]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/shmem.c
Merge branch 'x86/srbds' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[mirror_ubuntu-hirsute-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97
98 /*
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
102 */
103 struct shmem_falloc {
104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109 };
110
111 struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
115 kuid_t uid;
116 kgid_t gid;
117 umode_t mode;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp,
148 gfp_t gfp, struct vm_area_struct *vma,
149 struct vm_fault *vmf, vm_fault_t *fault_type);
150
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152 struct page **pagep, enum sgp_type sgp)
153 {
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160 return sb->s_fs_info;
161 }
162
163 /*
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
168 */
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171 return (flags & VM_NORESERVE) ?
172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177 if (!(flags & VM_NORESERVE))
178 vm_unacct_memory(VM_ACCT(size));
179 }
180
181 static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
183 {
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 }
191 return 0;
192 }
193
194 /*
195 * ... whereas tmpfs objects are accounted incrementally as
196 * pages are allocated, in order to allow large sparse files.
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199 */
200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202 if (!(flags & VM_NORESERVE))
203 return 0;
204
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
207 }
208
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211 if (flags & VM_NORESERVE)
212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (shmem_acct_block(info->flags, pages))
221 return false;
222
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
226 goto unacct;
227 percpu_counter_add(&sbinfo->used_blocks, pages);
228 }
229
230 return true;
231
232 unacct:
233 shmem_unacct_blocks(info->flags, pages);
234 return false;
235 }
236
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
245 }
246
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255
256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258 return vma->vm_ops == &shmem_vm_ops;
259 }
260
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263
264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
271 return -ENOSPC;
272 }
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
275 }
276 return 0;
277 }
278
279 static void shmem_free_inode(struct super_block *sb)
280 {
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
286 }
287 }
288
289 /**
290 * shmem_recalc_inode - recalculate the block usage of an inode
291 * @inode: inode to recalc
292 *
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
295 *
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298 *
299 * It has to be called with the spinlock held.
300 */
301 static void shmem_recalc_inode(struct inode *inode)
302 {
303 struct shmem_inode_info *info = SHMEM_I(inode);
304 long freed;
305
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 if (freed > 0) {
308 info->alloced -= freed;
309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 shmem_inode_unacct_blocks(inode, freed);
311 }
312 }
313
314 bool shmem_charge(struct inode *inode, long pages)
315 {
316 struct shmem_inode_info *info = SHMEM_I(inode);
317 unsigned long flags;
318
319 if (!shmem_inode_acct_block(inode, pages))
320 return false;
321
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
324
325 spin_lock_irqsave(&info->lock, flags);
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
329 spin_unlock_irqrestore(&info->lock, flags);
330
331 return true;
332 }
333
334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336 struct shmem_inode_info *info = SHMEM_I(inode);
337 unsigned long flags;
338
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341 spin_lock_irqsave(&info->lock, flags);
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
345 spin_unlock_irqrestore(&info->lock, flags);
346
347 shmem_inode_unacct_blocks(inode, pages);
348 }
349
350 /*
351 * Replace item expected in xarray by a new item, while holding xa_lock.
352 */
353 static int shmem_replace_entry(struct address_space *mapping,
354 pgoff_t index, void *expected, void *replacement)
355 {
356 XA_STATE(xas, &mapping->i_pages, index);
357 void *item;
358
359 VM_BUG_ON(!expected);
360 VM_BUG_ON(!replacement);
361 item = xas_load(&xas);
362 if (item != expected)
363 return -ENOENT;
364 xas_store(&xas, replacement);
365 return 0;
366 }
367
368 /*
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
371 *
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
374 */
375 static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
377 {
378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380
381 /*
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383 *
384 * SHMEM_HUGE_NEVER:
385 * disables huge pages for the mount;
386 * SHMEM_HUGE_ALWAYS:
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
391 * SHMEM_HUGE_ADVISE:
392 * only allocate huge pages if requested with fadvise()/madvise();
393 */
394
395 #define SHMEM_HUGE_NEVER 0
396 #define SHMEM_HUGE_ALWAYS 1
397 #define SHMEM_HUGE_WITHIN_SIZE 2
398 #define SHMEM_HUGE_ADVISE 3
399
400 /*
401 * Special values.
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403 *
404 * SHMEM_HUGE_DENY:
405 * disables huge on shm_mnt and all mounts, for emergency use;
406 * SHMEM_HUGE_FORCE:
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408 *
409 */
410 #define SHMEM_HUGE_DENY (-1)
411 #define SHMEM_HUGE_FORCE (-2)
412
413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415
416 static int shmem_huge __read_mostly;
417
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
420 {
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
433 return -EINVAL;
434 }
435 #endif
436
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
439 {
440 switch (huge) {
441 case SHMEM_HUGE_NEVER:
442 return "never";
443 case SHMEM_HUGE_ALWAYS:
444 return "always";
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
448 return "advise";
449 case SHMEM_HUGE_DENY:
450 return "deny";
451 case SHMEM_HUGE_FORCE:
452 return "force";
453 default:
454 VM_BUG_ON(1);
455 return "bad_val";
456 }
457 }
458 #endif
459
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
462 {
463 LIST_HEAD(list), *pos, *next;
464 LIST_HEAD(to_remove);
465 struct inode *inode;
466 struct shmem_inode_info *info;
467 struct page *page;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int removed = 0, split = 0;
470
471 if (list_empty(&sbinfo->shrinklist))
472 return SHRINK_STOP;
473
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478 /* pin the inode */
479 inode = igrab(&info->vfs_inode);
480
481 /* inode is about to be evicted */
482 if (!inode) {
483 list_del_init(&info->shrinklist);
484 removed++;
485 goto next;
486 }
487
488 /* Check if there's anything to gain */
489 if (round_up(inode->i_size, PAGE_SIZE) ==
490 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491 list_move(&info->shrinklist, &to_remove);
492 removed++;
493 goto next;
494 }
495
496 list_move(&info->shrinklist, &list);
497 next:
498 if (!--batch)
499 break;
500 }
501 spin_unlock(&sbinfo->shrinklist_lock);
502
503 list_for_each_safe(pos, next, &to_remove) {
504 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 inode = &info->vfs_inode;
506 list_del_init(&info->shrinklist);
507 iput(inode);
508 }
509
510 list_for_each_safe(pos, next, &list) {
511 int ret;
512
513 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 inode = &info->vfs_inode;
515
516 if (nr_to_split && split >= nr_to_split)
517 goto leave;
518
519 page = find_get_page(inode->i_mapping,
520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521 if (!page)
522 goto drop;
523
524 /* No huge page at the end of the file: nothing to split */
525 if (!PageTransHuge(page)) {
526 put_page(page);
527 goto drop;
528 }
529
530 /*
531 * Leave the inode on the list if we failed to lock
532 * the page at this time.
533 *
534 * Waiting for the lock may lead to deadlock in the
535 * reclaim path.
536 */
537 if (!trylock_page(page)) {
538 put_page(page);
539 goto leave;
540 }
541
542 ret = split_huge_page(page);
543 unlock_page(page);
544 put_page(page);
545
546 /* If split failed leave the inode on the list */
547 if (ret)
548 goto leave;
549
550 split++;
551 drop:
552 list_del_init(&info->shrinklist);
553 removed++;
554 leave:
555 iput(inode);
556 }
557
558 spin_lock(&sbinfo->shrinklist_lock);
559 list_splice_tail(&list, &sbinfo->shrinklist);
560 sbinfo->shrinklist_len -= removed;
561 spin_unlock(&sbinfo->shrinklist_lock);
562
563 return split;
564 }
565
566 static long shmem_unused_huge_scan(struct super_block *sb,
567 struct shrink_control *sc)
568 {
569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571 if (!READ_ONCE(sbinfo->shrinklist_len))
572 return SHRINK_STOP;
573
574 return shmem_unused_huge_shrink(sbinfo, sc, 0);
575 }
576
577 static long shmem_unused_huge_count(struct super_block *sb,
578 struct shrink_control *sc)
579 {
580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 return READ_ONCE(sbinfo->shrinklist_len);
582 }
583 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
584
585 #define shmem_huge SHMEM_HUGE_DENY
586
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 struct shrink_control *sc, unsigned long nr_to_split)
589 {
590 return 0;
591 }
592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
593
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595 {
596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 shmem_huge != SHMEM_HUGE_DENY)
599 return true;
600 return false;
601 }
602
603 /*
604 * Like add_to_page_cache_locked, but error if expected item has gone.
605 */
606 static int shmem_add_to_page_cache(struct page *page,
607 struct address_space *mapping,
608 pgoff_t index, void *expected, gfp_t gfp,
609 struct mm_struct *charge_mm)
610 {
611 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
612 unsigned long i = 0;
613 unsigned long nr = compound_nr(page);
614 int error;
615
616 VM_BUG_ON_PAGE(PageTail(page), page);
617 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
618 VM_BUG_ON_PAGE(!PageLocked(page), page);
619 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
620 VM_BUG_ON(expected && PageTransHuge(page));
621
622 page_ref_add(page, nr);
623 page->mapping = mapping;
624 page->index = index;
625
626 if (!PageSwapCache(page)) {
627 error = mem_cgroup_charge(page, charge_mm, gfp);
628 if (error) {
629 if (PageTransHuge(page)) {
630 count_vm_event(THP_FILE_FALLBACK);
631 count_vm_event(THP_FILE_FALLBACK_CHARGE);
632 }
633 goto error;
634 }
635 }
636 cgroup_throttle_swaprate(page, gfp);
637
638 do {
639 void *entry;
640 xas_lock_irq(&xas);
641 entry = xas_find_conflict(&xas);
642 if (entry != expected)
643 xas_set_err(&xas, -EEXIST);
644 xas_create_range(&xas);
645 if (xas_error(&xas))
646 goto unlock;
647 next:
648 xas_store(&xas, page);
649 if (++i < nr) {
650 xas_next(&xas);
651 goto next;
652 }
653 if (PageTransHuge(page)) {
654 count_vm_event(THP_FILE_ALLOC);
655 __inc_node_page_state(page, NR_SHMEM_THPS);
656 }
657 mapping->nrpages += nr;
658 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
659 __mod_lruvec_page_state(page, NR_SHMEM, nr);
660 unlock:
661 xas_unlock_irq(&xas);
662 } while (xas_nomem(&xas, gfp));
663
664 if (xas_error(&xas)) {
665 error = xas_error(&xas);
666 goto error;
667 }
668
669 return 0;
670 error:
671 page->mapping = NULL;
672 page_ref_sub(page, nr);
673 return error;
674 }
675
676 /*
677 * Like delete_from_page_cache, but substitutes swap for page.
678 */
679 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
680 {
681 struct address_space *mapping = page->mapping;
682 int error;
683
684 VM_BUG_ON_PAGE(PageCompound(page), page);
685
686 xa_lock_irq(&mapping->i_pages);
687 error = shmem_replace_entry(mapping, page->index, page, radswap);
688 page->mapping = NULL;
689 mapping->nrpages--;
690 __dec_lruvec_page_state(page, NR_FILE_PAGES);
691 __dec_lruvec_page_state(page, NR_SHMEM);
692 xa_unlock_irq(&mapping->i_pages);
693 put_page(page);
694 BUG_ON(error);
695 }
696
697 /*
698 * Remove swap entry from page cache, free the swap and its page cache.
699 */
700 static int shmem_free_swap(struct address_space *mapping,
701 pgoff_t index, void *radswap)
702 {
703 void *old;
704
705 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
706 if (old != radswap)
707 return -ENOENT;
708 free_swap_and_cache(radix_to_swp_entry(radswap));
709 return 0;
710 }
711
712 /*
713 * Determine (in bytes) how many of the shmem object's pages mapped by the
714 * given offsets are swapped out.
715 *
716 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
717 * as long as the inode doesn't go away and racy results are not a problem.
718 */
719 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
720 pgoff_t start, pgoff_t end)
721 {
722 XA_STATE(xas, &mapping->i_pages, start);
723 struct page *page;
724 unsigned long swapped = 0;
725
726 rcu_read_lock();
727 xas_for_each(&xas, page, end - 1) {
728 if (xas_retry(&xas, page))
729 continue;
730 if (xa_is_value(page))
731 swapped++;
732
733 if (need_resched()) {
734 xas_pause(&xas);
735 cond_resched_rcu();
736 }
737 }
738
739 rcu_read_unlock();
740
741 return swapped << PAGE_SHIFT;
742 }
743
744 /*
745 * Determine (in bytes) how many of the shmem object's pages mapped by the
746 * given vma is swapped out.
747 *
748 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
749 * as long as the inode doesn't go away and racy results are not a problem.
750 */
751 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
752 {
753 struct inode *inode = file_inode(vma->vm_file);
754 struct shmem_inode_info *info = SHMEM_I(inode);
755 struct address_space *mapping = inode->i_mapping;
756 unsigned long swapped;
757
758 /* Be careful as we don't hold info->lock */
759 swapped = READ_ONCE(info->swapped);
760
761 /*
762 * The easier cases are when the shmem object has nothing in swap, or
763 * the vma maps it whole. Then we can simply use the stats that we
764 * already track.
765 */
766 if (!swapped)
767 return 0;
768
769 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
770 return swapped << PAGE_SHIFT;
771
772 /* Here comes the more involved part */
773 return shmem_partial_swap_usage(mapping,
774 linear_page_index(vma, vma->vm_start),
775 linear_page_index(vma, vma->vm_end));
776 }
777
778 /*
779 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
780 */
781 void shmem_unlock_mapping(struct address_space *mapping)
782 {
783 struct pagevec pvec;
784 pgoff_t indices[PAGEVEC_SIZE];
785 pgoff_t index = 0;
786
787 pagevec_init(&pvec);
788 /*
789 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
790 */
791 while (!mapping_unevictable(mapping)) {
792 /*
793 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
794 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
795 */
796 pvec.nr = find_get_entries(mapping, index,
797 PAGEVEC_SIZE, pvec.pages, indices);
798 if (!pvec.nr)
799 break;
800 index = indices[pvec.nr - 1] + 1;
801 pagevec_remove_exceptionals(&pvec);
802 check_move_unevictable_pages(&pvec);
803 pagevec_release(&pvec);
804 cond_resched();
805 }
806 }
807
808 /*
809 * Check whether a hole-punch or truncation needs to split a huge page,
810 * returning true if no split was required, or the split has been successful.
811 *
812 * Eviction (or truncation to 0 size) should never need to split a huge page;
813 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
814 * head, and then succeeded to trylock on tail.
815 *
816 * A split can only succeed when there are no additional references on the
817 * huge page: so the split below relies upon find_get_entries() having stopped
818 * when it found a subpage of the huge page, without getting further references.
