]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/shmem.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
41 static struct vfsmount *shm_mnt;
42
43 #ifdef CONFIG_SHMEM
44 /*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
99 */
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static int shmem_default_max_inodes(void)
115 {
116 unsigned long ul;
117
118 ul = INT_MAX;
119 ul = min3(ul, totalram_pages - totalhigh_pages, totalram_pages / 2);
120 return ul;
121 }
122 #endif
123
124 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
125 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
126 struct shmem_inode_info *info, pgoff_t index);
127 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp,
129 gfp_t gfp, struct vm_area_struct *vma,
130 struct vm_fault *vmf, int *fault_type);
131
132 int shmem_getpage(struct inode *inode, pgoff_t index,
133 struct page **pagep, enum sgp_type sgp)
134 {
135 return shmem_getpage_gfp(inode, index, pagep, sgp,
136 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
137 }
138
139 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
140 {
141 return sb->s_fs_info;
142 }
143
144 /*
145 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
146 * for shared memory and for shared anonymous (/dev/zero) mappings
147 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
148 * consistent with the pre-accounting of private mappings ...
149 */
150 static inline int shmem_acct_size(unsigned long flags, loff_t size)
151 {
152 return (flags & VM_NORESERVE) ?
153 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
154 }
155
156 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
157 {
158 if (!(flags & VM_NORESERVE))
159 vm_unacct_memory(VM_ACCT(size));
160 }
161
162 static inline int shmem_reacct_size(unsigned long flags,
163 loff_t oldsize, loff_t newsize)
164 {
165 if (!(flags & VM_NORESERVE)) {
166 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
167 return security_vm_enough_memory_mm(current->mm,
168 VM_ACCT(newsize) - VM_ACCT(oldsize));
169 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
170 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
171 }
172 return 0;
173 }
174
175 /*
176 * ... whereas tmpfs objects are accounted incrementally as
177 * pages are allocated, in order to allow large sparse files.
178 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
179 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
180 */
181 static inline int shmem_acct_block(unsigned long flags, long pages)
182 {
183 if (!(flags & VM_NORESERVE))
184 return 0;
185
186 return security_vm_enough_memory_mm(current->mm,
187 pages * VM_ACCT(PAGE_SIZE));
188 }
189
190 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
191 {
192 if (flags & VM_NORESERVE)
193 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
194 }
195
196 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
197 {
198 struct shmem_inode_info *info = SHMEM_I(inode);
199 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
200
201 if (shmem_acct_block(info->flags, pages))
202 return false;
203
204 if (sbinfo->max_blocks) {
205 if (percpu_counter_compare(&sbinfo->used_blocks,
206 sbinfo->max_blocks - pages) > 0)
207 goto unacct;
208 percpu_counter_add(&sbinfo->used_blocks, pages);
209 }
210
211 return true;
212
213 unacct:
214 shmem_unacct_blocks(info->flags, pages);
215 return false;
216 }
217
218 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
219 {
220 struct shmem_inode_info *info = SHMEM_I(inode);
221 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
222
223 if (sbinfo->max_blocks)
224 percpu_counter_sub(&sbinfo->used_blocks, pages);
225 shmem_unacct_blocks(info->flags, pages);
226 }
227
228 static const struct super_operations shmem_ops;
229 static const struct address_space_operations shmem_aops;
230 static const struct file_operations shmem_file_operations;
231 static const struct inode_operations shmem_inode_operations;
232 static const struct inode_operations shmem_dir_inode_operations;
233 static const struct inode_operations shmem_special_inode_operations;
234 static const struct vm_operations_struct shmem_vm_ops;
235 static struct file_system_type shmem_fs_type;
236
237 bool vma_is_shmem(struct vm_area_struct *vma)
238 {
239 return vma->vm_ops == &shmem_vm_ops;
240 }
241
242 static LIST_HEAD(shmem_swaplist);
243 static DEFINE_MUTEX(shmem_swaplist_mutex);
244
245 static int shmem_reserve_inode(struct super_block *sb)
246 {
247 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
248 if (sbinfo->max_inodes) {
249 spin_lock(&sbinfo->stat_lock);
250 if (!sbinfo->free_inodes) {
251 spin_unlock(&sbinfo->stat_lock);
252 return -ENOSPC;
253 }
254 sbinfo->free_inodes--;
255 spin_unlock(&sbinfo->stat_lock);
256 }
257 return 0;
258 }
259
260 static void shmem_free_inode(struct super_block *sb)
261 {
262 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
263 if (sbinfo->max_inodes) {
264 spin_lock(&sbinfo->stat_lock);
265 sbinfo->free_inodes++;
266 spin_unlock(&sbinfo->stat_lock);
267 }
268 }
269
270 /**
271 * shmem_recalc_inode - recalculate the block usage of an inode
272 * @inode: inode to recalc
273 *
274 * We have to calculate the free blocks since the mm can drop
275 * undirtied hole pages behind our back.
276 *
277 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
278 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
279 *
280 * It has to be called with the spinlock held.
281 */
282 static void shmem_recalc_inode(struct inode *inode)
283 {
284 struct shmem_inode_info *info = SHMEM_I(inode);
285 long freed;
286
287 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
288 if (freed > 0) {
289 info->alloced -= freed;
290 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
291 shmem_inode_unacct_blocks(inode, freed);
292 }
293 }
294
295 bool shmem_charge(struct inode *inode, long pages)
296 {
297 struct shmem_inode_info *info = SHMEM_I(inode);
298 unsigned long flags;
299
300 if (!shmem_inode_acct_block(inode, pages))
301 return false;
302
303 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
304 inode->i_mapping->nrpages += pages;
305
306 spin_lock_irqsave(&info->lock, flags);
307 info->alloced += pages;
308 inode->i_blocks += pages * BLOCKS_PER_PAGE;
309 shmem_recalc_inode(inode);
310 spin_unlock_irqrestore(&info->lock, flags);
311
312 return true;
313 }
314
315 void shmem_uncharge(struct inode *inode, long pages)
316 {
317 struct shmem_inode_info *info = SHMEM_I(inode);
318 unsigned long flags;
319
320 /* nrpages adjustment done by __delete_from_page_cache() or caller */
321
322 spin_lock_irqsave(&info->lock, flags);
323 info->alloced -= pages;
324 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
325 shmem_recalc_inode(inode);
326 spin_unlock_irqrestore(&info->lock, flags);
327
328 shmem_inode_unacct_blocks(inode, pages);
329 }
330
331 /*
332 * Replace item expected in radix tree by a new item, while holding tree lock.
333 */
334 static int shmem_radix_tree_replace(struct address_space *mapping,
335 pgoff_t index, void *expected, void *replacement)
336 {
337 struct radix_tree_node *node;
338 void **pslot;
339 void *item;
340
341 VM_BUG_ON(!expected);
342 VM_BUG_ON(!replacement);
343 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
344 if (!item)
345 return -ENOENT;
346 if (item != expected)
347 return -ENOENT;
348 __radix_tree_replace(&mapping->page_tree, node, pslot,
349 replacement, NULL);
350 return 0;
351 }
352
353 /*
354 * Sometimes, before we decide whether to proceed or to fail, we must check
355 * that an entry was not already brought back from swap by a racing thread.
356 *
357 * Checking page is not enough: by the time a SwapCache page is locked, it
358 * might be reused, and again be SwapCache, using the same swap as before.
359 */
360 static bool shmem_confirm_swap(struct address_space *mapping,
361 pgoff_t index, swp_entry_t swap)
362 {
363 void *item;
364
365 rcu_read_lock();
366 item = radix_tree_lookup(&mapping->page_tree, index);
367 rcu_read_unlock();
368 return item == swp_to_radix_entry(swap);
369 }
370
371 /*
372 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
373 *
374 * SHMEM_HUGE_NEVER:
375 * disables huge pages for the mount;
376 * SHMEM_HUGE_ALWAYS:
377 * enables huge pages for the mount;
378 * SHMEM_HUGE_WITHIN_SIZE:
379 * only allocate huge pages if the page will be fully within i_size,
380 * also respect fadvise()/madvise() hints;
381 * SHMEM_HUGE_ADVISE:
382 * only allocate huge pages if requested with fadvise()/madvise();
383 */
384
385 #define SHMEM_HUGE_NEVER 0
386 #define SHMEM_HUGE_ALWAYS 1
387 #define SHMEM_HUGE_WITHIN_SIZE 2
388 #define SHMEM_HUGE_ADVISE 3
389
390 /*
391 * Special values.
392 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
393 *
394 * SHMEM_HUGE_DENY:
395 * disables huge on shm_mnt and all mounts, for emergency use;
396 * SHMEM_HUGE_FORCE:
397 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
398 *
399 */
400 #define SHMEM_HUGE_DENY (-1)
401 #define SHMEM_HUGE_FORCE (-2)
402
403 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
404 /* ifdef here to avoid bloating shmem.o when not necessary */
405
406 int shmem_huge __read_mostly;
407
408 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
409 static int shmem_parse_huge(const char *str)
410 {
411 if (!strcmp(str, "never"))
412 return SHMEM_HUGE_NEVER;
413 if (!strcmp(str, "always"))
414 return SHMEM_HUGE_ALWAYS;
415 if (!strcmp(str, "within_size"))
416 return SHMEM_HUGE_WITHIN_SIZE;
417 if (!strcmp(str, "advise"))
418 return SHMEM_HUGE_ADVISE;
419 if (!strcmp(str, "deny"))
420 return SHMEM_HUGE_DENY;
421 if (!strcmp(str, "force"))
422 return SHMEM_HUGE_FORCE;
423 return -EINVAL;
424 }
425
426 static const char *shmem_format_huge(int huge)
427 {
428 switch (huge) {
429 case SHMEM_HUGE_NEVER:
430 return "never";
431 case SHMEM_HUGE_ALWAYS:
432 return "always";
433 case SHMEM_HUGE_WITHIN_SIZE:
434 return "within_size";
435 case SHMEM_HUGE_ADVISE:
436 return "advise";
437 case SHMEM_HUGE_DENY:
438 return "deny";
439 case SHMEM_HUGE_FORCE:
440 return "force";
441 default:
442 VM_BUG_ON(1);
443 return "bad_val";
444 }
445 }
446 #endif
447
448 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
449 struct shrink_control *sc, unsigned long nr_to_split)
450 {
451 LIST_HEAD(list), *pos, *next;
452 LIST_HEAD(to_remove);
453 struct inode *inode;
454 struct shmem_inode_info *info;
455 struct page *page;
456 unsigned long batch = sc ? sc->nr_to_scan : 128;
457 int removed = 0, split = 0;
458
459 if (list_empty(&sbinfo->shrinklist))
460 return SHRINK_STOP;
461
462 spin_lock(&sbinfo->shrinklist_lock);
463 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
464 info = list_entry(pos, struct shmem_inode_info, shrinklist);
465
466 /* pin the inode */
467 inode = igrab(&info->vfs_inode);
468
469 /* inode is about to be evicted */
470 if (!inode) {
471 list_del_init(&info->shrinklist);
472 removed++;
473 goto next;
474 }
475
476 /* Check if there's anything to gain */
477 if (round_up(inode->i_size, PAGE_SIZE) ==
478 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
479 list_move(&info->shrinklist, &to_remove);
480 removed++;
481 goto next;
482 }
483
484 list_move(&info->shrinklist, &list);
485 next:
486 if (!--batch)
487 break;
488 }
489 spin_unlock(&sbinfo->shrinklist_lock);
490
491 list_for_each_safe(pos, next, &to_remove) {
492 info = list_entry(pos, struct shmem_inode_info, shrinklist);
493 inode = &info->vfs_inode;
494 list_del_init(&info->shrinklist);
495 iput(inode);
496 }
497
498 list_for_each_safe(pos, next, &list) {
499 int ret;
500
501 info = list_entry(pos, struct shmem_inode_info, shrinklist);
502 inode = &info->vfs_inode;
503
504 if (nr_to_split && split >= nr_to_split)
505 goto leave;
506
507 page = find_get_page(inode->i_mapping,
508 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
509 if (!page)
510 goto drop;
511
512 /* No huge page at the end of the file: nothing to split */
513 if (!PageTransHuge(page)) {
514 put_page(page);
515 goto drop;
516 }
517
518 /*
519 * Leave the inode on the list if we failed to lock
520 * the page at this time.
521 *
522 * Waiting for the lock may lead to deadlock in the
523 * reclaim path.
