]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/shmem.c
Merge tag 'net-5.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-kernels.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
101 */
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
117 bool full_inums;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 struct page **pagep, enum sgp_type sgp,
149 gfp_t gfp, struct vm_area_struct *vma,
150 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 struct page **pagep, enum sgp_type sgp)
154 {
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 return sb->s_fs_info;
162 }
163
164 /*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 return (flags & VM_NORESERVE) ?
173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 if (!(flags & VM_NORESERVE))
179 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
184 {
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 }
192 return 0;
193 }
194
195 /*
196 * ... whereas tmpfs objects are accounted incrementally as
197 * pages are allocated, in order to allow large sparse files.
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 if (!(flags & VM_NORESERVE))
204 return 0;
205
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221 if (shmem_acct_block(info->flags, pages))
222 return false;
223
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
227 goto unacct;
228 percpu_counter_add(&sbinfo->used_blocks, pages);
229 }
230
231 return true;
232
233 unacct:
234 shmem_unacct_blocks(info->flags, pages);
235 return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
268 *
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
273 */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 ino_t ino;
279
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
281 spin_lock(&sbinfo->stat_lock);
282 if (sbinfo->max_inodes) {
283 if (!sbinfo->free_inodes) {
284 spin_unlock(&sbinfo->stat_lock);
285 return -ENOSPC;
286 }
287 sbinfo->free_inodes--;
288 }
289 if (inop) {
290 ino = sbinfo->next_ino++;
291 if (unlikely(is_zero_ino(ino)))
292 ino = sbinfo->next_ino++;
293 if (unlikely(!sbinfo->full_inums &&
294 ino > UINT_MAX)) {
295 /*
296 * Emulate get_next_ino uint wraparound for
297 * compatibility
298 */
299 if (IS_ENABLED(CONFIG_64BIT))
300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 __func__, MINOR(sb->s_dev));
302 sbinfo->next_ino = 1;
303 ino = sbinfo->next_ino++;
304 }
305 *inop = ino;
306 }
307 spin_unlock(&sbinfo->stat_lock);
308 } else if (inop) {
309 /*
310 * __shmem_file_setup, one of our callers, is lock-free: it
311 * doesn't hold stat_lock in shmem_reserve_inode since
312 * max_inodes is always 0, and is called from potentially
313 * unknown contexts. As such, use a per-cpu batched allocator
314 * which doesn't require the per-sb stat_lock unless we are at
315 * the batch boundary.
316 *
317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 * shmem mounts are not exposed to userspace, so we don't need
319 * to worry about things like glibc compatibility.
320 */
321 ino_t *next_ino;
322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 ino = *next_ino;
324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 spin_lock(&sbinfo->stat_lock);
326 ino = sbinfo->next_ino;
327 sbinfo->next_ino += SHMEM_INO_BATCH;
328 spin_unlock(&sbinfo->stat_lock);
329 if (unlikely(is_zero_ino(ino)))
330 ino++;
331 }
332 *inop = ino;
333 *next_ino = ++ino;
334 put_cpu();
335 }
336
337 return 0;
338 }
339
340 static void shmem_free_inode(struct super_block *sb)
341 {
342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 if (sbinfo->max_inodes) {
344 spin_lock(&sbinfo->stat_lock);
345 sbinfo->free_inodes++;
346 spin_unlock(&sbinfo->stat_lock);
347 }
348 }
349
350 /**
351 * shmem_recalc_inode - recalculate the block usage of an inode
352 * @inode: inode to recalc
353 *
354 * We have to calculate the free blocks since the mm can drop
355 * undirtied hole pages behind our back.
356 *
357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359 *
360 * It has to be called with the spinlock held.
361 */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364 struct shmem_inode_info *info = SHMEM_I(inode);
365 long freed;
366
367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 if (freed > 0) {
369 info->alloced -= freed;
370 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 shmem_inode_unacct_blocks(inode, freed);
372 }
373 }
374
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377 struct shmem_inode_info *info = SHMEM_I(inode);
378 unsigned long flags;
379
380 if (!shmem_inode_acct_block(inode, pages))
381 return false;
382
383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 inode->i_mapping->nrpages += pages;
385
386 spin_lock_irqsave(&info->lock, flags);
387 info->alloced += pages;
388 inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 shmem_recalc_inode(inode);
390 spin_unlock_irqrestore(&info->lock, flags);
391
392 return true;
393 }
394
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397 struct shmem_inode_info *info = SHMEM_I(inode);
398 unsigned long flags;
399
400 /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
402 spin_lock_irqsave(&info->lock, flags);
403 info->alloced -= pages;
404 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 shmem_recalc_inode(inode);
406 spin_unlock_irqrestore(&info->lock, flags);
407
408 shmem_inode_unacct_blocks(inode, pages);
409 }
410
411 /*
412 * Replace item expected in xarray by a new item, while holding xa_lock.
413 */
414 static int shmem_replace_entry(struct address_space *mapping,
415 pgoff_t index, void *expected, void *replacement)
416 {
417 XA_STATE(xas, &mapping->i_pages, index);
418 void *item;
419
420 VM_BUG_ON(!expected);
421 VM_BUG_ON(!replacement);
422 item = xas_load(&xas);
423 if (item != expected)
424 return -ENOENT;
425 xas_store(&xas, replacement);
426 return 0;
427 }
428
429 /*
430 * Sometimes, before we decide whether to proceed or to fail, we must check
431 * that an entry was not already brought back from swap by a racing thread.
432 *
433 * Checking page is not enough: by the time a SwapCache page is locked, it
434 * might be reused, and again be SwapCache, using the same swap as before.
435 */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437 pgoff_t index, swp_entry_t swap)
438 {
439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441
442 /*
443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444 *
445 * SHMEM_HUGE_NEVER:
446 * disables huge pages for the mount;
447 * SHMEM_HUGE_ALWAYS:
448 * enables huge pages for the mount;
449 * SHMEM_HUGE_WITHIN_SIZE:
450 * only allocate huge pages if the page will be fully within i_size,
451 * also respect fadvise()/madvise() hints;
452 * SHMEM_HUGE_ADVISE:
453 * only allocate huge pages if requested with fadvise()/madvise();
454 */
455
456 #define SHMEM_HUGE_NEVER 0
457 #define SHMEM_HUGE_ALWAYS 1
458 #define SHMEM_HUGE_WITHIN_SIZE 2
459 #define SHMEM_HUGE_ADVISE 3
460
461 /*
462 * Special values.
463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464 *
465 * SHMEM_HUGE_DENY:
466 * disables huge on shm_mnt and all mounts, for emergency use;
467 * SHMEM_HUGE_FORCE:
468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469 *
470 */
471 #define SHMEM_HUGE_DENY (-1)
472 #define SHMEM_HUGE_FORCE (-2)
473
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476
477 static int shmem_huge __read_mostly;
478
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482 if (!strcmp(str, "never"))
483 return SHMEM_HUGE_NEVER;
484 if (!strcmp(str, "always"))
485 return SHMEM_HUGE_ALWAYS;
486 if (!strcmp(str, "within_size"))
487 return SHMEM_HUGE_WITHIN_SIZE;
488 if (!strcmp(str, "advise"))
489 return SHMEM_HUGE_ADVISE;
490 if (!strcmp(str, "deny"))
491 return SHMEM_HUGE_DENY;
492 if (!strcmp(str, "force"))
493 return SHMEM_HUGE_FORCE;
494 return -EINVAL;
495 }
496 #endif
497
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501 switch (huge) {
502 case SHMEM_HUGE_NEVER:
503 return "never";
504 case SHMEM_HUGE_ALWAYS:
505 return "always";
506 case SHMEM_HUGE_WITHIN_SIZE:
507 return "within_size";
508 case SHMEM_HUGE_ADVISE:
509 return "advise";
510 case SHMEM_HUGE_DENY:
511 return "deny";
512 case SHMEM_HUGE_FORCE:
513 return "force";
514 default:
515 VM_BUG_ON(1);
516 return "bad_val";
517 }
518 }
519 #endif
520
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 LIST_HEAD(list), *pos, *next;
525 LIST_HEAD(to_remove);
526 struct inode *inode;
527 struct shmem_inode_info *info;
528 struct page *page;
529 unsigned long batch = sc ? sc->nr_to_scan : 128;
530 int removed = 0, split = 0;
531
532 if (list_empty(&sbinfo->shrinklist))
533 return SHRINK_STOP;
534
535 spin_lock(&sbinfo->shrinklist_lock);
536 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539 /* pin the inode */
540 inode = igrab(&info->vfs_inode);
541
542 /* inode is about to be evicted */
543 if (!inode) {
544 list_del_init(&info->shrinklist);
545 removed++;
546 goto next;
547 }
548
549 /* Check if there's anything to gain */
550 if (round_up(inode->i_size, PAGE_SIZE) ==
551 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552 list_move(&info->shrinklist, &to_remove);
553 removed++;
554 goto next;
555 }
556
557 list_move(&info->shrinklist, &list);
558 next:
559 if (!--batch)
560 break;
561 }
562 spin_unlock(&sbinfo->shrinklist_lock);
563
564 list_for_each_safe(pos, next, &to_remove) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 inode = &info->vfs_inode;
567 list_del_init(&info->shrinklist);
568 iput(inode);
569 }
570
571 list_for_each_safe(pos, next, &list) {
572 int ret;
573
574 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 inode = &info->vfs_inode;
576
577 if (nr_to_split && split >= nr_to_split)
578 goto leave;
579
580 page = find_get_page(inode->i_mapping,
581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 if (!page)
583 goto drop;
584
585 /* No huge page at the end of the file: nothing to split */
586 if (!PageTransHuge(page)) {
587 put_page(page);
588 goto drop;
589 }
590
591 /*
592 * Leave the inode on the list if we failed to lock
593 * the page at this time.
594 *
595 * Waiting for the lock may lead to deadlock in the
596 * reclaim path.
597 */
598 if (!trylock_page(page)) {
599 put_page(page);
600 goto leave;
601 }
602
603 ret = split_huge_page(page);
604 unlock_page(page);
605 put_page(page);
606
607 /* If split failed leave the inode on the list */
608 if (ret)
609 goto leave;
610
611 split++;
612 drop:
613 list_del_init(&info->shrinklist);
614 removed++;
615 leave:
616 iput(inode);
617 }
618
619 spin_lock(&sbinfo->shrinklist_lock);
620 list_splice_tail(&list, &sbinfo->shrinklist);
621 sbinfo->shrinklist_len -= removed;
622 spin_unlock(&sbinfo->shrinklist_lock);
623
624 return split;
625 }
626
627 static long shmem_unused_huge_scan(struct super_block *sb,
628 struct shrink_control *sc)
629 {
630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632 if (!READ_ONCE(sbinfo->shrinklist_len))
633 return SHRINK_STOP;
634
635 return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637
638 static long shmem_unused_huge_count(struct super_block *sb,
639 struct shrink_control *sc)
640 {
641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645
646 #define shmem_huge SHMEM_HUGE_DENY
647
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 struct shrink_control *sc, unsigned long nr_to_split)
650 {
651 return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 shmem_huge != SHMEM_HUGE_DENY)
660 return true;
661 return false;
662 }
663
664 /*
665 * Like add_to_page_cache_locked, but error if expected item has gone.
666 */
667 static int shmem_add_to_page_cache(struct page *page,
668 struct address_space *mapping,
669 pgoff_t index, void *expected, gfp_t gfp,
670 struct mm_struct *charge_mm)
671 {
672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 unsigned long i = 0;
674 unsigned long nr = compound_nr(page);
675 int error;
676
677 VM_BUG_ON_PAGE(PageTail(page), page);
678 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679 VM_BUG_ON_PAGE(!PageLocked(page), page);
680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681 VM_BUG_ON(expected && PageTransHuge(page));
682
683 page_ref_add(page, nr);
684 page->mapping = mapping;
685 page->index = index;
686
687 if (!PageSwapCache(page)) {
688 error = mem_cgroup_charge(page, charge_mm, gfp);
689 if (error) {
690 if (PageTransHuge(page)) {
691 count_vm_event(THP_FILE_FALLBACK);
692 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 }
694 goto error;
695 }
696 }
697 cgroup_throttle_swaprate(page, gfp);
698
699 do {
700 void *entry;
701 xas_lock_irq(&xas);
702 entry = xas_find_conflict(&xas);
703 if (entry != expected)
704 xas_set_err(&xas, -EEXIST);
705 xas_create_range(&xas);
706 if (xas_error(&xas))
707 goto unlock;
708 next:
709 xas_store(&xas, page);
710 if (++i < nr) {
711 xas_next(&xas);
712 goto next;
713 }
714 if (PageTransHuge(page)) {
715 count_vm_event(THP_FILE_ALLOC);
716 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
717 }
718 mapping->nrpages += nr;
719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 __mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722 xas_unlock_irq(&xas);
723 } while (xas_nomem(&xas, gfp));
724
725 if (xas_error(&xas)) {
726 error = xas_error(&xas);
727 goto error;
728 }
729
730 return 0;
731 error:
732 page->mapping = NULL;
733 page_ref_sub(page, nr);
734 return error;
735 }
736
737 /*
738 * Like delete_from_page_cache, but substitutes swap for page.
739 */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742 struct address_space *mapping = page->mapping;
743 int error;
744
745 VM_BUG_ON_PAGE(PageCompound(page), page);
746
747 xa_lock_irq(&mapping->i_pages);
748 error = shmem_replace_entry(mapping, page->index, page, radswap);
749 page->mapping = NULL;
750 mapping->nrpages--;
751 __dec_lruvec_page_state(page, NR_FILE_PAGES);
752 __dec_lruvec_page_state(page, NR_SHMEM);
753 xa_unlock_irq(&mapping->i_pages);
754 put_page(page);
755 BUG_ON(error);
756 }
757
758 /*
759 * Remove swap entry from page cache, free the swap and its page cache.
760 */
761 static int shmem_free_swap(struct address_space *mapping,
762 pgoff_t index, void *radswap)
763 {
764 void *old;
765
766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767 if (old != radswap)
768 return -ENOENT;
769 free_swap_and_cache(radix_to_swp_entry(radswap));
770 return 0;
771 }
772
773 /*
774 * Determine (in bytes) how many of the shmem object's pages mapped by the
775 * given offsets are swapped out.
776 *
777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778 * as long as the inode doesn't go away and racy results are not a problem.
779 */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 pgoff_t start, pgoff_t end)
782 {
783 XA_STATE(xas, &mapping->i_pages, start);
784 struct page *page;
785 unsigned long swapped = 0;
786
787 rcu_read_lock();
788 xas_for_each(&xas, page, end - 1) {
789 if (xas_retry(&xas, page))
790 continue;
791 if (xa_is_value(page))
792 swapped++;
793
794 if (need_resched()) {
795 xas_pause(&xas);
796 cond_resched_rcu();
797 }
798 }
799
800 rcu_read_unlock();
801
802 return swapped << PAGE_SHIFT;
803 }
804
805 /*
806 * Determine (in bytes) how many of the shmem object's pages mapped by the
807 * given vma is swapped out.
808 *
809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810 * as long as the inode doesn't go away and racy results are not a problem.
