]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/shmem.c
Merge tag 'fbdev-fixes-for-3.5-1' of git://github.com/schandinat/linux-2.6
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79
80 struct shmem_xattr {
81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
82 char *name; /* xattr name */
83 size_t size;
84 char value[0];
85 };
86
87 /*
88 * shmem_fallocate and shmem_writepage communicate via inode->i_private
89 * (with i_mutex making sure that it has only one user at a time):
90 * we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 pgoff_t start; /* start of range currently being fallocated */
94 pgoff_t next; /* the next page offset to be fallocated */
95 pgoff_t nr_falloced; /* how many new pages have been fallocated */
96 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
97 };
98
99 /* Flag allocation requirements to shmem_getpage */
100 enum sgp_type {
101 SGP_READ, /* don't exceed i_size, don't allocate page */
102 SGP_CACHE, /* don't exceed i_size, may allocate page */
103 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 struct page **pagep, enum sgp_type sgp, int *fault_type)
128 {
129 return shmem_getpage_gfp(inode, index, pagep, sgp,
130 mapping_gfp_mask(inode->i_mapping), fault_type);
131 }
132
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135 return sb->s_fs_info;
136 }
137
138 /*
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
143 */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146 return (flags & VM_NORESERVE) ?
147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148 }
149
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152 if (!(flags & VM_NORESERVE))
153 vm_unacct_memory(VM_ACCT(size));
154 }
155
156 /*
157 * ... whereas tmpfs objects are accounted incrementally as
158 * pages are allocated, in order to allow huge sparse files.
159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161 */
162 static inline int shmem_acct_block(unsigned long flags)
163 {
164 return (flags & VM_NORESERVE) ?
165 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
166 }
167
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169 {
170 if (flags & VM_NORESERVE)
171 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172 }
173
174 static const struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static const struct file_operations shmem_file_operations;
177 static const struct inode_operations shmem_inode_operations;
178 static const struct inode_operations shmem_dir_inode_operations;
179 static const struct inode_operations shmem_special_inode_operations;
180 static const struct vm_operations_struct shmem_vm_ops;
181
182 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
183 .ra_pages = 0, /* No readahead */
184 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
185 };
186
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_MUTEX(shmem_swaplist_mutex);
189
190 static int shmem_reserve_inode(struct super_block *sb)
191 {
192 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 if (sbinfo->max_inodes) {
194 spin_lock(&sbinfo->stat_lock);
195 if (!sbinfo->free_inodes) {
196 spin_unlock(&sbinfo->stat_lock);
197 return -ENOSPC;
198 }
199 sbinfo->free_inodes--;
200 spin_unlock(&sbinfo->stat_lock);
201 }
202 return 0;
203 }
204
205 static void shmem_free_inode(struct super_block *sb)
206 {
207 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 if (sbinfo->max_inodes) {
209 spin_lock(&sbinfo->stat_lock);
210 sbinfo->free_inodes++;
211 spin_unlock(&sbinfo->stat_lock);
212 }
213 }
214
215 /**
216 * shmem_recalc_inode - recalculate the block usage of an inode
217 * @inode: inode to recalc
218 *
219 * We have to calculate the free blocks since the mm can drop
220 * undirtied hole pages behind our back.
221 *
222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224 *
225 * It has to be called with the spinlock held.
226 */
227 static void shmem_recalc_inode(struct inode *inode)
228 {
229 struct shmem_inode_info *info = SHMEM_I(inode);
230 long freed;
231
232 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233 if (freed > 0) {
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 if (sbinfo->max_blocks)
236 percpu_counter_add(&sbinfo->used_blocks, -freed);
237 info->alloced -= freed;
238 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239 shmem_unacct_blocks(info->flags, freed);
240 }
241 }
242
243 /*
244 * Replace item expected in radix tree by a new item, while holding tree lock.
245 */
246 static int shmem_radix_tree_replace(struct address_space *mapping,
247 pgoff_t index, void *expected, void *replacement)
248 {
249 void **pslot;
250 void *item = NULL;
251
252 VM_BUG_ON(!expected);
253 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254 if (pslot)
255 item = radix_tree_deref_slot_protected(pslot,
256 &mapping->tree_lock);
257 if (item != expected)
258 return -ENOENT;
259 if (replacement)
260 radix_tree_replace_slot(pslot, replacement);
261 else
262 radix_tree_delete(&mapping->page_tree, index);
263 return 0;
264 }
265
266 /*
267 * Like add_to_page_cache_locked, but error if expected item has gone.
268 */
269 static int shmem_add_to_page_cache(struct page *page,
270 struct address_space *mapping,
271 pgoff_t index, gfp_t gfp, void *expected)
272 {
273 int error = 0;
274
275 VM_BUG_ON(!PageLocked(page));
276 VM_BUG_ON(!PageSwapBacked(page));
277
278 if (!expected)
279 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
280 if (!error) {
281 page_cache_get(page);
282 page->mapping = mapping;
283 page->index = index;
284
285 spin_lock_irq(&mapping->tree_lock);
286 if (!expected)
287 error = radix_tree_insert(&mapping->page_tree,
288 index, page);
289 else
290 error = shmem_radix_tree_replace(mapping, index,
291 expected, page);
292 if (!error) {
293 mapping->nrpages++;
294 __inc_zone_page_state(page, NR_FILE_PAGES);
295 __inc_zone_page_state(page, NR_SHMEM);
296 spin_unlock_irq(&mapping->tree_lock);
297 } else {
298 page->mapping = NULL;
299 spin_unlock_irq(&mapping->tree_lock);
300 page_cache_release(page);
301 }
302 if (!expected)
303 radix_tree_preload_end();
304 }
305 if (error)
306 mem_cgroup_uncharge_cache_page(page);
307 return error;
308 }
309
310 /*
311 * Like delete_from_page_cache, but substitutes swap for page.
312 */
313 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
314 {
315 struct address_space *mapping = page->mapping;
316 int error;
317
318 spin_lock_irq(&mapping->tree_lock);
319 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
320 page->mapping = NULL;
321 mapping->nrpages--;
322 __dec_zone_page_state(page, NR_FILE_PAGES);
323 __dec_zone_page_state(page, NR_SHMEM);
324 spin_unlock_irq(&mapping->tree_lock);
325 page_cache_release(page);
326 BUG_ON(error);
327 }
328
329 /*
330 * Like find_get_pages, but collecting swap entries as well as pages.
331 */
332 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
333 pgoff_t start, unsigned int nr_pages,
334 struct page **pages, pgoff_t *indices)
335 {
336 unsigned int i;
337 unsigned int ret;
338 unsigned int nr_found;
339
340 rcu_read_lock();
341 restart:
342 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
343 (void ***)pages, indices, start, nr_pages);
344 ret = 0;
345 for (i = 0; i < nr_found; i++) {
346 struct page *page;
347 repeat:
348 page = radix_tree_deref_slot((void **)pages[i]);
349 if (unlikely(!page))
350 continue;
351 if (radix_tree_exception(page)) {
352 if (radix_tree_deref_retry(page))
353 goto restart;
354 /*
355 * Otherwise, we must be storing a swap entry
356 * here as an exceptional entry: so return it
357 * without attempting to raise page count.
358 */
359 goto export;
360 }
361 if (!page_cache_get_speculative(page))
362 goto repeat;
363
364 /* Has the page moved? */
365 if (unlikely(page != *((void **)pages[i]))) {
366 page_cache_release(page);
367 goto repeat;
368 }
369 export:
370 indices[ret] = indices[i];
371 pages[ret] = page;
372 ret++;
373 }
374 if (unlikely(!ret && nr_found))
375 goto restart;
376 rcu_read_unlock();
377 return ret;
378 }
379
380 /*
381 * Remove swap entry from radix tree, free the swap and its page cache.
382 */
383 static int shmem_free_swap(struct address_space *mapping,
384 pgoff_t index, void *radswap)
385 {
386 int error;
387
388 spin_lock_irq(&mapping->tree_lock);
389 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
390 spin_unlock_irq(&mapping->tree_lock);
391 if (!error)
392 free_swap_and_cache(radix_to_swp_entry(radswap));
393 return error;
394 }
395
396 /*
397 * Pagevec may contain swap entries, so shuffle up pages before releasing.
398 */
399 static void shmem_deswap_pagevec(struct pagevec *pvec)
400 {
401 int i, j;
402
403 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
404 struct page *page = pvec->pages[i];
405 if (!radix_tree_exceptional_entry(page))
406 pvec->pages[j++] = page;
407 }
408 pvec->nr = j;
409 }
410
411 /*
412 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
413 */
414 void shmem_unlock_mapping(struct address_space *mapping)
415 {
416 struct pagevec pvec;
417 pgoff_t indices[PAGEVEC_SIZE];
418 pgoff_t index = 0;
419
420 pagevec_init(&pvec, 0);
421 /*
422 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
423 */
424 while (!mapping_unevictable(mapping)) {
425 /*
426 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
427 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
428 */
429 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
430 PAGEVEC_SIZE, pvec.pages, indices);
431 if (!pvec.nr)
432 break;
433 index = indices[pvec.nr - 1] + 1;
434 shmem_deswap_pagevec(&pvec);
435 check_move_unevictable_pages(pvec.pages, pvec.nr);
436 pagevec_release(&pvec);
437 cond_resched();
438 }
439 }
440
441 /*
442 * Remove range of pages and swap entries from radix tree, and free them.