524 */
525 if (!trylock_page(page)) {
526 put_page(page);
527 goto leave;
528 }
529
530 ret = split_huge_page(page);
531 unlock_page(page);
532 put_page(page);
533
534 /* If split failed leave the inode on the list */
535 if (ret)
536 goto leave;
537
538 split++;
539 drop:
540 list_del_init(&info->shrinklist);
541 removed++;
542 leave:
543 iput(inode);
544 }
545
546 spin_lock(&sbinfo->shrinklist_lock);
547 list_splice_tail(&list, &sbinfo->shrinklist);
548 sbinfo->shrinklist_len -= removed;
549 spin_unlock(&sbinfo->shrinklist_lock);
550
551 return split;
552 }
553
554 static long shmem_unused_huge_scan(struct super_block *sb,
555 struct shrink_control *sc)
556 {
557 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
558
559 if (!READ_ONCE(sbinfo->shrinklist_len))
560 return SHRINK_STOP;
561
562 return shmem_unused_huge_shrink(sbinfo, sc, 0);
563 }
564
565 static long shmem_unused_huge_count(struct super_block *sb,
566 struct shrink_control *sc)
567 {
568 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
569 return READ_ONCE(sbinfo->shrinklist_len);
570 }
571 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
572
573 #define shmem_huge SHMEM_HUGE_DENY
574
575 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
576 struct shrink_control *sc, unsigned long nr_to_split)
577 {
578 return 0;
579 }
580 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
581
582 /*
583 * Like add_to_page_cache_locked, but error if expected item has gone.
584 */
585 static int shmem_add_to_page_cache(struct page *page,
586 struct address_space *mapping,
587 pgoff_t index, void *expected)
588 {
589 int error, nr = hpage_nr_pages(page);
590
591 VM_BUG_ON_PAGE(PageTail(page), page);
592 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
593 VM_BUG_ON_PAGE(!PageLocked(page), page);
594 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
595 VM_BUG_ON(expected && PageTransHuge(page));
596
597 page_ref_add(page, nr);
598 page->mapping = mapping;
599 page->index = index;
600
601 spin_lock_irq(&mapping->tree_lock);
602 if (PageTransHuge(page)) {
603 void __rcu **results;
604 pgoff_t idx;
605 int i;
606
607 error = 0;
608 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
609 &results, &idx, index, 1) &&
610 idx < index + HPAGE_PMD_NR) {
611 error = -EEXIST;
612 }
613
614 if (!error) {
615 for (i = 0; i < HPAGE_PMD_NR; i++) {
616 error = radix_tree_insert(&mapping->page_tree,
617 index + i, page + i);
618 VM_BUG_ON(error);
619 }
620 count_vm_event(THP_FILE_ALLOC);
621 }
622 } else if (!expected) {
623 error = radix_tree_insert(&mapping->page_tree, index, page);
624 } else {
625 error = shmem_radix_tree_replace(mapping, index, expected,
626 page);
627 }
628
629 if (!error) {
630 mapping->nrpages += nr;
631 if (PageTransHuge(page))
632 __inc_node_page_state(page, NR_SHMEM_THPS);
633 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
634 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
635 spin_unlock_irq(&mapping->tree_lock);
636 } else {
637 page->mapping = NULL;
638 spin_unlock_irq(&mapping->tree_lock);
639 page_ref_sub(page, nr);
640 }
641 return error;
642 }
643
644 /*
645 * Like delete_from_page_cache, but substitutes swap for page.
646 */
647 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
648 {
649 struct address_space *mapping = page->mapping;
650 int error;
651
652 VM_BUG_ON_PAGE(PageCompound(page), page);
653
654 spin_lock_irq(&mapping->tree_lock);
655 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
656 page->mapping = NULL;
657 mapping->nrpages--;
658 __dec_node_page_state(page, NR_FILE_PAGES);
659 __dec_node_page_state(page, NR_SHMEM);
660 spin_unlock_irq(&mapping->tree_lock);
661 put_page(page);
662 BUG_ON(error);
663 }
664
665 /*
666 * Remove swap entry from radix tree, free the swap and its page cache.
667 */
668 static int shmem_free_swap(struct address_space *mapping,
669 pgoff_t index, void *radswap)
670 {
671 void *old;
672
673 spin_lock_irq(&mapping->tree_lock);
674 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
675 spin_unlock_irq(&mapping->tree_lock);
676 if (old != radswap)
677 return -ENOENT;
678 free_swap_and_cache(radix_to_swp_entry(radswap));
679 return 0;
680 }
681
682 /*
683 * Determine (in bytes) how many of the shmem object's pages mapped by the
684 * given offsets are swapped out.
685 *
686 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
687 * as long as the inode doesn't go away and racy results are not a problem.
688 */
689 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
690 pgoff_t start, pgoff_t end)
691 {
692 struct radix_tree_iter iter;
693 void **slot;
694 struct page *page;
695 unsigned long swapped = 0;
696
697 rcu_read_lock();
698
699 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
700 if (iter.index >= end)
701 break;
702
703 page = radix_tree_deref_slot(slot);
704
705 if (radix_tree_deref_retry(page)) {
706 slot = radix_tree_iter_retry(&iter);
707 continue;
708 }
709
710 if (radix_tree_exceptional_entry(page))
711 swapped++;
712
713 if (need_resched()) {
714 slot = radix_tree_iter_resume(slot, &iter);
715 cond_resched_rcu();
716 }
717 }
718
719 rcu_read_unlock();
720
721 return swapped << PAGE_SHIFT;
722 }
723
724 /*
725 * Determine (in bytes) how many of the shmem object's pages mapped by the
726 * given vma is swapped out.
727 *
728 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
729 * as long as the inode doesn't go away and racy results are not a problem.
730 */
731 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
732 {
733 struct inode *inode = file_inode(vma->vm_file);
734 struct shmem_inode_info *info = SHMEM_I(inode);
735 struct address_space *mapping = inode->i_mapping;
736 unsigned long swapped;
737
738 /* Be careful as we don't hold info->lock */
739 swapped = READ_ONCE(info->swapped);
740
741 /*
742 * The easier cases are when the shmem object has nothing in swap, or
743 * the vma maps it whole. Then we can simply use the stats that we
744 * already track.
745 */
746 if (!swapped)
747 return 0;
748
749 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
750 return swapped << PAGE_SHIFT;
751
752 /* Here comes the more involved part */
753 return shmem_partial_swap_usage(mapping,
754 linear_page_index(vma, vma->vm_start),
755 linear_page_index(vma, vma->vm_end));
756 }
757
758 /*
759 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
760 */
761 void shmem_unlock_mapping(struct address_space *mapping)
762 {
763 struct pagevec pvec;
764 pgoff_t indices[PAGEVEC_SIZE];
765 pgoff_t index = 0;
766
767 pagevec_init(&pvec);
768 /*
769 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
770 */
771 while (!mapping_unevictable(mapping)) {
772 /*
773 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
774 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
775 */
776 pvec.nr = find_get_entries(mapping, index,
777 PAGEVEC_SIZE, pvec.pages, indices);
778 if (!pvec.nr)
779 break;
780 index = indices[pvec.nr - 1] + 1;
781 pagevec_remove_exceptionals(&pvec);
782 check_move_unevictable_pages(pvec.pages, pvec.nr);
783 pagevec_release(&pvec);
784 cond_resched();
785 }
786 }
787
788 /*
789 * Remove range of pages and swap entries from radix tree, and free them.
790 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
791 */
792 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
793 bool unfalloc)
794 {
795 struct address_space *mapping = inode->i_mapping;
796 struct shmem_inode_info *info = SHMEM_I(inode);
797 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
798 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
799 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
800 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
801 struct pagevec pvec;
802 pgoff_t indices[PAGEVEC_SIZE];
803 long nr_swaps_freed = 0;
804 pgoff_t index;
805 int i;
806
807 if (lend == -1)
808 end = -1; /* unsigned, so actually very big */
809
810 pagevec_init(&pvec);
811 index = start;
812 while (index < end) {
813 pvec.nr = find_get_entries(mapping, index,
814 min(end - index, (pgoff_t)PAGEVEC_SIZE),
815 pvec.pages, indices);
816 if (!pvec.nr)
817 break;
818 for (i = 0; i < pagevec_count(&pvec); i++) {
819 struct page *page = pvec.pages[i];
820
821 index = indices[i];
822 if (index >= end)
823 break;
824
825 if (radix_tree_exceptional_entry(page)) {
826 if (unfalloc)
827 continue;
828 nr_swaps_freed += !shmem_free_swap(mapping,
829 index, page);
830 continue;
831 }
832
833 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
834
835 if (!trylock_page(page))
836 continue;
837
838 if (PageTransTail(page)) {
839 /* Middle of THP: zero out the page */
840 clear_highpage(page);
841 unlock_page(page);
842 continue;
843 } else if (PageTransHuge(page)) {
844 if (index == round_down(end, HPAGE_PMD_NR)) {
845 /*
846 * Range ends in the middle of THP:
847 * zero out the page
848 */
849 clear_highpage(page);
850 unlock_page(page);
851 continue;
852 }
853 index += HPAGE_PMD_NR - 1;
854 i += HPAGE_PMD_NR - 1;
855 }
856
857 if (!unfalloc || !PageUptodate(page)) {
858 VM_BUG_ON_PAGE(PageTail(page), page);
859 if (page_mapping(page) == mapping) {
860 VM_BUG_ON_PAGE(PageWriteback(page), page);
861 truncate_inode_page(mapping, page);
862 }
863 }
864 unlock_page(page);
865 }
866 pagevec_remove_exceptionals(&pvec);
867 pagevec_release(&pvec);
868 cond_resched();
869 index++;
870 }
871
872 if (partial_start) {
873 struct page *page = NULL;
874 shmem_getpage(inode, start - 1, &page, SGP_READ);
875 if (page) {
876 unsigned int top = PAGE_SIZE;
877 if (start > end) {
878 top = partial_end;
879 partial_end = 0;
880 }
881 zero_user_segment(page, partial_start, top);
882 set_page_dirty(page);
883 unlock_page(page);
884 put_page(page);
885 }
886 }
887 if (partial_end) {
888 struct page *page = NULL;
889 shmem_getpage(inode, end, &page, SGP_READ);
890 if (page) {
891 zero_user_segment(page, 0, partial_end);
892 set_page_dirty(page);
893 unlock_page(page);
894 put_page(page);
895 }
896 }
897 if (start >= end)
898 return;
899
900 index = start;
901 while (index < end) {
902 cond_resched();
903
904 pvec.nr = find_get_entries(mapping, index,
905 min(end - index, (pgoff_t)PAGEVEC_SIZE),
906 pvec.pages, indices);
907 if (!pvec.nr) {
908 /* If all gone or hole-punch or unfalloc, we're done */
909 if (index == start || end != -1)
910 break;
911 /* But if truncating, restart to make sure all gone */
912 index = start;
913 continue;
914 }
915 for (i = 0; i < pagevec_count(&pvec); i++) {
916 struct page *page = pvec.pages[i];
917
918 index = indices[i];
919 if (index >= end)
920 break;
921
922 if (radix_tree_exceptional_entry(page)) {
923 if (unfalloc)
924 continue;
925 if (shmem_free_swap(mapping, index, page)) {
926 /* Swap was replaced by page: retry */
927 index--;
928 break;
929 }
930 nr_swaps_freed++;
931 continue;
932 }
933
934 lock_page(page);
935
936 if (PageTransTail(page)) {
937 /* Middle of THP: zero out the page */
938 clear_highpage(page);
939 unlock_page(page);
940 /*
941 * Partial thp truncate due 'start' in middle
942 * of THP: don't need to look on these pages
943 * again on !pvec.nr restart.
944 */
945 if (index != round_down(end, HPAGE_PMD_NR))
946 start++;
947 continue;
948 } else if (PageTransHuge(page)) {
949 if (index == round_down(end, HPAGE_PMD_NR)) {
950 /*
951 * Range ends in the middle of THP:
952 * zero out the page
953 */
954 clear_highpage(page);
955 unlock_page(page);
956 continue;
957 }
958 index += HPAGE_PMD_NR - 1;
959 i += HPAGE_PMD_NR - 1;
960 }
961
962 if (!unfalloc || !PageUptodate(page)) {
963 VM_BUG_ON_PAGE(PageTail(page), page);
964 if (page_mapping(page) == mapping) {
965 VM_BUG_ON_PAGE(PageWriteback(page), page);
966 truncate_inode_page(mapping, page);
967 } else {
968 /* Page was replaced by swap: retry */
969 unlock_page(page);
970 index--;
971 break;
972 }
973 }
974 unlock_page(page);
975 }
976 pagevec_remove_exceptionals(&pvec);
977 pagevec_release(&pvec);
978 index++;
979 }
980
981 spin_lock_irq(&info->lock);
982 info->swapped -= nr_swaps_freed;
983 shmem_recalc_inode(inode);
984 spin_unlock_irq(&info->lock);
985 }
986
987 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
988 {
989 shmem_undo_range(inode, lstart, lend, false);
990 inode->i_ctime = inode->i_mtime = current_time(inode);
991 }
992 EXPORT_SYMBOL_GPL(shmem_truncate_range);
993
994 static int shmem_getattr(const struct path *path, struct kstat *stat,
995 u32 request_mask, unsigned int query_flags)
996 {
997 struct inode *inode = path->dentry->d_inode;
998 struct shmem_inode_info *info = SHMEM_I(inode);
999
1000 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1001 spin_lock_irq(&info->lock);
1002 shmem_recalc_inode(inode);
1003 spin_unlock_irq(&info->lock);
1004 }
1005 generic_fillattr(inode, stat);
1006 return 0;
1007 }
1008
1009 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1010 {
1011 struct inode *inode = d_inode(dentry);
1012 struct shmem_inode_info *info = SHMEM_I(inode);
1013 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1014 int error;
1015
1016 error = setattr_prepare(dentry, attr);
1017 if (error)
1018 return error;
1019
1020 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1021 loff_t oldsize = inode->i_size;
1022 loff_t newsize = attr->ia_size;
1023
1024 /* protected by i_mutex */
1025 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1026 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1027 return -EPERM;
1028
1029 if (newsize != oldsize) {
1030 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1031 oldsize, newsize);
1032 if (error)
1033 return error;
1034 i_size_write(inode, newsize);
1035 inode->i_ctime = inode->i_mtime = current_time(inode);
1036 }
1037 if (newsize <= oldsize) {
1038 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1039 if (oldsize > holebegin)
1040 unmap_mapping_range(inode->i_mapping,
1041 holebegin, 0, 1);
1042 if (info->alloced)
1043 shmem_truncate_range(inode,
1044 newsize, (loff_t)-1);
1045 /* unmap again to remove racily COWed private pages */
1046 if (oldsize > holebegin)
1047 unmap_mapping_range(inode->i_mapping,
1048 holebegin, 0, 1);
1049
1050 /*
1051 * Part of the huge page can be beyond i_size: subject
1052 * to shrink under memory pressure.
