]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/shmem.c
Merge tag 'for-linus-3.16-merge-window' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
86 */
87 struct shmem_falloc {
88 pgoff_t start; /* start of range currently being fallocated */
89 pgoff_t next; /* the next page offset to be fallocated */
90 pgoff_t nr_falloced; /* how many new pages have been fallocated */
91 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
92 };
93
94 /* Flag allocation requirements to shmem_getpage */
95 enum sgp_type {
96 SGP_READ, /* don't exceed i_size, don't allocate page */
97 SGP_CACHE, /* don't exceed i_size, may allocate page */
98 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
99 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
100 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
101 };
102
103 #ifdef CONFIG_TMPFS
104 static unsigned long shmem_default_max_blocks(void)
105 {
106 return totalram_pages / 2;
107 }
108
109 static unsigned long shmem_default_max_inodes(void)
110 {
111 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112 }
113 #endif
114
115 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117 struct shmem_inode_info *info, pgoff_t index);
118 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122 struct page **pagep, enum sgp_type sgp, int *fault_type)
123 {
124 return shmem_getpage_gfp(inode, index, pagep, sgp,
125 mapping_gfp_mask(inode->i_mapping), fault_type);
126 }
127
128 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 {
130 return sb->s_fs_info;
131 }
132
133 /*
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
138 */
139 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 {
141 return (flags & VM_NORESERVE) ?
142 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143 }
144
145 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 {
147 if (!(flags & VM_NORESERVE))
148 vm_unacct_memory(VM_ACCT(size));
149 }
150
151 /*
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156 */
157 static inline int shmem_acct_block(unsigned long flags)
158 {
159 return (flags & VM_NORESERVE) ?
160 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161 }
162
163 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164 {
165 if (flags & VM_NORESERVE)
166 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167 }
168
169 static const struct super_operations shmem_ops;
170 static const struct address_space_operations shmem_aops;
171 static const struct file_operations shmem_file_operations;
172 static const struct inode_operations shmem_inode_operations;
173 static const struct inode_operations shmem_dir_inode_operations;
174 static const struct inode_operations shmem_special_inode_operations;
175 static const struct vm_operations_struct shmem_vm_ops;
176
177 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
178 .ra_pages = 0, /* No readahead */
179 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180 };
181
182 static LIST_HEAD(shmem_swaplist);
183 static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185 static int shmem_reserve_inode(struct super_block *sb)
186 {
187 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188 if (sbinfo->max_inodes) {
189 spin_lock(&sbinfo->stat_lock);
190 if (!sbinfo->free_inodes) {
191 spin_unlock(&sbinfo->stat_lock);
192 return -ENOSPC;
193 }
194 sbinfo->free_inodes--;
195 spin_unlock(&sbinfo->stat_lock);
196 }
197 return 0;
198 }
199
200 static void shmem_free_inode(struct super_block *sb)
201 {
202 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203 if (sbinfo->max_inodes) {
204 spin_lock(&sbinfo->stat_lock);
205 sbinfo->free_inodes++;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208 }
209
210 /**
211 * shmem_recalc_inode - recalculate the block usage of an inode
212 * @inode: inode to recalc
213 *
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
216 *
217 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219 *
220 * It has to be called with the spinlock held.
221 */
222 static void shmem_recalc_inode(struct inode *inode)
223 {
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 long freed;
226
227 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228 if (freed > 0) {
229 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230 if (sbinfo->max_blocks)
231 percpu_counter_add(&sbinfo->used_blocks, -freed);
232 info->alloced -= freed;
233 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234 shmem_unacct_blocks(info->flags, freed);
235 }
236 }
237
238 /*
239 * Replace item expected in radix tree by a new item, while holding tree lock.
240 */
241 static int shmem_radix_tree_replace(struct address_space *mapping,
242 pgoff_t index, void *expected, void *replacement)
243 {
244 void **pslot;
245 void *item;
246
247 VM_BUG_ON(!expected);
248 VM_BUG_ON(!replacement);
249 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250 if (!pslot)
251 return -ENOENT;
252 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
253 if (item != expected)
254 return -ENOENT;
255 radix_tree_replace_slot(pslot, replacement);
256 return 0;
257 }
258
259 /*
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
262 *
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
265 */
266 static bool shmem_confirm_swap(struct address_space *mapping,
267 pgoff_t index, swp_entry_t swap)
268 {
269 void *item;
270
271 rcu_read_lock();
272 item = radix_tree_lookup(&mapping->page_tree, index);
273 rcu_read_unlock();
274 return item == swp_to_radix_entry(swap);
275 }
276
277 /*
278 * Like add_to_page_cache_locked, but error if expected item has gone.
279 */
280 static int shmem_add_to_page_cache(struct page *page,
281 struct address_space *mapping,
282 pgoff_t index, gfp_t gfp, void *expected)
283 {
284 int error;
285
286 VM_BUG_ON_PAGE(!PageLocked(page), page);
287 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
288
289 page_cache_get(page);
290 page->mapping = mapping;
291 page->index = index;
292
293 spin_lock_irq(&mapping->tree_lock);
294 if (!expected)
295 error = radix_tree_insert(&mapping->page_tree, index, page);
296 else
297 error = shmem_radix_tree_replace(mapping, index, expected,
298 page);
299 if (!error) {
300 mapping->nrpages++;
301 __inc_zone_page_state(page, NR_FILE_PAGES);
302 __inc_zone_page_state(page, NR_SHMEM);
303 spin_unlock_irq(&mapping->tree_lock);
304 } else {
305 page->mapping = NULL;
306 spin_unlock_irq(&mapping->tree_lock);
307 page_cache_release(page);
308 }
309 return error;
310 }
311
312 /*
313 * Like delete_from_page_cache, but substitutes swap for page.
314 */
315 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316 {
317 struct address_space *mapping = page->mapping;
318 int error;
319
320 spin_lock_irq(&mapping->tree_lock);
321 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322 page->mapping = NULL;
323 mapping->nrpages--;
324 __dec_zone_page_state(page, NR_FILE_PAGES);
325 __dec_zone_page_state(page, NR_SHMEM);
326 spin_unlock_irq(&mapping->tree_lock);
327 page_cache_release(page);
328 BUG_ON(error);
329 }
330
331 /*
332 * Remove swap entry from radix tree, free the swap and its page cache.
333 */
334 static int shmem_free_swap(struct address_space *mapping,
335 pgoff_t index, void *radswap)
336 {
337 void *old;
338
339 spin_lock_irq(&mapping->tree_lock);
340 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
341 spin_unlock_irq(&mapping->tree_lock);
342 if (old != radswap)
343 return -ENOENT;
344 free_swap_and_cache(radix_to_swp_entry(radswap));
345 return 0;
346 }
347
348 /*
349 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
350 */
351 void shmem_unlock_mapping(struct address_space *mapping)
352 {
353 struct pagevec pvec;
354 pgoff_t indices[PAGEVEC_SIZE];
355 pgoff_t index = 0;
356
357 pagevec_init(&pvec, 0);
358 /*
359 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
360 */
361 while (!mapping_unevictable(mapping)) {
362 /*
363 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
364 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
365 */
366 pvec.nr = find_get_entries(mapping, index,
367 PAGEVEC_SIZE, pvec.pages, indices);
368 if (!pvec.nr)
369 break;
370 index = indices[pvec.nr - 1] + 1;
371 pagevec_remove_exceptionals(&pvec);
372 check_move_unevictable_pages(pvec.pages, pvec.nr);
373 pagevec_release(&pvec);
374 cond_resched();
375 }
376 }
377
378 /*
379 * Remove range of pages and swap entries from radix tree, and free them.
380 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
381 */
382 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
383 bool unfalloc)
384 {
385 struct address_space *mapping = inode->i_mapping;
386 struct shmem_inode_info *info = SHMEM_I(inode);
387 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
388 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
389 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
390 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
391 struct pagevec pvec;
392 pgoff_t indices[PAGEVEC_SIZE];
393 long nr_swaps_freed = 0;
394 pgoff_t index;
395 int i;
396
397 if (lend == -1)
398 end = -1; /* unsigned, so actually very big */
399
400 pagevec_init(&pvec, 0);
401 index = start;
402 while (index < end) {
403 pvec.nr = find_get_entries(mapping, index,
404 min(end - index, (pgoff_t)PAGEVEC_SIZE),
405 pvec.pages, indices);
406 if (!pvec.nr)
407 break;
408 mem_cgroup_uncharge_start();
409 for (i = 0; i < pagevec_count(&pvec); i++) {
410 struct page *page = pvec.pages[i];
411
412 index = indices[i];
413 if (index >= end)
414 break;
415
416 if (radix_tree_exceptional_entry(page)) {
417 if (unfalloc)
418 continue;
419 nr_swaps_freed += !shmem_free_swap(mapping,
420 index, page);
421 continue;
422 }
423
424 if (!trylock_page(page))
425 continue;
426 if (!unfalloc || !PageUptodate(page)) {
427 if (page->mapping == mapping) {
428 VM_BUG_ON_PAGE(PageWriteback(page), page);
429 truncate_inode_page(mapping, page);
430 }
431 }
432 unlock_page(page);
433 }
434 pagevec_remove_exceptionals(&pvec);
435 pagevec_release(&pvec);
436 mem_cgroup_uncharge_end();
437 cond_resched();
438 index++;
439 }
440
441 if (partial_start) {
442 struct page *page = NULL;
443 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
444 if (page) {
445 unsigned int top = PAGE_CACHE_SIZE;
446 if (start > end) {
447 top = partial_end;
448 partial_end = 0;
449 }
450 zero_user_segment(page, partial_start, top);
451 set_page_dirty(page);
452 unlock_page(page);
453 page_cache_release(page);
454 }
455 }
456 if (partial_end) {
457 struct page *page = NULL;
458 shmem_getpage(inode, end, &page, SGP_READ, NULL);
459 if (page) {
460 zero_user_segment(page, 0, partial_end);
461 set_page_dirty(page);
462 unlock_page(page);
463 page_cache_release(page);
464 }
465 }
466 if (start >= end)
467 return;
468
469 index = start;
470 for ( ; ; ) {
471 cond_resched();
472
473 pvec.nr = find_get_entries(mapping, index,
474 min(end - index, (pgoff_t)PAGEVEC_SIZE),
475 pvec.pages, indices);
476 if (!pvec.nr) {
477 if (index == start || unfalloc)
478 break;
479 index = start;
480 continue;
481 }
482 if ((index == start || unfalloc) && indices[0] >= end) {
483 pagevec_remove_exceptionals(&pvec);
484 pagevec_release(&pvec);
485 break;
486 }
487 mem_cgroup_uncharge_start();
488 for (i = 0; i < pagevec_count(&pvec); i++) {
489 struct page *page = pvec.pages[i];
490
491 index = indices[i];
492 if (index >= end)
493 break;
494
495 if (radix_tree_exceptional_entry(page)) {
496 if (unfalloc)
497 continue;
498 nr_swaps_freed += !shmem_free_swap(mapping,
499 index, page);
500 continue;
501 }
502
503 lock_page(page);
504 if (!unfalloc || !PageUptodate(page)) {
505 if (page->mapping == mapping) {
506 VM_BUG_ON_PAGE(PageWriteback(page), page);
507 truncate_inode_page(mapping, page);
508 }
509 }
510 unlock_page(page);
511 }
512 pagevec_remove_exceptionals(&pvec);
513 pagevec_release(&pvec);
514 mem_cgroup_uncharge_end();
515 index++;
516 }
517
518 spin_lock(&info->lock);
519 info->swapped -= nr_swaps_freed;
520 shmem_recalc_inode(inode);
521 spin_unlock(&info->lock);
522 }
523
524 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
525 {
526 shmem_undo_range(inode, lstart, lend, false);
527 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
528 }
529 EXPORT_SYMBOL_GPL(shmem_truncate_range);
530
531 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
532 {
533 struct inode *inode = dentry->d_inode;
534 int error;
535
536 error = inode_change_ok(inode, attr);
537 if (error)
538 return error;
539
540 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
541 loff_t oldsize = inode->i_size;
542 loff_t newsize = attr->ia_size;
543
544 if (newsize != oldsize) {
545 i_size_write(inode, newsize);
546 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547 }
548 if (newsize < oldsize) {
549 loff_t holebegin = round_up(newsize, PAGE_SIZE);
550 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
551 shmem_truncate_range(inode, newsize, (loff_t)-1);
552 /* unmap again to remove racily COWed private pages */
553 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
554 }
555 }
556
557 setattr_copy(inode, attr);
558 if (attr->ia_valid & ATTR_MODE)
559 error = posix_acl_chmod(inode, inode->i_mode);
560 return error;
561 }
562
563 static void shmem_evict_inode(struct inode *inode)
564 {
565 struct shmem_inode_info *info = SHMEM_I(inode);
566
567 if (inode->i_mapping->a_ops == &shmem_aops) {
568 shmem_unacct_size(info->flags, inode->i_size);
569 inode->i_size = 0;
570 shmem_truncate_range(inode, 0, (loff_t)-1);
571 if (!list_empty(&info->swaplist)) {
572 mutex_lock(&shmem_swaplist_mutex);
573 list_del_init(&info->swaplist);
574 mutex_unlock(&shmem_swaplist_mutex);
575 }
576 } else
577 kfree(info->symlink);
578
579 simple_xattrs_free(&info->xattrs);
580 WARN_ON(inode->i_blocks);
581 shmem_free_inode(inode->i_sb);
582 clear_inode(inode);
583 }
584
585 /*
586 * If swap found in inode, free it and move page from swapcache to filecache.
