839 put_page(page);
1840 }
1841 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1842 return 0;
1843 }
1844
1845 if (xa_is_value(page)) {
1846 error = shmem_swapin_page(inode, index, &page,
1847 sgp, gfp, vma, fault_type);
1848 if (error == -EEXIST)
1849 goto repeat;
1850
1851 *pagep = page;
1852 return error;
1853 }
1854
1855 if (page)
1856 hindex = page->index;
1857 if (page && sgp == SGP_WRITE)
1858 mark_page_accessed(page);
1859
1860 /* fallocated page? */
1861 if (page && !PageUptodate(page)) {
1862 if (sgp != SGP_READ)
1863 goto clear;
1864 unlock_page(page);
1865 put_page(page);
1866 page = NULL;
1867 hindex = index;
1868 }
1869 if (page || sgp == SGP_READ)
1870 goto out;
1871
1872 /*
1873 * Fast cache lookup did not find it:
1874 * bring it back from swap or allocate.
1875 */
1876
1877 if (vma && userfaultfd_missing(vma)) {
1878 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1879 return 0;
1880 }
1881
1882 /* shmem_symlink() */
1883 if (!shmem_mapping(mapping))
1884 goto alloc_nohuge;
1885 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1886 goto alloc_nohuge;
1887 if (shmem_huge == SHMEM_HUGE_FORCE)
1888 goto alloc_huge;
1889 switch (sbinfo->huge) {
1890 case SHMEM_HUGE_NEVER:
1891 goto alloc_nohuge;
1892 case SHMEM_HUGE_WITHIN_SIZE: {
1893 loff_t i_size;
1894 pgoff_t off;
1895
1896 off = round_up(index, HPAGE_PMD_NR);
1897 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1898 if (i_size >= HPAGE_PMD_SIZE &&
1899 i_size >> PAGE_SHIFT >= off)
1900 goto alloc_huge;
1901
1902 fallthrough;
1903 }
1904 case SHMEM_HUGE_ADVISE:
1905 if (sgp_huge == SGP_HUGE)
1906 goto alloc_huge;
1907 /* TODO: implement fadvise() hints */
1908 goto alloc_nohuge;
1909 }
1910
1911 alloc_huge:
1912 huge_gfp = vma_thp_gfp_mask(vma);
1913 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1914 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1915 if (IS_ERR(page)) {
1916 alloc_nohuge:
1917 page = shmem_alloc_and_acct_page(gfp, inode,
1918 index, false);
1919 }
1920 if (IS_ERR(page)) {
1921 int retry = 5;
1922
1923 error = PTR_ERR(page);
1924 page = NULL;
1925 if (error != -ENOSPC)
1926 goto unlock;
1927 /*
1928 * Try to reclaim some space by splitting a huge page
1929 * beyond i_size on the filesystem.
1930 */
1931 while (retry--) {
1932 int ret;
1933
1934 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1935 if (ret == SHRINK_STOP)
1936 break;
1937 if (ret)
1938 goto alloc_nohuge;
1939 }
1940 goto unlock;
1941 }
1942
1943 if (PageTransHuge(page))
1944 hindex = round_down(index, HPAGE_PMD_NR);
1945 else
1946 hindex = index;
1947
1948 if (sgp == SGP_WRITE)
1949 __SetPageReferenced(page);
1950
1951 error = shmem_add_to_page_cache(page, mapping, hindex,
1952 NULL, gfp & GFP_RECLAIM_MASK,
1953 charge_mm);
1954 if (error)
1955 goto unacct;
1956 lru_cache_add(page);
1957
1958 spin_lock_irq(&info->lock);
1959 info->alloced += compound_nr(page);
1960 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1961 shmem_recalc_inode(inode);
1962 spin_unlock_irq(&info->lock);
1963 alloced = true;
1964
1965 if (PageTransHuge(page) &&
1966 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1967 hindex + HPAGE_PMD_NR - 1) {
1968 /*
1969 * Part of the huge page is beyond i_size: subject
1970 * to shrink under memory pressure.
1971 */
1972 spin_lock(&sbinfo->shrinklist_lock);
1973 /*
1974 * _careful to defend against unlocked access to
1975 * ->shrink_list in shmem_unused_huge_shrink()
1976 */
1977 if (list_empty_careful(&info->shrinklist)) {
1978 list_add_tail(&info->shrinklist,
1979 &sbinfo->shrinklist);
1980 sbinfo->shrinklist_len++;
1981 }
1982 spin_unlock(&sbinfo->shrinklist_lock);
1983 }
1984
1985 /*
1986 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1987 */
1988 if (sgp == SGP_FALLOC)
1989 sgp = SGP_WRITE;
1990 clear:
1991 /*
1992 * Let SGP_WRITE caller clear ends if write does not fill page;
1993 * but SGP_FALLOC on a page fallocated earlier must initialize
1994 * it now, lest undo on failure cancel our earlier guarantee.
1995 */
1996 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1997 int i;
1998
1999 for (i = 0; i < compound_nr(page); i++) {
2000 clear_highpage(page + i);
2001 flush_dcache_page(page + i);
2002 }
2003 SetPageUptodate(page);
2004 }
2005
2006 /* Perhaps the file has been truncated since we checked */
2007 if (sgp <= SGP_CACHE &&
2008 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2009 if (alloced) {
2010 ClearPageDirty(page);
2011 delete_from_page_cache(page);
2012 spin_lock_irq(&info->lock);
2013 shmem_recalc_inode(inode);
2014 spin_unlock_irq(&info->lock);
2015 }
2016 error = -EINVAL;
2017 goto unlock;
2018 }
2019 out:
2020 *pagep = page + index - hindex;
2021 return 0;
2022
2023 /*
2024 * Error recovery.
2025 */
2026 unacct:
2027 shmem_inode_unacct_blocks(inode, compound_nr(page));
2028
2029 if (PageTransHuge(page)) {
2030 unlock_page(page);
2031 put_page(page);
2032 goto alloc_nohuge;
2033 }
2034 unlock:
2035 if (page) {
2036 unlock_page(page);
2037 put_page(page);
2038 }
2039 if (error == -ENOSPC && !once++) {
2040 spin_lock_irq(&info->lock);
2041 shmem_recalc_inode(inode);
2042 spin_unlock_irq(&info->lock);
2043 goto repeat;
2044 }
2045 if (error == -EEXIST)
2046 goto repeat;
2047 return error;
2048 }
2049
2050 /*
2051 * This is like autoremove_wake_function, but it removes the wait queue
2052 * entry unconditionally - even if something else had already woken the
2053 * target.
2054 */
2055 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2056 {
2057 int ret = default_wake_function(wait, mode, sync, key);
2058 list_del_init(&wait->entry);
2059 return ret;
2060 }
2061
2062 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2063 {
2064 struct vm_area_struct *vma = vmf->vma;
2065 struct inode *inode = file_inode(vma->vm_file);
2066 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2067 enum sgp_type sgp;
2068 int err;
2069 vm_fault_t ret = VM_FAULT_LOCKED;
2070
2071 /*
2072 * Trinity finds that probing a hole which tmpfs is punching can
2073 * prevent the hole-punch from ever completing: which in turn
2074 * locks writers out with its hold on i_mutex. So refrain from
2075 * faulting pages into the hole while it's being punched. Although
2076 * shmem_undo_range() does remove the additions, it may be unable to
2077 * keep up, as each new page needs its own unmap_mapping_range() call,
2078 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2079 *
2080 * It does not matter if we sometimes reach this check just before the
2081 * hole-punch begins, so that one fault then races with the punch:
2082 * we just need to make racing faults a rare case.
2083 *
2084 * The implementation below would be much simpler if we just used a
2085 * standard mutex or completion: but we cannot take i_mutex in fault,
2086 * and bloating every shmem inode for this unlikely case would be sad.
2087 */
2088 if (unlikely(inode->i_private)) {
2089 struct shmem_falloc *shmem_falloc;
2090
2091 spin_lock(&inode->i_lock);
2092 shmem_falloc = inode->i_private;
2093 if (shmem_falloc &&
2094 shmem_falloc->waitq &&
2095 vmf->pgoff >= shmem_falloc->start &&
2096 vmf->pgoff < shmem_falloc->next) {
2097 struct file *fpin;
2098 wait_queue_head_t *shmem_falloc_waitq;
2099 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2100
2101 ret = VM_FAULT_NOPAGE;
2102 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2103 if (fpin)
2104 ret = VM_FAULT_RETRY;
2105
2106 shmem_falloc_waitq = shmem_falloc->waitq;
2107 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2108 TASK_UNINTERRUPTIBLE);
2109 spin_unlock(&inode->i_lock);
2110 schedule();
2111
2112 /*
2113 * shmem_falloc_waitq points into the shmem_fallocate()
2114 * stack of the hole-punching task: shmem_falloc_waitq
2115 * is usually invalid by the time we reach here, but
2116 * finish_wait() does not dereference it in that case;
2117 * though i_lock needed lest racing with wake_up_all().