811 */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814 struct inode *inode = file_inode(vma->vm_file);
815 struct shmem_inode_info *info = SHMEM_I(inode);
816 struct address_space *mapping = inode->i_mapping;
817 unsigned long swapped;
818
819 /* Be careful as we don't hold info->lock */
820 swapped = READ_ONCE(info->swapped);
821
822 /*
823 * The easier cases are when the shmem object has nothing in swap, or
824 * the vma maps it whole. Then we can simply use the stats that we
825 * already track.
826 */
827 if (!swapped)
828 return 0;
829
830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 return swapped << PAGE_SHIFT;
832
833 /* Here comes the more involved part */
834 return shmem_partial_swap_usage(mapping,
835 linear_page_index(vma, vma->vm_start),
836 linear_page_index(vma, vma->vm_end));
837 }
838
839 /*
840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841 */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844 struct pagevec pvec;
845 pgoff_t index = 0;
846
847 pagevec_init(&pvec);
848 /*
849 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850 */
851 while (!mapping_unevictable(mapping)) {
852 if (!pagevec_lookup(&pvec, mapping, &index))
853 break;
854 check_move_unevictable_pages(&pvec);
855 pagevec_release(&pvec);
856 cond_resched();
857 }
858 }
859
860 /*
861 * Check whether a hole-punch or truncation needs to split a huge page,
862 * returning true if no split was required, or the split has been successful.
863 *
864 * Eviction (or truncation to 0 size) should never need to split a huge page;
865 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866 * head, and then succeeded to trylock on tail.
867 *
868 * A split can only succeed when there are no additional references on the
869 * huge page: so the split below relies upon find_get_entries() having stopped
870 * when it found a subpage of the huge page, without getting further references.
871 */
872 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873 {
874 if (!PageTransCompound(page))
875 return true;
876
877 /* Just proceed to delete a huge page wholly within the range punched */
878 if (PageHead(page) &&
879 page->index >= start && page->index + HPAGE_PMD_NR <= end)
880 return true;
881
882 /* Try to split huge page, so we can truly punch the hole or truncate */
883 return split_huge_page(page) >= 0;
884 }
885
886 /*
887 * Remove range of pages and swap entries from page cache, and free them.
888 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
889 */
890 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891 bool unfalloc)
892 {
893 struct address_space *mapping = inode->i_mapping;
894 struct shmem_inode_info *info = SHMEM_I(inode);
895 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
899 struct pagevec pvec;
900 pgoff_t indices[PAGEVEC_SIZE];
901 long nr_swaps_freed = 0;
902 pgoff_t index;
903 int i;
904
905 if (lend == -1)
906 end = -1; /* unsigned, so actually very big */
907
908 pagevec_init(&pvec);
909 index = start;
910 while (index < end && find_lock_entries(mapping, index, end - 1,
911 &pvec, indices)) {
912 for (i = 0; i < pagevec_count(&pvec); i++) {
913 struct page *page = pvec.pages[i];
914
915 index = indices[i];
916
917 if (xa_is_value(page)) {
918 if (unfalloc)
919 continue;
920 nr_swaps_freed += !shmem_free_swap(mapping,
921 index, page);
922 continue;
923 }
924 index += thp_nr_pages(page) - 1;
925
926 if (!unfalloc || !PageUptodate(page))
927 truncate_inode_page(mapping, page);
928 unlock_page(page);
929 }
930 pagevec_remove_exceptionals(&pvec);
931 pagevec_release(&pvec);
932 cond_resched();
933 index++;
934 }
935
936 if (partial_start) {
937 struct page *page = NULL;
938 shmem_getpage(inode, start - 1, &page, SGP_READ);
939 if (page) {
940 unsigned int top = PAGE_SIZE;
941 if (start > end) {
942 top = partial_end;
943 partial_end = 0;
944 }
945 zero_user_segment(page, partial_start, top);
946 set_page_dirty(page);
947 unlock_page(page);
948 put_page(page);
949 }
950 }
951 if (partial_end) {
952 struct page *page = NULL;
953 shmem_getpage(inode, end, &page, SGP_READ);
954 if (page) {
955 zero_user_segment(page, 0, partial_end);
956 set_page_dirty(page);
957 unlock_page(page);
958 put_page(page);
959 }
960 }
961 if (start >= end)
962 return;
963
964 index = start;
965 while (index < end) {
966 cond_resched();
967
968 if (!find_get_entries(mapping, index, end - 1, &pvec,
969 indices)) {
970 /* If all gone or hole-punch or unfalloc, we're done */
971 if (index == start || end != -1)
972 break;
973 /* But if truncating, restart to make sure all gone */
974 index = start;
975 continue;
976 }
977 for (i = 0; i < pagevec_count(&pvec); i++) {
978 struct page *page = pvec.pages[i];
979
980 index = indices[i];
981 if (xa_is_value(page)) {
982 if (unfalloc)
983 continue;
984 if (shmem_free_swap(mapping, index, page)) {
985 /* Swap was replaced by page: retry */
986 index--;
987 break;
988 }
989 nr_swaps_freed++;
990 continue;
991 }
992
993 lock_page(page);
994
995 if (!unfalloc || !PageUptodate(page)) {
996 if (page_mapping(page) != mapping) {
997 /* Page was replaced by swap: retry */
998 unlock_page(page);
999 index--;
1000 break;
1001 }
1002 VM_BUG_ON_PAGE(PageWriteback(page), page);
1003 if (shmem_punch_compound(page, start, end))
1004 truncate_inode_page(mapping, page);
1005 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1006 /* Wipe the page and don't get stuck */
1007 clear_highpage(page);
1008 flush_dcache_page(page);
1009 set_page_dirty(page);
1010 if (index <
1011 round_up(start, HPAGE_PMD_NR))
1012 start = index + 1;
1013 }
1014 }
1015 unlock_page(page);
1016 }
1017 pagevec_remove_exceptionals(&pvec);
1018 pagevec_release(&pvec);
1019 index++;
1020 }
1021
1022 spin_lock_irq(&info->lock);
1023 info->swapped -= nr_swaps_freed;
1024 shmem_recalc_inode(inode);
1025 spin_unlock_irq(&info->lock);
1026 }
1027
1028 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029 {
1030 shmem_undo_range(inode, lstart, lend, false);
1031 inode->i_ctime = inode->i_mtime = current_time(inode);
1032 }
1033 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1034
1035 static int shmem_getattr(struct user_namespace *mnt_userns,
1036 const struct path *path, struct kstat *stat,
1037 u32 request_mask, unsigned int query_flags)
1038 {
1039 struct inode *inode = path->dentry->d_inode;
1040 struct shmem_inode_info *info = SHMEM_I(inode);
1041 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1042
1043 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1044 spin_lock_irq(&info->lock);
1045 shmem_recalc_inode(inode);
1046 spin_unlock_irq(&info->lock);
1047 }
1048 generic_fillattr(&init_user_ns, inode, stat);
1049
1050 if (is_huge_enabled(sb_info))
1051 stat->blksize = HPAGE_PMD_SIZE;
1052
1053 return 0;
1054 }
1055
1056 static int shmem_setattr(struct user_namespace *mnt_userns,
1057 struct dentry *dentry, struct iattr *attr)
1058 {
1059 struct inode *inode = d_inode(dentry);
1060 struct shmem_inode_info *info = SHMEM_I(inode);
1061 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062 int error;
1063
1064 error = setattr_prepare(&init_user_ns, dentry, attr);
1065 if (error)
1066 return error;
1067
1068 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069 loff_t oldsize = inode->i_size;
1070 loff_t newsize = attr->ia_size;
1071
1072 /* protected by i_mutex */
1073 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075 return -EPERM;
1076
1077 if (newsize != oldsize) {
1078 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079 oldsize, newsize);
1080 if (error)
1081 return error;
1082 i_size_write(inode, newsize);
1083 inode->i_ctime = inode->i_mtime = current_time(inode);
1084 }
1085 if (newsize <= oldsize) {
1086 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1087 if (oldsize > holebegin)
1088 unmap_mapping_range(inode->i_mapping,
1089 holebegin, 0, 1);
1090 if (info->alloced)
1091 shmem_truncate_range(inode,
1092 newsize, (loff_t)-1);
1093 /* unmap again to remove racily COWed private pages */
1094 if (oldsize > holebegin)
1095 unmap_mapping_range(inode->i_mapping,
1096 holebegin, 0, 1);
1097
1098 /*
1099 * Part of the huge page can be beyond i_size: subject
1100 * to shrink under memory pressure.
1101 */
1102 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1103 spin_lock(&sbinfo->shrinklist_lock);
1104 /*
1105 * _careful to defend against unlocked access to
1106 * ->shrink_list in shmem_unused_huge_shrink()
1107 */
1108 if (list_empty_careful(&info->shrinklist)) {
1109 list_add_tail(&info->shrinklist,
1110 &sbinfo->shrinklist);
1111 sbinfo->shrinklist_len++;
1112 }
1113 spin_unlock(&sbinfo->shrinklist_lock);
1114 }
1115 }
1116 }
1117
1118 setattr_copy(&init_user_ns, inode, attr);
1119 if (attr->ia_valid & ATTR_MODE)
1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 return error;
1122 }
1123
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 struct shmem_inode_info *info = SHMEM_I(inode);
1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128
1129 if (shmem_mapping(inode->i_mapping)) {
1130 shmem_unacct_size(info->flags, inode->i_size);
1131 inode->i_size = 0;
1132 shmem_truncate_range(inode, 0, (loff_t)-1);
1133 if (!list_empty(&info->shrinklist)) {
1134 spin_lock(&sbinfo->shrinklist_lock);
1135 if (!list_empty(&info->shrinklist)) {
1136 list_del_init(&info->shrinklist);
1137 sbinfo->shrinklist_len--;
1138 }
1139 spin_unlock(&sbinfo->shrinklist_lock);
1140 }
1141 while (!list_empty(&info->swaplist)) {
1142 /* Wait while shmem_unuse() is scanning this inode... */
1143 wait_var_event(&info->stop_eviction,
1144 !atomic_read(&info->stop_eviction));
1145 mutex_lock(&shmem_swaplist_mutex);
1146 /* ...but beware of the race if we peeked too early */
1147 if (!atomic_read(&info->stop_eviction))
1148 list_del_init(&info->swaplist);
1149 mutex_unlock(&shmem_swaplist_mutex);
1150 }
1151 }
1152
1153 simple_xattrs_free(&info->xattrs);
1154 WARN_ON(inode->i_blocks);
1155 shmem_free_inode(inode->i_sb);
1156 clear_inode(inode);
1157 }
1158
1159 extern struct swap_info_struct *swap_info[];
1160
1161 static int shmem_find_swap_entries(struct address_space *mapping,
1162 pgoff_t start, unsigned int nr_entries,
1163 struct page **entries, pgoff_t *indices,
1164 unsigned int type, bool frontswap)
1165 {
1166 XA_STATE(xas, &mapping->i_pages, start);
1167 struct page *page;
1168 swp_entry_t entry;
1169 unsigned int ret = 0;
1170
1171 if (!nr_entries)
1172 return 0;
1173
1174 rcu_read_lock();
1175 xas_for_each(&xas, page, ULONG_MAX) {
1176 if (xas_retry(&xas, page))
1177 continue;
1178
1179 if (!xa_is_value(page))
1180 continue;
1181
1182 entry = radix_to_swp_entry(page);
1183 if (swp_type(entry) != type)
1184 continue;
1185 if (frontswap &&
1186 !frontswap_test(swap_info[type], swp_offset(entry)))
1187 continue;
1188
1189 indices[ret] = xas.xa_index;
1190 entries[ret] = page;
1191
1192 if (need_resched()) {
1193 xas_pause(&xas);
1194 cond_resched_rcu();
1195 }
1196 if (++ret == nr_entries)
1197 break;
1198 }
1199 rcu_read_unlock();
1200
1201 return ret;
1202 }
1203
1204 /*
1205 * Move the swapped pages for an inode to page cache. Returns the count
1206 * of pages swapped in, or the error in case of failure.
1207 */
1208 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209 pgoff_t *indices)
1210 {
1211 int i = 0;
1212 int ret = 0;
1213 int error = 0;
1214 struct address_space *mapping = inode->i_mapping;
1215
1216 for (i = 0; i < pvec.nr; i++) {
1217 struct page *page = pvec.pages[i];
1218
1219 if (!xa_is_value(page))
1220 continue;
1221 error = shmem_swapin_page(inode, indices[i],
1222 &page, SGP_CACHE,
1223 mapping_gfp_mask(mapping),
1224 NULL, NULL);
1225 if (error == 0) {
1226 unlock_page(page);
1227 put_page(page);
1228 ret++;
1229 }
1230 if (error == -ENOMEM)
1231 break;
1232 error = 0;
1233 }
1234 return error ? error : ret;
1235 }
1236
1237 /*
1238 * If swap found in inode, free it and move page from swapcache to filecache.
1239 */
1240 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241 bool frontswap, unsigned long *fs_pages_to_unuse)
1242 {
1243 struct address_space *mapping = inode->i_mapping;
1244 pgoff_t start = 0;
1245 struct pagevec pvec;
1246 pgoff_t indices[PAGEVEC_SIZE];
1247 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248 int ret = 0;
1249
1250 pagevec_init(&pvec);
1251 do {
1252 unsigned int nr_entries = PAGEVEC_SIZE;
1253
1254 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255 nr_entries = *fs_pages_to_unuse;
1256
1257 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258 pvec.pages, indices,
1259 type, frontswap);
1260 if (pvec.nr == 0) {
1261 ret = 0;
1262 break;
1263 }
1264
1265 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266 if (ret < 0)
1267 break;
1268
1269 if (frontswap_partial) {
1270 *fs_pages_to_unuse -= ret;
1271 if (*fs_pages_to_unuse == 0) {
1272 ret = FRONTSWAP_PAGES_UNUSED;
1273 break;
1274 }
1275 }
1276
1277 start = indices[pvec.nr - 1];
1278 } while (true);
1279
1280 return ret;
1281 }
1282
1283 /*
1284 * Read all the shared memory data that resides in the swap
1285 * device 'type' back into memory, so the swap device can be
1286 * unused.
1287 */
1288 int shmem_unuse(unsigned int type, bool frontswap,
1289 unsigned long *fs_pages_to_unuse)
1290 {
1291 struct shmem_inode_info *info, *next;
1292 int error = 0;
1293
1294 if (list_empty(&shmem_swaplist))
1295 return 0;
1296
1297 mutex_lock(&shmem_swaplist_mutex);
1298 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299 if (!info->swapped) {
1300 list_del_init(&info->swaplist);
1301 continue;
1302 }
1303 /*
1304 * Drop the swaplist mutex while searching the inode for swap;
1305 * but before doing so, make sure shmem_evict_inode() will not
1306 * remove placeholder inode from swaplist, nor let it be freed
1307 * (igrab() would protect from unlink, but not from unmount).