1053 */
1054 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1055 spin_lock(&sbinfo->shrinklist_lock);
1056 /*
1057 * _careful to defend against unlocked access to
1058 * ->shrink_list in shmem_unused_huge_shrink()
1059 */
1060 if (list_empty_careful(&info->shrinklist)) {
1061 list_add_tail(&info->shrinklist,
1062 &sbinfo->shrinklist);
1063 sbinfo->shrinklist_len++;
1064 }
1065 spin_unlock(&sbinfo->shrinklist_lock);
1066 }
1067 }
1068 }
1069
1070 setattr_copy(inode, attr);
1071 if (attr->ia_valid & ATTR_MODE)
1072 error = posix_acl_chmod(inode, inode->i_mode);
1073 return error;
1074 }
1075
1076 static void shmem_evict_inode(struct inode *inode)
1077 {
1078 struct shmem_inode_info *info = SHMEM_I(inode);
1079 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1080
1081 if (inode->i_mapping->a_ops == &shmem_aops) {
1082 shmem_unacct_size(info->flags, inode->i_size);
1083 inode->i_size = 0;
1084 shmem_truncate_range(inode, 0, (loff_t)-1);
1085 if (!list_empty(&info->shrinklist)) {
1086 spin_lock(&sbinfo->shrinklist_lock);
1087 if (!list_empty(&info->shrinklist)) {
1088 list_del_init(&info->shrinklist);
1089 sbinfo->shrinklist_len--;
1090 }
1091 spin_unlock(&sbinfo->shrinklist_lock);
1092 }
1093 if (!list_empty(&info->swaplist)) {
1094 mutex_lock(&shmem_swaplist_mutex);
1095 list_del_init(&info->swaplist);
1096 mutex_unlock(&shmem_swaplist_mutex);
1097 }
1098 }
1099
1100 simple_xattrs_free(&info->xattrs);
1101 WARN_ON(inode->i_blocks);
1102 if (!sbinfo->idr_nouse && inode->i_ino) {
1103 mutex_lock(&sbinfo->idr_lock);
1104 idr_remove(&sbinfo->idr, inode->i_ino);
1105 mutex_unlock(&sbinfo->idr_lock);
1106 }
1107 shmem_free_inode(inode->i_sb);
1108 clear_inode(inode);
1109 }
1110
1111 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1112 {
1113 struct radix_tree_iter iter;
1114 void **slot;
1115 unsigned long found = -1;
1116 unsigned int checked = 0;
1117
1118 rcu_read_lock();
1119 radix_tree_for_each_slot(slot, root, &iter, 0) {
1120 if (*slot == item) {
1121 found = iter.index;
1122 break;
1123 }
1124 checked++;
1125 if ((checked % 4096) != 0)
1126 continue;
1127 slot = radix_tree_iter_resume(slot, &iter);
1128 cond_resched_rcu();
1129 }
1130
1131 rcu_read_unlock();
1132 return found;
1133 }
1134
1135 /*
1136 * If swap found in inode, free it and move page from swapcache to filecache.
1137 */
1138 static int shmem_unuse_inode(struct shmem_inode_info *info,
1139 swp_entry_t swap, struct page **pagep)
1140 {
1141 struct address_space *mapping = info->vfs_inode.i_mapping;
1142 void *radswap;
1143 pgoff_t index;
1144 gfp_t gfp;
1145 int error = 0;
1146
1147 radswap = swp_to_radix_entry(swap);
1148 index = find_swap_entry(&mapping->page_tree, radswap);
1149 if (index == -1)
1150 return -EAGAIN; /* tell shmem_unuse we found nothing */
1151
1152 /*
1153 * Move _head_ to start search for next from here.
1154 * But be careful: shmem_evict_inode checks list_empty without taking
1155 * mutex, and there's an instant in list_move_tail when info->swaplist
1156 * would appear empty, if it were the only one on shmem_swaplist.
1157 */
1158 if (shmem_swaplist.next != &info->swaplist)
1159 list_move_tail(&shmem_swaplist, &info->swaplist);
1160
1161 gfp = mapping_gfp_mask(mapping);
1162 if (shmem_should_replace_page(*pagep, gfp)) {
1163 mutex_unlock(&shmem_swaplist_mutex);
1164 error = shmem_replace_page(pagep, gfp, info, index);
1165 mutex_lock(&shmem_swaplist_mutex);
1166 /*
1167 * We needed to drop mutex to make that restrictive page
1168 * allocation, but the inode might have been freed while we
1169 * dropped it: although a racing shmem_evict_inode() cannot
1170 * complete without emptying the radix_tree, our page lock
1171 * on this swapcache page is not enough to prevent that -
1172 * free_swap_and_cache() of our swap entry will only
1173 * trylock_page(), removing swap from radix_tree whatever.
1174 *
1175 * We must not proceed to shmem_add_to_page_cache() if the
1176 * inode has been freed, but of course we cannot rely on
1177 * inode or mapping or info to check that. However, we can
1178 * safely check if our swap entry is still in use (and here
1179 * it can't have got reused for another page): if it's still
1180 * in use, then the inode cannot have been freed yet, and we
1181 * can safely proceed (if it's no longer in use, that tells
1182 * nothing about the inode, but we don't need to unuse swap).
1183 */
1184 if (!page_swapcount(*pagep))
1185 error = -ENOENT;
1186 }
1187
1188 /*
1189 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1190 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1191 * beneath us (pagelock doesn't help until the page is in pagecache).
1192 */
1193 if (!error)
1194 error = shmem_add_to_page_cache(*pagep, mapping, index,
1195 radswap);
1196 if (error != -ENOMEM) {
1197 /*
1198 * Truncation and eviction use free_swap_and_cache(), which
1199 * only does trylock page: if we raced, best clean up here.
1200 */
1201 delete_from_swap_cache(*pagep);
1202 set_page_dirty(*pagep);
1203 if (!error) {
1204 spin_lock_irq(&info->lock);
1205 info->swapped--;
1206 spin_unlock_irq(&info->lock);
1207 swap_free(swap);
1208 }
1209 }
1210 return error;
1211 }
1212
1213 /*
1214 * Search through swapped inodes to find and replace swap by page.
1215 */
1216 int shmem_unuse(swp_entry_t swap, struct page *page)
1217 {
1218 struct list_head *this, *next;
1219 struct shmem_inode_info *info;
1220 struct mem_cgroup *memcg;
1221 int error = 0;
1222
1223 /*
1224 * There's a faint possibility that swap page was replaced before
1225 * caller locked it: caller will come back later with the right page.
1226 */
1227 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1228 goto out;
1229
1230 /*
1231 * Charge page using GFP_KERNEL while we can wait, before taking
1232 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1233 * Charged back to the user (not to caller) when swap account is used.
1234 */
1235 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1236 false);
1237 if (error)
1238 goto out;
1239 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1240 error = -EAGAIN;
1241
1242 mutex_lock(&shmem_swaplist_mutex);
1243 list_for_each_safe(this, next, &shmem_swaplist) {
1244 info = list_entry(this, struct shmem_inode_info, swaplist);
1245 if (info->swapped)
1246 error = shmem_unuse_inode(info, swap, &page);
1247 else
1248 list_del_init(&info->swaplist);
1249 cond_resched();
1250 if (error != -EAGAIN)
1251 break;
1252 /* found nothing in this: move on to search the next */
1253 }
1254 mutex_unlock(&shmem_swaplist_mutex);
1255
1256 if (error) {
1257 if (error != -ENOMEM)
1258 error = 0;
1259 mem_cgroup_cancel_charge(page, memcg, false);
1260 } else
1261 mem_cgroup_commit_charge(page, memcg, true, false);
1262 out:
1263 unlock_page(page);
1264 put_page(page);
1265 return error;
1266 }
1267
1268 /*
1269 * Move the page from the page cache to the swap cache.
1270 */
1271 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1272 {
1273 struct shmem_inode_info *info;
1274 struct address_space *mapping;
1275 struct inode *inode;
1276 swp_entry_t swap;
1277 pgoff_t index;
1278
1279 VM_BUG_ON_PAGE(PageCompound(page), page);
1280 BUG_ON(!PageLocked(page));
1281 mapping = page->mapping;
1282 index = page->index;
1283 inode = mapping->host;
1284 info = SHMEM_I(inode);
1285 if (info->flags & VM_LOCKED)
1286 goto redirty;
1287 if (!total_swap_pages)
1288 goto redirty;
1289
1290 /*
1291 * Our capabilities prevent regular writeback or sync from ever calling
1292 * shmem_writepage; but a stacking filesystem might use ->writepage of
1293 * its underlying filesystem, in which case tmpfs should write out to
1294 * swap only in response to memory pressure, and not for the writeback
1295 * threads or sync.
1296 */
1297 if (!wbc->for_reclaim) {
1298 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1299 goto redirty;
1300 }
1301
1302 /*
1303 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1304 * value into swapfile.c, the only way we can correctly account for a
1305 * fallocated page arriving here is now to initialize it and write it.
1306 *
1307 * That's okay for a page already fallocated earlier, but if we have
1308 * not yet completed the fallocation, then (a) we want to keep track
1309 * of this page in case we have to undo it, and (b) it may not be a
1310 * good idea to continue anyway, once we're pushing into swap. So
1311 * reactivate the page, and let shmem_fallocate() quit when too many.
1312 */
1313 if (!PageUptodate(page)) {
1314 if (inode->i_private) {
1315 struct shmem_falloc *shmem_falloc;
1316 spin_lock(&inode->i_lock);
1317 shmem_falloc = inode->i_private;
1318 if (shmem_falloc &&
1319 !shmem_falloc->waitq &&
1320 index >= shmem_falloc->start &&
1321 index < shmem_falloc->next)
1322 shmem_falloc->nr_unswapped++;
1323 else
1324 shmem_falloc = NULL;
1325 spin_unlock(&inode->i_lock);
1326 if (shmem_falloc)
1327 goto redirty;
1328 }
1329 clear_highpage(page);
1330 flush_dcache_page(page);
1331 SetPageUptodate(page);
1332 }
1333
1334 swap = get_swap_page(page);
1335 if (!swap.val)
1336 goto redirty;
1337
1338 if (mem_cgroup_try_charge_swap(page, swap))
1339 goto free_swap;
1340
1341 /*
1342 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1343 * if it's not already there. Do it now before the page is
1344 * moved to swap cache, when its pagelock no longer protects
1345 * the inode from eviction. But don't unlock the mutex until
1346 * we've incremented swapped, because shmem_unuse_inode() will
1347 * prune a !swapped inode from the swaplist under this mutex.