2118 */
2119 spin_lock(&inode->i_lock);
2120 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2121 spin_unlock(&inode->i_lock);
2122
2123 if (fpin)
2124 fput(fpin);
2125 return ret;
2126 }
2127 spin_unlock(&inode->i_lock);
2128 }
2129
2130 sgp = SGP_CACHE;
2131
2132 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2133 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2134 sgp = SGP_NOHUGE;
2135 else if (vma->vm_flags & VM_HUGEPAGE)
2136 sgp = SGP_HUGE;
2137
2138 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2139 gfp, vma, vmf, &ret);
2140 if (err)
2141 return vmf_error(err);
2142 return ret;
2143 }
2144
2145 unsigned long shmem_get_unmapped_area(struct file *file,
2146 unsigned long uaddr, unsigned long len,
2147 unsigned long pgoff, unsigned long flags)
2148 {
2149 unsigned long (*get_area)(struct file *,
2150 unsigned long, unsigned long, unsigned long, unsigned long);
2151 unsigned long addr;
2152 unsigned long offset;
2153 unsigned long inflated_len;
2154 unsigned long inflated_addr;
2155 unsigned long inflated_offset;
2156
2157 if (len > TASK_SIZE)
2158 return -ENOMEM;
2159
2160 get_area = current->mm->get_unmapped_area;
2161 addr = get_area(file, uaddr, len, pgoff, flags);
2162
2163 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2164 return addr;
2165 if (IS_ERR_VALUE(addr))
2166 return addr;
2167 if (addr & ~PAGE_MASK)
2168 return addr;
2169 if (addr > TASK_SIZE - len)
2170 return addr;
2171
2172 if (shmem_huge == SHMEM_HUGE_DENY)
2173 return addr;
2174 if (len < HPAGE_PMD_SIZE)
2175 return addr;
2176 if (flags & MAP_FIXED)
2177 return addr;
2178 /*
2179 * Our priority is to support MAP_SHARED mapped hugely;
2180 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2181 * But if caller specified an address hint and we allocated area there
2182 * successfully, respect that as before.
2183 */
2184 if (uaddr == addr)
2185 return addr;
2186
2187 if (shmem_huge != SHMEM_HUGE_FORCE) {
2188 struct super_block *sb;
2189
2190 if (file) {
2191 VM_BUG_ON(file->f_op != &shmem_file_operations);
2192 sb = file_inode(file)->i_sb;
2193 } else {
2194 /*
2195 * Called directly from mm/mmap.c, or drivers/char/mem.c
2196 * for "/dev/zero", to create a shared anonymous object.
2197 */
2198 if (IS_ERR(shm_mnt))
2199 return addr;
2200 sb = shm_mnt->mnt_sb;
2201 }
2202 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2203 return addr;
2204 }
2205
2206 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2207 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2208 return addr;
2209 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2210 return addr;
2211
2212 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2213 if (inflated_len > TASK_SIZE)
2214 return addr;
2215 if (inflated_len < len)
2216 return addr;
2217
2218 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2219 if (IS_ERR_VALUE(inflated_addr))
2220 return addr;
2221 if (inflated_addr & ~PAGE_MASK)
2222 return addr;
2223
2224 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2225 inflated_addr += offset - inflated_offset;
2226 if (inflated_offset > offset)
2227 inflated_addr += HPAGE_PMD_SIZE;
2228
2229 if (inflated_addr > TASK_SIZE - len)
2230 return addr;
2231 return inflated_addr;
2232 }
2233
2234 #ifdef CONFIG_NUMA
2235 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2236 {
2237 struct inode *inode = file_inode(vma->vm_file);
2238 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2239 }
2240
2241 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2242 unsigned long addr)
2243 {
2244 struct inode *inode = file_inode(vma->vm_file);
2245 pgoff_t index;
2246
2247 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2248 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2249 }
2250 #endif
2251
2252 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2253 {
2254 struct inode *inode = file_inode(file);
2255 struct shmem_inode_info *info = SHMEM_I(inode);
2256 int retval = -ENOMEM;
2257
2258 /*
2259 * What serializes the accesses to info->flags?
2260 * ipc_lock_object() when called from shmctl_do_lock(),
2261 * no serialization needed when called from shm_destroy().
2262 */
2263 if (lock && !(info->flags & VM_LOCKED)) {
2264 if (!user_shm_lock(inode->i_size, ucounts))
2265 goto out_nomem;
2266 info->flags |= VM_LOCKED;
2267 mapping_set_unevictable(file->f_mapping);
2268 }
2269 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2270 user_shm_unlock(inode->i_size, ucounts);
2271 info->flags &= ~VM_LOCKED;
2272 mapping_clear_unevictable(file->f_mapping);
2273 }
2274 retval = 0;
2275
2276 out_nomem:
2277 return retval;
2278 }
2279
2280 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2281 {
2282 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2283 int ret;
2284
2285 ret = seal_check_future_write(info->seals, vma);
2286 if (ret)
2287 return ret;
2288
2289 /* arm64 - allow memory tagging on RAM-based files */
2290 vma->vm_flags |= VM_MTE_ALLOWED;
2291
2292 file_accessed(file);
2293 vma->vm_ops = &shmem_vm_ops;
2294 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2295 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2296 (vma->vm_end & HPAGE_PMD_MASK)) {
2297 khugepaged_enter(vma, vma->vm_flags);
2298 }
2299 return 0;
2300 }
2301
2302 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2303 umode_t mode, dev_t dev, unsigned long flags)
2304 {
2305 struct inode *inode;
2306 struct shmem_inode_info *info;
2307 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2308 ino_t ino;
2309
2310 if (shmem_reserve_inode(sb, &ino))
2311 return NULL;
2312
2313 inode = new_inode(sb);
2314 if (inode) {
2315 inode->i_ino = ino;
2316 inode_init_owner(&init_user_ns, inode, dir, mode);
2317 inode->i_blocks = 0;
2318 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2319 inode->i_generation = prandom_u32();
2320 info = SHMEM_I(inode);
2321 memset(info, 0, (char *)inode - (char *)info);
2322 spin_lock_init(&info->lock);
2323 atomic_set(&info->stop_eviction, 0);
2324 info->seals = F_SEAL_SEAL;
2325 info->flags = flags & VM_NORESERVE;
2326 INIT_LIST_HEAD(&info->shrinklist);
2327 INIT_LIST_HEAD(&info->swaplist);
2328 simple_xattrs_init(&info->xattrs);
2329 cache_no_acl(inode);
2330
2331 switch (mode & S_IFMT) {
2332 default:
2333 inode->i_op = &shmem_special_inode_operations;
2334 init_special_inode(inode, mode, dev);
2335 break;
2336 case S_IFREG:
2337 inode->i_mapping->a_ops = &shmem_aops;
2338 inode->i_op = &shmem_inode_operations;
2339 inode->i_fop = &shmem_file_operations;
2340 mpol_shared_policy_init(&info->policy,
2341 shmem_get_sbmpol(sbinfo));
2342 break;
2343 case S_IFDIR:
2344 inc_nlink(inode);
2345 /* Some things misbehave if size == 0 on a directory */
2346 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2347 inode->i_op = &shmem_dir_inode_operations;
2348 inode->i_fop = &simple_dir_operations;
2349 break;
2350 case S_IFLNK:
2351 /*
2352 * Must not load anything in the rbtree,
2353 * mpol_free_shared_policy will not be called.
2354 */
2355 mpol_shared_policy_init(&info->policy, NULL);
2356 break;
2357 }
2358
2359 lockdep_annotate_inode_mutex_key(inode);
2360 } else
2361 shmem_free_inode(sb);
2362 return inode;
2363 }
2364
2365 #ifdef CONFIG_USERFAULTFD
2366 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2367 pmd_t *dst_pmd,
2368 struct vm_area_struct *dst_vma,
2369 unsigned long dst_addr,
2370 unsigned long src_addr,
2371 bool zeropage,
2372 struct page **pagep)
2373 {
2374 struct inode *inode = file_inode(dst_vma->vm_file);
2375 struct shmem_inode_info *info = SHMEM_I(inode);
2376 struct address_space *mapping = inode->i_mapping;
2377 gfp_t gfp = mapping_gfp_mask(mapping);
2378 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2379 void *page_kaddr;
2380 struct page *page;
2381 int ret;
2382 pgoff_t max_off;
2383
2384 if (!shmem_inode_acct_block(inode, 1)) {
2385 /*
2386 * We may have got a page, returned -ENOENT triggering a retry,
2387 * and now we find ourselves with -ENOMEM. Release the page, to
2388 * avoid a BUG_ON in our caller.
