]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/shmem.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37
38 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
39
40 static struct vfsmount *shm_mnt;
41
42 #ifdef CONFIG_SHMEM
43 /*
44 * This virtual memory filesystem is heavily based on the ramfs. It
45 * extends ramfs by the ability to use swap and honor resource limits
46 * which makes it a completely usable filesystem.
47 */
48
49 #include <linux/xattr.h>
50 #include <linux/exportfs.h>
51 #include <linux/posix_acl.h>
52 #include <linux/posix_acl_xattr.h>
53 #include <linux/mman.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <linux/backing-dev.h>
57 #include <linux/shmem_fs.h>
58 #include <linux/writeback.h>
59 #include <linux/blkdev.h>
60 #include <linux/pagevec.h>
61 #include <linux/percpu_counter.h>
62 #include <linux/falloc.h>
63 #include <linux/splice.h>
64 #include <linux/security.h>
65 #include <linux/swapops.h>
66 #include <linux/mempolicy.h>
67 #include <linux/namei.h>
68 #include <linux/ctype.h>
69 #include <linux/migrate.h>
70 #include <linux/highmem.h>
71 #include <linux/seq_file.h>
72 #include <linux/magic.h>
73 #include <linux/syscalls.h>
74 #include <linux/fcntl.h>
75 #include <uapi/linux/memfd.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/rmap.h>
78 #include <linux/uuid.h>
79
80 #include <linux/uaccess.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
87
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93
94 /*
95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96 * inode->i_private (with i_mutex making sure that it has only one user at
97 * a time): we would prefer not to enlarge the shmem inode just for that.
98 */
99 struct shmem_falloc {
100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 pgoff_t start; /* start of range currently being fallocated */
102 pgoff_t next; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
105 };
106
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110 return totalram_pages / 2;
111 }
112
113 static unsigned long shmem_default_max_inodes(void)
114 {
115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp,
124 gfp_t gfp, struct vm_area_struct *vma,
125 struct vm_fault *vmf, int *fault_type);
126
127 int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp)
129 {
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 return sb->s_fs_info;
137 }
138
139 /*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159 {
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168 }
169
170 /*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow large sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176 static inline int shmem_acct_block(unsigned long flags, long pages)
177 {
178 if (!(flags & VM_NORESERVE))
179 return 0;
180
181 return security_vm_enough_memory_mm(current->mm,
182 pages * VM_ACCT(PAGE_SIZE));
183 }
184
185 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
186 {
187 if (flags & VM_NORESERVE)
188 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
189 }
190
191 static const struct super_operations shmem_ops;
192 static const struct address_space_operations shmem_aops;
193 static const struct file_operations shmem_file_operations;
194 static const struct inode_operations shmem_inode_operations;
195 static const struct inode_operations shmem_dir_inode_operations;
196 static const struct inode_operations shmem_special_inode_operations;
197 static const struct vm_operations_struct shmem_vm_ops;
198 static struct file_system_type shmem_fs_type;
199
200 bool vma_is_shmem(struct vm_area_struct *vma)
201 {
202 return vma->vm_ops == &shmem_vm_ops;
203 }
204
205 static LIST_HEAD(shmem_swaplist);
206 static DEFINE_MUTEX(shmem_swaplist_mutex);
207
208 static int shmem_reserve_inode(struct super_block *sb)
209 {
210 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
211 if (sbinfo->max_inodes) {
212 spin_lock(&sbinfo->stat_lock);
213 if (!sbinfo->free_inodes) {
214 spin_unlock(&sbinfo->stat_lock);
215 return -ENOSPC;
216 }
217 sbinfo->free_inodes--;
218 spin_unlock(&sbinfo->stat_lock);
219 }
220 return 0;
221 }
222
223 static void shmem_free_inode(struct super_block *sb)
224 {
225 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
226 if (sbinfo->max_inodes) {
227 spin_lock(&sbinfo->stat_lock);
228 sbinfo->free_inodes++;
229 spin_unlock(&sbinfo->stat_lock);
230 }
231 }
232
233 /**
234 * shmem_recalc_inode - recalculate the block usage of an inode
235 * @inode: inode to recalc
236 *
237 * We have to calculate the free blocks since the mm can drop
238 * undirtied hole pages behind our back.
239 *
240 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
241 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
242 *
243 * It has to be called with the spinlock held.
244 */
245 static void shmem_recalc_inode(struct inode *inode)
246 {
247 struct shmem_inode_info *info = SHMEM_I(inode);
248 long freed;
249
250 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
251 if (freed > 0) {
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 if (sbinfo->max_blocks)
254 percpu_counter_add(&sbinfo->used_blocks, -freed);
255 info->alloced -= freed;
256 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
257 shmem_unacct_blocks(info->flags, freed);
258 }
259 }
260
261 bool shmem_charge(struct inode *inode, long pages)
262 {
263 struct shmem_inode_info *info = SHMEM_I(inode);
264 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
265 unsigned long flags;
266
267 if (shmem_acct_block(info->flags, pages))
268 return false;
269 spin_lock_irqsave(&info->lock, flags);
270 info->alloced += pages;
271 inode->i_blocks += pages * BLOCKS_PER_PAGE;
272 shmem_recalc_inode(inode);
273 spin_unlock_irqrestore(&info->lock, flags);
274 inode->i_mapping->nrpages += pages;
275
276 if (!sbinfo->max_blocks)
277 return true;
278 if (percpu_counter_compare(&sbinfo->used_blocks,
279 sbinfo->max_blocks - pages) > 0) {
280 inode->i_mapping->nrpages -= pages;
281 spin_lock_irqsave(&info->lock, flags);
282 info->alloced -= pages;
283 shmem_recalc_inode(inode);
284 spin_unlock_irqrestore(&info->lock, flags);
285 shmem_unacct_blocks(info->flags, pages);
286 return false;
287 }
288 percpu_counter_add(&sbinfo->used_blocks, pages);
289 return true;
290 }
291
292 void shmem_uncharge(struct inode *inode, long pages)
293 {
294 struct shmem_inode_info *info = SHMEM_I(inode);
295 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
296 unsigned long flags;
297
298 spin_lock_irqsave(&info->lock, flags);
299 info->alloced -= pages;
300 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
301 shmem_recalc_inode(inode);
302 spin_unlock_irqrestore(&info->lock, flags);
303
304 if (sbinfo->max_blocks)
305 percpu_counter_sub(&sbinfo->used_blocks, pages);
306 shmem_unacct_blocks(info->flags, pages);
307 }
308
309 /*
310 * Replace item expected in radix tree by a new item, while holding tree lock.
311 */
312 static int shmem_radix_tree_replace(struct address_space *mapping,
313 pgoff_t index, void *expected, void *replacement)
314 {
315 struct radix_tree_node *node;
316 void **pslot;
317 void *item;
318
319 VM_BUG_ON(!expected);
320 VM_BUG_ON(!replacement);
321 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
322 if (!item)
323 return -ENOENT;
324 if (item != expected)
325 return -ENOENT;
326 __radix_tree_replace(&mapping->page_tree, node, pslot,
327 replacement, NULL, NULL);
328 return 0;
329 }
330
331 /*
332 * Sometimes, before we decide whether to proceed or to fail, we must check
333 * that an entry was not already brought back from swap by a racing thread.
334 *
335 * Checking page is not enough: by the time a SwapCache page is locked, it
336 * might be reused, and again be SwapCache, using the same swap as before.
337 */
338 static bool shmem_confirm_swap(struct address_space *mapping,
339 pgoff_t index, swp_entry_t swap)
340 {
341 void *item;
342
343 rcu_read_lock();
344 item = radix_tree_lookup(&mapping->page_tree, index);
345 rcu_read_unlock();
346 return item == swp_to_radix_entry(swap);
347 }
348
349 /*
350 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
351 *
352 * SHMEM_HUGE_NEVER:
353 * disables huge pages for the mount;
354 * SHMEM_HUGE_ALWAYS:
355 * enables huge pages for the mount;
356 * SHMEM_HUGE_WITHIN_SIZE:
357 * only allocate huge pages if the page will be fully within i_size,
358 * also respect fadvise()/madvise() hints;
359 * SHMEM_HUGE_ADVISE:
360 * only allocate huge pages if requested with fadvise()/madvise();
361 */
362
363 #define SHMEM_HUGE_NEVER 0
364 #define SHMEM_HUGE_ALWAYS 1
365 #define SHMEM_HUGE_WITHIN_SIZE 2
366 #define SHMEM_HUGE_ADVISE 3
367
368 /*
369 * Special values.
370 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
371 *
372 * SHMEM_HUGE_DENY:
373 * disables huge on shm_mnt and all mounts, for emergency use;
374 * SHMEM_HUGE_FORCE:
375 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
376 *
377 */
378 #define SHMEM_HUGE_DENY (-1)
379 #define SHMEM_HUGE_FORCE (-2)
380
381 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
382 /* ifdef here to avoid bloating shmem.o when not necessary */
383
384 int shmem_huge __read_mostly;
385
386 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
387 static int shmem_parse_huge(const char *str)
388 {
389 if (!strcmp(str, "never"))
390 return SHMEM_HUGE_NEVER;
391 if (!strcmp(str, "always"))
392 return SHMEM_HUGE_ALWAYS;
393 if (!strcmp(str, "within_size"))
394 return SHMEM_HUGE_WITHIN_SIZE;
395 if (!strcmp(str, "advise"))
396 return SHMEM_HUGE_ADVISE;
397 if (!strcmp(str, "deny"))
398 return SHMEM_HUGE_DENY;
399 if (!strcmp(str, "force"))
400 return SHMEM_HUGE_FORCE;
401 return -EINVAL;
402 }
403
404 static const char *shmem_format_huge(int huge)
405 {
406 switch (huge) {
407 case SHMEM_HUGE_NEVER:
408 return "never";
409 case SHMEM_HUGE_ALWAYS:
410 return "always";
411 case SHMEM_HUGE_WITHIN_SIZE:
412 return "within_size";
413 case SHMEM_HUGE_ADVISE:
414 return "advise";
415 case SHMEM_HUGE_DENY:
416 return "deny";
417 case SHMEM_HUGE_FORCE:
418 return "force";
419 default:
420 VM_BUG_ON(1);
421 return "bad_val";
422 }
423 }
424 #endif
425
426 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
427 struct shrink_control *sc, unsigned long nr_to_split)
428 {
429 LIST_HEAD(list), *pos, *next;
430 LIST_HEAD(to_remove);
431 struct inode *inode;
432 struct shmem_inode_info *info;
433 struct page *page;
434 unsigned long batch = sc ? sc->nr_to_scan : 128;
435 int removed = 0, split = 0;
436
437 if (list_empty(&sbinfo->shrinklist))
438 return SHRINK_STOP;
439
440 spin_lock(&sbinfo->shrinklist_lock);
441 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
442 info = list_entry(pos, struct shmem_inode_info, shrinklist);
443
444 /* pin the inode */
445 inode = igrab(&info->vfs_inode);
446
447 /* inode is about to be evicted */
448 if (!inode) {
449 list_del_init(&info->shrinklist);
450 removed++;
451 goto next;
452 }
453
454 /* Check if there's anything to gain */
455 if (round_up(inode->i_size, PAGE_SIZE) ==
456 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
457 list_move(&info->shrinklist, &to_remove);
458 removed++;
459 goto next;
460 }
461
462 list_move(&info->shrinklist, &list);
463 next:
464 if (!--batch)
465 break;
466 }
467 spin_unlock(&sbinfo->shrinklist_lock);
468
469 list_for_each_safe(pos, next, &to_remove) {
470 info = list_entry(pos, struct shmem_inode_info, shrinklist);
471 inode = &info->vfs_inode;
472 list_del_init(&info->shrinklist);
473 iput(inode);
474 }
475
476 list_for_each_safe(pos, next, &list) {
477 int ret;
478
479 info = list_entry(pos, struct shmem_inode_info, shrinklist);
480 inode = &info->vfs_inode;
481
482 if (nr_to_split && split >= nr_to_split) {
483 iput(inode);
484 continue;
485 }
486
487 page = find_lock_page(inode->i_mapping,
488 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
489 if (!page)
490 goto drop;
491
492 if (!PageTransHuge(page)) {
493 unlock_page(page);
494 put_page(page);
495 goto drop;
496 }
497
498 ret = split_huge_page(page);
499 unlock_page(page);
500 put_page(page);
501
502 if (ret) {
503 /* split failed: leave it on the list */
504 iput(inode);
505 continue;
506 }
507
508 split++;
509 drop:
510 list_del_init(&info->shrinklist);
511 removed++;
512 iput(inode);
513 }
514
515 spin_lock(&sbinfo->shrinklist_lock);
516 list_splice_tail(&list, &sbinfo->shrinklist);
517 sbinfo->shrinklist_len -= removed;
518 spin_unlock(&sbinfo->shrinklist_lock);
519
520 return split;
521 }
522
523 static long shmem_unused_huge_scan(struct super_block *sb,
524 struct shrink_control *sc)
525 {
526 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
527
528 if (!READ_ONCE(sbinfo->shrinklist_len))
529 return SHRINK_STOP;
530
531 return shmem_unused_huge_shrink(sbinfo, sc, 0);
532 }
533
534 static long shmem_unused_huge_count(struct super_block *sb,
535 struct shrink_control *sc)
536 {
537 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
538 return READ_ONCE(sbinfo->shrinklist_len);
539 }
540 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
541
542 #define shmem_huge SHMEM_HUGE_DENY
543
544 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
545 struct shrink_control *sc, unsigned long nr_to_split)
546 {
547 return 0;
548 }
549 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
550
551 /*
552 * Like add_to_page_cache_locked, but error if expected item has gone.
553 */
554 static int shmem_add_to_page_cache(struct page *page,
555 struct address_space *mapping,
556 pgoff_t index, void *expected)
557 {
558 int error, nr = hpage_nr_pages(page);
559
560 VM_BUG_ON_PAGE(PageTail(page), page);
561 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
562 VM_BUG_ON_PAGE(!PageLocked(page), page);
563 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
564 VM_BUG_ON(expected && PageTransHuge(page));
565
566 page_ref_add(page, nr);
567 page->mapping = mapping;
568 page->index = index;
569
570 spin_lock_irq(&mapping->tree_lock);
571 if (PageTransHuge(page)) {
572 void __rcu **results;
573 pgoff_t idx;
574 int i;
575
576 error = 0;
577 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
578 &results, &idx, index, 1) &&
579 idx < index + HPAGE_PMD_NR) {
580 error = -EEXIST;
581 }
582
583 if (!error) {
584 for (i = 0; i < HPAGE_PMD_NR; i++) {
585 error = radix_tree_insert(&mapping->page_tree,
586 index + i, page + i);
587 VM_BUG_ON(error);
588 }
589 count_vm_event(THP_FILE_ALLOC);
590 }
591 } else if (!expected) {
592 error = radix_tree_insert(&mapping->page_tree, index, page);
593 } else {
594 error = shmem_radix_tree_replace(mapping, index, expected,
595 page);
596 }
597
598 if (!error) {
599 mapping->nrpages += nr;
600 if (PageTransHuge(page))
601 __inc_node_page_state(page, NR_SHMEM_THPS);
602 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
603 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
604 spin_unlock_irq(&mapping->tree_lock);
605 } else {
606 page->mapping = NULL;
607 spin_unlock_irq(&mapping->tree_lock);
608 page_ref_sub(page, nr);
609 }
610 return error;
611 }
612
613 /*
614 * Like delete_from_page_cache, but substitutes swap for page.
615 */
616 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
617 {
618 struct address_space *mapping = page->mapping;
619 int error;
620
621 VM_BUG_ON_PAGE(PageCompound(page), page);
622
623 spin_lock_irq(&mapping->tree_lock);
624 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
625 page->mapping = NULL;
626 mapping->nrpages--;
627 __dec_node_page_state(page, NR_FILE_PAGES);
628 __dec_node_page_state(page, NR_SHMEM);
629 spin_unlock_irq(&mapping->tree_lock);
630 put_page(page);
631 BUG_ON(error);
632 }
633
634 /*
635 * Remove swap entry from radix tree, free the swap and its page cache.