587 */
588 static int shmem_unuse_inode(struct shmem_inode_info *info,
589 swp_entry_t swap, struct page **pagep)
590 {
591 struct address_space *mapping = info->vfs_inode.i_mapping;
592 void *radswap;
593 pgoff_t index;
594 gfp_t gfp;
595 int error = 0;
596
597 radswap = swp_to_radix_entry(swap);
598 index = radix_tree_locate_item(&mapping->page_tree, radswap);
599 if (index == -1)
600 return 0;
601
602 /*
603 * Move _head_ to start search for next from here.
604 * But be careful: shmem_evict_inode checks list_empty without taking
605 * mutex, and there's an instant in list_move_tail when info->swaplist
606 * would appear empty, if it were the only one on shmem_swaplist.
607 */
608 if (shmem_swaplist.next != &info->swaplist)
609 list_move_tail(&shmem_swaplist, &info->swaplist);
610
611 gfp = mapping_gfp_mask(mapping);
612 if (shmem_should_replace_page(*pagep, gfp)) {
613 mutex_unlock(&shmem_swaplist_mutex);
614 error = shmem_replace_page(pagep, gfp, info, index);
615 mutex_lock(&shmem_swaplist_mutex);
616 /*
617 * We needed to drop mutex to make that restrictive page
618 * allocation, but the inode might have been freed while we
619 * dropped it: although a racing shmem_evict_inode() cannot
620 * complete without emptying the radix_tree, our page lock
621 * on this swapcache page is not enough to prevent that -
622 * free_swap_and_cache() of our swap entry will only
623 * trylock_page(), removing swap from radix_tree whatever.
624 *
625 * We must not proceed to shmem_add_to_page_cache() if the
626 * inode has been freed, but of course we cannot rely on
627 * inode or mapping or info to check that. However, we can
628 * safely check if our swap entry is still in use (and here
629 * it can't have got reused for another page): if it's still
630 * in use, then the inode cannot have been freed yet, and we
631 * can safely proceed (if it's no longer in use, that tells
632 * nothing about the inode, but we don't need to unuse swap).
633 */
634 if (!page_swapcount(*pagep))
635 error = -ENOENT;
636 }
637
638 /*
639 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
640 * but also to hold up shmem_evict_inode(): so inode cannot be freed
641 * beneath us (pagelock doesn't help until the page is in pagecache).
642 */
643 if (!error)
644 error = shmem_add_to_page_cache(*pagep, mapping, index,
645 GFP_NOWAIT, radswap);
646 if (error != -ENOMEM) {
647 /*
648 * Truncation and eviction use free_swap_and_cache(), which
649 * only does trylock page: if we raced, best clean up here.
650 */
651 delete_from_swap_cache(*pagep);
652 set_page_dirty(*pagep);
653 if (!error) {
654 spin_lock(&info->lock);
655 info->swapped--;
656 spin_unlock(&info->lock);
657 swap_free(swap);
658 }
659 error = 1; /* not an error, but entry was found */
660 }
661 return error;
662 }
663
664 /*
665 * Search through swapped inodes to find and replace swap by page.
666 */
667 int shmem_unuse(swp_entry_t swap, struct page *page)
668 {
669 struct list_head *this, *next;
670 struct shmem_inode_info *info;
671 int found = 0;
672 int error = 0;
673
674 /*
675 * There's a faint possibility that swap page was replaced before
676 * caller locked it: caller will come back later with the right page.
677 */
678 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
679 goto out;
680
681 /*
682 * Charge page using GFP_KERNEL while we can wait, before taking
683 * the shmem_swaplist_mutex which might hold up shmem_writepage().
684 * Charged back to the user (not to caller) when swap account is used.
685 */
686 error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
687 if (error)
688 goto out;
689 /* No radix_tree_preload: swap entry keeps a place for page in tree */
690
691 mutex_lock(&shmem_swaplist_mutex);
692 list_for_each_safe(this, next, &shmem_swaplist) {
693 info = list_entry(this, struct shmem_inode_info, swaplist);
694 if (info->swapped)
695 found = shmem_unuse_inode(info, swap, &page);
696 else
697 list_del_init(&info->swaplist);
698 cond_resched();
699 if (found)
700 break;
701 }
702 mutex_unlock(&shmem_swaplist_mutex);
703
704 if (found < 0)
705 error = found;
706 out:
707 unlock_page(page);
708 page_cache_release(page);
709 return error;
710 }
711
712 /*
713 * Move the page from the page cache to the swap cache.
714 */
715 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
716 {
717 struct shmem_inode_info *info;
718 struct address_space *mapping;
719 struct inode *inode;
720 swp_entry_t swap;
721 pgoff_t index;
722
723 BUG_ON(!PageLocked(page));
724 mapping = page->mapping;
725 index = page->index;
726 inode = mapping->host;
727 info = SHMEM_I(inode);
728 if (info->flags & VM_LOCKED)
729 goto redirty;
730 if (!total_swap_pages)
731 goto redirty;
732
733 /*
734 * shmem_backing_dev_info's capabilities prevent regular writeback or
735 * sync from ever calling shmem_writepage; but a stacking filesystem
736 * might use ->writepage of its underlying filesystem, in which case
737 * tmpfs should write out to swap only in response to memory pressure,
738 * and not for the writeback threads or sync.
739 */
740 if (!wbc->for_reclaim) {
741 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
742 goto redirty;
743 }
744
745 /*
746 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
747 * value into swapfile.c, the only way we can correctly account for a
748 * fallocated page arriving here is now to initialize it and write it.
749 *
750 * That's okay for a page already fallocated earlier, but if we have
751 * not yet completed the fallocation, then (a) we want to keep track
752 * of this page in case we have to undo it, and (b) it may not be a
753 * good idea to continue anyway, once we're pushing into swap. So
754 * reactivate the page, and let shmem_fallocate() quit when too many.
755 */
756 if (!PageUptodate(page)) {
757 if (inode->i_private) {
758 struct shmem_falloc *shmem_falloc;
759 spin_lock(&inode->i_lock);
760 shmem_falloc = inode->i_private;
761 if (shmem_falloc &&
762 index >= shmem_falloc->start &&
763 index < shmem_falloc->next)
764 shmem_falloc->nr_unswapped++;
765 else
766 shmem_falloc = NULL;
767 spin_unlock(&inode->i_lock);
768 if (shmem_falloc)
769 goto redirty;
770 }
771 clear_highpage(page);
772 flush_dcache_page(page);
773 SetPageUptodate(page);
774 }
775
776 swap = get_swap_page();
777 if (!swap.val)
778 goto redirty;
779
780 /*
781 * Add inode to shmem_unuse()'s list of swapped-out inodes,
782 * if it's not already there. Do it now before the page is
783 * moved to swap cache, when its pagelock no longer protects
784 * the inode from eviction. But don't unlock the mutex until
785 * we've incremented swapped, because shmem_unuse_inode() will
786 * prune a !swapped inode from the swaplist under this mutex.