443 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
444 */
445 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
446 bool unfalloc)
447 {
448 struct address_space *mapping = inode->i_mapping;
449 struct shmem_inode_info *info = SHMEM_I(inode);
450 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
451 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
452 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
453 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
454 struct pagevec pvec;
455 pgoff_t indices[PAGEVEC_SIZE];
456 long nr_swaps_freed = 0;
457 pgoff_t index;
458 int i;
459
460 if (lend == -1)
461 end = -1; /* unsigned, so actually very big */
462
463 pagevec_init(&pvec, 0);
464 index = start;
465 while (index < end) {
466 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
467 min(end - index, (pgoff_t)PAGEVEC_SIZE),
468 pvec.pages, indices);
469 if (!pvec.nr)
470 break;
471 mem_cgroup_uncharge_start();
472 for (i = 0; i < pagevec_count(&pvec); i++) {
473 struct page *page = pvec.pages[i];
474
475 index = indices[i];
476 if (index >= end)
477 break;
478
479 if (radix_tree_exceptional_entry(page)) {
480 if (unfalloc)
481 continue;
482 nr_swaps_freed += !shmem_free_swap(mapping,
483 index, page);
484 continue;
485 }
486
487 if (!trylock_page(page))
488 continue;
489 if (!unfalloc || !PageUptodate(page)) {
490 if (page->mapping == mapping) {
491 VM_BUG_ON(PageWriteback(page));
492 truncate_inode_page(mapping, page);
493 }
494 }
495 unlock_page(page);
496 }
497 shmem_deswap_pagevec(&pvec);
498 pagevec_release(&pvec);
499 mem_cgroup_uncharge_end();
500 cond_resched();
501 index++;
502 }
503
504 if (partial_start) {
505 struct page *page = NULL;
506 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
507 if (page) {
508 unsigned int top = PAGE_CACHE_SIZE;
509 if (start > end) {
510 top = partial_end;
511 partial_end = 0;
512 }
513 zero_user_segment(page, partial_start, top);
514 set_page_dirty(page);
515 unlock_page(page);
516 page_cache_release(page);
517 }
518 }
519 if (partial_end) {
520 struct page *page = NULL;
521 shmem_getpage(inode, end, &page, SGP_READ, NULL);
522 if (page) {
523 zero_user_segment(page, 0, partial_end);
524 set_page_dirty(page);
525 unlock_page(page);
526 page_cache_release(page);
527 }
528 }
529 if (start >= end)
530 return;
531
532 index = start;
533 for ( ; ; ) {
534 cond_resched();
535 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
536 min(end - index, (pgoff_t)PAGEVEC_SIZE),
537 pvec.pages, indices);
538 if (!pvec.nr) {
539 if (index == start || unfalloc)
540 break;
541 index = start;
542 continue;
543 }
544 if ((index == start || unfalloc) && indices[0] >= end) {
545 shmem_deswap_pagevec(&pvec);
546 pagevec_release(&pvec);
547 break;
548 }
549 mem_cgroup_uncharge_start();
550 for (i = 0; i < pagevec_count(&pvec); i++) {
551 struct page *page = pvec.pages[i];
552
553 index = indices[i];
554 if (index >= end)
555 break;
556
557 if (radix_tree_exceptional_entry(page)) {
558 if (unfalloc)
559 continue;
560 nr_swaps_freed += !shmem_free_swap(mapping,
561 index, page);
562 continue;
563 }
564
565 lock_page(page);
566 if (!unfalloc || !PageUptodate(page)) {
567 if (page->mapping == mapping) {
568 VM_BUG_ON(PageWriteback(page));
569 truncate_inode_page(mapping, page);
570 }
571 }
572 unlock_page(page);
573 }
574 shmem_deswap_pagevec(&pvec);
575 pagevec_release(&pvec);
576 mem_cgroup_uncharge_end();
577 index++;
578 }
579
580 spin_lock(&info->lock);
581 info->swapped -= nr_swaps_freed;
582 shmem_recalc_inode(inode);
583 spin_unlock(&info->lock);
584 }
585
586 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
587 {
588 shmem_undo_range(inode, lstart, lend, false);
589 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
590 }
591 EXPORT_SYMBOL_GPL(shmem_truncate_range);
592
593 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
594 {
595 struct inode *inode = dentry->d_inode;
596 int error;
597
598 error = inode_change_ok(inode, attr);
599 if (error)
600 return error;
601
602 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
603 loff_t oldsize = inode->i_size;
604 loff_t newsize = attr->ia_size;
605
606 if (newsize != oldsize) {
607 i_size_write(inode, newsize);
608 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
609 }
610 if (newsize < oldsize) {
611 loff_t holebegin = round_up(newsize, PAGE_SIZE);
612 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
613 shmem_truncate_range(inode, newsize, (loff_t)-1);
614 /* unmap again to remove racily COWed private pages */
615 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616 }
617 }
618
619 setattr_copy(inode, attr);
620 #ifdef CONFIG_TMPFS_POSIX_ACL
621 if (attr->ia_valid & ATTR_MODE)
622 error = generic_acl_chmod(inode);
623 #endif
624 return error;
625 }
626
627 static void shmem_evict_inode(struct inode *inode)
628 {
629 struct shmem_inode_info *info = SHMEM_I(inode);
630 struct shmem_xattr *xattr, *nxattr;
631
632 if (inode->i_mapping->a_ops == &shmem_aops) {
633 shmem_unacct_size(info->flags, inode->i_size);
634 inode->i_size = 0;
635 shmem_truncate_range(inode, 0, (loff_t)-1);
636 if (!list_empty(&info->swaplist)) {
637 mutex_lock(&shmem_swaplist_mutex);
638 list_del_init(&info->swaplist);
639 mutex_unlock(&shmem_swaplist_mutex);
640 }
641 } else
642 kfree(info->symlink);
643
644 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
645 kfree(xattr->name);
646 kfree(xattr);
647 }
648 BUG_ON(inode->i_blocks);
649 shmem_free_inode(inode->i_sb);
650 clear_inode(inode);
651 }
652
653 /*
654 * If swap found in inode, free it and move page from swapcache to filecache.
655 */
656 static int shmem_unuse_inode(struct shmem_inode_info *info,
657 swp_entry_t swap, struct page **pagep)
658 {
659 struct address_space *mapping = info->vfs_inode.i_mapping;
660 void *radswap;
661 pgoff_t index;
662 gfp_t gfp;
663 int error = 0;
664
665 radswap = swp_to_radix_entry(swap);
666 index = radix_tree_locate_item(&mapping->page_tree, radswap);
667 if (index == -1)
668 return 0;
669
670 /*
671 * Move _head_ to start search for next from here.
672 * But be careful: shmem_evict_inode checks list_empty without taking
673 * mutex, and there's an instant in list_move_tail when info->swaplist
674 * would appear empty, if it were the only one on shmem_swaplist.
675 */
676 if (shmem_swaplist.next != &info->swaplist)
677 list_move_tail(&shmem_swaplist, &info->swaplist);
678
679 gfp = mapping_gfp_mask(mapping);
680 if (shmem_should_replace_page(*pagep, gfp)) {
681 mutex_unlock(&shmem_swaplist_mutex);
682 error = shmem_replace_page(pagep, gfp, info, index);
683 mutex_lock(&shmem_swaplist_mutex);
684 /*
685 * We needed to drop mutex to make that restrictive page
686 * allocation, but the inode might have been freed while we
687 * dropped it: although a racing shmem_evict_inode() cannot
688 * complete without emptying the radix_tree, our page lock
689 * on this swapcache page is not enough to prevent that -
690 * free_swap_and_cache() of our swap entry will only
691 * trylock_page(), removing swap from radix_tree whatever.
692 *
693 * We must not proceed to shmem_add_to_page_cache() if the
694 * inode has been freed, but of course we cannot rely on
695 * inode or mapping or info to check that. However, we can
696 * safely check if our swap entry is still in use (and here
697 * it can't have got reused for another page): if it's still
698 * in use, then the inode cannot have been freed yet, and we
699 * can safely proceed (if it's no longer in use, that tells
700 * nothing about the inode, but we don't need to unuse swap).
701 */
702 if (!page_swapcount(*pagep))
703 error = -ENOENT;
704 }
705
706 /*
707 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
708 * but also to hold up shmem_evict_inode(): so inode cannot be freed
709 * beneath us (pagelock doesn't help until the page is in pagecache).
710 */
711 if (!error)
712 error = shmem_add_to_page_cache(*pagep, mapping, index,
713 GFP_NOWAIT, radswap);
714 if (error != -ENOMEM) {
715 /*
716 * Truncation and eviction use free_swap_and_cache(), which
717 * only does trylock page: if we raced, best clean up here.
718 */
719 delete_from_swap_cache(*pagep);
720 set_page_dirty(*pagep);
721 if (!error) {
722 spin_lock(&info->lock);
723 info->swapped--;
724 spin_unlock(&info->lock);
725 swap_free(swap);
726 }
727 error = 1; /* not an error, but entry was found */
728 }
729 return error;
730 }
731
732 /*
733 * Search through swapped inodes to find and replace swap by page.
734 */
735 int shmem_unuse(swp_entry_t swap, struct page *page)
736 {
737 struct list_head *this, *next;
738 struct shmem_inode_info *info;
739 int found = 0;
740 int error = 0;
741
742 /*
743 * There's a faint possibility that swap page was replaced before
744 * caller locked it: caller will come back later with the right page.
745 */
746 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
747 goto out;
748
749 /*
750 * Charge page using GFP_KERNEL while we can wait, before taking
751 * the shmem_swaplist_mutex which might hold up shmem_writepage().
752 * Charged back to the user (not to caller) when swap account is used.
753 */
754 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
755 if (error)
756 goto out;
757 /* No radix_tree_preload: swap entry keeps a place for page in tree */
758
759 mutex_lock(&shmem_swaplist_mutex);
760 list_for_each_safe(this, next, &shmem_swaplist) {
761 info = list_entry(this, struct shmem_inode_info, swaplist);
762 if (info->swapped)
763 found = shmem_unuse_inode(info, swap, &page);
764 else
765 list_del_init(&info->swaplist);
766 cond_resched();
767 if (found)
768 break;
769 }
770 mutex_unlock(&shmem_swaplist_mutex);
771
772 if (found < 0)
773 error = found;
774 out:
775 unlock_page(page);
776 page_cache_release(page);
777 return error;
778 }
779
780 /*
781 * Move the page from the page cache to the swap cache.
782 */
783 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
784 {
785 struct shmem_inode_info *info;
786 struct address_space *mapping;
787 struct inode *inode;
788 swp_entry_t swap;
789 pgoff_t index;
790
791 BUG_ON(!PageLocked(page));
792 mapping = page->mapping;
793 index = page->index;
794 inode = mapping->host;
795 info = SHMEM_I(inode);
796 if (info->flags & VM_LOCKED)
797 goto redirty;
798 if (!total_swap_pages)
799 goto redirty;
800
801 /*
802 * shmem_backing_dev_info's capabilities prevent regular writeback or
803 * sync from ever calling shmem_writepage; but a stacking filesystem
804 * might use ->writepage of its underlying filesystem, in which case
805 * tmpfs should write out to swap only in response to memory pressure,
806 * and not for the writeback threads or sync.
807 */
808 if (!wbc->for_reclaim) {
809 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
810 goto redirty;
811 }
812
813 /*
814 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
815 * value into swapfile.c, the only way we can correctly account for a
816 * fallocated page arriving here is now to initialize it and write it.
817 *
818 * That's okay for a page already fallocated earlier, but if we have
819 * not yet completed the fallocation, then (a) we want to keep track
820 * of this page in case we have to undo it, and (b) it may not be a
821 * good idea to continue anyway, once we're pushing into swap. So
822 * reactivate the page, and let shmem_fallocate() quit when too many.
823 */
824 if (!PageUptodate(page)) {
825 if (inode->i_private) {
826 struct shmem_falloc *shmem_falloc;
827 spin_lock(&inode->i_lock);
828 shmem_falloc = inode->i_private;
829 if (shmem_falloc &&
830 index >= shmem_falloc->start &&
831 index < shmem_falloc->next)
832 shmem_falloc->nr_unswapped++;
833 else
834 shmem_falloc = NULL;
835 spin_unlock(&inode->i_lock);
836 if (shmem_falloc)
837 goto redirty;
838 }
839 clear_highpage(page);
840 flush_dcache_page(page);
841 SetPageUptodate(page);
842 }
843
844 swap = get_swap_page();
845 if (!swap.val)
846 goto redirty;
847
848 /*
849 * Add inode to shmem_unuse()'s list of swapped-out inodes,
850 * if it's not already there. Do it now before the page is
851 * moved to swap cache, when its pagelock no longer protects
852 * the inode from eviction. But don't unlock the mutex until
853 * we've incremented swapped, because shmem_unuse_inode() will
854 * prune a !swapped inode from the swaplist under this mutex.