1348 */
1349 mutex_lock(&shmem_swaplist_mutex);
1350 if (list_empty(&info->swaplist))
1351 list_add_tail(&info->swaplist, &shmem_swaplist);
1352
1353 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1354 spin_lock_irq(&info->lock);
1355 shmem_recalc_inode(inode);
1356 info->swapped++;
1357 spin_unlock_irq(&info->lock);
1358
1359 swap_shmem_alloc(swap);
1360 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1361
1362 mutex_unlock(&shmem_swaplist_mutex);
1363 BUG_ON(page_mapped(page));
1364 swap_writepage(page, wbc);
1365 return 0;
1366 }
1367
1368 mutex_unlock(&shmem_swaplist_mutex);
1369 free_swap:
1370 put_swap_page(page, swap);
1371 redirty:
1372 set_page_dirty(page);
1373 if (wbc->for_reclaim)
1374 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1375 unlock_page(page);
1376 return 0;
1377 }
1378
1379 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1380 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1381 {
1382 char buffer[64];
1383
1384 if (!mpol || mpol->mode == MPOL_DEFAULT)
1385 return; /* show nothing */
1386
1387 mpol_to_str(buffer, sizeof(buffer), mpol);
1388
1389 seq_printf(seq, ",mpol=%s", buffer);
1390 }
1391
1392 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1393 {
1394 struct mempolicy *mpol = NULL;
1395 if (sbinfo->mpol) {
1396 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1397 mpol = sbinfo->mpol;
1398 mpol_get(mpol);
1399 spin_unlock(&sbinfo->stat_lock);
1400 }
1401 return mpol;
1402 }
1403 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1404 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1405 {
1406 }
1407 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1408 {
1409 return NULL;
1410 }
1411 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1412 #ifndef CONFIG_NUMA
1413 #define vm_policy vm_private_data
1414 #endif
1415
1416 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1417 struct shmem_inode_info *info, pgoff_t index)
1418 {
1419 /* Create a pseudo vma that just contains the policy */
1420 vma->vm_start = 0;
1421 /* Bias interleave by inode number to distribute better across nodes */
1422 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1423 vma->vm_ops = NULL;
1424 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1425 }
1426
1427 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1428 {
1429 /* Drop reference taken by mpol_shared_policy_lookup() */
1430 mpol_cond_put(vma->vm_policy);
1431 }
1432
1433 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1434 struct shmem_inode_info *info, pgoff_t index)
1435 {
1436 struct vm_area_struct pvma;
1437 struct page *page;
1438
1439 shmem_pseudo_vma_init(&pvma, info, index);
1440 page = swapin_readahead(swap, gfp, &pvma, 0);
1441 shmem_pseudo_vma_destroy(&pvma);
1442
1443 return page;
1444 }
1445
1446 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1447 struct shmem_inode_info *info, pgoff_t index)
1448 {
1449 struct vm_area_struct pvma;
1450 struct inode *inode = &info->vfs_inode;
1451 struct address_space *mapping = inode->i_mapping;
1452 pgoff_t idx, hindex;
1453 void __rcu **results;
1454 struct page *page;
1455
1456 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1457 return NULL;
1458
1459 hindex = round_down(index, HPAGE_PMD_NR);
1460 rcu_read_lock();
1461 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1462 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1463 rcu_read_unlock();
1464 return NULL;
1465 }
1466 rcu_read_unlock();
1467
1468 shmem_pseudo_vma_init(&pvma, info, hindex);
1469 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1470 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1471 shmem_pseudo_vma_destroy(&pvma);
1472 if (page)
1473 prep_transhuge_page(page);
1474 return page;
1475 }
1476
1477 static struct page *shmem_alloc_page(gfp_t gfp,
1478 struct shmem_inode_info *info, pgoff_t index)
1479 {
1480 struct vm_area_struct pvma;
1481 struct page *page;
1482
1483 shmem_pseudo_vma_init(&pvma, info, index);
1484 page = alloc_page_vma(gfp, &pvma, 0);
1485 shmem_pseudo_vma_destroy(&pvma);
1486
1487 return page;
1488 }
1489
1490 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1491 struct inode *inode,
1492 pgoff_t index, bool huge)
1493 {
1494 struct shmem_inode_info *info = SHMEM_I(inode);
1495 struct page *page;
1496 int nr;
1497 int err = -ENOSPC;
1498
1499 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1500 huge = false;
1501 nr = huge ? HPAGE_PMD_NR : 1;
1502
1503 if (!shmem_inode_acct_block(inode, nr))
1504 goto failed;
1505
1506 if (huge)
1507 page = shmem_alloc_hugepage(gfp, info, index);
1508 else
1509 page = shmem_alloc_page(gfp, info, index);
1510 if (page) {
1511 __SetPageLocked(page);
1512 __SetPageSwapBacked(page);
1513 return page;
1514 }
1515
1516 err = -ENOMEM;
1517 shmem_inode_unacct_blocks(inode, nr);
1518 failed:
1519 return ERR_PTR(err);
1520 }
1521
1522 /*
1523 * When a page is moved from swapcache to shmem filecache (either by the
1524 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1525 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1526 * ignorance of the mapping it belongs to. If that mapping has special
1527 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1528 * we may need to copy to a suitable page before moving to filecache.
1529 *
1530 * In a future release, this may well be extended to respect cpuset and
1531 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1532 * but for now it is a simple matter of zone.
1533 */
1534 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1535 {
1536 return page_zonenum(page) > gfp_zone(gfp);
1537 }
1538
1539 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1540 struct shmem_inode_info *info, pgoff_t index)
1541 {
1542 struct page *oldpage, *newpage;
1543 struct address_space *swap_mapping;
1544 swp_entry_t entry;
1545 pgoff_t swap_index;
1546 int error;
1547
1548 oldpage = *pagep;
1549 entry.val = page_private(oldpage);
1550 swap_index = swp_offset(entry);
1551 swap_mapping = page_mapping(oldpage);
1552
1553 /*
1554 * We have arrived here because our zones are constrained, so don't
1555 * limit chance of success by further cpuset and node constraints.
1556 */
1557 gfp &= ~GFP_CONSTRAINT_MASK;
1558 newpage = shmem_alloc_page(gfp, info, index);
1559 if (!newpage)
1560 return -ENOMEM;
1561
1562 get_page(newpage);
1563 copy_highpage(newpage, oldpage);
1564 flush_dcache_page(newpage);
1565
1566 __SetPageLocked(newpage);
1567 __SetPageSwapBacked(newpage);
1568 SetPageUptodate(newpage);
1569 set_page_private(newpage, entry.val);
1570 SetPageSwapCache(newpage);
1571
1572 /*
1573 * Our caller will very soon move newpage out of swapcache, but it's
1574 * a nice clean interface for us to replace oldpage by newpage there.
1575 */
1576 spin_lock_irq(&swap_mapping->tree_lock);
1577 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1578 newpage);
1579 if (!error) {
1580 __inc_node_page_state(newpage, NR_FILE_PAGES);
1581 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1582 }
1583 spin_unlock_irq(&swap_mapping->tree_lock);
1584
1585 if (unlikely(error)) {
1586 /*
1587 * Is this possible? I think not, now that our callers check
1588 * both PageSwapCache and page_private after getting page lock;
1589 * but be defensive. Reverse old to newpage for clear and free.
1590 */
1591 oldpage = newpage;
1592 } else {
1593 mem_cgroup_migrate(oldpage, newpage);
1594 lru_cache_add_anon(newpage);
1595 *pagep = newpage;
1596 }
1597
1598 ClearPageSwapCache(oldpage);
1599 set_page_private(oldpage, 0);
1600
1601 unlock_page(oldpage);
1602 put_page(oldpage);
1603 put_page(oldpage);
1604 return error;
1605 }
1606
1607 /*
1608 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1609 *
1610 * If we allocate a new one we do not mark it dirty. That's up to the
1611 * vm. If we swap it in we mark it dirty since we also free the swap
1612 * entry since a page cannot live in both the swap and page cache.
1613 *
1614 * fault_mm and fault_type are only supplied by shmem_fault:
1615 * otherwise they are NULL.
1616 */
1617 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1618 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1619 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1620 {
1621 struct address_space *mapping = inode->i_mapping;
1622 struct shmem_inode_info *info = SHMEM_I(inode);
1623 struct shmem_sb_info *sbinfo;
1624 struct mm_struct *charge_mm;
1625 struct mem_cgroup *memcg;
1626 struct page *page;
1627 swp_entry_t swap;
1628 enum sgp_type sgp_huge = sgp;
1629 pgoff_t hindex = index;
1630 int error;
1631 int once = 0;
1632 int alloced = 0;
1633
1634 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1635 return -EFBIG;
1636 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1637 sgp = SGP_CACHE;
1638 repeat:
1639 swap.val = 0;
1640 page = find_lock_entry(mapping, index);
1641 if (radix_tree_exceptional_entry(page)) {
1642 swap = radix_to_swp_entry(page);
1643 page = NULL;
1644 }
1645
1646 if (sgp <= SGP_CACHE &&
1647 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1648 error = -EINVAL;
1649 goto unlock;
1650 }
1651
1652 if (page && sgp == SGP_WRITE)
1653 mark_page_accessed(page);
1654
1655 /* fallocated page? */
1656 if (page && !PageUptodate(page)) {
1657 if (sgp != SGP_READ)
1658 goto clear;
1659 unlock_page(page);
1660 put_page(page);
1661 page = NULL;
1662 }
1663 if (page || (sgp == SGP_READ && !swap.val)) {
1664 *pagep = page;
1665 return 0;
1666 }
1667
1668 /*
1669 * Fast cache lookup did not find it:
1670 * bring it back from swap or allocate.
1671 */
1672 sbinfo = SHMEM_SB(inode->i_sb);
1673 charge_mm = vma ? vma->vm_mm : current->mm;
1674
1675 if (swap.val) {
1676 /* Look it up and read it in.. */
1677 page = lookup_swap_cache(swap, NULL, 0);
1678 if (!page) {
1679 /* Or update major stats only when swapin succeeds?? */
1680 if (fault_type) {
1681 *fault_type |= VM_FAULT_MAJOR;
1682 count_vm_event(PGMAJFAULT);
1683 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1684 }
1685 /* Here we actually start the io */
1686 page = shmem_swapin(swap, gfp, info, index);
1687 if (!page) {
1688 error = -ENOMEM;
1689 goto failed;
1690 }
1691 }
1692
1693 /* We have to do this with page locked to prevent races */
1694 lock_page(page);
1695 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1696 !shmem_confirm_swap(mapping, index, swap)) {
1697 error = -EEXIST; /* try again */
1698 goto unlock;
1699 }
1700 if (!PageUptodate(page)) {
1701 error = -EIO;
1702 goto failed;
1703 }
1704 wait_on_page_writeback(page);
1705
1706 if (shmem_should_replace_page(page, gfp)) {
1707 error = shmem_replace_page(&page, gfp, info, index);
1708 if (error)
1709 goto failed;
1710 }
1711
1712 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1713 false);
1714 if (!error) {
1715 error = shmem_add_to_page_cache(page, mapping, index,
1716 swp_to_radix_entry(swap));
1717 /*
1718 * We already confirmed swap under page lock, and make
1719 * no memory allocation here, so usually no possibility
1720 * of error; but free_swap_and_cache() only trylocks a
1721 * page, so it is just possible that the entry has been
1722 * truncated or holepunched since swap was confirmed.
1723 * shmem_undo_range() will have done some of the
1724 * unaccounting, now delete_from_swap_cache() will do
1725 * the rest.
1726 * Reset swap.val? No, leave it so "failed" goes back to
1727 * "repeat": reading a hole and writing should succeed.
1728 */
1729 if (error) {
1730 mem_cgroup_cancel_charge(page, memcg, false);
1731 delete_from_swap_cache(page);
1732 }
1733 }
1734 if (error)
1735 goto failed;
1736
1737 mem_cgroup_commit_charge(page, memcg, true, false);
1738
1739 spin_lock_irq(&info->lock);
1740 info->swapped--;
1741 shmem_recalc_inode(inode);
1742 spin_unlock_irq(&info->lock);
1743
1744 if (sgp == SGP_WRITE)
1745 mark_page_accessed(page);
1746
1747 delete_from_swap_cache(page);
1748 set_page_dirty(page);
1749 swap_free(swap);
1750
1751 } else {
1752 if (vma && userfaultfd_missing(vma)) {
1753 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1754 return 0;
1755 }
1756
1757 /* shmem_symlink() */
1758 if (mapping->a_ops != &shmem_aops)
1759 goto alloc_nohuge;
1760 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1761 goto alloc_nohuge;
1762 if (shmem_huge == SHMEM_HUGE_FORCE)
1763 goto alloc_huge;
1764 switch (sbinfo->huge) {
1765 loff_t i_size;
1766 pgoff_t off;
1767 case SHMEM_HUGE_NEVER:
1768 goto alloc_nohuge;
1769 case SHMEM_HUGE_WITHIN_SIZE:
1770 off = round_up(index, HPAGE_PMD_NR);
1771 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1772 if (i_size >= HPAGE_PMD_SIZE &&
1773 i_size >> PAGE_SHIFT >= off)
1774 goto alloc_huge;
1775 /* fallthrough */
1776 case SHMEM_HUGE_ADVISE:
1777 if (sgp_huge == SGP_HUGE)
1778 goto alloc_huge;
1779 /* TODO: implement fadvise() hints */
1780 goto alloc_nohuge;
1781 }
1782
1783 alloc_huge:
1784 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1785 if (IS_ERR(page)) {
1786 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1787 index, false);
1788 }
1789 if (IS_ERR(page)) {
1790 int retry = 5;
1791 error = PTR_ERR(page);
1792 page = NULL;
1793 if (error != -ENOSPC)
1794 goto failed;
1795 /*
1796 * Try to reclaim some spece by splitting a huge page
1797 * beyond i_size on the filesystem.