787 */
788 mutex_lock(&shmem_swaplist_mutex);
789 if (list_empty(&info->swaplist))
790 list_add_tail(&info->swaplist, &shmem_swaplist);
791
792 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
793 swap_shmem_alloc(swap);
794 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
795
796 spin_lock(&info->lock);
797 info->swapped++;
798 shmem_recalc_inode(inode);
799 spin_unlock(&info->lock);
800
801 mutex_unlock(&shmem_swaplist_mutex);
802 BUG_ON(page_mapped(page));
803 swap_writepage(page, wbc);
804 return 0;
805 }
806
807 mutex_unlock(&shmem_swaplist_mutex);
808 swapcache_free(swap, NULL);
809 redirty:
810 set_page_dirty(page);
811 if (wbc->for_reclaim)
812 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
813 unlock_page(page);
814 return 0;
815 }
816
817 #ifdef CONFIG_NUMA
818 #ifdef CONFIG_TMPFS
819 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
820 {
821 char buffer[64];
822
823 if (!mpol || mpol->mode == MPOL_DEFAULT)
824 return; /* show nothing */
825
826 mpol_to_str(buffer, sizeof(buffer), mpol);
827
828 seq_printf(seq, ",mpol=%s", buffer);
829 }
830
831 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
832 {
833 struct mempolicy *mpol = NULL;
834 if (sbinfo->mpol) {
835 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
836 mpol = sbinfo->mpol;
837 mpol_get(mpol);
838 spin_unlock(&sbinfo->stat_lock);
839 }
840 return mpol;
841 }
842 #endif /* CONFIG_TMPFS */
843
844 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
845 struct shmem_inode_info *info, pgoff_t index)
846 {
847 struct vm_area_struct pvma;
848 struct page *page;
849
850 /* Create a pseudo vma that just contains the policy */
851 pvma.vm_start = 0;
852 /* Bias interleave by inode number to distribute better across nodes */
853 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
854 pvma.vm_ops = NULL;
855 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
856
857 page = swapin_readahead(swap, gfp, &pvma, 0);
858
859 /* Drop reference taken by mpol_shared_policy_lookup() */
860 mpol_cond_put(pvma.vm_policy);
861
862 return page;
863 }
864
865 static struct page *shmem_alloc_page(gfp_t gfp,
866 struct shmem_inode_info *info, pgoff_t index)
867 {
868 struct vm_area_struct pvma;
869 struct page *page;
870
871 /* Create a pseudo vma that just contains the policy */
872 pvma.vm_start = 0;
873 /* Bias interleave by inode number to distribute better across nodes */
874 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
875 pvma.vm_ops = NULL;
876 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
877
878 page = alloc_page_vma(gfp, &pvma, 0);
879
880 /* Drop reference taken by mpol_shared_policy_lookup() */
881 mpol_cond_put(pvma.vm_policy);
882
883 return page;
884 }
885 #else /* !CONFIG_NUMA */
886 #ifdef CONFIG_TMPFS
887 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
888 {
889 }
890 #endif /* CONFIG_TMPFS */
891
892 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
893 struct shmem_inode_info *info, pgoff_t index)
894 {
895 return swapin_readahead(swap, gfp, NULL, 0);
896 }
897
898 static inline struct page *shmem_alloc_page(gfp_t gfp,
899 struct shmem_inode_info *info, pgoff_t index)
900 {
901 return alloc_page(gfp);
902 }
903 #endif /* CONFIG_NUMA */
904
905 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
906 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
907 {
908 return NULL;
909 }
910 #endif
911
912 /*
913 * When a page is moved from swapcache to shmem filecache (either by the
914 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
915 * shmem_unuse_inode()), it may have been read in earlier from swap, in
916 * ignorance of the mapping it belongs to. If that mapping has special
917 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
918 * we may need to copy to a suitable page before moving to filecache.
919 *
920 * In a future release, this may well be extended to respect cpuset and
921 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
922 * but for now it is a simple matter of zone.
923 */
924 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
925 {
926 return page_zonenum(page) > gfp_zone(gfp);
927 }
928
929 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
930 struct shmem_inode_info *info, pgoff_t index)
931 {
932 struct page *oldpage, *newpage;
933 struct address_space *swap_mapping;
934 pgoff_t swap_index;
935 int error;
936
937 oldpage = *pagep;
938 swap_index = page_private(oldpage);
939 swap_mapping = page_mapping(oldpage);
940
941 /*
942 * We have arrived here because our zones are constrained, so don't
943 * limit chance of success by further cpuset and node constraints.
944 */
945 gfp &= ~GFP_CONSTRAINT_MASK;
946 newpage = shmem_alloc_page(gfp, info, index);
947 if (!newpage)
948 return -ENOMEM;
949
950 page_cache_get(newpage);
951 copy_highpage(newpage, oldpage);
952 flush_dcache_page(newpage);
953
954 __set_page_locked(newpage);
955 SetPageUptodate(newpage);
956 SetPageSwapBacked(newpage);
957 set_page_private(newpage, swap_index);
958 SetPageSwapCache(newpage);
959
960 /*
961 * Our caller will very soon move newpage out of swapcache, but it's
962 * a nice clean interface for us to replace oldpage by newpage there.
963 */
964 spin_lock_irq(&swap_mapping->tree_lock);
965 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
966 newpage);
967 if (!error) {
968 __inc_zone_page_state(newpage, NR_FILE_PAGES);
969 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
970 }
971 spin_unlock_irq(&swap_mapping->tree_lock);
972
973 if (unlikely(error)) {
974 /*
975 * Is this possible? I think not, now that our callers check
976 * both PageSwapCache and page_private after getting page lock;
977 * but be defensive. Reverse old to newpage for clear and free.
978 */
979 oldpage = newpage;
980 } else {
981 mem_cgroup_replace_page_cache(oldpage, newpage);
982 lru_cache_add_anon(newpage);
983 *pagep = newpage;
984 }
985
986 ClearPageSwapCache(oldpage);
987 set_page_private(oldpage, 0);
988
989 unlock_page(oldpage);
990 page_cache_release(oldpage);
991 page_cache_release(oldpage);
992 return error;
993 }
994
995 /*
996 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
997 *
998 * If we allocate a new one we do not mark it dirty. That's up to the
999 * vm. If we swap it in we mark it dirty since we also free the swap
1000 * entry since a page cannot live in both the swap and page cache
1001 */
1002 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1003 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1004 {
1005 struct address_space *mapping = inode->i_mapping;
1006 struct shmem_inode_info *info;
1007 struct shmem_sb_info *sbinfo;
1008 struct page *page;
1009 swp_entry_t swap;
1010 int error;
1011 int once = 0;
1012 int alloced = 0;
1013
1014 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1015 return -EFBIG;
1016 repeat:
1017 swap.val = 0;
1018 page = find_lock_entry(mapping, index);
1019 if (radix_tree_exceptional_entry(page)) {
1020 swap = radix_to_swp_entry(page);
1021 page = NULL;
1022 }
1023
1024 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1025 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1026 error = -EINVAL;
1027 goto failed;
1028 }
1029
1030 /* fallocated page? */
1031 if (page && !PageUptodate(page)) {
1032 if (sgp != SGP_READ)
1033 goto clear;
1034 unlock_page(page);
1035 page_cache_release(page);
1036 page = NULL;
1037 }
1038 if (page || (sgp == SGP_READ && !swap.val)) {
1039 *pagep = page;
1040 return 0;
1041 }
1042
1043 /*
1044 * Fast cache lookup did not find it:
1045 * bring it back from swap or allocate.
1046 */
1047 info = SHMEM_I(inode);
1048 sbinfo = SHMEM_SB(inode->i_sb);
1049
1050 if (swap.val) {
1051 /* Look it up and read it in.. */
1052 page = lookup_swap_cache(swap);
1053 if (!page) {
1054 /* here we actually do the io */
1055 if (fault_type)
1056 *fault_type |= VM_FAULT_MAJOR;
1057 page = shmem_swapin(swap, gfp, info, index);
1058 if (!page) {
1059 error = -ENOMEM;
1060 goto failed;
1061 }
1062 }
1063
1064 /* We have to do this with page locked to prevent races */
1065 lock_page(page);
1066 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1067 !shmem_confirm_swap(mapping, index, swap)) {
1068 error = -EEXIST; /* try again */
1069 goto unlock;
1070 }
1071 if (!PageUptodate(page)) {
1072 error = -EIO;
1073 goto failed;
1074 }
1075 wait_on_page_writeback(page);
1076
1077 if (shmem_should_replace_page(page, gfp)) {
1078 error = shmem_replace_page(&page, gfp, info, index);
1079 if (error)
1080 goto failed;
1081 }
1082
1083 error = mem_cgroup_charge_file(page, current->mm,
1084 gfp & GFP_RECLAIM_MASK);
1085 if (!error) {
1086 error = shmem_add_to_page_cache(page, mapping, index,
1087 gfp, swp_to_radix_entry(swap));
1088 /*
1089 * We already confirmed swap under page lock, and make
1090 * no memory allocation here, so usually no possibility
1091 * of error; but free_swap_and_cache() only trylocks a
1092 * page, so it is just possible that the entry has been
1093 * truncated or holepunched since swap was confirmed.
1094 * shmem_undo_range() will have done some of the
1095 * unaccounting, now delete_from_swap_cache() will do
1096 * the rest (including mem_cgroup_uncharge_swapcache).
1097 * Reset swap.val? No, leave it so "failed" goes back to
1098 * "repeat": reading a hole and writing should succeed.
1099 */
1100 if (error)
1101 delete_from_swap_cache(page);
1102 }
1103 if (error)
1104 goto failed;
1105
1106 spin_lock(&info->lock);
1107 info->swapped--;
1108 shmem_recalc_inode(inode);
1109 spin_unlock(&info->lock);
1110
1111 delete_from_swap_cache(page);
1112 set_page_dirty(page);
1113 swap_free(swap);
1114
1115 } else {
1116 if (shmem_acct_block(info->flags)) {
1117 error = -ENOSPC;
1118 goto failed;
1119 }
1120 if (sbinfo->max_blocks) {
1121 if (percpu_counter_compare(&sbinfo->used_blocks,
1122 sbinfo->max_blocks) >= 0) {
1123 error = -ENOSPC;
1124 goto unacct;
1125 }
1126 percpu_counter_inc(&sbinfo->used_blocks);
1127 }
1128
1129 page = shmem_alloc_page(gfp, info, index);
1130 if (!page) {
1131 error = -ENOMEM;
1132 goto decused;
1133 }
1134
1135 __SetPageSwapBacked(page);
1136 __set_page_locked(page);
1137 error = mem_cgroup_charge_file(page, current->mm,
1138 gfp & GFP_RECLAIM_MASK);
1139 if (error)
1140 goto decused;
1141 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1142 if (!error) {
1143 error = shmem_add_to_page_cache(page, mapping, index,
1144 gfp, NULL);
1145 radix_tree_preload_end();
1146 }
1147 if (error) {
1148 mem_cgroup_uncharge_cache_page(page);
1149 goto decused;
1150 }
1151 lru_cache_add_anon(page);
1152
1153 spin_lock(&info->lock);
1154 info->alloced++;
1155 inode->i_blocks += BLOCKS_PER_PAGE;
1156 shmem_recalc_inode(inode);
1157 spin_unlock(&info->lock);
1158 alloced = true;
1159
1160 /*
1161 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1162 */
1163 if (sgp == SGP_FALLOC)
1164 sgp = SGP_WRITE;
1165 clear:
1166 /*
1167 * Let SGP_WRITE caller clear ends if write does not fill page;
1168 * but SGP_FALLOC on a page fallocated earlier must initialize
1169 * it now, lest undo on failure cancel our earlier guarantee.
1170 */
1171 if (sgp != SGP_WRITE) {
1172 clear_highpage(page);
1173 flush_dcache_page(page);
1174 SetPageUptodate(page);
1175 }
1176 if (sgp == SGP_DIRTY)
1177 set_page_dirty(page);
1178 }
1179
1180 /* Perhaps the file has been truncated since we checked */
1181 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1182 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1183 error = -EINVAL;
1184 if (alloced)
1185 goto trunc;
1186 else
1187 goto failed;
1188 }
1189 *pagep = page;
1190 return 0;
1191
1192 /*
1193 * Error recovery.