855 */
856 mutex_lock(&shmem_swaplist_mutex);
857 if (list_empty(&info->swaplist))
858 list_add_tail(&info->swaplist, &shmem_swaplist);
859
860 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
861 swap_shmem_alloc(swap);
862 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
863
864 spin_lock(&info->lock);
865 info->swapped++;
866 shmem_recalc_inode(inode);
867 spin_unlock(&info->lock);
868
869 mutex_unlock(&shmem_swaplist_mutex);
870 BUG_ON(page_mapped(page));
871 swap_writepage(page, wbc);
872 return 0;
873 }
874
875 mutex_unlock(&shmem_swaplist_mutex);
876 swapcache_free(swap, NULL);
877 redirty:
878 set_page_dirty(page);
879 if (wbc->for_reclaim)
880 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
881 unlock_page(page);
882 return 0;
883 }
884
885 #ifdef CONFIG_NUMA
886 #ifdef CONFIG_TMPFS
887 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
888 {
889 char buffer[64];
890
891 if (!mpol || mpol->mode == MPOL_DEFAULT)
892 return; /* show nothing */
893
894 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
895
896 seq_printf(seq, ",mpol=%s", buffer);
897 }
898
899 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
900 {
901 struct mempolicy *mpol = NULL;
902 if (sbinfo->mpol) {
903 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
904 mpol = sbinfo->mpol;
905 mpol_get(mpol);
906 spin_unlock(&sbinfo->stat_lock);
907 }
908 return mpol;
909 }
910 #endif /* CONFIG_TMPFS */
911
912 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
913 struct shmem_inode_info *info, pgoff_t index)
914 {
915 struct mempolicy mpol, *spol;
916 struct vm_area_struct pvma;
917
918 spol = mpol_cond_copy(&mpol,
919 mpol_shared_policy_lookup(&info->policy, index));
920
921 /* Create a pseudo vma that just contains the policy */
922 pvma.vm_start = 0;
923 pvma.vm_pgoff = index;
924 pvma.vm_ops = NULL;
925 pvma.vm_policy = spol;
926 return swapin_readahead(swap, gfp, &pvma, 0);
927 }
928
929 static struct page *shmem_alloc_page(gfp_t gfp,
930 struct shmem_inode_info *info, pgoff_t index)
931 {
932 struct vm_area_struct pvma;
933
934 /* Create a pseudo vma that just contains the policy */
935 pvma.vm_start = 0;
936 pvma.vm_pgoff = index;
937 pvma.vm_ops = NULL;
938 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
939
940 /*
941 * alloc_page_vma() will drop the shared policy reference
942 */
943 return alloc_page_vma(gfp, &pvma, 0);
944 }
945 #else /* !CONFIG_NUMA */
946 #ifdef CONFIG_TMPFS
947 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
948 {
949 }
950 #endif /* CONFIG_TMPFS */
951
952 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
953 struct shmem_inode_info *info, pgoff_t index)
954 {
955 return swapin_readahead(swap, gfp, NULL, 0);
956 }
957
958 static inline struct page *shmem_alloc_page(gfp_t gfp,
959 struct shmem_inode_info *info, pgoff_t index)
960 {
961 return alloc_page(gfp);
962 }
963 #endif /* CONFIG_NUMA */
964
965 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
966 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
967 {
968 return NULL;
969 }
970 #endif
971
972 /*
973 * When a page is moved from swapcache to shmem filecache (either by the
974 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
975 * shmem_unuse_inode()), it may have been read in earlier from swap, in
976 * ignorance of the mapping it belongs to. If that mapping has special
977 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
978 * we may need to copy to a suitable page before moving to filecache.
979 *
980 * In a future release, this may well be extended to respect cpuset and
981 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
982 * but for now it is a simple matter of zone.
983 */
984 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
985 {
986 return page_zonenum(page) > gfp_zone(gfp);
987 }
988
989 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
990 struct shmem_inode_info *info, pgoff_t index)
991 {
992 struct page *oldpage, *newpage;
993 struct address_space *swap_mapping;
994 pgoff_t swap_index;
995 int error;
996
997 oldpage = *pagep;
998 swap_index = page_private(oldpage);
999 swap_mapping = page_mapping(oldpage);
1000
1001 /*
1002 * We have arrived here because our zones are constrained, so don't
1003 * limit chance of success by further cpuset and node constraints.
1004 */
1005 gfp &= ~GFP_CONSTRAINT_MASK;
1006 newpage = shmem_alloc_page(gfp, info, index);
1007 if (!newpage)
1008 return -ENOMEM;
1009
1010 page_cache_get(newpage);
1011 copy_highpage(newpage, oldpage);
1012 flush_dcache_page(newpage);
1013
1014 __set_page_locked(newpage);
1015 SetPageUptodate(newpage);
1016 SetPageSwapBacked(newpage);
1017 set_page_private(newpage, swap_index);
1018 SetPageSwapCache(newpage);
1019
1020 /*
1021 * Our caller will very soon move newpage out of swapcache, but it's
1022 * a nice clean interface for us to replace oldpage by newpage there.
1023 */
1024 spin_lock_irq(&swap_mapping->tree_lock);
1025 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1026 newpage);
1027 if (!error) {
1028 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1029 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1030 }
1031 spin_unlock_irq(&swap_mapping->tree_lock);
1032
1033 if (unlikely(error)) {
1034 /*
1035 * Is this possible? I think not, now that our callers check
1036 * both PageSwapCache and page_private after getting page lock;
1037 * but be defensive. Reverse old to newpage for clear and free.
1038 */
1039 oldpage = newpage;
1040 } else {
1041 mem_cgroup_replace_page_cache(oldpage, newpage);
1042 lru_cache_add_anon(newpage);
1043 *pagep = newpage;
1044 }
1045
1046 ClearPageSwapCache(oldpage);
1047 set_page_private(oldpage, 0);
1048
1049 unlock_page(oldpage);
1050 page_cache_release(oldpage);
1051 page_cache_release(oldpage);
1052 return error;
1053 }
1054
1055 /*
1056 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1057 *
1058 * If we allocate a new one we do not mark it dirty. That's up to the
1059 * vm. If we swap it in we mark it dirty since we also free the swap
1060 * entry since a page cannot live in both the swap and page cache
1061 */
1062 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1063 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1064 {
1065 struct address_space *mapping = inode->i_mapping;
1066 struct shmem_inode_info *info;
1067 struct shmem_sb_info *sbinfo;
1068 struct page *page;
1069 swp_entry_t swap;
1070 int error;
1071 int once = 0;
1072 int alloced = 0;
1073
1074 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1075 return -EFBIG;
1076 repeat:
1077 swap.val = 0;
1078 page = find_lock_page(mapping, index);
1079 if (radix_tree_exceptional_entry(page)) {
1080 swap = radix_to_swp_entry(page);
1081 page = NULL;
1082 }
1083
1084 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1085 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1086 error = -EINVAL;
1087 goto failed;
1088 }
1089
1090 /* fallocated page? */
1091 if (page && !PageUptodate(page)) {
1092 if (sgp != SGP_READ)
1093 goto clear;
1094 unlock_page(page);
1095 page_cache_release(page);
1096 page = NULL;
1097 }
1098 if (page || (sgp == SGP_READ && !swap.val)) {
1099 *pagep = page;
1100 return 0;
1101 }
1102
1103 /*
1104 * Fast cache lookup did not find it:
1105 * bring it back from swap or allocate.
1106 */
1107 info = SHMEM_I(inode);
1108 sbinfo = SHMEM_SB(inode->i_sb);
1109
1110 if (swap.val) {
1111 /* Look it up and read it in.. */
1112 page = lookup_swap_cache(swap);
1113 if (!page) {
1114 /* here we actually do the io */
1115 if (fault_type)
1116 *fault_type |= VM_FAULT_MAJOR;
1117 page = shmem_swapin(swap, gfp, info, index);
1118 if (!page) {
1119 error = -ENOMEM;
1120 goto failed;
1121 }
1122 }
1123
1124 /* We have to do this with page locked to prevent races */
1125 lock_page(page);
1126 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1127 page->mapping) {
1128 error = -EEXIST; /* try again */
1129 goto failed;
1130 }
1131 if (!PageUptodate(page)) {
1132 error = -EIO;
1133 goto failed;
1134 }
1135 wait_on_page_writeback(page);
1136
1137 if (shmem_should_replace_page(page, gfp)) {
1138 error = shmem_replace_page(&page, gfp, info, index);
1139 if (error)
1140 goto failed;
1141 }
1142
1143 error = mem_cgroup_cache_charge(page, current->mm,
1144 gfp & GFP_RECLAIM_MASK);
1145 if (!error)
1146 error = shmem_add_to_page_cache(page, mapping, index,
1147 gfp, swp_to_radix_entry(swap));
1148 if (error)
1149 goto failed;
1150
1151 spin_lock(&info->lock);
1152 info->swapped--;
1153 shmem_recalc_inode(inode);
1154 spin_unlock(&info->lock);
1155
1156 delete_from_swap_cache(page);
1157 set_page_dirty(page);
1158 swap_free(swap);
1159
1160 } else {
1161 if (shmem_acct_block(info->flags)) {
1162 error = -ENOSPC;
1163 goto failed;
1164 }
1165 if (sbinfo->max_blocks) {
1166 if (percpu_counter_compare(&sbinfo->used_blocks,
1167 sbinfo->max_blocks) >= 0) {
1168 error = -ENOSPC;
1169 goto unacct;
1170 }
1171 percpu_counter_inc(&sbinfo->used_blocks);
1172 }
1173
1174 page = shmem_alloc_page(gfp, info, index);
1175 if (!page) {
1176 error = -ENOMEM;
1177 goto decused;
1178 }
1179
1180 SetPageSwapBacked(page);
1181 __set_page_locked(page);
1182 error = mem_cgroup_cache_charge(page, current->mm,
1183 gfp & GFP_RECLAIM_MASK);
1184 if (!error)
1185 error = shmem_add_to_page_cache(page, mapping, index,
1186 gfp, NULL);
1187 if (error)
1188 goto decused;
1189 lru_cache_add_anon(page);
1190
1191 spin_lock(&info->lock);
1192 info->alloced++;
1193 inode->i_blocks += BLOCKS_PER_PAGE;
1194 shmem_recalc_inode(inode);
1195 spin_unlock(&info->lock);
1196 alloced = true;
1197
1198 /*
1199 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1200 */
1201 if (sgp == SGP_FALLOC)
1202 sgp = SGP_WRITE;
1203 clear:
1204 /*
1205 * Let SGP_WRITE caller clear ends if write does not fill page;
1206 * but SGP_FALLOC on a page fallocated earlier must initialize
1207 * it now, lest undo on failure cancel our earlier guarantee.
1208 */
1209 if (sgp != SGP_WRITE) {
1210 clear_highpage(page);
1211 flush_dcache_page(page);
1212 SetPageUptodate(page);
1213 }
1214 if (sgp == SGP_DIRTY)
1215 set_page_dirty(page);
1216 }
1217
1218 /* Perhaps the file has been truncated since we checked */
1219 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1220 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1221 error = -EINVAL;
1222 if (alloced)
1223 goto trunc;
1224 else
1225 goto failed;
1226 }
1227 *pagep = page;
1228 return 0;
1229
1230 /*
1231 * Error recovery.