1798 */
1799 while (retry--) {
1800 int ret;
1801 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1802 if (ret == SHRINK_STOP)
1803 break;
1804 if (ret)
1805 goto alloc_nohuge;
1806 }
1807 goto failed;
1808 }
1809
1810 if (PageTransHuge(page))
1811 hindex = round_down(index, HPAGE_PMD_NR);
1812 else
1813 hindex = index;
1814
1815 if (sgp == SGP_WRITE)
1816 __SetPageReferenced(page);
1817
1818 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1819 PageTransHuge(page));
1820 if (error)
1821 goto unacct;
1822 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1823 compound_order(page));
1824 if (!error) {
1825 error = shmem_add_to_page_cache(page, mapping, hindex,
1826 NULL);
1827 radix_tree_preload_end();
1828 }
1829 if (error) {
1830 mem_cgroup_cancel_charge(page, memcg,
1831 PageTransHuge(page));
1832 goto unacct;
1833 }
1834 mem_cgroup_commit_charge(page, memcg, false,
1835 PageTransHuge(page));
1836 lru_cache_add_anon(page);
1837
1838 spin_lock_irq(&info->lock);
1839 info->alloced += 1 << compound_order(page);
1840 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1841 shmem_recalc_inode(inode);
1842 spin_unlock_irq(&info->lock);
1843 alloced = true;
1844
1845 if (PageTransHuge(page) &&
1846 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1847 hindex + HPAGE_PMD_NR - 1) {
1848 /*
1849 * Part of the huge page is beyond i_size: subject
1850 * to shrink under memory pressure.
1851 */
1852 spin_lock(&sbinfo->shrinklist_lock);
1853 /*
1854 * _careful to defend against unlocked access to
1855 * ->shrink_list in shmem_unused_huge_shrink()
1856 */
1857 if (list_empty_careful(&info->shrinklist)) {
1858 list_add_tail(&info->shrinklist,
1859 &sbinfo->shrinklist);
1860 sbinfo->shrinklist_len++;
1861 }
1862 spin_unlock(&sbinfo->shrinklist_lock);
1863 }
1864
1865 /*
1866 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1867 */
1868 if (sgp == SGP_FALLOC)
1869 sgp = SGP_WRITE;
1870 clear:
1871 /*
1872 * Let SGP_WRITE caller clear ends if write does not fill page;
1873 * but SGP_FALLOC on a page fallocated earlier must initialize
1874 * it now, lest undo on failure cancel our earlier guarantee.
1875 */
1876 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1877 struct page *head = compound_head(page);
1878 int i;
1879
1880 for (i = 0; i < (1 << compound_order(head)); i++) {
1881 clear_highpage(head + i);
1882 flush_dcache_page(head + i);
1883 }
1884 SetPageUptodate(head);
1885 }
1886 }
1887
1888 /* Perhaps the file has been truncated since we checked */
1889 if (sgp <= SGP_CACHE &&
1890 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1891 if (alloced) {
1892 ClearPageDirty(page);
1893 delete_from_page_cache(page);
1894 spin_lock_irq(&info->lock);
1895 shmem_recalc_inode(inode);
1896 spin_unlock_irq(&info->lock);
1897 }
1898 error = -EINVAL;
1899 goto unlock;
1900 }
1901 *pagep = page + index - hindex;
1902 return 0;
1903
1904 /*
1905 * Error recovery.
1906 */
1907 unacct:
1908 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1909
1910 if (PageTransHuge(page)) {
1911 unlock_page(page);
1912 put_page(page);
1913 goto alloc_nohuge;
1914 }
1915 failed:
1916 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1917 error = -EEXIST;
1918 unlock:
1919 if (page) {
1920 unlock_page(page);
1921 put_page(page);
1922 }
1923 if (error == -ENOSPC && !once++) {
1924 spin_lock_irq(&info->lock);
1925 shmem_recalc_inode(inode);
1926 spin_unlock_irq(&info->lock);
1927 goto repeat;
1928 }
1929 if (error == -EEXIST) /* from above or from radix_tree_insert */
1930 goto repeat;
1931 return error;
1932 }
1933
1934 /*
1935 * This is like autoremove_wake_function, but it removes the wait queue
1936 * entry unconditionally - even if something else had already woken the
1937 * target.
1938 */
1939 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1940 {
1941 int ret = default_wake_function(wait, mode, sync, key);
1942 list_del_init(&wait->entry);
1943 return ret;
1944 }
1945
1946 static int shmem_fault(struct vm_fault *vmf)
1947 {
1948 struct vm_area_struct *vma = vmf->vma;
1949 struct inode *inode = file_inode(vma->vm_file);
1950 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1951 enum sgp_type sgp;
1952 int error;
1953 int ret = VM_FAULT_LOCKED;
1954
1955 /*
1956 * Trinity finds that probing a hole which tmpfs is punching can
1957 * prevent the hole-punch from ever completing: which in turn
1958 * locks writers out with its hold on i_mutex. So refrain from
1959 * faulting pages into the hole while it's being punched. Although
1960 * shmem_undo_range() does remove the additions, it may be unable to
1961 * keep up, as each new page needs its own unmap_mapping_range() call,
1962 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1963 *
1964 * It does not matter if we sometimes reach this check just before the
1965 * hole-punch begins, so that one fault then races with the punch:
1966 * we just need to make racing faults a rare case.
1967 *
1968 * The implementation below would be much simpler if we just used a
1969 * standard mutex or completion: but we cannot take i_mutex in fault,
1970 * and bloating every shmem inode for this unlikely case would be sad.
1971 */
1972 if (unlikely(inode->i_private)) {
1973 struct shmem_falloc *shmem_falloc;
1974
1975 spin_lock(&inode->i_lock);
1976 shmem_falloc = inode->i_private;
1977 if (shmem_falloc &&
1978 shmem_falloc->waitq &&
1979 vmf->pgoff >= shmem_falloc->start &&
1980 vmf->pgoff < shmem_falloc->next) {
1981 wait_queue_head_t *shmem_falloc_waitq;
1982 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1983
1984 ret = VM_FAULT_NOPAGE;
1985 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1986 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1987 /* It's polite to up mmap_sem if we can */
1988 up_read(&vma->vm_mm->mmap_sem);
1989 ret = VM_FAULT_RETRY;
1990 }
1991
1992 shmem_falloc_waitq = shmem_falloc->waitq;
1993 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1994 TASK_UNINTERRUPTIBLE);
1995 spin_unlock(&inode->i_lock);
1996 schedule();
1997
1998 /*
1999 * shmem_falloc_waitq points into the shmem_fallocate()
2000 * stack of the hole-punching task: shmem_falloc_waitq
2001 * is usually invalid by the time we reach here, but
2002 * finish_wait() does not dereference it in that case;
2003 * though i_lock needed lest racing with wake_up_all().
2004 */
2005 spin_lock(&inode->i_lock);
2006 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2007 spin_unlock(&inode->i_lock);
2008 return ret;
2009 }
2010 spin_unlock(&inode->i_lock);
2011 }
2012
2013 sgp = SGP_CACHE;
2014
2015 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2016 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2017 sgp = SGP_NOHUGE;
2018 else if (vma->vm_flags & VM_HUGEPAGE)
2019 sgp = SGP_HUGE;
2020
2021 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2022 gfp, vma, vmf, &ret);
2023 if (error)
2024 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2025 return ret;
2026 }
2027
2028 unsigned long shmem_get_unmapped_area(struct file *file,
2029 unsigned long uaddr, unsigned long len,
2030 unsigned long pgoff, unsigned long flags)
2031 {
2032 unsigned long (*get_area)(struct file *,
2033 unsigned long, unsigned long, unsigned long, unsigned long);
2034 unsigned long addr;
2035 unsigned long offset;
2036 unsigned long inflated_len;
2037 unsigned long inflated_addr;
2038 unsigned long inflated_offset;
2039
2040 if (len > TASK_SIZE)
2041 return -ENOMEM;
2042
2043 get_area = current->mm->get_unmapped_area;
2044 addr = get_area(file, uaddr, len, pgoff, flags);
2045
2046 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2047 return addr;
2048 if (IS_ERR_VALUE(addr))
2049 return addr;
2050 if (addr & ~PAGE_MASK)
2051 return addr;
2052 if (addr > TASK_SIZE - len)
2053 return addr;
2054
2055 if (shmem_huge == SHMEM_HUGE_DENY)
2056 return addr;
2057 if (len < HPAGE_PMD_SIZE)
2058 return addr;
2059 if (flags & MAP_FIXED)
2060 return addr;
2061 /*
2062 * Our priority is to support MAP_SHARED mapped hugely;
2063 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2064 * But if caller specified an address hint and we allocated area there
2065 * successfully, respect that as before.
2066 */
2067 if (uaddr == addr)
2068 return addr;
2069
2070 if (shmem_huge != SHMEM_HUGE_FORCE) {
2071 struct super_block *sb;
2072
2073 if (file) {
2074 VM_BUG_ON(file->f_op != &shmem_file_operations);
2075 sb = file_inode(file)->i_sb;
2076 } else {
2077 /*
2078 * Called directly from mm/mmap.c, or drivers/char/mem.c
2079 * for "/dev/zero", to create a shared anonymous object.
2080 */
2081 if (IS_ERR(shm_mnt))
2082 return addr;
2083 sb = shm_mnt->mnt_sb;
2084 }
2085 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2086 return addr;
2087 }
2088
2089 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2090 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2091 return addr;
2092 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2093 return addr;
2094
2095 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2096 if (inflated_len > TASK_SIZE)
2097 return addr;
2098 if (inflated_len < len)
2099 return addr;
2100
2101 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2102 if (IS_ERR_VALUE(inflated_addr))
2103 return addr;
2104 if (inflated_addr & ~PAGE_MASK)
2105 return addr;
2106
2107 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2108 inflated_addr += offset - inflated_offset;
2109 if (inflated_offset > offset)
2110 inflated_addr += HPAGE_PMD_SIZE;
2111
2112 if (inflated_addr > TASK_SIZE - len)
2113 return addr;
2114 return inflated_addr;
2115 }
2116
2117 #ifdef CONFIG_NUMA
2118 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2119 {
2120 struct inode *inode = file_inode(vma->vm_file);
2121 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2122 }
2123
2124 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2125 unsigned long addr)
2126 {
2127 struct inode *inode = file_inode(vma->vm_file);
2128 pgoff_t index;
2129
2130 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2131 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2132 }
2133 #endif
2134
2135 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2136 {
2137 struct inode *inode = file_inode(file);
2138 struct shmem_inode_info *info = SHMEM_I(inode);
2139 int retval = -ENOMEM;
2140
2141 spin_lock_irq(&info->lock);
2142 if (lock && !(info->flags & VM_LOCKED)) {
2143 if (!user_shm_lock(inode->i_size, user))
2144 goto out_nomem;
2145 info->flags |= VM_LOCKED;
2146 mapping_set_unevictable(file->f_mapping);
2147 }
2148 if (!lock && (info->flags & VM_LOCKED) && user) {
2149 user_shm_unlock(inode->i_size, user);
2150 info->flags &= ~VM_LOCKED;
2151 mapping_clear_unevictable(file->f_mapping);
2152 }
2153 retval = 0;
2154
2155 out_nomem:
2156 spin_unlock_irq(&info->lock);
2157 return retval;
2158 }
2159
2160 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2161 {
2162 file_accessed(file);
2163 vma->vm_ops = &shmem_vm_ops;
2164 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2165 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2166 (vma->vm_end & HPAGE_PMD_MASK)) {
2167 khugepaged_enter(vma, vma->vm_flags);
2168 }
2169 return 0;
2170 }
2171
2172 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2173 umode_t mode, dev_t dev, unsigned long flags)
2174 {
2175 struct inode *inode;
2176 struct shmem_inode_info *info;
2177 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2178 int ino;
2179
2180 if (shmem_reserve_inode(sb))
2181 return NULL;
2182
2183 inode = new_inode(sb);
2184 if (inode) {
2185 inode_init_owner(inode, dir, mode);
2186 inode->i_blocks = 0;
2187 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2188 inode->i_generation = get_seconds();
2189 info = SHMEM_I(inode);
2190 memset(info, 0, (char *)inode - (char *)info);
2191 spin_lock_init(&info->lock);
2192 info->seals = F_SEAL_SEAL;
2193 info->flags = flags & VM_NORESERVE;
2194 INIT_LIST_HEAD(&info->shrinklist);
2195 INIT_LIST_HEAD(&info->swaplist);
2196 simple_xattrs_init(&info->xattrs);
2197 cache_no_acl(inode);
2198
2199 switch (mode & S_IFMT) {
2200 default:
2201 inode->i_op = &shmem_special_inode_operations;
2202 init_special_inode(inode, mode, dev);
2203 break;
2204 case S_IFREG:
2205 inode->i_mapping->a_ops = &shmem_aops;
2206 inode->i_op = &shmem_inode_operations;
2207 inode->i_fop = &shmem_file_operations;
2208 mpol_shared_policy_init(&info->policy,
2209 shmem_get_sbmpol(sbinfo));
2210 break;
2211 case S_IFDIR:
2212 inc_nlink(inode);
2213 /* Some things misbehave if size == 0 on a directory */
2214 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2215 inode->i_op = &shmem_dir_inode_operations;
2216 inode->i_fop = &simple_dir_operations;
2217 break;
2218 case S_IFLNK:
2219 /*
2220 * Must not load anything in the rbtree,
2221 * mpol_free_shared_policy will not be called.