636 */
637 static int shmem_free_swap(struct address_space *mapping,
638 pgoff_t index, void *radswap)
639 {
640 void *old;
641
642 spin_lock_irq(&mapping->tree_lock);
643 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
644 spin_unlock_irq(&mapping->tree_lock);
645 if (old != radswap)
646 return -ENOENT;
647 free_swap_and_cache(radix_to_swp_entry(radswap));
648 return 0;
649 }
650
651 /*
652 * Determine (in bytes) how many of the shmem object's pages mapped by the
653 * given offsets are swapped out.
654 *
655 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
656 * as long as the inode doesn't go away and racy results are not a problem.
657 */
658 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
659 pgoff_t start, pgoff_t end)
660 {
661 struct radix_tree_iter iter;
662 void **slot;
663 struct page *page;
664 unsigned long swapped = 0;
665
666 rcu_read_lock();
667
668 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
669 if (iter.index >= end)
670 break;
671
672 page = radix_tree_deref_slot(slot);
673
674 if (radix_tree_deref_retry(page)) {
675 slot = radix_tree_iter_retry(&iter);
676 continue;
677 }
678
679 if (radix_tree_exceptional_entry(page))
680 swapped++;
681
682 if (need_resched()) {
683 slot = radix_tree_iter_resume(slot, &iter);
684 cond_resched_rcu();
685 }
686 }
687
688 rcu_read_unlock();
689
690 return swapped << PAGE_SHIFT;
691 }
692
693 /*
694 * Determine (in bytes) how many of the shmem object's pages mapped by the
695 * given vma is swapped out.
696 *
697 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
698 * as long as the inode doesn't go away and racy results are not a problem.
699 */
700 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
701 {
702 struct inode *inode = file_inode(vma->vm_file);
703 struct shmem_inode_info *info = SHMEM_I(inode);
704 struct address_space *mapping = inode->i_mapping;
705 unsigned long swapped;
706
707 /* Be careful as we don't hold info->lock */
708 swapped = READ_ONCE(info->swapped);
709
710 /*
711 * The easier cases are when the shmem object has nothing in swap, or
712 * the vma maps it whole. Then we can simply use the stats that we
713 * already track.
714 */
715 if (!swapped)
716 return 0;
717
718 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
719 return swapped << PAGE_SHIFT;
720
721 /* Here comes the more involved part */
722 return shmem_partial_swap_usage(mapping,
723 linear_page_index(vma, vma->vm_start),
724 linear_page_index(vma, vma->vm_end));
725 }
726
727 /*
728 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
729 */
730 void shmem_unlock_mapping(struct address_space *mapping)
731 {
732 struct pagevec pvec;
733 pgoff_t indices[PAGEVEC_SIZE];
734 pgoff_t index = 0;
735
736 pagevec_init(&pvec, 0);
737 /*
738 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
739 */
740 while (!mapping_unevictable(mapping)) {
741 /*
742 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
743 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
744 */
745 pvec.nr = find_get_entries(mapping, index,
746 PAGEVEC_SIZE, pvec.pages, indices);
747 if (!pvec.nr)
748 break;
749 index = indices[pvec.nr - 1] + 1;
750 pagevec_remove_exceptionals(&pvec);
751 check_move_unevictable_pages(pvec.pages, pvec.nr);
752 pagevec_release(&pvec);
753 cond_resched();
754 }
755 }
756
757 /*
758 * Remove range of pages and swap entries from radix tree, and free them.
759 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
760 */
761 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
762 bool unfalloc)
763 {
764 struct address_space *mapping = inode->i_mapping;
765 struct shmem_inode_info *info = SHMEM_I(inode);
766 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
767 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
768 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
769 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
770 struct pagevec pvec;
771 pgoff_t indices[PAGEVEC_SIZE];
772 long nr_swaps_freed = 0;
773 pgoff_t index;
774 int i;
775
776 if (lend == -1)
777 end = -1; /* unsigned, so actually very big */
778
779 pagevec_init(&pvec, 0);
780 index = start;
781 while (index < end) {
782 pvec.nr = find_get_entries(mapping, index,
783 min(end - index, (pgoff_t)PAGEVEC_SIZE),
784 pvec.pages, indices);
785 if (!pvec.nr)
786 break;
787 for (i = 0; i < pagevec_count(&pvec); i++) {
788 struct page *page = pvec.pages[i];
789
790 index = indices[i];
791 if (index >= end)
792 break;
793
794 if (radix_tree_exceptional_entry(page)) {
795 if (unfalloc)
796 continue;
797 nr_swaps_freed += !shmem_free_swap(mapping,
798 index, page);
799 continue;
800 }
801
802 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
803
804 if (!trylock_page(page))
805 continue;
806
807 if (PageTransTail(page)) {
808 /* Middle of THP: zero out the page */
809 clear_highpage(page);
810 unlock_page(page);
811 continue;
812 } else if (PageTransHuge(page)) {
813 if (index == round_down(end, HPAGE_PMD_NR)) {
814 /*
815 * Range ends in the middle of THP:
816 * zero out the page
817 */
818 clear_highpage(page);
819 unlock_page(page);
820 continue;
821 }
822 index += HPAGE_PMD_NR - 1;
823 i += HPAGE_PMD_NR - 1;
824 }
825
826 if (!unfalloc || !PageUptodate(page)) {
827 VM_BUG_ON_PAGE(PageTail(page), page);
828 if (page_mapping(page) == mapping) {
829 VM_BUG_ON_PAGE(PageWriteback(page), page);
830 truncate_inode_page(mapping, page);
831 }
832 }
833 unlock_page(page);
834 }
835 pagevec_remove_exceptionals(&pvec);
836 pagevec_release(&pvec);
837 cond_resched();
838 index++;
839 }
840
841 if (partial_start) {
842 struct page *page = NULL;
843 shmem_getpage(inode, start - 1, &page, SGP_READ);
844 if (page) {
845 unsigned int top = PAGE_SIZE;
846 if (start > end) {
847 top = partial_end;
848 partial_end = 0;
849 }
850 zero_user_segment(page, partial_start, top);
851 set_page_dirty(page);
852 unlock_page(page);
853 put_page(page);
854 }
855 }
856 if (partial_end) {
857 struct page *page = NULL;
858 shmem_getpage(inode, end, &page, SGP_READ);
859 if (page) {
860 zero_user_segment(page, 0, partial_end);
861 set_page_dirty(page);
862 unlock_page(page);
863 put_page(page);
864 }
865 }
866 if (start >= end)
867 return;
868
869 index = start;
870 while (index < end) {
871 cond_resched();
872
873 pvec.nr = find_get_entries(mapping, index,
874 min(end - index, (pgoff_t)PAGEVEC_SIZE),
875 pvec.pages, indices);
876 if (!pvec.nr) {
877 /* If all gone or hole-punch or unfalloc, we're done */
878 if (index == start || end != -1)
879 break;
880 /* But if truncating, restart to make sure all gone */
881 index = start;
882 continue;
883 }
884 for (i = 0; i < pagevec_count(&pvec); i++) {
885 struct page *page = pvec.pages[i];
886
887 index = indices[i];
888 if (index >= end)
889 break;
890
891 if (radix_tree_exceptional_entry(page)) {
892 if (unfalloc)
893 continue;
894 if (shmem_free_swap(mapping, index, page)) {
895 /* Swap was replaced by page: retry */
896 index--;
897 break;
898 }
899 nr_swaps_freed++;
900 continue;
901 }
902
903 lock_page(page);
904
905 if (PageTransTail(page)) {
906 /* Middle of THP: zero out the page */
907 clear_highpage(page);
908 unlock_page(page);
909 /*
910 * Partial thp truncate due 'start' in middle
911 * of THP: don't need to look on these pages
912 * again on !pvec.nr restart.
913 */
914 if (index != round_down(end, HPAGE_PMD_NR))
915 start++;
916 continue;
917 } else if (PageTransHuge(page)) {
918 if (index == round_down(end, HPAGE_PMD_NR)) {
919 /*
920 * Range ends in the middle of THP:
921 * zero out the page
922 */
923 clear_highpage(page);
924 unlock_page(page);
925 continue;
926 }
927 index += HPAGE_PMD_NR - 1;
928 i += HPAGE_PMD_NR - 1;
929 }
930
931 if (!unfalloc || !PageUptodate(page)) {
932 VM_BUG_ON_PAGE(PageTail(page), page);
933 if (page_mapping(page) == mapping) {
934 VM_BUG_ON_PAGE(PageWriteback(page), page);
935 truncate_inode_page(mapping, page);
936 } else {
937 /* Page was replaced by swap: retry */
938 unlock_page(page);
939 index--;
940 break;
941 }
942 }
943 unlock_page(page);
944 }
945 pagevec_remove_exceptionals(&pvec);
946 pagevec_release(&pvec);
947 index++;
948 }
949
950 spin_lock_irq(&info->lock);
951 info->swapped -= nr_swaps_freed;
952 shmem_recalc_inode(inode);
953 spin_unlock_irq(&info->lock);
954 }
955
956 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
957 {
958 shmem_undo_range(inode, lstart, lend, false);
959 inode->i_ctime = inode->i_mtime = current_time(inode);
960 }
961 EXPORT_SYMBOL_GPL(shmem_truncate_range);
962
963 static int shmem_getattr(const struct path *path, struct kstat *stat,
964 u32 request_mask, unsigned int query_flags)
965 {
966 struct inode *inode = path->dentry->d_inode;
967 struct shmem_inode_info *info = SHMEM_I(inode);
968
969 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
970 spin_lock_irq(&info->lock);
971 shmem_recalc_inode(inode);
972 spin_unlock_irq(&info->lock);
973 }
974 generic_fillattr(inode, stat);
975 return 0;
976 }
977
978 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
979 {
980 struct inode *inode = d_inode(dentry);
981 struct shmem_inode_info *info = SHMEM_I(inode);
982 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
983 int error;
984
985 error = setattr_prepare(dentry, attr);
986 if (error)
987 return error;
988
989 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
990 loff_t oldsize = inode->i_size;
991 loff_t newsize = attr->ia_size;
992
993 /* protected by i_mutex */
994 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
995 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
996 return -EPERM;
997
998 if (newsize != oldsize) {
999 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1000 oldsize, newsize);
1001 if (error)
1002 return error;
1003 i_size_write(inode, newsize);
1004 inode->i_ctime = inode->i_mtime = current_time(inode);
1005 }
1006 if (newsize <= oldsize) {
1007 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1008 if (oldsize > holebegin)
1009 unmap_mapping_range(inode->i_mapping,
1010 holebegin, 0, 1);
1011 if (info->alloced)
1012 shmem_truncate_range(inode,
1013 newsize, (loff_t)-1);
1014 /* unmap again to remove racily COWed private pages */
1015 if (oldsize > holebegin)
1016 unmap_mapping_range(inode->i_mapping,
1017 holebegin, 0, 1);
1018
1019 /*
1020 * Part of the huge page can be beyond i_size: subject
1021 * to shrink under memory pressure.
1022 */
1023 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1024 spin_lock(&sbinfo->shrinklist_lock);
1025 if (list_empty(&info->shrinklist)) {
1026 list_add_tail(&info->shrinklist,
1027 &sbinfo->shrinklist);
1028 sbinfo->shrinklist_len++;
1029 }
1030 spin_unlock(&sbinfo->shrinklist_lock);
1031 }
1032 }
1033 }
1034
1035 setattr_copy(inode, attr);
1036 if (attr->ia_valid & ATTR_MODE)
1037 error = posix_acl_chmod(inode, inode->i_mode);
1038 return error;
1039 }
1040
1041 static void shmem_evict_inode(struct inode *inode)
1042 {
1043 struct shmem_inode_info *info = SHMEM_I(inode);
1044 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1045
1046 if (inode->i_mapping->a_ops == &shmem_aops) {
1047 shmem_unacct_size(info->flags, inode->i_size);
1048 inode->i_size = 0;
1049 shmem_truncate_range(inode, 0, (loff_t)-1);
1050 if (!list_empty(&info->shrinklist)) {
1051 spin_lock(&sbinfo->shrinklist_lock);
1052 if (!list_empty(&info->shrinklist)) {
1053 list_del_init(&info->shrinklist);
1054 sbinfo->shrinklist_len--;
1055 }
1056 spin_unlock(&sbinfo->shrinklist_lock);
1057 }
1058 if (!list_empty(&info->swaplist)) {
1059 mutex_lock(&shmem_swaplist_mutex);
1060 list_del_init(&info->swaplist);
1061 mutex_unlock(&shmem_swaplist_mutex);
1062 }
1063 }
1064
1065 simple_xattrs_free(&info->xattrs);
1066 WARN_ON(inode->i_blocks);
1067 shmem_free_inode(inode->i_sb);
1068 clear_inode(inode);
1069 }
1070
1071 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1072 {
1073 struct radix_tree_iter iter;
1074 void **slot;
1075 unsigned long found = -1;
1076 unsigned int checked = 0;
1077
1078 rcu_read_lock();
1079 radix_tree_for_each_slot(slot, root, &iter, 0) {
1080 if (*slot == item) {
1081 found = iter.index;
1082 break;
1083 }
1084 checked++;
1085 if ((checked % 4096) != 0)
1086 continue;
1087 slot = radix_tree_iter_resume(slot, &iter);
1088 cond_resched_rcu();
1089 }
1090
1091 rcu_read_unlock();
1092 return found;
1093 }
1094
1095 /*
1096 * If swap found in inode, free it and move page from swapcache to filecache.
1097 */
1098 static int shmem_unuse_inode(struct shmem_inode_info *info,
1099 swp_entry_t swap, struct page **pagep)
1100 {
1101 struct address_space *mapping = info->vfs_inode.i_mapping;
1102 void *radswap;
1103 pgoff_t index;
1104 gfp_t gfp;
1105 int error = 0;
1106
1107 radswap = swp_to_radix_entry(swap);
1108 index = find_swap_entry(&mapping->page_tree, radswap);
1109 if (index == -1)
1110 return -EAGAIN; /* tell shmem_unuse we found nothing */
1111
1112 /*
1113 * Move _head_ to start search for next from here.
1114 * But be careful: shmem_evict_inode checks list_empty without taking
1115 * mutex, and there's an instant in list_move_tail when info->swaplist
1116 * would appear empty, if it were the only one on shmem_swaplist.
1117 */
1118 if (shmem_swaplist.next != &info->swaplist)
1119 list_move_tail(&shmem_swaplist, &info->swaplist);
1120
1121 gfp = mapping_gfp_mask(mapping);
1122 if (shmem_should_replace_page(*pagep, gfp)) {
1123 mutex_unlock(&shmem_swaplist_mutex);
1124 error = shmem_replace_page(pagep, gfp, info, index);
1125 mutex_lock(&shmem_swaplist_mutex);
1126 /*
1127 * We needed to drop mutex to make that restrictive page
1128 * allocation, but the inode might have been freed while we
1129 * dropped it: although a racing shmem_evict_inode() cannot
1130 * complete without emptying the radix_tree, our page lock
1131 * on this swapcache page is not enough to prevent that -
1132 * free_swap_and_cache() of our swap entry will only
1133 * trylock_page(), removing swap from radix_tree whatever.
1134 *
1135 * We must not proceed to shmem_add_to_page_cache() if the
1136 * inode has been freed, but of course we cannot rely on
1137 * inode or mapping or info to check that. However, we can
1138 * safely check if our swap entry is still in use (and here
1139 * it can't have got reused for another page): if it's still
1140 * in use, then the inode cannot have been freed yet, and we
1141 * can safely proceed (if it's no longer in use, that tells
1142 * nothing about the inode, but we don't need to unuse swap).
1143 */
1144 if (!page_swapcount(*pagep))
1145 error = -ENOENT;
1146 }
1147
1148 /*
1149 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1150 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1151 * beneath us (pagelock doesn't help until the page is in pagecache).
1152 */
1153 if (!error)
1154 error = shmem_add_to_page_cache(*pagep, mapping, index,
1155 radswap);
1156 if (error != -ENOMEM) {
1157 /*
1158 * Truncation and eviction use free_swap_and_cache(), which
1159 * only does trylock page: if we raced, best clean up here.