819 */
820 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
821 {
822 if (!PageTransCompound(page))
823 return true;
824
825 /* Just proceed to delete a huge page wholly within the range punched */
826 if (PageHead(page) &&
827 page->index >= start && page->index + HPAGE_PMD_NR <= end)
828 return true;
829
830 /* Try to split huge page, so we can truly punch the hole or truncate */
831 return split_huge_page(page) >= 0;
832 }
833
834 /*
835 * Remove range of pages and swap entries from page cache, and free them.
836 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
837 */
838 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
839 bool unfalloc)
840 {
841 struct address_space *mapping = inode->i_mapping;
842 struct shmem_inode_info *info = SHMEM_I(inode);
843 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
844 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
845 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
846 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
847 struct pagevec pvec;
848 pgoff_t indices[PAGEVEC_SIZE];
849 long nr_swaps_freed = 0;
850 pgoff_t index;
851 int i;
852
853 if (lend == -1)
854 end = -1; /* unsigned, so actually very big */
855
856 pagevec_init(&pvec);
857 index = start;
858 while (index < end) {
859 pvec.nr = find_get_entries(mapping, index,
860 min(end - index, (pgoff_t)PAGEVEC_SIZE),
861 pvec.pages, indices);
862 if (!pvec.nr)
863 break;
864 for (i = 0; i < pagevec_count(&pvec); i++) {
865 struct page *page = pvec.pages[i];
866
867 index = indices[i];
868 if (index >= end)
869 break;
870
871 if (xa_is_value(page)) {
872 if (unfalloc)
873 continue;
874 nr_swaps_freed += !shmem_free_swap(mapping,
875 index, page);
876 continue;
877 }
878
879 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
880
881 if (!trylock_page(page))
882 continue;
883
884 if ((!unfalloc || !PageUptodate(page)) &&
885 page_mapping(page) == mapping) {
886 VM_BUG_ON_PAGE(PageWriteback(page), page);
887 if (shmem_punch_compound(page, start, end))
888 truncate_inode_page(mapping, page);
889 }
890 unlock_page(page);
891 }
892 pagevec_remove_exceptionals(&pvec);
893 pagevec_release(&pvec);
894 cond_resched();
895 index++;
896 }
897
898 if (partial_start) {
899 struct page *page = NULL;
900 shmem_getpage(inode, start - 1, &page, SGP_READ);
901 if (page) {
902 unsigned int top = PAGE_SIZE;
903 if (start > end) {
904 top = partial_end;
905 partial_end = 0;
906 }
907 zero_user_segment(page, partial_start, top);
908 set_page_dirty(page);
909 unlock_page(page);
910 put_page(page);
911 }
912 }
913 if (partial_end) {
914 struct page *page = NULL;
915 shmem_getpage(inode, end, &page, SGP_READ);
916 if (page) {
917 zero_user_segment(page, 0, partial_end);
918 set_page_dirty(page);
919 unlock_page(page);
920 put_page(page);
921 }
922 }
923 if (start >= end)
924 return;
925
926 index = start;
927 while (index < end) {
928 cond_resched();
929
930 pvec.nr = find_get_entries(mapping, index,
931 min(end - index, (pgoff_t)PAGEVEC_SIZE),
932 pvec.pages, indices);
933 if (!pvec.nr) {
934 /* If all gone or hole-punch or unfalloc, we're done */
935 if (index == start || end != -1)
936 break;
937 /* But if truncating, restart to make sure all gone */
938 index = start;
939 continue;
940 }
941 for (i = 0; i < pagevec_count(&pvec); i++) {
942 struct page *page = pvec.pages[i];
943
944 index = indices[i];
945 if (index >= end)
946 break;
947
948 if (xa_is_value(page)) {
949 if (unfalloc)
950 continue;
951 if (shmem_free_swap(mapping, index, page)) {
952 /* Swap was replaced by page: retry */
953 index--;
954 break;
955 }
956 nr_swaps_freed++;
957 continue;
958 }
959
960 lock_page(page);
961
962 if (!unfalloc || !PageUptodate(page)) {
963 if (page_mapping(page) != mapping) {
964 /* Page was replaced by swap: retry */
965 unlock_page(page);
966 index--;
967 break;
968 }
969 VM_BUG_ON_PAGE(PageWriteback(page), page);
970 if (shmem_punch_compound(page, start, end))
971 truncate_inode_page(mapping, page);
972 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
973 /* Wipe the page and don't get stuck */
974 clear_highpage(page);
975 flush_dcache_page(page);
976 set_page_dirty(page);
977 if (index <
978 round_up(start, HPAGE_PMD_NR))
979 start = index + 1;
980 }
981 }
982 unlock_page(page);
983 }
984 pagevec_remove_exceptionals(&pvec);
985 pagevec_release(&pvec);
986 index++;
987 }
988
989 spin_lock_irq(&info->lock);
990 info->swapped -= nr_swaps_freed;
991 shmem_recalc_inode(inode);
992 spin_unlock_irq(&info->lock);
993 }
994
995 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
996 {
997 shmem_undo_range(inode, lstart, lend, false);
998 inode->i_ctime = inode->i_mtime = current_time(inode);
999 }
1000 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1001
1002 static int shmem_getattr(const struct path *path, struct kstat *stat,
1003 u32 request_mask, unsigned int query_flags)
1004 {
1005 struct inode *inode = path->dentry->d_inode;
1006 struct shmem_inode_info *info = SHMEM_I(inode);
1007 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1008
1009 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1010 spin_lock_irq(&info->lock);
1011 shmem_recalc_inode(inode);
1012 spin_unlock_irq(&info->lock);
1013 }
1014 generic_fillattr(inode, stat);
1015
1016 if (is_huge_enabled(sb_info))
1017 stat->blksize = HPAGE_PMD_SIZE;
1018
1019 return 0;
1020 }
1021
1022 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1023 {
1024 struct inode *inode = d_inode(dentry);
1025 struct shmem_inode_info *info = SHMEM_I(inode);
1026 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1027 int error;
1028
1029 error = setattr_prepare(dentry, attr);
1030 if (error)
1031 return error;
1032
1033 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1034 loff_t oldsize = inode->i_size;
1035 loff_t newsize = attr->ia_size;
1036
1037 /* protected by i_mutex */
1038 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1039 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1040 return -EPERM;
1041
1042 if (newsize != oldsize) {
1043 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1044 oldsize, newsize);
1045 if (error)
1046 return error;
1047 i_size_write(inode, newsize);
1048 inode->i_ctime = inode->i_mtime = current_time(inode);
1049 }
1050 if (newsize <= oldsize) {
1051 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1052 if (oldsize > holebegin)
1053 unmap_mapping_range(inode->i_mapping,
1054 holebegin, 0, 1);
1055 if (info->alloced)
1056 shmem_truncate_range(inode,
1057 newsize, (loff_t)-1);
1058 /* unmap again to remove racily COWed private pages */
1059 if (oldsize > holebegin)
1060 unmap_mapping_range(inode->i_mapping,
1061 holebegin, 0, 1);
1062
1063 /*
1064 * Part of the huge page can be beyond i_size: subject
1065 * to shrink under memory pressure.
1066 */
1067 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1068 spin_lock(&sbinfo->shrinklist_lock);
1069 /*
1070 * _careful to defend against unlocked access to
1071 * ->shrink_list in shmem_unused_huge_shrink()
1072 */
1073 if (list_empty_careful(&info->shrinklist)) {
1074 list_add_tail(&info->shrinklist,
1075 &sbinfo->shrinklist);
1076 sbinfo->shrinklist_len++;
1077 }
1078 spin_unlock(&sbinfo->shrinklist_lock);
1079 }
1080 }
1081 }
1082
1083 setattr_copy(inode, attr);
1084 if (attr->ia_valid & ATTR_MODE)
1085 error = posix_acl_chmod(inode, inode->i_mode);
1086 return error;
1087 }
1088
1089 static void shmem_evict_inode(struct inode *inode)
1090 {
1091 struct shmem_inode_info *info = SHMEM_I(inode);
1092 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1093
1094 if (inode->i_mapping->a_ops == &shmem_aops) {
1095 shmem_unacct_size(info->flags, inode->i_size);
1096 inode->i_size = 0;
1097 shmem_truncate_range(inode, 0, (loff_t)-1);
1098 if (!list_empty(&info->shrinklist)) {
1099 spin_lock(&sbinfo->shrinklist_lock);
1100 if (!list_empty(&info->shrinklist)) {
1101 list_del_init(&info->shrinklist);
1102 sbinfo->shrinklist_len--;
1103 }
1104 spin_unlock(&sbinfo->shrinklist_lock);
1105 }
1106 while (!list_empty(&info->swaplist)) {
1107 /* Wait while shmem_unuse() is scanning this inode... */
1108 wait_var_event(&info->stop_eviction,
1109 !atomic_read(&info->stop_eviction));
1110 mutex_lock(&shmem_swaplist_mutex);
1111 /* ...but beware of the race if we peeked too early */
1112 if (!atomic_read(&info->stop_eviction))
1113 list_del_init(&info->swaplist);
1114 mutex_unlock(&shmem_swaplist_mutex);
1115 }
1116 }
1117
1118 simple_xattrs_free(&info->xattrs);
1119 WARN_ON(inode->i_blocks);
1120 shmem_free_inode(inode->i_sb);
1121 clear_inode(inode);
1122 }
1123
1124 extern struct swap_info_struct *swap_info[];
1125
1126 static int shmem_find_swap_entries(struct address_space *mapping,
1127 pgoff_t start, unsigned int nr_entries,
1128 struct page **entries, pgoff_t *indices,
1129 unsigned int type, bool frontswap)
1130 {
1131 XA_STATE(xas, &mapping->i_pages, start);
1132 struct page *page;
1133 swp_entry_t entry;
1134 unsigned int ret = 0;
1135
1136 if (!nr_entries)
1137 return 0;
1138
1139 rcu_read_lock();
1140 xas_for_each(&xas, page, ULONG_MAX) {
1141 if (xas_retry(&xas, page))
1142 continue;
1143
1144 if (!xa_is_value(page))
1145 continue;
1146
1147 entry = radix_to_swp_entry(page);
1148 if (swp_type(entry) != type)
1149 continue;
1150 if (frontswap &&
1151 !frontswap_test(swap_info[type], swp_offset(entry)))
1152 continue;
1153
1154 indices[ret] = xas.xa_index;
1155 entries[ret] = page;
1156
1157 if (need_resched()) {
1158 xas_pause(&xas);
1159 cond_resched_rcu();
1160 }
1161 if (++ret == nr_entries)
1162 break;
1163 }
1164 rcu_read_unlock();
1165
1166 return ret;
1167 }
1168
1169 /*
1170 * Move the swapped pages for an inode to page cache. Returns the count
1171 * of pages swapped in, or the error in case of failure.
1172 */
1173 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1174 pgoff_t *indices)
1175 {
1176 int i = 0;
1177 int ret = 0;
1178 int error = 0;
1179 struct address_space *mapping = inode->i_mapping;
1180
1181 for (i = 0; i < pvec.nr; i++) {
1182 struct page *page = pvec.pages[i];
1183
1184 if (!xa_is_value(page))
1185 continue;
1186 error = shmem_swapin_page(inode, indices[i],
1187 &page, SGP_CACHE,
1188 mapping_gfp_mask(mapping),
1189 NULL, NULL);
1190 if (error == 0) {
1191 unlock_page(page);
1192 put_page(page);
1193 ret++;
1194 }
1195 if (error == -ENOMEM)
1196 break;
1197 error = 0;
1198 }
1199 return error ? error : ret;
1200 }
1201
1202 /*
1203 * If swap found in inode, free it and move page from swapcache to filecache.
1204 */
1205 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1206 bool frontswap, unsigned long *fs_pages_to_unuse)
1207 {
1208 struct address_space *mapping = inode->i_mapping;
1209 pgoff_t start = 0;
1210 struct pagevec pvec;
1211 pgoff_t indices[PAGEVEC_SIZE];
1212 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1213 int ret = 0;
1214
1215 pagevec_init(&pvec);
1216 do {
1217 unsigned int nr_entries = PAGEVEC_SIZE;
1218
1219 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1220 nr_entries = *fs_pages_to_unuse;
1221
1222 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1223 pvec.pages, indices,
1224 type, frontswap);
1225 if (pvec.nr == 0) {
1226 ret = 0;
1227 break;
1228 }
1229
1230 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1231 if (ret < 0)
1232 break;
1233
1234 if (frontswap_partial) {
1235 *fs_pages_to_unuse -= ret;
1236 if (*fs_pages_to_unuse == 0) {
1237 ret = FRONTSWAP_PAGES_UNUSED;
1238 break;
1239 }
1240 }
1241
1242 start = indices[pvec.nr - 1];
1243 } while (true);
1244
1245 return ret;
1246 }
1247
1248 /*
1249 * Read all the shared memory data that resides in the swap
1250 * device 'type' back into memory, so the swap device can be
1251 * unused.
1252 */
1253 int shmem_unuse(unsigned int type, bool frontswap,
1254 unsigned long *fs_pages_to_unuse)
1255 {
1256 struct shmem_inode_info *info, *next;
1257 int error = 0;
1258
1259 if (list_empty(&shmem_swaplist))
1260 return 0;
1261
1262 mutex_lock(&shmem_swaplist_mutex);
1263 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1264 if (!info->swapped) {
1265 list_del_init(&info->swaplist);
1266 continue;
1267 }
1268 /*
1269 * Drop the swaplist mutex while searching the inode for swap;
1270 * but before doing so, make sure shmem_evict_inode() will not
1271 * remove placeholder inode from swaplist, nor let it be freed
1272 * (igrab() would protect from unlink, but not from unmount).
1273 */
1274 atomic_inc(&info->stop_eviction);
1275 mutex_unlock(&shmem_swaplist_mutex);
1276
1277 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1278 fs_pages_to_unuse);
1279 cond_resched();
1280
1281 mutex_lock(&shmem_swaplist_mutex);
1282 next = list_next_entry(info, swaplist);
1283 if (!info->swapped)
1284 list_del_init(&info->swaplist);
1285 if (atomic_dec_and_test(&info->stop_eviction))
1286 wake_up_var(&info->stop_eviction);
1287 if (error)
1288 break;
1289 }
1290 mutex_unlock(&shmem_swaplist_mutex);
1291
1292 return error;
1293 }
1294
1295 /*
1296 * Move the page from the page cache to the swap cache.
1297 */
1298 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1299 {
1300 struct shmem_inode_info *info;
1301 struct address_space *mapping;
1302 struct inode *inode;
1303 swp_entry_t swap;
1304 pgoff_t index;
1305
1306 VM_BUG_ON_PAGE(PageCompound(page), page);
1307 BUG_ON(!PageLocked(page));
1308 mapping = page->mapping;
1309 index = page->index;
1310 inode = mapping->host;
1311 info = SHMEM_I(inode);
1312 if (info->flags & VM_LOCKED)
1313 goto redirty;
1314 if (!total_swap_pages)
1315 goto redirty;
1316
1317 /*
1318 * Our capabilities prevent regular writeback or sync from ever calling
1319 * shmem_writepage; but a stacking filesystem might use ->writepage of
1320 * its underlying filesystem, in which case tmpfs should write out to
1321 * swap only in response to memory pressure, and not for the writeback
1322 * threads or sync.