2222 */
2223 mpol_shared_policy_init(&info->policy, NULL);
2224 break;
2225 }
2226
2227 lockdep_annotate_inode_mutex_key(inode);
2228
2229 if (!sbinfo->idr_nouse) {
2230 /* inum 0 and 1 are unused */
2231 mutex_lock(&sbinfo->idr_lock);
2232 ino = idr_alloc(&sbinfo->idr, inode, 2, INT_MAX,
2233 GFP_NOFS);
2234 if (ino > 0) {
2235 inode->i_ino = ino;
2236 mutex_unlock(&sbinfo->idr_lock);
2237 __insert_inode_hash(inode, inode->i_ino);
2238 } else {
2239 inode->i_ino = 0;
2240 mutex_unlock(&sbinfo->idr_lock);
2241 iput(inode);
2242 /* shmem_free_inode() will be called */
2243 inode = NULL;
2244 }
2245 } else
2246 inode->i_ino = get_next_ino();
2247 } else
2248 shmem_free_inode(sb);
2249 return inode;
2250 }
2251
2252 bool shmem_mapping(struct address_space *mapping)
2253 {
2254 return mapping->a_ops == &shmem_aops;
2255 }
2256
2257 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2258 pmd_t *dst_pmd,
2259 struct vm_area_struct *dst_vma,
2260 unsigned long dst_addr,
2261 unsigned long src_addr,
2262 bool zeropage,
2263 struct page **pagep)
2264 {
2265 struct inode *inode = file_inode(dst_vma->vm_file);
2266 struct shmem_inode_info *info = SHMEM_I(inode);
2267 struct address_space *mapping = inode->i_mapping;
2268 gfp_t gfp = mapping_gfp_mask(mapping);
2269 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2270 struct mem_cgroup *memcg;
2271 spinlock_t *ptl;
2272 void *page_kaddr;
2273 struct page *page;
2274 pte_t _dst_pte, *dst_pte;
2275 int ret;
2276 pgoff_t offset, max_off;
2277
2278 ret = -ENOMEM;
2279 if (!shmem_inode_acct_block(inode, 1))
2280 goto out;
2281
2282 if (!*pagep) {
2283 page = shmem_alloc_page(gfp, info, pgoff);
2284 if (!page)
2285 goto out_unacct_blocks;
2286
2287 if (!zeropage) { /* mcopy_atomic */
2288 page_kaddr = kmap_atomic(page);
2289 ret = copy_from_user(page_kaddr,
2290 (const void __user *)src_addr,
2291 PAGE_SIZE);
2292 kunmap_atomic(page_kaddr);
2293
2294 /* fallback to copy_from_user outside mmap_sem */
2295 if (unlikely(ret)) {
2296 *pagep = page;
2297 shmem_inode_unacct_blocks(inode, 1);
2298 /* don't free the page */
2299 return -ENOENT;
2300 }
2301 } else { /* mfill_zeropage_atomic */
2302 clear_highpage(page);
2303 }
2304 } else {
2305 page = *pagep;
2306 *pagep = NULL;
2307 }
2308
2309 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2310 __SetPageLocked(page);
2311 __SetPageSwapBacked(page);
2312 __SetPageUptodate(page);
2313
2314 ret = -EFAULT;
2315 offset = linear_page_index(dst_vma, dst_addr);
2316 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2317 if (unlikely(offset >= max_off))
2318 goto out_release;
2319
2320 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2321 if (ret)
2322 goto out_release;
2323
2324 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2325 if (!ret) {
2326 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2327 radix_tree_preload_end();
2328 }
2329 if (ret)
2330 goto out_release_uncharge;
2331
2332 mem_cgroup_commit_charge(page, memcg, false, false);
2333
2334 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2335 if (dst_vma->vm_flags & VM_WRITE)
2336 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2337 else {
2338 /*
2339 * We don't set the pte dirty if the vma has no
2340 * VM_WRITE permission, so mark the page dirty or it
2341 * could be freed from under us. We could do it
2342 * unconditionally before unlock_page(), but doing it
2343 * only if VM_WRITE is not set is faster.
2344 */
2345 set_page_dirty(page);
2346 }
2347
2348 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2349
2350 ret = -EFAULT;
2351 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2352 if (unlikely(offset >= max_off))
2353 goto out_release_uncharge_unlock;
2354
2355 ret = -EEXIST;
2356 if (!pte_none(*dst_pte))
2357 goto out_release_uncharge_unlock;
2358
2359 lru_cache_add_anon(page);
2360
2361 spin_lock(&info->lock);
2362 info->alloced++;
2363 inode->i_blocks += BLOCKS_PER_PAGE;
2364 shmem_recalc_inode(inode);
2365 spin_unlock(&info->lock);
2366
2367 inc_mm_counter(dst_mm, mm_counter_file(page));
2368 page_add_file_rmap(page, false);
2369 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2370
2371 /* No need to invalidate - it was non-present before */
2372 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2373 pte_unmap_unlock(dst_pte, ptl);
2374 unlock_page(page);
2375 ret = 0;
2376 out:
2377 return ret;
2378 out_release_uncharge_unlock:
2379 pte_unmap_unlock(dst_pte, ptl);
2380 ClearPageDirty(page);
2381 delete_from_page_cache(page);
2382 out_release_uncharge:
2383 mem_cgroup_cancel_charge(page, memcg, false);
2384 out_release:
2385 unlock_page(page);
2386 put_page(page);
2387 out_unacct_blocks:
2388 shmem_inode_unacct_blocks(inode, 1);
2389 goto out;
2390 }
2391
2392 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2393 pmd_t *dst_pmd,
2394 struct vm_area_struct *dst_vma,
2395 unsigned long dst_addr,
2396 unsigned long src_addr,
2397 struct page **pagep)
2398 {
2399 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2400 dst_addr, src_addr, false, pagep);
2401 }
2402
2403 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2404 pmd_t *dst_pmd,
2405 struct vm_area_struct *dst_vma,
2406 unsigned long dst_addr)
2407 {
2408 struct page *page = NULL;
2409
2410 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2411 dst_addr, 0, true, &page);
2412 }
2413
2414 #ifdef CONFIG_TMPFS
2415 static const struct inode_operations shmem_symlink_inode_operations;
2416 static const struct inode_operations shmem_short_symlink_operations;
2417
2418 #ifdef CONFIG_TMPFS_XATTR
2419 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2420 #else
2421 #define shmem_initxattrs NULL
2422 #endif
2423
2424 static int
2425 shmem_write_begin(struct file *file, struct address_space *mapping,
2426 loff_t pos, unsigned len, unsigned flags,
2427 struct page **pagep, void **fsdata)
2428 {
2429 struct inode *inode = mapping->host;
2430 struct shmem_inode_info *info = SHMEM_I(inode);
2431 pgoff_t index = pos >> PAGE_SHIFT;
2432
2433 /* i_mutex is held by caller */
2434 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2435 if (info->seals & F_SEAL_WRITE)
2436 return -EPERM;
2437 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2438 return -EPERM;
2439 }
2440
2441 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2442 }
2443
2444 static int
2445 shmem_write_end(struct file *file, struct address_space *mapping,
2446 loff_t pos, unsigned len, unsigned copied,
2447 struct page *page, void *fsdata)
2448 {
2449 struct inode *inode = mapping->host;
2450
2451 if (pos + copied > inode->i_size)
2452 i_size_write(inode, pos + copied);
2453
2454 if (!PageUptodate(page)) {
2455 struct page *head = compound_head(page);
2456 if (PageTransCompound(page)) {
2457 int i;
2458
2459 for (i = 0; i < HPAGE_PMD_NR; i++) {
2460 if (head + i == page)
2461 continue;
2462 clear_highpage(head + i);
2463 flush_dcache_page(head + i);
2464 }
2465 }
2466 if (copied < PAGE_SIZE) {
2467 unsigned from = pos & (PAGE_SIZE - 1);
2468 zero_user_segments(page, 0, from,
2469 from + copied, PAGE_SIZE);
2470 }
2471 SetPageUptodate(head);
2472 }
2473 set_page_dirty(page);
2474 unlock_page(page);
2475 put_page(page);
2476
2477 return copied;
2478 }
2479
2480 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2481 {
2482 struct file *file = iocb->ki_filp;
2483 struct inode *inode = file_inode(file);
2484 struct address_space *mapping = inode->i_mapping;
2485 pgoff_t index;
2486 unsigned long offset;
2487 enum sgp_type sgp = SGP_READ;
2488 int error = 0;
2489 ssize_t retval = 0;
2490 loff_t *ppos = &iocb->ki_pos;
2491
2492 /*
2493 * Might this read be for a stacking filesystem? Then when reading
2494 * holes of a sparse file, we actually need to allocate those pages,
2495 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2496 */
2497 if (!iter_is_iovec(to))
2498 sgp = SGP_CACHE;
2499
2500 index = *ppos >> PAGE_SHIFT;
2501 offset = *ppos & ~PAGE_MASK;
2502
2503 for (;;) {
2504 struct page *page = NULL;
2505 pgoff_t end_index;
2506 unsigned long nr, ret;
2507 loff_t i_size = i_size_read(inode);
2508
2509 end_index = i_size >> PAGE_SHIFT;
2510 if (index > end_index)
2511 break;
2512 if (index == end_index) {
2513 nr = i_size & ~PAGE_MASK;
2514 if (nr <= offset)
2515 break;
2516 }
2517
2518 error = shmem_getpage(inode, index, &page, sgp);
2519 if (error) {
2520 if (error == -EINVAL)
2521 error = 0;
2522 break;
2523 }
2524 if (page) {
2525 if (sgp == SGP_CACHE)
2526 set_page_dirty(page);
2527 unlock_page(page);
2528 }
2529
2530 /*
2531 * We must evaluate after, since reads (unlike writes)
2532 * are called without i_mutex protection against truncate
2533 */
2534 nr = PAGE_SIZE;
2535 i_size = i_size_read(inode);
2536 end_index = i_size >> PAGE_SHIFT;
2537 if (index == end_index) {
2538 nr = i_size & ~PAGE_MASK;
2539 if (nr <= offset) {
2540 if (page)
2541 put_page(page);
2542 break;
2543 }
2544 }
2545 nr -= offset;
2546
2547 if (page) {
2548 /*
2549 * If users can be writing to this page using arbitrary
2550 * virtual addresses, take care about potential aliasing
2551 * before reading the page on the kernel side.
2552 */
2553 if (mapping_writably_mapped(mapping))
2554 flush_dcache_page(page);
2555 /*
2556 * Mark the page accessed if we read the beginning.
2557 */
2558 if (!offset)
2559 mark_page_accessed(page);
2560 } else {
2561 page = ZERO_PAGE(0);
2562 get_page(page);
2563 }
2564
2565 /*
2566 * Ok, we have the page, and it's up-to-date, so
2567 * now we can copy it to user space...
2568 */
2569 ret = copy_page_to_iter(page, offset, nr, to);
2570 retval += ret;
2571 offset += ret;
2572 index += offset >> PAGE_SHIFT;
2573 offset &= ~PAGE_MASK;
2574
2575 put_page(page);
2576 if (!iov_iter_count(to))
2577 break;
2578 if (ret < nr) {
2579 error = -EFAULT;
2580 break;
2581 }
2582 cond_resched();
2583 }
2584
2585 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2586 file_accessed(file);
2587 return retval ? retval : error;
2588 }
2589
2590 /*
2591 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2592 */
2593 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2594 pgoff_t index, pgoff_t end, int whence)
2595 {
2596 struct page *page;
2597 struct pagevec pvec;
2598 pgoff_t indices[PAGEVEC_SIZE];
2599 bool done = false;
2600 int i;
2601
2602 pagevec_init(&pvec);
2603 pvec.nr = 1; /* start small: we may be there already */
2604 while (!done) {
2605 pvec.nr = find_get_entries(mapping, index,
2606 pvec.nr, pvec.pages, indices);
2607 if (!pvec.nr) {
2608 if (whence == SEEK_DATA)
2609 index = end;
2610 break;
2611 }
2612 for (i = 0; i < pvec.nr; i++, index++) {
2613 if (index < indices[i]) {
2614 if (whence == SEEK_HOLE) {
2615 done = true;
2616 break;
2617 }
2618 index = indices[i];
2619 }
2620 page = pvec.pages[i];
2621 if (page && !radix_tree_exceptional_entry(page)) {
2622 if (!PageUptodate(page))
2623 page = NULL;
2624 }
2625 if (index >= end ||
2626 (page && whence == SEEK_DATA) ||
2627 (!page && whence == SEEK_HOLE)) {
2628 done = true;
2629 break;
2630 }
2631 }
2632 pagevec_remove_exceptionals(&pvec);
2633 pagevec_release(&pvec);
2634 pvec.nr = PAGEVEC_SIZE;
2635 cond_resched();
2636 }
2637 return index;
2638 }
2639
2640 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2641 {
2642 struct address_space *mapping = file->f_mapping;
2643 struct inode *inode = mapping->host;
2644 pgoff_t start, end;
2645 loff_t new_offset;
2646
2647 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2648 return generic_file_llseek_size(file, offset, whence,
2649 MAX_LFS_FILESIZE, i_size_read(inode));
2650 inode_lock(inode);
2651 /* We're holding i_mutex so we can access i_size directly */
2652
2653 if (offset < 0 || offset >= inode->i_size)
2654 offset = -ENXIO;
2655 else {
2656 start = offset >> PAGE_SHIFT;
2657 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2658 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2659 new_offset <<= PAGE_SHIFT;
2660 if (new_offset > offset) {
2661 if (new_offset < inode->i_size)
2662 offset = new_offset;
2663 else if (whence == SEEK_DATA)
2664 offset = -ENXIO;
2665 else
2666 offset = inode->i_size;
2667 }
2668 }
2669
2670 if (offset >= 0)
2671 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2672 inode_unlock(inode);
2673 return offset;
2674 }
2675
2676 /*
2677 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2678 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2679 */
2680 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2681 #define LAST_SCAN 4 /* about 150ms max */
2682
2683 static void shmem_tag_pins(struct address_space *mapping)
2684 {
2685 struct radix_tree_iter iter;
2686 void **slot;
2687 pgoff_t start;
2688 struct page *page;
2689 unsigned int tagged = 0;
2690
2691 lru_add_drain();
2692 start = 0;
2693
2694 spin_lock_irq(&mapping->tree_lock);
2695 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2696 page = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
2697 if (!page || radix_tree_exception(page)) {
2698 if (radix_tree_deref_retry(page)) {
2699 slot = radix_tree_iter_retry(&iter);
2700 continue;
2701 }
2702 } else if (page_count(page) - page_mapcount(page) > 1) {
2703 radix_tree_tag_set(&mapping->page_tree, iter.index,
2704 SHMEM_TAG_PINNED);
2705 }
2706
2707 if (++tagged % 1024)
2708 continue;
2709
2710 slot = radix_tree_iter_resume(slot, &iter);
2711 spin_unlock_irq(&mapping->tree_lock);
2712 cond_resched();
2713 spin_lock_irq(&mapping->tree_lock);
2714 }
2715 spin_unlock_irq(&mapping->tree_lock);
2716 }
2717
2718 /*
2719 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2720 * via get_user_pages(), drivers might have some pending I/O without any active
2721 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2722 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2723 * them to be dropped.