1160 */
1161 delete_from_swap_cache(*pagep);
1162 set_page_dirty(*pagep);
1163 if (!error) {
1164 spin_lock_irq(&info->lock);
1165 info->swapped--;
1166 spin_unlock_irq(&info->lock);
1167 swap_free(swap);
1168 }
1169 }
1170 return error;
1171 }
1172
1173 /*
1174 * Search through swapped inodes to find and replace swap by page.
1175 */
1176 int shmem_unuse(swp_entry_t swap, struct page *page)
1177 {
1178 struct list_head *this, *next;
1179 struct shmem_inode_info *info;
1180 struct mem_cgroup *memcg;
1181 int error = 0;
1182
1183 /*
1184 * There's a faint possibility that swap page was replaced before
1185 * caller locked it: caller will come back later with the right page.
1186 */
1187 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1188 goto out;
1189
1190 /*
1191 * Charge page using GFP_KERNEL while we can wait, before taking
1192 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1193 * Charged back to the user (not to caller) when swap account is used.
1194 */
1195 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1196 false);
1197 if (error)
1198 goto out;
1199 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1200 error = -EAGAIN;
1201
1202 mutex_lock(&shmem_swaplist_mutex);
1203 list_for_each_safe(this, next, &shmem_swaplist) {
1204 info = list_entry(this, struct shmem_inode_info, swaplist);
1205 if (info->swapped)
1206 error = shmem_unuse_inode(info, swap, &page);
1207 else
1208 list_del_init(&info->swaplist);
1209 cond_resched();
1210 if (error != -EAGAIN)
1211 break;
1212 /* found nothing in this: move on to search the next */
1213 }
1214 mutex_unlock(&shmem_swaplist_mutex);
1215
1216 if (error) {
1217 if (error != -ENOMEM)
1218 error = 0;
1219 mem_cgroup_cancel_charge(page, memcg, false);
1220 } else
1221 mem_cgroup_commit_charge(page, memcg, true, false);
1222 out:
1223 unlock_page(page);
1224 put_page(page);
1225 return error;
1226 }
1227
1228 /*
1229 * Move the page from the page cache to the swap cache.
1230 */
1231 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1232 {
1233 struct shmem_inode_info *info;
1234 struct address_space *mapping;
1235 struct inode *inode;
1236 swp_entry_t swap;
1237 pgoff_t index;
1238
1239 VM_BUG_ON_PAGE(PageCompound(page), page);
1240 BUG_ON(!PageLocked(page));
1241 mapping = page->mapping;
1242 index = page->index;
1243 inode = mapping->host;
1244 info = SHMEM_I(inode);
1245 if (info->flags & VM_LOCKED)
1246 goto redirty;
1247 if (!total_swap_pages)
1248 goto redirty;
1249
1250 /*
1251 * Our capabilities prevent regular writeback or sync from ever calling
1252 * shmem_writepage; but a stacking filesystem might use ->writepage of
1253 * its underlying filesystem, in which case tmpfs should write out to
1254 * swap only in response to memory pressure, and not for the writeback
1255 * threads or sync.
1256 */
1257 if (!wbc->for_reclaim) {
1258 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1259 goto redirty;
1260 }
1261
1262 /*
1263 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1264 * value into swapfile.c, the only way we can correctly account for a
1265 * fallocated page arriving here is now to initialize it and write it.
1266 *
1267 * That's okay for a page already fallocated earlier, but if we have
1268 * not yet completed the fallocation, then (a) we want to keep track
1269 * of this page in case we have to undo it, and (b) it may not be a
1270 * good idea to continue anyway, once we're pushing into swap. So
1271 * reactivate the page, and let shmem_fallocate() quit when too many.
1272 */
1273 if (!PageUptodate(page)) {
1274 if (inode->i_private) {
1275 struct shmem_falloc *shmem_falloc;
1276 spin_lock(&inode->i_lock);
1277 shmem_falloc = inode->i_private;
1278 if (shmem_falloc &&
1279 !shmem_falloc->waitq &&
1280 index >= shmem_falloc->start &&
1281 index < shmem_falloc->next)
1282 shmem_falloc->nr_unswapped++;
1283 else
1284 shmem_falloc = NULL;
1285 spin_unlock(&inode->i_lock);
1286 if (shmem_falloc)
1287 goto redirty;
1288 }
1289 clear_highpage(page);
1290 flush_dcache_page(page);
1291 SetPageUptodate(page);
1292 }
1293
1294 swap = get_swap_page(page);
1295 if (!swap.val)
1296 goto redirty;
1297
1298 if (mem_cgroup_try_charge_swap(page, swap))
1299 goto free_swap;
1300
1301 /*
1302 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1303 * if it's not already there. Do it now before the page is
1304 * moved to swap cache, when its pagelock no longer protects
1305 * the inode from eviction. But don't unlock the mutex until
1306 * we've incremented swapped, because shmem_unuse_inode() will
1307 * prune a !swapped inode from the swaplist under this mutex.
1308 */
1309 mutex_lock(&shmem_swaplist_mutex);
1310 if (list_empty(&info->swaplist))
1311 list_add_tail(&info->swaplist, &shmem_swaplist);
1312
1313 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1314 spin_lock_irq(&info->lock);
1315 shmem_recalc_inode(inode);
1316 info->swapped++;
1317 spin_unlock_irq(&info->lock);
1318
1319 swap_shmem_alloc(swap);
1320 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1321
1322 mutex_unlock(&shmem_swaplist_mutex);
1323 BUG_ON(page_mapped(page));
1324 swap_writepage(page, wbc);
1325 return 0;
1326 }
1327
1328 mutex_unlock(&shmem_swaplist_mutex);
1329 free_swap:
1330 put_swap_page(page, swap);
1331 redirty:
1332 set_page_dirty(page);
1333 if (wbc->for_reclaim)
1334 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1335 unlock_page(page);
1336 return 0;
1337 }
1338
1339 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1340 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1341 {
1342 char buffer[64];
1343
1344 if (!mpol || mpol->mode == MPOL_DEFAULT)
1345 return; /* show nothing */
1346
1347 mpol_to_str(buffer, sizeof(buffer), mpol);
1348
1349 seq_printf(seq, ",mpol=%s", buffer);
1350 }
1351
1352 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1353 {
1354 struct mempolicy *mpol = NULL;
1355 if (sbinfo->mpol) {
1356 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1357 mpol = sbinfo->mpol;
1358 mpol_get(mpol);
1359 spin_unlock(&sbinfo->stat_lock);
1360 }
1361 return mpol;
1362 }
1363 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1364 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1365 {
1366 }
1367 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1368 {
1369 return NULL;
1370 }
1371 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1372 #ifndef CONFIG_NUMA
1373 #define vm_policy vm_private_data
1374 #endif
1375
1376 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1377 struct shmem_inode_info *info, pgoff_t index)
1378 {
1379 /* Create a pseudo vma that just contains the policy */
1380 vma->vm_start = 0;
1381 /* Bias interleave by inode number to distribute better across nodes */
1382 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1383 vma->vm_ops = NULL;
1384 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1385 }
1386
1387 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1388 {
1389 /* Drop reference taken by mpol_shared_policy_lookup() */
1390 mpol_cond_put(vma->vm_policy);
1391 }
1392
1393 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1394 struct shmem_inode_info *info, pgoff_t index)
1395 {
1396 struct vm_area_struct pvma;
1397 struct page *page;
1398
1399 shmem_pseudo_vma_init(&pvma, info, index);
1400 page = swapin_readahead(swap, gfp, &pvma, 0);
1401 shmem_pseudo_vma_destroy(&pvma);
1402
1403 return page;
1404 }
1405
1406 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1407 struct shmem_inode_info *info, pgoff_t index)
1408 {
1409 struct vm_area_struct pvma;
1410 struct inode *inode = &info->vfs_inode;
1411 struct address_space *mapping = inode->i_mapping;
1412 pgoff_t idx, hindex;
1413 void __rcu **results;
1414 struct page *page;
1415
1416 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1417 return NULL;
1418
1419 hindex = round_down(index, HPAGE_PMD_NR);
1420 rcu_read_lock();
1421 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1422 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1423 rcu_read_unlock();
1424 return NULL;
1425 }
1426 rcu_read_unlock();
1427
1428 shmem_pseudo_vma_init(&pvma, info, hindex);
1429 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1430 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1431 shmem_pseudo_vma_destroy(&pvma);
1432 if (page)
1433 prep_transhuge_page(page);
1434 return page;
1435 }
1436
1437 static struct page *shmem_alloc_page(gfp_t gfp,
1438 struct shmem_inode_info *info, pgoff_t index)
1439 {
1440 struct vm_area_struct pvma;
1441 struct page *page;
1442
1443 shmem_pseudo_vma_init(&pvma, info, index);
1444 page = alloc_page_vma(gfp, &pvma, 0);
1445 shmem_pseudo_vma_destroy(&pvma);
1446
1447 return page;
1448 }
1449
1450 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1451 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1452 pgoff_t index, bool huge)
1453 {
1454 struct page *page;
1455 int nr;
1456 int err = -ENOSPC;
1457
1458 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1459 huge = false;
1460 nr = huge ? HPAGE_PMD_NR : 1;
1461
1462 if (shmem_acct_block(info->flags, nr))
1463 goto failed;
1464 if (sbinfo->max_blocks) {
1465 if (percpu_counter_compare(&sbinfo->used_blocks,
1466 sbinfo->max_blocks - nr) > 0)
1467 goto unacct;
1468 percpu_counter_add(&sbinfo->used_blocks, nr);
1469 }
1470
1471 if (huge)
1472 page = shmem_alloc_hugepage(gfp, info, index);
1473 else
1474 page = shmem_alloc_page(gfp, info, index);
1475 if (page) {
1476 __SetPageLocked(page);
1477 __SetPageSwapBacked(page);
1478 return page;
1479 }
1480
1481 err = -ENOMEM;
1482 if (sbinfo->max_blocks)
1483 percpu_counter_add(&sbinfo->used_blocks, -nr);
1484 unacct:
1485 shmem_unacct_blocks(info->flags, nr);
1486 failed:
1487 return ERR_PTR(err);
1488 }
1489
1490 /*
1491 * When a page is moved from swapcache to shmem filecache (either by the
1492 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1493 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1494 * ignorance of the mapping it belongs to. If that mapping has special
1495 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1496 * we may need to copy to a suitable page before moving to filecache.
1497 *
1498 * In a future release, this may well be extended to respect cpuset and
1499 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1500 * but for now it is a simple matter of zone.
1501 */
1502 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1503 {
1504 return page_zonenum(page) > gfp_zone(gfp);
1505 }
1506
1507 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1508 struct shmem_inode_info *info, pgoff_t index)
1509 {
1510 struct page *oldpage, *newpage;
1511 struct address_space *swap_mapping;
1512 pgoff_t swap_index;
1513 int error;
1514
1515 oldpage = *pagep;
1516 swap_index = page_private(oldpage);
1517 swap_mapping = page_mapping(oldpage);
1518
1519 /*
1520 * We have arrived here because our zones are constrained, so don't
1521 * limit chance of success by further cpuset and node constraints.
1522 */
1523 gfp &= ~GFP_CONSTRAINT_MASK;
1524 newpage = shmem_alloc_page(gfp, info, index);
1525 if (!newpage)
1526 return -ENOMEM;
1527
1528 get_page(newpage);
1529 copy_highpage(newpage, oldpage);
1530 flush_dcache_page(newpage);
1531
1532 __SetPageLocked(newpage);
1533 __SetPageSwapBacked(newpage);
1534 SetPageUptodate(newpage);
1535 set_page_private(newpage, swap_index);
1536 SetPageSwapCache(newpage);
1537
1538 /*
1539 * Our caller will very soon move newpage out of swapcache, but it's
1540 * a nice clean interface for us to replace oldpage by newpage there.
1541 */
1542 spin_lock_irq(&swap_mapping->tree_lock);
1543 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1544 newpage);
1545 if (!error) {
1546 __inc_node_page_state(newpage, NR_FILE_PAGES);
1547 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1548 }
1549 spin_unlock_irq(&swap_mapping->tree_lock);
1550
1551 if (unlikely(error)) {
1552 /*
1553 * Is this possible? I think not, now that our callers check
1554 * both PageSwapCache and page_private after getting page lock;
1555 * but be defensive. Reverse old to newpage for clear and free.
1556 */
1557 oldpage = newpage;
1558 } else {
1559 mem_cgroup_migrate(oldpage, newpage);
1560 lru_cache_add_anon(newpage);
1561 *pagep = newpage;
1562 }
1563
1564 ClearPageSwapCache(oldpage);
1565 set_page_private(oldpage, 0);
1566
1567 unlock_page(oldpage);
1568 put_page(oldpage);
1569 put_page(oldpage);
1570 return error;
1571 }
1572
1573 /*
1574 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1575 *
1576 * If we allocate a new one we do not mark it dirty. That's up to the
1577 * vm. If we swap it in we mark it dirty since we also free the swap
1578 * entry since a page cannot live in both the swap and page cache.
1579 *
1580 * fault_mm and fault_type are only supplied by shmem_fault:
1581 * otherwise they are NULL.
1582 */
1583 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1584 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1585 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1586 {
1587 struct address_space *mapping = inode->i_mapping;
1588 struct shmem_inode_info *info = SHMEM_I(inode);
1589 struct shmem_sb_info *sbinfo;
1590 struct mm_struct *charge_mm;
1591 struct mem_cgroup *memcg;
1592 struct page *page;
1593 swp_entry_t swap;
1594 enum sgp_type sgp_huge = sgp;
1595 pgoff_t hindex = index;
1596 int error;
1597 int once = 0;
1598 int alloced = 0;
1599
1600 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1601 return -EFBIG;
1602 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1603 sgp = SGP_CACHE;
1604 repeat:
1605 swap.val = 0;
1606 page = find_lock_entry(mapping, index);
1607 if (radix_tree_exceptional_entry(page)) {
1608 swap = radix_to_swp_entry(page);
1609 page = NULL;
1610 }
1611
1612 if (sgp <= SGP_CACHE &&
1613 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1614 error = -EINVAL;
1615 goto unlock;
1616 }
1617
1618 if (page && sgp == SGP_WRITE)
1619 mark_page_accessed(page);
1620
1621 /* fallocated page? */
1622 if (page && !PageUptodate(page)) {
1623 if (sgp != SGP_READ)
1624 goto clear;
1625 unlock_page(page);
1626 put_page(page);
1627 page = NULL;
1628 }
1629 if (page || (sgp == SGP_READ && !swap.val)) {
1630 *pagep = page;
1631 return 0;
1632 }
1633
1634 /*
1635 * Fast cache lookup did not find it:
1636 * bring it back from swap or allocate.
1637 */
1638 sbinfo = SHMEM_SB(inode->i_sb);
1639 charge_mm = vma ? vma->vm_mm : current->mm;
1640
1641 if (swap.val) {
1642 /* Look it up and read it in.. */
1643 page = lookup_swap_cache(swap);
1644 if (!page) {
1645 /* Or update major stats only when swapin succeeds?? */
1646 if (fault_type) {
1647 *fault_type |= VM_FAULT_MAJOR;
1648 count_vm_event(PGMAJFAULT);
1649 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1650 }
1651 /* Here we actually start the io */
1652 page = shmem_swapin(swap, gfp, info, index);
1653 if (!page) {
1654 error = -ENOMEM;
1655 goto failed;
1656 }
1657 }
1658
1659 /* We have to do this with page locked to prevent races */
1660 lock_page(page);
1661 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1662 !shmem_confirm_swap(mapping, index, swap)) {
1663 error = -EEXIST; /* try again */
1664 goto unlock;
1665 }
1666 if (!PageUptodate(page)) {
1667 error = -EIO;
1668 goto failed;
1669 }
1670 wait_on_page_writeback(page);
1671
1672 if (shmem_should_replace_page(page, gfp)) {
1673 error = shmem_replace_page(&page, gfp, info, index);
1674 if (error)
1675 goto failed;
1676 }
1677
1678 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1679 false);
1680 if (!error) {
1681 error = shmem_add_to_page_cache(page, mapping, index,
1682 swp_to_radix_entry(swap));
1683 /*
1684 * We already confirmed swap under page lock, and make
1685 * no memory allocation here, so usually no possibility
1686 * of error; but free_swap_and_cache() only trylocks a
1687 * page, so it is just possible that the entry has been
1688 * truncated or holepunched since swap was confirmed.