1323 */
1324 if (!wbc->for_reclaim) {
1325 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1326 goto redirty;
1327 }
1328
1329 /*
1330 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1331 * value into swapfile.c, the only way we can correctly account for a
1332 * fallocated page arriving here is now to initialize it and write it.
1333 *
1334 * That's okay for a page already fallocated earlier, but if we have
1335 * not yet completed the fallocation, then (a) we want to keep track
1336 * of this page in case we have to undo it, and (b) it may not be a
1337 * good idea to continue anyway, once we're pushing into swap. So
1338 * reactivate the page, and let shmem_fallocate() quit when too many.
1339 */
1340 if (!PageUptodate(page)) {
1341 if (inode->i_private) {
1342 struct shmem_falloc *shmem_falloc;
1343 spin_lock(&inode->i_lock);
1344 shmem_falloc = inode->i_private;
1345 if (shmem_falloc &&
1346 !shmem_falloc->waitq &&
1347 index >= shmem_falloc->start &&
1348 index < shmem_falloc->next)
1349 shmem_falloc->nr_unswapped++;
1350 else
1351 shmem_falloc = NULL;
1352 spin_unlock(&inode->i_lock);
1353 if (shmem_falloc)
1354 goto redirty;
1355 }
1356 clear_highpage(page);
1357 flush_dcache_page(page);
1358 SetPageUptodate(page);
1359 }
1360
1361 swap = get_swap_page(page);
1362 if (!swap.val)
1363 goto redirty;
1364
1365 /*
1366 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1367 * if it's not already there. Do it now before the page is
1368 * moved to swap cache, when its pagelock no longer protects
1369 * the inode from eviction. But don't unlock the mutex until
1370 * we've incremented swapped, because shmem_unuse_inode() will
1371 * prune a !swapped inode from the swaplist under this mutex.
1372 */
1373 mutex_lock(&shmem_swaplist_mutex);
1374 if (list_empty(&info->swaplist))
1375 list_add(&info->swaplist, &shmem_swaplist);
1376
1377 if (add_to_swap_cache(page, swap,
1378 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1379 spin_lock_irq(&info->lock);
1380 shmem_recalc_inode(inode);
1381 info->swapped++;
1382 spin_unlock_irq(&info->lock);
1383
1384 swap_shmem_alloc(swap);
1385 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1386
1387 mutex_unlock(&shmem_swaplist_mutex);
1388 BUG_ON(page_mapped(page));
1389 swap_writepage(page, wbc);
1390 return 0;
1391 }
1392
1393 mutex_unlock(&shmem_swaplist_mutex);
1394 put_swap_page(page, swap);
1395 redirty:
1396 set_page_dirty(page);
1397 if (wbc->for_reclaim)
1398 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1399 unlock_page(page);
1400 return 0;
1401 }
1402
1403 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1404 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1405 {
1406 char buffer[64];
1407
1408 if (!mpol || mpol->mode == MPOL_DEFAULT)
1409 return; /* show nothing */
1410
1411 mpol_to_str(buffer, sizeof(buffer), mpol);
1412
1413 seq_printf(seq, ",mpol=%s", buffer);
1414 }
1415
1416 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1417 {
1418 struct mempolicy *mpol = NULL;
1419 if (sbinfo->mpol) {
1420 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1421 mpol = sbinfo->mpol;
1422 mpol_get(mpol);
1423 spin_unlock(&sbinfo->stat_lock);
1424 }
1425 return mpol;
1426 }
1427 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1428 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1429 {
1430 }
1431 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1432 {
1433 return NULL;
1434 }
1435 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1436 #ifndef CONFIG_NUMA
1437 #define vm_policy vm_private_data
1438 #endif
1439
1440 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1441 struct shmem_inode_info *info, pgoff_t index)
1442 {
1443 /* Create a pseudo vma that just contains the policy */
1444 vma_init(vma, NULL);
1445 /* Bias interleave by inode number to distribute better across nodes */
1446 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1447 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1448 }
1449
1450 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1451 {
1452 /* Drop reference taken by mpol_shared_policy_lookup() */
1453 mpol_cond_put(vma->vm_policy);
1454 }
1455
1456 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1457 struct shmem_inode_info *info, pgoff_t index)
1458 {
1459 struct vm_area_struct pvma;
1460 struct page *page;
1461 struct vm_fault vmf;
1462
1463 shmem_pseudo_vma_init(&pvma, info, index);
1464 vmf.vma = &pvma;
1465 vmf.address = 0;
1466 page = swap_cluster_readahead(swap, gfp, &vmf);
1467 shmem_pseudo_vma_destroy(&pvma);
1468
1469 return page;
1470 }
1471
1472 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1473 struct shmem_inode_info *info, pgoff_t index)
1474 {
1475 struct vm_area_struct pvma;
1476 struct address_space *mapping = info->vfs_inode.i_mapping;
1477 pgoff_t hindex;
1478 struct page *page;
1479
1480 hindex = round_down(index, HPAGE_PMD_NR);
1481 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1482 XA_PRESENT))
1483 return NULL;
1484
1485 shmem_pseudo_vma_init(&pvma, info, hindex);
1486 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1487 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1488 shmem_pseudo_vma_destroy(&pvma);
1489 if (page)
1490 prep_transhuge_page(page);
1491 else
1492 count_vm_event(THP_FILE_FALLBACK);
1493 return page;
1494 }
1495
1496 static struct page *shmem_alloc_page(gfp_t gfp,
1497 struct shmem_inode_info *info, pgoff_t index)
1498 {
1499 struct vm_area_struct pvma;
1500 struct page *page;
1501
1502 shmem_pseudo_vma_init(&pvma, info, index);
1503 page = alloc_page_vma(gfp, &pvma, 0);
1504 shmem_pseudo_vma_destroy(&pvma);
1505
1506 return page;
1507 }
1508
1509 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1510 struct inode *inode,
1511 pgoff_t index, bool huge)
1512 {
1513 struct shmem_inode_info *info = SHMEM_I(inode);
1514 struct page *page;
1515 int nr;
1516 int err = -ENOSPC;
1517
1518 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1519 huge = false;
1520 nr = huge ? HPAGE_PMD_NR : 1;
1521
1522 if (!shmem_inode_acct_block(inode, nr))
1523 goto failed;
1524
1525 if (huge)
1526 page = shmem_alloc_hugepage(gfp, info, index);
1527 else
1528 page = shmem_alloc_page(gfp, info, index);
1529 if (page) {
1530 __SetPageLocked(page);
1531 __SetPageSwapBacked(page);
1532 return page;
1533 }
1534
1535 err = -ENOMEM;
1536 shmem_inode_unacct_blocks(inode, nr);
1537 failed:
1538 return ERR_PTR(err);
1539 }
1540
1541 /*
1542 * When a page is moved from swapcache to shmem filecache (either by the
1543 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1544 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1545 * ignorance of the mapping it belongs to. If that mapping has special
1546 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1547 * we may need to copy to a suitable page before moving to filecache.
1548 *
1549 * In a future release, this may well be extended to respect cpuset and
1550 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1551 * but for now it is a simple matter of zone.
1552 */
1553 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1554 {
1555 return page_zonenum(page) > gfp_zone(gfp);
1556 }
1557
1558 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1559 struct shmem_inode_info *info, pgoff_t index)
1560 {
1561 struct page *oldpage, *newpage;
1562 struct address_space *swap_mapping;
1563 swp_entry_t entry;
1564 pgoff_t swap_index;
1565 int error;
1566
1567 oldpage = *pagep;
1568 entry.val = page_private(oldpage);
1569 swap_index = swp_offset(entry);
1570 swap_mapping = page_mapping(oldpage);
1571
1572 /*
1573 * We have arrived here because our zones are constrained, so don't
1574 * limit chance of success by further cpuset and node constraints.
1575 */
1576 gfp &= ~GFP_CONSTRAINT_MASK;
1577 newpage = shmem_alloc_page(gfp, info, index);
1578 if (!newpage)
1579 return -ENOMEM;
1580
1581 get_page(newpage);
1582 copy_highpage(newpage, oldpage);
1583 flush_dcache_page(newpage);
1584
1585 __SetPageLocked(newpage);
1586 __SetPageSwapBacked(newpage);
1587 SetPageUptodate(newpage);
1588 set_page_private(newpage, entry.val);
1589 SetPageSwapCache(newpage);
1590
1591 /*
1592 * Our caller will very soon move newpage out of swapcache, but it's
1593 * a nice clean interface for us to replace oldpage by newpage there.
1594 */
1595 xa_lock_irq(&swap_mapping->i_pages);
1596 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1597 if (!error) {
1598 mem_cgroup_migrate(oldpage, newpage);
1599 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1600 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1601 }
1602 xa_unlock_irq(&swap_mapping->i_pages);
1603
1604 if (unlikely(error)) {
1605 /*
1606 * Is this possible? I think not, now that our callers check
1607 * both PageSwapCache and page_private after getting page lock;
1608 * but be defensive. Reverse old to newpage for clear and free.
1609 */
1610 oldpage = newpage;
1611 } else {
1612 lru_cache_add(newpage);
1613 *pagep = newpage;
1614 }
1615
1616 ClearPageSwapCache(oldpage);
1617 set_page_private(oldpage, 0);
1618
1619 unlock_page(oldpage);
1620 put_page(oldpage);
1621 put_page(oldpage);
1622 return error;
1623 }
1624
1625 /*
1626 * Swap in the page pointed to by *pagep.
1627 * Caller has to make sure that *pagep contains a valid swapped page.
1628 * Returns 0 and the page in pagep if success. On failure, returns the
1629 * the error code and NULL in *pagep.
1630 */
1631 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1632 struct page **pagep, enum sgp_type sgp,
1633 gfp_t gfp, struct vm_area_struct *vma,
1634 vm_fault_t *fault_type)
1635 {
1636 struct address_space *mapping = inode->i_mapping;
1637 struct shmem_inode_info *info = SHMEM_I(inode);
1638 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1639 struct page *page;
1640 swp_entry_t swap;
1641 int error;
1642
1643 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1644 swap = radix_to_swp_entry(*pagep);
1645 *pagep = NULL;
1646
1647 /* Look it up and read it in.. */
1648 page = lookup_swap_cache(swap, NULL, 0);
1649 if (!page) {
1650 /* Or update major stats only when swapin succeeds?? */
1651 if (fault_type) {
1652 *fault_type |= VM_FAULT_MAJOR;
1653 count_vm_event(PGMAJFAULT);
1654 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1655 }
1656 /* Here we actually start the io */
1657 page = shmem_swapin(swap, gfp, info, index);
1658 if (!page) {
1659 error = -ENOMEM;
1660 goto failed;
1661 }
1662 }
1663
1664 /* We have to do this with page locked to prevent races */
1665 lock_page(page);
1666 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1667 !shmem_confirm_swap(mapping, index, swap)) {
1668 error = -EEXIST;
1669 goto unlock;
1670 }
1671 if (!PageUptodate(page)) {
1672 error = -EIO;
1673 goto failed;
1674 }
1675 wait_on_page_writeback(page);
1676
1677 if (shmem_should_replace_page(page, gfp)) {
1678 error = shmem_replace_page(&page, gfp, info, index);
1679 if (error)
1680 goto failed;
1681 }
1682
1683 error = shmem_add_to_page_cache(page, mapping, index,
1684 swp_to_radix_entry(swap), gfp,
1685 charge_mm);
1686 if (error)
1687 goto failed;
1688
1689 spin_lock_irq(&info->lock);
1690 info->swapped--;
1691 shmem_recalc_inode(inode);
1692 spin_unlock_irq(&info->lock);
1693
1694 if (sgp == SGP_WRITE)
1695 mark_page_accessed(page);
1696
1697 delete_from_swap_cache(page);
1698 set_page_dirty(page);
1699 swap_free(swap);
1700
1701 *pagep = page;
1702 return 0;
1703 failed:
1704 if (!shmem_confirm_swap(mapping, index, swap))
1705 error = -EEXIST;
1706 unlock:
1707 if (page) {
1708 unlock_page(page);
1709 put_page(page);
1710 }
1711
1712 return error;
1713 }
1714
1715 /*
1716 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1717 *
1718 * If we allocate a new one we do not mark it dirty. That's up to the
1719 * vm. If we swap it in we mark it dirty since we also free the swap
1720 * entry since a page cannot live in both the swap and page cache.
1721 *
1722 * vmf and fault_type are only supplied by shmem_fault:
1723 * otherwise they are NULL.
1724 */
1725 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1726 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1727 struct vm_area_struct *vma, struct vm_fault *vmf,
1728 vm_fault_t *fault_type)
1729 {
1730 struct address_space *mapping = inode->i_mapping;
1731 struct shmem_inode_info *info = SHMEM_I(inode);
1732 struct shmem_sb_info *sbinfo;
1733 struct mm_struct *charge_mm;
1734 struct page *page;
1735 enum sgp_type sgp_huge = sgp;
1736 pgoff_t hindex = index;
1737 int error;
1738 int once = 0;
1739 int alloced = 0;
1740
1741 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1742 return -EFBIG;
1743 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1744 sgp = SGP_CACHE;
1745 repeat:
1746 if (sgp <= SGP_CACHE &&
1747 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1748 return -EINVAL;
1749 }
1750
1751 sbinfo = SHMEM_SB(inode->i_sb);
1752 charge_mm = vma ? vma->vm_mm : current->mm;
1753
1754 page = find_lock_entry(mapping, index);
1755 if (xa_is_value(page)) {
1756 error = shmem_swapin_page(inode, index, &page,
1757 sgp, gfp, vma, fault_type);
1758 if (error == -EEXIST)
1759 goto repeat;
1760
1761 *pagep = page;
1762 return error;
1763 }
1764
1765 if (page && sgp == SGP_WRITE)
1766 mark_page_accessed(page);
1767
1768 /* fallocated page? */
1769 if (page && !PageUptodate(page)) {
1770 if (sgp != SGP_READ)
1771 goto clear;
1772 unlock_page(page);
1773 put_page(page);
1774 page = NULL;
1775 }
1776 if (page || sgp == SGP_READ) {
1777 *pagep = page;
1778 return 0;
1779 }
1780
1781 /*
1782 * Fast cache lookup did not find it:
1783 * bring it back from swap or allocate.