1308 */
1309 atomic_inc(&info->stop_eviction);
1310 mutex_unlock(&shmem_swaplist_mutex);
1311
1312 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1313 fs_pages_to_unuse);
1314 cond_resched();
1315
1316 mutex_lock(&shmem_swaplist_mutex);
1317 next = list_next_entry(info, swaplist);
1318 if (!info->swapped)
1319 list_del_init(&info->swaplist);
1320 if (atomic_dec_and_test(&info->stop_eviction))
1321 wake_up_var(&info->stop_eviction);
1322 if (error)
1323 break;
1324 }
1325 mutex_unlock(&shmem_swaplist_mutex);
1326
1327 return error;
1328 }
1329
1330 /*
1331 * Move the page from the page cache to the swap cache.
1332 */
1333 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334 {
1335 struct shmem_inode_info *info;
1336 struct address_space *mapping;
1337 struct inode *inode;
1338 swp_entry_t swap;
1339 pgoff_t index;
1340
1341 VM_BUG_ON_PAGE(PageCompound(page), page);
1342 BUG_ON(!PageLocked(page));
1343 mapping = page->mapping;
1344 index = page->index;
1345 inode = mapping->host;
1346 info = SHMEM_I(inode);
1347 if (info->flags & VM_LOCKED)
1348 goto redirty;
1349 if (!total_swap_pages)
1350 goto redirty;
1351
1352 /*
1353 * Our capabilities prevent regular writeback or sync from ever calling
1354 * shmem_writepage; but a stacking filesystem might use ->writepage of
1355 * its underlying filesystem, in which case tmpfs should write out to
1356 * swap only in response to memory pressure, and not for the writeback
1357 * threads or sync.
1358 */
1359 if (!wbc->for_reclaim) {
1360 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1361 goto redirty;
1362 }
1363
1364 /*
1365 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366 * value into swapfile.c, the only way we can correctly account for a
1367 * fallocated page arriving here is now to initialize it and write it.
1368 *
1369 * That's okay for a page already fallocated earlier, but if we have
1370 * not yet completed the fallocation, then (a) we want to keep track
1371 * of this page in case we have to undo it, and (b) it may not be a
1372 * good idea to continue anyway, once we're pushing into swap. So
1373 * reactivate the page, and let shmem_fallocate() quit when too many.
1374 */
1375 if (!PageUptodate(page)) {
1376 if (inode->i_private) {
1377 struct shmem_falloc *shmem_falloc;
1378 spin_lock(&inode->i_lock);
1379 shmem_falloc = inode->i_private;
1380 if (shmem_falloc &&
1381 !shmem_falloc->waitq &&
1382 index >= shmem_falloc->start &&
1383 index < shmem_falloc->next)
1384 shmem_falloc->nr_unswapped++;
1385 else
1386 shmem_falloc = NULL;
1387 spin_unlock(&inode->i_lock);
1388 if (shmem_falloc)
1389 goto redirty;
1390 }
1391 clear_highpage(page);
1392 flush_dcache_page(page);
1393 SetPageUptodate(page);
1394 }
1395
1396 swap = get_swap_page(page);
1397 if (!swap.val)
1398 goto redirty;
1399
1400 /*
1401 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1402 * if it's not already there. Do it now before the page is
1403 * moved to swap cache, when its pagelock no longer protects
1404 * the inode from eviction. But don't unlock the mutex until
1405 * we've incremented swapped, because shmem_unuse_inode() will
1406 * prune a !swapped inode from the swaplist under this mutex.
1407 */
1408 mutex_lock(&shmem_swaplist_mutex);
1409 if (list_empty(&info->swaplist))
1410 list_add(&info->swaplist, &shmem_swaplist);
1411
1412 if (add_to_swap_cache(page, swap,
1413 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414 NULL) == 0) {
1415 spin_lock_irq(&info->lock);
1416 shmem_recalc_inode(inode);
1417 info->swapped++;
1418 spin_unlock_irq(&info->lock);
1419
1420 swap_shmem_alloc(swap);
1421 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422
1423 mutex_unlock(&shmem_swaplist_mutex);
1424 BUG_ON(page_mapped(page));
1425 swap_writepage(page, wbc);
1426 return 0;
1427 }
1428
1429 mutex_unlock(&shmem_swaplist_mutex);
1430 put_swap_page(page, swap);
1431 redirty:
1432 set_page_dirty(page);
1433 if (wbc->for_reclaim)
1434 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1435 unlock_page(page);
1436 return 0;
1437 }
1438
1439 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1440 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1441 {
1442 char buffer[64];
1443
1444 if (!mpol || mpol->mode == MPOL_DEFAULT)
1445 return; /* show nothing */
1446
1447 mpol_to_str(buffer, sizeof(buffer), mpol);
1448
1449 seq_printf(seq, ",mpol=%s", buffer);
1450 }
1451
1452 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453 {
1454 struct mempolicy *mpol = NULL;
1455 if (sbinfo->mpol) {
1456 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1457 mpol = sbinfo->mpol;
1458 mpol_get(mpol);
1459 spin_unlock(&sbinfo->stat_lock);
1460 }
1461 return mpol;
1462 }
1463 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1464 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465 {
1466 }
1467 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468 {
1469 return NULL;
1470 }
1471 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472 #ifndef CONFIG_NUMA
1473 #define vm_policy vm_private_data
1474 #endif
1475
1476 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477 struct shmem_inode_info *info, pgoff_t index)
1478 {
1479 /* Create a pseudo vma that just contains the policy */
1480 vma_init(vma, NULL);
1481 /* Bias interleave by inode number to distribute better across nodes */
1482 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1483 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484 }
1485
1486 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487 {
1488 /* Drop reference taken by mpol_shared_policy_lookup() */
1489 mpol_cond_put(vma->vm_policy);
1490 }
1491
1492 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493 struct shmem_inode_info *info, pgoff_t index)
1494 {
1495 struct vm_area_struct pvma;
1496 struct page *page;
1497 struct vm_fault vmf = {
1498 .vma = &pvma,
1499 };
1500
1501 shmem_pseudo_vma_init(&pvma, info, index);
1502 page = swap_cluster_readahead(swap, gfp, &vmf);
1503 shmem_pseudo_vma_destroy(&pvma);
1504
1505 return page;
1506 }
1507
1508 /*
1509 * Make sure huge_gfp is always more limited than limit_gfp.
1510 * Some of the flags set permissions, while others set limitations.
1511 */
1512 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513 {
1514 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1516 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518
1519 /* Allow allocations only from the originally specified zones. */
1520 result |= zoneflags;
1521
1522 /*
1523 * Minimize the result gfp by taking the union with the deny flags,
1524 * and the intersection of the allow flags.
1525 */
1526 result |= (limit_gfp & denyflags);
1527 result |= (huge_gfp & limit_gfp) & allowflags;
1528
1529 return result;
1530 }
1531
1532 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533 struct shmem_inode_info *info, pgoff_t index)
1534 {
1535 struct vm_area_struct pvma;
1536 struct address_space *mapping = info->vfs_inode.i_mapping;
1537 pgoff_t hindex;
1538 struct page *page;
1539
1540 hindex = round_down(index, HPAGE_PMD_NR);
1541 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542 XA_PRESENT))
1543 return NULL;
1544
1545 shmem_pseudo_vma_init(&pvma, info, hindex);
1546 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547 true);
1548 shmem_pseudo_vma_destroy(&pvma);
1549 if (page)
1550 prep_transhuge_page(page);
1551 else
1552 count_vm_event(THP_FILE_FALLBACK);
1553 return page;
1554 }
1555
1556 static struct page *shmem_alloc_page(gfp_t gfp,
1557 struct shmem_inode_info *info, pgoff_t index)
1558 {
1559 struct vm_area_struct pvma;
1560 struct page *page;
1561
1562 shmem_pseudo_vma_init(&pvma, info, index);
1563 page = alloc_page_vma(gfp, &pvma, 0);
1564 shmem_pseudo_vma_destroy(&pvma);
1565
1566 return page;
1567 }
1568
1569 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570 struct inode *inode,
1571 pgoff_t index, bool huge)
1572 {
1573 struct shmem_inode_info *info = SHMEM_I(inode);
1574 struct page *page;
1575 int nr;
1576 int err = -ENOSPC;
1577
1578 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579 huge = false;
1580 nr = huge ? HPAGE_PMD_NR : 1;
1581
1582 if (!shmem_inode_acct_block(inode, nr))
1583 goto failed;
1584
1585 if (huge)
1586 page = shmem_alloc_hugepage(gfp, info, index);
1587 else
1588 page = shmem_alloc_page(gfp, info, index);
1589 if (page) {
1590 __SetPageLocked(page);
1591 __SetPageSwapBacked(page);
1592 return page;
1593 }
1594
1595 err = -ENOMEM;
1596 shmem_inode_unacct_blocks(inode, nr);
1597 failed:
1598 return ERR_PTR(err);
1599 }
1600
1601 /*
1602 * When a page is moved from swapcache to shmem filecache (either by the
1603 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605 * ignorance of the mapping it belongs to. If that mapping has special
1606 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607 * we may need to copy to a suitable page before moving to filecache.
1608 *
1609 * In a future release, this may well be extended to respect cpuset and
1610 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611 * but for now it is a simple matter of zone.
1612 */
1613 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614 {
1615 return page_zonenum(page) > gfp_zone(gfp);
1616 }
1617
1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619 struct shmem_inode_info *info, pgoff_t index)
1620 {
1621 struct page *oldpage, *newpage;
1622 struct address_space *swap_mapping;
1623 swp_entry_t entry;
1624 pgoff_t swap_index;
1625 int error;
1626
1627 oldpage = *pagep;
1628 entry.val = page_private(oldpage);
1629 swap_index = swp_offset(entry);
1630 swap_mapping = page_mapping(oldpage);
1631
1632 /*
1633 * We have arrived here because our zones are constrained, so don't
1634 * limit chance of success by further cpuset and node constraints.
1635 */
1636 gfp &= ~GFP_CONSTRAINT_MASK;
1637 newpage = shmem_alloc_page(gfp, info, index);
1638 if (!newpage)
1639 return -ENOMEM;
1640
1641 get_page(newpage);
1642 copy_highpage(newpage, oldpage);
1643 flush_dcache_page(newpage);
1644
1645 __SetPageLocked(newpage);
1646 __SetPageSwapBacked(newpage);
1647 SetPageUptodate(newpage);
1648 set_page_private(newpage, entry.val);
1649 SetPageSwapCache(newpage);
1650
1651 /*
1652 * Our caller will very soon move newpage out of swapcache, but it's
1653 * a nice clean interface for us to replace oldpage by newpage there.
1654 */
1655 xa_lock_irq(&swap_mapping->i_pages);
1656 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657 if (!error) {
1658 mem_cgroup_migrate(oldpage, newpage);
1659 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1661 }
1662 xa_unlock_irq(&swap_mapping->i_pages);
1663
1664 if (unlikely(error)) {
1665 /*
1666 * Is this possible? I think not, now that our callers check
1667 * both PageSwapCache and page_private after getting page lock;
1668 * but be defensive. Reverse old to newpage for clear and free.
1669 */
1670 oldpage = newpage;
1671 } else {
1672 lru_cache_add(newpage);
1673 *pagep = newpage;
1674 }
1675
1676 ClearPageSwapCache(oldpage);
1677 set_page_private(oldpage, 0);
1678
1679 unlock_page(oldpage);
1680 put_page(oldpage);
1681 put_page(oldpage);
1682 return error;
1683 }
1684
1685 /*
1686 * Swap in the page pointed to by *pagep.
1687 * Caller has to make sure that *pagep contains a valid swapped page.
1688 * Returns 0 and the page in pagep if success. On failure, returns the
1689 * error code and NULL in *pagep.
1690 */
1691 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692 struct page **pagep, enum sgp_type sgp,
1693 gfp_t gfp, struct vm_area_struct *vma,
1694 vm_fault_t *fault_type)
1695 {
1696 struct address_space *mapping = inode->i_mapping;
1697 struct shmem_inode_info *info = SHMEM_I(inode);
1698 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1699 struct page *page;
1700 swp_entry_t swap;
1701 int error;
1702
1703 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1704 swap = radix_to_swp_entry(*pagep);
1705 *pagep = NULL;
1706
1707 /* Look it up and read it in.. */
1708 page = lookup_swap_cache(swap, NULL, 0);
1709 if (!page) {
1710 /* Or update major stats only when swapin succeeds?? */
1711 if (fault_type) {
1712 *fault_type |= VM_FAULT_MAJOR;
1713 count_vm_event(PGMAJFAULT);
1714 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1715 }
1716 /* Here we actually start the io */
1717 page = shmem_swapin(swap, gfp, info, index);
1718 if (!page) {
1719 error = -ENOMEM;
1720 goto failed;
1721 }
1722 }
1723
1724 /* We have to do this with page locked to prevent races */
1725 lock_page(page);
1726 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1727 !shmem_confirm_swap(mapping, index, swap)) {
1728 error = -EEXIST;
1729 goto unlock;
1730 }
1731 if (!PageUptodate(page)) {
1732 error = -EIO;
1733 goto failed;
1734 }
1735 wait_on_page_writeback(page);
1736
1737 /*
1738 * Some architectures may have to restore extra metadata to the
1739 * physical page after reading from swap.
1740 */
1741 arch_swap_restore(swap, page);
1742
1743 if (shmem_should_replace_page(page, gfp)) {
1744 error = shmem_replace_page(&page, gfp, info, index);
1745 if (error)
1746 goto failed;
1747 }
1748
1749 error = shmem_add_to_page_cache(page, mapping, index,
1750 swp_to_radix_entry(swap), gfp,
1751 charge_mm);
1752 if (error)
1753 goto failed;
1754
1755 spin_lock_irq(&info->lock);
1756 info->swapped--;
1757 shmem_recalc_inode(inode);
1758 spin_unlock_irq(&info->lock);
1759
1760 if (sgp == SGP_WRITE)
1761 mark_page_accessed(page);
1762
1763 delete_from_swap_cache(page);
1764 set_page_dirty(page);
1765 swap_free(swap);
1766
1767 *pagep = page;
1768 return 0;
1769 failed:
1770 if (!shmem_confirm_swap(mapping, index, swap))
1771 error = -EEXIST;
1772 unlock:
1773 if (page) {
1774 unlock_page(page);
1775 put_page(page);
1776 }
1777
1778 return error;
1779 }
1780
1781 /*
1782 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1783 *
1784 * If we allocate a new one we do not mark it dirty. That's up to the
1785 * vm. If we swap it in we mark it dirty since we also free the swap
1786 * entry since a page cannot live in both the swap and page cache.
1787 *
1788 * vma, vmf, and fault_type are only supplied by shmem_fault:
1789 * otherwise they are NULL.