2724 * The caller must guarantee that no new user will acquire writable references
2725 * to those pages to avoid races.
2726 */
2727 static int shmem_wait_for_pins(struct address_space *mapping)
2728 {
2729 struct radix_tree_iter iter;
2730 void **slot;
2731 pgoff_t start;
2732 struct page *page;
2733 int error, scan;
2734
2735 shmem_tag_pins(mapping);
2736
2737 error = 0;
2738 for (scan = 0; scan <= LAST_SCAN; scan++) {
2739 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2740 break;
2741
2742 if (!scan)
2743 lru_add_drain_all();
2744 else if (schedule_timeout_killable((HZ << scan) / 200))
2745 scan = LAST_SCAN;
2746
2747 start = 0;
2748 rcu_read_lock();
2749 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2750 start, SHMEM_TAG_PINNED) {
2751
2752 page = radix_tree_deref_slot(slot);
2753 if (radix_tree_exception(page)) {
2754 if (radix_tree_deref_retry(page)) {
2755 slot = radix_tree_iter_retry(&iter);
2756 continue;
2757 }
2758
2759 page = NULL;
2760 }
2761
2762 if (page &&
2763 page_count(page) - page_mapcount(page) != 1) {
2764 if (scan < LAST_SCAN)
2765 goto continue_resched;
2766
2767 /*
2768 * On the last scan, we clean up all those tags
2769 * we inserted; but make a note that we still
2770 * found pages pinned.
2771 */
2772 error = -EBUSY;
2773 }
2774
2775 spin_lock_irq(&mapping->tree_lock);
2776 radix_tree_tag_clear(&mapping->page_tree,
2777 iter.index, SHMEM_TAG_PINNED);
2778 spin_unlock_irq(&mapping->tree_lock);
2779 continue_resched:
2780 if (need_resched()) {
2781 slot = radix_tree_iter_resume(slot, &iter);
2782 cond_resched_rcu();
2783 }
2784 }
2785 rcu_read_unlock();
2786 }
2787
2788 return error;
2789 }
2790
2791 #define F_ALL_SEALS (F_SEAL_SEAL | \
2792 F_SEAL_SHRINK | \
2793 F_SEAL_GROW | \
2794 F_SEAL_WRITE)
2795
2796 int shmem_add_seals(struct file *file, unsigned int seals)
2797 {
2798 struct inode *inode = file_inode(file);
2799 struct shmem_inode_info *info = SHMEM_I(inode);
2800 int error;
2801
2802 /*
2803 * SEALING
2804 * Sealing allows multiple parties to share a shmem-file but restrict
2805 * access to a specific subset of file operations. Seals can only be
2806 * added, but never removed. This way, mutually untrusted parties can
2807 * share common memory regions with a well-defined policy. A malicious
2808 * peer can thus never perform unwanted operations on a shared object.
2809 *
2810 * Seals are only supported on special shmem-files and always affect
2811 * the whole underlying inode. Once a seal is set, it may prevent some
2812 * kinds of access to the file. Currently, the following seals are
2813 * defined:
2814 * SEAL_SEAL: Prevent further seals from being set on this file
2815 * SEAL_SHRINK: Prevent the file from shrinking
2816 * SEAL_GROW: Prevent the file from growing
2817 * SEAL_WRITE: Prevent write access to the file
2818 *
2819 * As we don't require any trust relationship between two parties, we
2820 * must prevent seals from being removed. Therefore, sealing a file
2821 * only adds a given set of seals to the file, it never touches
2822 * existing seals. Furthermore, the "setting seals"-operation can be
2823 * sealed itself, which basically prevents any further seal from being
2824 * added.
2825 *
2826 * Semantics of sealing are only defined on volatile files. Only
2827 * anonymous shmem files support sealing. More importantly, seals are
2828 * never written to disk. Therefore, there's no plan to support it on
2829 * other file types.
2830 */
2831
2832 if (file->f_op != &shmem_file_operations)
2833 return -EINVAL;
2834 if (!(file->f_mode & FMODE_WRITE))
2835 return -EPERM;
2836 if (seals & ~(unsigned int)F_ALL_SEALS)
2837 return -EINVAL;
2838
2839 inode_lock(inode);
2840
2841 if (info->seals & F_SEAL_SEAL) {
2842 error = -EPERM;
2843 goto unlock;
2844 }
2845
2846 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2847 error = mapping_deny_writable(file->f_mapping);
2848 if (error)
2849 goto unlock;
2850
2851 error = shmem_wait_for_pins(file->f_mapping);
2852 if (error) {
2853 mapping_allow_writable(file->f_mapping);
2854 goto unlock;
2855 }
2856 }
2857
2858 info->seals |= seals;
2859 error = 0;
2860
2861 unlock:
2862 inode_unlock(inode);
2863 return error;
2864 }
2865 EXPORT_SYMBOL_GPL(shmem_add_seals);
2866
2867 int shmem_get_seals(struct file *file)
2868 {
2869 if (file->f_op != &shmem_file_operations)
2870 return -EINVAL;
2871
2872 return SHMEM_I(file_inode(file))->seals;
2873 }
2874 EXPORT_SYMBOL_GPL(shmem_get_seals);
2875
2876 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2877 {
2878 long error;
2879
2880 switch (cmd) {
2881 case F_ADD_SEALS:
2882 /* disallow upper 32bit */
2883 if (arg > UINT_MAX)
2884 return -EINVAL;
2885
2886 error = shmem_add_seals(file, arg);
2887 break;
2888 case F_GET_SEALS:
2889 error = shmem_get_seals(file);
2890 break;
2891 default:
2892 error = -EINVAL;
2893 break;
2894 }
2895
2896 return error;
2897 }
2898
2899 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2900 loff_t len)
2901 {
2902 struct inode *inode = file_inode(file);
2903 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2904 struct shmem_inode_info *info = SHMEM_I(inode);
2905 struct shmem_falloc shmem_falloc;
2906 pgoff_t start, index, end;
2907 int error;
2908
2909 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2910 return -EOPNOTSUPP;
2911
2912 inode_lock(inode);
2913
2914 if (mode & FALLOC_FL_PUNCH_HOLE) {
2915 struct address_space *mapping = file->f_mapping;
2916 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2917 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2918 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2919
2920 /* protected by i_mutex */
2921 if (info->seals & F_SEAL_WRITE) {
2922 error = -EPERM;
2923 goto out;
2924 }
2925
2926 shmem_falloc.waitq = &shmem_falloc_waitq;
2927 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2928 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2929 spin_lock(&inode->i_lock);
2930 inode->i_private = &shmem_falloc;
2931 spin_unlock(&inode->i_lock);
2932
2933 if ((u64)unmap_end > (u64)unmap_start)
2934 unmap_mapping_range(mapping, unmap_start,
2935 1 + unmap_end - unmap_start, 0);
2936 shmem_truncate_range(inode, offset, offset + len - 1);
2937 /* No need to unmap again: hole-punching leaves COWed pages */
2938
2939 spin_lock(&inode->i_lock);
2940 inode->i_private = NULL;
2941 wake_up_all(&shmem_falloc_waitq);
2942 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2943 spin_unlock(&inode->i_lock);
2944 error = 0;
2945 goto out;
2946 }
2947
2948 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2949 error = inode_newsize_ok(inode, offset + len);
2950 if (error)
2951 goto out;
2952
2953 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2954 error = -EPERM;
2955 goto out;
2956 }
2957
2958 start = offset >> PAGE_SHIFT;
2959 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2960 /* Try to avoid a swapstorm if len is impossible to satisfy */
2961 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2962 error = -ENOSPC;
2963 goto out;
2964 }
2965
2966 shmem_falloc.waitq = NULL;
2967 shmem_falloc.start = start;
2968 shmem_falloc.next = start;
2969 shmem_falloc.nr_falloced = 0;
2970 shmem_falloc.nr_unswapped = 0;
2971 spin_lock(&inode->i_lock);
2972 inode->i_private = &shmem_falloc;
2973 spin_unlock(&inode->i_lock);
2974
2975 for (index = start; index < end; index++) {
2976 struct page *page;
2977
2978 /*
2979 * Good, the fallocate(2) manpage permits EINTR: we may have
2980 * been interrupted because we are using up too much memory.
2981 */
2982 if (signal_pending(current))
2983 error = -EINTR;
2984 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2985 error = -ENOMEM;
2986 else
2987 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2988 if (error) {
2989 /* Remove the !PageUptodate pages we added */
2990 if (index > start) {
2991 shmem_undo_range(inode,
2992 (loff_t)start << PAGE_SHIFT,
2993 ((loff_t)index << PAGE_SHIFT) - 1, true);
2994 }
2995 goto undone;
2996 }
2997
2998 /*
2999 * Inform shmem_writepage() how far we have reached.
3000 * No need for lock or barrier: we have the page lock.
3001 */
3002 shmem_falloc.next++;
3003 if (!PageUptodate(page))
3004 shmem_falloc.nr_falloced++;
3005
3006 /*
3007 * If !PageUptodate, leave it that way so that freeable pages
3008 * can be recognized if we need to rollback on error later.
3009 * But set_page_dirty so that memory pressure will swap rather
3010 * than free the pages we are allocating (and SGP_CACHE pages
3011 * might still be clean: we now need to mark those dirty too).
3012 */
3013 set_page_dirty(page);
3014 unlock_page(page);
3015 put_page(page);
3016 cond_resched();
3017 }
3018
3019 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3020 i_size_write(inode, offset + len);
3021 inode->i_ctime = current_time(inode);
3022 undone:
3023 spin_lock(&inode->i_lock);
3024 inode->i_private = NULL;
3025 spin_unlock(&inode->i_lock);
3026 out:
3027 inode_unlock(inode);
3028 return error;
3029 }
3030
3031 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3032 {
3033 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3034
3035 buf->f_type = TMPFS_MAGIC;
3036 buf->f_bsize = PAGE_SIZE;
3037 buf->f_namelen = NAME_MAX;
3038 if (sbinfo->max_blocks) {
3039 buf->f_blocks = sbinfo->max_blocks;
3040 buf->f_bavail =
3041 buf->f_bfree = sbinfo->max_blocks -
3042 percpu_counter_sum(&sbinfo->used_blocks);
3043 }
3044 if (sbinfo->max_inodes) {
3045 buf->f_files = sbinfo->max_inodes;
3046 buf->f_ffree = sbinfo->free_inodes;
3047 }
3048 /* else leave those fields 0 like simple_statfs */
3049 return 0;
3050 }
3051
3052 /*
3053 * File creation. Allocate an inode, and we're done..