1784 */
1785
1786 if (vma && userfaultfd_missing(vma)) {
1787 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1788 return 0;
1789 }
1790
1791 /* shmem_symlink() */
1792 if (mapping->a_ops != &shmem_aops)
1793 goto alloc_nohuge;
1794 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1795 goto alloc_nohuge;
1796 if (shmem_huge == SHMEM_HUGE_FORCE)
1797 goto alloc_huge;
1798 switch (sbinfo->huge) {
1799 case SHMEM_HUGE_NEVER:
1800 goto alloc_nohuge;
1801 case SHMEM_HUGE_WITHIN_SIZE: {
1802 loff_t i_size;
1803 pgoff_t off;
1804
1805 off = round_up(index, HPAGE_PMD_NR);
1806 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1807 if (i_size >= HPAGE_PMD_SIZE &&
1808 i_size >> PAGE_SHIFT >= off)
1809 goto alloc_huge;
1810
1811 fallthrough;
1812 }
1813 case SHMEM_HUGE_ADVISE:
1814 if (sgp_huge == SGP_HUGE)
1815 goto alloc_huge;
1816 /* TODO: implement fadvise() hints */
1817 goto alloc_nohuge;
1818 }
1819
1820 alloc_huge:
1821 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1822 if (IS_ERR(page)) {
1823 alloc_nohuge:
1824 page = shmem_alloc_and_acct_page(gfp, inode,
1825 index, false);
1826 }
1827 if (IS_ERR(page)) {
1828 int retry = 5;
1829
1830 error = PTR_ERR(page);
1831 page = NULL;
1832 if (error != -ENOSPC)
1833 goto unlock;
1834 /*
1835 * Try to reclaim some space by splitting a huge page
1836 * beyond i_size on the filesystem.
1837 */
1838 while (retry--) {
1839 int ret;
1840
1841 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1842 if (ret == SHRINK_STOP)
1843 break;
1844 if (ret)
1845 goto alloc_nohuge;
1846 }
1847 goto unlock;
1848 }
1849
1850 if (PageTransHuge(page))
1851 hindex = round_down(index, HPAGE_PMD_NR);
1852 else
1853 hindex = index;
1854
1855 if (sgp == SGP_WRITE)
1856 __SetPageReferenced(page);
1857
1858 error = shmem_add_to_page_cache(page, mapping, hindex,
1859 NULL, gfp & GFP_RECLAIM_MASK,
1860 charge_mm);
1861 if (error)
1862 goto unacct;
1863 lru_cache_add(page);
1864
1865 spin_lock_irq(&info->lock);
1866 info->alloced += compound_nr(page);
1867 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1868 shmem_recalc_inode(inode);
1869 spin_unlock_irq(&info->lock);
1870 alloced = true;
1871
1872 if (PageTransHuge(page) &&
1873 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1874 hindex + HPAGE_PMD_NR - 1) {
1875 /*
1876 * Part of the huge page is beyond i_size: subject
1877 * to shrink under memory pressure.
1878 */
1879 spin_lock(&sbinfo->shrinklist_lock);
1880 /*
1881 * _careful to defend against unlocked access to
1882 * ->shrink_list in shmem_unused_huge_shrink()
1883 */
1884 if (list_empty_careful(&info->shrinklist)) {
1885 list_add_tail(&info->shrinklist,
1886 &sbinfo->shrinklist);
1887 sbinfo->shrinklist_len++;
1888 }
1889 spin_unlock(&sbinfo->shrinklist_lock);
1890 }
1891
1892 /*
1893 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1894 */
1895 if (sgp == SGP_FALLOC)
1896 sgp = SGP_WRITE;
1897 clear:
1898 /*
1899 * Let SGP_WRITE caller clear ends if write does not fill page;
1900 * but SGP_FALLOC on a page fallocated earlier must initialize
1901 * it now, lest undo on failure cancel our earlier guarantee.
1902 */
1903 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1904 struct page *head = compound_head(page);
1905 int i;
1906
1907 for (i = 0; i < compound_nr(head); i++) {
1908 clear_highpage(head + i);
1909 flush_dcache_page(head + i);
1910 }
1911 SetPageUptodate(head);
1912 }
1913
1914 /* Perhaps the file has been truncated since we checked */
1915 if (sgp <= SGP_CACHE &&
1916 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1917 if (alloced) {
1918 ClearPageDirty(page);
1919 delete_from_page_cache(page);
1920 spin_lock_irq(&info->lock);
1921 shmem_recalc_inode(inode);
1922 spin_unlock_irq(&info->lock);
1923 }
1924 error = -EINVAL;
1925 goto unlock;
1926 }
1927 *pagep = page + index - hindex;
1928 return 0;
1929
1930 /*
1931 * Error recovery.
1932 */
1933 unacct:
1934 shmem_inode_unacct_blocks(inode, compound_nr(page));
1935
1936 if (PageTransHuge(page)) {
1937 unlock_page(page);
1938 put_page(page);
1939 goto alloc_nohuge;
1940 }
1941 unlock:
1942 if (page) {
1943 unlock_page(page);
1944 put_page(page);
1945 }
1946 if (error == -ENOSPC && !once++) {
1947 spin_lock_irq(&info->lock);
1948 shmem_recalc_inode(inode);
1949 spin_unlock_irq(&info->lock);
1950 goto repeat;
1951 }
1952 if (error == -EEXIST)
1953 goto repeat;
1954 return error;
1955 }
1956
1957 /*
1958 * This is like autoremove_wake_function, but it removes the wait queue
1959 * entry unconditionally - even if something else had already woken the
1960 * target.
1961 */
1962 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1963 {
1964 int ret = default_wake_function(wait, mode, sync, key);
1965 list_del_init(&wait->entry);
1966 return ret;
1967 }
1968
1969 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1970 {
1971 struct vm_area_struct *vma = vmf->vma;
1972 struct inode *inode = file_inode(vma->vm_file);
1973 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1974 enum sgp_type sgp;
1975 int err;
1976 vm_fault_t ret = VM_FAULT_LOCKED;
1977
1978 /*
1979 * Trinity finds that probing a hole which tmpfs is punching can
1980 * prevent the hole-punch from ever completing: which in turn
1981 * locks writers out with its hold on i_mutex. So refrain from
1982 * faulting pages into the hole while it's being punched. Although
1983 * shmem_undo_range() does remove the additions, it may be unable to
1984 * keep up, as each new page needs its own unmap_mapping_range() call,
1985 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1986 *
1987 * It does not matter if we sometimes reach this check just before the
1988 * hole-punch begins, so that one fault then races with the punch:
1989 * we just need to make racing faults a rare case.
1990 *
1991 * The implementation below would be much simpler if we just used a
1992 * standard mutex or completion: but we cannot take i_mutex in fault,
1993 * and bloating every shmem inode for this unlikely case would be sad.
1994 */
1995 if (unlikely(inode->i_private)) {
1996 struct shmem_falloc *shmem_falloc;
1997
1998 spin_lock(&inode->i_lock);
1999 shmem_falloc = inode->i_private;
2000 if (shmem_falloc &&
2001 shmem_falloc->waitq &&
2002 vmf->pgoff >= shmem_falloc->start &&
2003 vmf->pgoff < shmem_falloc->next) {
2004 struct file *fpin;
2005 wait_queue_head_t *shmem_falloc_waitq;
2006 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2007
2008 ret = VM_FAULT_NOPAGE;
2009 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2010 if (fpin)
2011 ret = VM_FAULT_RETRY;
2012
2013 shmem_falloc_waitq = shmem_falloc->waitq;
2014 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2015 TASK_UNINTERRUPTIBLE);
2016 spin_unlock(&inode->i_lock);
2017 schedule();
2018
2019 /*
2020 * shmem_falloc_waitq points into the shmem_fallocate()
2021 * stack of the hole-punching task: shmem_falloc_waitq
2022 * is usually invalid by the time we reach here, but
2023 * finish_wait() does not dereference it in that case;
2024 * though i_lock needed lest racing with wake_up_all().
2025 */
2026 spin_lock(&inode->i_lock);
2027 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2028 spin_unlock(&inode->i_lock);
2029
2030 if (fpin)
2031 fput(fpin);
2032 return ret;
2033 }
2034 spin_unlock(&inode->i_lock);
2035 }
2036
2037 sgp = SGP_CACHE;
2038
2039 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2040 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2041 sgp = SGP_NOHUGE;
2042 else if (vma->vm_flags & VM_HUGEPAGE)
2043 sgp = SGP_HUGE;
2044
2045 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2046 gfp, vma, vmf, &ret);
2047 if (err)
2048 return vmf_error(err);
2049 return ret;
2050 }
2051
2052 unsigned long shmem_get_unmapped_area(struct file *file,
2053 unsigned long uaddr, unsigned long len,
2054 unsigned long pgoff, unsigned long flags)
2055 {
2056 unsigned long (*get_area)(struct file *,
2057 unsigned long, unsigned long, unsigned long, unsigned long);
2058 unsigned long addr;
2059 unsigned long offset;
2060 unsigned long inflated_len;
2061 unsigned long inflated_addr;
2062 unsigned long inflated_offset;
2063
2064 if (len > TASK_SIZE)
2065 return -ENOMEM;
2066
2067 get_area = current->mm->get_unmapped_area;
2068 addr = get_area(file, uaddr, len, pgoff, flags);
2069
2070 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2071 return addr;
2072 if (IS_ERR_VALUE(addr))
2073 return addr;
2074 if (addr & ~PAGE_MASK)
2075 return addr;
2076 if (addr > TASK_SIZE - len)
2077 return addr;
2078
2079 if (shmem_huge == SHMEM_HUGE_DENY)
2080 return addr;
2081 if (len < HPAGE_PMD_SIZE)
2082 return addr;
2083 if (flags & MAP_FIXED)
2084 return addr;
2085 /*
2086 * Our priority is to support MAP_SHARED mapped hugely;
2087 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2088 * But if caller specified an address hint and we allocated area there
2089 * successfully, respect that as before.
2090 */
2091 if (uaddr == addr)
2092 return addr;
2093
2094 if (shmem_huge != SHMEM_HUGE_FORCE) {
2095 struct super_block *sb;
2096
2097 if (file) {
2098 VM_BUG_ON(file->f_op != &shmem_file_operations);
2099 sb = file_inode(file)->i_sb;
2100 } else {
2101 /*
2102 * Called directly from mm/mmap.c, or drivers/char/mem.c
2103 * for "/dev/zero", to create a shared anonymous object.
2104 */
2105 if (IS_ERR(shm_mnt))
2106 return addr;
2107 sb = shm_mnt->mnt_sb;
2108 }
2109 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2110 return addr;
2111 }
2112
2113 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2114 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2115 return addr;
2116 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2117 return addr;
2118
2119 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2120 if (inflated_len > TASK_SIZE)
2121 return addr;
2122 if (inflated_len < len)
2123 return addr;
2124
2125 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2126 if (IS_ERR_VALUE(inflated_addr))
2127 return addr;
2128 if (inflated_addr & ~PAGE_MASK)
2129 return addr;
2130
2131 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2132 inflated_addr += offset - inflated_offset;
2133 if (inflated_offset > offset)
2134 inflated_addr += HPAGE_PMD_SIZE;
2135
2136 if (inflated_addr > TASK_SIZE - len)
2137 return addr;
2138 return inflated_addr;
2139 }
2140
2141 #ifdef CONFIG_NUMA
2142 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2143 {
2144 struct inode *inode = file_inode(vma->vm_file);
2145 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2146 }
2147
2148 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2149 unsigned long addr)
2150 {
2151 struct inode *inode = file_inode(vma->vm_file);
2152 pgoff_t index;
2153
2154 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2155 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2156 }
2157 #endif
2158
2159 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2160 {
2161 struct inode *inode = file_inode(file);
2162 struct shmem_inode_info *info = SHMEM_I(inode);
2163 int retval = -ENOMEM;
2164
2165 /*
2166 * What serializes the accesses to info->flags?
2167 * ipc_lock_object() when called from shmctl_do_lock(),
2168 * no serialization needed when called from shm_destroy().
2169 */
2170 if (lock && !(info->flags & VM_LOCKED)) {
2171 if (!user_shm_lock(inode->i_size, user))
2172 goto out_nomem;
2173 info->flags |= VM_LOCKED;
2174 mapping_set_unevictable(file->f_mapping);
2175 }
2176 if (!lock && (info->flags & VM_LOCKED) && user) {
2177 user_shm_unlock(inode->i_size, user);
2178 info->flags &= ~VM_LOCKED;
2179 mapping_clear_unevictable(file->f_mapping);
2180 }
2181 retval = 0;
2182
2183 out_nomem:
2184 return retval;
2185 }
2186
2187 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2188 {
2189 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2190
2191 if (info->seals & F_SEAL_FUTURE_WRITE) {
2192 /*
2193 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2194 * "future write" seal active.
2195 */
2196 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2197 return -EPERM;
2198
2199 /*
2200 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2201 * MAP_SHARED and read-only, take care to not allow mprotect to
2202 * revert protections on such mappings. Do this only for shared
2203 * mappings. For private mappings, don't need to mask
2204 * VM_MAYWRITE as we still want them to be COW-writable.
2205 */
2206 if (vma->vm_flags & VM_SHARED)
2207 vma->vm_flags &= ~(VM_MAYWRITE);
2208 }
2209
2210 file_accessed(file);
2211 vma->vm_ops = &shmem_vm_ops;
2212 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2213 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2214 (vma->vm_end & HPAGE_PMD_MASK)) {
2215 khugepaged_enter(vma, vma->vm_flags);
2216 }
2217 return 0;
2218 }
2219
2220 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2221 umode_t mode, dev_t dev, unsigned long flags)
2222 {
2223 struct inode *inode;
2224 struct shmem_inode_info *info;
2225 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2226
2227 if (shmem_reserve_inode(sb))
2228 return NULL;
2229
2230 inode = new_inode(sb);
2231 if (inode) {
2232 inode->i_ino = get_next_ino();
2233 inode_init_owner(inode, dir, mode);
2234 inode->i_blocks = 0;
2235 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2236 inode->i_generation = prandom_u32();
2237 info = SHMEM_I(inode);
2238 memset(info, 0, (char *)inode - (char *)info);
2239 spin_lock_init(&info->lock);
2240 atomic_set(&info->stop_eviction, 0);
2241 info->seals = F_SEAL_SEAL;
2242 info->flags = flags & VM_NORESERVE;
2243 INIT_LIST_HEAD(&info->shrinklist);
2244 INIT_LIST_HEAD(&info->swaplist);
2245 simple_xattrs_init(&info->xattrs);
2246 cache_no_acl(inode);
2247
2248 switch (mode & S_IFMT) {
2249 default:
2250 inode->i_op = &shmem_special_inode_operations;
2251 init_special_inode(inode, mode, dev);
2252 break;
2253 case S_IFREG:
2254 inode->i_mapping->a_ops = &shmem_aops;
2255 inode->i_op = &shmem_inode_operations;
2256 inode->i_fop = &shmem_file_operations;
2257 mpol_shared_policy_init(&info->policy,
2258 shmem_get_sbmpol(sbinfo));
2259 break;
2260 case S_IFDIR:
2261 inc_nlink(inode);
2262 /* Some things misbehave if size == 0 on a directory */
2263 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2264 inode->i_op = &shmem_dir_inode_operations;
2265 inode->i_fop = &simple_dir_operations;
2266 break;
2267 case S_IFLNK:
2268 /*
2269 * Must not load anything in the rbtree,
2270 * mpol_free_shared_policy will not be called.