2389 */
2390 if (unlikely(*pagep)) {
2391 put_page(*pagep);
2392 *pagep = NULL;
2393 }
2394 return -ENOMEM;
2395 }
2396
2397 if (!*pagep) {
2398 ret = -ENOMEM;
2399 page = shmem_alloc_page(gfp, info, pgoff);
2400 if (!page)
2401 goto out_unacct_blocks;
2402
2403 if (!zeropage) { /* COPY */
2404 page_kaddr = kmap_atomic(page);
2405 ret = copy_from_user(page_kaddr,
2406 (const void __user *)src_addr,
2407 PAGE_SIZE);
2408 kunmap_atomic(page_kaddr);
2409
2410 /* fallback to copy_from_user outside mmap_lock */
2411 if (unlikely(ret)) {
2412 *pagep = page;
2413 ret = -ENOENT;
2414 /* don't free the page */
2415 goto out_unacct_blocks;
2416 }
2417 } else { /* ZEROPAGE */
2418 clear_highpage(page);
2419 }
2420 } else {
2421 page = *pagep;
2422 *pagep = NULL;
2423 }
2424
2425 VM_BUG_ON(PageLocked(page));
2426 VM_BUG_ON(PageSwapBacked(page));
2427 __SetPageLocked(page);
2428 __SetPageSwapBacked(page);
2429 __SetPageUptodate(page);
2430
2431 ret = -EFAULT;
2432 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2433 if (unlikely(pgoff >= max_off))
2434 goto out_release;
2435
2436 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2437 gfp & GFP_RECLAIM_MASK, dst_mm);
2438 if (ret)
2439 goto out_release;
2440
2441 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2442 page, true, false);
2443 if (ret)
2444 goto out_delete_from_cache;
2445
2446 spin_lock_irq(&info->lock);
2447 info->alloced++;
2448 inode->i_blocks += BLOCKS_PER_PAGE;
2449 shmem_recalc_inode(inode);
2450 spin_unlock_irq(&info->lock);
2451
2452 SetPageDirty(page);
2453 unlock_page(page);
2454 return 0;
2455 out_delete_from_cache:
2456 delete_from_page_cache(page);
2457 out_release:
2458 unlock_page(page);
2459 put_page(page);
2460 out_unacct_blocks:
2461 shmem_inode_unacct_blocks(inode, 1);
2462 return ret;
2463 }
2464 #endif /* CONFIG_USERFAULTFD */
2465
2466 #ifdef CONFIG_TMPFS
2467 static const struct inode_operations shmem_symlink_inode_operations;
2468 static const struct inode_operations shmem_short_symlink_operations;
2469
2470 #ifdef CONFIG_TMPFS_XATTR
2471 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2472 #else
2473 #define shmem_initxattrs NULL
2474 #endif
2475
2476 static int
2477 shmem_write_begin(struct file *file, struct address_space *mapping,
2478 loff_t pos, unsigned len, unsigned flags,
2479 struct page **pagep, void **fsdata)
2480 {
2481 struct inode *inode = mapping->host;
2482 struct shmem_inode_info *info = SHMEM_I(inode);
2483 pgoff_t index = pos >> PAGE_SHIFT;
2484
2485 /* i_mutex is held by caller */
2486 if (unlikely(info->seals & (F_SEAL_GROW |
2487 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2488 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2489 return -EPERM;
2490 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2491 return -EPERM;
2492 }
2493
2494 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2495 }
2496
2497 static int
2498 shmem_write_end(struct file *file, struct address_space *mapping,
2499 loff_t pos, unsigned len, unsigned copied,
2500 struct page *page, void *fsdata)
2501 {
2502 struct inode *inode = mapping->host;
2503
2504 if (pos + copied > inode->i_size)
2505 i_size_write(inode, pos + copied);
2506
2507 if (!PageUptodate(page)) {
2508 struct page *head = compound_head(page);
2509 if (PageTransCompound(page)) {
2510 int i;
2511
2512 for (i = 0; i < HPAGE_PMD_NR; i++) {
2513 if (head + i == page)
2514 continue;
2515 clear_highpage(head + i);
2516 flush_dcache_page(head + i);
2517 }
2518 }
2519 if (copied < PAGE_SIZE) {
2520 unsigned from = pos & (PAGE_SIZE - 1);
2521 zero_user_segments(page, 0, from,
2522 from + copied, PAGE_SIZE);
2523 }
2524 SetPageUptodate(head);
2525 }
2526 set_page_dirty(page);
2527 unlock_page(page);
2528 put_page(page);
2529
2530 return copied;
2531 }
2532
2533 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2534 {
2535 struct file *file = iocb->ki_filp;
2536 struct inode *inode = file_inode(file);
2537 struct address_space *mapping = inode->i_mapping;
2538 pgoff_t index;
2539 unsigned long offset;
2540 enum sgp_type sgp = SGP_READ;
2541 int error = 0;
2542 ssize_t retval = 0;
2543 loff_t *ppos = &iocb->ki_pos;
2544
2545 /*
2546 * Might this read be for a stacking filesystem? Then when reading
2547 * holes of a sparse file, we actually need to allocate those pages,
2548 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2549 */
2550 if (!iter_is_iovec(to))
2551 sgp = SGP_CACHE;
2552
2553 index = *ppos >> PAGE_SHIFT;
2554 offset = *ppos & ~PAGE_MASK;
2555
2556 for (;;) {
2557 struct page *page = NULL;
2558 pgoff_t end_index;
2559 unsigned long nr, ret;
2560 loff_t i_size = i_size_read(inode);
2561
2562 end_index = i_size >> PAGE_SHIFT;
2563 if (index > end_index)
2564 break;
2565 if (index == end_index) {
2566 nr = i_size & ~PAGE_MASK;
2567 if (nr <= offset)
2568 break;
2569 }
2570
2571 error = shmem_getpage(inode, index, &page, sgp);
2572 if (error) {
2573 if (error == -EINVAL)
2574 error = 0;
2575 break;
2576 }
2577 if (page) {
2578 if (sgp == SGP_CACHE)
2579 set_page_dirty(page);
2580 unlock_page(page);
2581 }
2582
2583 /*
2584 * We must evaluate after, since reads (unlike writes)
2585 * are called without i_mutex protection against truncate
2586 */
2587 nr = PAGE_SIZE;
2588 i_size = i_size_read(inode);
2589 end_index = i_size >> PAGE_SHIFT;
2590 if (index == end_index) {
2591 nr = i_size & ~PAGE_MASK;
2592 if (nr <= offset) {
2593 if (page)
2594 put_page(page);
2595 break;
2596 }
2597 }
2598 nr -= offset;
2599
2600 if (page) {
2601 /*
2602 * If users can be writing to this page using arbitrary
2603 * virtual addresses, take care about potential aliasing
2604 * before reading the page on the kernel side.
2605 */
2606 if (mapping_writably_mapped(mapping))
2607 flush_dcache_page(page);
2608 /*
2609 * Mark the page accessed if we read the beginning.
2610 */
2611 if (!offset)
2612 mark_page_accessed(page);
2613 } else {
2614 page = ZERO_PAGE(0);
2615 get_page(page);
2616 }
2617
2618 /*
2619 * Ok, we have the page, and it's up-to-date, so
2620 * now we can copy it to user space...
2621 */
2622 ret = copy_page_to_iter(page, offset, nr, to);
2623 retval += ret;
2624 offset += ret;
2625 index += offset >> PAGE_SHIFT;
2626 offset &= ~PAGE_MASK;
2627
2628 put_page(page);
2629 if (!iov_iter_count(to))
2630 break;
2631 if (ret < nr) {
2632 error = -EFAULT;
2633 break;
2634 }
2635 cond_resched();
2636 }
2637
2638 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2639 file_accessed(file);
2640 return retval ? retval : error;
2641 }
2642
2643 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2644 {
2645 struct address_space *mapping = file->f_mapping;
2646 struct inode *inode = mapping->host;
2647
2648 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2649 return generic_file_llseek_size(file, offset, whence,
2650 MAX_LFS_FILESIZE, i_size_read(inode));
2651 if (offset < 0)
2652 return -ENXIO;
2653
2654 inode_lock(inode);
2655 /* We're holding i_mutex so we can access i_size directly */
2656 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2657 if (offset >= 0)
2658 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2659 inode_unlock(inode);
2660 return offset;
2661 }
2662
2663 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2664 loff_t len)
2665 {
2666 struct inode *inode = file_inode(file);
2667 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2668 struct shmem_inode_info *info = SHMEM_I(inode);
2669 struct shmem_falloc shmem_falloc;
2670 pgoff_t start, index, end;
2671 int error;
2672
2673 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2674 return -EOPNOTSUPP;
2675
2676 inode_lock(inode);
2677
2678 if (mode & FALLOC_FL_PUNCH_HOLE) {
2679 struct address_space *mapping = file->f_mapping;
2680 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2681 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2682 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2683
2684 /* protected by i_mutex */
2685 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2686 error = -EPERM;
2687 goto out;
2688 }
2689
2690 shmem_falloc.waitq = &shmem_falloc_waitq;
2691 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2692 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2693 spin_lock(&inode->i_lock);
2694 inode->i_private = &shmem_falloc;
2695 spin_unlock(&inode->i_lock);
2696
2697 if ((u64)unmap_end > (u64)unmap_start)
2698 unmap_mapping_range(mapping, unmap_start,
2699 1 + unmap_end - unmap_start, 0);
2700 shmem_truncate_range(inode, offset, offset + len - 1);
2701 /* No need to unmap again: hole-punching leaves COWed pages */
2702
2703 spin_lock(&inode->i_lock);
2704 inode->i_private = NULL;
2705 wake_up_all(&shmem_falloc_waitq);
2706 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2707 spin_unlock(&inode->i_lock);
2708 error = 0;
2709 goto out;
2710 }
2711
2712 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2713 error = inode_newsize_ok(inode, offset + len);
2714 if (error)
2715 goto out;
2716
2717 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2718 error = -EPERM;
2719 goto out;
2720 }
2721
2722 start = offset >> PAGE_SHIFT;
2723 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2724 /* Try to avoid a swapstorm if len is impossible to satisfy */
2725 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2726 error = -ENOSPC;
2727 goto out;
2728 }
2729
2730 shmem_falloc.waitq = NULL;
2731 shmem_falloc.start = start;
2732 shmem_falloc.next = start;
2733 shmem_falloc.nr_falloced = 0;
2734 shmem_falloc.nr_unswapped = 0;
2735 spin_lock(&inode->i_lock);
2736 inode->i_private = &shmem_falloc;
2737 spin_unlock(&inode->i_lock);
2738
2739 for (index = start; index < end; index++) {
2740 struct page *page;
2741
2742 /*
2743 * Good, the fallocate(2) manpage permits EINTR: we may have
2744 * been interrupted because we are using up too much memory.