1790 */
1791 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1792 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1793 struct vm_area_struct *vma, struct vm_fault *vmf,
1794 vm_fault_t *fault_type)
1795 {
1796 struct address_space *mapping = inode->i_mapping;
1797 struct shmem_inode_info *info = SHMEM_I(inode);
1798 struct shmem_sb_info *sbinfo;
1799 struct mm_struct *charge_mm;
1800 struct page *page;
1801 enum sgp_type sgp_huge = sgp;
1802 pgoff_t hindex = index;
1803 gfp_t huge_gfp;
1804 int error;
1805 int once = 0;
1806 int alloced = 0;
1807
1808 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1809 return -EFBIG;
1810 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1811 sgp = SGP_CACHE;
1812 repeat:
1813 if (sgp <= SGP_CACHE &&
1814 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1815 return -EINVAL;
1816 }
1817
1818 sbinfo = SHMEM_SB(inode->i_sb);
1819 charge_mm = vma ? vma->vm_mm : NULL;
1820
1821 page = pagecache_get_page(mapping, index,
1822 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1823
1824 if (page && vma && userfaultfd_minor(vma)) {
1825 if (!xa_is_value(page)) {
1826 unlock_page(page);
1827 put_page(page);
1828 }
1829 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1830 return 0;
1831 }
1832
1833 if (xa_is_value(page)) {
1834 error = shmem_swapin_page(inode, index, &page,
1835 sgp, gfp, vma, fault_type);
1836 if (error == -EEXIST)
1837 goto repeat;
1838
1839 *pagep = page;
1840 return error;
1841 }
1842
1843 if (page)
1844 hindex = page->index;
1845 if (page && sgp == SGP_WRITE)
1846 mark_page_accessed(page);
1847
1848 /* fallocated page? */
1849 if (page && !PageUptodate(page)) {
1850 if (sgp != SGP_READ)
1851 goto clear;
1852 unlock_page(page);
1853 put_page(page);
1854 page = NULL;
1855 hindex = index;
1856 }
1857 if (page || sgp == SGP_READ)
1858 goto out;
1859
1860 /*
1861 * Fast cache lookup did not find it:
1862 * bring it back from swap or allocate.
1863 */
1864
1865 if (vma && userfaultfd_missing(vma)) {
1866 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1867 return 0;
1868 }
1869
1870 /* shmem_symlink() */
1871 if (!shmem_mapping(mapping))
1872 goto alloc_nohuge;
1873 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1874 goto alloc_nohuge;
1875 if (shmem_huge == SHMEM_HUGE_FORCE)
1876 goto alloc_huge;
1877 switch (sbinfo->huge) {
1878 case SHMEM_HUGE_NEVER:
1879 goto alloc_nohuge;
1880 case SHMEM_HUGE_WITHIN_SIZE: {
1881 loff_t i_size;
1882 pgoff_t off;
1883
1884 off = round_up(index, HPAGE_PMD_NR);
1885 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1886 if (i_size >= HPAGE_PMD_SIZE &&
1887 i_size >> PAGE_SHIFT >= off)
1888 goto alloc_huge;
1889
1890 fallthrough;
1891 }
1892 case SHMEM_HUGE_ADVISE:
1893 if (sgp_huge == SGP_HUGE)
1894 goto alloc_huge;
1895 /* TODO: implement fadvise() hints */
1896 goto alloc_nohuge;
1897 }
1898
1899 alloc_huge:
1900 huge_gfp = vma_thp_gfp_mask(vma);
1901 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1902 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1903 if (IS_ERR(page)) {
1904 alloc_nohuge:
1905 page = shmem_alloc_and_acct_page(gfp, inode,
1906 index, false);
1907 }
1908 if (IS_ERR(page)) {
1909 int retry = 5;
1910
1911 error = PTR_ERR(page);
1912 page = NULL;
1913 if (error != -ENOSPC)
1914 goto unlock;
1915 /*
1916 * Try to reclaim some space by splitting a huge page
1917 * beyond i_size on the filesystem.
1918 */
1919 while (retry--) {
1920 int ret;
1921
1922 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1923 if (ret == SHRINK_STOP)
1924 break;
1925 if (ret)
1926 goto alloc_nohuge;
1927 }
1928 goto unlock;
1929 }
1930
1931 if (PageTransHuge(page))
1932 hindex = round_down(index, HPAGE_PMD_NR);
1933 else
1934 hindex = index;
1935
1936 if (sgp == SGP_WRITE)
1937 __SetPageReferenced(page);
1938
1939 error = shmem_add_to_page_cache(page, mapping, hindex,
1940 NULL, gfp & GFP_RECLAIM_MASK,
1941 charge_mm);
1942 if (error)
1943 goto unacct;
1944 lru_cache_add(page);
1945
1946 spin_lock_irq(&info->lock);
1947 info->alloced += compound_nr(page);
1948 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1949 shmem_recalc_inode(inode);
1950 spin_unlock_irq(&info->lock);
1951 alloced = true;
1952
1953 if (PageTransHuge(page) &&
1954 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1955 hindex + HPAGE_PMD_NR - 1) {
1956 /*
1957 * Part of the huge page is beyond i_size: subject
1958 * to shrink under memory pressure.
1959 */
1960 spin_lock(&sbinfo->shrinklist_lock);
1961 /*
1962 * _careful to defend against unlocked access to
1963 * ->shrink_list in shmem_unused_huge_shrink()
1964 */
1965 if (list_empty_careful(&info->shrinklist)) {
1966 list_add_tail(&info->shrinklist,
1967 &sbinfo->shrinklist);
1968 sbinfo->shrinklist_len++;
1969 }
1970 spin_unlock(&sbinfo->shrinklist_lock);
1971 }
1972
1973 /*
1974 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1975 */
1976 if (sgp == SGP_FALLOC)
1977 sgp = SGP_WRITE;
1978 clear:
1979 /*
1980 * Let SGP_WRITE caller clear ends if write does not fill page;
1981 * but SGP_FALLOC on a page fallocated earlier must initialize
1982 * it now, lest undo on failure cancel our earlier guarantee.
1983 */
1984 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1985 int i;
1986
1987 for (i = 0; i < compound_nr(page); i++) {
1988 clear_highpage(page + i);
1989 flush_dcache_page(page + i);
1990 }
1991 SetPageUptodate(page);
1992 }
1993
1994 /* Perhaps the file has been truncated since we checked */
1995 if (sgp <= SGP_CACHE &&
1996 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1997 if (alloced) {
1998 ClearPageDirty(page);
1999 delete_from_page_cache(page);
2000 spin_lock_irq(&info->lock);
2001 shmem_recalc_inode(inode);
2002 spin_unlock_irq(&info->lock);
2003 }
2004 error = -EINVAL;
2005 goto unlock;
2006 }
2007 out:
2008 *pagep = page + index - hindex;
2009 return 0;
2010
2011 /*
2012 * Error recovery.
2013 */
2014 unacct:
2015 shmem_inode_unacct_blocks(inode, compound_nr(page));
2016
2017 if (PageTransHuge(page)) {
2018 unlock_page(page);
2019 put_page(page);
2020 goto alloc_nohuge;
2021 }
2022 unlock:
2023 if (page) {
2024 unlock_page(page);
2025 put_page(page);
2026 }
2027 if (error == -ENOSPC && !once++) {
2028 spin_lock_irq(&info->lock);
2029 shmem_recalc_inode(inode);
2030 spin_unlock_irq(&info->lock);
2031 goto repeat;
2032 }
2033 if (error == -EEXIST)
2034 goto repeat;
2035 return error;
2036 }
2037
2038 /*
2039 * This is like autoremove_wake_function, but it removes the wait queue
2040 * entry unconditionally - even if something else had already woken the
2041 * target.
2042 */
2043 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2044 {
2045 int ret = default_wake_function(wait, mode, sync, key);
2046 list_del_init(&wait->entry);
2047 return ret;
2048 }
2049
2050 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2051 {
2052 struct vm_area_struct *vma = vmf->vma;
2053 struct inode *inode = file_inode(vma->vm_file);
2054 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2055 enum sgp_type sgp;
2056 int err;
2057 vm_fault_t ret = VM_FAULT_LOCKED;
2058
2059 /*
2060 * Trinity finds that probing a hole which tmpfs is punching can
2061 * prevent the hole-punch from ever completing: which in turn
2062 * locks writers out with its hold on i_mutex. So refrain from
2063 * faulting pages into the hole while it's being punched. Although
2064 * shmem_undo_range() does remove the additions, it may be unable to
2065 * keep up, as each new page needs its own unmap_mapping_range() call,
2066 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2067 *
2068 * It does not matter if we sometimes reach this check just before the
2069 * hole-punch begins, so that one fault then races with the punch:
2070 * we just need to make racing faults a rare case.
2071 *
2072 * The implementation below would be much simpler if we just used a
2073 * standard mutex or completion: but we cannot take i_mutex in fault,
2074 * and bloating every shmem inode for this unlikely case would be sad.
2075 */
2076 if (unlikely(inode->i_private)) {
2077 struct shmem_falloc *shmem_falloc;
2078
2079 spin_lock(&inode->i_lock);
2080 shmem_falloc = inode->i_private;
2081 if (shmem_falloc &&
2082 shmem_falloc->waitq &&
2083 vmf->pgoff >= shmem_falloc->start &&
2084 vmf->pgoff < shmem_falloc->next) {
2085 struct file *fpin;
2086 wait_queue_head_t *shmem_falloc_waitq;
2087 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2088
2089 ret = VM_FAULT_NOPAGE;
2090 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2091 if (fpin)
2092 ret = VM_FAULT_RETRY;
2093
2094 shmem_falloc_waitq = shmem_falloc->waitq;
2095 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2096 TASK_UNINTERRUPTIBLE);
2097 spin_unlock(&inode->i_lock);
2098 schedule();
2099
2100 /*
2101 * shmem_falloc_waitq points into the shmem_fallocate()
2102 * stack of the hole-punching task: shmem_falloc_waitq
2103 * is usually invalid by the time we reach here, but
2104 * finish_wait() does not dereference it in that case;
2105 * though i_lock needed lest racing with wake_up_all().
2106 */
2107 spin_lock(&inode->i_lock);
2108 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2109 spin_unlock(&inode->i_lock);
2110
2111 if (fpin)
2112 fput(fpin);
2113 return ret;
2114 }
2115 spin_unlock(&inode->i_lock);
2116 }
2117
2118 sgp = SGP_CACHE;
2119
2120 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2121 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2122 sgp = SGP_NOHUGE;
2123 else if (vma->vm_flags & VM_HUGEPAGE)
2124 sgp = SGP_HUGE;
2125
2126 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2127 gfp, vma, vmf, &ret);
2128 if (err)
2129 return vmf_error(err);
2130 return ret;
2131 }
2132
2133 unsigned long shmem_get_unmapped_area(struct file *file,
2134 unsigned long uaddr, unsigned long len,
2135 unsigned long pgoff, unsigned long flags)
2136 {
2137 unsigned long (*get_area)(struct file *,
2138 unsigned long, unsigned long, unsigned long, unsigned long);
2139 unsigned long addr;
2140 unsigned long offset;
2141 unsigned long inflated_len;
2142 unsigned long inflated_addr;
2143 unsigned long inflated_offset;
2144
2145 if (len > TASK_SIZE)
2146 return -ENOMEM;
2147
2148 get_area = current->mm->get_unmapped_area;
2149 addr = get_area(file, uaddr, len, pgoff, flags);
2150
2151 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2152 return addr;
2153 if (IS_ERR_VALUE(addr))
2154 return addr;
2155 if (addr & ~PAGE_MASK)
2156 return addr;
2157 if (addr > TASK_SIZE - len)
2158 return addr;
2159
2160 if (shmem_huge == SHMEM_HUGE_DENY)
2161 return addr;
2162 if (len < HPAGE_PMD_SIZE)
2163 return addr;
2164 if (flags & MAP_FIXED)
2165 return addr;
2166 /*
2167 * Our priority is to support MAP_SHARED mapped hugely;
2168 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2169 * But if caller specified an address hint and we allocated area there
2170 * successfully, respect that as before.
2171 */
2172 if (uaddr == addr)
2173 return addr;
2174
2175 if (shmem_huge != SHMEM_HUGE_FORCE) {
2176 struct super_block *sb;
2177
2178 if (file) {
2179 VM_BUG_ON(file->f_op != &shmem_file_operations);
2180 sb = file_inode(file)->i_sb;
2181 } else {
2182 /*
2183 * Called directly from mm/mmap.c, or drivers/char/mem.c
2184 * for "/dev/zero", to create a shared anonymous object.
2185 */
2186 if (IS_ERR(shm_mnt))
2187 return addr;
2188 sb = shm_mnt->mnt_sb;
2189 }
2190 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2191 return addr;
2192 }
2193
2194 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2195 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2196 return addr;
2197 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2198 return addr;
2199
2200 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2201 if (inflated_len > TASK_SIZE)
2202 return addr;
2203 if (inflated_len < len)
2204 return addr;
2205
2206 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2207 if (IS_ERR_VALUE(inflated_addr))
2208 return addr;
2209 if (inflated_addr & ~PAGE_MASK)
2210 return addr;
2211
2212 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2213 inflated_addr += offset - inflated_offset;
2214 if (inflated_offset > offset)
2215 inflated_addr += HPAGE_PMD_SIZE;
2216
2217 if (inflated_addr > TASK_SIZE - len)
2218 return addr;
2219 return inflated_addr;
2220 }
2221
2222 #ifdef CONFIG_NUMA
2223 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2224 {
2225 struct inode *inode = file_inode(vma->vm_file);
2226 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2227 }
2228
2229 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2230 unsigned long addr)
2231 {
2232 struct inode *inode = file_inode(vma->vm_file);
2233 pgoff_t index;
2234
2235 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2236 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2237 }
2238 #endif
2239
2240 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2241 {
2242 struct inode *inode = file_inode(file);
2243 struct shmem_inode_info *info = SHMEM_I(inode);
2244 int retval = -ENOMEM;
2245
2246 /*
2247 * What serializes the accesses to info->flags?
2248 * ipc_lock_object() when called from shmctl_do_lock(),
2249 * no serialization needed when called from shm_destroy().