2271 */
2272 mpol_shared_policy_init(&info->policy, NULL);
2273 break;
2274 }
2275
2276 lockdep_annotate_inode_mutex_key(inode);
2277 } else
2278 shmem_free_inode(sb);
2279 return inode;
2280 }
2281
2282 bool shmem_mapping(struct address_space *mapping)
2283 {
2284 return mapping->a_ops == &shmem_aops;
2285 }
2286
2287 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2288 pmd_t *dst_pmd,
2289 struct vm_area_struct *dst_vma,
2290 unsigned long dst_addr,
2291 unsigned long src_addr,
2292 bool zeropage,
2293 struct page **pagep)
2294 {
2295 struct inode *inode = file_inode(dst_vma->vm_file);
2296 struct shmem_inode_info *info = SHMEM_I(inode);
2297 struct address_space *mapping = inode->i_mapping;
2298 gfp_t gfp = mapping_gfp_mask(mapping);
2299 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2300 spinlock_t *ptl;
2301 void *page_kaddr;
2302 struct page *page;
2303 pte_t _dst_pte, *dst_pte;
2304 int ret;
2305 pgoff_t offset, max_off;
2306
2307 ret = -ENOMEM;
2308 if (!shmem_inode_acct_block(inode, 1))
2309 goto out;
2310
2311 if (!*pagep) {
2312 page = shmem_alloc_page(gfp, info, pgoff);
2313 if (!page)
2314 goto out_unacct_blocks;
2315
2316 if (!zeropage) { /* mcopy_atomic */
2317 page_kaddr = kmap_atomic(page);
2318 ret = copy_from_user(page_kaddr,
2319 (const void __user *)src_addr,
2320 PAGE_SIZE);
2321 kunmap_atomic(page_kaddr);
2322
2323 /* fallback to copy_from_user outside mmap_sem */
2324 if (unlikely(ret)) {
2325 *pagep = page;
2326 shmem_inode_unacct_blocks(inode, 1);
2327 /* don't free the page */
2328 return -ENOENT;
2329 }
2330 } else { /* mfill_zeropage_atomic */
2331 clear_highpage(page);
2332 }
2333 } else {
2334 page = *pagep;
2335 *pagep = NULL;
2336 }
2337
2338 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2339 __SetPageLocked(page);
2340 __SetPageSwapBacked(page);
2341 __SetPageUptodate(page);
2342
2343 ret = -EFAULT;
2344 offset = linear_page_index(dst_vma, dst_addr);
2345 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2346 if (unlikely(offset >= max_off))
2347 goto out_release;
2348
2349 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2350 gfp & GFP_RECLAIM_MASK, dst_mm);
2351 if (ret)
2352 goto out_release;
2353
2354 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2355 if (dst_vma->vm_flags & VM_WRITE)
2356 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2357 else {
2358 /*
2359 * We don't set the pte dirty if the vma has no
2360 * VM_WRITE permission, so mark the page dirty or it
2361 * could be freed from under us. We could do it
2362 * unconditionally before unlock_page(), but doing it
2363 * only if VM_WRITE is not set is faster.
2364 */
2365 set_page_dirty(page);
2366 }
2367
2368 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2369
2370 ret = -EFAULT;
2371 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2372 if (unlikely(offset >= max_off))
2373 goto out_release_unlock;
2374
2375 ret = -EEXIST;
2376 if (!pte_none(*dst_pte))
2377 goto out_release_unlock;
2378
2379 lru_cache_add(page);
2380
2381 spin_lock_irq(&info->lock);
2382 info->alloced++;
2383 inode->i_blocks += BLOCKS_PER_PAGE;
2384 shmem_recalc_inode(inode);
2385 spin_unlock_irq(&info->lock);
2386
2387 inc_mm_counter(dst_mm, mm_counter_file(page));
2388 page_add_file_rmap(page, false);
2389 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2390
2391 /* No need to invalidate - it was non-present before */
2392 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2393 pte_unmap_unlock(dst_pte, ptl);
2394 unlock_page(page);
2395 ret = 0;
2396 out:
2397 return ret;
2398 out_release_unlock:
2399 pte_unmap_unlock(dst_pte, ptl);
2400 ClearPageDirty(page);
2401 delete_from_page_cache(page);
2402 out_release:
2403 unlock_page(page);
2404 put_page(page);
2405 out_unacct_blocks:
2406 shmem_inode_unacct_blocks(inode, 1);
2407 goto out;
2408 }
2409
2410 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2411 pmd_t *dst_pmd,
2412 struct vm_area_struct *dst_vma,
2413 unsigned long dst_addr,
2414 unsigned long src_addr,
2415 struct page **pagep)
2416 {
2417 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2418 dst_addr, src_addr, false, pagep);
2419 }
2420
2421 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2422 pmd_t *dst_pmd,
2423 struct vm_area_struct *dst_vma,
2424 unsigned long dst_addr)
2425 {
2426 struct page *page = NULL;
2427
2428 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2429 dst_addr, 0, true, &page);
2430 }
2431
2432 #ifdef CONFIG_TMPFS
2433 static const struct inode_operations shmem_symlink_inode_operations;
2434 static const struct inode_operations shmem_short_symlink_operations;
2435
2436 #ifdef CONFIG_TMPFS_XATTR
2437 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2438 #else
2439 #define shmem_initxattrs NULL
2440 #endif
2441
2442 static int
2443 shmem_write_begin(struct file *file, struct address_space *mapping,
2444 loff_t pos, unsigned len, unsigned flags,
2445 struct page **pagep, void **fsdata)
2446 {
2447 struct inode *inode = mapping->host;
2448 struct shmem_inode_info *info = SHMEM_I(inode);
2449 pgoff_t index = pos >> PAGE_SHIFT;
2450
2451 /* i_mutex is held by caller */
2452 if (unlikely(info->seals & (F_SEAL_GROW |
2453 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2454 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2455 return -EPERM;
2456 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2457 return -EPERM;
2458 }
2459
2460 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2461 }
2462
2463 static int
2464 shmem_write_end(struct file *file, struct address_space *mapping,
2465 loff_t pos, unsigned len, unsigned copied,
2466 struct page *page, void *fsdata)
2467 {
2468 struct inode *inode = mapping->host;
2469
2470 if (pos + copied > inode->i_size)
2471 i_size_write(inode, pos + copied);
2472
2473 if (!PageUptodate(page)) {
2474 struct page *head = compound_head(page);
2475 if (PageTransCompound(page)) {
2476 int i;
2477
2478 for (i = 0; i < HPAGE_PMD_NR; i++) {
2479 if (head + i == page)
2480 continue;
2481 clear_highpage(head + i);
2482 flush_dcache_page(head + i);
2483 }
2484 }
2485 if (copied < PAGE_SIZE) {
2486 unsigned from = pos & (PAGE_SIZE - 1);
2487 zero_user_segments(page, 0, from,
2488 from + copied, PAGE_SIZE);
2489 }
2490 SetPageUptodate(head);
2491 }
2492 set_page_dirty(page);
2493 unlock_page(page);
2494 put_page(page);
2495
2496 return copied;
2497 }
2498
2499 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2500 {
2501 struct file *file = iocb->ki_filp;
2502 struct inode *inode = file_inode(file);
2503 struct address_space *mapping = inode->i_mapping;
2504 pgoff_t index;
2505 unsigned long offset;
2506 enum sgp_type sgp = SGP_READ;
2507 int error = 0;
2508 ssize_t retval = 0;
2509 loff_t *ppos = &iocb->ki_pos;
2510
2511 /*
2512 * Might this read be for a stacking filesystem? Then when reading
2513 * holes of a sparse file, we actually need to allocate those pages,
2514 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2515 */
2516 if (!iter_is_iovec(to))
2517 sgp = SGP_CACHE;
2518
2519 index = *ppos >> PAGE_SHIFT;
2520 offset = *ppos & ~PAGE_MASK;
2521
2522 for (;;) {
2523 struct page *page = NULL;
2524 pgoff_t end_index;
2525 unsigned long nr, ret;
2526 loff_t i_size = i_size_read(inode);
2527
2528 end_index = i_size >> PAGE_SHIFT;
2529 if (index > end_index)
2530 break;
2531 if (index == end_index) {
2532 nr = i_size & ~PAGE_MASK;
2533 if (nr <= offset)
2534 break;
2535 }
2536
2537 error = shmem_getpage(inode, index, &page, sgp);
2538 if (error) {
2539 if (error == -EINVAL)
2540 error = 0;
2541 break;
2542 }
2543 if (page) {
2544 if (sgp == SGP_CACHE)
2545 set_page_dirty(page);
2546 unlock_page(page);
2547 }
2548
2549 /*
2550 * We must evaluate after, since reads (unlike writes)
2551 * are called without i_mutex protection against truncate
2552 */
2553 nr = PAGE_SIZE;
2554 i_size = i_size_read(inode);
2555 end_index = i_size >> PAGE_SHIFT;
2556 if (index == end_index) {
2557 nr = i_size & ~PAGE_MASK;
2558 if (nr <= offset) {
2559 if (page)
2560 put_page(page);
2561 break;
2562 }
2563 }
2564 nr -= offset;
2565
2566 if (page) {
2567 /*
2568 * If users can be writing to this page using arbitrary
2569 * virtual addresses, take care about potential aliasing
2570 * before reading the page on the kernel side.
2571 */
2572 if (mapping_writably_mapped(mapping))
2573 flush_dcache_page(page);
2574 /*
2575 * Mark the page accessed if we read the beginning.
2576 */
2577 if (!offset)
2578 mark_page_accessed(page);
2579 } else {
2580 page = ZERO_PAGE(0);
2581 get_page(page);
2582 }
2583
2584 /*
2585 * Ok, we have the page, and it's up-to-date, so
2586 * now we can copy it to user space...
2587 */
2588 ret = copy_page_to_iter(page, offset, nr, to);
2589 retval += ret;
2590 offset += ret;
2591 index += offset >> PAGE_SHIFT;
2592 offset &= ~PAGE_MASK;
2593
2594 put_page(page);
2595 if (!iov_iter_count(to))
2596 break;
2597 if (ret < nr) {
2598 error = -EFAULT;
2599 break;
2600 }
2601 cond_resched();
2602 }
2603
2604 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2605 file_accessed(file);
2606 return retval ? retval : error;
2607 }
2608
2609 /*
2610 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2611 */
2612 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2613 pgoff_t index, pgoff_t end, int whence)
2614 {
2615 struct page *page;
2616 struct pagevec pvec;
2617 pgoff_t indices[PAGEVEC_SIZE];
2618 bool done = false;
2619 int i;
2620
2621 pagevec_init(&pvec);
2622 pvec.nr = 1; /* start small: we may be there already */
2623 while (!done) {
2624 pvec.nr = find_get_entries(mapping, index,
2625 pvec.nr, pvec.pages, indices);
2626 if (!pvec.nr) {
2627 if (whence == SEEK_DATA)
2628 index = end;
2629 break;
2630 }
2631 for (i = 0; i < pvec.nr; i++, index++) {
2632 if (index < indices[i]) {
2633 if (whence == SEEK_HOLE) {
2634 done = true;
2635 break;
2636 }
2637 index = indices[i];
2638 }
2639 page = pvec.pages[i];
2640 if (page && !xa_is_value(page)) {
2641 if (!PageUptodate(page))
2642 page = NULL;
2643 }
2644 if (index >= end ||
2645 (page && whence == SEEK_DATA) ||
2646 (!page && whence == SEEK_HOLE)) {
2647 done = true;
2648 break;
2649 }
2650 }
2651 pagevec_remove_exceptionals(&pvec);
2652 pagevec_release(&pvec);
2653 pvec.nr = PAGEVEC_SIZE;
2654 cond_resched();
2655 }
2656 return index;
2657 }
2658
2659 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2660 {
2661 struct address_space *mapping = file->f_mapping;
2662 struct inode *inode = mapping->host;
2663 pgoff_t start, end;
2664 loff_t new_offset;
2665
2666 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2667 return generic_file_llseek_size(file, offset, whence,
2668 MAX_LFS_FILESIZE, i_size_read(inode));
2669 inode_lock(inode);
2670 /* We're holding i_mutex so we can access i_size directly */
2671
2672 if (offset < 0 || offset >= inode->i_size)
2673 offset = -ENXIO;
2674 else {
2675 start = offset >> PAGE_SHIFT;
2676 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2677 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2678 new_offset <<= PAGE_SHIFT;
2679 if (new_offset > offset) {
2680 if (new_offset < inode->i_size)
2681 offset = new_offset;
2682 else if (whence == SEEK_DATA)
2683 offset = -ENXIO;
2684 else
2685 offset = inode->i_size;
2686 }
2687 }
2688
2689 if (offset >= 0)
2690 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2691 inode_unlock(inode);
2692 return offset;
2693 }
2694
2695 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2696 loff_t len)
2697 {
2698 struct inode *inode = file_inode(file);
2699 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2700 struct shmem_inode_info *info = SHMEM_I(inode);
2701 struct shmem_falloc shmem_falloc;
2702 pgoff_t start, index, end;
2703 int error;
2704
2705 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2706 return -EOPNOTSUPP;
2707
2708 inode_lock(inode);
2709
2710 if (mode & FALLOC_FL_PUNCH_HOLE) {
2711 struct address_space *mapping = file->f_mapping;
2712 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2713 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2714 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2715
2716 /* protected by i_mutex */
2717 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2718 error = -EPERM;
2719 goto out;
2720 }
2721
2722 shmem_falloc.waitq = &shmem_falloc_waitq;
2723 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2724 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2725 spin_lock(&inode->i_lock);
2726 inode->i_private = &shmem_falloc;
2727 spin_unlock(&inode->i_lock);
2728
2729 if ((u64)unmap_end > (u64)unmap_start)
2730 unmap_mapping_range(mapping, unmap_start,
2731 1 + unmap_end - unmap_start, 0);
2732 shmem_truncate_range(inode, offset, offset + len - 1);
2733 /* No need to unmap again: hole-punching leaves COWed pages */
2734
2735 spin_lock(&inode->i_lock);
2736 inode->i_private = NULL;
2737 wake_up_all(&shmem_falloc_waitq);
2738 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2739 spin_unlock(&inode->i_lock);
2740 error = 0;
2741 goto out;
2742 }
2743
2744 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2745 error = inode_newsize_ok(inode, offset + len);
2746 if (error)
2747 goto out;
2748
2749 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2750 error = -EPERM;
2751 goto out;
2752 }
2753
2754 start = offset >> PAGE_SHIFT;
2755 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2756 /* Try to avoid a swapstorm if len is impossible to satisfy */
2757 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2758 error = -ENOSPC;
2759 goto out;
2760 }
2761
2762 shmem_falloc.waitq = NULL;
2763 shmem_falloc.start = start;
2764 shmem_falloc.next = start;
2765 shmem_falloc.nr_falloced = 0;
2766 shmem_falloc.nr_unswapped = 0;
2767 spin_lock(&inode->i_lock);
2768 inode->i_private = &shmem_falloc;
2769 spin_unlock(&inode->i_lock);
2770
2771 for (index = start; index < end; index++) {
2772 struct page *page;
2773
2774 /*
2775 * Good, the fallocate(2) manpage permits EINTR: we may have
2776 * been interrupted because we are using up too much memory.