2745 */
2746 if (signal_pending(current))
2747 error = -EINTR;
2748 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2749 error = -ENOMEM;
2750 else
2751 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2752 if (error) {
2753 /* Remove the !PageUptodate pages we added */
2754 if (index > start) {
2755 shmem_undo_range(inode,
2756 (loff_t)start << PAGE_SHIFT,
2757 ((loff_t)index << PAGE_SHIFT) - 1, true);
2758 }
2759 goto undone;
2760 }
2761
2762 /*
2763 * Inform shmem_writepage() how far we have reached.
2764 * No need for lock or barrier: we have the page lock.
2765 */
2766 shmem_falloc.next++;
2767 if (!PageUptodate(page))
2768 shmem_falloc.nr_falloced++;
2769
2770 /*
2771 * If !PageUptodate, leave it that way so that freeable pages
2772 * can be recognized if we need to rollback on error later.
2773 * But set_page_dirty so that memory pressure will swap rather
2774 * than free the pages we are allocating (and SGP_CACHE pages
2775 * might still be clean: we now need to mark those dirty too).
2776 */
2777 set_page_dirty(page);
2778 unlock_page(page);
2779 put_page(page);
2780 cond_resched();
2781 }
2782
2783 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2784 i_size_write(inode, offset + len);
2785 inode->i_ctime = current_time(inode);
2786 undone:
2787 spin_lock(&inode->i_lock);
2788 inode->i_private = NULL;
2789 spin_unlock(&inode->i_lock);
2790 out:
2791 inode_unlock(inode);
2792 return error;
2793 }
2794
2795 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2796 {
2797 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2798
2799 buf->f_type = TMPFS_MAGIC;
2800 buf->f_bsize = PAGE_SIZE;
2801 buf->f_namelen = NAME_MAX;
2802 if (sbinfo->max_blocks) {
2803 buf->f_blocks = sbinfo->max_blocks;
2804 buf->f_bavail =
2805 buf->f_bfree = sbinfo->max_blocks -
2806 percpu_counter_sum(&sbinfo->used_blocks);
2807 }
2808 if (sbinfo->max_inodes) {
2809 buf->f_files = sbinfo->max_inodes;
2810 buf->f_ffree = sbinfo->free_inodes;
2811 }
2812 /* else leave those fields 0 like simple_statfs */
2813
2814 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2815
2816 return 0;
2817 }
2818
2819 /*
2820 * File creation. Allocate an inode, and we're done..
2821 */
2822 static int
2823 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2824 struct dentry *dentry, umode_t mode, dev_t dev)
2825 {
2826 struct inode *inode;
2827 int error = -ENOSPC;
2828
2829 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2830 if (inode) {
2831 error = simple_acl_create(dir, inode);
2832 if (error)
2833 goto out_iput;
2834 error = security_inode_init_security(inode, dir,
2835 &dentry->d_name,
2836 shmem_initxattrs, NULL);
2837 if (error && error != -EOPNOTSUPP)
2838 goto out_iput;
2839
2840 error = 0;
2841 dir->i_size += BOGO_DIRENT_SIZE;
2842 dir->i_ctime = dir->i_mtime = current_time(dir);
2843 d_instantiate(dentry, inode);
2844 dget(dentry); /* Extra count - pin the dentry in core */
2845 }
2846 return error;
2847 out_iput:
2848 iput(inode);
2849 return error;
2850 }
2851
2852 static int
2853 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2854 struct dentry *dentry, umode_t mode)
2855 {
2856 struct inode *inode;
2857 int error = -ENOSPC;
2858
2859 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2860 if (inode) {
2861 error = security_inode_init_security(inode, dir,
2862 NULL,
2863 shmem_initxattrs, NULL);
2864 if (error && error != -EOPNOTSUPP)
2865 goto out_iput;
2866 error = simple_acl_create(dir, inode);
2867 if (error)
2868 goto out_iput;
2869 d_tmpfile(dentry, inode);
2870 }
2871 return error;
2872 out_iput:
2873 iput(inode);
2874 return error;
2875 }
2876
2877 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2878 struct dentry *dentry, umode_t mode)
2879 {
2880 int error;
2881
2882 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2883 mode | S_IFDIR, 0)))
2884 return error;
2885 inc_nlink(dir);
2886 return 0;
2887 }
2888
2889 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2890 struct dentry *dentry, umode_t mode, bool excl)
2891 {
2892 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2893 }
2894
2895 /*
2896 * Link a file..
2897 */
2898 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2899 {
2900 struct inode *inode = d_inode(old_dentry);
2901 int ret = 0;
2902
2903 /*
2904 * No ordinary (disk based) filesystem counts links as inodes;
2905 * but each new link needs a new dentry, pinning lowmem, and
2906 * tmpfs dentries cannot be pruned until they are unlinked.
2907 * But if an O_TMPFILE file is linked into the tmpfs, the
2908 * first link must skip that, to get the accounting right.
2909 */
2910 if (inode->i_nlink) {
2911 ret = shmem_reserve_inode(inode->i_sb, NULL);
2912 if (ret)
2913 goto out;
2914 }
2915
2916 dir->i_size += BOGO_DIRENT_SIZE;
2917 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2918 inc_nlink(inode);
2919 ihold(inode); /* New dentry reference */
2920 dget(dentry); /* Extra pinning count for the created dentry */
2921 d_instantiate(dentry, inode);
2922 out:
2923 return ret;
2924 }
2925
2926 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2927 {
2928 struct inode *inode = d_inode(dentry);
2929
2930 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2931 shmem_free_inode(inode->i_sb);
2932
2933 dir->i_size -= BOGO_DIRENT_SIZE;
2934 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2935 drop_nlink(inode);
2936 dput(dentry); /* Undo the count from "create" - this does all the work */
2937 return 0;
2938 }
2939
2940 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2941 {
2942 if (!simple_empty(dentry))
2943 return -ENOTEMPTY;
2944
2945 drop_nlink(d_inode(dentry));
2946 drop_nlink(dir);
2947 return shmem_unlink(dir, dentry);
2948 }
2949
2950 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2951 {
2952 bool old_is_dir = d_is_dir(old_dentry);
2953 bool new_is_dir = d_is_dir(new_dentry);
2954
2955 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2956 if (old_is_dir) {
2957 drop_nlink(old_dir);
2958 inc_nlink(new_dir);
2959 } else {
2960 drop_nlink(new_dir);
2961 inc_nlink(old_dir);
2962 }
2963 }
2964 old_dir->i_ctime = old_dir->i_mtime =
2965 new_dir->i_ctime = new_dir->i_mtime =
2966 d_inode(old_dentry)->i_ctime =
2967 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2968
2969 return 0;
2970 }
2971
2972 static int shmem_whiteout(struct user_namespace *mnt_userns,
2973 struct inode *old_dir, struct dentry *old_dentry)
2974 {
2975 struct dentry *whiteout;
2976 int error;
2977
2978 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2979 if (!whiteout)
2980 return -ENOMEM;
2981
2982 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2983 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2984 dput(whiteout);
2985 if (error)
2986 return error;
2987
2988 /*
2989 * Cheat and hash the whiteout while the old dentry is still in
2990 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991 *
2992 * d_lookup() will consistently find one of them at this point,
2993 * not sure which one, but that isn't even important.
2994 */
2995 d_rehash(whiteout);
2996 return 0;
2997 }
2998
2999 /*
3000 * The VFS layer already does all the dentry stuff for rename,
3001 * we just have to decrement the usage count for the target if
3002 * it exists so that the VFS layer correctly free's it when it
3003 * gets overwritten.