1232 */
1233 trunc:
1234 info = SHMEM_I(inode);
1235 ClearPageDirty(page);
1236 delete_from_page_cache(page);
1237 spin_lock(&info->lock);
1238 info->alloced--;
1239 inode->i_blocks -= BLOCKS_PER_PAGE;
1240 spin_unlock(&info->lock);
1241 decused:
1242 sbinfo = SHMEM_SB(inode->i_sb);
1243 if (sbinfo->max_blocks)
1244 percpu_counter_add(&sbinfo->used_blocks, -1);
1245 unacct:
1246 shmem_unacct_blocks(info->flags, 1);
1247 failed:
1248 if (swap.val && error != -EINVAL) {
1249 struct page *test = find_get_page(mapping, index);
1250 if (test && !radix_tree_exceptional_entry(test))
1251 page_cache_release(test);
1252 /* Have another try if the entry has changed */
1253 if (test != swp_to_radix_entry(swap))
1254 error = -EEXIST;
1255 }
1256 if (page) {
1257 unlock_page(page);
1258 page_cache_release(page);
1259 }
1260 if (error == -ENOSPC && !once++) {
1261 info = SHMEM_I(inode);
1262 spin_lock(&info->lock);
1263 shmem_recalc_inode(inode);
1264 spin_unlock(&info->lock);
1265 goto repeat;
1266 }
1267 if (error == -EEXIST)
1268 goto repeat;
1269 return error;
1270 }
1271
1272 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1273 {
1274 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1275 int error;
1276 int ret = VM_FAULT_LOCKED;
1277
1278 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1279 if (error)
1280 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1281
1282 if (ret & VM_FAULT_MAJOR) {
1283 count_vm_event(PGMAJFAULT);
1284 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1285 }
1286 return ret;
1287 }
1288
1289 #ifdef CONFIG_NUMA
1290 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1291 {
1292 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1293 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1294 }
1295
1296 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1297 unsigned long addr)
1298 {
1299 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1300 pgoff_t index;
1301
1302 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1303 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1304 }
1305 #endif
1306
1307 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1308 {
1309 struct inode *inode = file->f_path.dentry->d_inode;
1310 struct shmem_inode_info *info = SHMEM_I(inode);
1311 int retval = -ENOMEM;
1312
1313 spin_lock(&info->lock);
1314 if (lock && !(info->flags & VM_LOCKED)) {
1315 if (!user_shm_lock(inode->i_size, user))
1316 goto out_nomem;
1317 info->flags |= VM_LOCKED;
1318 mapping_set_unevictable(file->f_mapping);
1319 }
1320 if (!lock && (info->flags & VM_LOCKED) && user) {
1321 user_shm_unlock(inode->i_size, user);
1322 info->flags &= ~VM_LOCKED;
1323 mapping_clear_unevictable(file->f_mapping);
1324 }
1325 retval = 0;
1326
1327 out_nomem:
1328 spin_unlock(&info->lock);
1329 return retval;
1330 }
1331
1332 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1333 {
1334 file_accessed(file);
1335 vma->vm_ops = &shmem_vm_ops;
1336 vma->vm_flags |= VM_CAN_NONLINEAR;
1337 return 0;
1338 }
1339
1340 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1341 umode_t mode, dev_t dev, unsigned long flags)
1342 {
1343 struct inode *inode;
1344 struct shmem_inode_info *info;
1345 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1346
1347 if (shmem_reserve_inode(sb))
1348 return NULL;
1349
1350 inode = new_inode(sb);
1351 if (inode) {
1352 inode->i_ino = get_next_ino();
1353 inode_init_owner(inode, dir, mode);
1354 inode->i_blocks = 0;
1355 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1356 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1357 inode->i_generation = get_seconds();
1358 info = SHMEM_I(inode);
1359 memset(info, 0, (char *)inode - (char *)info);
1360 spin_lock_init(&info->lock);
1361 info->flags = flags & VM_NORESERVE;
1362 INIT_LIST_HEAD(&info->swaplist);
1363 INIT_LIST_HEAD(&info->xattr_list);
1364 cache_no_acl(inode);
1365
1366 switch (mode & S_IFMT) {
1367 default:
1368 inode->i_op = &shmem_special_inode_operations;
1369 init_special_inode(inode, mode, dev);
1370 break;
1371 case S_IFREG:
1372 inode->i_mapping->a_ops = &shmem_aops;
1373 inode->i_op = &shmem_inode_operations;
1374 inode->i_fop = &shmem_file_operations;
1375 mpol_shared_policy_init(&info->policy,
1376 shmem_get_sbmpol(sbinfo));
1377 break;
1378 case S_IFDIR:
1379 inc_nlink(inode);
1380 /* Some things misbehave if size == 0 on a directory */
1381 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1382 inode->i_op = &shmem_dir_inode_operations;
1383 inode->i_fop = &simple_dir_operations;
1384 break;
1385 case S_IFLNK:
1386 /*
1387 * Must not load anything in the rbtree,
1388 * mpol_free_shared_policy will not be called.
1389 */
1390 mpol_shared_policy_init(&info->policy, NULL);
1391 break;
1392 }
1393 } else
1394 shmem_free_inode(sb);
1395 return inode;
1396 }
1397
1398 #ifdef CONFIG_TMPFS
1399 static const struct inode_operations shmem_symlink_inode_operations;
1400 static const struct inode_operations shmem_short_symlink_operations;
1401
1402 #ifdef CONFIG_TMPFS_XATTR
1403 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1404 #else
1405 #define shmem_initxattrs NULL
1406 #endif
1407
1408 static int
1409 shmem_write_begin(struct file *file, struct address_space *mapping,
1410 loff_t pos, unsigned len, unsigned flags,
1411 struct page **pagep, void **fsdata)
1412 {
1413 struct inode *inode = mapping->host;
1414 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1415 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1416 }
1417
1418 static int
1419 shmem_write_end(struct file *file, struct address_space *mapping,
1420 loff_t pos, unsigned len, unsigned copied,
1421 struct page *page, void *fsdata)
1422 {
1423 struct inode *inode = mapping->host;
1424
1425 if (pos + copied > inode->i_size)
1426 i_size_write(inode, pos + copied);
1427
1428 if (!PageUptodate(page)) {
1429 if (copied < PAGE_CACHE_SIZE) {
1430 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1431 zero_user_segments(page, 0, from,
1432 from + copied, PAGE_CACHE_SIZE);
1433 }
1434 SetPageUptodate(page);
1435 }
1436 set_page_dirty(page);
1437 unlock_page(page);
1438 page_cache_release(page);
1439
1440 return copied;
1441 }
1442
1443 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1444 {
1445 struct inode *inode = filp->f_path.dentry->d_inode;
1446 struct address_space *mapping = inode->i_mapping;
1447 pgoff_t index;
1448 unsigned long offset;
1449 enum sgp_type sgp = SGP_READ;
1450
1451 /*
1452 * Might this read be for a stacking filesystem? Then when reading
1453 * holes of a sparse file, we actually need to allocate those pages,
1454 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1455 */
1456 if (segment_eq(get_fs(), KERNEL_DS))
1457 sgp = SGP_DIRTY;
1458
1459 index = *ppos >> PAGE_CACHE_SHIFT;
1460 offset = *ppos & ~PAGE_CACHE_MASK;
1461
1462 for (;;) {
1463 struct page *page = NULL;
1464 pgoff_t end_index;
1465 unsigned long nr, ret;
1466 loff_t i_size = i_size_read(inode);
1467
1468 end_index = i_size >> PAGE_CACHE_SHIFT;
1469 if (index > end_index)
1470 break;
1471 if (index == end_index) {
1472 nr = i_size & ~PAGE_CACHE_MASK;
1473 if (nr <= offset)
1474 break;
1475 }
1476
1477 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1478 if (desc->error) {
1479 if (desc->error == -EINVAL)
1480 desc->error = 0;
1481 break;
1482 }
1483 if (page)
1484 unlock_page(page);
1485
1486 /*
1487 * We must evaluate after, since reads (unlike writes)
1488 * are called without i_mutex protection against truncate
1489 */
1490 nr = PAGE_CACHE_SIZE;
1491 i_size = i_size_read(inode);
1492 end_index = i_size >> PAGE_CACHE_SHIFT;
1493 if (index == end_index) {
1494 nr = i_size & ~PAGE_CACHE_MASK;
1495 if (nr <= offset) {
1496 if (page)
1497 page_cache_release(page);
1498 break;
1499 }
1500 }
1501 nr -= offset;
1502
1503 if (page) {
1504 /*
1505 * If users can be writing to this page using arbitrary
1506 * virtual addresses, take care about potential aliasing
1507 * before reading the page on the kernel side.
1508 */
1509 if (mapping_writably_mapped(mapping))
1510 flush_dcache_page(page);
1511 /*
1512 * Mark the page accessed if we read the beginning.
1513 */
1514 if (!offset)
1515 mark_page_accessed(page);
1516 } else {
1517 page = ZERO_PAGE(0);
1518 page_cache_get(page);
1519 }
1520
1521 /*
1522 * Ok, we have the page, and it's up-to-date, so
1523 * now we can copy it to user space...
1524 *
1525 * The actor routine returns how many bytes were actually used..
1526 * NOTE! This may not be the same as how much of a user buffer
1527 * we filled up (we may be padding etc), so we can only update
1528 * "pos" here (the actor routine has to update the user buffer
1529 * pointers and the remaining count).