2250 */
2251 if (lock && !(info->flags & VM_LOCKED)) {
2252 if (!user_shm_lock(inode->i_size, ucounts))
2253 goto out_nomem;
2254 info->flags |= VM_LOCKED;
2255 mapping_set_unevictable(file->f_mapping);
2256 }
2257 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2258 user_shm_unlock(inode->i_size, ucounts);
2259 info->flags &= ~VM_LOCKED;
2260 mapping_clear_unevictable(file->f_mapping);
2261 }
2262 retval = 0;
2263
2264 out_nomem:
2265 return retval;
2266 }
2267
2268 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2269 {
2270 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2271 int ret;
2272
2273 ret = seal_check_future_write(info->seals, vma);
2274 if (ret)
2275 return ret;
2276
2277 /* arm64 - allow memory tagging on RAM-based files */
2278 vma->vm_flags |= VM_MTE_ALLOWED;
2279
2280 file_accessed(file);
2281 vma->vm_ops = &shmem_vm_ops;
2282 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2283 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2284 (vma->vm_end & HPAGE_PMD_MASK)) {
2285 khugepaged_enter(vma, vma->vm_flags);
2286 }
2287 return 0;
2288 }
2289
2290 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2291 umode_t mode, dev_t dev, unsigned long flags)
2292 {
2293 struct inode *inode;
2294 struct shmem_inode_info *info;
2295 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2296 ino_t ino;
2297
2298 if (shmem_reserve_inode(sb, &ino))
2299 return NULL;
2300
2301 inode = new_inode(sb);
2302 if (inode) {
2303 inode->i_ino = ino;
2304 inode_init_owner(&init_user_ns, inode, dir, mode);
2305 inode->i_blocks = 0;
2306 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2307 inode->i_generation = prandom_u32();
2308 info = SHMEM_I(inode);
2309 memset(info, 0, (char *)inode - (char *)info);
2310 spin_lock_init(&info->lock);
2311 atomic_set(&info->stop_eviction, 0);
2312 info->seals = F_SEAL_SEAL;
2313 info->flags = flags & VM_NORESERVE;
2314 INIT_LIST_HEAD(&info->shrinklist);
2315 INIT_LIST_HEAD(&info->swaplist);
2316 simple_xattrs_init(&info->xattrs);
2317 cache_no_acl(inode);
2318
2319 switch (mode & S_IFMT) {
2320 default:
2321 inode->i_op = &shmem_special_inode_operations;
2322 init_special_inode(inode, mode, dev);
2323 break;
2324 case S_IFREG:
2325 inode->i_mapping->a_ops = &shmem_aops;
2326 inode->i_op = &shmem_inode_operations;
2327 inode->i_fop = &shmem_file_operations;
2328 mpol_shared_policy_init(&info->policy,
2329 shmem_get_sbmpol(sbinfo));
2330 break;
2331 case S_IFDIR:
2332 inc_nlink(inode);
2333 /* Some things misbehave if size == 0 on a directory */
2334 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2335 inode->i_op = &shmem_dir_inode_operations;
2336 inode->i_fop = &simple_dir_operations;
2337 break;
2338 case S_IFLNK:
2339 /*
2340 * Must not load anything in the rbtree,
2341 * mpol_free_shared_policy will not be called.
2342 */
2343 mpol_shared_policy_init(&info->policy, NULL);
2344 break;
2345 }
2346
2347 lockdep_annotate_inode_mutex_key(inode);
2348 } else
2349 shmem_free_inode(sb);
2350 return inode;
2351 }
2352
2353 #ifdef CONFIG_USERFAULTFD
2354 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2355 pmd_t *dst_pmd,
2356 struct vm_area_struct *dst_vma,
2357 unsigned long dst_addr,
2358 unsigned long src_addr,
2359 bool zeropage,
2360 struct page **pagep)
2361 {
2362 struct inode *inode = file_inode(dst_vma->vm_file);
2363 struct shmem_inode_info *info = SHMEM_I(inode);
2364 struct address_space *mapping = inode->i_mapping;
2365 gfp_t gfp = mapping_gfp_mask(mapping);
2366 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2367 void *page_kaddr;
2368 struct page *page;
2369 int ret;
2370 pgoff_t max_off;
2371
2372 if (!shmem_inode_acct_block(inode, 1)) {
2373 /*
2374 * We may have got a page, returned -ENOENT triggering a retry,
2375 * and now we find ourselves with -ENOMEM. Release the page, to
2376 * avoid a BUG_ON in our caller.
2377 */
2378 if (unlikely(*pagep)) {
2379 put_page(*pagep);
2380 *pagep = NULL;
2381 }
2382 return -ENOMEM;
2383 }
2384
2385 if (!*pagep) {
2386 ret = -ENOMEM;
2387 page = shmem_alloc_page(gfp, info, pgoff);
2388 if (!page)
2389 goto out_unacct_blocks;
2390
2391 if (!zeropage) { /* COPY */
2392 page_kaddr = kmap_atomic(page);
2393 ret = copy_from_user(page_kaddr,
2394 (const void __user *)src_addr,
2395 PAGE_SIZE);
2396 kunmap_atomic(page_kaddr);
2397
2398 /* fallback to copy_from_user outside mmap_lock */
2399 if (unlikely(ret)) {
2400 *pagep = page;
2401 ret = -ENOENT;
2402 /* don't free the page */
2403 goto out_unacct_blocks;
2404 }
2405 } else { /* ZEROPAGE */
2406 clear_highpage(page);
2407 }
2408 } else {
2409 page = *pagep;
2410 *pagep = NULL;
2411 }
2412
2413 VM_BUG_ON(PageLocked(page));
2414 VM_BUG_ON(PageSwapBacked(page));
2415 __SetPageLocked(page);
2416 __SetPageSwapBacked(page);
2417 __SetPageUptodate(page);
2418
2419 ret = -EFAULT;
2420 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2421 if (unlikely(pgoff >= max_off))
2422 goto out_release;
2423
2424 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2425 gfp & GFP_RECLAIM_MASK, dst_mm);
2426 if (ret)
2427 goto out_release;
2428
2429 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2430 page, true, false);
2431 if (ret)
2432 goto out_delete_from_cache;
2433
2434 spin_lock_irq(&info->lock);
2435 info->alloced++;
2436 inode->i_blocks += BLOCKS_PER_PAGE;
2437 shmem_recalc_inode(inode);
2438 spin_unlock_irq(&info->lock);
2439
2440 SetPageDirty(page);
2441 unlock_page(page);
2442 return 0;
2443 out_delete_from_cache:
2444 delete_from_page_cache(page);
2445 out_release:
2446 unlock_page(page);
2447 put_page(page);
2448 out_unacct_blocks:
2449 shmem_inode_unacct_blocks(inode, 1);
2450 return ret;
2451 }
2452 #endif /* CONFIG_USERFAULTFD */
2453
2454 #ifdef CONFIG_TMPFS
2455 static const struct inode_operations shmem_symlink_inode_operations;
2456 static const struct inode_operations shmem_short_symlink_operations;
2457
2458 #ifdef CONFIG_TMPFS_XATTR
2459 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2460 #else
2461 #define shmem_initxattrs NULL
2462 #endif
2463
2464 static int
2465 shmem_write_begin(struct file *file, struct address_space *mapping,
2466 loff_t pos, unsigned len, unsigned flags,
2467 struct page **pagep, void **fsdata)
2468 {
2469 struct inode *inode = mapping->host;
2470 struct shmem_inode_info *info = SHMEM_I(inode);
2471 pgoff_t index = pos >> PAGE_SHIFT;
2472
2473 /* i_mutex is held by caller */
2474 if (unlikely(info->seals & (F_SEAL_GROW |
2475 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2476 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2477 return -EPERM;
2478 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2479 return -EPERM;
2480 }
2481
2482 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2483 }
2484
2485 static int
2486 shmem_write_end(struct file *file, struct address_space *mapping,
2487 loff_t pos, unsigned len, unsigned copied,
2488 struct page *page, void *fsdata)
2489 {
2490 struct inode *inode = mapping->host;
2491
2492 if (pos + copied > inode->i_size)
2493 i_size_write(inode, pos + copied);
2494
2495 if (!PageUptodate(page)) {
2496 struct page *head = compound_head(page);
2497 if (PageTransCompound(page)) {
2498 int i;
2499
2500 for (i = 0; i < HPAGE_PMD_NR; i++) {
2501 if (head + i == page)
2502 continue;
2503 clear_highpage(head + i);
2504 flush_dcache_page(head + i);
2505 }
2506 }
2507 if (copied < PAGE_SIZE) {
2508 unsigned from = pos & (PAGE_SIZE - 1);
2509 zero_user_segments(page, 0, from,
2510 from + copied, PAGE_SIZE);
2511 }
2512 SetPageUptodate(head);
2513 }
2514 set_page_dirty(page);
2515 unlock_page(page);
2516 put_page(page);
2517
2518 return copied;
2519 }
2520
2521 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2522 {
2523 struct file *file = iocb->ki_filp;
2524 struct inode *inode = file_inode(file);
2525 struct address_space *mapping = inode->i_mapping;
2526 pgoff_t index;
2527 unsigned long offset;
2528 enum sgp_type sgp = SGP_READ;
2529 int error = 0;
2530 ssize_t retval = 0;
2531 loff_t *ppos = &iocb->ki_pos;
2532
2533 /*
2534 * Might this read be for a stacking filesystem? Then when reading
2535 * holes of a sparse file, we actually need to allocate those pages,
2536 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2537 */
2538 if (!iter_is_iovec(to))
2539 sgp = SGP_CACHE;
2540
2541 index = *ppos >> PAGE_SHIFT;
2542 offset = *ppos & ~PAGE_MASK;
2543
2544 for (;;) {
2545 struct page *page = NULL;
2546 pgoff_t end_index;
2547 unsigned long nr, ret;
2548 loff_t i_size = i_size_read(inode);
2549
2550 end_index = i_size >> PAGE_SHIFT;
2551 if (index > end_index)
2552 break;
2553 if (index == end_index) {
2554 nr = i_size & ~PAGE_MASK;
2555 if (nr <= offset)
2556 break;
2557 }
2558
2559 error = shmem_getpage(inode, index, &page, sgp);
2560 if (error) {
2561 if (error == -EINVAL)
2562 error = 0;
2563 break;
2564 }
2565 if (page) {
2566 if (sgp == SGP_CACHE)
2567 set_page_dirty(page);
2568 unlock_page(page);
2569 }
2570
2571 /*
2572 * We must evaluate after, since reads (unlike writes)
2573 * are called without i_mutex protection against truncate
2574 */
2575 nr = PAGE_SIZE;
2576 i_size = i_size_read(inode);
2577 end_index = i_size >> PAGE_SHIFT;
2578 if (index == end_index) {
2579 nr = i_size & ~PAGE_MASK;
2580 if (nr <= offset) {
2581 if (page)
2582 put_page(page);
2583 break;
2584 }
2585 }
2586 nr -= offset;
2587
2588 if (page) {
2589 /*
2590 * If users can be writing to this page using arbitrary
2591 * virtual addresses, take care about potential aliasing
2592 * before reading the page on the kernel side.
2593 */
2594 if (mapping_writably_mapped(mapping))
2595 flush_dcache_page(page);
2596 /*
2597 * Mark the page accessed if we read the beginning.
2598 */
2599 if (!offset)
2600 mark_page_accessed(page);
2601 } else {
2602 page = ZERO_PAGE(0);
2603 get_page(page);
2604 }
2605
2606 /*
2607 * Ok, we have the page, and it's up-to-date, so
2608 * now we can copy it to user space...
2609 */
2610 ret = copy_page_to_iter(page, offset, nr, to);
2611 retval += ret;
2612 offset += ret;
2613 index += offset >> PAGE_SHIFT;
2614 offset &= ~PAGE_MASK;
2615
2616 put_page(page);
2617 if (!iov_iter_count(to))
2618 break;
2619 if (ret < nr) {
2620 error = -EFAULT;
2621 break;
2622 }
2623 cond_resched();
2624 }
2625
2626 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2627 file_accessed(file);
2628 return retval ? retval : error;
2629 }
2630
2631 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2632 {
2633 struct address_space *mapping = file->f_mapping;
2634 struct inode *inode = mapping->host;
2635
2636 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2637 return generic_file_llseek_size(file, offset, whence,
2638 MAX_LFS_FILESIZE, i_size_read(inode));
2639 if (offset < 0)
2640 return -ENXIO;
2641
2642 inode_lock(inode);
2643 /* We're holding i_mutex so we can access i_size directly */
2644 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2645 if (offset >= 0)
2646 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2647 inode_unlock(inode);
2648 return offset;
2649 }
2650
2651 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2652 loff_t len)
2653 {
2654 struct inode *inode = file_inode(file);
2655 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2656 struct shmem_inode_info *info = SHMEM_I(inode);
2657 struct shmem_falloc shmem_falloc;
2658 pgoff_t start, index, end;
2659 int error;
2660
2661 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2662 return -EOPNOTSUPP;
2663
2664 inode_lock(inode);
2665
2666 if (mode & FALLOC_FL_PUNCH_HOLE) {
2667 struct address_space *mapping = file->f_mapping;
2668 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2669 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2670 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2671
2672 /* protected by i_mutex */
2673 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2674 error = -EPERM;
2675 goto out;
2676 }
2677
2678 shmem_falloc.waitq = &shmem_falloc_waitq;
2679 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2680 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2681 spin_lock(&inode->i_lock);
2682 inode->i_private = &shmem_falloc;
2683 spin_unlock(&inode->i_lock);
2684
2685 if ((u64)unmap_end > (u64)unmap_start)
2686 unmap_mapping_range(mapping, unmap_start,
2687 1 + unmap_end - unmap_start, 0);
2688 shmem_truncate_range(inode, offset, offset + len - 1);
2689 /* No need to unmap again: hole-punching leaves COWed pages */
2690
2691 spin_lock(&inode->i_lock);
2692 inode->i_private = NULL;
2693 wake_up_all(&shmem_falloc_waitq);
2694 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2695 spin_unlock(&inode->i_lock);
2696 error = 0;
2697 goto out;
2698 }
2699
2700 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2701 error = inode_newsize_ok(inode, offset + len);
2702 if (error)
2703 goto out;
2704
2705 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2706 error = -EPERM;
2707 goto out;
2708 }
2709
2710 start = offset >> PAGE_SHIFT;
2711 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2712 /* Try to avoid a swapstorm if len is impossible to satisfy */
2713 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2714 error = -ENOSPC;
2715 goto out;
2716 }
2717
2718 shmem_falloc.waitq = NULL;
2719 shmem_falloc.start = start;
2720 shmem_falloc.next = start;
2721 shmem_falloc.nr_falloced = 0;
2722 shmem_falloc.nr_unswapped = 0;
2723 spin_lock(&inode->i_lock);
2724 inode->i_private = &shmem_falloc;
2725 spin_unlock(&inode->i_lock);
2726
2727 for (index = start; index < end; index++) {
2728 struct page *page;
2729
2730 /*
2731 * Good, the fallocate(2) manpage permits EINTR: we may have
2732 * been interrupted because we are using up too much memory.
2733 */
2734 if (signal_pending(current))
2735 error = -EINTR;
2736 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2737 error = -ENOMEM;
2738 else
2739 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2740 if (error) {
2741 /* Remove the !PageUptodate pages we added */
2742 if (index > start) {
2743 shmem_undo_range(inode,
2744 (loff_t)start << PAGE_SHIFT,
2745 ((loff_t)index << PAGE_SHIFT) - 1, true);
2746 }
2747 goto undone;
2748 }
2749
2750 /*
2751 * Inform shmem_writepage() how far we have reached.
2752 * No need for lock or barrier: we have the page lock.
2753 */
2754 shmem_falloc.next++;
2755 if (!PageUptodate(page))
2756 shmem_falloc.nr_falloced++;
2757
2758 /*
2759 * If !PageUptodate, leave it that way so that freeable pages
2760 * can be recognized if we need to rollback on error later.
2761 * But set_page_dirty so that memory pressure will swap rather
2762 * than free the pages we are allocating (and SGP_CACHE pages
2763 * might still be clean: we now need to mark those dirty too).