2777 */
2778 if (signal_pending(current))
2779 error = -EINTR;
2780 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2781 error = -ENOMEM;
2782 else
2783 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2784 if (error) {
2785 /* Remove the !PageUptodate pages we added */
2786 if (index > start) {
2787 shmem_undo_range(inode,
2788 (loff_t)start << PAGE_SHIFT,
2789 ((loff_t)index << PAGE_SHIFT) - 1, true);
2790 }
2791 goto undone;
2792 }
2793
2794 /*
2795 * Inform shmem_writepage() how far we have reached.
2796 * No need for lock or barrier: we have the page lock.
2797 */
2798 shmem_falloc.next++;
2799 if (!PageUptodate(page))
2800 shmem_falloc.nr_falloced++;
2801
2802 /*
2803 * If !PageUptodate, leave it that way so that freeable pages
2804 * can be recognized if we need to rollback on error later.
2805 * But set_page_dirty so that memory pressure will swap rather
2806 * than free the pages we are allocating (and SGP_CACHE pages
2807 * might still be clean: we now need to mark those dirty too).
2808 */
2809 set_page_dirty(page);
2810 unlock_page(page);
2811 put_page(page);
2812 cond_resched();
2813 }
2814
2815 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2816 i_size_write(inode, offset + len);
2817 inode->i_ctime = current_time(inode);
2818 undone:
2819 spin_lock(&inode->i_lock);
2820 inode->i_private = NULL;
2821 spin_unlock(&inode->i_lock);
2822 out:
2823 inode_unlock(inode);
2824 return error;
2825 }
2826
2827 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2828 {
2829 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2830
2831 buf->f_type = TMPFS_MAGIC;
2832 buf->f_bsize = PAGE_SIZE;
2833 buf->f_namelen = NAME_MAX;
2834 if (sbinfo->max_blocks) {
2835 buf->f_blocks = sbinfo->max_blocks;
2836 buf->f_bavail =
2837 buf->f_bfree = sbinfo->max_blocks -
2838 percpu_counter_sum(&sbinfo->used_blocks);
2839 }
2840 if (sbinfo->max_inodes) {
2841 buf->f_files = sbinfo->max_inodes;
2842 buf->f_ffree = sbinfo->free_inodes;
2843 }
2844 /* else leave those fields 0 like simple_statfs */
2845 return 0;
2846 }
2847
2848 /*
2849 * File creation. Allocate an inode, and we're done..
2850 */
2851 static int
2852 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2853 {
2854 struct inode *inode;
2855 int error = -ENOSPC;
2856
2857 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2858 if (inode) {
2859 error = simple_acl_create(dir, inode);
2860 if (error)
2861 goto out_iput;
2862 error = security_inode_init_security(inode, dir,
2863 &dentry->d_name,
2864 shmem_initxattrs, NULL);
2865 if (error && error != -EOPNOTSUPP)
2866 goto out_iput;
2867
2868 error = 0;
2869 dir->i_size += BOGO_DIRENT_SIZE;
2870 dir->i_ctime = dir->i_mtime = current_time(dir);
2871 d_instantiate(dentry, inode);
2872 dget(dentry); /* Extra count - pin the dentry in core */
2873 }
2874 return error;
2875 out_iput:
2876 iput(inode);
2877 return error;
2878 }
2879
2880 static int
2881 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2882 {
2883 struct inode *inode;
2884 int error = -ENOSPC;
2885
2886 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2887 if (inode) {
2888 error = security_inode_init_security(inode, dir,
2889 NULL,
2890 shmem_initxattrs, NULL);
2891 if (error && error != -EOPNOTSUPP)
2892 goto out_iput;
2893 error = simple_acl_create(dir, inode);
2894 if (error)
2895 goto out_iput;
2896 d_tmpfile(dentry, inode);
2897 }
2898 return error;
2899 out_iput:
2900 iput(inode);
2901 return error;
2902 }
2903
2904 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2905 {
2906 int error;
2907
2908 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2909 return error;
2910 inc_nlink(dir);
2911 return 0;
2912 }
2913
2914 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2915 bool excl)
2916 {
2917 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2918 }
2919
2920 /*
2921 * Link a file..
2922 */
2923 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2924 {
2925 struct inode *inode = d_inode(old_dentry);
2926 int ret = 0;
2927
2928 /*
2929 * No ordinary (disk based) filesystem counts links as inodes;
2930 * but each new link needs a new dentry, pinning lowmem, and
2931 * tmpfs dentries cannot be pruned until they are unlinked.
2932 * But if an O_TMPFILE file is linked into the tmpfs, the
2933 * first link must skip that, to get the accounting right.
2934 */
2935 if (inode->i_nlink) {
2936 ret = shmem_reserve_inode(inode->i_sb);
2937 if (ret)
2938 goto out;
2939 }
2940
2941 dir->i_size += BOGO_DIRENT_SIZE;
2942 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2943 inc_nlink(inode);
2944 ihold(inode); /* New dentry reference */
2945 dget(dentry); /* Extra pinning count for the created dentry */
2946 d_instantiate(dentry, inode);
2947 out:
2948 return ret;
2949 }
2950
2951 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2952 {
2953 struct inode *inode = d_inode(dentry);
2954
2955 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2956 shmem_free_inode(inode->i_sb);
2957
2958 dir->i_size -= BOGO_DIRENT_SIZE;
2959 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2960 drop_nlink(inode);
2961 dput(dentry); /* Undo the count from "create" - this does all the work */
2962 return 0;
2963 }
2964
2965 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2966 {
2967 if (!simple_empty(dentry))
2968 return -ENOTEMPTY;
2969
2970 drop_nlink(d_inode(dentry));
2971 drop_nlink(dir);
2972 return shmem_unlink(dir, dentry);
2973 }
2974
2975 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2976 {
2977 bool old_is_dir = d_is_dir(old_dentry);
2978 bool new_is_dir = d_is_dir(new_dentry);
2979
2980 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2981 if (old_is_dir) {
2982 drop_nlink(old_dir);
2983 inc_nlink(new_dir);
2984 } else {
2985 drop_nlink(new_dir);
2986 inc_nlink(old_dir);
2987 }
2988 }
2989 old_dir->i_ctime = old_dir->i_mtime =
2990 new_dir->i_ctime = new_dir->i_mtime =
2991 d_inode(old_dentry)->i_ctime =
2992 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2993
2994 return 0;
2995 }
2996
2997 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2998 {
2999 struct dentry *whiteout;
3000 int error;
3001
3002 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3003 if (!whiteout)
3004 return -ENOMEM;
3005
3006 error = shmem_mknod(old_dir, whiteout,
3007 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3008 dput(whiteout);
3009 if (error)
3010 return error;
3011
3012 /*
3013 * Cheat and hash the whiteout while the old dentry is still in
3014 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3015 *
3016 * d_lookup() will consistently find one of them at this point,
3017 * not sure which one, but that isn't even important.
3018 */
3019 d_rehash(whiteout);
3020 return 0;
3021 }
3022
3023 /*
3024 * The VFS layer already does all the dentry stuff for rename,
3025 * we just have to decrement the usage count for the target if
3026 * it exists so that the VFS layer correctly free's it when it
3027 * gets overwritten.
3028 */
3029 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3030 {
3031 struct inode *inode = d_inode(old_dentry);
3032 int they_are_dirs = S_ISDIR(inode->i_mode);
3033
3034 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3035 return -EINVAL;
3036
3037 if (flags & RENAME_EXCHANGE)
3038 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3039
3040 if (!simple_empty(new_dentry))
3041 return -ENOTEMPTY;
3042
3043 if (flags & RENAME_WHITEOUT) {
3044 int error;
3045
3046 error = shmem_whiteout(old_dir, old_dentry);
3047 if (error)
3048 return error;
3049 }
3050
3051 if (d_really_is_positive(new_dentry)) {
3052 (void) shmem_unlink(new_dir, new_dentry);
3053 if (they_are_dirs) {
3054 drop_nlink(d_inode(new_dentry));
3055 drop_nlink(old_dir);
3056 }
3057 } else if (they_are_dirs) {
3058 drop_nlink(old_dir);
3059 inc_nlink(new_dir);
3060 }
3061
3062 old_dir->i_size -= BOGO_DIRENT_SIZE;
3063 new_dir->i_size += BOGO_DIRENT_SIZE;
3064 old_dir->i_ctime = old_dir->i_mtime =
3065 new_dir->i_ctime = new_dir->i_mtime =
3066 inode->i_ctime = current_time(old_dir);
3067 return 0;
3068 }
3069
3070 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3071 {
3072 int error;
3073 int len;
3074 struct inode *inode;
3075 struct page *page;
3076
3077 len = strlen(symname) + 1;
3078 if (len > PAGE_SIZE)
3079 return -ENAMETOOLONG;
3080
3081 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3082 VM_NORESERVE);
3083 if (!inode)
3084 return -ENOSPC;
3085
3086 error = security_inode_init_security(inode, dir, &dentry->d_name,
3087 shmem_initxattrs, NULL);
3088 if (error && error != -EOPNOTSUPP) {
3089 iput(inode);
3090 return error;
3091 }
3092
3093 inode->i_size = len-1;
3094 if (len <= SHORT_SYMLINK_LEN) {
3095 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3096 if (!inode->i_link) {
3097 iput(inode);
3098 return -ENOMEM;
3099 }
3100 inode->i_op = &shmem_short_symlink_operations;
3101 } else {
3102 inode_nohighmem(inode);
3103 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3104 if (error) {
3105 iput(inode);
3106 return error;
3107 }
3108 inode->i_mapping->a_ops = &shmem_aops;
3109 inode->i_op = &shmem_symlink_inode_operations;
3110 memcpy(page_address(page), symname, len);
3111 SetPageUptodate(page);
3112 set_page_dirty(page);
3113 unlock_page(page);
3114 put_page(page);
3115 }
3116 dir->i_size += BOGO_DIRENT_SIZE;
3117 dir->i_ctime = dir->i_mtime = current_time(dir);
3118 d_instantiate(dentry, inode);
3119 dget(dentry);
3120 return 0;
3121 }
3122
3123 static void shmem_put_link(void *arg)
3124 {
3125 mark_page_accessed(arg);
3126 put_page(arg);
3127 }
3128
3129 static const char *shmem_get_link(struct dentry *dentry,
3130 struct inode *inode,
3131 struct delayed_call *done)
3132 {
3133 struct page *page = NULL;
3134 int error;
3135 if (!dentry) {
3136 page = find_get_page(inode->i_mapping, 0);
3137 if (!page)
3138 return ERR_PTR(-ECHILD);
3139 if (!PageUptodate(page)) {
3140 put_page(page);
3141 return ERR_PTR(-ECHILD);
3142 }
3143 } else {
3144 error = shmem_getpage(inode, 0, &page, SGP_READ);
3145 if (error)
3146 return ERR_PTR(error);
3147 unlock_page(page);
3148 }
3149 set_delayed_call(done, shmem_put_link, page);
3150 return page_address(page);
3151 }
3152
3153 #ifdef CONFIG_TMPFS_XATTR
3154 /*
3155 * Superblocks without xattr inode operations may get some security.* xattr
3156 * support from the LSM "for free". As soon as we have any other xattrs
3157 * like ACLs, we also need to implement the security.* handlers at
3158 * filesystem level, though.
3159 */
3160
3161 /*
3162 * Callback for security_inode_init_security() for acquiring xattrs.