1530 */
1531 ret = actor(desc, page, offset, nr);
1532 offset += ret;
1533 index += offset >> PAGE_CACHE_SHIFT;
1534 offset &= ~PAGE_CACHE_MASK;
1535
1536 page_cache_release(page);
1537 if (ret != nr || !desc->count)
1538 break;
1539
1540 cond_resched();
1541 }
1542
1543 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1544 file_accessed(filp);
1545 }
1546
1547 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1548 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1549 {
1550 struct file *filp = iocb->ki_filp;
1551 ssize_t retval;
1552 unsigned long seg;
1553 size_t count;
1554 loff_t *ppos = &iocb->ki_pos;
1555
1556 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1557 if (retval)
1558 return retval;
1559
1560 for (seg = 0; seg < nr_segs; seg++) {
1561 read_descriptor_t desc;
1562
1563 desc.written = 0;
1564 desc.arg.buf = iov[seg].iov_base;
1565 desc.count = iov[seg].iov_len;
1566 if (desc.count == 0)
1567 continue;
1568 desc.error = 0;
1569 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1570 retval += desc.written;
1571 if (desc.error) {
1572 retval = retval ?: desc.error;
1573 break;
1574 }
1575 if (desc.count > 0)
1576 break;
1577 }
1578 return retval;
1579 }
1580
1581 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1582 struct pipe_inode_info *pipe, size_t len,
1583 unsigned int flags)
1584 {
1585 struct address_space *mapping = in->f_mapping;
1586 struct inode *inode = mapping->host;
1587 unsigned int loff, nr_pages, req_pages;
1588 struct page *pages[PIPE_DEF_BUFFERS];
1589 struct partial_page partial[PIPE_DEF_BUFFERS];
1590 struct page *page;
1591 pgoff_t index, end_index;
1592 loff_t isize, left;
1593 int error, page_nr;
1594 struct splice_pipe_desc spd = {
1595 .pages = pages,
1596 .partial = partial,
1597 .flags = flags,
1598 .ops = &page_cache_pipe_buf_ops,
1599 .spd_release = spd_release_page,
1600 };
1601
1602 isize = i_size_read(inode);
1603 if (unlikely(*ppos >= isize))
1604 return 0;
1605
1606 left = isize - *ppos;
1607 if (unlikely(left < len))
1608 len = left;
1609
1610 if (splice_grow_spd(pipe, &spd))
1611 return -ENOMEM;
1612
1613 index = *ppos >> PAGE_CACHE_SHIFT;
1614 loff = *ppos & ~PAGE_CACHE_MASK;
1615 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1616 nr_pages = min(req_pages, pipe->buffers);
1617
1618 spd.nr_pages = find_get_pages_contig(mapping, index,
1619 nr_pages, spd.pages);
1620 index += spd.nr_pages;
1621 error = 0;
1622
1623 while (spd.nr_pages < nr_pages) {
1624 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1625 if (error)
1626 break;
1627 unlock_page(page);
1628 spd.pages[spd.nr_pages++] = page;
1629 index++;
1630 }
1631
1632 index = *ppos >> PAGE_CACHE_SHIFT;
1633 nr_pages = spd.nr_pages;
1634 spd.nr_pages = 0;
1635
1636 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1637 unsigned int this_len;
1638
1639 if (!len)
1640 break;
1641
1642 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1643 page = spd.pages[page_nr];
1644
1645 if (!PageUptodate(page) || page->mapping != mapping) {
1646 error = shmem_getpage(inode, index, &page,
1647 SGP_CACHE, NULL);
1648 if (error)
1649 break;
1650 unlock_page(page);
1651 page_cache_release(spd.pages[page_nr]);
1652 spd.pages[page_nr] = page;
1653 }
1654
1655 isize = i_size_read(inode);
1656 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1657 if (unlikely(!isize || index > end_index))
1658 break;
1659
1660 if (end_index == index) {
1661 unsigned int plen;
1662
1663 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1664 if (plen <= loff)
1665 break;
1666
1667 this_len = min(this_len, plen - loff);
1668 len = this_len;
1669 }
1670
1671 spd.partial[page_nr].offset = loff;
1672 spd.partial[page_nr].len = this_len;
1673 len -= this_len;
1674 loff = 0;
1675 spd.nr_pages++;
1676 index++;
1677 }
1678
1679 while (page_nr < nr_pages)
1680 page_cache_release(spd.pages[page_nr++]);
1681
1682 if (spd.nr_pages)
1683 error = splice_to_pipe(pipe, &spd);
1684
1685 splice_shrink_spd(pipe, &spd);
1686
1687 if (error > 0) {
1688 *ppos += error;
1689 file_accessed(in);
1690 }
1691 return error;
1692 }
1693
1694 /*
1695 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1696 */
1697 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1698 pgoff_t index, pgoff_t end, int origin)
1699 {
1700 struct page *page;
1701 struct pagevec pvec;
1702 pgoff_t indices[PAGEVEC_SIZE];
1703 bool done = false;
1704 int i;
1705
1706 pagevec_init(&pvec, 0);
1707 pvec.nr = 1; /* start small: we may be there already */
1708 while (!done) {
1709 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1710 pvec.nr, pvec.pages, indices);
1711 if (!pvec.nr) {
1712 if (origin == SEEK_DATA)
1713 index = end;
1714 break;
1715 }
1716 for (i = 0; i < pvec.nr; i++, index++) {
1717 if (index < indices[i]) {
1718 if (origin == SEEK_HOLE) {
1719 done = true;
1720 break;
1721 }
1722 index = indices[i];
1723 }
1724 page = pvec.pages[i];
1725 if (page && !radix_tree_exceptional_entry(page)) {
1726 if (!PageUptodate(page))
1727 page = NULL;
1728 }
1729 if (index >= end ||
1730 (page && origin == SEEK_DATA) ||
1731 (!page && origin == SEEK_HOLE)) {
1732 done = true;
1733 break;
1734 }
1735 }
1736 shmem_deswap_pagevec(&pvec);
1737 pagevec_release(&pvec);
1738 pvec.nr = PAGEVEC_SIZE;
1739 cond_resched();
1740 }
1741 return index;
1742 }
1743
1744 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int origin)
1745 {
1746 struct address_space *mapping;
1747 struct inode *inode;
1748 pgoff_t start, end;
1749 loff_t new_offset;
1750
1751 if (origin != SEEK_DATA && origin != SEEK_HOLE)
1752 return generic_file_llseek_size(file, offset, origin,
1753 MAX_LFS_FILESIZE);
1754 mapping = file->f_mapping;
1755 inode = mapping->host;
1756 mutex_lock(&inode->i_mutex);
1757 /* We're holding i_mutex so we can access i_size directly */
1758
1759 if (offset < 0)
1760 offset = -EINVAL;
1761 else if (offset >= inode->i_size)
1762 offset = -ENXIO;
1763 else {
1764 start = offset >> PAGE_CACHE_SHIFT;
1765 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1766 new_offset = shmem_seek_hole_data(mapping, start, end, origin);
1767 new_offset <<= PAGE_CACHE_SHIFT;
1768 if (new_offset > offset) {
1769 if (new_offset < inode->i_size)
1770 offset = new_offset;
1771 else if (origin == SEEK_DATA)
1772 offset = -ENXIO;
1773 else
1774 offset = inode->i_size;
1775 }
1776 }
1777
1778 if (offset >= 0 && offset != file->f_pos) {
1779 file->f_pos = offset;
1780 file->f_version = 0;
1781 }
1782 mutex_unlock(&inode->i_mutex);
1783 return offset;
1784 }
1785
1786 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1787 loff_t len)
1788 {
1789 struct inode *inode = file->f_path.dentry->d_inode;
1790 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1791 struct shmem_falloc shmem_falloc;
1792 pgoff_t start, index, end;
1793 int error;
1794
1795 mutex_lock(&inode->i_mutex);
1796
1797 if (mode & FALLOC_FL_PUNCH_HOLE) {
1798 struct address_space *mapping = file->f_mapping;
1799 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1800 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1801
1802 if ((u64)unmap_end > (u64)unmap_start)
1803 unmap_mapping_range(mapping, unmap_start,
1804 1 + unmap_end - unmap_start, 0);
1805 shmem_truncate_range(inode, offset, offset + len - 1);
1806 /* No need to unmap again: hole-punching leaves COWed pages */
1807 error = 0;
1808 goto out;
1809 }
1810
1811 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1812 error = inode_newsize_ok(inode, offset + len);
1813 if (error)
1814 goto out;
1815
1816 start = offset >> PAGE_CACHE_SHIFT;
1817 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1818 /* Try to avoid a swapstorm if len is impossible to satisfy */
1819 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1820 error = -ENOSPC;
1821 goto out;
1822 }
1823
1824 shmem_falloc.start = start;
1825 shmem_falloc.next = start;
1826 shmem_falloc.nr_falloced = 0;
1827 shmem_falloc.nr_unswapped = 0;
1828 spin_lock(&inode->i_lock);
1829 inode->i_private = &shmem_falloc;
1830 spin_unlock(&inode->i_lock);
1831
1832 for (index = start; index < end; index++) {
1833 struct page *page;
1834
1835 /*
1836 * Good, the fallocate(2) manpage permits EINTR: we may have
1837 * been interrupted because we are using up too much memory.
1838 */
1839 if (signal_pending(current))
1840 error = -EINTR;
1841 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1842 error = -ENOMEM;
1843 else
1844 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1845 NULL);
1846 if (error) {
1847 /* Remove the !PageUptodate pages we added */
1848 shmem_undo_range(inode,
1849 (loff_t)start << PAGE_CACHE_SHIFT,
1850 (loff_t)index << PAGE_CACHE_SHIFT, true);
1851 goto undone;
1852 }
1853
1854 /*
1855 * Inform shmem_writepage() how far we have reached.
1856 * No need for lock or barrier: we have the page lock.
1857 */
1858 shmem_falloc.next++;
1859 if (!PageUptodate(page))
1860 shmem_falloc.nr_falloced++;
1861
1862 /*
1863 * If !PageUptodate, leave it that way so that freeable pages
1864 * can be recognized if we need to rollback on error later.
1865 * But set_page_dirty so that memory pressure will swap rather
1866 * than free the pages we are allocating (and SGP_CACHE pages
1867 * might still be clean: we now need to mark those dirty too).
1868 */
1869 set_page_dirty(page);
1870 unlock_page(page);
1871 page_cache_release(page);
1872 cond_resched();
1873 }
1874
1875 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1876 i_size_write(inode, offset + len);
1877 inode->i_ctime = CURRENT_TIME;
1878 undone:
1879 spin_lock(&inode->i_lock);
1880 inode->i_private = NULL;
1881 spin_unlock(&inode->i_lock);
1882 out:
1883 mutex_unlock(&inode->i_mutex);
1884 return error;
1885 }
1886
1887 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1888 {
1889 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1890
1891 buf->f_type = TMPFS_MAGIC;
1892 buf->f_bsize = PAGE_CACHE_SIZE;
1893 buf->f_namelen = NAME_MAX;
1894 if (sbinfo->max_blocks) {
1895 buf->f_blocks = sbinfo->max_blocks;
1896 buf->f_bavail =
1897 buf->f_bfree = sbinfo->max_blocks -
1898 percpu_counter_sum(&sbinfo->used_blocks);
1899 }
1900 if (sbinfo->max_inodes) {
1901 buf->f_files = sbinfo->max_inodes;
1902 buf->f_ffree = sbinfo->free_inodes;
1903 }
1904 /* else leave those fields 0 like simple_statfs */
1905 return 0;
1906 }
1907
1908 /*
1909 * File creation. Allocate an inode, and we're done..
1910 */
1911 static int
1912 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1913 {
1914 struct inode *inode;
1915 int error = -ENOSPC;
1916
1917 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1918 if (inode) {
1919 error = security_inode_init_security(inode, dir,
1920 &dentry->d_name,
1921 shmem_initxattrs, NULL);
1922 if (error) {
1923 if (error != -EOPNOTSUPP) {
1924 iput(inode);
1925 return error;
1926 }
1927 }
1928 #ifdef CONFIG_TMPFS_POSIX_ACL
1929 error = generic_acl_init(inode, dir);
1930 if (error) {
1931 iput(inode);
1932 return error;
1933 }
1934 #else
1935 error = 0;
1936 #endif
1937 dir->i_size += BOGO_DIRENT_SIZE;
1938 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1939 d_instantiate(dentry, inode);
1940 dget(dentry); /* Extra count - pin the dentry in core */
1941 }
1942 return error;
1943 }
1944
1945 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1946 {
1947 int error;
1948
1949 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1950 return error;
1951 inc_nlink(dir);
1952 return 0;
1953 }
1954
1955 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1956 struct nameidata *nd)
1957 {
1958 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1959 }
1960
1961 /*
1962 * Link a file..
1963 */
1964 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1965 {
1966 struct inode *inode = old_dentry->d_inode;
1967 int ret;
1968
1969 /*
1970 * No ordinary (disk based) filesystem counts links as inodes;
1971 * but each new link needs a new dentry, pinning lowmem, and
1972 * tmpfs dentries cannot be pruned until they are unlinked.