2764 */
2765 set_page_dirty(page);
2766 unlock_page(page);
2767 put_page(page);
2768 cond_resched();
2769 }
2770
2771 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2772 i_size_write(inode, offset + len);
2773 inode->i_ctime = current_time(inode);
2774 undone:
2775 spin_lock(&inode->i_lock);
2776 inode->i_private = NULL;
2777 spin_unlock(&inode->i_lock);
2778 out:
2779 inode_unlock(inode);
2780 return error;
2781 }
2782
2783 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2784 {
2785 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2786
2787 buf->f_type = TMPFS_MAGIC;
2788 buf->f_bsize = PAGE_SIZE;
2789 buf->f_namelen = NAME_MAX;
2790 if (sbinfo->max_blocks) {
2791 buf->f_blocks = sbinfo->max_blocks;
2792 buf->f_bavail =
2793 buf->f_bfree = sbinfo->max_blocks -
2794 percpu_counter_sum(&sbinfo->used_blocks);
2795 }
2796 if (sbinfo->max_inodes) {
2797 buf->f_files = sbinfo->max_inodes;
2798 buf->f_ffree = sbinfo->free_inodes;
2799 }
2800 /* else leave those fields 0 like simple_statfs */
2801
2802 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2803
2804 return 0;
2805 }
2806
2807 /*
2808 * File creation. Allocate an inode, and we're done..
2809 */
2810 static int
2811 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2812 struct dentry *dentry, umode_t mode, dev_t dev)
2813 {
2814 struct inode *inode;
2815 int error = -ENOSPC;
2816
2817 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2818 if (inode) {
2819 error = simple_acl_create(dir, inode);
2820 if (error)
2821 goto out_iput;
2822 error = security_inode_init_security(inode, dir,
2823 &dentry->d_name,
2824 shmem_initxattrs, NULL);
2825 if (error && error != -EOPNOTSUPP)
2826 goto out_iput;
2827
2828 error = 0;
2829 dir->i_size += BOGO_DIRENT_SIZE;
2830 dir->i_ctime = dir->i_mtime = current_time(dir);
2831 d_instantiate(dentry, inode);
2832 dget(dentry); /* Extra count - pin the dentry in core */
2833 }
2834 return error;
2835 out_iput:
2836 iput(inode);
2837 return error;
2838 }
2839
2840 static int
2841 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2842 struct dentry *dentry, umode_t mode)
2843 {
2844 struct inode *inode;
2845 int error = -ENOSPC;
2846
2847 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2848 if (inode) {
2849 error = security_inode_init_security(inode, dir,
2850 NULL,
2851 shmem_initxattrs, NULL);
2852 if (error && error != -EOPNOTSUPP)
2853 goto out_iput;
2854 error = simple_acl_create(dir, inode);
2855 if (error)
2856 goto out_iput;
2857 d_tmpfile(dentry, inode);
2858 }
2859 return error;
2860 out_iput:
2861 iput(inode);
2862 return error;
2863 }
2864
2865 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2866 struct dentry *dentry, umode_t mode)
2867 {
2868 int error;
2869
2870 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2871 mode | S_IFDIR, 0)))
2872 return error;
2873 inc_nlink(dir);
2874 return 0;
2875 }
2876
2877 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2878 struct dentry *dentry, umode_t mode, bool excl)
2879 {
2880 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2881 }
2882
2883 /*
2884 * Link a file..
2885 */
2886 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2887 {
2888 struct inode *inode = d_inode(old_dentry);
2889 int ret = 0;
2890
2891 /*
2892 * No ordinary (disk based) filesystem counts links as inodes;
2893 * but each new link needs a new dentry, pinning lowmem, and
2894 * tmpfs dentries cannot be pruned until they are unlinked.
2895 * But if an O_TMPFILE file is linked into the tmpfs, the
2896 * first link must skip that, to get the accounting right.
2897 */
2898 if (inode->i_nlink) {
2899 ret = shmem_reserve_inode(inode->i_sb, NULL);
2900 if (ret)
2901 goto out;
2902 }
2903
2904 dir->i_size += BOGO_DIRENT_SIZE;
2905 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2906 inc_nlink(inode);
2907 ihold(inode); /* New dentry reference */
2908 dget(dentry); /* Extra pinning count for the created dentry */
2909 d_instantiate(dentry, inode);
2910 out:
2911 return ret;
2912 }
2913
2914 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2915 {
2916 struct inode *inode = d_inode(dentry);
2917
2918 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2919 shmem_free_inode(inode->i_sb);
2920
2921 dir->i_size -= BOGO_DIRENT_SIZE;
2922 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2923 drop_nlink(inode);
2924 dput(dentry); /* Undo the count from "create" - this does all the work */
2925 return 0;
2926 }
2927
2928 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2929 {
2930 if (!simple_empty(dentry))
2931 return -ENOTEMPTY;
2932
2933 drop_nlink(d_inode(dentry));
2934 drop_nlink(dir);
2935 return shmem_unlink(dir, dentry);
2936 }
2937
2938 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2939 {
2940 bool old_is_dir = d_is_dir(old_dentry);
2941 bool new_is_dir = d_is_dir(new_dentry);
2942
2943 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2944 if (old_is_dir) {
2945 drop_nlink(old_dir);
2946 inc_nlink(new_dir);
2947 } else {
2948 drop_nlink(new_dir);
2949 inc_nlink(old_dir);
2950 }
2951 }
2952 old_dir->i_ctime = old_dir->i_mtime =
2953 new_dir->i_ctime = new_dir->i_mtime =
2954 d_inode(old_dentry)->i_ctime =
2955 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2956
2957 return 0;
2958 }
2959
2960 static int shmem_whiteout(struct user_namespace *mnt_userns,
2961 struct inode *old_dir, struct dentry *old_dentry)
2962 {
2963 struct dentry *whiteout;
2964 int error;
2965
2966 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2967 if (!whiteout)
2968 return -ENOMEM;
2969
2970 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2971 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2972 dput(whiteout);
2973 if (error)
2974 return error;
2975
2976 /*
2977 * Cheat and hash the whiteout while the old dentry is still in
2978 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2979 *
2980 * d_lookup() will consistently find one of them at this point,
2981 * not sure which one, but that isn't even important.
2982 */
2983 d_rehash(whiteout);
2984 return 0;
2985 }
2986
2987 /*
2988 * The VFS layer already does all the dentry stuff for rename,
2989 * we just have to decrement the usage count for the target if
2990 * it exists so that the VFS layer correctly free's it when it
2991 * gets overwritten.
2992 */
2993 static int shmem_rename2(struct user_namespace *mnt_userns,
2994 struct inode *old_dir, struct dentry *old_dentry,
2995 struct inode *new_dir, struct dentry *new_dentry,
2996 unsigned int flags)
2997 {
2998 struct inode *inode = d_inode(old_dentry);
2999 int they_are_dirs = S_ISDIR(inode->i_mode);
3000
3001 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3002 return -EINVAL;
3003
3004 if (flags & RENAME_EXCHANGE)
3005 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3006
3007 if (!simple_empty(new_dentry))
3008 return -ENOTEMPTY;
3009
3010 if (flags & RENAME_WHITEOUT) {
3011 int error;
3012
3013 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3014 if (error)
3015 return error;
3016 }
3017
3018 if (d_really_is_positive(new_dentry)) {
3019 (void) shmem_unlink(new_dir, new_dentry);
3020 if (they_are_dirs) {
3021 drop_nlink(d_inode(new_dentry));
3022 drop_nlink(old_dir);
3023 }
3024 } else if (they_are_dirs) {
3025 drop_nlink(old_dir);
3026 inc_nlink(new_dir);
3027 }
3028
3029 old_dir->i_size -= BOGO_DIRENT_SIZE;
3030 new_dir->i_size += BOGO_DIRENT_SIZE;
3031 old_dir->i_ctime = old_dir->i_mtime =
3032 new_dir->i_ctime = new_dir->i_mtime =
3033 inode->i_ctime = current_time(old_dir);
3034 return 0;
3035 }
3036
3037 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3038 struct dentry *dentry, const char *symname)
3039 {
3040 int error;
3041 int len;
3042 struct inode *inode;
3043 struct page *page;
3044
3045 len = strlen(symname) + 1;
3046 if (len > PAGE_SIZE)
3047 return -ENAMETOOLONG;
3048
3049 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3050 VM_NORESERVE);
3051 if (!inode)
3052 return -ENOSPC;
3053
3054 error = security_inode_init_security(inode, dir, &dentry->d_name,
3055 shmem_initxattrs, NULL);
3056 if (error && error != -EOPNOTSUPP) {
3057 iput(inode);
3058 return error;
3059 }
3060
3061 inode->i_size = len-1;
3062 if (len <= SHORT_SYMLINK_LEN) {
3063 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3064 if (!inode->i_link) {
3065 iput(inode);
3066 return -ENOMEM;
3067 }
3068 inode->i_op = &shmem_short_symlink_operations;
3069 } else {
3070 inode_nohighmem(inode);
3071 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3072 if (error) {
3073 iput(inode);
3074 return error;
3075 }
3076 inode->i_mapping->a_ops = &shmem_aops;
3077 inode->i_op = &shmem_symlink_inode_operations;
3078 memcpy(page_address(page), symname, len);
3079 SetPageUptodate(page);
3080 set_page_dirty(page);
3081 unlock_page(page);
3082 put_page(page);
3083 }
3084 dir->i_size += BOGO_DIRENT_SIZE;
3085 dir->i_ctime = dir->i_mtime = current_time(dir);
3086 d_instantiate(dentry, inode);
3087 dget(dentry);
3088 return 0;
3089 }
3090
3091 static void shmem_put_link(void *arg)
3092 {
3093 mark_page_accessed(arg);
3094 put_page(arg);
3095 }
3096
3097 static const char *shmem_get_link(struct dentry *dentry,
3098 struct inode *inode,
3099 struct delayed_call *done)
3100 {
3101 struct page *page = NULL;
3102 int error;
3103 if (!dentry) {
3104 page = find_get_page(inode->i_mapping, 0);
3105 if (!page)
3106 return ERR_PTR(-ECHILD);
3107 if (!PageUptodate(page)) {
3108 put_page(page);
3109 return ERR_PTR(-ECHILD);
3110 }
3111 } else {
3112 error = shmem_getpage(inode, 0, &page, SGP_READ);
3113 if (error)
3114 return ERR_PTR(error);
3115 unlock_page(page);
3116 }
3117 set_delayed_call(done, shmem_put_link, page);
3118 return page_address(page);
3119 }
3120
3121 #ifdef CONFIG_TMPFS_XATTR
3122 /*
3123 * Superblocks without xattr inode operations may get some security.* xattr
3124 * support from the LSM "for free". As soon as we have any other xattrs
3125 * like ACLs, we also need to implement the security.* handlers at
3126 * filesystem level, though.
3127 */
3128
3129 /*
3130 * Callback for security_inode_init_security() for acquiring xattrs.
3131 */
3132 static int shmem_initxattrs(struct inode *inode,
3133 const struct xattr *xattr_array,
3134 void *fs_info)
3135 {
3136 struct shmem_inode_info *info = SHMEM_I(inode);
3137 const struct xattr *xattr;
3138 struct simple_xattr *new_xattr;
3139 size_t len;
3140
3141 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3142 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3143 if (!new_xattr)
3144 return -ENOMEM;
3145
3146 len = strlen(xattr->name) + 1;
3147 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3148 GFP_KERNEL);
3149 if (!new_xattr->name) {
3150 kvfree(new_xattr);
3151 return -ENOMEM;
3152 }
3153
3154 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3155 XATTR_SECURITY_PREFIX_LEN);
3156 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3157 xattr->name, len);
3158
3159 simple_xattr_list_add(&info->xattrs, new_xattr);
3160 }
3161
3162 return 0;
3163 }
3164
3165 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3166 struct dentry *unused, struct inode *inode,
3167 const char *name, void *buffer, size_t size)
3168 {
3169 struct shmem_inode_info *info = SHMEM_I(inode);
3170
3171 name = xattr_full_name(handler, name);
3172 return simple_xattr_get(&info->xattrs, name, buffer, size);
3173 }
3174
3175 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3176 struct user_namespace *mnt_userns,
3177 struct dentry *unused, struct inode *inode,
3178 const char *name, const void *value,
3179 size_t size, int flags)
3180 {
3181 struct shmem_inode_info *info = SHMEM_I(inode);
3182
3183 name = xattr_full_name(handler, name);
3184 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3185 }
3186
3187 static const struct xattr_handler shmem_security_xattr_handler = {
3188 .prefix = XATTR_SECURITY_PREFIX,
3189 .get = shmem_xattr_handler_get,
3190 .set = shmem_xattr_handler_set,
3191 };
3192
3193 static const struct xattr_handler shmem_trusted_xattr_handler = {
3194 .prefix = XATTR_TRUSTED_PREFIX,
3195 .get = shmem_xattr_handler_get,
3196 .set = shmem_xattr_handler_set,
3197 };
3198
3199 static const struct xattr_handler *shmem_xattr_handlers[] = {
3200 #ifdef CONFIG_TMPFS_POSIX_ACL
3201 &posix_acl_access_xattr_handler,