3004 */
3005 static int shmem_rename2(struct user_namespace *mnt_userns,
3006 struct inode *old_dir, struct dentry *old_dentry,
3007 struct inode *new_dir, struct dentry *new_dentry,
3008 unsigned int flags)
3009 {
3010 struct inode *inode = d_inode(old_dentry);
3011 int they_are_dirs = S_ISDIR(inode->i_mode);
3012
3013 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3014 return -EINVAL;
3015
3016 if (flags & RENAME_EXCHANGE)
3017 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3018
3019 if (!simple_empty(new_dentry))
3020 return -ENOTEMPTY;
3021
3022 if (flags & RENAME_WHITEOUT) {
3023 int error;
3024
3025 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3026 if (error)
3027 return error;
3028 }
3029
3030 if (d_really_is_positive(new_dentry)) {
3031 (void) shmem_unlink(new_dir, new_dentry);
3032 if (they_are_dirs) {
3033 drop_nlink(d_inode(new_dentry));
3034 drop_nlink(old_dir);
3035 }
3036 } else if (they_are_dirs) {
3037 drop_nlink(old_dir);
3038 inc_nlink(new_dir);
3039 }
3040
3041 old_dir->i_size -= BOGO_DIRENT_SIZE;
3042 new_dir->i_size += BOGO_DIRENT_SIZE;
3043 old_dir->i_ctime = old_dir->i_mtime =
3044 new_dir->i_ctime = new_dir->i_mtime =
3045 inode->i_ctime = current_time(old_dir);
3046 return 0;
3047 }
3048
3049 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3050 struct dentry *dentry, const char *symname)
3051 {
3052 int error;
3053 int len;
3054 struct inode *inode;
3055 struct page *page;
3056
3057 len = strlen(symname) + 1;
3058 if (len > PAGE_SIZE)
3059 return -ENAMETOOLONG;
3060
3061 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3062 VM_NORESERVE);
3063 if (!inode)
3064 return -ENOSPC;
3065
3066 error = security_inode_init_security(inode, dir, &dentry->d_name,
3067 shmem_initxattrs, NULL);
3068 if (error && error != -EOPNOTSUPP) {
3069 iput(inode);
3070 return error;
3071 }
3072
3073 inode->i_size = len-1;
3074 if (len <= SHORT_SYMLINK_LEN) {
3075 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3076 if (!inode->i_link) {
3077 iput(inode);
3078 return -ENOMEM;
3079 }
3080 inode->i_op = &shmem_short_symlink_operations;
3081 } else {
3082 inode_nohighmem(inode);
3083 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3084 if (error) {
3085 iput(inode);
3086 return error;
3087 }
3088 inode->i_mapping->a_ops = &shmem_aops;
3089 inode->i_op = &shmem_symlink_inode_operations;
3090 memcpy(page_address(page), symname, len);
3091 SetPageUptodate(page);
3092 set_page_dirty(page);
3093 unlock_page(page);
3094 put_page(page);
3095 }
3096 dir->i_size += BOGO_DIRENT_SIZE;
3097 dir->i_ctime = dir->i_mtime = current_time(dir);
3098 d_instantiate(dentry, inode);
3099 dget(dentry);
3100 return 0;
3101 }
3102
3103 static void shmem_put_link(void *arg)
3104 {
3105 mark_page_accessed(arg);
3106 put_page(arg);
3107 }
3108
3109 static const char *shmem_get_link(struct dentry *dentry,
3110 struct inode *inode,
3111 struct delayed_call *done)
3112 {
3113 struct page *page = NULL;
3114 int error;
3115 if (!dentry) {
3116 page = find_get_page(inode->i_mapping, 0);
3117 if (!page)
3118 return ERR_PTR(-ECHILD);
3119 if (!PageUptodate(page)) {
3120 put_page(page);
3121 return ERR_PTR(-ECHILD);
3122 }
3123 } else {
3124 error = shmem_getpage(inode, 0, &page, SGP_READ);
3125 if (error)
3126 return ERR_PTR(error);
3127 unlock_page(page);
3128 }
3129 set_delayed_call(done, shmem_put_link, page);
3130 return page_address(page);
3131 }
3132
3133 #ifdef CONFIG_TMPFS_XATTR
3134 /*
3135 * Superblocks without xattr inode operations may get some security.* xattr
3136 * support from the LSM "for free". As soon as we have any other xattrs
3137 * like ACLs, we also need to implement the security.* handlers at
3138 * filesystem level, though.
3139 */
3140
3141 /*
3142 * Callback for security_inode_init_security() for acquiring xattrs.
3143 */
3144 static int shmem_initxattrs(struct inode *inode,
3145 const struct xattr *xattr_array,
3146 void *fs_info)
3147 {
3148 struct shmem_inode_info *info = SHMEM_I(inode);
3149 const struct xattr *xattr;
3150 struct simple_xattr *new_xattr;
3151 size_t len;
3152
3153 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3154 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3155 if (!new_xattr)
3156 return -ENOMEM;
3157
3158 len = strlen(xattr->name) + 1;
3159 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3160 GFP_KERNEL);
3161 if (!new_xattr->name) {
3162 kvfree(new_xattr);
3163 return -ENOMEM;
3164 }
3165
3166 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3167 XATTR_SECURITY_PREFIX_LEN);
3168 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3169 xattr->name, len);
3170
3171 simple_xattr_list_add(&info->xattrs, new_xattr);
3172 }
3173
3174 return 0;
3175 }
3176
3177 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3178 struct dentry *unused, struct inode *inode,
3179 const char *name, void *buffer, size_t size)
3180 {
3181 struct shmem_inode_info *info = SHMEM_I(inode);
3182
3183 name = xattr_full_name(handler, name);
3184 return simple_xattr_get(&info->xattrs, name, buffer, size);
3185 }
3186
3187 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3188 struct user_namespace *mnt_userns,
3189 struct dentry *unused, struct inode *inode,
3190 const char *name, const void *value,
3191 size_t size, int flags)
3192 {
3193 struct shmem_inode_info *info = SHMEM_I(inode);
3194
3195 name = xattr_full_name(handler, name);
3196 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3197 }
3198
3199 static const struct xattr_handler shmem_security_xattr_handler = {
3200 .prefix = XATTR_SECURITY_PREFIX,
3201 .get = shmem_xattr_handler_get,
3202 .set = shmem_xattr_handler_set,
3203 };
3204
3205 static const struct xattr_handler shmem_trusted_xattr_handler = {
3206 .prefix = XATTR_TRUSTED_PREFIX,
3207 .get = shmem_xattr_handler_get,
3208 .set = shmem_xattr_handler_set,
3209 };
3210
3211 static const struct xattr_handler *shmem_xattr_handlers[] = {
3212 #ifdef CONFIG_TMPFS_POSIX_ACL
3213 &posix_acl_access_xattr_handler,
3214 &posix_acl_default_xattr_handler,
3215 #endif
3216 &shmem_security_xattr_handler,
3217 &shmem_trusted_xattr_handler,
3218 NULL
3219 };
3220
3221 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3222 {
3223 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3224 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3225 }
3226 #endif /* CONFIG_TMPFS_XATTR */
3227
3228 static const struct inode_operations shmem_short_symlink_operations = {
3229 .get_link = simple_get_link,
3230 #ifdef CONFIG_TMPFS_XATTR
3231 .listxattr = shmem_listxattr,
3232 #endif
3233 };
3234
3235 static const struct inode_operations shmem_symlink_inode_operations = {
3236 .get_link = shmem_get_link,
3237 #ifdef CONFIG_TMPFS_XATTR
3238 .listxattr = shmem_listxattr,
3239 #endif
3240 };
3241
3242 static struct dentry *shmem_get_parent(struct dentry *child)
3243 {
3244 return ERR_PTR(-ESTALE);
3245 }
3246
3247 static int shmem_match(struct inode *ino, void *vfh)
3248 {
3249 __u32 *fh = vfh;
3250 __u64 inum = fh[2];
3251 inum = (inum << 32) | fh[1];
3252 return ino->i_ino == inum && fh[0] == ino->i_generation;
3253 }
3254
3255 /* Find any alias of inode, but prefer a hashed alias */
3256 static struct dentry *shmem_find_alias(struct inode *inode)
3257 {
3258 struct dentry *alias = d_find_alias(inode);
3259
3260 return alias ?: d_find_any_alias(inode);
3261 }
3262
3263
3264 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3265 struct fid *fid, int fh_len, int fh_type)
3266 {
3267 struct inode *inode;
3268 struct dentry *dentry = NULL;
3269 u64 inum;
3270
3271 if (fh_len < 3)
3272 return NULL;
3273
3274 inum = fid->raw[2];
3275 inum = (inum << 32) | fid->raw[1];
3276
3277 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3278 shmem_match, fid->raw);
3279 if (inode) {
3280 dentry = shmem_find_alias(inode);
3281 iput(inode);
3282 }
3283
3284 return dentry;
3285 }
3286
3287 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3288 struct inode *parent)
3289 {
3290 if (*len < 3) {
3291 *len = 3;
3292 return FILEID_INVALID;
3293 }
3294
3295 if (inode_unhashed(inode)) {
3296 /* Unfortunately insert_inode_hash is not idempotent,
3297 * so as we hash inodes here rather than at creation
3298 * time, we need a lock to ensure we only try
3299 * to do it once
3300 */
3301 static DEFINE_SPINLOCK(lock);
3302 spin_lock(&lock);
3303 if (inode_unhashed(inode))
3304 __insert_inode_hash(inode,
3305 inode->i_ino + inode->i_generation);
3306 spin_unlock(&lock);
3307 }
3308
3309 fh[0] = inode->i_generation;
3310 fh[1] = inode->i_ino;
3311 fh[2] = ((__u64)inode->i_ino) >> 32;
3312
3313 *len = 3;
3314 return 1;
3315 }
3316
3317 static const struct export_operations shmem_export_ops = {
3318 .get_parent = shmem_get_parent,
3319 .encode_fh = shmem_encode_fh,
3320 .fh_to_dentry = shmem_fh_to_dentry,
3321 };
3322
3323 enum shmem_param {
3324 Opt_gid,
3325 Opt_huge,
3326 Opt_mode,
3327 Opt_mpol,
3328 Opt_nr_blocks,
3329 Opt_nr_inodes,
3330 Opt_size,
3331 Opt_uid,
3332 Opt_inode32,
3333 Opt_inode64,
3334 };
3335
3336 static const struct constant_table shmem_param_enums_huge[] = {
3337 {"never", SHMEM_HUGE_NEVER },