1973 */
1974 ret = shmem_reserve_inode(inode->i_sb);
1975 if (ret)
1976 goto out;
1977
1978 dir->i_size += BOGO_DIRENT_SIZE;
1979 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1980 inc_nlink(inode);
1981 ihold(inode); /* New dentry reference */
1982 dget(dentry); /* Extra pinning count for the created dentry */
1983 d_instantiate(dentry, inode);
1984 out:
1985 return ret;
1986 }
1987
1988 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1989 {
1990 struct inode *inode = dentry->d_inode;
1991
1992 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1993 shmem_free_inode(inode->i_sb);
1994
1995 dir->i_size -= BOGO_DIRENT_SIZE;
1996 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1997 drop_nlink(inode);
1998 dput(dentry); /* Undo the count from "create" - this does all the work */
1999 return 0;
2000 }
2001
2002 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2003 {
2004 if (!simple_empty(dentry))
2005 return -ENOTEMPTY;
2006
2007 drop_nlink(dentry->d_inode);
2008 drop_nlink(dir);
2009 return shmem_unlink(dir, dentry);
2010 }
2011
2012 /*
2013 * The VFS layer already does all the dentry stuff for rename,
2014 * we just have to decrement the usage count for the target if
2015 * it exists so that the VFS layer correctly free's it when it
2016 * gets overwritten.
2017 */
2018 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2019 {
2020 struct inode *inode = old_dentry->d_inode;
2021 int they_are_dirs = S_ISDIR(inode->i_mode);
2022
2023 if (!simple_empty(new_dentry))
2024 return -ENOTEMPTY;
2025
2026 if (new_dentry->d_inode) {
2027 (void) shmem_unlink(new_dir, new_dentry);
2028 if (they_are_dirs)
2029 drop_nlink(old_dir);
2030 } else if (they_are_dirs) {
2031 drop_nlink(old_dir);
2032 inc_nlink(new_dir);
2033 }
2034
2035 old_dir->i_size -= BOGO_DIRENT_SIZE;
2036 new_dir->i_size += BOGO_DIRENT_SIZE;
2037 old_dir->i_ctime = old_dir->i_mtime =
2038 new_dir->i_ctime = new_dir->i_mtime =
2039 inode->i_ctime = CURRENT_TIME;
2040 return 0;
2041 }
2042
2043 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2044 {
2045 int error;
2046 int len;
2047 struct inode *inode;
2048 struct page *page;
2049 char *kaddr;
2050 struct shmem_inode_info *info;
2051
2052 len = strlen(symname) + 1;
2053 if (len > PAGE_CACHE_SIZE)
2054 return -ENAMETOOLONG;
2055
2056 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2057 if (!inode)
2058 return -ENOSPC;
2059
2060 error = security_inode_init_security(inode, dir, &dentry->d_name,
2061 shmem_initxattrs, NULL);
2062 if (error) {
2063 if (error != -EOPNOTSUPP) {
2064 iput(inode);
2065 return error;
2066 }
2067 error = 0;
2068 }
2069
2070 info = SHMEM_I(inode);
2071 inode->i_size = len-1;
2072 if (len <= SHORT_SYMLINK_LEN) {
2073 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2074 if (!info->symlink) {
2075 iput(inode);
2076 return -ENOMEM;
2077 }
2078 inode->i_op = &shmem_short_symlink_operations;
2079 } else {
2080 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2081 if (error) {
2082 iput(inode);
2083 return error;
2084 }
2085 inode->i_mapping->a_ops = &shmem_aops;
2086 inode->i_op = &shmem_symlink_inode_operations;
2087 kaddr = kmap_atomic(page);
2088 memcpy(kaddr, symname, len);
2089 kunmap_atomic(kaddr);
2090 SetPageUptodate(page);
2091 set_page_dirty(page);
2092 unlock_page(page);
2093 page_cache_release(page);
2094 }
2095 dir->i_size += BOGO_DIRENT_SIZE;
2096 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2097 d_instantiate(dentry, inode);
2098 dget(dentry);
2099 return 0;
2100 }
2101
2102 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2103 {
2104 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2105 return NULL;
2106 }
2107
2108 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2109 {
2110 struct page *page = NULL;
2111 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2112 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2113 if (page)
2114 unlock_page(page);
2115 return page;
2116 }
2117
2118 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2119 {
2120 if (!IS_ERR(nd_get_link(nd))) {
2121 struct page *page = cookie;
2122 kunmap(page);
2123 mark_page_accessed(page);
2124 page_cache_release(page);
2125 }
2126 }
2127
2128 #ifdef CONFIG_TMPFS_XATTR
2129 /*
2130 * Superblocks without xattr inode operations may get some security.* xattr
2131 * support from the LSM "for free". As soon as we have any other xattrs
2132 * like ACLs, we also need to implement the security.* handlers at
2133 * filesystem level, though.
2134 */
2135
2136 /*
2137 * Allocate new xattr and copy in the value; but leave the name to callers.
2138 */
2139 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2140 {
2141 struct shmem_xattr *new_xattr;
2142 size_t len;
2143
2144 /* wrap around? */
2145 len = sizeof(*new_xattr) + size;
2146 if (len <= sizeof(*new_xattr))
2147 return NULL;
2148
2149 new_xattr = kmalloc(len, GFP_KERNEL);
2150 if (!new_xattr)
2151 return NULL;
2152
2153 new_xattr->size = size;
2154 memcpy(new_xattr->value, value, size);
2155 return new_xattr;
2156 }
2157
2158 /*
2159 * Callback for security_inode_init_security() for acquiring xattrs.
2160 */
2161 static int shmem_initxattrs(struct inode *inode,
2162 const struct xattr *xattr_array,
2163 void *fs_info)
2164 {
2165 struct shmem_inode_info *info = SHMEM_I(inode);
2166 const struct xattr *xattr;
2167 struct shmem_xattr *new_xattr;
2168 size_t len;
2169
2170 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2171 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2172 if (!new_xattr)
2173 return -ENOMEM;
2174
2175 len = strlen(xattr->name) + 1;
2176 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2177 GFP_KERNEL);
2178 if (!new_xattr->name) {
2179 kfree(new_xattr);
2180 return -ENOMEM;
2181 }
2182
2183 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2184 XATTR_SECURITY_PREFIX_LEN);
2185 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2186 xattr->name, len);
2187
2188 spin_lock(&info->lock);
2189 list_add(&new_xattr->list, &info->xattr_list);
2190 spin_unlock(&info->lock);
2191 }
2192
2193 return 0;
2194 }
2195
2196 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2197 void *buffer, size_t size)
2198 {
2199 struct shmem_inode_info *info;
2200 struct shmem_xattr *xattr;
2201 int ret = -ENODATA;
2202
2203 info = SHMEM_I(dentry->d_inode);
2204
2205 spin_lock(&info->lock);
2206 list_for_each_entry(xattr, &info->xattr_list, list) {
2207 if (strcmp(name, xattr->name))
2208 continue;
2209
2210 ret = xattr->size;
2211 if (buffer) {
2212 if (size < xattr->size)
2213 ret = -ERANGE;
2214 else
2215 memcpy(buffer, xattr->value, xattr->size);
2216 }
2217 break;
2218 }
2219 spin_unlock(&info->lock);
2220 return ret;
2221 }
2222
2223 static int shmem_xattr_set(struct inode *inode, const char *name,
2224 const void *value, size_t size, int flags)
2225 {
2226 struct shmem_inode_info *info = SHMEM_I(inode);
2227 struct shmem_xattr *xattr;
2228 struct shmem_xattr *new_xattr = NULL;
2229 int err = 0;
2230
2231 /* value == NULL means remove */
2232 if (value) {
2233 new_xattr = shmem_xattr_alloc(value, size);
2234 if (!new_xattr)
2235 return -ENOMEM;
2236
2237 new_xattr->name = kstrdup(name, GFP_KERNEL);
2238 if (!new_xattr->name) {
2239 kfree(new_xattr);
2240 return -ENOMEM;
2241 }
2242 }
2243
2244 spin_lock(&info->lock);
2245 list_for_each_entry(xattr, &info->xattr_list, list) {
2246 if (!strcmp(name, xattr->name)) {
2247 if (flags & XATTR_CREATE) {
2248 xattr = new_xattr;
2249 err = -EEXIST;
2250 } else if (new_xattr) {
2251 list_replace(&xattr->list, &new_xattr->list);
2252 } else {
2253 list_del(&xattr->list);
2254 }
2255 goto out;
2256 }
2257 }
2258 if (flags & XATTR_REPLACE) {
2259 xattr = new_xattr;
2260 err = -ENODATA;
2261 } else {
2262 list_add(&new_xattr->list, &info->xattr_list);
2263 xattr = NULL;
2264 }
2265 out:
2266 spin_unlock(&info->lock);
2267 if (xattr)
2268 kfree(xattr->name);
2269 kfree(xattr);
2270 return err;
2271 }
2272
2273 static const struct xattr_handler *shmem_xattr_handlers[] = {
2274 #ifdef CONFIG_TMPFS_POSIX_ACL
2275 &generic_acl_access_handler,
2276 &generic_acl_default_handler,
2277 #endif
2278 NULL
2279 };
2280
2281 static int shmem_xattr_validate(const char *name)
2282 {
2283 struct { const char *prefix; size_t len; } arr[] = {
2284 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2285 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2286 };
2287 int i;
2288
2289 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2290 size_t preflen = arr[i].len;
2291 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2292 if (!name[preflen])
2293 return -EINVAL;
2294 return 0;
2295 }
2296 }
2297 return -EOPNOTSUPP;
2298 }
2299
2300 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2301 void *buffer, size_t size)
2302 {
2303 int err;
2304
2305 /*
2306 * If this is a request for a synthetic attribute in the system.*
2307 * namespace use the generic infrastructure to resolve a handler
2308 * for it via sb->s_xattr.
2309 */
2310 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2311 return generic_getxattr(dentry, name, buffer, size);
2312
2313 err = shmem_xattr_validate(name);
2314 if (err)
2315 return err;
2316
2317 return shmem_xattr_get(dentry, name, buffer, size);
2318 }
2319
2320 static int shmem_setxattr(struct dentry *dentry, const char *name,
2321 const void *value, size_t size, int flags)
2322 {
2323 int err;
2324
2325 /*
2326 * If this is a request for a synthetic attribute in the system.*
2327 * namespace use the generic infrastructure to resolve a handler
2328 * for it via sb->s_xattr.
2329 */
2330 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2331 return generic_setxattr(dentry, name, value, size, flags);
2332
2333 err = shmem_xattr_validate(name);
2334 if (err)
2335 return err;
2336
2337 if (size == 0)
2338 value = ""; /* empty EA, do not remove */
2339
2340 return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2341
2342 }
2343
2344 static int shmem_removexattr(struct dentry *dentry, const char *name)
2345 {
2346 int err;
2347
2348 /*
2349 * If this is a request for a synthetic attribute in the system.*
2350 * namespace use the generic infrastructure to resolve a handler
2351 * for it via sb->s_xattr.