1194 */
1195 trunc:
1196 info = SHMEM_I(inode);
1197 ClearPageDirty(page);
1198 delete_from_page_cache(page);
1199 spin_lock(&info->lock);
1200 info->alloced--;
1201 inode->i_blocks -= BLOCKS_PER_PAGE;
1202 spin_unlock(&info->lock);
1203 decused:
1204 sbinfo = SHMEM_SB(inode->i_sb);
1205 if (sbinfo->max_blocks)
1206 percpu_counter_add(&sbinfo->used_blocks, -1);
1207 unacct:
1208 shmem_unacct_blocks(info->flags, 1);
1209 failed:
1210 if (swap.val && error != -EINVAL &&
1211 !shmem_confirm_swap(mapping, index, swap))
1212 error = -EEXIST;
1213 unlock:
1214 if (page) {
1215 unlock_page(page);
1216 page_cache_release(page);
1217 }
1218 if (error == -ENOSPC && !once++) {
1219 info = SHMEM_I(inode);
1220 spin_lock(&info->lock);
1221 shmem_recalc_inode(inode);
1222 spin_unlock(&info->lock);
1223 goto repeat;
1224 }
1225 if (error == -EEXIST) /* from above or from radix_tree_insert */
1226 goto repeat;
1227 return error;
1228 }
1229
1230 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1231 {
1232 struct inode *inode = file_inode(vma->vm_file);
1233 int error;
1234 int ret = VM_FAULT_LOCKED;
1235
1236 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1237 if (error)
1238 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1239
1240 if (ret & VM_FAULT_MAJOR) {
1241 count_vm_event(PGMAJFAULT);
1242 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1243 }
1244 return ret;
1245 }
1246
1247 #ifdef CONFIG_NUMA
1248 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1249 {
1250 struct inode *inode = file_inode(vma->vm_file);
1251 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1252 }
1253
1254 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1255 unsigned long addr)
1256 {
1257 struct inode *inode = file_inode(vma->vm_file);
1258 pgoff_t index;
1259
1260 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1261 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1262 }
1263 #endif
1264
1265 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1266 {
1267 struct inode *inode = file_inode(file);
1268 struct shmem_inode_info *info = SHMEM_I(inode);
1269 int retval = -ENOMEM;
1270
1271 spin_lock(&info->lock);
1272 if (lock && !(info->flags & VM_LOCKED)) {
1273 if (!user_shm_lock(inode->i_size, user))
1274 goto out_nomem;
1275 info->flags |= VM_LOCKED;
1276 mapping_set_unevictable(file->f_mapping);
1277 }
1278 if (!lock && (info->flags & VM_LOCKED) && user) {
1279 user_shm_unlock(inode->i_size, user);
1280 info->flags &= ~VM_LOCKED;
1281 mapping_clear_unevictable(file->f_mapping);
1282 }
1283 retval = 0;
1284
1285 out_nomem:
1286 spin_unlock(&info->lock);
1287 return retval;
1288 }
1289
1290 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1291 {
1292 file_accessed(file);
1293 vma->vm_ops = &shmem_vm_ops;
1294 return 0;
1295 }
1296
1297 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1298 umode_t mode, dev_t dev, unsigned long flags)
1299 {
1300 struct inode *inode;
1301 struct shmem_inode_info *info;
1302 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1303
1304 if (shmem_reserve_inode(sb))
1305 return NULL;
1306
1307 inode = new_inode(sb);
1308 if (inode) {
1309 inode->i_ino = get_next_ino();
1310 inode_init_owner(inode, dir, mode);
1311 inode->i_blocks = 0;
1312 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1313 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1314 inode->i_generation = get_seconds();
1315 info = SHMEM_I(inode);
1316 memset(info, 0, (char *)inode - (char *)info);
1317 spin_lock_init(&info->lock);
1318 info->flags = flags & VM_NORESERVE;
1319 INIT_LIST_HEAD(&info->swaplist);
1320 simple_xattrs_init(&info->xattrs);
1321 cache_no_acl(inode);
1322
1323 switch (mode & S_IFMT) {
1324 default:
1325 inode->i_op = &shmem_special_inode_operations;
1326 init_special_inode(inode, mode, dev);
1327 break;
1328 case S_IFREG:
1329 inode->i_mapping->a_ops = &shmem_aops;
1330 inode->i_op = &shmem_inode_operations;
1331 inode->i_fop = &shmem_file_operations;
1332 mpol_shared_policy_init(&info->policy,
1333 shmem_get_sbmpol(sbinfo));
1334 break;
1335 case S_IFDIR:
1336 inc_nlink(inode);
1337 /* Some things misbehave if size == 0 on a directory */
1338 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1339 inode->i_op = &shmem_dir_inode_operations;
1340 inode->i_fop = &simple_dir_operations;
1341 break;
1342 case S_IFLNK:
1343 /*
1344 * Must not load anything in the rbtree,
1345 * mpol_free_shared_policy will not be called.
1346 */
1347 mpol_shared_policy_init(&info->policy, NULL);
1348 break;
1349 }
1350 } else
1351 shmem_free_inode(sb);
1352 return inode;
1353 }
1354
1355 bool shmem_mapping(struct address_space *mapping)
1356 {
1357 return mapping->backing_dev_info == &shmem_backing_dev_info;
1358 }
1359
1360 #ifdef CONFIG_TMPFS
1361 static const struct inode_operations shmem_symlink_inode_operations;
1362 static const struct inode_operations shmem_short_symlink_operations;
1363
1364 #ifdef CONFIG_TMPFS_XATTR
1365 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1366 #else
1367 #define shmem_initxattrs NULL
1368 #endif
1369
1370 static int
1371 shmem_write_begin(struct file *file, struct address_space *mapping,
1372 loff_t pos, unsigned len, unsigned flags,
1373 struct page **pagep, void **fsdata)
1374 {
1375 int ret;
1376 struct inode *inode = mapping->host;
1377 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1378 ret = shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1379 if (ret == 0 && *pagep)
1380 init_page_accessed(*pagep);
1381 return ret;
1382 }
1383
1384 static int
1385 shmem_write_end(struct file *file, struct address_space *mapping,
1386 loff_t pos, unsigned len, unsigned copied,
1387 struct page *page, void *fsdata)
1388 {
1389 struct inode *inode = mapping->host;
1390
1391 if (pos + copied > inode->i_size)
1392 i_size_write(inode, pos + copied);
1393
1394 if (!PageUptodate(page)) {
1395 if (copied < PAGE_CACHE_SIZE) {
1396 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1397 zero_user_segments(page, 0, from,
1398 from + copied, PAGE_CACHE_SIZE);
1399 }
1400 SetPageUptodate(page);
1401 }
1402 set_page_dirty(page);
1403 unlock_page(page);
1404 page_cache_release(page);
1405
1406 return copied;
1407 }
1408
1409 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1410 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1411 {
1412 struct file *file = iocb->ki_filp;
1413 struct inode *inode = file_inode(file);
1414 struct address_space *mapping = inode->i_mapping;
1415 pgoff_t index;
1416 unsigned long offset;
1417 enum sgp_type sgp = SGP_READ;
1418 int error = 0;
1419 ssize_t retval;
1420 size_t count;
1421 loff_t *ppos = &iocb->ki_pos;
1422 struct iov_iter iter;
1423
1424 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1425 if (retval)
1426 return retval;
1427 iov_iter_init(&iter, iov, nr_segs, count, 0);
1428
1429 /*
1430 * Might this read be for a stacking filesystem? Then when reading
1431 * holes of a sparse file, we actually need to allocate those pages,
1432 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1433 */
1434 if (segment_eq(get_fs(), KERNEL_DS))
1435 sgp = SGP_DIRTY;
1436
1437 index = *ppos >> PAGE_CACHE_SHIFT;
1438 offset = *ppos & ~PAGE_CACHE_MASK;
1439
1440 for (;;) {
1441 struct page *page = NULL;
1442 pgoff_t end_index;
1443 unsigned long nr, ret;
1444 loff_t i_size = i_size_read(inode);
1445
1446 end_index = i_size >> PAGE_CACHE_SHIFT;
1447 if (index > end_index)
1448 break;
1449 if (index == end_index) {
1450 nr = i_size & ~PAGE_CACHE_MASK;
1451 if (nr <= offset)
1452 break;
1453 }
1454
1455 error = shmem_getpage(inode, index, &page, sgp, NULL);
1456 if (error) {
1457 if (error == -EINVAL)
1458 error = 0;
1459 break;
1460 }
1461 if (page)
1462 unlock_page(page);
1463
1464 /*
1465 * We must evaluate after, since reads (unlike writes)
1466 * are called without i_mutex protection against truncate
1467 */
1468 nr = PAGE_CACHE_SIZE;
1469 i_size = i_size_read(inode);
1470 end_index = i_size >> PAGE_CACHE_SHIFT;
1471 if (index == end_index) {
1472 nr = i_size & ~PAGE_CACHE_MASK;
1473 if (nr <= offset) {
1474 if (page)
1475 page_cache_release(page);
1476 break;
1477 }
1478 }
1479 nr -= offset;
1480
1481 if (page) {
1482 /*
1483 * If users can be writing to this page using arbitrary
1484 * virtual addresses, take care about potential aliasing
1485 * before reading the page on the kernel side.
1486 */
1487 if (mapping_writably_mapped(mapping))
1488 flush_dcache_page(page);
1489 /*
1490 * Mark the page accessed if we read the beginning.
1491 */
1492 if (!offset)
1493 mark_page_accessed(page);
1494 } else {
1495 page = ZERO_PAGE(0);
1496 page_cache_get(page);
1497 }
1498
1499 /*
1500 * Ok, we have the page, and it's up-to-date, so
1501 * now we can copy it to user space...