3338 {"always", SHMEM_HUGE_ALWAYS },
3339 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3340 {"advise", SHMEM_HUGE_ADVISE },
3341 {}
3342 };
3343
3344 const struct fs_parameter_spec shmem_fs_parameters[] = {
3345 fsparam_u32 ("gid", Opt_gid),
3346 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3347 fsparam_u32oct("mode", Opt_mode),
3348 fsparam_string("mpol", Opt_mpol),
3349 fsparam_string("nr_blocks", Opt_nr_blocks),
3350 fsparam_string("nr_inodes", Opt_nr_inodes),
3351 fsparam_string("size", Opt_size),
3352 fsparam_u32 ("uid", Opt_uid),
3353 fsparam_flag ("inode32", Opt_inode32),
3354 fsparam_flag ("inode64", Opt_inode64),
3355 {}
3356 };
3357
3358 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3359 {
3360 struct shmem_options *ctx = fc->fs_private;
3361 struct fs_parse_result result;
3362 unsigned long long size;
3363 char *rest;
3364 int opt;
3365
3366 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3367 if (opt < 0)
3368 return opt;
3369
3370 switch (opt) {
3371 case Opt_size:
3372 size = memparse(param->string, &rest);
3373 if (*rest == '%') {
3374 size <<= PAGE_SHIFT;
3375 size *= totalram_pages();
3376 do_div(size, 100);
3377 rest++;
3378 }
3379 if (*rest)
3380 goto bad_value;
3381 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3382 ctx->seen |= SHMEM_SEEN_BLOCKS;
3383 break;
3384 case Opt_nr_blocks:
3385 ctx->blocks = memparse(param->string, &rest);
3386 if (*rest)
3387 goto bad_value;
3388 ctx->seen |= SHMEM_SEEN_BLOCKS;
3389 break;
3390 case Opt_nr_inodes:
3391 ctx->inodes = memparse(param->string, &rest);
3392 if (*rest)
3393 goto bad_value;
3394 ctx->seen |= SHMEM_SEEN_INODES;
3395 break;
3396 case Opt_mode:
3397 ctx->mode = result.uint_32 & 07777;
3398 break;
3399 case Opt_uid:
3400 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3401 if (!uid_valid(ctx->uid))
3402 goto bad_value;
3403 break;
3404 case Opt_gid:
3405 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3406 if (!gid_valid(ctx->gid))
3407 goto bad_value;
3408 break;
3409 case Opt_huge:
3410 ctx->huge = result.uint_32;
3411 if (ctx->huge != SHMEM_HUGE_NEVER &&
3412 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3413 has_transparent_hugepage()))
3414 goto unsupported_parameter;
3415 ctx->seen |= SHMEM_SEEN_HUGE;
3416 break;
3417 case Opt_mpol:
3418 if (IS_ENABLED(CONFIG_NUMA)) {
3419 mpol_put(ctx->mpol);
3420 ctx->mpol = NULL;
3421 if (mpol_parse_str(param->string, &ctx->mpol))
3422 goto bad_value;
3423 break;
3424 }
3425 goto unsupported_parameter;
3426 case Opt_inode32:
3427 ctx->full_inums = false;
3428 ctx->seen |= SHMEM_SEEN_INUMS;
3429 break;
3430 case Opt_inode64:
3431 if (sizeof(ino_t) < 8) {
3432 return invalfc(fc,
3433 "Cannot use inode64 with <64bit inums in kernel\n");
3434 }
3435 ctx->full_inums = true;
3436 ctx->seen |= SHMEM_SEEN_INUMS;
3437 break;
3438 }
3439 return 0;
3440
3441 unsupported_parameter:
3442 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3443 bad_value:
3444 return invalfc(fc, "Bad value for '%s'", param->key);
3445 }
3446
3447 static int shmem_parse_options(struct fs_context *fc, void *data)
3448 {
3449 char *options = data;
3450
3451 if (options) {
3452 int err = security_sb_eat_lsm_opts(options, &fc->security);
3453 if (err)
3454 return err;
3455 }
3456
3457 while (options != NULL) {
3458 char *this_char = options;
3459 for (;;) {
3460 /*
3461 * NUL-terminate this option: unfortunately,
3462 * mount options form a comma-separated list,
3463 * but mpol's nodelist may also contain commas.
3464 */
3465 options = strchr(options, ',');
3466 if (options == NULL)
3467 break;
3468 options++;
3469 if (!isdigit(*options)) {
3470 options[-1] = '\0';
3471 break;
3472 }
3473 }
3474 if (*this_char) {
3475 char *value = strchr(this_char, '=');
3476 size_t len = 0;
3477 int err;
3478
3479 if (value) {
3480 *value++ = '\0';
3481 len = strlen(value);
3482 }
3483 err = vfs_parse_fs_string(fc, this_char, value, len);
3484 if (err < 0)
3485 return err;
3486 }
3487 }
3488 return 0;
3489 }
3490
3491 /*
3492 * Reconfigure a shmem filesystem.
3493 *
3494 * Note that we disallow change from limited->unlimited blocks/inodes while any
3495 * are in use; but we must separately disallow unlimited->limited, because in
3496 * that case we have no record of how much is already in use.
3497 */
3498 static int shmem_reconfigure(struct fs_context *fc)
3499 {
3500 struct shmem_options *ctx = fc->fs_private;
3501 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3502 unsigned long inodes;
3503 const char *err;
3504
3505 spin_lock(&sbinfo->stat_lock);
3506 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3507 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3508 if (!sbinfo->max_blocks) {
3509 err = "Cannot retroactively limit size";
3510 goto out;
3511 }
3512 if (percpu_counter_compare(&sbinfo->used_blocks,
3513 ctx->blocks) > 0) {
3514 err = "Too small a size for current use";
3515 goto out;
3516 }
3517 }
3518 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3519 if (!sbinfo->max_inodes) {
3520 err = "Cannot retroactively limit inodes";
3521 goto out;
3522 }
3523 if (ctx->inodes < inodes) {
3524 err = "Too few inodes for current use";
3525 goto out;
3526 }
3527 }
3528
3529 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3530 sbinfo->next_ino > UINT_MAX) {
3531 err = "Current inum too high to switch to 32-bit inums";
3532 goto out;
3533 }
3534
3535 if (ctx->seen & SHMEM_SEEN_HUGE)
3536 sbinfo->huge = ctx->huge;
3537 if (ctx->seen & SHMEM_SEEN_INUMS)
3538 sbinfo->full_inums = ctx->full_inums;
3539 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3540 sbinfo->max_blocks = ctx->blocks;
3541 if (ctx->seen & SHMEM_SEEN_INODES) {
3542 sbinfo->max_inodes = ctx->inodes;
3543 sbinfo->free_inodes = ctx->inodes - inodes;
3544 }
3545
3546 /*
3547 * Preserve previous mempolicy unless mpol remount option was specified.
3548 */
3549 if (ctx->mpol) {
3550 mpol_put(sbinfo->mpol);
3551 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3552 ctx->mpol = NULL;
3553 }
3554 spin_unlock(&sbinfo->stat_lock);
3555 return 0;
3556 out:
3557 spin_unlock(&sbinfo->stat_lock);
3558 return invalfc(fc, "%s", err);
3559 }
3560
3561 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3562 {
3563 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3564
3565 if (sbinfo->max_blocks != shmem_default_max_blocks())
3566 seq_printf(seq, ",size=%luk",
3567 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3568 if (sbinfo->max_inodes != shmem_default_max_inodes())
3569 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3570 if (sbinfo->mode != (0777 | S_ISVTX))
3571 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3572 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3573 seq_printf(seq, ",uid=%u",
3574 from_kuid_munged(&init_user_ns, sbinfo->uid));
3575 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3576 seq_printf(seq, ",gid=%u",
3577 from_kgid_munged(&init_user_ns, sbinfo->gid));
3578
3579 /*
3580 * Showing inode{64,32} might be useful even if it's the system default,
3581 * since then people don't have to resort to checking both here and
3582 * /proc/config.gz to confirm 64-bit inums were successfully applied
3583 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3584 *
3585 * We hide it when inode64 isn't the default and we are using 32-bit
3586 * inodes, since that probably just means the feature isn't even under
3587 * consideration.
3588 *
3589 * As such:
3590 *
3591 * +-----------------+-----------------+
3592 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3593 * +------------------+-----------------+-----------------+
3594 * | full_inums=true | show | show |
3595 * | full_inums=false | show | hide |
3596 * +------------------+-----------------+-----------------+
3597 *
3598 */
3599 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3600 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3602 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3603 if (sbinfo->huge)
3604 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3605 #endif
3606 shmem_show_mpol(seq, sbinfo->mpol);
3607 return 0;
3608 }
3609
3610 #endif /* CONFIG_TMPFS */
3611
3612 static void shmem_put_super(struct super_block *sb)
3613 {
3614 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3615
3616 free_percpu(sbinfo->ino_batch);
3617 percpu_counter_destroy(&sbinfo->used_blocks);
3618 mpol_put(sbinfo->mpol);
3619 kfree(sbinfo);
3620 sb->s_fs_info = NULL;
3621 }
3622
3623 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3624 {
3625 struct shmem_options *ctx = fc->fs_private;
3626 struct inode *inode;
3627 struct shmem_sb_info *sbinfo;
3628 int err = -ENOMEM;
3629
3630 /* Round up to L1_CACHE_BYTES to resist false sharing */
3631 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3632 L1_CACHE_BYTES), GFP_KERNEL);
3633 if (!sbinfo)
3634 return -ENOMEM;
3635
3636 sb->s_fs_info = sbinfo;
3637
3638 #ifdef CONFIG_TMPFS
3639 /*
3640 * Per default we only allow half of the physical ram per
3641 * tmpfs instance, limiting inodes to one per page of lowmem;
3642 * but the internal instance is left unlimited.