2352 */
2353 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2354 return generic_removexattr(dentry, name);
2355
2356 err = shmem_xattr_validate(name);
2357 if (err)
2358 return err;
2359
2360 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2361 }
2362
2363 static bool xattr_is_trusted(const char *name)
2364 {
2365 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2366 }
2367
2368 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2369 {
2370 bool trusted = capable(CAP_SYS_ADMIN);
2371 struct shmem_xattr *xattr;
2372 struct shmem_inode_info *info;
2373 size_t used = 0;
2374
2375 info = SHMEM_I(dentry->d_inode);
2376
2377 spin_lock(&info->lock);
2378 list_for_each_entry(xattr, &info->xattr_list, list) {
2379 size_t len;
2380
2381 /* skip "trusted." attributes for unprivileged callers */
2382 if (!trusted && xattr_is_trusted(xattr->name))
2383 continue;
2384
2385 len = strlen(xattr->name) + 1;
2386 used += len;
2387 if (buffer) {
2388 if (size < used) {
2389 used = -ERANGE;
2390 break;
2391 }
2392 memcpy(buffer, xattr->name, len);
2393 buffer += len;
2394 }
2395 }
2396 spin_unlock(&info->lock);
2397
2398 return used;
2399 }
2400 #endif /* CONFIG_TMPFS_XATTR */
2401
2402 static const struct inode_operations shmem_short_symlink_operations = {
2403 .readlink = generic_readlink,
2404 .follow_link = shmem_follow_short_symlink,
2405 #ifdef CONFIG_TMPFS_XATTR
2406 .setxattr = shmem_setxattr,
2407 .getxattr = shmem_getxattr,
2408 .listxattr = shmem_listxattr,
2409 .removexattr = shmem_removexattr,
2410 #endif
2411 };
2412
2413 static const struct inode_operations shmem_symlink_inode_operations = {
2414 .readlink = generic_readlink,
2415 .follow_link = shmem_follow_link,
2416 .put_link = shmem_put_link,
2417 #ifdef CONFIG_TMPFS_XATTR
2418 .setxattr = shmem_setxattr,
2419 .getxattr = shmem_getxattr,
2420 .listxattr = shmem_listxattr,
2421 .removexattr = shmem_removexattr,
2422 #endif
2423 };
2424
2425 static struct dentry *shmem_get_parent(struct dentry *child)
2426 {
2427 return ERR_PTR(-ESTALE);
2428 }
2429
2430 static int shmem_match(struct inode *ino, void *vfh)
2431 {
2432 __u32 *fh = vfh;
2433 __u64 inum = fh[2];
2434 inum = (inum << 32) | fh[1];
2435 return ino->i_ino == inum && fh[0] == ino->i_generation;
2436 }
2437
2438 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2439 struct fid *fid, int fh_len, int fh_type)
2440 {
2441 struct inode *inode;
2442 struct dentry *dentry = NULL;
2443 u64 inum = fid->raw[2];
2444 inum = (inum << 32) | fid->raw[1];
2445
2446 if (fh_len < 3)
2447 return NULL;
2448
2449 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2450 shmem_match, fid->raw);
2451 if (inode) {
2452 dentry = d_find_alias(inode);
2453 iput(inode);
2454 }
2455
2456 return dentry;
2457 }
2458
2459 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2460 struct inode *parent)
2461 {
2462 if (*len < 3) {
2463 *len = 3;
2464 return 255;
2465 }
2466
2467 if (inode_unhashed(inode)) {
2468 /* Unfortunately insert_inode_hash is not idempotent,
2469 * so as we hash inodes here rather than at creation
2470 * time, we need a lock to ensure we only try
2471 * to do it once
2472 */
2473 static DEFINE_SPINLOCK(lock);
2474 spin_lock(&lock);
2475 if (inode_unhashed(inode))
2476 __insert_inode_hash(inode,
2477 inode->i_ino + inode->i_generation);
2478 spin_unlock(&lock);
2479 }
2480
2481 fh[0] = inode->i_generation;
2482 fh[1] = inode->i_ino;
2483 fh[2] = ((__u64)inode->i_ino) >> 32;
2484
2485 *len = 3;
2486 return 1;
2487 }
2488
2489 static const struct export_operations shmem_export_ops = {
2490 .get_parent = shmem_get_parent,
2491 .encode_fh = shmem_encode_fh,
2492 .fh_to_dentry = shmem_fh_to_dentry,
2493 };
2494
2495 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2496 bool remount)
2497 {
2498 char *this_char, *value, *rest;
2499 uid_t uid;
2500 gid_t gid;
2501
2502 while (options != NULL) {
2503 this_char = options;
2504 for (;;) {
2505 /*
2506 * NUL-terminate this option: unfortunately,
2507 * mount options form a comma-separated list,
2508 * but mpol's nodelist may also contain commas.
2509 */
2510 options = strchr(options, ',');
2511 if (options == NULL)
2512 break;
2513 options++;
2514 if (!isdigit(*options)) {
2515 options[-1] = '\0';
2516 break;
2517 }
2518 }
2519 if (!*this_char)
2520 continue;
2521 if ((value = strchr(this_char,'=')) != NULL) {
2522 *value++ = 0;
2523 } else {
2524 printk(KERN_ERR
2525 "tmpfs: No value for mount option '%s'\n",
2526 this_char);
2527 return 1;
2528 }
2529
2530 if (!strcmp(this_char,"size")) {
2531 unsigned long long size;
2532 size = memparse(value,&rest);
2533 if (*rest == '%') {
2534 size <<= PAGE_SHIFT;
2535 size *= totalram_pages;
2536 do_div(size, 100);
2537 rest++;
2538 }
2539 if (*rest)
2540 goto bad_val;
2541 sbinfo->max_blocks =
2542 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2543 } else if (!strcmp(this_char,"nr_blocks")) {
2544 sbinfo->max_blocks = memparse(value, &rest);
2545 if (*rest)
2546 goto bad_val;
2547 } else if (!strcmp(this_char,"nr_inodes")) {
2548 sbinfo->max_inodes = memparse(value, &rest);
2549 if (*rest)
2550 goto bad_val;
2551 } else if (!strcmp(this_char,"mode")) {
2552 if (remount)
2553 continue;
2554 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2555 if (*rest)
2556 goto bad_val;
2557 } else if (!strcmp(this_char,"uid")) {
2558 if (remount)
2559 continue;
2560 uid = simple_strtoul(value, &rest, 0);
2561 if (*rest)
2562 goto bad_val;
2563 sbinfo->uid = make_kuid(current_user_ns(), uid);
2564 if (!uid_valid(sbinfo->uid))
2565 goto bad_val;
2566 } else if (!strcmp(this_char,"gid")) {
2567 if (remount)
2568 continue;
2569 gid = simple_strtoul(value, &rest, 0);
2570 if (*rest)
2571 goto bad_val;
2572 sbinfo->gid = make_kgid(current_user_ns(), gid);
2573 if (!gid_valid(sbinfo->gid))
2574 goto bad_val;
2575 } else if (!strcmp(this_char,"mpol")) {
2576 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2577 goto bad_val;
2578 } else {
2579 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2580 this_char);
2581 return 1;
2582 }
2583 }
2584 return 0;
2585
2586 bad_val:
2587 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2588 value, this_char);
2589 return 1;
2590
2591 }
2592
2593 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2594 {
2595 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2596 struct shmem_sb_info config = *sbinfo;
2597 unsigned long inodes;
2598 int error = -EINVAL;
2599
2600 if (shmem_parse_options(data, &config, true))
2601 return error;
2602
2603 spin_lock(&sbinfo->stat_lock);
2604 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2605 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2606 goto out;
2607 if (config.max_inodes < inodes)
2608 goto out;
2609 /*
2610 * Those tests disallow limited->unlimited while any are in use;
2611 * but we must separately disallow unlimited->limited, because
2612 * in that case we have no record of how much is already in use.
2613 */
2614 if (config.max_blocks && !sbinfo->max_blocks)
2615 goto out;
2616 if (config.max_inodes && !sbinfo->max_inodes)
2617 goto out;
2618
2619 error = 0;
2620 sbinfo->max_blocks = config.max_blocks;
2621 sbinfo->max_inodes = config.max_inodes;
2622 sbinfo->free_inodes = config.max_inodes - inodes;
2623
2624 mpol_put(sbinfo->mpol);
2625 sbinfo->mpol = config.mpol; /* transfers initial ref */
2626 out:
2627 spin_unlock(&sbinfo->stat_lock);
2628 return error;
2629 }
2630
2631 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2632 {
2633 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2634
2635 if (sbinfo->max_blocks != shmem_default_max_blocks())
2636 seq_printf(seq, ",size=%luk",
2637 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2638 if (sbinfo->max_inodes != shmem_default_max_inodes())
2639 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2640 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2641 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2642 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2643 seq_printf(seq, ",uid=%u",
2644 from_kuid_munged(&init_user_ns, sbinfo->uid));
2645 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2646 seq_printf(seq, ",gid=%u",
2647 from_kgid_munged(&init_user_ns, sbinfo->gid));
2648 shmem_show_mpol(seq, sbinfo->mpol);
2649 return 0;
2650 }
2651 #endif /* CONFIG_TMPFS */
2652
2653 static void shmem_put_super(struct super_block *sb)
2654 {
2655 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2656
2657 percpu_counter_destroy(&sbinfo->used_blocks);
2658 kfree(sbinfo);
2659 sb->s_fs_info = NULL;
2660 }
2661
2662 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2663 {
2664 struct inode *inode;
2665 struct shmem_sb_info *sbinfo;
2666 int err = -ENOMEM;
2667
2668 /* Round up to L1_CACHE_BYTES to resist false sharing */
2669 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2670 L1_CACHE_BYTES), GFP_KERNEL);
2671 if (!sbinfo)
2672 return -ENOMEM;
2673
2674 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2675 sbinfo->uid = current_fsuid();
2676 sbinfo->gid = current_fsgid();
2677 sb->s_fs_info = sbinfo;
2678
2679 #ifdef CONFIG_TMPFS
2680 /*
2681 * Per default we only allow half of the physical ram per
2682 * tmpfs instance, limiting inodes to one per page of lowmem;
2683 * but the internal instance is left unlimited.