1689 * shmem_undo_range() will have done some of the
1690 * unaccounting, now delete_from_swap_cache() will do
1691 * the rest.
1692 * Reset swap.val? No, leave it so "failed" goes back to
1693 * "repeat": reading a hole and writing should succeed.
1694 */
1695 if (error) {
1696 mem_cgroup_cancel_charge(page, memcg, false);
1697 delete_from_swap_cache(page);
1698 }
1699 }
1700 if (error)
1701 goto failed;
1702
1703 mem_cgroup_commit_charge(page, memcg, true, false);
1704
1705 spin_lock_irq(&info->lock);
1706 info->swapped--;
1707 shmem_recalc_inode(inode);
1708 spin_unlock_irq(&info->lock);
1709
1710 if (sgp == SGP_WRITE)
1711 mark_page_accessed(page);
1712
1713 delete_from_swap_cache(page);
1714 set_page_dirty(page);
1715 swap_free(swap);
1716
1717 } else {
1718 if (vma && userfaultfd_missing(vma)) {
1719 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1720 return 0;
1721 }
1722
1723 /* shmem_symlink() */
1724 if (mapping->a_ops != &shmem_aops)
1725 goto alloc_nohuge;
1726 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1727 goto alloc_nohuge;
1728 if (shmem_huge == SHMEM_HUGE_FORCE)
1729 goto alloc_huge;
1730 switch (sbinfo->huge) {
1731 loff_t i_size;
1732 pgoff_t off;
1733 case SHMEM_HUGE_NEVER:
1734 goto alloc_nohuge;
1735 case SHMEM_HUGE_WITHIN_SIZE:
1736 off = round_up(index, HPAGE_PMD_NR);
1737 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1738 if (i_size >= HPAGE_PMD_SIZE &&
1739 i_size >> PAGE_SHIFT >= off)
1740 goto alloc_huge;
1741 /* fallthrough */
1742 case SHMEM_HUGE_ADVISE:
1743 if (sgp_huge == SGP_HUGE)
1744 goto alloc_huge;
1745 /* TODO: implement fadvise() hints */
1746 goto alloc_nohuge;
1747 }
1748
1749 alloc_huge:
1750 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1751 index, true);
1752 if (IS_ERR(page)) {
1753 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1754 index, false);
1755 }
1756 if (IS_ERR(page)) {
1757 int retry = 5;
1758 error = PTR_ERR(page);
1759 page = NULL;
1760 if (error != -ENOSPC)
1761 goto failed;
1762 /*
1763 * Try to reclaim some spece by splitting a huge page
1764 * beyond i_size on the filesystem.
1765 */
1766 while (retry--) {
1767 int ret;
1768 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1769 if (ret == SHRINK_STOP)
1770 break;
1771 if (ret)
1772 goto alloc_nohuge;
1773 }
1774 goto failed;
1775 }
1776
1777 if (PageTransHuge(page))
1778 hindex = round_down(index, HPAGE_PMD_NR);
1779 else
1780 hindex = index;
1781
1782 if (sgp == SGP_WRITE)
1783 __SetPageReferenced(page);
1784
1785 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1786 PageTransHuge(page));
1787 if (error)
1788 goto unacct;
1789 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1790 compound_order(page));
1791 if (!error) {
1792 error = shmem_add_to_page_cache(page, mapping, hindex,
1793 NULL);
1794 radix_tree_preload_end();
1795 }
1796 if (error) {
1797 mem_cgroup_cancel_charge(page, memcg,
1798 PageTransHuge(page));
1799 goto unacct;
1800 }
1801 mem_cgroup_commit_charge(page, memcg, false,
1802 PageTransHuge(page));
1803 lru_cache_add_anon(page);
1804
1805 spin_lock_irq(&info->lock);
1806 info->alloced += 1 << compound_order(page);
1807 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1808 shmem_recalc_inode(inode);
1809 spin_unlock_irq(&info->lock);
1810 alloced = true;
1811
1812 if (PageTransHuge(page) &&
1813 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1814 hindex + HPAGE_PMD_NR - 1) {
1815 /*
1816 * Part of the huge page is beyond i_size: subject
1817 * to shrink under memory pressure.
1818 */
1819 spin_lock(&sbinfo->shrinklist_lock);
1820 if (list_empty(&info->shrinklist)) {
1821 list_add_tail(&info->shrinklist,
1822 &sbinfo->shrinklist);
1823 sbinfo->shrinklist_len++;
1824 }
1825 spin_unlock(&sbinfo->shrinklist_lock);
1826 }
1827
1828 /*
1829 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1830 */
1831 if (sgp == SGP_FALLOC)
1832 sgp = SGP_WRITE;
1833 clear:
1834 /*
1835 * Let SGP_WRITE caller clear ends if write does not fill page;
1836 * but SGP_FALLOC on a page fallocated earlier must initialize
1837 * it now, lest undo on failure cancel our earlier guarantee.
1838 */
1839 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1840 struct page *head = compound_head(page);
1841 int i;
1842
1843 for (i = 0; i < (1 << compound_order(head)); i++) {
1844 clear_highpage(head + i);
1845 flush_dcache_page(head + i);
1846 }
1847 SetPageUptodate(head);
1848 }
1849 }
1850
1851 /* Perhaps the file has been truncated since we checked */
1852 if (sgp <= SGP_CACHE &&
1853 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1854 if (alloced) {
1855 ClearPageDirty(page);
1856 delete_from_page_cache(page);
1857 spin_lock_irq(&info->lock);
1858 shmem_recalc_inode(inode);
1859 spin_unlock_irq(&info->lock);
1860 }
1861 error = -EINVAL;
1862 goto unlock;
1863 }
1864 *pagep = page + index - hindex;
1865 return 0;
1866
1867 /*
1868 * Error recovery.
1869 */
1870 unacct:
1871 if (sbinfo->max_blocks)
1872 percpu_counter_sub(&sbinfo->used_blocks,
1873 1 << compound_order(page));
1874 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1875
1876 if (PageTransHuge(page)) {
1877 unlock_page(page);
1878 put_page(page);
1879 goto alloc_nohuge;
1880 }
1881 failed:
1882 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1883 error = -EEXIST;
1884 unlock:
1885 if (page) {
1886 unlock_page(page);
1887 put_page(page);
1888 }
1889 if (error == -ENOSPC && !once++) {
1890 spin_lock_irq(&info->lock);
1891 shmem_recalc_inode(inode);
1892 spin_unlock_irq(&info->lock);
1893 goto repeat;
1894 }
1895 if (error == -EEXIST) /* from above or from radix_tree_insert */
1896 goto repeat;
1897 return error;
1898 }
1899
1900 /*
1901 * This is like autoremove_wake_function, but it removes the wait queue
1902 * entry unconditionally - even if something else had already woken the
1903 * target.
1904 */
1905 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1906 {
1907 int ret = default_wake_function(wait, mode, sync, key);
1908 list_del_init(&wait->entry);
1909 return ret;
1910 }
1911
1912 static int shmem_fault(struct vm_fault *vmf)
1913 {
1914 struct vm_area_struct *vma = vmf->vma;
1915 struct inode *inode = file_inode(vma->vm_file);
1916 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1917 enum sgp_type sgp;
1918 int error;
1919 int ret = VM_FAULT_LOCKED;
1920
1921 /*
1922 * Trinity finds that probing a hole which tmpfs is punching can
1923 * prevent the hole-punch from ever completing: which in turn
1924 * locks writers out with its hold on i_mutex. So refrain from
1925 * faulting pages into the hole while it's being punched. Although
1926 * shmem_undo_range() does remove the additions, it may be unable to
1927 * keep up, as each new page needs its own unmap_mapping_range() call,
1928 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1929 *
1930 * It does not matter if we sometimes reach this check just before the
1931 * hole-punch begins, so that one fault then races with the punch:
1932 * we just need to make racing faults a rare case.
1933 *
1934 * The implementation below would be much simpler if we just used a
1935 * standard mutex or completion: but we cannot take i_mutex in fault,
1936 * and bloating every shmem inode for this unlikely case would be sad.
1937 */
1938 if (unlikely(inode->i_private)) {
1939 struct shmem_falloc *shmem_falloc;
1940
1941 spin_lock(&inode->i_lock);
1942 shmem_falloc = inode->i_private;
1943 if (shmem_falloc &&
1944 shmem_falloc->waitq &&
1945 vmf->pgoff >= shmem_falloc->start &&
1946 vmf->pgoff < shmem_falloc->next) {
1947 wait_queue_head_t *shmem_falloc_waitq;
1948 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1949
1950 ret = VM_FAULT_NOPAGE;
1951 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1952 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1953 /* It's polite to up mmap_sem if we can */
1954 up_read(&vma->vm_mm->mmap_sem);
1955 ret = VM_FAULT_RETRY;
1956 }
1957
1958 shmem_falloc_waitq = shmem_falloc->waitq;
1959 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1960 TASK_UNINTERRUPTIBLE);
1961 spin_unlock(&inode->i_lock);
1962 schedule();
1963
1964 /*
1965 * shmem_falloc_waitq points into the shmem_fallocate()
1966 * stack of the hole-punching task: shmem_falloc_waitq
1967 * is usually invalid by the time we reach here, but
1968 * finish_wait() does not dereference it in that case;
1969 * though i_lock needed lest racing with wake_up_all().
1970 */
1971 spin_lock(&inode->i_lock);
1972 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1973 spin_unlock(&inode->i_lock);
1974 return ret;
1975 }
1976 spin_unlock(&inode->i_lock);
1977 }
1978
1979 sgp = SGP_CACHE;
1980 if (vma->vm_flags & VM_HUGEPAGE)
1981 sgp = SGP_HUGE;
1982 else if (vma->vm_flags & VM_NOHUGEPAGE)
1983 sgp = SGP_NOHUGE;
1984
1985 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1986 gfp, vma, vmf, &ret);
1987 if (error)
1988 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1989 return ret;
1990 }
1991
1992 unsigned long shmem_get_unmapped_area(struct file *file,
1993 unsigned long uaddr, unsigned long len,
1994 unsigned long pgoff, unsigned long flags)
1995 {
1996 unsigned long (*get_area)(struct file *,
1997 unsigned long, unsigned long, unsigned long, unsigned long);
1998 unsigned long addr;
1999 unsigned long offset;
2000 unsigned long inflated_len;
2001 unsigned long inflated_addr;
2002 unsigned long inflated_offset;
2003
2004 if (len > TASK_SIZE)
2005 return -ENOMEM;
2006
2007 get_area = current->mm->get_unmapped_area;
2008 addr = get_area(file, uaddr, len, pgoff, flags);
2009
2010 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2011 return addr;
2012 if (IS_ERR_VALUE(addr))
2013 return addr;
2014 if (addr & ~PAGE_MASK)
2015 return addr;
2016 if (addr > TASK_SIZE - len)
2017 return addr;
2018
2019 if (shmem_huge == SHMEM_HUGE_DENY)
2020 return addr;
2021 if (len < HPAGE_PMD_SIZE)
2022 return addr;
2023 if (flags & MAP_FIXED)
2024 return addr;
2025 /*
2026 * Our priority is to support MAP_SHARED mapped hugely;
2027 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2028 * But if caller specified an address hint, respect that as before.
2029 */
2030 if (uaddr)
2031 return addr;
2032
2033 if (shmem_huge != SHMEM_HUGE_FORCE) {
2034 struct super_block *sb;
2035
2036 if (file) {
2037 VM_BUG_ON(file->f_op != &shmem_file_operations);
2038 sb = file_inode(file)->i_sb;
2039 } else {
2040 /*
2041 * Called directly from mm/mmap.c, or drivers/char/mem.c
2042 * for "/dev/zero", to create a shared anonymous object.
2043 */
2044 if (IS_ERR(shm_mnt))
2045 return addr;
2046 sb = shm_mnt->mnt_sb;
2047 }
2048 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2049 return addr;
2050 }
2051
2052 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2053 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2054 return addr;
2055 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2056 return addr;
2057
2058 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2059 if (inflated_len > TASK_SIZE)
2060 return addr;
2061 if (inflated_len < len)
2062 return addr;
2063
2064 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2065 if (IS_ERR_VALUE(inflated_addr))
2066 return addr;
2067 if (inflated_addr & ~PAGE_MASK)
2068 return addr;
2069
2070 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2071 inflated_addr += offset - inflated_offset;
2072 if (inflated_offset > offset)
2073 inflated_addr += HPAGE_PMD_SIZE;
2074
2075 if (inflated_addr > TASK_SIZE - len)
2076 return addr;
2077 return inflated_addr;
2078 }
2079
2080 #ifdef CONFIG_NUMA
2081 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2082 {
2083 struct inode *inode = file_inode(vma->vm_file);
2084 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2085 }
2086
2087 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2088 unsigned long addr)
2089 {
2090 struct inode *inode = file_inode(vma->vm_file);
2091 pgoff_t index;
2092
2093 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2094 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2095 }
2096 #endif
2097
2098 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2099 {
2100 struct inode *inode = file_inode(file);
2101 struct shmem_inode_info *info = SHMEM_I(inode);
2102 int retval = -ENOMEM;
2103
2104 spin_lock_irq(&info->lock);
2105 if (lock && !(info->flags & VM_LOCKED)) {
2106 if (!user_shm_lock(inode->i_size, user))
2107 goto out_nomem;
2108 info->flags |= VM_LOCKED;
2109 mapping_set_unevictable(file->f_mapping);
2110 }
2111 if (!lock && (info->flags & VM_LOCKED) && user) {
2112 user_shm_unlock(inode->i_size, user);
2113 info->flags &= ~VM_LOCKED;
2114 mapping_clear_unevictable(file->f_mapping);
2115 }
2116 retval = 0;
2117
2118 out_nomem:
2119 spin_unlock_irq(&info->lock);
2120 return retval;
2121 }
2122
2123 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2124 {
2125 file_accessed(file);
2126 vma->vm_ops = &shmem_vm_ops;
2127 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2128 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2129 (vma->vm_end & HPAGE_PMD_MASK)) {
2130 khugepaged_enter(vma, vma->vm_flags);
2131 }
2132 return 0;
2133 }
2134
2135 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2136 umode_t mode, dev_t dev, unsigned long flags)
2137 {
2138 struct inode *inode;
2139 struct shmem_inode_info *info;
2140 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2141
2142 if (shmem_reserve_inode(sb))
2143 return NULL;
2144
2145 inode = new_inode(sb);
2146 if (inode) {
2147 inode->i_ino = get_next_ino();
2148 inode_init_owner(inode, dir, mode);
2149 inode->i_blocks = 0;
2150 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2151 inode->i_generation = get_seconds();
2152 info = SHMEM_I(inode);
2153 memset(info, 0, (char *)inode - (char *)info);
2154 spin_lock_init(&info->lock);
2155 info->seals = F_SEAL_SEAL;
2156 info->flags = flags & VM_NORESERVE;
2157 INIT_LIST_HEAD(&info->shrinklist);
2158 INIT_LIST_HEAD(&info->swaplist);
2159 simple_xattrs_init(&info->xattrs);
2160 cache_no_acl(inode);
2161
2162 switch (mode & S_IFMT) {
2163 default:
2164 inode->i_op = &shmem_special_inode_operations;
2165 init_special_inode(inode, mode, dev);
2166 break;
2167 case S_IFREG:
2168 inode->i_mapping->a_ops = &shmem_aops;
2169 inode->i_op = &shmem_inode_operations;
2170 inode->i_fop = &shmem_file_operations;
2171 mpol_shared_policy_init(&info->policy,
2172 shmem_get_sbmpol(sbinfo));
2173 break;
2174 case S_IFDIR:
2175 inc_nlink(inode);
2176 /* Some things misbehave if size == 0 on a directory */
2177 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2178 inode->i_op = &shmem_dir_inode_operations;
2179 inode->i_fop = &simple_dir_operations;
2180 break;
2181 case S_IFLNK:
2182 /*
2183 * Must not load anything in the rbtree,
2184 * mpol_free_shared_policy will not be called.