3643 */
3644 if (!(sb->s_flags & SB_KERNMOUNT)) {
3645 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3646 ctx->blocks = shmem_default_max_blocks();
3647 if (!(ctx->seen & SHMEM_SEEN_INODES))
3648 ctx->inodes = shmem_default_max_inodes();
3649 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3650 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3651 } else {
3652 sb->s_flags |= SB_NOUSER;
3653 }
3654 sb->s_export_op = &shmem_export_ops;
3655 sb->s_flags |= SB_NOSEC;
3656 #else
3657 sb->s_flags |= SB_NOUSER;
3658 #endif
3659 sbinfo->max_blocks = ctx->blocks;
3660 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3661 if (sb->s_flags & SB_KERNMOUNT) {
3662 sbinfo->ino_batch = alloc_percpu(ino_t);
3663 if (!sbinfo->ino_batch)
3664 goto failed;
3665 }
3666 sbinfo->uid = ctx->uid;
3667 sbinfo->gid = ctx->gid;
3668 sbinfo->full_inums = ctx->full_inums;
3669 sbinfo->mode = ctx->mode;
3670 sbinfo->huge = ctx->huge;
3671 sbinfo->mpol = ctx->mpol;
3672 ctx->mpol = NULL;
3673
3674 spin_lock_init(&sbinfo->stat_lock);
3675 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3676 goto failed;
3677 spin_lock_init(&sbinfo->shrinklist_lock);
3678 INIT_LIST_HEAD(&sbinfo->shrinklist);
3679
3680 sb->s_maxbytes = MAX_LFS_FILESIZE;
3681 sb->s_blocksize = PAGE_SIZE;
3682 sb->s_blocksize_bits = PAGE_SHIFT;
3683 sb->s_magic = TMPFS_MAGIC;
3684 sb->s_op = &shmem_ops;
3685 sb->s_time_gran = 1;
3686 #ifdef CONFIG_TMPFS_XATTR
3687 sb->s_xattr = shmem_xattr_handlers;
3688 #endif
3689 #ifdef CONFIG_TMPFS_POSIX_ACL
3690 sb->s_flags |= SB_POSIXACL;
3691 #endif
3692 uuid_gen(&sb->s_uuid);
3693
3694 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3695 if (!inode)
3696 goto failed;
3697 inode->i_uid = sbinfo->uid;
3698 inode->i_gid = sbinfo->gid;
3699 sb->s_root = d_make_root(inode);
3700 if (!sb->s_root)
3701 goto failed;
3702 return 0;
3703
3704 failed:
3705 shmem_put_super(sb);
3706 return err;
3707 }
3708
3709 static int shmem_get_tree(struct fs_context *fc)
3710 {
3711 return get_tree_nodev(fc, shmem_fill_super);
3712 }
3713
3714 static void shmem_free_fc(struct fs_context *fc)
3715 {
3716 struct shmem_options *ctx = fc->fs_private;
3717
3718 if (ctx) {
3719 mpol_put(ctx->mpol);
3720 kfree(ctx);
3721 }
3722 }
3723
3724 static const struct fs_context_operations shmem_fs_context_ops = {
3725 .free = shmem_free_fc,
3726 .get_tree = shmem_get_tree,
3727 #ifdef CONFIG_TMPFS
3728 .parse_monolithic = shmem_parse_options,
3729 .parse_param = shmem_parse_one,
3730 .reconfigure = shmem_reconfigure,
3731 #endif
3732 };
3733
3734 static struct kmem_cache *shmem_inode_cachep;
3735
3736 static struct inode *shmem_alloc_inode(struct super_block *sb)
3737 {
3738 struct shmem_inode_info *info;
3739 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3740 if (!info)
3741 return NULL;
3742 return &info->vfs_inode;
3743 }
3744
3745 static void shmem_free_in_core_inode(struct inode *inode)
3746 {
3747 if (S_ISLNK(inode->i_mode))
3748 kfree(inode->i_link);
3749 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3750 }
3751
3752 static void shmem_destroy_inode(struct inode *inode)
3753 {
3754 if (S_ISREG(inode->i_mode))
3755 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3756 }
3757
3758 static void shmem_init_inode(void *foo)
3759 {
3760 struct shmem_inode_info *info = foo;
3761 inode_init_once(&info->vfs_inode);
3762 }
3763
3764 static void shmem_init_inodecache(void)
3765 {
3766 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3767 sizeof(struct shmem_inode_info),
3768 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3769 }
3770
3771 static void shmem_destroy_inodecache(void)
3772 {
3773 kmem_cache_destroy(shmem_inode_cachep);
3774 }
3775
3776 const struct address_space_operations shmem_aops = {
3777 .writepage = shmem_writepage,
3778 .set_page_dirty = __set_page_dirty_no_writeback,
3779 #ifdef CONFIG_TMPFS
3780 .write_begin = shmem_write_begin,
3781 .write_end = shmem_write_end,
3782 #endif
3783 #ifdef CONFIG_MIGRATION
3784 .migratepage = migrate_page,
3785 #endif
3786 .error_remove_page = generic_error_remove_page,
3787 };
3788 EXPORT_SYMBOL(shmem_aops);
3789
3790 static const struct file_operations shmem_file_operations = {
3791 .mmap = shmem_mmap,
3792 .get_unmapped_area = shmem_get_unmapped_area,
3793 #ifdef CONFIG_TMPFS
3794 .llseek = shmem_file_llseek,
3795 .read_iter = shmem_file_read_iter,
3796 .write_iter = generic_file_write_iter,
3797 .fsync = noop_fsync,
3798 .splice_read = generic_file_splice_read,
3799 .splice_write = iter_file_splice_write,
3800 .fallocate = shmem_fallocate,
3801 #endif
3802 };
3803
3804 static const struct inode_operations shmem_inode_operations = {
3805 .getattr = shmem_getattr,
3806 .setattr = shmem_setattr,
3807 #ifdef CONFIG_TMPFS_XATTR
3808 .listxattr = shmem_listxattr,
3809 .set_acl = simple_set_acl,
3810 #endif
3811 };
3812
3813 static const struct inode_operations shmem_dir_inode_operations = {
3814 #ifdef CONFIG_TMPFS
3815 .create = shmem_create,
3816 .lookup = simple_lookup,
3817 .link = shmem_link,
3818 .unlink = shmem_unlink,
3819 .symlink = shmem_symlink,
3820 .mkdir = shmem_mkdir,
3821 .rmdir = shmem_rmdir,
3822 .mknod = shmem_mknod,
3823 .rename = shmem_rename2,
3824 .tmpfile = shmem_tmpfile,
3825 #endif
3826 #ifdef CONFIG_TMPFS_XATTR
3827 .listxattr = shmem_listxattr,
3828 #endif
3829 #ifdef CONFIG_TMPFS_POSIX_ACL
3830 .setattr = shmem_setattr,
3831 .set_acl = simple_set_acl,
3832 #endif
3833 };
3834
3835 static const struct inode_operations shmem_special_inode_operations = {
3836 #ifdef CONFIG_TMPFS_XATTR
3837 .listxattr = shmem_listxattr,
3838 #endif
3839 #ifdef CONFIG_TMPFS_POSIX_ACL
3840 .setattr = shmem_setattr,
3841 .set_acl = simple_set_acl,
3842 #endif
3843 };
3844
3845 static const struct super_operations shmem_ops = {
3846 .alloc_inode = shmem_alloc_inode,
3847 .free_inode = shmem_free_in_core_inode,
3848 .destroy_inode = shmem_destroy_inode,
3849 #ifdef CONFIG_TMPFS
3850 .statfs = shmem_statfs,
3851 .show_options = shmem_show_options,
3852 #endif
3853 .evict_inode = shmem_evict_inode,
3854 .drop_inode = generic_delete_inode,
3855 .put_super = shmem_put_super,
3856 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3857 .nr_cached_objects = shmem_unused_huge_count,
3858 .free_cached_objects = shmem_unused_huge_scan,
3859 #endif
3860 };
3861
3862 static const struct vm_operations_struct shmem_vm_ops = {
3863 .fault = shmem_fault,
3864 .map_pages = filemap_map_pages,
3865 #ifdef CONFIG_NUMA
3866 .set_policy = shmem_set_policy,
3867 .get_policy = shmem_get_policy,
3868 #endif
3869 };
3870
3871 int shmem_init_fs_context(struct fs_context *fc)
3872 {
3873 struct shmem_options *ctx;
3874
3875 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3876 if (!ctx)
3877 return -ENOMEM;
3878
3879 ctx->mode = 0777 | S_ISVTX;
3880 ctx->uid = current_fsuid();
3881 ctx->gid = current_fsgid();
3882
3883 fc->fs_private = ctx;
3884 fc->ops = &shmem_fs_context_ops;
3885 return 0;
3886 }
3887
3888 static struct file_system_type shmem_fs_type = {
3889 .owner = THIS_MODULE,
3890 .name = "tmpfs",
3891 .init_fs_context = shmem_init_fs_context,
3892 #ifdef CONFIG_TMPFS
3893 .parameters = shmem_fs_parameters,
3894 #endif
3895 .kill_sb = kill_litter_super,
3896 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3897 };
3898
3899 int __init shmem_init(void)
3900 {
3901 int error;
3902
3903 shmem_init_inodecache();
3904
3905 error = register_filesystem(&shmem_fs_type);
3906 if (error) {
3907 pr_err("Could not register tmpfs\n");
3908 goto out2;
3909 }
3910
3911 shm_mnt = kern_mount(&shmem_fs_type);
3912 if (IS_ERR(shm_mnt)) {
3913 error = PTR_ERR(shm_mnt);
3914 pr_err("Could not kern_mount tmpfs\n");
3915 goto out1;
3916 }
3917
3918 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3919 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3920 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3921 else
3922 shmem_huge = 0; /* just in case it was patched */
3923 #endif
3924 return 0;
3925
3926 out1:
3927 unregister_filesystem(&shmem_fs_type);
3928 out2:
3929 shmem_destroy_inodecache();
3930 shm_mnt = ERR_PTR(error);
3931 return error;
3932 }
3933
3934 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3935 static ssize_t shmem_enabled_show(struct kobject *kobj,
3936 struct kobj_attribute *attr, char *buf)
3937 {
3938 static const int values[] = {
3939 SHMEM_HUGE_ALWAYS,
3940 SHMEM_HUGE_WITHIN_SIZE,
3941 SHMEM_HUGE_ADVISE,
3942 SHMEM_HUGE_NEVER,
3943 SHMEM_HUGE_DENY,
3944 SHMEM_HUGE_FORCE,
3945 };
3946 int len = 0;
3947 int i;
3948
3949 for (i = 0; i < ARRAY_SIZE(values); i++) {
3950 len += sysfs_emit_at(buf, len,
3951 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3952 i ? " " : "",
3953 shmem_format_huge(values[i]));
3954 }
3955
3956 len += sysfs_emit_at(buf, len, "\n");
3957