3163 */
3164 static int shmem_initxattrs(struct inode *inode,
3165 const struct xattr *xattr_array,
3166 void *fs_info)
3167 {
3168 struct shmem_inode_info *info = SHMEM_I(inode);
3169 const struct xattr *xattr;
3170 struct simple_xattr *new_xattr;
3171 size_t len;
3172
3173 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3174 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3175 if (!new_xattr)
3176 return -ENOMEM;
3177
3178 len = strlen(xattr->name) + 1;
3179 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3180 GFP_KERNEL);
3181 if (!new_xattr->name) {
3182 kfree(new_xattr);
3183 return -ENOMEM;
3184 }
3185
3186 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3187 XATTR_SECURITY_PREFIX_LEN);
3188 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3189 xattr->name, len);
3190
3191 simple_xattr_list_add(&info->xattrs, new_xattr);
3192 }
3193
3194 return 0;
3195 }
3196
3197 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3198 struct dentry *unused, struct inode *inode,
3199 const char *name, void *buffer, size_t size)
3200 {
3201 struct shmem_inode_info *info = SHMEM_I(inode);
3202
3203 name = xattr_full_name(handler, name);
3204 return simple_xattr_get(&info->xattrs, name, buffer, size);
3205 }
3206
3207 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3208 struct dentry *unused, struct inode *inode,
3209 const char *name, const void *value,
3210 size_t size, int flags)
3211 {
3212 struct shmem_inode_info *info = SHMEM_I(inode);
3213
3214 name = xattr_full_name(handler, name);
3215 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3216 }
3217
3218 static const struct xattr_handler shmem_security_xattr_handler = {
3219 .prefix = XATTR_SECURITY_PREFIX,
3220 .get = shmem_xattr_handler_get,
3221 .set = shmem_xattr_handler_set,
3222 };
3223
3224 static const struct xattr_handler shmem_trusted_xattr_handler = {
3225 .prefix = XATTR_TRUSTED_PREFIX,
3226 .get = shmem_xattr_handler_get,
3227 .set = shmem_xattr_handler_set,
3228 };
3229
3230 static const struct xattr_handler *shmem_xattr_handlers[] = {
3231 #ifdef CONFIG_TMPFS_POSIX_ACL
3232 &posix_acl_access_xattr_handler,
3233 &posix_acl_default_xattr_handler,
3234 #endif
3235 &shmem_security_xattr_handler,
3236 &shmem_trusted_xattr_handler,
3237 NULL
3238 };
3239
3240 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3241 {
3242 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3243 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3244 }
3245 #endif /* CONFIG_TMPFS_XATTR */
3246
3247 static const struct inode_operations shmem_short_symlink_operations = {
3248 .get_link = simple_get_link,
3249 #ifdef CONFIG_TMPFS_XATTR
3250 .listxattr = shmem_listxattr,
3251 #endif
3252 };
3253
3254 static const struct inode_operations shmem_symlink_inode_operations = {
3255 .get_link = shmem_get_link,
3256 #ifdef CONFIG_TMPFS_XATTR
3257 .listxattr = shmem_listxattr,
3258 #endif
3259 };
3260
3261 static struct dentry *shmem_get_parent(struct dentry *child)
3262 {
3263 return ERR_PTR(-ESTALE);
3264 }
3265
3266 static int shmem_match(struct inode *ino, void *vfh)
3267 {
3268 __u32 *fh = vfh;
3269 __u64 inum = fh[2];
3270 inum = (inum << 32) | fh[1];
3271 return ino->i_ino == inum && fh[0] == ino->i_generation;
3272 }
3273
3274 /* Find any alias of inode, but prefer a hashed alias */
3275 static struct dentry *shmem_find_alias(struct inode *inode)
3276 {
3277 struct dentry *alias = d_find_alias(inode);
3278
3279 return alias ?: d_find_any_alias(inode);
3280 }
3281
3282
3283 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3284 struct fid *fid, int fh_len, int fh_type)
3285 {
3286 struct inode *inode;
3287 struct dentry *dentry = NULL;
3288 u64 inum;
3289
3290 if (fh_len < 3)
3291 return NULL;
3292
3293 inum = fid->raw[2];
3294 inum = (inum << 32) | fid->raw[1];
3295
3296 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3297 shmem_match, fid->raw);
3298 if (inode) {
3299 dentry = shmem_find_alias(inode);
3300 iput(inode);
3301 }
3302
3303 return dentry;
3304 }
3305
3306 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3307 struct inode *parent)
3308 {
3309 if (*len < 3) {
3310 *len = 3;
3311 return FILEID_INVALID;
3312 }
3313
3314 if (inode_unhashed(inode)) {
3315 /* Unfortunately insert_inode_hash is not idempotent,
3316 * so as we hash inodes here rather than at creation
3317 * time, we need a lock to ensure we only try
3318 * to do it once
3319 */
3320 static DEFINE_SPINLOCK(lock);
3321 spin_lock(&lock);
3322 if (inode_unhashed(inode))
3323 __insert_inode_hash(inode,
3324 inode->i_ino + inode->i_generation);
3325 spin_unlock(&lock);
3326 }
3327
3328 fh[0] = inode->i_generation;
3329 fh[1] = inode->i_ino;
3330 fh[2] = ((__u64)inode->i_ino) >> 32;
3331
3332 *len = 3;
3333 return 1;
3334 }
3335
3336 static const struct export_operations shmem_export_ops = {
3337 .get_parent = shmem_get_parent,
3338 .encode_fh = shmem_encode_fh,
3339 .fh_to_dentry = shmem_fh_to_dentry,
3340 };
3341
3342 enum shmem_param {
3343 Opt_gid,
3344 Opt_huge,
3345 Opt_mode,
3346 Opt_mpol,
3347 Opt_nr_blocks,
3348 Opt_nr_inodes,
3349 Opt_size,
3350 Opt_uid,
3351 };
3352
3353 static const struct constant_table shmem_param_enums_huge[] = {
3354 {"never", SHMEM_HUGE_NEVER },
3355 {"always", SHMEM_HUGE_ALWAYS },
3356 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3357 {"advise", SHMEM_HUGE_ADVISE },
3358 {}
3359 };
3360
3361 const struct fs_parameter_spec shmem_fs_parameters[] = {
3362 fsparam_u32 ("gid", Opt_gid),
3363 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3364 fsparam_u32oct("mode", Opt_mode),
3365 fsparam_string("mpol", Opt_mpol),
3366 fsparam_string("nr_blocks", Opt_nr_blocks),
3367 fsparam_string("nr_inodes", Opt_nr_inodes),
3368 fsparam_string("size", Opt_size),
3369 fsparam_u32 ("uid", Opt_uid),
3370 {}
3371 };
3372
3373 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3374 {
3375 struct shmem_options *ctx = fc->fs_private;
3376 struct fs_parse_result result;
3377 unsigned long long size;
3378 char *rest;
3379 int opt;
3380
3381 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3382 if (opt < 0)
3383 return opt;
3384
3385 switch (opt) {
3386 case Opt_size:
3387 size = memparse(param->string, &rest);
3388 if (*rest == '%') {
3389 size <<= PAGE_SHIFT;
3390 size *= totalram_pages();
3391 do_div(size, 100);
3392 rest++;
3393 }
3394 if (*rest)
3395 goto bad_value;
3396 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3397 ctx->seen |= SHMEM_SEEN_BLOCKS;
3398 break;
3399 case Opt_nr_blocks:
3400 ctx->blocks = memparse(param->string, &rest);
3401 if (*rest)
3402 goto bad_value;
3403 ctx->seen |= SHMEM_SEEN_BLOCKS;
3404 break;
3405 case Opt_nr_inodes:
3406 ctx->inodes = memparse(param->string, &rest);
3407 if (*rest)
3408 goto bad_value;
3409 ctx->seen |= SHMEM_SEEN_INODES;
3410 break;
3411 case Opt_mode:
3412 ctx->mode = result.uint_32 & 07777;
3413 break;
3414 case Opt_uid:
3415 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3416 if (!uid_valid(ctx->uid))
3417 goto bad_value;
3418 break;
3419 case Opt_gid:
3420 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3421 if (!gid_valid(ctx->gid))
3422 goto bad_value;
3423 break;
3424 case Opt_huge:
3425 ctx->huge = result.uint_32;
3426 if (ctx->huge != SHMEM_HUGE_NEVER &&
3427 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3428 has_transparent_hugepage()))
3429 goto unsupported_parameter;
3430 ctx->seen |= SHMEM_SEEN_HUGE;
3431 break;
3432 case Opt_mpol:
3433 if (IS_ENABLED(CONFIG_NUMA)) {
3434 mpol_put(ctx->mpol);
3435 ctx->mpol = NULL;
3436 if (mpol_parse_str(param->string, &ctx->mpol))
3437 goto bad_value;
3438 break;
3439 }
3440 goto unsupported_parameter;
3441 }
3442 return 0;
3443
3444 unsupported_parameter:
3445 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3446 bad_value:
3447 return invalfc(fc, "Bad value for '%s'", param->key);
3448 }
3449
3450 static int shmem_parse_options(struct fs_context *fc, void *data)
3451 {
3452 char *options = data;
3453
3454 if (options) {
3455 int err = security_sb_eat_lsm_opts(options, &fc->security);
3456 if (err)
3457 return err;
3458 }
3459
3460 while (options != NULL) {
3461 char *this_char = options;
3462 for (;;) {
3463 /*
3464 * NUL-terminate this option: unfortunately,
3465 * mount options form a comma-separated list,
3466 * but mpol's nodelist may also contain commas.
3467 */
3468 options = strchr(options, ',');
3469 if (options == NULL)
3470 break;
3471 options++;
3472 if (!isdigit(*options)) {
3473 options[-1] = '\0';
3474 break;
3475 }
3476 }
3477 if (*this_char) {
3478 char *value = strchr(this_char,'=');
3479 size_t len = 0;
3480 int err;
3481
3482 if (value) {
3483 *value++ = '\0';
3484 len = strlen(value);
3485 }
3486 err = vfs_parse_fs_string(fc, this_char, value, len);
3487 if (err < 0)
3488 return err;
3489 }
3490 }
3491 return 0;
3492 }
3493
3494 /*
3495 * Reconfigure a shmem filesystem.
3496 *
3497 * Note that we disallow change from limited->unlimited blocks/inodes while any
3498 * are in use; but we must separately disallow unlimited->limited, because in
3499 * that case we have no record of how much is already in use.
3500 */
3501 static int shmem_reconfigure(struct fs_context *fc)
3502 {
3503 struct shmem_options *ctx = fc->fs_private;
3504 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3505 unsigned long inodes;
3506 const char *err;
3507
3508 spin_lock(&sbinfo->stat_lock);
3509 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3510 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3511 if (!sbinfo->max_blocks) {
3512 err = "Cannot retroactively limit size";
3513 goto out;
3514 }
3515 if (percpu_counter_compare(&sbinfo->used_blocks,
3516 ctx->blocks) > 0) {
3517 err = "Too small a size for current use";
3518 goto out;
3519 }
3520 }
3521 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3522 if (!sbinfo->max_inodes) {
3523 err = "Cannot retroactively limit inodes";
3524 goto out;
3525 }
3526 if (ctx->inodes < inodes) {
3527 err = "Too few inodes for current use";
3528 goto out;
3529 }
3530 }
3531
3532 if (ctx->seen & SHMEM_SEEN_HUGE)
3533 sbinfo->huge = ctx->huge;
3534 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3535 sbinfo->max_blocks = ctx->blocks;
3536 if (ctx->seen & SHMEM_SEEN_INODES) {
3537 sbinfo->max_inodes = ctx->inodes;
3538 sbinfo->free_inodes = ctx->inodes - inodes;
3539 }
3540
3541 /*
3542 * Preserve previous mempolicy unless mpol remount option was specified.
3543 */
3544 if (ctx->mpol) {
3545 mpol_put(sbinfo->mpol);
3546 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3547 ctx->mpol = NULL;
3548 }
3549 spin_unlock(&sbinfo->stat_lock);
3550 return 0;
3551 out:
3552 spin_unlock(&sbinfo->stat_lock);
3553 return invalfc(fc, "%s", err);
3554 }
3555
3556 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3557 {
3558 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3559
3560 if (sbinfo->max_blocks != shmem_default_max_blocks())
3561 seq_printf(seq, ",size=%luk",
3562 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3563 if (sbinfo->max_inodes != shmem_default_max_inodes())
3564 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3565 if (sbinfo->mode != (0777 | S_ISVTX))
3566 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3567 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3568 seq_printf(seq, ",uid=%u",
3569 from_kuid_munged(&init_user_ns, sbinfo->uid));
3570 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3571 seq_printf(seq, ",gid=%u",
3572 from_kgid_munged(&init_user_ns, sbinfo->gid));
3573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3574 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3575 if (sbinfo->huge)
3576 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3577 #endif
3578 shmem_show_mpol(seq, sbinfo->mpol);
3579 return 0;
3580 }
3581
3582 #endif /* CONFIG_TMPFS */
3583
3584 static void shmem_put_super(struct super_block *sb)
3585 {
3586 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3587
3588 percpu_counter_destroy(&sbinfo->used_blocks);
3589 mpol_put(sbinfo->mpol);
3590 kfree(sbinfo);
3591 sb->s_fs_info = NULL;
3592 }
3593
3594 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3595 {
3596 struct shmem_options *ctx = fc->fs_private;
3597 struct inode *inode;
3598 struct shmem_sb_info *sbinfo;
3599 int err = -ENOMEM;
3600
3601 /* Round up to L1_CACHE_BYTES to resist false sharing */
3602 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3603 L1_CACHE_BYTES), GFP_KERNEL);
3604 if (!sbinfo)
3605 return -ENOMEM;
3606
3607 sb->s_fs_info = sbinfo;
3608
3609 #ifdef CONFIG_TMPFS
3610 /*
3611 * Per default we only allow half of the physical ram per
3612 * tmpfs instance, limiting inodes to one per page of lowmem;
3613 * but the internal instance is left unlimited.