2185 */
2186 mpol_shared_policy_init(&info->policy, NULL);
2187 break;
2188 }
2189 } else
2190 shmem_free_inode(sb);
2191 return inode;
2192 }
2193
2194 bool shmem_mapping(struct address_space *mapping)
2195 {
2196 return mapping->a_ops == &shmem_aops;
2197 }
2198
2199 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2200 pmd_t *dst_pmd,
2201 struct vm_area_struct *dst_vma,
2202 unsigned long dst_addr,
2203 unsigned long src_addr,
2204 struct page **pagep)
2205 {
2206 struct inode *inode = file_inode(dst_vma->vm_file);
2207 struct shmem_inode_info *info = SHMEM_I(inode);
2208 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2209 struct address_space *mapping = inode->i_mapping;
2210 gfp_t gfp = mapping_gfp_mask(mapping);
2211 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2212 struct mem_cgroup *memcg;
2213 spinlock_t *ptl;
2214 void *page_kaddr;
2215 struct page *page;
2216 pte_t _dst_pte, *dst_pte;
2217 int ret;
2218
2219 ret = -ENOMEM;
2220 if (shmem_acct_block(info->flags, 1))
2221 goto out;
2222 if (sbinfo->max_blocks) {
2223 if (percpu_counter_compare(&sbinfo->used_blocks,
2224 sbinfo->max_blocks) >= 0)
2225 goto out_unacct_blocks;
2226 percpu_counter_inc(&sbinfo->used_blocks);
2227 }
2228
2229 if (!*pagep) {
2230 page = shmem_alloc_page(gfp, info, pgoff);
2231 if (!page)
2232 goto out_dec_used_blocks;
2233
2234 page_kaddr = kmap_atomic(page);
2235 ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2236 PAGE_SIZE);
2237 kunmap_atomic(page_kaddr);
2238
2239 /* fallback to copy_from_user outside mmap_sem */
2240 if (unlikely(ret)) {
2241 *pagep = page;
2242 if (sbinfo->max_blocks)
2243 percpu_counter_add(&sbinfo->used_blocks, -1);
2244 shmem_unacct_blocks(info->flags, 1);
2245 /* don't free the page */
2246 return -EFAULT;
2247 }
2248 } else {
2249 page = *pagep;
2250 *pagep = NULL;
2251 }
2252
2253 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2254 __SetPageLocked(page);
2255 __SetPageSwapBacked(page);
2256 __SetPageUptodate(page);
2257
2258 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2259 if (ret)
2260 goto out_release;
2261
2262 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2263 if (!ret) {
2264 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2265 radix_tree_preload_end();
2266 }
2267 if (ret)
2268 goto out_release_uncharge;
2269
2270 mem_cgroup_commit_charge(page, memcg, false, false);
2271
2272 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2273 if (dst_vma->vm_flags & VM_WRITE)
2274 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2275
2276 ret = -EEXIST;
2277 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2278 if (!pte_none(*dst_pte))
2279 goto out_release_uncharge_unlock;
2280
2281 lru_cache_add_anon(page);
2282
2283 spin_lock(&info->lock);
2284 info->alloced++;
2285 inode->i_blocks += BLOCKS_PER_PAGE;
2286 shmem_recalc_inode(inode);
2287 spin_unlock(&info->lock);
2288
2289 inc_mm_counter(dst_mm, mm_counter_file(page));
2290 page_add_file_rmap(page, false);
2291 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2292
2293 /* No need to invalidate - it was non-present before */
2294 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2295 unlock_page(page);
2296 pte_unmap_unlock(dst_pte, ptl);
2297 ret = 0;
2298 out:
2299 return ret;
2300 out_release_uncharge_unlock:
2301 pte_unmap_unlock(dst_pte, ptl);
2302 out_release_uncharge:
2303 mem_cgroup_cancel_charge(page, memcg, false);
2304 out_release:
2305 unlock_page(page);
2306 put_page(page);
2307 out_dec_used_blocks:
2308 if (sbinfo->max_blocks)
2309 percpu_counter_add(&sbinfo->used_blocks, -1);
2310 out_unacct_blocks:
2311 shmem_unacct_blocks(info->flags, 1);
2312 goto out;
2313 }
2314
2315 #ifdef CONFIG_TMPFS
2316 static const struct inode_operations shmem_symlink_inode_operations;
2317 static const struct inode_operations shmem_short_symlink_operations;
2318
2319 #ifdef CONFIG_TMPFS_XATTR
2320 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2321 #else
2322 #define shmem_initxattrs NULL
2323 #endif
2324
2325 static int
2326 shmem_write_begin(struct file *file, struct address_space *mapping,
2327 loff_t pos, unsigned len, unsigned flags,
2328 struct page **pagep, void **fsdata)
2329 {
2330 struct inode *inode = mapping->host;
2331 struct shmem_inode_info *info = SHMEM_I(inode);
2332 pgoff_t index = pos >> PAGE_SHIFT;
2333
2334 /* i_mutex is held by caller */
2335 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2336 if (info->seals & F_SEAL_WRITE)
2337 return -EPERM;
2338 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2339 return -EPERM;
2340 }
2341
2342 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2343 }
2344
2345 static int
2346 shmem_write_end(struct file *file, struct address_space *mapping,
2347 loff_t pos, unsigned len, unsigned copied,
2348 struct page *page, void *fsdata)
2349 {
2350 struct inode *inode = mapping->host;
2351
2352 if (pos + copied > inode->i_size)
2353 i_size_write(inode, pos + copied);
2354
2355 if (!PageUptodate(page)) {
2356 struct page *head = compound_head(page);
2357 if (PageTransCompound(page)) {
2358 int i;
2359
2360 for (i = 0; i < HPAGE_PMD_NR; i++) {
2361 if (head + i == page)
2362 continue;
2363 clear_highpage(head + i);
2364 flush_dcache_page(head + i);
2365 }
2366 }
2367 if (copied < PAGE_SIZE) {
2368 unsigned from = pos & (PAGE_SIZE - 1);
2369 zero_user_segments(page, 0, from,
2370 from + copied, PAGE_SIZE);
2371 }
2372 SetPageUptodate(head);
2373 }
2374 set_page_dirty(page);
2375 unlock_page(page);
2376 put_page(page);
2377
2378 return copied;
2379 }
2380
2381 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2382 {
2383 struct file *file = iocb->ki_filp;
2384 struct inode *inode = file_inode(file);
2385 struct address_space *mapping = inode->i_mapping;
2386 pgoff_t index;
2387 unsigned long offset;
2388 enum sgp_type sgp = SGP_READ;
2389 int error = 0;
2390 ssize_t retval = 0;
2391 loff_t *ppos = &iocb->ki_pos;
2392
2393 /*
2394 * Might this read be for a stacking filesystem? Then when reading
2395 * holes of a sparse file, we actually need to allocate those pages,
2396 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2397 */
2398 if (!iter_is_iovec(to))
2399 sgp = SGP_CACHE;
2400
2401 index = *ppos >> PAGE_SHIFT;
2402 offset = *ppos & ~PAGE_MASK;
2403
2404 for (;;) {
2405 struct page *page = NULL;
2406 pgoff_t end_index;
2407 unsigned long nr, ret;
2408 loff_t i_size = i_size_read(inode);
2409
2410 end_index = i_size >> PAGE_SHIFT;
2411 if (index > end_index)
2412 break;
2413 if (index == end_index) {
2414 nr = i_size & ~PAGE_MASK;
2415 if (nr <= offset)
2416 break;
2417 }
2418
2419 error = shmem_getpage(inode, index, &page, sgp);
2420 if (error) {
2421 if (error == -EINVAL)
2422 error = 0;
2423 break;
2424 }
2425 if (page) {
2426 if (sgp == SGP_CACHE)
2427 set_page_dirty(page);
2428 unlock_page(page);
2429 }
2430
2431 /*
2432 * We must evaluate after, since reads (unlike writes)
2433 * are called without i_mutex protection against truncate
2434 */
2435 nr = PAGE_SIZE;
2436 i_size = i_size_read(inode);
2437 end_index = i_size >> PAGE_SHIFT;
2438 if (index == end_index) {
2439 nr = i_size & ~PAGE_MASK;
2440 if (nr <= offset) {
2441 if (page)
2442 put_page(page);
2443 break;
2444 }
2445 }
2446 nr -= offset;
2447
2448 if (page) {
2449 /*
2450 * If users can be writing to this page using arbitrary
2451 * virtual addresses, take care about potential aliasing
2452 * before reading the page on the kernel side.
2453 */
2454 if (mapping_writably_mapped(mapping))
2455 flush_dcache_page(page);
2456 /*
2457 * Mark the page accessed if we read the beginning.
2458 */
2459 if (!offset)
2460 mark_page_accessed(page);
2461 } else {
2462 page = ZERO_PAGE(0);
2463 get_page(page);
2464 }
2465
2466 /*
2467 * Ok, we have the page, and it's up-to-date, so
2468 * now we can copy it to user space...
2469 */
2470 ret = copy_page_to_iter(page, offset, nr, to);
2471 retval += ret;
2472 offset += ret;
2473 index += offset >> PAGE_SHIFT;
2474 offset &= ~PAGE_MASK;
2475
2476 put_page(page);
2477 if (!iov_iter_count(to))
2478 break;
2479 if (ret < nr) {
2480 error = -EFAULT;
2481 break;
2482 }
2483 cond_resched();
2484 }
2485
2486 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2487 file_accessed(file);
2488 return retval ? retval : error;
2489 }
2490
2491 /*
2492 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2493 */
2494 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2495 pgoff_t index, pgoff_t end, int whence)
2496 {
2497 struct page *page;
2498 struct pagevec pvec;
2499 pgoff_t indices[PAGEVEC_SIZE];
2500 bool done = false;
2501 int i;
2502
2503 pagevec_init(&pvec, 0);
2504 pvec.nr = 1; /* start small: we may be there already */
2505 while (!done) {
2506 pvec.nr = find_get_entries(mapping, index,
2507 pvec.nr, pvec.pages, indices);
2508 if (!pvec.nr) {
2509 if (whence == SEEK_DATA)
2510 index = end;
2511 break;
2512 }
2513 for (i = 0; i < pvec.nr; i++, index++) {
2514 if (index < indices[i]) {
2515 if (whence == SEEK_HOLE) {
2516 done = true;
2517 break;
2518 }
2519 index = indices[i];
2520 }
2521 page = pvec.pages[i];
2522 if (page && !radix_tree_exceptional_entry(page)) {
2523 if (!PageUptodate(page))
2524 page = NULL;
2525 }
2526 if (index >= end ||
2527 (page && whence == SEEK_DATA) ||
2528 (!page && whence == SEEK_HOLE)) {
2529 done = true;
2530 break;
2531 }
2532 }
2533 pagevec_remove_exceptionals(&pvec);
2534 pagevec_release(&pvec);
2535 pvec.nr = PAGEVEC_SIZE;
2536 cond_resched();
2537 }
2538 return index;
2539 }
2540
2541 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2542 {
2543 struct address_space *mapping = file->f_mapping;
2544 struct inode *inode = mapping->host;
2545 pgoff_t start, end;
2546 loff_t new_offset;
2547
2548 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2549 return generic_file_llseek_size(file, offset, whence,
2550 MAX_LFS_FILESIZE, i_size_read(inode));
2551 inode_lock(inode);
2552 /* We're holding i_mutex so we can access i_size directly */
2553
2554 if (offset < 0)
2555 offset = -EINVAL;
2556 else if (offset >= inode->i_size)
2557 offset = -ENXIO;
2558 else {
2559 start = offset >> PAGE_SHIFT;
2560 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2561 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2562 new_offset <<= PAGE_SHIFT;
2563 if (new_offset > offset) {
2564 if (new_offset < inode->i_size)
2565 offset = new_offset;
2566 else if (whence == SEEK_DATA)
2567 offset = -ENXIO;
2568 else
2569 offset = inode->i_size;
2570 }
2571 }
2572
2573 if (offset >= 0)
2574 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2575 inode_unlock(inode);
2576 return offset;
2577 }
2578
2579 /*
2580 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2581 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2582 */
2583 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2584 #define LAST_SCAN 4 /* about 150ms max */
2585
2586 static void shmem_tag_pins(struct address_space *mapping)
2587 {
2588 struct radix_tree_iter iter;
2589 void **slot;
2590 pgoff_t start;
2591 struct page *page;
2592
2593 lru_add_drain();
2594 start = 0;
2595 rcu_read_lock();
2596
2597 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2598 page = radix_tree_deref_slot(slot);
2599 if (!page || radix_tree_exception(page)) {
2600 if (radix_tree_deref_retry(page)) {
2601 slot = radix_tree_iter_retry(&iter);
2602 continue;
2603 }
2604 } else if (page_count(page) - page_mapcount(page) > 1) {
2605 spin_lock_irq(&mapping->tree_lock);
2606 radix_tree_tag_set(&mapping->page_tree, iter.index,
2607 SHMEM_TAG_PINNED);
2608 spin_unlock_irq(&mapping->tree_lock);
2609 }
2610
2611 if (need_resched()) {
2612 slot = radix_tree_iter_resume(slot, &iter);
2613 cond_resched_rcu();
2614 }
2615 }
2616 rcu_read_unlock();
2617 }
2618
2619 /*
2620 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2621 * via get_user_pages(), drivers might have some pending I/O without any active
2622 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2623 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2624 * them to be dropped.
2625 * The caller must guarantee that no new user will acquire writable references
2626 * to those pages to avoid races.
2627 */
2628 static int shmem_wait_for_pins(struct address_space *mapping)
2629 {
2630 struct radix_tree_iter iter;
2631 void **slot;
2632 pgoff_t start;
2633 struct page *page;
2634 int error, scan;
2635
2636 shmem_tag_pins(mapping);
2637
2638 error = 0;
2639 for (scan = 0; scan <= LAST_SCAN; scan++) {
2640 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2641 break;
2642
2643 if (!scan)
2644 lru_add_drain_all();
2645 else if (schedule_timeout_killable((HZ << scan) / 200))
2646 scan = LAST_SCAN;
2647
2648 start = 0;
2649 rcu_read_lock();
2650 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2651 start, SHMEM_TAG_PINNED) {
2652
2653 page = radix_tree_deref_slot(slot);
2654 if (radix_tree_exception(page)) {
2655 if (radix_tree_deref_retry(page)) {
2656 slot = radix_tree_iter_retry(&iter);
2657 continue;
2658 }
2659
2660 page = NULL;
2661 }
2662
2663 if (page &&
2664 page_count(page) - page_mapcount(page) != 1) {
2665 if (scan < LAST_SCAN)
2666 goto continue_resched;
2667
2668 /*
2669 * On the last scan, we clean up all those tags
2670 * we inserted; but make a note that we still
2671 * found pages pinned.
2672 */
2673 error = -EBUSY;
2674 }
2675
2676 spin_lock_irq(&mapping->tree_lock);
2677 radix_tree_tag_clear(&mapping->page_tree,
2678 iter.index, SHMEM_TAG_PINNED);
2679 spin_unlock_irq(&mapping->tree_lock);
2680 continue_resched:
2681 if (need_resched()) {
2682 slot = radix_tree_iter_resume(slot, &iter);
2683 cond_resched_rcu();
2684 }
2685 }
2686 rcu_read_unlock();
2687 }
2688
2689 return error;
2690 }
2691
2692 #define F_ALL_SEALS (F_SEAL_SEAL | \
2693 F_SEAL_SHRINK | \
2694 F_SEAL_GROW | \
2695 F_SEAL_WRITE)
2696
2697 int shmem_add_seals(struct file *file, unsigned int seals)
2698 {
2699 struct inode *inode = file_inode(file);
2700 struct shmem_inode_info *info = SHMEM_I(inode);
2701 int error;
2702
2703 /*
2704 * SEALING
2705 * Sealing allows multiple parties to share a shmem-file but restrict
2706 * access to a specific subset of file operations. Seals can only be
2707 * added, but never removed. This way, mutually untrusted parties can
2708 * share common memory regions with a well-defined policy. A malicious
2709 * peer can thus never perform unwanted operations on a shared object.