3958 return len;
3959 }
3960
3961 static ssize_t shmem_enabled_store(struct kobject *kobj,
3962 struct kobj_attribute *attr, const char *buf, size_t count)
3963 {
3964 char tmp[16];
3965 int huge;
3966
3967 if (count + 1 > sizeof(tmp))
3968 return -EINVAL;
3969 memcpy(tmp, buf, count);
3970 tmp[count] = '\0';
3971 if (count && tmp[count - 1] == '\n')
3972 tmp[count - 1] = '\0';
3973
3974 huge = shmem_parse_huge(tmp);
3975 if (huge == -EINVAL)
3976 return -EINVAL;
3977 if (!has_transparent_hugepage() &&
3978 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3979 return -EINVAL;
3980
3981 shmem_huge = huge;
3982 if (shmem_huge > SHMEM_HUGE_DENY)
3983 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3984 return count;
3985 }
3986
3987 struct kobj_attribute shmem_enabled_attr =
3988 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3989 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3990
3991 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3992 bool shmem_huge_enabled(struct vm_area_struct *vma)
3993 {
3994 struct inode *inode = file_inode(vma->vm_file);
3995 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3996 loff_t i_size;
3997 pgoff_t off;
3998
3999 if (!transhuge_vma_enabled(vma, vma->vm_flags))
4000 return false;
4001 if (shmem_huge == SHMEM_HUGE_FORCE)
4002 return true;
4003 if (shmem_huge == SHMEM_HUGE_DENY)
4004 return false;
4005 switch (sbinfo->huge) {
4006 case SHMEM_HUGE_NEVER:
4007 return false;
4008 case SHMEM_HUGE_ALWAYS:
4009 return true;
4010 case SHMEM_HUGE_WITHIN_SIZE:
4011 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4012 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4013 if (i_size >= HPAGE_PMD_SIZE &&
4014 i_size >> PAGE_SHIFT >= off)
4015 return true;
4016 fallthrough;
4017 case SHMEM_HUGE_ADVISE:
4018 /* TODO: implement fadvise() hints */
4019 return (vma->vm_flags & VM_HUGEPAGE);
4020 default:
4021 VM_BUG_ON(1);
4022 return false;
4023 }
4024 }
4025 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4026
4027 #else /* !CONFIG_SHMEM */
4028
4029 /*
4030 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4031 *
4032 * This is intended for small system where the benefits of the full
4033 * shmem code (swap-backed and resource-limited) are outweighed by
4034 * their complexity. On systems without swap this code should be
4035 * effectively equivalent, but much lighter weight.
4036 */
4037
4038 static struct file_system_type shmem_fs_type = {
4039 .name = "tmpfs",
4040 .init_fs_context = ramfs_init_fs_context,
4041 .parameters = ramfs_fs_parameters,
4042 .kill_sb = kill_litter_super,
4043 .fs_flags = FS_USERNS_MOUNT,
4044 };
4045
4046 int __init shmem_init(void)
4047 {
4048 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4049
4050 shm_mnt = kern_mount(&shmem_fs_type);
4051 BUG_ON(IS_ERR(shm_mnt));
4052
4053 return 0;
4054 }
4055
4056 int shmem_unuse(unsigned int type, bool frontswap,
4057 unsigned long *fs_pages_to_unuse)
4058 {
4059 return 0;
4060 }
4061
4062 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4063 {
4064 return 0;
4065 }
4066
4067 void shmem_unlock_mapping(struct address_space *mapping)
4068 {
4069 }
4070
4071 #ifdef CONFIG_MMU
4072 unsigned long shmem_get_unmapped_area(struct file *file,
4073 unsigned long addr, unsigned long len,
4074 unsigned long pgoff, unsigned long flags)
4075 {
4076 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4077 }
4078 #endif
4079
4080 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4081 {
4082 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4083 }
4084 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4085
4086 #define shmem_vm_ops generic_file_vm_ops
4087 #define shmem_file_operations ramfs_file_operations
4088 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4089 #define shmem_acct_size(flags, size) 0
4090 #define shmem_unacct_size(flags, size) do {} while (0)
4091
4092 #endif /* CONFIG_SHMEM */
4093
4094 /* common code */
4095
4096 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4097 unsigned long flags, unsigned int i_flags)
4098 {
4099 struct inode *inode;
4100 struct file *res;
4101
4102 if (IS_ERR(mnt))
4103 return ERR_CAST(mnt);
4104
4105 if (size < 0 || size > MAX_LFS_FILESIZE)
4106 return ERR_PTR(-EINVAL);
4107
4108 if (shmem_acct_size(flags, size))
4109 return ERR_PTR(-ENOMEM);
4110
4111 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4112 flags);
4113 if (unlikely(!inode)) {
4114 shmem_unacct_size(flags, size);
4115 return ERR_PTR(-ENOSPC);
4116 }
4117 inode->i_flags |= i_flags;
4118 inode->i_size = size;
4119 clear_nlink(inode); /* It is unlinked */
4120 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4121 if (!IS_ERR(res))
4122 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4123 &shmem_file_operations);
4124 if (IS_ERR(res))
4125 iput(inode);
4126 return res;
4127 }
4128
4129 /**
4130 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4131 * kernel internal. There will be NO LSM permission checks against the
4132 * underlying inode. So users of this interface must do LSM checks at a
4133 * higher layer. The users are the big_key and shm implementations. LSM
4134 * checks are provided at the key or shm level rather than the inode.
4135 * @name: name for dentry (to be seen in /proc/<pid>/maps
4136 * @size: size to be set for the file
4137 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4138 */
4139 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4140 {
4141 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4142 }
4143
4144 /**
4145 * shmem_file_setup - get an unlinked file living in tmpfs
4146 * @name: name for dentry (to be seen in /proc/<pid>/maps
4147 * @size: size to be set for the file
4148 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4149 */
4150 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4151 {
4152 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4153 }
4154 EXPORT_SYMBOL_GPL(shmem_file_setup);
4155
4156 /**
4157 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4158 * @mnt: the tmpfs mount where the file will be created
4159 * @name: name for dentry (to be seen in /proc/<pid>/maps
4160 * @size: size to be set for the file
4161 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4162 */
4163 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4164 loff_t size, unsigned long flags)
4165 {
4166 return __shmem_file_setup(mnt, name, size, flags, 0);
4167 }
4168 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4169
4170 /**
4171 * shmem_zero_setup - setup a shared anonymous mapping
4172 * @vma: the vma to be mmapped is prepared by do_mmap
4173 */
4174 int shmem_zero_setup(struct vm_area_struct *vma)
4175 {
4176 struct file *file;
4177 loff_t size = vma->vm_end - vma->vm_start;
4178
4179 /*
4180 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4181 * between XFS directory reading and selinux: since this file is only
4182 * accessible to the user through its mapping, use S_PRIVATE flag to
4183 * bypass file security, in the same way as shmem_kernel_file_setup().
4184 */
4185 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4186 if (IS_ERR(file))
4187 return PTR_ERR(file);
4188
4189 if (vma->vm_file)
4190 fput(vma->vm_file);
4191 vma->vm_file = file;
4192 vma->vm_ops = &shmem_vm_ops;
4193
4194 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4195 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4196 (vma->vm_end & HPAGE_PMD_MASK)) {
4197 khugepaged_enter(vma, vma->vm_flags);
4198 }
4199
4200 return 0;
4201 }
4202
4203 /**
4204 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4205 * @mapping: the page's address_space
4206 * @index: the page index
4207 * @gfp: the page allocator flags to use if allocating
4208 *
4209 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4210 * with any new page allocations done using the specified allocation flags.
4211 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4212 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4213 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4214 *
4215 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4216 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4217 */
4218 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4219 pgoff_t index, gfp_t gfp)
4220 {
4221 #ifdef CONFIG_SHMEM
4222 struct inode *inode = mapping->host;
4223 struct page *page;
4224 int error;
4225
4226 BUG_ON(!shmem_mapping(mapping));
4227 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4228 gfp, NULL, NULL, NULL);
4229 if (error)
4230 page = ERR_PTR(error);
4231 else
4232 unlock_page(page);
4233 return page;
4234 #else
4235 /*
4236 * The tiny !SHMEM case uses ramfs without swap
4237 */
4238 return read_cache_page_gfp(mapping, index, gfp);
4239 #endif
4240 }
4241 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);