3202 &posix_acl_default_xattr_handler,
3203 #endif
3204 &shmem_security_xattr_handler,
3205 &shmem_trusted_xattr_handler,
3206 NULL
3207 };
3208
3209 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3210 {
3211 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3212 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3213 }
3214 #endif /* CONFIG_TMPFS_XATTR */
3215
3216 static const struct inode_operations shmem_short_symlink_operations = {
3217 .get_link = simple_get_link,
3218 #ifdef CONFIG_TMPFS_XATTR
3219 .listxattr = shmem_listxattr,
3220 #endif
3221 };
3222
3223 static const struct inode_operations shmem_symlink_inode_operations = {
3224 .get_link = shmem_get_link,
3225 #ifdef CONFIG_TMPFS_XATTR
3226 .listxattr = shmem_listxattr,
3227 #endif
3228 };
3229
3230 static struct dentry *shmem_get_parent(struct dentry *child)
3231 {
3232 return ERR_PTR(-ESTALE);
3233 }
3234
3235 static int shmem_match(struct inode *ino, void *vfh)
3236 {
3237 __u32 *fh = vfh;
3238 __u64 inum = fh[2];
3239 inum = (inum << 32) | fh[1];
3240 return ino->i_ino == inum && fh[0] == ino->i_generation;
3241 }
3242
3243 /* Find any alias of inode, but prefer a hashed alias */
3244 static struct dentry *shmem_find_alias(struct inode *inode)
3245 {
3246 struct dentry *alias = d_find_alias(inode);
3247
3248 return alias ?: d_find_any_alias(inode);
3249 }
3250
3251
3252 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3253 struct fid *fid, int fh_len, int fh_type)
3254 {
3255 struct inode *inode;
3256 struct dentry *dentry = NULL;
3257 u64 inum;
3258
3259 if (fh_len < 3)
3260 return NULL;
3261
3262 inum = fid->raw[2];
3263 inum = (inum << 32) | fid->raw[1];
3264
3265 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3266 shmem_match, fid->raw);
3267 if (inode) {
3268 dentry = shmem_find_alias(inode);
3269 iput(inode);
3270 }
3271
3272 return dentry;
3273 }
3274
3275 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3276 struct inode *parent)
3277 {
3278 if (*len < 3) {
3279 *len = 3;
3280 return FILEID_INVALID;
3281 }
3282
3283 if (inode_unhashed(inode)) {
3284 /* Unfortunately insert_inode_hash is not idempotent,
3285 * so as we hash inodes here rather than at creation
3286 * time, we need a lock to ensure we only try
3287 * to do it once
3288 */
3289 static DEFINE_SPINLOCK(lock);
3290 spin_lock(&lock);
3291 if (inode_unhashed(inode))
3292 __insert_inode_hash(inode,
3293 inode->i_ino + inode->i_generation);
3294 spin_unlock(&lock);
3295 }
3296
3297 fh[0] = inode->i_generation;
3298 fh[1] = inode->i_ino;
3299 fh[2] = ((__u64)inode->i_ino) >> 32;
3300
3301 *len = 3;
3302 return 1;
3303 }
3304
3305 static const struct export_operations shmem_export_ops = {
3306 .get_parent = shmem_get_parent,
3307 .encode_fh = shmem_encode_fh,
3308 .fh_to_dentry = shmem_fh_to_dentry,
3309 };
3310
3311 enum shmem_param {
3312 Opt_gid,
3313 Opt_huge,
3314 Opt_mode,
3315 Opt_mpol,
3316 Opt_nr_blocks,
3317 Opt_nr_inodes,
3318 Opt_size,
3319 Opt_uid,
3320 Opt_inode32,
3321 Opt_inode64,
3322 };
3323
3324 static const struct constant_table shmem_param_enums_huge[] = {
3325 {"never", SHMEM_HUGE_NEVER },
3326 {"always", SHMEM_HUGE_ALWAYS },
3327 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3328 {"advise", SHMEM_HUGE_ADVISE },
3329 {}
3330 };
3331
3332 const struct fs_parameter_spec shmem_fs_parameters[] = {
3333 fsparam_u32 ("gid", Opt_gid),
3334 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3335 fsparam_u32oct("mode", Opt_mode),
3336 fsparam_string("mpol", Opt_mpol),
3337 fsparam_string("nr_blocks", Opt_nr_blocks),
3338 fsparam_string("nr_inodes", Opt_nr_inodes),
3339 fsparam_string("size", Opt_size),
3340 fsparam_u32 ("uid", Opt_uid),
3341 fsparam_flag ("inode32", Opt_inode32),
3342 fsparam_flag ("inode64", Opt_inode64),
3343 {}
3344 };
3345
3346 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3347 {
3348 struct shmem_options *ctx = fc->fs_private;
3349 struct fs_parse_result result;
3350 unsigned long long size;
3351 char *rest;
3352 int opt;
3353
3354 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3355 if (opt < 0)
3356 return opt;
3357
3358 switch (opt) {
3359 case Opt_size:
3360 size = memparse(param->string, &rest);
3361 if (*rest == '%') {
3362 size <<= PAGE_SHIFT;
3363 size *= totalram_pages();
3364 do_div(size, 100);
3365 rest++;
3366 }
3367 if (*rest)
3368 goto bad_value;
3369 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3370 ctx->seen |= SHMEM_SEEN_BLOCKS;
3371 break;
3372 case Opt_nr_blocks:
3373 ctx->blocks = memparse(param->string, &rest);
3374 if (*rest)
3375 goto bad_value;
3376 ctx->seen |= SHMEM_SEEN_BLOCKS;
3377 break;
3378 case Opt_nr_inodes:
3379 ctx->inodes = memparse(param->string, &rest);
3380 if (*rest)
3381 goto bad_value;
3382 ctx->seen |= SHMEM_SEEN_INODES;
3383 break;
3384 case Opt_mode:
3385 ctx->mode = result.uint_32 & 07777;
3386 break;
3387 case Opt_uid:
3388 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3389 if (!uid_valid(ctx->uid))
3390 goto bad_value;
3391 break;
3392 case Opt_gid:
3393 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3394 if (!gid_valid(ctx->gid))
3395 goto bad_value;
3396 break;
3397 case Opt_huge:
3398 ctx->huge = result.uint_32;
3399 if (ctx->huge != SHMEM_HUGE_NEVER &&
3400 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3401 has_transparent_hugepage()))
3402 goto unsupported_parameter;
3403 ctx->seen |= SHMEM_SEEN_HUGE;
3404 break;
3405 case Opt_mpol:
3406 if (IS_ENABLED(CONFIG_NUMA)) {
3407 mpol_put(ctx->mpol);
3408 ctx->mpol = NULL;
3409 if (mpol_parse_str(param->string, &ctx->mpol))
3410 goto bad_value;
3411 break;
3412 }
3413 goto unsupported_parameter;
3414 case Opt_inode32:
3415 ctx->full_inums = false;
3416 ctx->seen |= SHMEM_SEEN_INUMS;
3417 break;
3418 case Opt_inode64:
3419 if (sizeof(ino_t) < 8) {
3420 return invalfc(fc,
3421 "Cannot use inode64 with <64bit inums in kernel\n");
3422 }
3423 ctx->full_inums = true;
3424 ctx->seen |= SHMEM_SEEN_INUMS;
3425 break;
3426 }
3427 return 0;
3428
3429 unsupported_parameter:
3430 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3431 bad_value:
3432 return invalfc(fc, "Bad value for '%s'", param->key);
3433 }
3434
3435 static int shmem_parse_options(struct fs_context *fc, void *data)
3436 {
3437 char *options = data;
3438
3439 if (options) {
3440 int err = security_sb_eat_lsm_opts(options, &fc->security);
3441 if (err)
3442 return err;
3443 }
3444
3445 while (options != NULL) {
3446 char *this_char = options;
3447 for (;;) {
3448 /*
3449 * NUL-terminate this option: unfortunately,
3450 * mount options form a comma-separated list,
3451 * but mpol's nodelist may also contain commas.
3452 */
3453 options = strchr(options, ',');
3454 if (options == NULL)
3455 break;
3456 options++;
3457 if (!isdigit(*options)) {
3458 options[-1] = '\0';
3459 break;
3460 }
3461 }
3462 if (*this_char) {
3463 char *value = strchr(this_char, '=');
3464 size_t len = 0;
3465 int err;
3466
3467 if (value) {
3468 *value++ = '\0';
3469 len = strlen(value);
3470 }
3471 err = vfs_parse_fs_string(fc, this_char, value, len);
3472 if (err < 0)
3473 return err;
3474 }
3475 }
3476 return 0;
3477 }
3478
3479 /*
3480 * Reconfigure a shmem filesystem.
3481 *
3482 * Note that we disallow change from limited->unlimited blocks/inodes while any
3483 * are in use; but we must separately disallow unlimited->limited, because in
3484 * that case we have no record of how much is already in use.
3485 */
3486 static int shmem_reconfigure(struct fs_context *fc)
3487 {
3488 struct shmem_options *ctx = fc->fs_private;
3489 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3490 unsigned long inodes;
3491 const char *err;
3492
3493 spin_lock(&sbinfo->stat_lock);
3494 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3495 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3496 if (!sbinfo->max_blocks) {
3497 err = "Cannot retroactively limit size";
3498 goto out;
3499 }
3500 if (percpu_counter_compare(&sbinfo->used_blocks,
3501 ctx->blocks) > 0) {
3502 err = "Too small a size for current use";
3503 goto out;
3504 }
3505 }
3506 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3507 if (!sbinfo->max_inodes) {
3508 err = "Cannot retroactively limit inodes";
3509 goto out;
3510 }
3511 if (ctx->inodes < inodes) {
3512 err = "Too few inodes for current use";
3513 goto out;
3514 }
3515 }
3516
3517 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3518 sbinfo->next_ino > UINT_MAX) {
3519 err = "Current inum too high to switch to 32-bit inums";
3520 goto out;
3521 }
3522
3523 if (ctx->seen & SHMEM_SEEN_HUGE)
3524 sbinfo->huge = ctx->huge;
3525 if (ctx->seen & SHMEM_SEEN_INUMS)
3526 sbinfo->full_inums = ctx->full_inums;
3527 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3528 sbinfo->max_blocks = ctx->blocks;
3529 if (ctx->seen & SHMEM_SEEN_INODES) {
3530 sbinfo->max_inodes = ctx->inodes;
3531 sbinfo->free_inodes = ctx->inodes - inodes;
3532 }
3533
3534 /*
3535 * Preserve previous mempolicy unless mpol remount option was specified.
3536 */
3537 if (ctx->mpol) {
3538 mpol_put(sbinfo->mpol);
3539 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3540 ctx->mpol = NULL;
3541 }
3542 spin_unlock(&sbinfo->stat_lock);
3543 return 0;
3544 out:
3545 spin_unlock(&sbinfo->stat_lock);
3546 return invalfc(fc, "%s", err);
3547 }
3548
3549 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3550 {
3551 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3552
3553 if (sbinfo->max_blocks != shmem_default_max_blocks())
3554 seq_printf(seq, ",size=%luk",
3555 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3556 if (sbinfo->max_inodes != shmem_default_max_inodes())
3557 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3558 if (sbinfo->mode != (0777 | S_ISVTX))
3559 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3560 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3561 seq_printf(seq, ",uid=%u",
3562 from_kuid_munged(&init_user_ns, sbinfo->uid));
3563 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3564 seq_printf(seq, ",gid=%u",
3565 from_kgid_munged(&init_user_ns, sbinfo->gid));
3566
3567 /*
3568 * Showing inode{64,32} might be useful even if it's the system default,
3569 * since then people don't have to resort to checking both here and
3570 * /proc/config.gz to confirm 64-bit inums were successfully applied
3571 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3572 *
3573 * We hide it when inode64 isn't the default and we are using 32-bit
3574 * inodes, since that probably just means the feature isn't even under
3575 * consideration.
3576 *
3577 * As such:
3578 *
3579 * +-----------------+-----------------+
3580 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3581 * +------------------+-----------------+-----------------+
3582 * | full_inums=true | show | show |
3583 * | full_inums=false | show | hide |
3584 * +------------------+-----------------+-----------------+
3585 *
3586 */
3587 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3588 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3589 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3590 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3591 if (sbinfo->huge)
3592 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3593 #endif
3594 shmem_show_mpol(seq, sbinfo->mpol);
3595 return 0;
3596 }
3597
3598 #endif /* CONFIG_TMPFS */
3599
3600 static void shmem_put_super(struct super_block *sb)
3601 {
3602 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3603
3604 free_percpu(sbinfo->ino_batch);
3605 percpu_counter_destroy(&sbinfo->used_blocks);
3606 mpol_put(sbinfo->mpol);
3607 kfree(sbinfo);
3608 sb->s_fs_info = NULL;
3609 }
3610
3611 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3612 {
3613 struct shmem_options *ctx = fc->fs_private;
3614 struct inode *inode;
3615 struct shmem_sb_info *sbinfo;
3616 int err = -ENOMEM;
3617
3618 /* Round up to L1_CACHE_BYTES to resist false sharing */
3619 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3620 L1_CACHE_BYTES), GFP_KERNEL);
3621 if (!sbinfo)
3622 return -ENOMEM;
3623
3624 sb->s_fs_info = sbinfo;
3625
3626 #ifdef CONFIG_TMPFS
3627 /*
3628 * Per default we only allow half of the physical ram per
3629 * tmpfs instance, limiting inodes to one per page of lowmem;
3630 * but the internal instance is left unlimited.