2710 *
2711 * Seals are only supported on special shmem-files and always affect
2712 * the whole underlying inode. Once a seal is set, it may prevent some
2713 * kinds of access to the file. Currently, the following seals are
2714 * defined:
2715 * SEAL_SEAL: Prevent further seals from being set on this file
2716 * SEAL_SHRINK: Prevent the file from shrinking
2717 * SEAL_GROW: Prevent the file from growing
2718 * SEAL_WRITE: Prevent write access to the file
2719 *
2720 * As we don't require any trust relationship between two parties, we
2721 * must prevent seals from being removed. Therefore, sealing a file
2722 * only adds a given set of seals to the file, it never touches
2723 * existing seals. Furthermore, the "setting seals"-operation can be
2724 * sealed itself, which basically prevents any further seal from being
2725 * added.
2726 *
2727 * Semantics of sealing are only defined on volatile files. Only
2728 * anonymous shmem files support sealing. More importantly, seals are
2729 * never written to disk. Therefore, there's no plan to support it on
2730 * other file types.
2731 */
2732
2733 if (file->f_op != &shmem_file_operations)
2734 return -EINVAL;
2735 if (!(file->f_mode & FMODE_WRITE))
2736 return -EPERM;
2737 if (seals & ~(unsigned int)F_ALL_SEALS)
2738 return -EINVAL;
2739
2740 inode_lock(inode);
2741
2742 if (info->seals & F_SEAL_SEAL) {
2743 error = -EPERM;
2744 goto unlock;
2745 }
2746
2747 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2748 error = mapping_deny_writable(file->f_mapping);
2749 if (error)
2750 goto unlock;
2751
2752 error = shmem_wait_for_pins(file->f_mapping);
2753 if (error) {
2754 mapping_allow_writable(file->f_mapping);
2755 goto unlock;
2756 }
2757 }
2758
2759 info->seals |= seals;
2760 error = 0;
2761
2762 unlock:
2763 inode_unlock(inode);
2764 return error;
2765 }
2766 EXPORT_SYMBOL_GPL(shmem_add_seals);
2767
2768 int shmem_get_seals(struct file *file)
2769 {
2770 if (file->f_op != &shmem_file_operations)
2771 return -EINVAL;
2772
2773 return SHMEM_I(file_inode(file))->seals;
2774 }
2775 EXPORT_SYMBOL_GPL(shmem_get_seals);
2776
2777 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2778 {
2779 long error;
2780
2781 switch (cmd) {
2782 case F_ADD_SEALS:
2783 /* disallow upper 32bit */
2784 if (arg > UINT_MAX)
2785 return -EINVAL;
2786
2787 error = shmem_add_seals(file, arg);
2788 break;
2789 case F_GET_SEALS:
2790 error = shmem_get_seals(file);
2791 break;
2792 default:
2793 error = -EINVAL;
2794 break;
2795 }
2796
2797 return error;
2798 }
2799
2800 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2801 loff_t len)
2802 {
2803 struct inode *inode = file_inode(file);
2804 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2805 struct shmem_inode_info *info = SHMEM_I(inode);
2806 struct shmem_falloc shmem_falloc;
2807 pgoff_t start, index, end;
2808 int error;
2809
2810 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2811 return -EOPNOTSUPP;
2812
2813 inode_lock(inode);
2814
2815 if (mode & FALLOC_FL_PUNCH_HOLE) {
2816 struct address_space *mapping = file->f_mapping;
2817 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2818 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2819 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2820
2821 /* protected by i_mutex */
2822 if (info->seals & F_SEAL_WRITE) {
2823 error = -EPERM;
2824 goto out;
2825 }
2826
2827 shmem_falloc.waitq = &shmem_falloc_waitq;
2828 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2829 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2830 spin_lock(&inode->i_lock);
2831 inode->i_private = &shmem_falloc;
2832 spin_unlock(&inode->i_lock);
2833
2834 if ((u64)unmap_end > (u64)unmap_start)
2835 unmap_mapping_range(mapping, unmap_start,
2836 1 + unmap_end - unmap_start, 0);
2837 shmem_truncate_range(inode, offset, offset + len - 1);
2838 /* No need to unmap again: hole-punching leaves COWed pages */
2839
2840 spin_lock(&inode->i_lock);
2841 inode->i_private = NULL;
2842 wake_up_all(&shmem_falloc_waitq);
2843 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2844 spin_unlock(&inode->i_lock);
2845 error = 0;
2846 goto out;
2847 }
2848
2849 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2850 error = inode_newsize_ok(inode, offset + len);
2851 if (error)
2852 goto out;
2853
2854 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2855 error = -EPERM;
2856 goto out;
2857 }
2858
2859 start = offset >> PAGE_SHIFT;
2860 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2861 /* Try to avoid a swapstorm if len is impossible to satisfy */
2862 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2863 error = -ENOSPC;
2864 goto out;
2865 }
2866
2867 shmem_falloc.waitq = NULL;
2868 shmem_falloc.start = start;
2869 shmem_falloc.next = start;
2870 shmem_falloc.nr_falloced = 0;
2871 shmem_falloc.nr_unswapped = 0;
2872 spin_lock(&inode->i_lock);
2873 inode->i_private = &shmem_falloc;
2874 spin_unlock(&inode->i_lock);
2875
2876 for (index = start; index < end; index++) {
2877 struct page *page;
2878
2879 /*
2880 * Good, the fallocate(2) manpage permits EINTR: we may have
2881 * been interrupted because we are using up too much memory.
2882 */
2883 if (signal_pending(current))
2884 error = -EINTR;
2885 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2886 error = -ENOMEM;
2887 else
2888 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2889 if (error) {
2890 /* Remove the !PageUptodate pages we added */
2891 if (index > start) {
2892 shmem_undo_range(inode,
2893 (loff_t)start << PAGE_SHIFT,
2894 ((loff_t)index << PAGE_SHIFT) - 1, true);
2895 }
2896 goto undone;
2897 }
2898
2899 /*
2900 * Inform shmem_writepage() how far we have reached.
2901 * No need for lock or barrier: we have the page lock.
2902 */
2903 shmem_falloc.next++;
2904 if (!PageUptodate(page))
2905 shmem_falloc.nr_falloced++;
2906
2907 /*
2908 * If !PageUptodate, leave it that way so that freeable pages
2909 * can be recognized if we need to rollback on error later.
2910 * But set_page_dirty so that memory pressure will swap rather
2911 * than free the pages we are allocating (and SGP_CACHE pages
2912 * might still be clean: we now need to mark those dirty too).
2913 */
2914 set_page_dirty(page);
2915 unlock_page(page);
2916 put_page(page);
2917 cond_resched();
2918 }
2919
2920 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2921 i_size_write(inode, offset + len);
2922 inode->i_ctime = current_time(inode);
2923 undone:
2924 spin_lock(&inode->i_lock);
2925 inode->i_private = NULL;
2926 spin_unlock(&inode->i_lock);
2927 out:
2928 inode_unlock(inode);
2929 return error;
2930 }
2931
2932 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2933 {
2934 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2935
2936 buf->f_type = TMPFS_MAGIC;
2937 buf->f_bsize = PAGE_SIZE;
2938 buf->f_namelen = NAME_MAX;
2939 if (sbinfo->max_blocks) {
2940 buf->f_blocks = sbinfo->max_blocks;
2941 buf->f_bavail =
2942 buf->f_bfree = sbinfo->max_blocks -
2943 percpu_counter_sum(&sbinfo->used_blocks);
2944 }
2945 if (sbinfo->max_inodes) {
2946 buf->f_files = sbinfo->max_inodes;
2947 buf->f_ffree = sbinfo->free_inodes;
2948 }
2949 /* else leave those fields 0 like simple_statfs */
2950 return 0;
2951 }
2952
2953 /*
2954 * File creation. Allocate an inode, and we're done..
2955 */
2956 static int
2957 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2958 {
2959 struct inode *inode;
2960 int error = -ENOSPC;
2961
2962 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2963 if (inode) {
2964 error = simple_acl_create(dir, inode);
2965 if (error)
2966 goto out_iput;
2967 error = security_inode_init_security(inode, dir,
2968 &dentry->d_name,
2969 shmem_initxattrs, NULL);
2970 if (error && error != -EOPNOTSUPP)
2971 goto out_iput;
2972
2973 error = 0;
2974 dir->i_size += BOGO_DIRENT_SIZE;
2975 dir->i_ctime = dir->i_mtime = current_time(dir);
2976 d_instantiate(dentry, inode);
2977 dget(dentry); /* Extra count - pin the dentry in core */
2978 }
2979 return error;
2980 out_iput:
2981 iput(inode);
2982 return error;
2983 }
2984
2985 static int
2986 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2987 {
2988 struct inode *inode;
2989 int error = -ENOSPC;
2990
2991 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2992 if (inode) {
2993 error = security_inode_init_security(inode, dir,
2994 NULL,
2995 shmem_initxattrs, NULL);
2996 if (error && error != -EOPNOTSUPP)
2997 goto out_iput;
2998 error = simple_acl_create(dir, inode);
2999 if (error)
3000 goto out_iput;
3001 d_tmpfile(dentry, inode);
3002 }
3003 return error;
3004 out_iput:
3005 iput(inode);
3006 return error;
3007 }
3008
3009 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3010 {
3011 int error;
3012
3013 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3014 return error;
3015 inc_nlink(dir);
3016 return 0;
3017 }
3018
3019 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3020 bool excl)
3021 {
3022 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3023 }
3024
3025 /*
3026 * Link a file..
3027 */
3028 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3029 {
3030 struct inode *inode = d_inode(old_dentry);
3031 int ret;
3032
3033 /*
3034 * No ordinary (disk based) filesystem counts links as inodes;
3035 * but each new link needs a new dentry, pinning lowmem, and
3036 * tmpfs dentries cannot be pruned until they are unlinked.
3037 */
3038 ret = shmem_reserve_inode(inode->i_sb);
3039 if (ret)
3040 goto out;
3041
3042 dir->i_size += BOGO_DIRENT_SIZE;
3043 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3044 inc_nlink(inode);
3045 ihold(inode); /* New dentry reference */
3046 dget(dentry); /* Extra pinning count for the created dentry */
3047 d_instantiate(dentry, inode);
3048 out:
3049 return ret;
3050 }
3051
3052 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3053 {
3054 struct inode *inode = d_inode(dentry);
3055
3056 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3057 shmem_free_inode(inode->i_sb);
3058
3059 dir->i_size -= BOGO_DIRENT_SIZE;
3060 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3061 drop_nlink(inode);
3062 dput(dentry); /* Undo the count from "create" - this does all the work */
3063 return 0;
3064 }
3065
3066 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3067 {
3068 if (!simple_empty(dentry))
3069 return -ENOTEMPTY;
3070
3071 drop_nlink(d_inode(dentry));
3072 drop_nlink(dir);
3073 return shmem_unlink(dir, dentry);
3074 }
3075
3076 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3077 {
3078 bool old_is_dir = d_is_dir(old_dentry);
3079 bool new_is_dir = d_is_dir(new_dentry);
3080
3081 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3082 if (old_is_dir) {
3083 drop_nlink(old_dir);
3084 inc_nlink(new_dir);
3085 } else {
3086 drop_nlink(new_dir);
3087 inc_nlink(old_dir);
3088 }
3089 }
3090 old_dir->i_ctime = old_dir->i_mtime =
3091 new_dir->i_ctime = new_dir->i_mtime =
3092 d_inode(old_dentry)->i_ctime =
3093 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3094
3095 return 0;
3096 }
3097
3098 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3099 {
3100 struct dentry *whiteout;
3101 int error;
3102
3103 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3104 if (!whiteout)
3105 return -ENOMEM;
3106
3107 error = shmem_mknod(old_dir, whiteout,
3108 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3109 dput(whiteout);
3110 if (error)
3111 return error;
3112
3113 /*
3114 * Cheat and hash the whiteout while the old dentry is still in
3115 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3116 *
3117 * d_lookup() will consistently find one of them at this point,
3118 * not sure which one, but that isn't even important.
3119 */
3120 d_rehash(whiteout);
3121 return 0;
3122 }
3123
3124 /*
3125 * The VFS layer already does all the dentry stuff for rename,
3126 * we just have to decrement the usage count for the target if
3127 * it exists so that the VFS layer correctly free's it when it
3128 * gets overwritten.
3129 */
3130 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3131 {
3132 struct inode *inode = d_inode(old_dentry);
3133 int they_are_dirs = S_ISDIR(inode->i_mode);
3134
3135 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3136 return -EINVAL;
3137
3138 if (flags & RENAME_EXCHANGE)
3139 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3140
3141 if (!simple_empty(new_dentry))
3142 return -ENOTEMPTY;
3143
3144 if (flags & RENAME_WHITEOUT) {
3145 int error;
3146
3147 error = shmem_whiteout(old_dir, old_dentry);
3148 if (error)
3149 return error;
3150 }
3151
3152 if (d_really_is_positive(new_dentry)) {
3153 (void) shmem_unlink(new_dir, new_dentry);
3154 if (they_are_dirs) {
3155 drop_nlink(d_inode(new_dentry));
3156 drop_nlink(old_dir);
3157 }
3158 } else if (they_are_dirs) {
3159 drop_nlink(old_dir);
3160 inc_nlink(new_dir);
3161 }
3162
3163 old_dir->i_size -= BOGO_DIRENT_SIZE;
3164 new_dir->i_size += BOGO_DIRENT_SIZE;
3165 old_dir->i_ctime = old_dir->i_mtime =
3166 new_dir->i_ctime = new_dir->i_mtime =
3167 inode->i_ctime = current_time(old_dir);
3168 return 0;
3169 }
3170
3171 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3172 {
3173 int error;
3174 int len;
3175 struct inode *inode;
3176 struct page *page;
3177 struct shmem_inode_info *info;
3178
3179 len = strlen(symname) + 1;
3180 if (len > PAGE_SIZE)
3181 return -ENAMETOOLONG;
3182
3183 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3184 if (!inode)
3185 return -ENOSPC;
3186
3187 error = security_inode_init_security(inode, dir, &dentry->d_name,
3188 shmem_initxattrs, NULL);
3189 if (error) {
3190 if (error != -EOPNOTSUPP) {
3191 iput(inode);
3192 return error;
3193 }
3194 error = 0;
3195 }
3196
3197 info = SHMEM_I(inode);
3198 inode->i_size = len-1;
3199 if (len <= SHORT_SYMLINK_LEN) {
3200 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3201 if (!inode->i_link) {
3202 iput(inode);
3203 return -ENOMEM;
3204 }
3205 inode->i_op = &shmem_short_symlink_operations;
3206 } else {
3207 inode_nohighmem(inode);
3208 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3209 if (error) {
3210 iput(inode);
3211 return error;
3212 }
3213 inode->i_mapping->a_ops = &shmem_aops;
3214 inode->i_op = &shmem_symlink_inode_operations;
3215 memcpy(page_address(page), symname, len);
3216 SetPageUptodate(page);
3217 set_page_dirty(page);
3218 unlock_page(page);
3219 put_page(page);
3220 }
3221 dir->i_size += BOGO_DIRENT_SIZE;
3222 dir->i_ctime = dir->i_mtime = current_time(dir);
3223 d_instantiate(dentry, inode);
3224 dget(dentry);
3225 return 0;
3226 }
3227
3228 static void shmem_put_link(void *arg)
3229 {
3230 mark_page_accessed(arg);
3231 put_page(arg);
3232 }
3233
3234 static const char *shmem_get_link(struct dentry *dentry,
3235 struct inode *inode,
3236 struct delayed_call *done)
3237 {
3238 struct page *page = NULL;
3239 int error;
3240 if (!dentry) {
3241 page = find_get_page(inode->i_mapping, 0);
3242 if (!page)
3243 return ERR_PTR(-ECHILD);
3244 if (!PageUptodate(page)) {
3245 put_page(page);
3246 return ERR_PTR(-ECHILD);
3247 }
3248 } else {
3249 error = shmem_getpage(inode, 0, &page, SGP_READ);
3250 if (error)
3251 return ERR_PTR(error);
3252 unlock_page(page);
3253 }
3254 set_delayed_call(done, shmem_put_link, page);
3255 return page_address(page);
3256 }
3257
3258 #ifdef CONFIG_TMPFS_XATTR
3259 /*
3260 * Superblocks without xattr inode operations may get some security.* xattr
3261 * support from the LSM "for free". As soon as we have any other xattrs
3262 * like ACLs, we also need to implement the security.* handlers at
3263 * filesystem level, though.