1502 */
1503 ret = copy_page_to_iter(page, offset, nr, &iter);
1504 retval += ret;
1505 offset += ret;
1506 index += offset >> PAGE_CACHE_SHIFT;
1507 offset &= ~PAGE_CACHE_MASK;
1508
1509 page_cache_release(page);
1510 if (!iov_iter_count(&iter))
1511 break;
1512 if (ret < nr) {
1513 error = -EFAULT;
1514 break;
1515 }
1516 cond_resched();
1517 }
1518
1519 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1520 file_accessed(file);
1521 return retval ? retval : error;
1522 }
1523
1524 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1525 struct pipe_inode_info *pipe, size_t len,
1526 unsigned int flags)
1527 {
1528 struct address_space *mapping = in->f_mapping;
1529 struct inode *inode = mapping->host;
1530 unsigned int loff, nr_pages, req_pages;
1531 struct page *pages[PIPE_DEF_BUFFERS];
1532 struct partial_page partial[PIPE_DEF_BUFFERS];
1533 struct page *page;
1534 pgoff_t index, end_index;
1535 loff_t isize, left;
1536 int error, page_nr;
1537 struct splice_pipe_desc spd = {
1538 .pages = pages,
1539 .partial = partial,
1540 .nr_pages_max = PIPE_DEF_BUFFERS,
1541 .flags = flags,
1542 .ops = &page_cache_pipe_buf_ops,
1543 .spd_release = spd_release_page,
1544 };
1545
1546 isize = i_size_read(inode);
1547 if (unlikely(*ppos >= isize))
1548 return 0;
1549
1550 left = isize - *ppos;
1551 if (unlikely(left < len))
1552 len = left;
1553
1554 if (splice_grow_spd(pipe, &spd))
1555 return -ENOMEM;
1556
1557 index = *ppos >> PAGE_CACHE_SHIFT;
1558 loff = *ppos & ~PAGE_CACHE_MASK;
1559 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1560 nr_pages = min(req_pages, spd.nr_pages_max);
1561
1562 spd.nr_pages = find_get_pages_contig(mapping, index,
1563 nr_pages, spd.pages);
1564 index += spd.nr_pages;
1565 error = 0;
1566
1567 while (spd.nr_pages < nr_pages) {
1568 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1569 if (error)
1570 break;
1571 unlock_page(page);
1572 spd.pages[spd.nr_pages++] = page;
1573 index++;
1574 }
1575
1576 index = *ppos >> PAGE_CACHE_SHIFT;
1577 nr_pages = spd.nr_pages;
1578 spd.nr_pages = 0;
1579
1580 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1581 unsigned int this_len;
1582
1583 if (!len)
1584 break;
1585
1586 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1587 page = spd.pages[page_nr];
1588
1589 if (!PageUptodate(page) || page->mapping != mapping) {
1590 error = shmem_getpage(inode, index, &page,
1591 SGP_CACHE, NULL);
1592 if (error)
1593 break;
1594 unlock_page(page);
1595 page_cache_release(spd.pages[page_nr]);
1596 spd.pages[page_nr] = page;
1597 }
1598
1599 isize = i_size_read(inode);
1600 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1601 if (unlikely(!isize || index > end_index))
1602 break;
1603
1604 if (end_index == index) {
1605 unsigned int plen;
1606
1607 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1608 if (plen <= loff)
1609 break;
1610
1611 this_len = min(this_len, plen - loff);
1612 len = this_len;
1613 }
1614
1615 spd.partial[page_nr].offset = loff;
1616 spd.partial[page_nr].len = this_len;
1617 len -= this_len;
1618 loff = 0;
1619 spd.nr_pages++;
1620 index++;
1621 }
1622
1623 while (page_nr < nr_pages)
1624 page_cache_release(spd.pages[page_nr++]);
1625
1626 if (spd.nr_pages)
1627 error = splice_to_pipe(pipe, &spd);
1628
1629 splice_shrink_spd(&spd);
1630
1631 if (error > 0) {
1632 *ppos += error;
1633 file_accessed(in);
1634 }
1635 return error;
1636 }
1637
1638 /*
1639 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1640 */
1641 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1642 pgoff_t index, pgoff_t end, int whence)
1643 {
1644 struct page *page;
1645 struct pagevec pvec;
1646 pgoff_t indices[PAGEVEC_SIZE];
1647 bool done = false;
1648 int i;
1649
1650 pagevec_init(&pvec, 0);
1651 pvec.nr = 1; /* start small: we may be there already */
1652 while (!done) {
1653 pvec.nr = find_get_entries(mapping, index,
1654 pvec.nr, pvec.pages, indices);
1655 if (!pvec.nr) {
1656 if (whence == SEEK_DATA)
1657 index = end;
1658 break;
1659 }
1660 for (i = 0; i < pvec.nr; i++, index++) {
1661 if (index < indices[i]) {
1662 if (whence == SEEK_HOLE) {
1663 done = true;
1664 break;
1665 }
1666 index = indices[i];
1667 }
1668 page = pvec.pages[i];
1669 if (page && !radix_tree_exceptional_entry(page)) {
1670 if (!PageUptodate(page))
1671 page = NULL;
1672 }
1673 if (index >= end ||
1674 (page && whence == SEEK_DATA) ||
1675 (!page && whence == SEEK_HOLE)) {
1676 done = true;
1677 break;
1678 }
1679 }
1680 pagevec_remove_exceptionals(&pvec);
1681 pagevec_release(&pvec);
1682 pvec.nr = PAGEVEC_SIZE;
1683 cond_resched();
1684 }
1685 return index;
1686 }
1687
1688 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1689 {
1690 struct address_space *mapping = file->f_mapping;
1691 struct inode *inode = mapping->host;
1692 pgoff_t start, end;
1693 loff_t new_offset;
1694
1695 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1696 return generic_file_llseek_size(file, offset, whence,
1697 MAX_LFS_FILESIZE, i_size_read(inode));
1698 mutex_lock(&inode->i_mutex);
1699 /* We're holding i_mutex so we can access i_size directly */
1700
1701 if (offset < 0)
1702 offset = -EINVAL;
1703 else if (offset >= inode->i_size)
1704 offset = -ENXIO;
1705 else {
1706 start = offset >> PAGE_CACHE_SHIFT;
1707 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1708 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1709 new_offset <<= PAGE_CACHE_SHIFT;
1710 if (new_offset > offset) {
1711 if (new_offset < inode->i_size)
1712 offset = new_offset;
1713 else if (whence == SEEK_DATA)
1714 offset = -ENXIO;
1715 else
1716 offset = inode->i_size;
1717 }
1718 }
1719
1720 if (offset >= 0)
1721 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1722 mutex_unlock(&inode->i_mutex);
1723 return offset;
1724 }
1725
1726 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1727 loff_t len)
1728 {
1729 struct inode *inode = file_inode(file);
1730 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1731 struct shmem_falloc shmem_falloc;
1732 pgoff_t start, index, end;
1733 int error;
1734
1735 mutex_lock(&inode->i_mutex);
1736
1737 if (mode & FALLOC_FL_PUNCH_HOLE) {
1738 struct address_space *mapping = file->f_mapping;
1739 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1740 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1741
1742 if ((u64)unmap_end > (u64)unmap_start)
1743 unmap_mapping_range(mapping, unmap_start,
1744 1 + unmap_end - unmap_start, 0);
1745 shmem_truncate_range(inode, offset, offset + len - 1);
1746 /* No need to unmap again: hole-punching leaves COWed pages */
1747 error = 0;
1748 goto out;
1749 }
1750
1751 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1752 error = inode_newsize_ok(inode, offset + len);
1753 if (error)
1754 goto out;
1755
1756 start = offset >> PAGE_CACHE_SHIFT;
1757 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1758 /* Try to avoid a swapstorm if len is impossible to satisfy */
1759 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1760 error = -ENOSPC;
1761 goto out;
1762 }
1763
1764 shmem_falloc.start = start;
1765 shmem_falloc.next = start;
1766 shmem_falloc.nr_falloced = 0;
1767 shmem_falloc.nr_unswapped = 0;
1768 spin_lock(&inode->i_lock);
1769 inode->i_private = &shmem_falloc;
1770 spin_unlock(&inode->i_lock);
1771
1772 for (index = start; index < end; index++) {
1773 struct page *page;
1774
1775 /*
1776 * Good, the fallocate(2) manpage permits EINTR: we may have
1777 * been interrupted because we are using up too much memory.
1778 */
1779 if (signal_pending(current))
1780 error = -EINTR;
1781 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1782 error = -ENOMEM;
1783 else
1784 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1785 NULL);
1786 if (error) {
1787 /* Remove the !PageUptodate pages we added */
1788 shmem_undo_range(inode,
1789 (loff_t)start << PAGE_CACHE_SHIFT,
1790 (loff_t)index << PAGE_CACHE_SHIFT, true);
1791 goto undone;
1792 }
1793
1794 /*
1795 * Inform shmem_writepage() how far we have reached.
1796 * No need for lock or barrier: we have the page lock.
1797 */
1798 shmem_falloc.next++;
1799 if (!PageUptodate(page))
1800 shmem_falloc.nr_falloced++;
1801
1802 /*
1803 * If !PageUptodate, leave it that way so that freeable pages
1804 * can be recognized if we need to rollback on error later.
1805 * But set_page_dirty so that memory pressure will swap rather
1806 * than free the pages we are allocating (and SGP_CACHE pages
1807 * might still be clean: we now need to mark those dirty too).
1808 */
1809 set_page_dirty(page);
1810 unlock_page(page);
1811 page_cache_release(page);
1812 cond_resched();
1813 }
1814
1815 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1816 i_size_write(inode, offset + len);
1817 inode->i_ctime = CURRENT_TIME;
1818 undone:
1819 spin_lock(&inode->i_lock);
1820 inode->i_private = NULL;
1821 spin_unlock(&inode->i_lock);
1822 out:
1823 mutex_unlock(&inode->i_mutex);
1824 return error;
1825 }
1826
1827 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1828 {
1829 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1830
1831 buf->f_type = TMPFS_MAGIC;
1832 buf->f_bsize = PAGE_CACHE_SIZE;
1833 buf->f_namelen = NAME_MAX;
1834 if (sbinfo->max_blocks) {
1835 buf->f_blocks = sbinfo->max_blocks;
1836 buf->f_bavail =
1837 buf->f_bfree = sbinfo->max_blocks -
1838 percpu_counter_sum(&sbinfo->used_blocks);
1839 }
1840 if (sbinfo->max_inodes) {
1841 buf->f_files = sbinfo->max_inodes;
1842 buf->f_ffree = sbinfo->free_inodes;
1843 }
1844 /* else leave those fields 0 like simple_statfs */
1845 return 0;
1846 }
1847
1848 /*
1849 * File creation. Allocate an inode, and we're done..
1850 */
1851 static int
1852 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1853 {
1854 struct inode *inode;
1855 int error = -ENOSPC;
1856
1857 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1858 if (inode) {
1859 error = simple_acl_create(dir, inode);
1860 if (error)
1861 goto out_iput;
1862 error = security_inode_init_security(inode, dir,
1863 &dentry->d_name,
1864 shmem_initxattrs, NULL);
1865 if (error && error != -EOPNOTSUPP)
1866 goto out_iput;
1867
1868 error = 0;
1869 dir->i_size += BOGO_DIRENT_SIZE;
1870 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1871 d_instantiate(dentry, inode);
1872 dget(dentry); /* Extra count - pin the dentry in core */
1873 }
1874 return error;
1875 out_iput:
1876 iput(inode);
1877 return error;
1878 }
1879
1880 static int
1881 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1882 {
1883 struct inode *inode;
1884 int error = -ENOSPC;
1885
1886 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1887 if (inode) {
1888 error = security_inode_init_security(inode, dir,
1889 NULL,
1890 shmem_initxattrs, NULL);
1891 if (error && error != -EOPNOTSUPP)
1892 goto out_iput;
1893 error = simple_acl_create(dir, inode);
1894 if (error)
1895 goto out_iput;
1896 d_tmpfile(dentry, inode);
1897 }
1898 return error;
1899 out_iput:
1900 iput(inode);
1901 return error;
1902 }
1903
1904 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1905 {
1906 int error;
1907
1908 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1909 return error;
1910 inc_nlink(dir);
1911 return 0;
1912 }
1913
1914 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1915 bool excl)
1916 {
1917 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1918 }
1919
1920 /*
1921 * Link a file..