3631 */
3632 if (!(sb->s_flags & SB_KERNMOUNT)) {
3633 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3634 ctx->blocks = shmem_default_max_blocks();
3635 if (!(ctx->seen & SHMEM_SEEN_INODES))
3636 ctx->inodes = shmem_default_max_inodes();
3637 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3638 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3639 } else {
3640 sb->s_flags |= SB_NOUSER;
3641 }
3642 sb->s_export_op = &shmem_export_ops;
3643 sb->s_flags |= SB_NOSEC;
3644 #else
3645 sb->s_flags |= SB_NOUSER;
3646 #endif
3647 sbinfo->max_blocks = ctx->blocks;
3648 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3649 if (sb->s_flags & SB_KERNMOUNT) {
3650 sbinfo->ino_batch = alloc_percpu(ino_t);
3651 if (!sbinfo->ino_batch)
3652 goto failed;
3653 }
3654 sbinfo->uid = ctx->uid;
3655 sbinfo->gid = ctx->gid;
3656 sbinfo->full_inums = ctx->full_inums;
3657 sbinfo->mode = ctx->mode;
3658 sbinfo->huge = ctx->huge;
3659 sbinfo->mpol = ctx->mpol;
3660 ctx->mpol = NULL;
3661
3662 spin_lock_init(&sbinfo->stat_lock);
3663 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3664 goto failed;
3665 spin_lock_init(&sbinfo->shrinklist_lock);
3666 INIT_LIST_HEAD(&sbinfo->shrinklist);
3667
3668 sb->s_maxbytes = MAX_LFS_FILESIZE;
3669 sb->s_blocksize = PAGE_SIZE;
3670 sb->s_blocksize_bits = PAGE_SHIFT;
3671 sb->s_magic = TMPFS_MAGIC;
3672 sb->s_op = &shmem_ops;
3673 sb->s_time_gran = 1;
3674 #ifdef CONFIG_TMPFS_XATTR
3675 sb->s_xattr = shmem_xattr_handlers;
3676 #endif
3677 #ifdef CONFIG_TMPFS_POSIX_ACL
3678 sb->s_flags |= SB_POSIXACL;
3679 #endif
3680 uuid_gen(&sb->s_uuid);
3681
3682 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3683 if (!inode)
3684 goto failed;
3685 inode->i_uid = sbinfo->uid;
3686 inode->i_gid = sbinfo->gid;
3687 sb->s_root = d_make_root(inode);
3688 if (!sb->s_root)
3689 goto failed;
3690 return 0;
3691
3692 failed:
3693 shmem_put_super(sb);
3694 return err;
3695 }
3696
3697 static int shmem_get_tree(struct fs_context *fc)
3698 {
3699 return get_tree_nodev(fc, shmem_fill_super);
3700 }
3701
3702 static void shmem_free_fc(struct fs_context *fc)
3703 {
3704 struct shmem_options *ctx = fc->fs_private;
3705
3706 if (ctx) {
3707 mpol_put(ctx->mpol);
3708 kfree(ctx);
3709 }
3710 }
3711
3712 static const struct fs_context_operations shmem_fs_context_ops = {
3713 .free = shmem_free_fc,
3714 .get_tree = shmem_get_tree,
3715 #ifdef CONFIG_TMPFS
3716 .parse_monolithic = shmem_parse_options,
3717 .parse_param = shmem_parse_one,
3718 .reconfigure = shmem_reconfigure,
3719 #endif
3720 };
3721
3722 static struct kmem_cache *shmem_inode_cachep;
3723
3724 static struct inode *shmem_alloc_inode(struct super_block *sb)
3725 {
3726 struct shmem_inode_info *info;
3727 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3728 if (!info)
3729 return NULL;
3730 return &info->vfs_inode;
3731 }
3732
3733 static void shmem_free_in_core_inode(struct inode *inode)
3734 {
3735 if (S_ISLNK(inode->i_mode))
3736 kfree(inode->i_link);
3737 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3738 }
3739
3740 static void shmem_destroy_inode(struct inode *inode)
3741 {
3742 if (S_ISREG(inode->i_mode))
3743 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3744 }
3745
3746 static void shmem_init_inode(void *foo)
3747 {
3748 struct shmem_inode_info *info = foo;
3749 inode_init_once(&info->vfs_inode);
3750 }
3751
3752 static void shmem_init_inodecache(void)
3753 {
3754 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3755 sizeof(struct shmem_inode_info),
3756 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3757 }
3758
3759 static void shmem_destroy_inodecache(void)
3760 {
3761 kmem_cache_destroy(shmem_inode_cachep);
3762 }
3763
3764 const struct address_space_operations shmem_aops = {
3765 .writepage = shmem_writepage,
3766 .set_page_dirty = __set_page_dirty_no_writeback,
3767 #ifdef CONFIG_TMPFS
3768 .write_begin = shmem_write_begin,
3769 .write_end = shmem_write_end,
3770 #endif
3771 #ifdef CONFIG_MIGRATION
3772 .migratepage = migrate_page,
3773 #endif
3774 .error_remove_page = generic_error_remove_page,
3775 };
3776 EXPORT_SYMBOL(shmem_aops);
3777
3778 static const struct file_operations shmem_file_operations = {
3779 .mmap = shmem_mmap,
3780 .get_unmapped_area = shmem_get_unmapped_area,
3781 #ifdef CONFIG_TMPFS
3782 .llseek = shmem_file_llseek,
3783 .read_iter = shmem_file_read_iter,
3784 .write_iter = generic_file_write_iter,
3785 .fsync = noop_fsync,
3786 .splice_read = generic_file_splice_read,
3787 .splice_write = iter_file_splice_write,
3788 .fallocate = shmem_fallocate,
3789 #endif
3790 };
3791
3792 static const struct inode_operations shmem_inode_operations = {
3793 .getattr = shmem_getattr,
3794 .setattr = shmem_setattr,
3795 #ifdef CONFIG_TMPFS_XATTR
3796 .listxattr = shmem_listxattr,
3797 .set_acl = simple_set_acl,
3798 #endif
3799 };
3800
3801 static const struct inode_operations shmem_dir_inode_operations = {
3802 #ifdef CONFIG_TMPFS
3803 .create = shmem_create,
3804 .lookup = simple_lookup,
3805 .link = shmem_link,
3806 .unlink = shmem_unlink,
3807 .symlink = shmem_symlink,
3808 .mkdir = shmem_mkdir,
3809 .rmdir = shmem_rmdir,
3810 .mknod = shmem_mknod,
3811 .rename = shmem_rename2,
3812 .tmpfile = shmem_tmpfile,
3813 #endif
3814 #ifdef CONFIG_TMPFS_XATTR
3815 .listxattr = shmem_listxattr,
3816 #endif
3817 #ifdef CONFIG_TMPFS_POSIX_ACL
3818 .setattr = shmem_setattr,
3819 .set_acl = simple_set_acl,
3820 #endif
3821 };
3822
3823 static const struct inode_operations shmem_special_inode_operations = {
3824 #ifdef CONFIG_TMPFS_XATTR
3825 .listxattr = shmem_listxattr,
3826 #endif
3827 #ifdef CONFIG_TMPFS_POSIX_ACL
3828 .setattr = shmem_setattr,
3829 .set_acl = simple_set_acl,
3830 #endif
3831 };
3832
3833 static const struct super_operations shmem_ops = {
3834 .alloc_inode = shmem_alloc_inode,
3835 .free_inode = shmem_free_in_core_inode,
3836 .destroy_inode = shmem_destroy_inode,
3837 #ifdef CONFIG_TMPFS
3838 .statfs = shmem_statfs,
3839 .show_options = shmem_show_options,
3840 #endif
3841 .evict_inode = shmem_evict_inode,
3842 .drop_inode = generic_delete_inode,
3843 .put_super = shmem_put_super,
3844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3845 .nr_cached_objects = shmem_unused_huge_count,
3846 .free_cached_objects = shmem_unused_huge_scan,
3847 #endif
3848 };
3849
3850 static const struct vm_operations_struct shmem_vm_ops = {
3851 .fault = shmem_fault,
3852 .map_pages = filemap_map_pages,
3853 #ifdef CONFIG_NUMA
3854 .set_policy = shmem_set_policy,
3855 .get_policy = shmem_get_policy,
3856 #endif
3857 };
3858
3859 int shmem_init_fs_context(struct fs_context *fc)
3860 {
3861 struct shmem_options *ctx;
3862
3863 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3864 if (!ctx)
3865 return -ENOMEM;
3866
3867 ctx->mode = 0777 | S_ISVTX;
3868 ctx->uid = current_fsuid();
3869 ctx->gid = current_fsgid();
3870
3871 fc->fs_private = ctx;
3872 fc->ops = &shmem_fs_context_ops;
3873 return 0;
3874 }
3875
3876 static struct file_system_type shmem_fs_type = {
3877 .owner = THIS_MODULE,
3878 .name = "tmpfs",
3879 .init_fs_context = shmem_init_fs_context,
3880 #ifdef CONFIG_TMPFS
3881 .parameters = shmem_fs_parameters,
3882 #endif
3883 .kill_sb = kill_litter_super,
3884 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3885 };
3886
3887 int __init shmem_init(void)
3888 {
3889 int error;
3890
3891 shmem_init_inodecache();
3892
3893 error = register_filesystem(&shmem_fs_type);
3894 if (error) {
3895 pr_err("Could not register tmpfs\n");
3896 goto out2;
3897 }
3898
3899 shm_mnt = kern_mount(&shmem_fs_type);
3900 if (IS_ERR(shm_mnt)) {
3901 error = PTR_ERR(shm_mnt);
3902 pr_err("Could not kern_mount tmpfs\n");
3903 goto out1;
3904 }
3905
3906 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3907 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3908 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3909 else
3910 shmem_huge = 0; /* just in case it was patched */
3911 #endif
3912 return 0;
3913
3914 out1:
3915 unregister_filesystem(&shmem_fs_type);
3916 out2:
3917 shmem_destroy_inodecache();
3918 shm_mnt = ERR_PTR(error);
3919 return error;
3920 }
3921
3922 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3923 static ssize_t shmem_enabled_show(struct kobject *kobj,
3924 struct kobj_attribute *attr, char *buf)
3925 {
3926 static const int values[] = {
3927 SHMEM_HUGE_ALWAYS,
3928 SHMEM_HUGE_WITHIN_SIZE,
3929 SHMEM_HUGE_ADVISE,
3930 SHMEM_HUGE_NEVER,
3931 SHMEM_HUGE_DENY,
3932 SHMEM_HUGE_FORCE,
3933 };
3934 int len = 0;
3935 int i;
3936
3937 for (i = 0; i < ARRAY_SIZE(values); i++) {
3938 len += sysfs_emit_at(buf, len,
3939 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3940 i ? " " : "",
3941 shmem_format_huge(values[i]));
3942 }
3943
3944 len += sysfs_emit_at(buf, len, "\n");
3945
3946 return len;
3947 }
3948
3949 static ssize_t shmem_enabled_store(struct kobject *kobj,
3950 struct kobj_attribute *attr, const char *buf, size_t count)
3951 {
3952 char tmp[16];
3953 int huge;
3954
3955 if (count + 1 > sizeof(tmp))
3956 return -EINVAL;
3957 memcpy(tmp, buf, count);
3958 tmp[count] = '\0';
3959 if (count && tmp[count - 1] == '\n')
3960 tmp[count - 1] = '\0';
3961
3962 huge = shmem_parse_huge(tmp);
3963 if (huge == -EINVAL)
3964 return -EINVAL;
3965 if (!has_transparent_hugepage() &&
3966 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3967 return -EINVAL;
3968
3969 shmem_huge = huge;
3970 if (shmem_huge > SHMEM_HUGE_DENY)
3971 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3972 return count;
3973 }
3974
3975 struct kobj_attribute shmem_enabled_attr =
3976 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3977 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3978
3979 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3980 bool shmem_huge_enabled(struct vm_area_struct *vma)
3981 {
3982 struct inode *inode = file_inode(vma->vm_file);
3983 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3984 loff_t i_size;
3985 pgoff_t off;
3986
3987 if (!transhuge_vma_enabled(vma, vma->vm_flags))
3988 return false;
3989 if (shmem_huge == SHMEM_HUGE_FORCE)
3990 return true;
3991 if (shmem_huge == SHMEM_HUGE_DENY)
3992 return false;
3993 switch (sbinfo->huge) {
3994 case SHMEM_HUGE_NEVER:
3995 return false;
3996 case SHMEM_HUGE_ALWAYS:
3997 return true;
3998 case SHMEM_HUGE_WITHIN_SIZE:
3999 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4000 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4001 if (i_size >= HPAGE_PMD_SIZE &&
4002 i_size >> PAGE_SHIFT >= off)
4003 return true;
4004 fallthrough;
4005 case SHMEM_HUGE_ADVISE:
4006 /* TODO: implement fadvise() hints */
4007 return (vma->vm_flags & VM_HUGEPAGE);
4008 default:
4009 VM_BUG_ON(1);
4010 return false;
4011 }
4012 }
4013 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4014
4015 #else /* !CONFIG_SHMEM */
4016
4017 /*
4018 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4019 *
4020 * This is intended for small system where the benefits of the full
4021 * shmem code (swap-backed and resource-limited) are outweighed by
4022 * their complexity. On systems without swap this code should be
4023 * effectively equivalent, but much lighter weight.
4024 */
4025
4026 static struct file_system_type shmem_fs_type = {
4027 .name = "tmpfs",
4028 .init_fs_context = ramfs_init_fs_context,
4029 .parameters = ramfs_fs_parameters,
4030 .kill_sb = kill_litter_super,
4031 .fs_flags = FS_USERNS_MOUNT,
4032 };
4033
4034 int __init shmem_init(void)
4035 {
4036 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4037
4038 shm_mnt = kern_mount(&shmem_fs_type);
4039 BUG_ON(IS_ERR(shm_mnt));
4040
4041 return 0;
4042 }
4043
4044 int shmem_unuse(unsigned int type, bool frontswap,
4045 unsigned long *fs_pages_to_unuse)
4046 {
4047 return 0;
4048 }
4049
4050 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4051 {
4052 return 0;
4053 }
4054
4055 void shmem_unlock_mapping(struct address_space *mapping)
4056 {
4057 }
4058
4059 #ifdef CONFIG_MMU
4060 unsigned long shmem_get_unmapped_area(struct file *file,
4061 unsigned long addr, unsigned long len,
4062 unsigned long pgoff, unsigned long flags)
4063 {
4064 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4065 }
4066 #endif
4067
4068 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4069 {
4070 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4071 }
4072 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4073
4074 #define shmem_vm_ops generic_file_vm_ops
4075 #define shmem_file_operations ramfs_file_operations
4076 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4077 #define shmem_acct_size(flags, size) 0
4078 #define shmem_unacct_size(flags, size) do {} while (0)
4079
4080 #endif /* CONFIG_SHMEM */
4081
4082 /* common code */
4083
4084 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4085 unsigned long flags, unsigned int i_flags)
4086 {
4087 struct inode *inode;
4088 struct file *res;
4089
4090 if (IS_ERR(mnt))
4091 return ERR_CAST(mnt);
4092
4093 if (size < 0 || size > MAX_LFS_FILESIZE)
4094 return ERR_PTR(-EINVAL);
4095
4096 if (shmem_acct_size(flags, size))
4097 return ERR_PTR(-ENOMEM);
4098
4099 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4100 flags);
4101 if (unlikely(!inode)) {
4102 shmem_unacct_size(flags, size);
4103 return ERR_PTR(-ENOSPC);
4104 }
4105 inode->i_flags |= i_flags;
4106 inode->i_size = size;
4107 clear_nlink(inode); /* It is unlinked */
4108 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4109 if (!IS_ERR(res))
4110 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4111 &shmem_file_operations);
4112 if (IS_ERR(res))
4113 iput(inode);
4114 return res;
4115 }
4116
4117 /**
4118 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4119 * kernel internal. There will be NO LSM permission checks against the
4120 * underlying inode. So users of this interface must do LSM checks at a
4121 * higher layer. The users are the big_key and shm implementations. LSM
4122 * checks are provided at the key or shm level rather than the inode.
4123 * @name: name for dentry (to be seen in /proc/<pid>/maps
4124 * @size: size to be set for the file
4125 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4126 */
4127 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4128 {
4129 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4130 }
4131
4132 /**
4133 * shmem_file_setup - get an unlinked file living in tmpfs
4134 * @name: name for dentry (to be seen in /proc/<pid>/maps
4135 * @size: size to be set for the file
4136 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4137 */
4138 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4139 {
4140 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4141 }
4142 EXPORT_SYMBOL_GPL(shmem_file_setup);
4143
4144 /**
4145 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4146 * @mnt: the tmpfs mount where the file will be created
4147 * @name: name for dentry (to be seen in /proc/<pid>/maps
4148 * @size: size to be set for the file
4149 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4150 */
4151 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4152 loff_t size, unsigned long flags)
4153 {
4154 return __shmem_file_setup(mnt, name, size, flags, 0);
4155 }
4156 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4157
4158 /**
4159 * shmem_zero_setup - setup a shared anonymous mapping
4160 * @vma: the vma to be mmapped is prepared by do_mmap
4161 */
4162 int shmem_zero_setup(struct vm_area_struct *vma)
4163 {
4164 struct file *file;
4165 loff_t size = vma->vm_end - vma->vm_start;
4166
4167 /*
4168 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4169 * between XFS directory reading and selinux: since this file is only
4170 * accessible to the user through its mapping, use S_PRIVATE flag to
4171 * bypass file security, in the same way as shmem_kernel_file_setup().
4172 */
4173 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4174 if (IS_ERR(file))
4175 return PTR_ERR(file);
4176
4177 if (vma->vm_file)
4178 fput(vma->vm_file);
4179 vma->vm_file = file;
4180 vma->vm_ops = &shmem_vm_ops;
4181
4182 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4183 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4184 (vma->vm_end & HPAGE_PMD_MASK)) {
4185 khugepaged_enter(vma, vma->vm_flags);
4186 }
4187
4188 return 0;
4189 }
4190
4191 /**
4192 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4193 * @mapping: the page's address_space
4194 * @index: the page index
4195 * @gfp: the page allocator flags to use if allocating
4196 *
4197 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4198 * with any new page allocations done using the specified allocation flags.
4199 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4200 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4201 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4202 *
4203 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4204 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4205 */
4206 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4207 pgoff_t index, gfp_t gfp)
4208 {
4209 #ifdef CONFIG_SHMEM
4210 struct inode *inode = mapping->host;
4211 struct page *page;
4212 int error;
4213
4214 BUG_ON(!shmem_mapping(mapping));
4215 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4216 gfp, NULL, NULL, NULL);
4217 if (error)
4218 page = ERR_PTR(error);
4219 else
4220 unlock_page(page);
4221 return page;
4222 #else
4223 /*
4224 * The tiny !SHMEM case uses ramfs without swap
4225 */
4226 return read_cache_page_gfp(mapping, index, gfp);
4227 #endif
4228 }
4229 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);