3264 */
3265
3266 /*
3267 * Callback for security_inode_init_security() for acquiring xattrs.
3268 */
3269 static int shmem_initxattrs(struct inode *inode,
3270 const struct xattr *xattr_array,
3271 void *fs_info)
3272 {
3273 struct shmem_inode_info *info = SHMEM_I(inode);
3274 const struct xattr *xattr;
3275 struct simple_xattr *new_xattr;
3276 size_t len;
3277
3278 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3279 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3280 if (!new_xattr)
3281 return -ENOMEM;
3282
3283 len = strlen(xattr->name) + 1;
3284 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3285 GFP_KERNEL);
3286 if (!new_xattr->name) {
3287 kfree(new_xattr);
3288 return -ENOMEM;
3289 }
3290
3291 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3292 XATTR_SECURITY_PREFIX_LEN);
3293 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3294 xattr->name, len);
3295
3296 simple_xattr_list_add(&info->xattrs, new_xattr);
3297 }
3298
3299 return 0;
3300 }
3301
3302 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3303 struct dentry *unused, struct inode *inode,
3304 const char *name, void *buffer, size_t size)
3305 {
3306 struct shmem_inode_info *info = SHMEM_I(inode);
3307
3308 name = xattr_full_name(handler, name);
3309 return simple_xattr_get(&info->xattrs, name, buffer, size);
3310 }
3311
3312 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3313 struct dentry *unused, struct inode *inode,
3314 const char *name, const void *value,
3315 size_t size, int flags)
3316 {
3317 struct shmem_inode_info *info = SHMEM_I(inode);
3318
3319 name = xattr_full_name(handler, name);
3320 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3321 }
3322
3323 static const struct xattr_handler shmem_security_xattr_handler = {
3324 .prefix = XATTR_SECURITY_PREFIX,
3325 .get = shmem_xattr_handler_get,
3326 .set = shmem_xattr_handler_set,
3327 };
3328
3329 static const struct xattr_handler shmem_trusted_xattr_handler = {
3330 .prefix = XATTR_TRUSTED_PREFIX,
3331 .get = shmem_xattr_handler_get,
3332 .set = shmem_xattr_handler_set,
3333 };
3334
3335 static const struct xattr_handler *shmem_xattr_handlers[] = {
3336 #ifdef CONFIG_TMPFS_POSIX_ACL
3337 &posix_acl_access_xattr_handler,
3338 &posix_acl_default_xattr_handler,
3339 #endif
3340 &shmem_security_xattr_handler,
3341 &shmem_trusted_xattr_handler,
3342 NULL
3343 };
3344
3345 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3346 {
3347 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3348 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3349 }
3350 #endif /* CONFIG_TMPFS_XATTR */
3351
3352 static const struct inode_operations shmem_short_symlink_operations = {
3353 .get_link = simple_get_link,
3354 #ifdef CONFIG_TMPFS_XATTR
3355 .listxattr = shmem_listxattr,
3356 #endif
3357 };
3358
3359 static const struct inode_operations shmem_symlink_inode_operations = {
3360 .get_link = shmem_get_link,
3361 #ifdef CONFIG_TMPFS_XATTR
3362 .listxattr = shmem_listxattr,
3363 #endif
3364 };
3365
3366 static struct dentry *shmem_get_parent(struct dentry *child)
3367 {
3368 return ERR_PTR(-ESTALE);
3369 }
3370
3371 static int shmem_match(struct inode *ino, void *vfh)
3372 {
3373 __u32 *fh = vfh;
3374 __u64 inum = fh[2];
3375 inum = (inum << 32) | fh[1];
3376 return ino->i_ino == inum && fh[0] == ino->i_generation;
3377 }
3378
3379 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3380 struct fid *fid, int fh_len, int fh_type)
3381 {
3382 struct inode *inode;
3383 struct dentry *dentry = NULL;
3384 u64 inum;
3385
3386 if (fh_len < 3)
3387 return NULL;
3388
3389 inum = fid->raw[2];
3390 inum = (inum << 32) | fid->raw[1];
3391
3392 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3393 shmem_match, fid->raw);
3394 if (inode) {
3395 dentry = d_find_alias(inode);
3396 iput(inode);
3397 }
3398
3399 return dentry;
3400 }
3401
3402 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3403 struct inode *parent)
3404 {
3405 if (*len < 3) {
3406 *len = 3;
3407 return FILEID_INVALID;
3408 }
3409
3410 if (inode_unhashed(inode)) {
3411 /* Unfortunately insert_inode_hash is not idempotent,
3412 * so as we hash inodes here rather than at creation
3413 * time, we need a lock to ensure we only try
3414 * to do it once
3415 */
3416 static DEFINE_SPINLOCK(lock);
3417 spin_lock(&lock);
3418 if (inode_unhashed(inode))
3419 __insert_inode_hash(inode,
3420 inode->i_ino + inode->i_generation);
3421 spin_unlock(&lock);
3422 }
3423
3424 fh[0] = inode->i_generation;
3425 fh[1] = inode->i_ino;
3426 fh[2] = ((__u64)inode->i_ino) >> 32;
3427
3428 *len = 3;
3429 return 1;
3430 }
3431
3432 static const struct export_operations shmem_export_ops = {
3433 .get_parent = shmem_get_parent,
3434 .encode_fh = shmem_encode_fh,
3435 .fh_to_dentry = shmem_fh_to_dentry,
3436 };
3437
3438 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3439 bool remount)
3440 {
3441 char *this_char, *value, *rest;
3442 struct mempolicy *mpol = NULL;
3443 uid_t uid;
3444 gid_t gid;
3445
3446 while (options != NULL) {
3447 this_char = options;
3448 for (;;) {
3449 /*
3450 * NUL-terminate this option: unfortunately,
3451 * mount options form a comma-separated list,
3452 * but mpol's nodelist may also contain commas.
3453 */
3454 options = strchr(options, ',');
3455 if (options == NULL)
3456 break;
3457 options++;
3458 if (!isdigit(*options)) {
3459 options[-1] = '\0';
3460 break;
3461 }
3462 }
3463 if (!*this_char)
3464 continue;
3465 if ((value = strchr(this_char,'=')) != NULL) {
3466 *value++ = 0;
3467 } else {
3468 pr_err("tmpfs: No value for mount option '%s'\n",
3469 this_char);
3470 goto error;
3471 }
3472
3473 if (!strcmp(this_char,"size")) {
3474 unsigned long long size;
3475 size = memparse(value,&rest);
3476 if (*rest == '%') {
3477 size <<= PAGE_SHIFT;
3478 size *= totalram_pages;
3479 do_div(size, 100);
3480 rest++;
3481 }
3482 if (*rest)
3483 goto bad_val;
3484 sbinfo->max_blocks =
3485 DIV_ROUND_UP(size, PAGE_SIZE);
3486 } else if (!strcmp(this_char,"nr_blocks")) {
3487 sbinfo->max_blocks = memparse(value, &rest);
3488 if (*rest)
3489 goto bad_val;
3490 } else if (!strcmp(this_char,"nr_inodes")) {
3491 sbinfo->max_inodes = memparse(value, &rest);
3492 if (*rest)
3493 goto bad_val;
3494 } else if (!strcmp(this_char,"mode")) {
3495 if (remount)
3496 continue;
3497 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3498 if (*rest)
3499 goto bad_val;
3500 } else if (!strcmp(this_char,"uid")) {
3501 if (remount)
3502 continue;
3503 uid = simple_strtoul(value, &rest, 0);
3504 if (*rest)
3505 goto bad_val;
3506 sbinfo->uid = make_kuid(current_user_ns(), uid);
3507 if (!uid_valid(sbinfo->uid))
3508 goto bad_val;
3509 } else if (!strcmp(this_char,"gid")) {
3510 if (remount)
3511 continue;
3512 gid = simple_strtoul(value, &rest, 0);
3513 if (*rest)
3514 goto bad_val;
3515 sbinfo->gid = make_kgid(current_user_ns(), gid);
3516 if (!gid_valid(sbinfo->gid))
3517 goto bad_val;
3518 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3519 } else if (!strcmp(this_char, "huge")) {
3520 int huge;
3521 huge = shmem_parse_huge(value);
3522 if (huge < 0)
3523 goto bad_val;
3524 if (!has_transparent_hugepage() &&
3525 huge != SHMEM_HUGE_NEVER)
3526 goto bad_val;
3527 sbinfo->huge = huge;
3528 #endif
3529 #ifdef CONFIG_NUMA
3530 } else if (!strcmp(this_char,"mpol")) {
3531 mpol_put(mpol);
3532 mpol = NULL;
3533 if (mpol_parse_str(value, &mpol))
3534 goto bad_val;
3535 #endif
3536 } else {
3537 pr_err("tmpfs: Bad mount option %s\n", this_char);
3538 goto error;
3539 }
3540 }
3541 sbinfo->mpol = mpol;
3542 return 0;
3543
3544 bad_val:
3545 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3546 value, this_char);
3547 error:
3548 mpol_put(mpol);
3549 return 1;
3550
3551 }
3552
3553 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3554 {
3555 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3556 struct shmem_sb_info config = *sbinfo;
3557 unsigned long inodes;
3558 int error = -EINVAL;
3559
3560 config.mpol = NULL;
3561 if (shmem_parse_options(data, &config, true))
3562 return error;
3563
3564 spin_lock(&sbinfo->stat_lock);
3565 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3566 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3567 goto out;
3568 if (config.max_inodes < inodes)
3569 goto out;
3570 /*
3571 * Those tests disallow limited->unlimited while any are in use;
3572 * but we must separately disallow unlimited->limited, because
3573 * in that case we have no record of how much is already in use.
3574 */
3575 if (config.max_blocks && !sbinfo->max_blocks)
3576 goto out;
3577 if (config.max_inodes && !sbinfo->max_inodes)
3578 goto out;
3579
3580 error = 0;
3581 sbinfo->huge = config.huge;
3582 sbinfo->max_blocks = config.max_blocks;
3583 sbinfo->max_inodes = config.max_inodes;
3584 sbinfo->free_inodes = config.max_inodes - inodes;
3585
3586 /*
3587 * Preserve previous mempolicy unless mpol remount option was specified.
3588 */
3589 if (config.mpol) {
3590 mpol_put(sbinfo->mpol);
3591 sbinfo->mpol = config.mpol; /* transfers initial ref */
3592 }
3593 out:
3594 spin_unlock(&sbinfo->stat_lock);
3595 return error;
3596 }
3597
3598 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3599 {
3600 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3601
3602 if (sbinfo->max_blocks != shmem_default_max_blocks())
3603 seq_printf(seq, ",size=%luk",
3604 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3605 if (sbinfo->max_inodes != shmem_default_max_inodes())
3606 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3607 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3608 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3609 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3610 seq_printf(seq, ",uid=%u",
3611 from_kuid_munged(&init_user_ns, sbinfo->uid));
3612 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3613 seq_printf(seq, ",gid=%u",
3614 from_kgid_munged(&init_user_ns, sbinfo->gid));
3615 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3616 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3617 if (sbinfo->huge)
3618 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3619 #endif
3620 shmem_show_mpol(seq, sbinfo->mpol);
3621 return 0;
3622 }
3623
3624 #define MFD_NAME_PREFIX "memfd:"
3625 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3626 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3627
3628 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3629
3630 SYSCALL_DEFINE2(memfd_create,
3631 const char __user *, uname,
3632 unsigned int, flags)
3633 {
3634 struct shmem_inode_info *info;
3635 struct file *file;
3636 int fd, error;
3637 char *name;
3638 long len;
3639
3640 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3641 return -EINVAL;
3642
3643 /* length includes terminating zero */
3644 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3645 if (len <= 0)
3646 return -EFAULT;
3647 if (len > MFD_NAME_MAX_LEN + 1)
3648 return -EINVAL;
3649
3650 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3651 if (!name)
3652 return -ENOMEM;
3653
3654 strcpy(name, MFD_NAME_PREFIX);
3655 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3656 error = -EFAULT;
3657 goto err_name;
3658 }
3659
3660 /* terminating-zero may have changed after strnlen_user() returned */
3661 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3662 error = -EFAULT;
3663 goto err_name;
3664 }
3665
3666 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3667 if (fd < 0) {
3668 error = fd;
3669 goto err_name;
3670 }
3671
3672 file = shmem_file_setup(name, 0, VM_NORESERVE);
3673 if (IS_ERR(file)) {
3674 error = PTR_ERR(file);
3675 goto err_fd;
3676 }
3677 info = SHMEM_I(file_inode(file));
3678 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3679 file->f_flags |= O_RDWR | O_LARGEFILE;
3680 if (flags & MFD_ALLOW_SEALING)
3681 info->seals &= ~F_SEAL_SEAL;
3682
3683 fd_install(fd, file);
3684 kfree(name);
3685 return fd;
3686
3687 err_fd:
3688 put_unused_fd(fd);
3689 err_name:
3690 kfree(name);
3691 return error;
3692 }
3693
3694 #endif /* CONFIG_TMPFS */
3695
3696 static void shmem_put_super(struct super_block *sb)
3697 {
3698 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3699
3700 percpu_counter_destroy(&sbinfo->used_blocks);
3701 mpol_put(sbinfo->mpol);
3702 kfree(sbinfo);
3703 sb->s_fs_info = NULL;
3704 }
3705
3706 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3707 {
3708 struct inode *inode;
3709 struct shmem_sb_info *sbinfo;
3710 int err = -ENOMEM;
3711
3712 /* Round up to L1_CACHE_BYTES to resist false sharing */
3713 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3714 L1_CACHE_BYTES), GFP_KERNEL);
3715 if (!sbinfo)
3716 return -ENOMEM;
3717
3718 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3719 sbinfo->uid = current_fsuid();
3720 sbinfo->gid = current_fsgid();
3721 sb->s_fs_info = sbinfo;
3722
3723 #ifdef CONFIG_TMPFS
3724 /*
3725 * Per default we only allow half of the physical ram per
3726 * tmpfs instance, limiting inodes to one per page of lowmem;
3727 * but the internal instance is left unlimited.