1922 */
1923 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1924 {
1925 struct inode *inode = old_dentry->d_inode;
1926 int ret;
1927
1928 /*
1929 * No ordinary (disk based) filesystem counts links as inodes;
1930 * but each new link needs a new dentry, pinning lowmem, and
1931 * tmpfs dentries cannot be pruned until they are unlinked.
1932 */
1933 ret = shmem_reserve_inode(inode->i_sb);
1934 if (ret)
1935 goto out;
1936
1937 dir->i_size += BOGO_DIRENT_SIZE;
1938 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1939 inc_nlink(inode);
1940 ihold(inode); /* New dentry reference */
1941 dget(dentry); /* Extra pinning count for the created dentry */
1942 d_instantiate(dentry, inode);
1943 out:
1944 return ret;
1945 }
1946
1947 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1948 {
1949 struct inode *inode = dentry->d_inode;
1950
1951 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1952 shmem_free_inode(inode->i_sb);
1953
1954 dir->i_size -= BOGO_DIRENT_SIZE;
1955 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1956 drop_nlink(inode);
1957 dput(dentry); /* Undo the count from "create" - this does all the work */
1958 return 0;
1959 }
1960
1961 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1962 {
1963 if (!simple_empty(dentry))
1964 return -ENOTEMPTY;
1965
1966 drop_nlink(dentry->d_inode);
1967 drop_nlink(dir);
1968 return shmem_unlink(dir, dentry);
1969 }
1970
1971 /*
1972 * The VFS layer already does all the dentry stuff for rename,
1973 * we just have to decrement the usage count for the target if
1974 * it exists so that the VFS layer correctly free's it when it
1975 * gets overwritten.
1976 */
1977 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1978 {
1979 struct inode *inode = old_dentry->d_inode;
1980 int they_are_dirs = S_ISDIR(inode->i_mode);
1981
1982 if (!simple_empty(new_dentry))
1983 return -ENOTEMPTY;
1984
1985 if (new_dentry->d_inode) {
1986 (void) shmem_unlink(new_dir, new_dentry);
1987 if (they_are_dirs)
1988 drop_nlink(old_dir);
1989 } else if (they_are_dirs) {
1990 drop_nlink(old_dir);
1991 inc_nlink(new_dir);
1992 }
1993
1994 old_dir->i_size -= BOGO_DIRENT_SIZE;
1995 new_dir->i_size += BOGO_DIRENT_SIZE;
1996 old_dir->i_ctime = old_dir->i_mtime =
1997 new_dir->i_ctime = new_dir->i_mtime =
1998 inode->i_ctime = CURRENT_TIME;
1999 return 0;
2000 }
2001
2002 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2003 {
2004 int error;
2005 int len;
2006 struct inode *inode;
2007 struct page *page;
2008 char *kaddr;
2009 struct shmem_inode_info *info;
2010
2011 len = strlen(symname) + 1;
2012 if (len > PAGE_CACHE_SIZE)
2013 return -ENAMETOOLONG;
2014
2015 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2016 if (!inode)
2017 return -ENOSPC;
2018
2019 error = security_inode_init_security(inode, dir, &dentry->d_name,
2020 shmem_initxattrs, NULL);
2021 if (error) {
2022 if (error != -EOPNOTSUPP) {
2023 iput(inode);
2024 return error;
2025 }
2026 error = 0;
2027 }
2028
2029 info = SHMEM_I(inode);
2030 inode->i_size = len-1;
2031 if (len <= SHORT_SYMLINK_LEN) {
2032 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2033 if (!info->symlink) {
2034 iput(inode);
2035 return -ENOMEM;
2036 }
2037 inode->i_op = &shmem_short_symlink_operations;
2038 } else {
2039 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2040 if (error) {
2041 iput(inode);
2042 return error;
2043 }
2044 inode->i_mapping->a_ops = &shmem_aops;
2045 inode->i_op = &shmem_symlink_inode_operations;
2046 kaddr = kmap_atomic(page);
2047 memcpy(kaddr, symname, len);
2048 kunmap_atomic(kaddr);
2049 SetPageUptodate(page);
2050 set_page_dirty(page);
2051 unlock_page(page);
2052 page_cache_release(page);
2053 }
2054 dir->i_size += BOGO_DIRENT_SIZE;
2055 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2056 d_instantiate(dentry, inode);
2057 dget(dentry);
2058 return 0;
2059 }
2060
2061 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2062 {
2063 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2064 return NULL;
2065 }
2066
2067 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2068 {
2069 struct page *page = NULL;
2070 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2071 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2072 if (page)
2073 unlock_page(page);
2074 return page;
2075 }
2076
2077 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2078 {
2079 if (!IS_ERR(nd_get_link(nd))) {
2080 struct page *page = cookie;
2081 kunmap(page);
2082 mark_page_accessed(page);
2083 page_cache_release(page);
2084 }
2085 }
2086
2087 #ifdef CONFIG_TMPFS_XATTR
2088 /*
2089 * Superblocks without xattr inode operations may get some security.* xattr
2090 * support from the LSM "for free". As soon as we have any other xattrs
2091 * like ACLs, we also need to implement the security.* handlers at
2092 * filesystem level, though.
2093 */
2094
2095 /*
2096 * Callback for security_inode_init_security() for acquiring xattrs.
2097 */
2098 static int shmem_initxattrs(struct inode *inode,
2099 const struct xattr *xattr_array,
2100 void *fs_info)
2101 {
2102 struct shmem_inode_info *info = SHMEM_I(inode);
2103 const struct xattr *xattr;
2104 struct simple_xattr *new_xattr;
2105 size_t len;
2106
2107 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2108 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2109 if (!new_xattr)
2110 return -ENOMEM;
2111
2112 len = strlen(xattr->name) + 1;
2113 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2114 GFP_KERNEL);
2115 if (!new_xattr->name) {
2116 kfree(new_xattr);
2117 return -ENOMEM;
2118 }
2119
2120 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2121 XATTR_SECURITY_PREFIX_LEN);
2122 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2123 xattr->name, len);
2124
2125 simple_xattr_list_add(&info->xattrs, new_xattr);
2126 }
2127
2128 return 0;
2129 }
2130
2131 static const struct xattr_handler *shmem_xattr_handlers[] = {
2132 #ifdef CONFIG_TMPFS_POSIX_ACL
2133 &posix_acl_access_xattr_handler,
2134 &posix_acl_default_xattr_handler,
2135 #endif
2136 NULL
2137 };
2138
2139 static int shmem_xattr_validate(const char *name)
2140 {
2141 struct { const char *prefix; size_t len; } arr[] = {
2142 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2143 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2144 };
2145 int i;
2146
2147 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2148 size_t preflen = arr[i].len;
2149 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2150 if (!name[preflen])
2151 return -EINVAL;
2152 return 0;
2153 }
2154 }
2155 return -EOPNOTSUPP;
2156 }
2157
2158 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2159 void *buffer, size_t size)
2160 {
2161 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2162 int err;
2163
2164 /*
2165 * If this is a request for a synthetic attribute in the system.*
2166 * namespace use the generic infrastructure to resolve a handler
2167 * for it via sb->s_xattr.
2168 */
2169 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2170 return generic_getxattr(dentry, name, buffer, size);
2171
2172 err = shmem_xattr_validate(name);
2173 if (err)
2174 return err;
2175
2176 return simple_xattr_get(&info->xattrs, name, buffer, size);
2177 }
2178
2179 static int shmem_setxattr(struct dentry *dentry, const char *name,
2180 const void *value, size_t size, int flags)
2181 {
2182 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2183 int err;
2184
2185 /*
2186 * If this is a request for a synthetic attribute in the system.*
2187 * namespace use the generic infrastructure to resolve a handler
2188 * for it via sb->s_xattr.
2189 */
2190 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2191 return generic_setxattr(dentry, name, value, size, flags);
2192
2193 err = shmem_xattr_validate(name);
2194 if (err)
2195 return err;
2196
2197 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2198 }
2199
2200 static int shmem_removexattr(struct dentry *dentry, const char *name)
2201 {
2202 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2203 int err;
2204
2205 /*
2206 * If this is a request for a synthetic attribute in the system.*
2207 * namespace use the generic infrastructure to resolve a handler
2208 * for it via sb->s_xattr.
2209 */
2210 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2211 return generic_removexattr(dentry, name);
2212
2213 err = shmem_xattr_validate(name);
2214 if (err)
2215 return err;
2216
2217 return simple_xattr_remove(&info->xattrs, name);
2218 }
2219
2220 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2221 {
2222 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2223 return simple_xattr_list(&info->xattrs, buffer, size);
2224 }
2225 #endif /* CONFIG_TMPFS_XATTR */
2226
2227 static const struct inode_operations shmem_short_symlink_operations = {
2228 .readlink = generic_readlink,
2229 .follow_link = shmem_follow_short_symlink,
2230 #ifdef CONFIG_TMPFS_XATTR
2231 .setxattr = shmem_setxattr,
2232 .getxattr = shmem_getxattr,
2233 .listxattr = shmem_listxattr,
2234 .removexattr = shmem_removexattr,
2235 #endif
2236 };
2237
2238 static const struct inode_operations shmem_symlink_inode_operations = {
2239 .readlink = generic_readlink,
2240 .follow_link = shmem_follow_link,
2241 .put_link = shmem_put_link,
2242 #ifdef CONFIG_TMPFS_XATTR
2243 .setxattr = shmem_setxattr,
2244 .getxattr = shmem_getxattr,
2245 .listxattr = shmem_listxattr,
2246 .removexattr = shmem_removexattr,
2247 #endif
2248 };
2249
2250 static struct dentry *shmem_get_parent(struct dentry *child)
2251 {
2252 return ERR_PTR(-ESTALE);
2253 }
2254
2255 static int shmem_match(struct inode *ino, void *vfh)
2256 {
2257 __u32 *fh = vfh;
2258 __u64 inum = fh[2];
2259 inum = (inum << 32) | fh[1];
2260 return ino->i_ino == inum && fh[0] == ino->i_generation;
2261 }
2262
2263 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2264 struct fid *fid, int fh_len, int fh_type)
2265 {
2266 struct inode *inode;
2267 struct dentry *dentry = NULL;
2268 u64 inum;
2269
2270 if (fh_len < 3)
2271 return NULL;
2272
2273 inum = fid->raw[2];
2274 inum = (inum << 32) | fid->raw[1];
2275
2276 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2277 shmem_match, fid->raw);
2278 if (inode) {
2279 dentry = d_find_alias(inode);
2280 iput(inode);
2281 }
2282
2283 return dentry;
2284 }
2285
2286 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2287 struct inode *parent)
2288 {
2289 if (*len < 3) {
2290 *len = 3;
2291 return FILEID_INVALID;
2292 }
2293
2294 if (inode_unhashed(inode)) {
2295 /* Unfortunately insert_inode_hash is not idempotent,
2296 * so as we hash inodes here rather than at creation
2297 * time, we need a lock to ensure we only try
2298 * to do it once
2299 */
2300 static DEFINE_SPINLOCK(lock);
2301 spin_lock(&lock);
2302 if (inode_unhashed(inode))
2303 __insert_inode_hash(inode,
2304 inode->i_ino + inode->i_generation);
2305 spin_unlock(&lock);
2306 }
2307
2308 fh[0] = inode->i_generation;
2309 fh[1] = inode->i_ino;
2310 fh[2] = ((__u64)inode->i_ino) >> 32;
2311
2312 *len = 3;
2313 return 1;
2314 }
2315
2316 static const struct export_operations shmem_export_ops = {
2317 .get_parent = shmem_get_parent,
2318 .encode_fh = shmem_encode_fh,
2319 .fh_to_dentry = shmem_fh_to_dentry,
2320 };
2321
2322 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2323 bool remount)
2324 {
2325 char *this_char, *value, *rest;
2326 struct mempolicy *mpol = NULL;
2327 uid_t uid;
2328 gid_t gid;
2329
2330 while (options != NULL) {
2331 this_char = options;
2332 for (;;) {
2333 /*
2334 * NUL-terminate this option: unfortunately,
2335 * mount options form a comma-separated list,
2336 * but mpol's nodelist may also contain commas.