3614 */
3615 if (!(sb->s_flags & SB_KERNMOUNT)) {
3616 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3617 ctx->blocks = shmem_default_max_blocks();
3618 if (!(ctx->seen & SHMEM_SEEN_INODES))
3619 ctx->inodes = shmem_default_max_inodes();
3620 } else {
3621 sb->s_flags |= SB_NOUSER;
3622 }
3623 sb->s_export_op = &shmem_export_ops;
3624 sb->s_flags |= SB_NOSEC;
3625 #else
3626 sb->s_flags |= SB_NOUSER;
3627 #endif
3628 sbinfo->max_blocks = ctx->blocks;
3629 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3630 sbinfo->uid = ctx->uid;
3631 sbinfo->gid = ctx->gid;
3632 sbinfo->mode = ctx->mode;
3633 sbinfo->huge = ctx->huge;
3634 sbinfo->mpol = ctx->mpol;
3635 ctx->mpol = NULL;
3636
3637 spin_lock_init(&sbinfo->stat_lock);
3638 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3639 goto failed;
3640 spin_lock_init(&sbinfo->shrinklist_lock);
3641 INIT_LIST_HEAD(&sbinfo->shrinklist);
3642
3643 sb->s_maxbytes = MAX_LFS_FILESIZE;
3644 sb->s_blocksize = PAGE_SIZE;
3645 sb->s_blocksize_bits = PAGE_SHIFT;
3646 sb->s_magic = TMPFS_MAGIC;
3647 sb->s_op = &shmem_ops;
3648 sb->s_time_gran = 1;
3649 #ifdef CONFIG_TMPFS_XATTR
3650 sb->s_xattr = shmem_xattr_handlers;
3651 #endif
3652 #ifdef CONFIG_TMPFS_POSIX_ACL
3653 sb->s_flags |= SB_POSIXACL;
3654 #endif
3655 uuid_gen(&sb->s_uuid);
3656
3657 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3658 if (!inode)
3659 goto failed;
3660 inode->i_uid = sbinfo->uid;
3661 inode->i_gid = sbinfo->gid;
3662 sb->s_root = d_make_root(inode);
3663 if (!sb->s_root)
3664 goto failed;
3665 return 0;
3666
3667 failed:
3668 shmem_put_super(sb);
3669 return err;
3670 }
3671
3672 static int shmem_get_tree(struct fs_context *fc)
3673 {
3674 return get_tree_nodev(fc, shmem_fill_super);
3675 }
3676
3677 static void shmem_free_fc(struct fs_context *fc)
3678 {
3679 struct shmem_options *ctx = fc->fs_private;
3680
3681 if (ctx) {
3682 mpol_put(ctx->mpol);
3683 kfree(ctx);
3684 }
3685 }
3686
3687 static const struct fs_context_operations shmem_fs_context_ops = {
3688 .free = shmem_free_fc,
3689 .get_tree = shmem_get_tree,
3690 #ifdef CONFIG_TMPFS
3691 .parse_monolithic = shmem_parse_options,
3692 .parse_param = shmem_parse_one,
3693 .reconfigure = shmem_reconfigure,
3694 #endif
3695 };
3696
3697 static struct kmem_cache *shmem_inode_cachep;
3698
3699 static struct inode *shmem_alloc_inode(struct super_block *sb)
3700 {
3701 struct shmem_inode_info *info;
3702 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3703 if (!info)
3704 return NULL;
3705 return &info->vfs_inode;
3706 }
3707
3708 static void shmem_free_in_core_inode(struct inode *inode)
3709 {
3710 if (S_ISLNK(inode->i_mode))
3711 kfree(inode->i_link);
3712 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3713 }
3714
3715 static void shmem_destroy_inode(struct inode *inode)
3716 {
3717 if (S_ISREG(inode->i_mode))
3718 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3719 }
3720
3721 static void shmem_init_inode(void *foo)
3722 {
3723 struct shmem_inode_info *info = foo;
3724 inode_init_once(&info->vfs_inode);
3725 }
3726
3727 static void shmem_init_inodecache(void)
3728 {
3729 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3730 sizeof(struct shmem_inode_info),
3731 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3732 }
3733
3734 static void shmem_destroy_inodecache(void)
3735 {
3736 kmem_cache_destroy(shmem_inode_cachep);
3737 }
3738
3739 static const struct address_space_operations shmem_aops = {
3740 .writepage = shmem_writepage,
3741 .set_page_dirty = __set_page_dirty_no_writeback,
3742 #ifdef CONFIG_TMPFS
3743 .write_begin = shmem_write_begin,
3744 .write_end = shmem_write_end,
3745 #endif
3746 #ifdef CONFIG_MIGRATION
3747 .migratepage = migrate_page,
3748 #endif
3749 .error_remove_page = generic_error_remove_page,
3750 };
3751
3752 static const struct file_operations shmem_file_operations = {
3753 .mmap = shmem_mmap,
3754 .get_unmapped_area = shmem_get_unmapped_area,
3755 #ifdef CONFIG_TMPFS
3756 .llseek = shmem_file_llseek,
3757 .read_iter = shmem_file_read_iter,
3758 .write_iter = generic_file_write_iter,
3759 .fsync = noop_fsync,
3760 .splice_read = generic_file_splice_read,
3761 .splice_write = iter_file_splice_write,
3762 .fallocate = shmem_fallocate,
3763 #endif
3764 };
3765
3766 static const struct inode_operations shmem_inode_operations = {
3767 .getattr = shmem_getattr,
3768 .setattr = shmem_setattr,
3769 #ifdef CONFIG_TMPFS_XATTR
3770 .listxattr = shmem_listxattr,
3771 .set_acl = simple_set_acl,
3772 #endif
3773 };
3774
3775 static const struct inode_operations shmem_dir_inode_operations = {
3776 #ifdef CONFIG_TMPFS
3777 .create = shmem_create,
3778 .lookup = simple_lookup,
3779 .link = shmem_link,
3780 .unlink = shmem_unlink,
3781 .symlink = shmem_symlink,
3782 .mkdir = shmem_mkdir,
3783 .rmdir = shmem_rmdir,
3784 .mknod = shmem_mknod,
3785 .rename = shmem_rename2,
3786 .tmpfile = shmem_tmpfile,
3787 #endif
3788 #ifdef CONFIG_TMPFS_XATTR
3789 .listxattr = shmem_listxattr,
3790 #endif
3791 #ifdef CONFIG_TMPFS_POSIX_ACL
3792 .setattr = shmem_setattr,
3793 .set_acl = simple_set_acl,
3794 #endif
3795 };
3796
3797 static const struct inode_operations shmem_special_inode_operations = {
3798 #ifdef CONFIG_TMPFS_XATTR
3799 .listxattr = shmem_listxattr,
3800 #endif
3801 #ifdef CONFIG_TMPFS_POSIX_ACL
3802 .setattr = shmem_setattr,
3803 .set_acl = simple_set_acl,
3804 #endif
3805 };
3806
3807 static const struct super_operations shmem_ops = {
3808 .alloc_inode = shmem_alloc_inode,
3809 .free_inode = shmem_free_in_core_inode,
3810 .destroy_inode = shmem_destroy_inode,
3811 #ifdef CONFIG_TMPFS
3812 .statfs = shmem_statfs,
3813 .show_options = shmem_show_options,
3814 #endif
3815 .evict_inode = shmem_evict_inode,
3816 .drop_inode = generic_delete_inode,
3817 .put_super = shmem_put_super,
3818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3819 .nr_cached_objects = shmem_unused_huge_count,
3820 .free_cached_objects = shmem_unused_huge_scan,
3821 #endif
3822 };
3823
3824 static const struct vm_operations_struct shmem_vm_ops = {
3825 .fault = shmem_fault,
3826 .map_pages = filemap_map_pages,
3827 #ifdef CONFIG_NUMA
3828 .set_policy = shmem_set_policy,
3829 .get_policy = shmem_get_policy,
3830 #endif
3831 };
3832
3833 int shmem_init_fs_context(struct fs_context *fc)
3834 {
3835 struct shmem_options *ctx;
3836
3837 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3838 if (!ctx)
3839 return -ENOMEM;
3840
3841 ctx->mode = 0777 | S_ISVTX;
3842 ctx->uid = current_fsuid();
3843 ctx->gid = current_fsgid();
3844
3845 fc->fs_private = ctx;
3846 fc->ops = &shmem_fs_context_ops;
3847 return 0;
3848 }
3849
3850 static struct file_system_type shmem_fs_type = {
3851 .owner = THIS_MODULE,
3852 .name = "tmpfs",
3853 .init_fs_context = shmem_init_fs_context,
3854 #ifdef CONFIG_TMPFS
3855 .parameters = shmem_fs_parameters,
3856 #endif
3857 .kill_sb = kill_litter_super,
3858 .fs_flags = FS_USERNS_MOUNT,
3859 };
3860
3861 int __init shmem_init(void)
3862 {
3863 int error;
3864
3865 shmem_init_inodecache();
3866
3867 error = register_filesystem(&shmem_fs_type);
3868 if (error) {
3869 pr_err("Could not register tmpfs\n");
3870 goto out2;
3871 }
3872
3873 shm_mnt = kern_mount(&shmem_fs_type);
3874 if (IS_ERR(shm_mnt)) {
3875 error = PTR_ERR(shm_mnt);
3876 pr_err("Could not kern_mount tmpfs\n");
3877 goto out1;
3878 }
3879
3880 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3881 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3882 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3883 else
3884 shmem_huge = 0; /* just in case it was patched */
3885 #endif
3886 return 0;
3887
3888 out1:
3889 unregister_filesystem(&shmem_fs_type);
3890 out2:
3891 shmem_destroy_inodecache();
3892 shm_mnt = ERR_PTR(error);
3893 return error;
3894 }
3895
3896 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3897 static ssize_t shmem_enabled_show(struct kobject *kobj,
3898 struct kobj_attribute *attr, char *buf)
3899 {
3900 static const int values[] = {
3901 SHMEM_HUGE_ALWAYS,
3902 SHMEM_HUGE_WITHIN_SIZE,
3903 SHMEM_HUGE_ADVISE,
3904 SHMEM_HUGE_NEVER,
3905 SHMEM_HUGE_DENY,
3906 SHMEM_HUGE_FORCE,
3907 };
3908 int i, count;
3909
3910 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3911 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3912
3913 count += sprintf(buf + count, fmt,
3914 shmem_format_huge(values[i]));
3915 }
3916 buf[count - 1] = '\n';
3917 return count;
3918 }
3919
3920 static ssize_t shmem_enabled_store(struct kobject *kobj,
3921 struct kobj_attribute *attr, const char *buf, size_t count)
3922 {
3923 char tmp[16];
3924 int huge;
3925
3926 if (count + 1 > sizeof(tmp))
3927 return -EINVAL;
3928 memcpy(tmp, buf, count);
3929 tmp[count] = '\0';
3930 if (count && tmp[count - 1] == '\n')
3931 tmp[count - 1] = '\0';
3932
3933 huge = shmem_parse_huge(tmp);
3934 if (huge == -EINVAL)
3935 return -EINVAL;
3936 if (!has_transparent_hugepage() &&
3937 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3938 return -EINVAL;
3939
3940 shmem_huge = huge;
3941 if (shmem_huge > SHMEM_HUGE_DENY)
3942 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3943 return count;
3944 }
3945
3946 struct kobj_attribute shmem_enabled_attr =
3947 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3948 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3949
3950 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3951 bool shmem_huge_enabled(struct vm_area_struct *vma)
3952 {
3953 struct inode *inode = file_inode(vma->vm_file);
3954 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3955 loff_t i_size;
3956 pgoff_t off;
3957
3958 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3959 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3960 return false;
3961 if (shmem_huge == SHMEM_HUGE_FORCE)
3962 return true;
3963 if (shmem_huge == SHMEM_HUGE_DENY)
3964 return false;
3965 switch (sbinfo->huge) {
3966 case SHMEM_HUGE_NEVER:
3967 return false;
3968 case SHMEM_HUGE_ALWAYS:
3969 return true;
3970 case SHMEM_HUGE_WITHIN_SIZE:
3971 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3972 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3973 if (i_size >= HPAGE_PMD_SIZE &&
3974 i_size >> PAGE_SHIFT >= off)
3975 return true;
3976 fallthrough;
3977 case SHMEM_HUGE_ADVISE:
3978 /* TODO: implement fadvise() hints */
3979 return (vma->vm_flags & VM_HUGEPAGE);
3980 default:
3981 VM_BUG_ON(1);
3982 return false;
3983 }
3984 }
3985 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3986
3987 #else /* !CONFIG_SHMEM */
3988
3989 /*
3990 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3991 *
3992 * This is intended for small system where the benefits of the full
3993 * shmem code (swap-backed and resource-limited) are outweighed by
3994 * their complexity. On systems without swap this code should be
3995 * effectively equivalent, but much lighter weight.
3996 */
3997
3998 static struct file_system_type shmem_fs_type = {
3999 .name = "tmpfs",
4000 .init_fs_context = ramfs_init_fs_context,
4001 .parameters = ramfs_fs_parameters,
4002 .kill_sb = kill_litter_super,
4003 .fs_flags = FS_USERNS_MOUNT,
4004 };
4005
4006 int __init shmem_init(void)
4007 {
4008 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4009
4010 shm_mnt = kern_mount(&shmem_fs_type);
4011 BUG_ON(IS_ERR(shm_mnt));
4012
4013 return 0;
4014 }
4015
4016 int shmem_unuse(unsigned int type, bool frontswap,
4017 unsigned long *fs_pages_to_unuse)
4018 {
4019 return 0;
4020 }
4021
4022 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4023 {
4024 return 0;
4025 }
4026
4027 void shmem_unlock_mapping(struct address_space *mapping)
4028 {
4029 }
4030
4031 #ifdef CONFIG_MMU
4032 unsigned long shmem_get_unmapped_area(struct file *file,
4033 unsigned long addr, unsigned long len,
4034 unsigned long pgoff, unsigned long flags)
4035 {
4036 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4037 }
4038 #endif
4039
4040 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4041 {
4042 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4043 }
4044 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4045
4046 #define shmem_vm_ops generic_file_vm_ops
4047 #define shmem_file_operations ramfs_file_operations
4048 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4049 #define shmem_acct_size(flags, size) 0
4050 #define shmem_unacct_size(flags, size) do {} while (0)
4051
4052 #endif /* CONFIG_SHMEM */
4053
4054 /* common code */
4055
4056 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4057 unsigned long flags, unsigned int i_flags)
4058 {
4059 struct inode *inode;
4060 struct file *res;
4061
4062 if (IS_ERR(mnt))
4063 return ERR_CAST(mnt);
4064
4065 if (size < 0 || size > MAX_LFS_FILESIZE)
4066 return ERR_PTR(-EINVAL);
4067
4068 if (shmem_acct_size(flags, size))
4069 return ERR_PTR(-ENOMEM);
4070
4071 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4072 flags);
4073 if (unlikely(!inode)) {
4074 shmem_unacct_size(flags, size);
4075 return ERR_PTR(-ENOSPC);
4076 }
4077 inode->i_flags |= i_flags;
4078 inode->i_size = size;
4079 clear_nlink(inode); /* It is unlinked */
4080 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4081 if (!IS_ERR(res))
4082 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4083 &shmem_file_operations);
4084 if (IS_ERR(res))
4085 iput(inode);
4086 return res;
4087 }
4088
4089 /**
4090 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4091 * kernel internal. There will be NO LSM permission checks against the
4092 * underlying inode. So users of this interface must do LSM checks at a
4093 * higher layer. The users are the big_key and shm implementations. LSM
4094 * checks are provided at the key or shm level rather than the inode.
4095 * @name: name for dentry (to be seen in /proc/<pid>/maps
4096 * @size: size to be set for the file
4097 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4098 */
4099 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4100 {
4101 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4102 }
4103
4104 /**
4105 * shmem_file_setup - get an unlinked file living in tmpfs
4106 * @name: name for dentry (to be seen in /proc/<pid>/maps
4107 * @size: size to be set for the file
4108 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4109 */
4110 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4111 {
4112 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4113 }
4114 EXPORT_SYMBOL_GPL(shmem_file_setup);
4115
4116 /**
4117 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4118 * @mnt: the tmpfs mount where the file will be created
4119 * @name: name for dentry (to be seen in /proc/<pid>/maps
4120 * @size: size to be set for the file
4121 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4122 */
4123 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4124 loff_t size, unsigned long flags)
4125 {
4126 return __shmem_file_setup(mnt, name, size, flags, 0);
4127 }
4128 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4129
4130 /**
4131 * shmem_zero_setup - setup a shared anonymous mapping
4132 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4133 */
4134 int shmem_zero_setup(struct vm_area_struct *vma)
4135 {
4136 struct file *file;
4137 loff_t size = vma->vm_end - vma->vm_start;
4138
4139 /*
4140 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4141 * between XFS directory reading and selinux: since this file is only
4142 * accessible to the user through its mapping, use S_PRIVATE flag to
4143 * bypass file security, in the same way as shmem_kernel_file_setup().
4144 */
4145 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4146 if (IS_ERR(file))
4147 return PTR_ERR(file);
4148
4149 if (vma->vm_file)
4150 fput(vma->vm_file);
4151 vma->vm_file = file;
4152 vma->vm_ops = &shmem_vm_ops;
4153
4154 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4155 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4156 (vma->vm_end & HPAGE_PMD_MASK)) {
4157 khugepaged_enter(vma, vma->vm_flags);
4158 }
4159
4160 return 0;
4161 }
4162
4163 /**
4164 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4165 * @mapping: the page's address_space
4166 * @index: the page index
4167 * @gfp: the page allocator flags to use if allocating
4168 *
4169 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4170 * with any new page allocations done using the specified allocation flags.
4171 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4172 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4173 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4174 *
4175 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4176 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4177 */
4178 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4179 pgoff_t index, gfp_t gfp)
4180 {
4181 #ifdef CONFIG_SHMEM
4182 struct inode *inode = mapping->host;
4183 struct page *page;
4184 int error;
4185
4186 BUG_ON(mapping->a_ops != &shmem_aops);
4187 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4188 gfp, NULL, NULL, NULL);
4189 if (error)
4190 page = ERR_PTR(error);
4191 else
4192 unlock_page(page);
4193 return page;
4194 #else
4195 /*
4196 * The tiny !SHMEM case uses ramfs without swap
4197 */
4198 return read_cache_page_gfp(mapping, index, gfp);
4199 #endif
4200 }
4201 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);