2684 */
2685 if (!(sb->s_flags & MS_NOUSER)) {
2686 sbinfo->max_blocks = shmem_default_max_blocks();
2687 sbinfo->max_inodes = shmem_default_max_inodes();
2688 if (shmem_parse_options(data, sbinfo, false)) {
2689 err = -EINVAL;
2690 goto failed;
2691 }
2692 }
2693 sb->s_export_op = &shmem_export_ops;
2694 sb->s_flags |= MS_NOSEC;
2695 #else
2696 sb->s_flags |= MS_NOUSER;
2697 #endif
2698
2699 spin_lock_init(&sbinfo->stat_lock);
2700 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2701 goto failed;
2702 sbinfo->free_inodes = sbinfo->max_inodes;
2703
2704 sb->s_maxbytes = MAX_LFS_FILESIZE;
2705 sb->s_blocksize = PAGE_CACHE_SIZE;
2706 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2707 sb->s_magic = TMPFS_MAGIC;
2708 sb->s_op = &shmem_ops;
2709 sb->s_time_gran = 1;
2710 #ifdef CONFIG_TMPFS_XATTR
2711 sb->s_xattr = shmem_xattr_handlers;
2712 #endif
2713 #ifdef CONFIG_TMPFS_POSIX_ACL
2714 sb->s_flags |= MS_POSIXACL;
2715 #endif
2716
2717 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2718 if (!inode)
2719 goto failed;
2720 inode->i_uid = sbinfo->uid;
2721 inode->i_gid = sbinfo->gid;
2722 sb->s_root = d_make_root(inode);
2723 if (!sb->s_root)
2724 goto failed;
2725 return 0;
2726
2727 failed:
2728 shmem_put_super(sb);
2729 return err;
2730 }
2731
2732 static struct kmem_cache *shmem_inode_cachep;
2733
2734 static struct inode *shmem_alloc_inode(struct super_block *sb)
2735 {
2736 struct shmem_inode_info *info;
2737 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2738 if (!info)
2739 return NULL;
2740 return &info->vfs_inode;
2741 }
2742
2743 static void shmem_destroy_callback(struct rcu_head *head)
2744 {
2745 struct inode *inode = container_of(head, struct inode, i_rcu);
2746 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2747 }
2748
2749 static void shmem_destroy_inode(struct inode *inode)
2750 {
2751 if (S_ISREG(inode->i_mode))
2752 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2753 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2754 }
2755
2756 static void shmem_init_inode(void *foo)
2757 {
2758 struct shmem_inode_info *info = foo;
2759 inode_init_once(&info->vfs_inode);
2760 }
2761
2762 static int shmem_init_inodecache(void)
2763 {
2764 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2765 sizeof(struct shmem_inode_info),
2766 0, SLAB_PANIC, shmem_init_inode);
2767 return 0;
2768 }
2769
2770 static void shmem_destroy_inodecache(void)
2771 {
2772 kmem_cache_destroy(shmem_inode_cachep);
2773 }
2774
2775 static const struct address_space_operations shmem_aops = {
2776 .writepage = shmem_writepage,
2777 .set_page_dirty = __set_page_dirty_no_writeback,
2778 #ifdef CONFIG_TMPFS
2779 .write_begin = shmem_write_begin,
2780 .write_end = shmem_write_end,
2781 #endif
2782 .migratepage = migrate_page,
2783 .error_remove_page = generic_error_remove_page,
2784 };
2785
2786 static const struct file_operations shmem_file_operations = {
2787 .mmap = shmem_mmap,
2788 #ifdef CONFIG_TMPFS
2789 .llseek = shmem_file_llseek,
2790 .read = do_sync_read,
2791 .write = do_sync_write,
2792 .aio_read = shmem_file_aio_read,
2793 .aio_write = generic_file_aio_write,
2794 .fsync = noop_fsync,
2795 .splice_read = shmem_file_splice_read,
2796 .splice_write = generic_file_splice_write,
2797 .fallocate = shmem_fallocate,
2798 #endif
2799 };
2800
2801 static const struct inode_operations shmem_inode_operations = {
2802 .setattr = shmem_setattr,
2803 #ifdef CONFIG_TMPFS_XATTR
2804 .setxattr = shmem_setxattr,
2805 .getxattr = shmem_getxattr,
2806 .listxattr = shmem_listxattr,
2807 .removexattr = shmem_removexattr,
2808 #endif
2809 };
2810
2811 static const struct inode_operations shmem_dir_inode_operations = {
2812 #ifdef CONFIG_TMPFS
2813 .create = shmem_create,
2814 .lookup = simple_lookup,
2815 .link = shmem_link,
2816 .unlink = shmem_unlink,
2817 .symlink = shmem_symlink,
2818 .mkdir = shmem_mkdir,
2819 .rmdir = shmem_rmdir,
2820 .mknod = shmem_mknod,
2821 .rename = shmem_rename,
2822 #endif
2823 #ifdef CONFIG_TMPFS_XATTR
2824 .setxattr = shmem_setxattr,
2825 .getxattr = shmem_getxattr,
2826 .listxattr = shmem_listxattr,
2827 .removexattr = shmem_removexattr,
2828 #endif
2829 #ifdef CONFIG_TMPFS_POSIX_ACL
2830 .setattr = shmem_setattr,
2831 #endif
2832 };
2833
2834 static const struct inode_operations shmem_special_inode_operations = {
2835 #ifdef CONFIG_TMPFS_XATTR
2836 .setxattr = shmem_setxattr,
2837 .getxattr = shmem_getxattr,
2838 .listxattr = shmem_listxattr,
2839 .removexattr = shmem_removexattr,
2840 #endif
2841 #ifdef CONFIG_TMPFS_POSIX_ACL
2842 .setattr = shmem_setattr,
2843 #endif
2844 };
2845
2846 static const struct super_operations shmem_ops = {
2847 .alloc_inode = shmem_alloc_inode,
2848 .destroy_inode = shmem_destroy_inode,
2849 #ifdef CONFIG_TMPFS
2850 .statfs = shmem_statfs,
2851 .remount_fs = shmem_remount_fs,
2852 .show_options = shmem_show_options,
2853 #endif
2854 .evict_inode = shmem_evict_inode,
2855 .drop_inode = generic_delete_inode,
2856 .put_super = shmem_put_super,
2857 };
2858
2859 static const struct vm_operations_struct shmem_vm_ops = {
2860 .fault = shmem_fault,
2861 #ifdef CONFIG_NUMA
2862 .set_policy = shmem_set_policy,
2863 .get_policy = shmem_get_policy,
2864 #endif
2865 };
2866
2867 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2868 int flags, const char *dev_name, void *data)
2869 {
2870 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2871 }
2872
2873 static struct file_system_type shmem_fs_type = {
2874 .owner = THIS_MODULE,
2875 .name = "tmpfs",
2876 .mount = shmem_mount,
2877 .kill_sb = kill_litter_super,
2878 };
2879
2880 int __init shmem_init(void)
2881 {
2882 int error;
2883
2884 error = bdi_init(&shmem_backing_dev_info);
2885 if (error)
2886 goto out4;
2887
2888 error = shmem_init_inodecache();
2889 if (error)
2890 goto out3;
2891
2892 error = register_filesystem(&shmem_fs_type);
2893 if (error) {
2894 printk(KERN_ERR "Could not register tmpfs\n");
2895 goto out2;
2896 }
2897
2898 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2899 shmem_fs_type.name, NULL);
2900 if (IS_ERR(shm_mnt)) {
2901 error = PTR_ERR(shm_mnt);
2902 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2903 goto out1;
2904 }
2905 return 0;
2906
2907 out1:
2908 unregister_filesystem(&shmem_fs_type);
2909 out2:
2910 shmem_destroy_inodecache();
2911 out3:
2912 bdi_destroy(&shmem_backing_dev_info);
2913 out4:
2914 shm_mnt = ERR_PTR(error);
2915 return error;
2916 }
2917
2918 #else /* !CONFIG_SHMEM */
2919
2920 /*
2921 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2922 *
2923 * This is intended for small system where the benefits of the full
2924 * shmem code (swap-backed and resource-limited) are outweighed by
2925 * their complexity. On systems without swap this code should be
2926 * effectively equivalent, but much lighter weight.
2927 */
2928
2929 #include <linux/ramfs.h>
2930
2931 static struct file_system_type shmem_fs_type = {
2932 .name = "tmpfs",
2933 .mount = ramfs_mount,
2934 .kill_sb = kill_litter_super,
2935 };
2936
2937 int __init shmem_init(void)
2938 {
2939 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2940
2941 shm_mnt = kern_mount(&shmem_fs_type);
2942 BUG_ON(IS_ERR(shm_mnt));
2943
2944 return 0;
2945 }
2946
2947 int shmem_unuse(swp_entry_t swap, struct page *page)
2948 {
2949 return 0;
2950 }
2951
2952 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2953 {
2954 return 0;
2955 }
2956
2957 void shmem_unlock_mapping(struct address_space *mapping)
2958 {
2959 }
2960
2961 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2962 {
2963 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2964 }
2965 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2966
2967 #define shmem_vm_ops generic_file_vm_ops
2968 #define shmem_file_operations ramfs_file_operations
2969 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2970 #define shmem_acct_size(flags, size) 0
2971 #define shmem_unacct_size(flags, size) do {} while (0)
2972
2973 #endif /* CONFIG_SHMEM */
2974
2975 /* common code */
2976
2977 /**
2978 * shmem_file_setup - get an unlinked file living in tmpfs
2979 * @name: name for dentry (to be seen in /proc/<pid>/maps
2980 * @size: size to be set for the file
2981 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2982 */
2983 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2984 {
2985 int error;
2986 struct file *file;
2987 struct inode *inode;
2988 struct path path;
2989 struct dentry *root;
2990 struct qstr this;
2991
2992 if (IS_ERR(shm_mnt))
2993 return (void *)shm_mnt;
2994
2995 if (size < 0 || size > MAX_LFS_FILESIZE)
2996 return ERR_PTR(-EINVAL);
2997
2998 if (shmem_acct_size(flags, size))
2999 return ERR_PTR(-ENOMEM);
3000
3001 error = -ENOMEM;
3002 this.name = name;
3003 this.len = strlen(name);
3004 this.hash = 0; /* will go */
3005 root = shm_mnt->mnt_root;
3006 path.dentry = d_alloc(root, &this);
3007 if (!path.dentry)
3008 goto put_memory;
3009 path.mnt = mntget(shm_mnt);
3010
3011 error = -ENOSPC;
3012 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3013 if (!inode)
3014 goto put_dentry;
3015
3016 d_instantiate(path.dentry, inode);
3017 inode->i_size = size;
3018 clear_nlink(inode); /* It is unlinked */
3019 #ifndef CONFIG_MMU
3020 error = ramfs_nommu_expand_for_mapping(inode, size);
3021 if (error)
3022 goto put_dentry;
3023 #endif
3024
3025 error = -ENFILE;
3026 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3027 &shmem_file_operations);
3028 if (!file)
3029 goto put_dentry;
3030
3031 return file;
3032
3033 put_dentry:
3034 path_put(&path);
3035 put_memory:
3036 shmem_unacct_size(flags, size);
3037 return ERR_PTR(error);
3038 }
3039 EXPORT_SYMBOL_GPL(shmem_file_setup);
3040
3041 /**
3042 * shmem_zero_setup - setup a shared anonymous mapping
3043 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3044 */
3045 int shmem_zero_setup(struct vm_area_struct *vma)
3046 {
3047 struct file *file;
3048 loff_t size = vma->vm_end - vma->vm_start;
3049
3050 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3051 if (IS_ERR(file))
3052 return PTR_ERR(file);
3053
3054 if (vma->vm_file)
3055 fput(vma->vm_file);
3056 vma->vm_file = file;
3057 vma->vm_ops = &shmem_vm_ops;
3058 vma->vm_flags |= VM_CAN_NONLINEAR;
3059 return 0;
3060 }
3061
3062 /**
3063 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3064 * @mapping: the page's address_space
3065 * @index: the page index
3066 * @gfp: the page allocator flags to use if allocating
3067 *
3068 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3069 * with any new page allocations done using the specified allocation flags.
3070 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3071 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3072 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3073 *
3074 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3075 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3076 */
3077 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3078 pgoff_t index, gfp_t gfp)
3079 {
3080 #ifdef CONFIG_SHMEM
3081 struct inode *inode = mapping->host;
3082 struct page *page;
3083 int error;
3084
3085 BUG_ON(mapping->a_ops != &shmem_aops);
3086 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3087 if (error)
3088 page = ERR_PTR(error);
3089 else
3090 unlock_page(page);
3091 return page;
3092 #else
3093 /*
3094 * The tiny !SHMEM case uses ramfs without swap
3095 */
3096 return read_cache_page_gfp(mapping, index, gfp);
3097 #endif
3098 }
3099 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);