2337 */
2338 options = strchr(options, ',');
2339 if (options == NULL)
2340 break;
2341 options++;
2342 if (!isdigit(*options)) {
2343 options[-1] = '\0';
2344 break;
2345 }
2346 }
2347 if (!*this_char)
2348 continue;
2349 if ((value = strchr(this_char,'=')) != NULL) {
2350 *value++ = 0;
2351 } else {
2352 printk(KERN_ERR
2353 "tmpfs: No value for mount option '%s'\n",
2354 this_char);
2355 goto error;
2356 }
2357
2358 if (!strcmp(this_char,"size")) {
2359 unsigned long long size;
2360 size = memparse(value,&rest);
2361 if (*rest == '%') {
2362 size <<= PAGE_SHIFT;
2363 size *= totalram_pages;
2364 do_div(size, 100);
2365 rest++;
2366 }
2367 if (*rest)
2368 goto bad_val;
2369 sbinfo->max_blocks =
2370 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2371 } else if (!strcmp(this_char,"nr_blocks")) {
2372 sbinfo->max_blocks = memparse(value, &rest);
2373 if (*rest)
2374 goto bad_val;
2375 } else if (!strcmp(this_char,"nr_inodes")) {
2376 sbinfo->max_inodes = memparse(value, &rest);
2377 if (*rest)
2378 goto bad_val;
2379 } else if (!strcmp(this_char,"mode")) {
2380 if (remount)
2381 continue;
2382 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2383 if (*rest)
2384 goto bad_val;
2385 } else if (!strcmp(this_char,"uid")) {
2386 if (remount)
2387 continue;
2388 uid = simple_strtoul(value, &rest, 0);
2389 if (*rest)
2390 goto bad_val;
2391 sbinfo->uid = make_kuid(current_user_ns(), uid);
2392 if (!uid_valid(sbinfo->uid))
2393 goto bad_val;
2394 } else if (!strcmp(this_char,"gid")) {
2395 if (remount)
2396 continue;
2397 gid = simple_strtoul(value, &rest, 0);
2398 if (*rest)
2399 goto bad_val;
2400 sbinfo->gid = make_kgid(current_user_ns(), gid);
2401 if (!gid_valid(sbinfo->gid))
2402 goto bad_val;
2403 } else if (!strcmp(this_char,"mpol")) {
2404 mpol_put(mpol);
2405 mpol = NULL;
2406 if (mpol_parse_str(value, &mpol))
2407 goto bad_val;
2408 } else {
2409 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2410 this_char);
2411 goto error;
2412 }
2413 }
2414 sbinfo->mpol = mpol;
2415 return 0;
2416
2417 bad_val:
2418 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2419 value, this_char);
2420 error:
2421 mpol_put(mpol);
2422 return 1;
2423
2424 }
2425
2426 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2427 {
2428 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2429 struct shmem_sb_info config = *sbinfo;
2430 unsigned long inodes;
2431 int error = -EINVAL;
2432
2433 config.mpol = NULL;
2434 if (shmem_parse_options(data, &config, true))
2435 return error;
2436
2437 spin_lock(&sbinfo->stat_lock);
2438 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2439 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2440 goto out;
2441 if (config.max_inodes < inodes)
2442 goto out;
2443 /*
2444 * Those tests disallow limited->unlimited while any are in use;
2445 * but we must separately disallow unlimited->limited, because
2446 * in that case we have no record of how much is already in use.
2447 */
2448 if (config.max_blocks && !sbinfo->max_blocks)
2449 goto out;
2450 if (config.max_inodes && !sbinfo->max_inodes)
2451 goto out;
2452
2453 error = 0;
2454 sbinfo->max_blocks = config.max_blocks;
2455 sbinfo->max_inodes = config.max_inodes;
2456 sbinfo->free_inodes = config.max_inodes - inodes;
2457
2458 /*
2459 * Preserve previous mempolicy unless mpol remount option was specified.
2460 */
2461 if (config.mpol) {
2462 mpol_put(sbinfo->mpol);
2463 sbinfo->mpol = config.mpol; /* transfers initial ref */
2464 }
2465 out:
2466 spin_unlock(&sbinfo->stat_lock);
2467 return error;
2468 }
2469
2470 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2471 {
2472 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2473
2474 if (sbinfo->max_blocks != shmem_default_max_blocks())
2475 seq_printf(seq, ",size=%luk",
2476 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2477 if (sbinfo->max_inodes != shmem_default_max_inodes())
2478 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2479 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2480 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2481 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2482 seq_printf(seq, ",uid=%u",
2483 from_kuid_munged(&init_user_ns, sbinfo->uid));
2484 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2485 seq_printf(seq, ",gid=%u",
2486 from_kgid_munged(&init_user_ns, sbinfo->gid));
2487 shmem_show_mpol(seq, sbinfo->mpol);
2488 return 0;
2489 }
2490 #endif /* CONFIG_TMPFS */
2491
2492 static void shmem_put_super(struct super_block *sb)
2493 {
2494 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2495
2496 percpu_counter_destroy(&sbinfo->used_blocks);
2497 mpol_put(sbinfo->mpol);
2498 kfree(sbinfo);
2499 sb->s_fs_info = NULL;
2500 }
2501
2502 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2503 {
2504 struct inode *inode;
2505 struct shmem_sb_info *sbinfo;
2506 int err = -ENOMEM;
2507
2508 /* Round up to L1_CACHE_BYTES to resist false sharing */
2509 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2510 L1_CACHE_BYTES), GFP_KERNEL);
2511 if (!sbinfo)
2512 return -ENOMEM;
2513
2514 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2515 sbinfo->uid = current_fsuid();
2516 sbinfo->gid = current_fsgid();
2517 sb->s_fs_info = sbinfo;
2518
2519 #ifdef CONFIG_TMPFS
2520 /*
2521 * Per default we only allow half of the physical ram per
2522 * tmpfs instance, limiting inodes to one per page of lowmem;
2523 * but the internal instance is left unlimited.
2524 */
2525 if (!(sb->s_flags & MS_KERNMOUNT)) {
2526 sbinfo->max_blocks = shmem_default_max_blocks();
2527 sbinfo->max_inodes = shmem_default_max_inodes();
2528 if (shmem_parse_options(data, sbinfo, false)) {
2529 err = -EINVAL;
2530 goto failed;
2531 }
2532 } else {
2533 sb->s_flags |= MS_NOUSER;
2534 }
2535 sb->s_export_op = &shmem_export_ops;
2536 sb->s_flags |= MS_NOSEC;
2537 #else
2538 sb->s_flags |= MS_NOUSER;
2539 #endif
2540
2541 spin_lock_init(&sbinfo->stat_lock);
2542 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2543 goto failed;
2544 sbinfo->free_inodes = sbinfo->max_inodes;
2545
2546 sb->s_maxbytes = MAX_LFS_FILESIZE;
2547 sb->s_blocksize = PAGE_CACHE_SIZE;
2548 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2549 sb->s_magic = TMPFS_MAGIC;
2550 sb->s_op = &shmem_ops;
2551 sb->s_time_gran = 1;
2552 #ifdef CONFIG_TMPFS_XATTR
2553 sb->s_xattr = shmem_xattr_handlers;
2554 #endif
2555 #ifdef CONFIG_TMPFS_POSIX_ACL
2556 sb->s_flags |= MS_POSIXACL;
2557 #endif
2558
2559 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2560 if (!inode)
2561 goto failed;
2562 inode->i_uid = sbinfo->uid;
2563 inode->i_gid = sbinfo->gid;
2564 sb->s_root = d_make_root(inode);
2565 if (!sb->s_root)
2566 goto failed;
2567 return 0;
2568
2569 failed:
2570 shmem_put_super(sb);
2571 return err;
2572 }
2573
2574 static struct kmem_cache *shmem_inode_cachep;
2575
2576 static struct inode *shmem_alloc_inode(struct super_block *sb)
2577 {
2578 struct shmem_inode_info *info;
2579 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2580 if (!info)
2581 return NULL;
2582 return &info->vfs_inode;
2583 }
2584
2585 static void shmem_destroy_callback(struct rcu_head *head)
2586 {
2587 struct inode *inode = container_of(head, struct inode, i_rcu);
2588 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2589 }
2590
2591 static void shmem_destroy_inode(struct inode *inode)
2592 {
2593 if (S_ISREG(inode->i_mode))
2594 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2595 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2596 }
2597
2598 static void shmem_init_inode(void *foo)
2599 {
2600 struct shmem_inode_info *info = foo;
2601 inode_init_once(&info->vfs_inode);
2602 }
2603
2604 static int shmem_init_inodecache(void)
2605 {
2606 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2607 sizeof(struct shmem_inode_info),
2608 0, SLAB_PANIC, shmem_init_inode);
2609 return 0;
2610 }
2611
2612 static void shmem_destroy_inodecache(void)
2613 {
2614 kmem_cache_destroy(shmem_inode_cachep);
2615 }
2616
2617 static const struct address_space_operations shmem_aops = {
2618 .writepage = shmem_writepage,
2619 .set_page_dirty = __set_page_dirty_no_writeback,
2620 #ifdef CONFIG_TMPFS
2621 .write_begin = shmem_write_begin,
2622 .write_end = shmem_write_end,
2623 #endif
2624 .migratepage = migrate_page,
2625 .error_remove_page = generic_error_remove_page,
2626 };
2627
2628 static const struct file_operations shmem_file_operations = {
2629 .mmap = shmem_mmap,
2630 #ifdef CONFIG_TMPFS
2631 .llseek = shmem_file_llseek,
2632 .read = do_sync_read,
2633 .write = do_sync_write,
2634 .aio_read = shmem_file_aio_read,
2635 .aio_write = generic_file_aio_write,
2636 .fsync = noop_fsync,
2637 .splice_read = shmem_file_splice_read,
2638 .splice_write = generic_file_splice_write,
2639 .fallocate = shmem_fallocate,
2640 #endif
2641 };
2642
2643 static const struct inode_operations shmem_inode_operations = {
2644 .setattr = shmem_setattr,
2645 #ifdef CONFIG_TMPFS_XATTR
2646 .setxattr = shmem_setxattr,
2647 .getxattr = shmem_getxattr,
2648 .listxattr = shmem_listxattr,
2649 .removexattr = shmem_removexattr,
2650 .set_acl = simple_set_acl,