3728 */
3729 if (!(sb->s_flags & MS_KERNMOUNT)) {
3730 sbinfo->max_blocks = shmem_default_max_blocks();
3731 sbinfo->max_inodes = shmem_default_max_inodes();
3732 if (shmem_parse_options(data, sbinfo, false)) {
3733 err = -EINVAL;
3734 goto failed;
3735 }
3736 } else {
3737 sb->s_flags |= MS_NOUSER;
3738 }
3739 sb->s_export_op = &shmem_export_ops;
3740 sb->s_flags |= MS_NOSEC;
3741 #else
3742 sb->s_flags |= MS_NOUSER;
3743 #endif
3744
3745 spin_lock_init(&sbinfo->stat_lock);
3746 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3747 goto failed;
3748 sbinfo->free_inodes = sbinfo->max_inodes;
3749 spin_lock_init(&sbinfo->shrinklist_lock);
3750 INIT_LIST_HEAD(&sbinfo->shrinklist);
3751
3752 sb->s_maxbytes = MAX_LFS_FILESIZE;
3753 sb->s_blocksize = PAGE_SIZE;
3754 sb->s_blocksize_bits = PAGE_SHIFT;
3755 sb->s_magic = TMPFS_MAGIC;
3756 sb->s_op = &shmem_ops;
3757 sb->s_time_gran = 1;
3758 #ifdef CONFIG_TMPFS_XATTR
3759 sb->s_xattr = shmem_xattr_handlers;
3760 #endif
3761 #ifdef CONFIG_TMPFS_POSIX_ACL
3762 sb->s_flags |= MS_POSIXACL;
3763 #endif
3764 uuid_gen(&sb->s_uuid);
3765
3766 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3767 if (!inode)
3768 goto failed;
3769 inode->i_uid = sbinfo->uid;
3770 inode->i_gid = sbinfo->gid;
3771 sb->s_root = d_make_root(inode);
3772 if (!sb->s_root)
3773 goto failed;
3774 return 0;
3775
3776 failed:
3777 shmem_put_super(sb);
3778 return err;
3779 }
3780
3781 static struct kmem_cache *shmem_inode_cachep;
3782
3783 static struct inode *shmem_alloc_inode(struct super_block *sb)
3784 {
3785 struct shmem_inode_info *info;
3786 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3787 if (!info)
3788 return NULL;
3789 return &info->vfs_inode;
3790 }
3791
3792 static void shmem_destroy_callback(struct rcu_head *head)
3793 {
3794 struct inode *inode = container_of(head, struct inode, i_rcu);
3795 if (S_ISLNK(inode->i_mode))
3796 kfree(inode->i_link);
3797 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3798 }
3799
3800 static void shmem_destroy_inode(struct inode *inode)
3801 {
3802 if (S_ISREG(inode->i_mode))
3803 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3804 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3805 }
3806
3807 static void shmem_init_inode(void *foo)
3808 {
3809 struct shmem_inode_info *info = foo;
3810 inode_init_once(&info->vfs_inode);
3811 }
3812
3813 static int shmem_init_inodecache(void)
3814 {
3815 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3816 sizeof(struct shmem_inode_info),
3817 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3818 return 0;
3819 }
3820
3821 static void shmem_destroy_inodecache(void)
3822 {
3823 kmem_cache_destroy(shmem_inode_cachep);
3824 }
3825
3826 static const struct address_space_operations shmem_aops = {
3827 .writepage = shmem_writepage,
3828 .set_page_dirty = __set_page_dirty_no_writeback,
3829 #ifdef CONFIG_TMPFS
3830 .write_begin = shmem_write_begin,
3831 .write_end = shmem_write_end,
3832 #endif
3833 #ifdef CONFIG_MIGRATION
3834 .migratepage = migrate_page,
3835 #endif
3836 .error_remove_page = generic_error_remove_page,
3837 };
3838
3839 static const struct file_operations shmem_file_operations = {
3840 .mmap = shmem_mmap,
3841 .get_unmapped_area = shmem_get_unmapped_area,
3842 #ifdef CONFIG_TMPFS
3843 .llseek = shmem_file_llseek,
3844 .read_iter = shmem_file_read_iter,
3845 .write_iter = generic_file_write_iter,
3846 .fsync = noop_fsync,
3847 .splice_read = generic_file_splice_read,
3848 .splice_write = iter_file_splice_write,
3849 .fallocate = shmem_fallocate,
3850 #endif
3851 };
3852
3853 static const struct inode_operations shmem_inode_operations = {
3854 .getattr = shmem_getattr,
3855 .setattr = shmem_setattr,
3856 #ifdef CONFIG_TMPFS_XATTR
3857 .listxattr = shmem_listxattr,
3858 .set_acl = simple_set_acl,
3859 #endif
3860 };
3861
3862 static const struct inode_operations shmem_dir_inode_operations = {
3863 #ifdef CONFIG_TMPFS
3864 .create = shmem_create,
3865 .lookup = simple_lookup,
3866 .link = shmem_link,
3867 .unlink = shmem_unlink,
3868 .symlink = shmem_symlink,
3869 .mkdir = shmem_mkdir,
3870 .rmdir = shmem_rmdir,
3871 .mknod = shmem_mknod,
3872 .rename = shmem_rename2,
3873 .tmpfile = shmem_tmpfile,
3874 #endif
3875 #ifdef CONFIG_TMPFS_XATTR
3876 .listxattr = shmem_listxattr,
3877 #endif
3878 #ifdef CONFIG_TMPFS_POSIX_ACL
3879 .setattr = shmem_setattr,
3880 .set_acl = simple_set_acl,
3881 #endif
3882 };
3883
3884 static const struct inode_operations shmem_special_inode_operations = {
3885 #ifdef CONFIG_TMPFS_XATTR
3886 .listxattr = shmem_listxattr,
3887 #endif
3888 #ifdef CONFIG_TMPFS_POSIX_ACL
3889 .setattr = shmem_setattr,
3890 .set_acl = simple_set_acl,
3891 #endif
3892 };
3893
3894 static const struct super_operations shmem_ops = {
3895 .alloc_inode = shmem_alloc_inode,
3896 .destroy_inode = shmem_destroy_inode,
3897 #ifdef CONFIG_TMPFS
3898 .statfs = shmem_statfs,
3899 .remount_fs = shmem_remount_fs,
3900 .show_options = shmem_show_options,
3901 #endif
3902 .evict_inode = shmem_evict_inode,
3903 .drop_inode = generic_delete_inode,
3904 .put_super = shmem_put_super,
3905 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3906 .nr_cached_objects = shmem_unused_huge_count,
3907 .free_cached_objects = shmem_unused_huge_scan,
3908 #endif
3909 };
3910
3911 static const struct vm_operations_struct shmem_vm_ops = {
3912 .fault = shmem_fault,
3913 .map_pages = filemap_map_pages,
3914 #ifdef CONFIG_NUMA
3915 .set_policy = shmem_set_policy,
3916 .get_policy = shmem_get_policy,
3917 #endif
3918 };
3919
3920 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3921 int flags, const char *dev_name, void *data)
3922 {
3923 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3924 }
3925
3926 static struct file_system_type shmem_fs_type = {
3927 .owner = THIS_MODULE,
3928 .name = "tmpfs",
3929 .mount = shmem_mount,
3930 .kill_sb = kill_litter_super,
3931 .fs_flags = FS_USERNS_MOUNT,
3932 };
3933
3934 int __init shmem_init(void)
3935 {
3936 int error;
3937
3938 /* If rootfs called this, don't re-init */
3939 if (shmem_inode_cachep)
3940 return 0;
3941
3942 error = shmem_init_inodecache();
3943 if (error)
3944 goto out3;
3945
3946 error = register_filesystem(&shmem_fs_type);
3947 if (error) {
3948 pr_err("Could not register tmpfs\n");
3949 goto out2;
3950 }
3951
3952 shm_mnt = kern_mount(&shmem_fs_type);
3953 if (IS_ERR(shm_mnt)) {
3954 error = PTR_ERR(shm_mnt);
3955 pr_err("Could not kern_mount tmpfs\n");
3956 goto out1;
3957 }
3958
3959 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3960 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3961 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3962 else
3963 shmem_huge = 0; /* just in case it was patched */
3964 #endif
3965 return 0;
3966
3967 out1:
3968 unregister_filesystem(&shmem_fs_type);
3969 out2:
3970 shmem_destroy_inodecache();
3971 out3:
3972 shm_mnt = ERR_PTR(error);
3973 return error;
3974 }
3975
3976 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3977 static ssize_t shmem_enabled_show(struct kobject *kobj,
3978 struct kobj_attribute *attr, char *buf)
3979 {
3980 int values[] = {
3981 SHMEM_HUGE_ALWAYS,
3982 SHMEM_HUGE_WITHIN_SIZE,
3983 SHMEM_HUGE_ADVISE,
3984 SHMEM_HUGE_NEVER,
3985 SHMEM_HUGE_DENY,
3986 SHMEM_HUGE_FORCE,
3987 };
3988 int i, count;
3989
3990 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3991 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3992
3993 count += sprintf(buf + count, fmt,
3994 shmem_format_huge(values[i]));
3995 }
3996 buf[count - 1] = '\n';
3997 return count;
3998 }
3999
4000 static ssize_t shmem_enabled_store(struct kobject *kobj,
4001 struct kobj_attribute *attr, const char *buf, size_t count)
4002 {
4003 char tmp[16];
4004 int huge;
4005
4006 if (count + 1 > sizeof(tmp))
4007 return -EINVAL;
4008 memcpy(tmp, buf, count);
4009 tmp[count] = '\0';
4010 if (count && tmp[count - 1] == '\n')
4011 tmp[count - 1] = '\0';
4012
4013 huge = shmem_parse_huge(tmp);
4014 if (huge == -EINVAL)
4015 return -EINVAL;
4016 if (!has_transparent_hugepage() &&
4017 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4018 return -EINVAL;
4019
4020 shmem_huge = huge;
4021 if (shmem_huge < SHMEM_HUGE_DENY)
4022 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4023 return count;
4024 }
4025
4026 struct kobj_attribute shmem_enabled_attr =
4027 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4028 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4029
4030 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4031 bool shmem_huge_enabled(struct vm_area_struct *vma)
4032 {
4033 struct inode *inode = file_inode(vma->vm_file);
4034 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4035 loff_t i_size;
4036 pgoff_t off;
4037
4038 if (shmem_huge == SHMEM_HUGE_FORCE)
4039 return true;
4040 if (shmem_huge == SHMEM_HUGE_DENY)
4041 return false;
4042 switch (sbinfo->huge) {
4043 case SHMEM_HUGE_NEVER:
4044 return false;
4045 case SHMEM_HUGE_ALWAYS:
4046 return true;
4047 case SHMEM_HUGE_WITHIN_SIZE:
4048 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4049 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4050 if (i_size >= HPAGE_PMD_SIZE &&
4051 i_size >> PAGE_SHIFT >= off)
4052 return true;
4053 case SHMEM_HUGE_ADVISE:
4054 /* TODO: implement fadvise() hints */
4055 return (vma->vm_flags & VM_HUGEPAGE);
4056 default:
4057 VM_BUG_ON(1);
4058 return false;
4059 }
4060 }
4061 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4062
4063 #else /* !CONFIG_SHMEM */
4064
4065 /*
4066 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4067 *
4068 * This is intended for small system where the benefits of the full
4069 * shmem code (swap-backed and resource-limited) are outweighed by
4070 * their complexity. On systems without swap this code should be
4071 * effectively equivalent, but much lighter weight.
4072 */
4073
4074 static struct file_system_type shmem_fs_type = {
4075 .name = "tmpfs",
4076 .mount = ramfs_mount,
4077 .kill_sb = kill_litter_super,
4078 .fs_flags = FS_USERNS_MOUNT,
4079 };
4080
4081 int __init shmem_init(void)
4082 {
4083 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4084
4085 shm_mnt = kern_mount(&shmem_fs_type);
4086 BUG_ON(IS_ERR(shm_mnt));
4087
4088 return 0;
4089 }
4090
4091 int shmem_unuse(swp_entry_t swap, struct page *page)
4092 {
4093 return 0;
4094 }
4095
4096 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4097 {
4098 return 0;
4099 }
4100
4101 void shmem_unlock_mapping(struct address_space *mapping)
4102 {
4103 }
4104
4105 #ifdef CONFIG_MMU
4106 unsigned long shmem_get_unmapped_area(struct file *file,
4107 unsigned long addr, unsigned long len,
4108 unsigned long pgoff, unsigned long flags)
4109 {
4110 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4111 }
4112 #endif
4113
4114 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4115 {
4116 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4117 }
4118 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4119
4120 #define shmem_vm_ops generic_file_vm_ops
4121 #define shmem_file_operations ramfs_file_operations
4122 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4123 #define shmem_acct_size(flags, size) 0
4124 #define shmem_unacct_size(flags, size) do {} while (0)
4125
4126 #endif /* CONFIG_SHMEM */
4127
4128 /* common code */
4129
4130 static const struct dentry_operations anon_ops = {
4131 .d_dname = simple_dname
4132 };
4133
4134 static struct file *__shmem_file_setup(const char *name, loff_t size,
4135 unsigned long flags, unsigned int i_flags)
4136 {
4137 struct file *res;
4138 struct inode *inode;
4139 struct path path;
4140 struct super_block *sb;
4141 struct qstr this;
4142
4143 if (IS_ERR(shm_mnt))
4144 return ERR_CAST(shm_mnt);
4145
4146 if (size < 0 || size > MAX_LFS_FILESIZE)
4147 return ERR_PTR(-EINVAL);
4148
4149 if (shmem_acct_size(flags, size))
4150 return ERR_PTR(-ENOMEM);
4151
4152 res = ERR_PTR(-ENOMEM);
4153 this.name = name;
4154 this.len = strlen(name);
4155 this.hash = 0; /* will go */
4156 sb = shm_mnt->mnt_sb;
4157 path.mnt = mntget(shm_mnt);
4158 path.dentry = d_alloc_pseudo(sb, &this);
4159 if (!path.dentry)
4160 goto put_memory;
4161 d_set_d_op(path.dentry, &anon_ops);
4162
4163 res = ERR_PTR(-ENOSPC);
4164 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4165 if (!inode)
4166 goto put_memory;
4167
4168 inode->i_flags |= i_flags;
4169 d_instantiate(path.dentry, inode);
4170 inode->i_size = size;
4171 clear_nlink(inode); /* It is unlinked */
4172 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4173 if (IS_ERR(res))
4174 goto put_path;
4175
4176 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4177 &shmem_file_operations);
4178 if (IS_ERR(res))
4179 goto put_path;
4180
4181 return res;
4182
4183 put_memory:
4184 shmem_unacct_size(flags, size);
4185 put_path:
4186 path_put(&path);
4187 return res;
4188 }
4189
4190 /**
4191 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4192 * kernel internal. There will be NO LSM permission checks against the
4193 * underlying inode. So users of this interface must do LSM checks at a
4194 * higher layer. The users are the big_key and shm implementations. LSM
4195 * checks are provided at the key or shm level rather than the inode.
4196 * @name: name for dentry (to be seen in /proc/<pid>/maps
4197 * @size: size to be set for the file
4198 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4199 */
4200 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4201 {
4202 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4203 }
4204
4205 /**
4206 * shmem_file_setup - get an unlinked file living in tmpfs
4207 * @name: name for dentry (to be seen in /proc/<pid>/maps
4208 * @size: size to be set for the file
4209 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4210 */
4211 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4212 {
4213 return __shmem_file_setup(name, size, flags, 0);
4214 }
4215 EXPORT_SYMBOL_GPL(shmem_file_setup);
4216
4217 /**
4218 * shmem_zero_setup - setup a shared anonymous mapping
4219 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4220 */
4221 int shmem_zero_setup(struct vm_area_struct *vma)
4222 {
4223 struct file *file;
4224 loff_t size = vma->vm_end - vma->vm_start;
4225
4226 /*
4227 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4228 * between XFS directory reading and selinux: since this file is only
4229 * accessible to the user through its mapping, use S_PRIVATE flag to
4230 * bypass file security, in the same way as shmem_kernel_file_setup().
4231 */
4232 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4233 if (IS_ERR(file))
4234 return PTR_ERR(file);
4235
4236 if (vma->vm_file)
4237 fput(vma->vm_file);
4238 vma->vm_file = file;
4239 vma->vm_ops = &shmem_vm_ops;
4240
4241 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4242 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4243 (vma->vm_end & HPAGE_PMD_MASK)) {
4244 khugepaged_enter(vma, vma->vm_flags);
4245 }
4246
4247 return 0;
4248 }
4249
4250 /**
4251 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4252 * @mapping: the page's address_space
4253 * @index: the page index
4254 * @gfp: the page allocator flags to use if allocating
4255 *
4256 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4257 * with any new page allocations done using the specified allocation flags.
4258 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4259 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4260 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4261 *
4262 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4263 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4264 */
4265 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4266 pgoff_t index, gfp_t gfp)
4267 {
4268 #ifdef CONFIG_SHMEM
4269 struct inode *inode = mapping->host;
4270 struct page *page;
4271 int error;
4272
4273 BUG_ON(mapping->a_ops != &shmem_aops);
4274 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4275 gfp, NULL, NULL, NULL);
4276 if (error)
4277 page = ERR_PTR(error);
4278 else
4279 unlock_page(page);
4280 return page;
4281 #else
4282 /*
4283 * The tiny !SHMEM case uses ramfs without swap
4284 */
4285 return read_cache_page_gfp(mapping, index, gfp);
4286 #endif
4287 }
4288 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);