2651 #endif
2652 };
2653
2654 static const struct inode_operations shmem_dir_inode_operations = {
2655 #ifdef CONFIG_TMPFS
2656 .create = shmem_create,
2657 .lookup = simple_lookup,
2658 .link = shmem_link,
2659 .unlink = shmem_unlink,
2660 .symlink = shmem_symlink,
2661 .mkdir = shmem_mkdir,
2662 .rmdir = shmem_rmdir,
2663 .mknod = shmem_mknod,
2664 .rename = shmem_rename,
2665 .tmpfile = shmem_tmpfile,
2666 #endif
2667 #ifdef CONFIG_TMPFS_XATTR
2668 .setxattr = shmem_setxattr,
2669 .getxattr = shmem_getxattr,
2670 .listxattr = shmem_listxattr,
2671 .removexattr = shmem_removexattr,
2672 #endif
2673 #ifdef CONFIG_TMPFS_POSIX_ACL
2674 .setattr = shmem_setattr,
2675 .set_acl = simple_set_acl,
2676 #endif
2677 };
2678
2679 static const struct inode_operations shmem_special_inode_operations = {
2680 #ifdef CONFIG_TMPFS_XATTR
2681 .setxattr = shmem_setxattr,
2682 .getxattr = shmem_getxattr,
2683 .listxattr = shmem_listxattr,
2684 .removexattr = shmem_removexattr,
2685 #endif
2686 #ifdef CONFIG_TMPFS_POSIX_ACL
2687 .setattr = shmem_setattr,
2688 .set_acl = simple_set_acl,
2689 #endif
2690 };
2691
2692 static const struct super_operations shmem_ops = {
2693 .alloc_inode = shmem_alloc_inode,
2694 .destroy_inode = shmem_destroy_inode,
2695 #ifdef CONFIG_TMPFS
2696 .statfs = shmem_statfs,
2697 .remount_fs = shmem_remount_fs,
2698 .show_options = shmem_show_options,
2699 #endif
2700 .evict_inode = shmem_evict_inode,
2701 .drop_inode = generic_delete_inode,
2702 .put_super = shmem_put_super,
2703 };
2704
2705 static const struct vm_operations_struct shmem_vm_ops = {
2706 .fault = shmem_fault,
2707 .map_pages = filemap_map_pages,
2708 #ifdef CONFIG_NUMA
2709 .set_policy = shmem_set_policy,
2710 .get_policy = shmem_get_policy,
2711 #endif
2712 .remap_pages = generic_file_remap_pages,
2713 };
2714
2715 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2716 int flags, const char *dev_name, void *data)
2717 {
2718 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2719 }
2720
2721 static struct file_system_type shmem_fs_type = {
2722 .owner = THIS_MODULE,
2723 .name = "tmpfs",
2724 .mount = shmem_mount,
2725 .kill_sb = kill_litter_super,
2726 .fs_flags = FS_USERNS_MOUNT,
2727 };
2728
2729 int __init shmem_init(void)
2730 {
2731 int error;
2732
2733 /* If rootfs called this, don't re-init */
2734 if (shmem_inode_cachep)
2735 return 0;
2736
2737 error = bdi_init(&shmem_backing_dev_info);
2738 if (error)
2739 goto out4;
2740
2741 error = shmem_init_inodecache();
2742 if (error)
2743 goto out3;
2744
2745 error = register_filesystem(&shmem_fs_type);
2746 if (error) {
2747 printk(KERN_ERR "Could not register tmpfs\n");
2748 goto out2;
2749 }
2750
2751 shm_mnt = kern_mount(&shmem_fs_type);
2752 if (IS_ERR(shm_mnt)) {
2753 error = PTR_ERR(shm_mnt);
2754 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2755 goto out1;
2756 }
2757 return 0;
2758
2759 out1:
2760 unregister_filesystem(&shmem_fs_type);
2761 out2:
2762 shmem_destroy_inodecache();
2763 out3:
2764 bdi_destroy(&shmem_backing_dev_info);
2765 out4:
2766 shm_mnt = ERR_PTR(error);
2767 return error;
2768 }
2769
2770 #else /* !CONFIG_SHMEM */
2771
2772 /*
2773 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2774 *
2775 * This is intended for small system where the benefits of the full
2776 * shmem code (swap-backed and resource-limited) are outweighed by
2777 * their complexity. On systems without swap this code should be
2778 * effectively equivalent, but much lighter weight.
2779 */
2780
2781 static struct file_system_type shmem_fs_type = {
2782 .name = "tmpfs",
2783 .mount = ramfs_mount,
2784 .kill_sb = kill_litter_super,
2785 .fs_flags = FS_USERNS_MOUNT,
2786 };
2787
2788 int __init shmem_init(void)
2789 {
2790 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2791
2792 shm_mnt = kern_mount(&shmem_fs_type);
2793 BUG_ON(IS_ERR(shm_mnt));
2794
2795 return 0;
2796 }
2797
2798 int shmem_unuse(swp_entry_t swap, struct page *page)
2799 {
2800 return 0;
2801 }
2802
2803 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2804 {
2805 return 0;
2806 }
2807
2808 void shmem_unlock_mapping(struct address_space *mapping)
2809 {
2810 }
2811
2812 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2813 {
2814 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2815 }
2816 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2817
2818 #define shmem_vm_ops generic_file_vm_ops
2819 #define shmem_file_operations ramfs_file_operations
2820 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2821 #define shmem_acct_size(flags, size) 0
2822 #define shmem_unacct_size(flags, size) do {} while (0)
2823
2824 #endif /* CONFIG_SHMEM */
2825
2826 /* common code */
2827
2828 static struct dentry_operations anon_ops = {
2829 .d_dname = simple_dname
2830 };
2831
2832 static struct file *__shmem_file_setup(const char *name, loff_t size,
2833 unsigned long flags, unsigned int i_flags)
2834 {
2835 struct file *res;
2836 struct inode *inode;
2837 struct path path;
2838 struct super_block *sb;
2839 struct qstr this;
2840
2841 if (IS_ERR(shm_mnt))
2842 return ERR_CAST(shm_mnt);
2843
2844 if (size < 0 || size > MAX_LFS_FILESIZE)
2845 return ERR_PTR(-EINVAL);
2846
2847 if (shmem_acct_size(flags, size))
2848 return ERR_PTR(-ENOMEM);
2849
2850 res = ERR_PTR(-ENOMEM);
2851 this.name = name;
2852 this.len = strlen(name);
2853 this.hash = 0; /* will go */
2854 sb = shm_mnt->mnt_sb;
2855 path.dentry = d_alloc_pseudo(sb, &this);
2856 if (!path.dentry)
2857 goto put_memory;
2858 d_set_d_op(path.dentry, &anon_ops);
2859 path.mnt = mntget(shm_mnt);
2860
2861 res = ERR_PTR(-ENOSPC);
2862 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2863 if (!inode)
2864 goto put_dentry;
2865
2866 inode->i_flags |= i_flags;
2867 d_instantiate(path.dentry, inode);
2868 inode->i_size = size;
2869 clear_nlink(inode); /* It is unlinked */
2870 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2871 if (IS_ERR(res))
2872 goto put_dentry;
2873
2874 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2875 &shmem_file_operations);
2876 if (IS_ERR(res))
2877 goto put_dentry;
2878
2879 return res;
2880
2881 put_dentry:
2882 path_put(&path);
2883 put_memory:
2884 shmem_unacct_size(flags, size);
2885 return res;
2886 }
2887
2888 /**
2889 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2890 * kernel internal. There will be NO LSM permission checks against the
2891 * underlying inode. So users of this interface must do LSM checks at a
2892 * higher layer. The one user is the big_key implementation. LSM checks
2893 * are provided at the key level rather than the inode level.
2894 * @name: name for dentry (to be seen in /proc/<pid>/maps
2895 * @size: size to be set for the file
2896 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2897 */
2898 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2899 {
2900 return __shmem_file_setup(name, size, flags, S_PRIVATE);
2901 }
2902
2903 /**
2904 * shmem_file_setup - get an unlinked file living in tmpfs
2905 * @name: name for dentry (to be seen in /proc/<pid>/maps
2906 * @size: size to be set for the file
2907 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2908 */
2909 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2910 {
2911 return __shmem_file_setup(name, size, flags, 0);
2912 }
2913 EXPORT_SYMBOL_GPL(shmem_file_setup);
2914
2915 /**
2916 * shmem_zero_setup - setup a shared anonymous mapping
2917 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2918 */
2919 int shmem_zero_setup(struct vm_area_struct *vma)
2920 {
2921 struct file *file;
2922 loff_t size = vma->vm_end - vma->vm_start;
2923
2924 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2925 if (IS_ERR(file))
2926 return PTR_ERR(file);
2927
2928 if (vma->vm_file)
2929 fput(vma->vm_file);
2930 vma->vm_file = file;
2931 vma->vm_ops = &shmem_vm_ops;
2932 return 0;
2933 }
2934
2935 /**
2936 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2937 * @mapping: the page's address_space
2938 * @index: the page index
2939 * @gfp: the page allocator flags to use if allocating
2940 *
2941 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2942 * with any new page allocations done using the specified allocation flags.
2943 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2944 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2945 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2946 *
2947 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2948 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2949 */
2950 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2951 pgoff_t index, gfp_t gfp)
2952 {
2953 #ifdef CONFIG_SHMEM
2954 struct inode *inode = mapping->host;
2955 struct page *page;
2956 int error;
2957
2958 BUG_ON(mapping->a_ops != &shmem_aops);
2959 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2960 if (error)
2961 page = ERR_PTR(error);
2962 else
2963 unlock_page(page);
2964 return page;
2965 #else
2966 /*
2967 * The tiny !SHMEM case uses ramfs without swap
2968 */
2969 return read_cache_page_gfp(mapping, index, gfp);
2970 #endif
2971 }
2972 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);