3054 */
3055 static int
3056 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3057 {
3058 struct inode *inode;
3059 int error = -ENOSPC;
3060
3061 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3062 if (inode) {
3063 error = simple_acl_create(dir, inode);
3064 if (error)
3065 goto out_iput;
3066 error = security_inode_init_security(inode, dir,
3067 &dentry->d_name,
3068 shmem_initxattrs, NULL);
3069 if (error && error != -EOPNOTSUPP)
3070 goto out_iput;
3071
3072 error = 0;
3073 dir->i_size += BOGO_DIRENT_SIZE;
3074 dir->i_ctime = dir->i_mtime = current_time(dir);
3075 d_instantiate(dentry, inode);
3076 dget(dentry); /* Extra count - pin the dentry in core */
3077 }
3078 return error;
3079 out_iput:
3080 iput(inode);
3081 return error;
3082 }
3083
3084 static int
3085 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3086 {
3087 struct inode *inode;
3088 int error = -ENOSPC;
3089
3090 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3091 if (inode) {
3092 error = security_inode_init_security(inode, dir,
3093 NULL,
3094 shmem_initxattrs, NULL);
3095 if (error && error != -EOPNOTSUPP)
3096 goto out_iput;
3097 error = simple_acl_create(dir, inode);
3098 if (error)
3099 goto out_iput;
3100 d_tmpfile(dentry, inode);
3101 }
3102 return error;
3103 out_iput:
3104 iput(inode);
3105 return error;
3106 }
3107
3108 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3109 {
3110 int error;
3111
3112 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3113 return error;
3114 inc_nlink(dir);
3115 return 0;
3116 }
3117
3118 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3119 bool excl)
3120 {
3121 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3122 }
3123
3124 /*
3125 * Link a file..
3126 */
3127 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3128 {
3129 struct inode *inode = d_inode(old_dentry);
3130 int ret = 0;
3131
3132 /*
3133 * No ordinary (disk based) filesystem counts links as inodes;
3134 * but each new link needs a new dentry, pinning lowmem, and
3135 * tmpfs dentries cannot be pruned until they are unlinked.
3136 * But if an O_TMPFILE file is linked into the tmpfs, the
3137 * first link must skip that, to get the accounting right.
3138 */
3139 if (inode->i_nlink) {
3140 ret = shmem_reserve_inode(inode->i_sb);
3141 if (ret)
3142 goto out;
3143 }
3144
3145 dir->i_size += BOGO_DIRENT_SIZE;
3146 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3147 inc_nlink(inode);
3148 ihold(inode); /* New dentry reference */
3149 dget(dentry); /* Extra pinning count for the created dentry */
3150 d_instantiate(dentry, inode);
3151 out:
3152 return ret;
3153 }
3154
3155 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3156 {
3157 struct inode *inode = d_inode(dentry);
3158
3159 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3160 shmem_free_inode(inode->i_sb);
3161
3162 dir->i_size -= BOGO_DIRENT_SIZE;
3163 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3164 drop_nlink(inode);
3165 dput(dentry); /* Undo the count from "create" - this does all the work */
3166 return 0;
3167 }
3168
3169 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3170 {
3171 if (!simple_empty(dentry))
3172 return -ENOTEMPTY;
3173
3174 drop_nlink(d_inode(dentry));
3175 drop_nlink(dir);
3176 return shmem_unlink(dir, dentry);
3177 }
3178
3179 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3180 {
3181 bool old_is_dir = d_is_dir(old_dentry);
3182 bool new_is_dir = d_is_dir(new_dentry);
3183
3184 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3185 if (old_is_dir) {
3186 drop_nlink(old_dir);
3187 inc_nlink(new_dir);
3188 } else {
3189 drop_nlink(new_dir);
3190 inc_nlink(old_dir);
3191 }
3192 }
3193 old_dir->i_ctime = old_dir->i_mtime =
3194 new_dir->i_ctime = new_dir->i_mtime =
3195 d_inode(old_dentry)->i_ctime =
3196 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3197
3198 return 0;
3199 }
3200
3201 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3202 {
3203 struct dentry *whiteout;
3204 int error;
3205
3206 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3207 if (!whiteout)
3208 return -ENOMEM;
3209
3210 error = shmem_mknod(old_dir, whiteout,
3211 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3212 dput(whiteout);
3213 if (error)
3214 return error;
3215
3216 /*
3217 * Cheat and hash the whiteout while the old dentry is still in
3218 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3219 *
3220 * d_lookup() will consistently find one of them at this point,
3221 * not sure which one, but that isn't even important.
3222 */
3223 d_rehash(whiteout);
3224 return 0;
3225 }
3226
3227 /*
3228 * The VFS layer already does all the dentry stuff for rename,
3229 * we just have to decrement the usage count for the target if
3230 * it exists so that the VFS layer correctly free's it when it
3231 * gets overwritten.
3232 */
3233 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3234 {
3235 struct inode *inode = d_inode(old_dentry);
3236 int they_are_dirs = S_ISDIR(inode->i_mode);
3237
3238 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3239 return -EINVAL;
3240
3241 if (flags & RENAME_EXCHANGE)
3242 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3243
3244 if (!simple_empty(new_dentry))
3245 return -ENOTEMPTY;
3246
3247 if (flags & RENAME_WHITEOUT) {
3248 int error;
3249
3250 error = shmem_whiteout(old_dir, old_dentry);
3251 if (error)
3252 return error;
3253 }
3254
3255 if (d_really_is_positive(new_dentry)) {
3256 (void) shmem_unlink(new_dir, new_dentry);
3257 if (they_are_dirs) {
3258 drop_nlink(d_inode(new_dentry));
3259 drop_nlink(old_dir);
3260 }
3261 } else if (they_are_dirs) {
3262 drop_nlink(old_dir);
3263 inc_nlink(new_dir);
3264 }
3265
3266 old_dir->i_size -= BOGO_DIRENT_SIZE;
3267 new_dir->i_size += BOGO_DIRENT_SIZE;
3268 old_dir->i_ctime = old_dir->i_mtime =
3269 new_dir->i_ctime = new_dir->i_mtime =
3270 inode->i_ctime = current_time(old_dir);
3271 return 0;
3272 }
3273
3274 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3275 {
3276 int error;
3277 int len;
3278 struct inode *inode;
3279 struct page *page;
3280
3281 len = strlen(symname) + 1;
3282 if (len > PAGE_SIZE)
3283 return -ENAMETOOLONG;
3284
3285 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3286 if (!inode)
3287 return -ENOSPC;
3288
3289 error = security_inode_init_security(inode, dir, &dentry->d_name,
3290 shmem_initxattrs, NULL);
3291 if (error) {
3292 if (error != -EOPNOTSUPP) {
3293 iput(inode);
3294 return error;
3295 }
3296 error = 0;
3297 }
3298
3299 inode->i_size = len-1;
3300 if (len <= SHORT_SYMLINK_LEN) {
3301 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3302 if (!inode->i_link) {
3303 iput(inode);
3304 return -ENOMEM;
3305 }
3306 inode->i_op = &shmem_short_symlink_operations;
3307 } else {
3308 inode_nohighmem(inode);
3309 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3310 if (error) {
3311 iput(inode);
3312 return error;
3313 }
3314 inode->i_mapping->a_ops = &shmem_aops;
3315 inode->i_op = &shmem_symlink_inode_operations;
3316 memcpy(page_address(page), symname, len);
3317 SetPageUptodate(page);
3318 set_page_dirty(page);
3319 unlock_page(page);
3320 put_page(page);
3321 }
3322 dir->i_size += BOGO_DIRENT_SIZE;
3323 dir->i_ctime = dir->i_mtime = current_time(dir);
3324 d_instantiate(dentry, inode);
3325 dget(dentry);
3326 return 0;
3327 }
3328
3329 static void shmem_put_link(void *arg)
3330 {
3331 mark_page_accessed(arg);
3332 put_page(arg);
3333 }
3334
3335 static const char *shmem_get_link(struct dentry *dentry,
3336 struct inode *inode,
3337 struct delayed_call *done)
3338 {
3339 struct page *page = NULL;
3340 int error;
3341 if (!dentry) {
3342 page = find_get_page(inode->i_mapping, 0);
3343 if (!page)
3344 return ERR_PTR(-ECHILD);
3345 if (!PageUptodate(page)) {
3346 put_page(page);
3347 return ERR_PTR(-ECHILD);
3348 }
3349 } else {
3350 error = shmem_getpage(inode, 0, &page, SGP_READ);
3351 if (error)
3352 return ERR_PTR(error);
3353 unlock_page(page);
3354 }
3355 set_delayed_call(done, shmem_put_link, page);
3356 return page_address(page);
3357 }
3358
3359 #ifdef CONFIG_TMPFS_XATTR
3360 /*
3361 * Superblocks without xattr inode operations may get some security.* xattr
3362 * support from the LSM "for free". As soon as we have any other xattrs
3363 * like ACLs, we also need to implement the security.* handlers at
3364 * filesystem level, though.
3365 */
3366
3367 /*
3368 * Callback for security_inode_init_security() for acquiring xattrs.
3369 */
3370 static int shmem_initxattrs(struct inode *inode,
3371 const struct xattr *xattr_array,
3372 void *fs_info)
3373 {
3374 struct shmem_inode_info *info = SHMEM_I(inode);
3375 const struct xattr *xattr;
3376 struct simple_xattr *new_xattr;
3377 size_t len;
3378
3379 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3380 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3381 if (!new_xattr)
3382 return -ENOMEM;
3383
3384 len = strlen(xattr->name) + 1;
3385 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3386 GFP_KERNEL);
3387 if (!new_xattr->name) {
3388 kfree(new_xattr);
3389 return -ENOMEM;
3390 }
3391
3392 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3393 XATTR_SECURITY_PREFIX_LEN);
3394 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3395 xattr->name, len);
3396
3397 simple_xattr_list_add(&info->xattrs, new_xattr);
3398 }
3399
3400 return 0;
3401 }
3402
3403 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3404 struct dentry *unused, struct inode *inode,
3405 const char *name, void *buffer, size_t size)
3406 {
3407 struct shmem_inode_info *info = SHMEM_I(inode);
3408
3409 name = xattr_full_name(handler, name);
3410 return simple_xattr_get(&info->xattrs, name, buffer, size);
3411 }
3412
3413 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3414 struct dentry *unused, struct inode *inode,
3415 const char *name, const void *value,
3416 size_t size, int flags)
3417 {
3418 struct shmem_inode_info *info = SHMEM_I(inode);
3419
3420 name = xattr_full_name(handler, name);
3421 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3422 }
3423
3424 static const struct xattr_handler shmem_security_xattr_handler = {
3425 .prefix = XATTR_SECURITY_PREFIX,
3426 .get = shmem_xattr_handler_get,
3427 .set = shmem_xattr_handler_set,
3428 };
3429
3430 static const struct xattr_handler shmem_trusted_xattr_handler = {
3431 .prefix = XATTR_TRUSTED_PREFIX,
3432 .get = shmem_xattr_handler_get,
3433 .set = shmem_xattr_handler_set,
3434 };
3435
3436 static const struct xattr_handler *shmem_xattr_handlers[] = {
3437 #ifdef CONFIG_TMPFS_POSIX_ACL
3438 &posix_acl_access_xattr_handler,
3439 &posix_acl_default_xattr_handler,
3440 #endif
3441 &shmem_security_xattr_handler,
3442 &shmem_trusted_xattr_handler,
3443 NULL
3444 };
3445
3446 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3447 {
3448 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3449 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3450 }
3451 #endif /* CONFIG_TMPFS_XATTR */
3452
3453 static const struct inode_operations shmem_short_symlink_operations = {
3454 .get_link = simple_get_link,
3455 #ifdef CONFIG_TMPFS_XATTR
3456 .listxattr = shmem_listxattr,
3457 #endif
3458 };
3459
3460 static const struct inode_operations shmem_symlink_inode_operations = {
3461 .get_link = shmem_get_link,
3462 #ifdef CONFIG_TMPFS_XATTR
3463 .listxattr = shmem_listxattr,
3464 #endif
3465 };
3466
3467 static struct dentry *shmem_get_parent(struct dentry *child)
3468 {
3469 return ERR_PTR(-ESTALE);
3470 }
3471
3472 static int shmem_match(struct inode *ino, void *vfh)
3473 {
3474 __u32 *fh = vfh;
3475 __u64 inum = fh[1];
3476 return ino->i_ino == inum && fh[0] == ino->i_generation;
3477 }
3478
3479 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3480 struct fid *fid, int fh_len, int fh_type)
3481 {
3482 struct inode *inode;
3483 struct dentry *dentry = NULL;
3484 u64 inum;
3485
3486 if (fh_len < 2)
3487 return NULL;
3488
3489 inum = fid->raw[1];
3490 inode = ilookup5(sb, inum, shmem_match, fid->raw);
3491 if (inode) {
3492 dentry = d_find_alias(inode);
3493 iput(inode);
3494 }
3495
3496 return dentry;
3497 }
3498
3499 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3500 struct inode *parent)
3501 {
3502 if (*len < 2) {
3503 *len = 2;
3504 return FILEID_INVALID;
3505 }
3506
3507 fh[0] = inode->i_generation;
3508 fh[1] = inode->i_ino;
3509
3510 *len = 2;
3511 return 1;
3512 }
3513
3514 static const struct export_operations shmem_export_ops = {
3515 .get_parent = shmem_get_parent,
3516 .encode_fh = shmem_encode_fh,
3517 .fh_to_dentry = shmem_fh_to_dentry,
3518 };
3519
3520 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3521 bool remount)
3522 {
3523 char *this_char, *value, *rest;
3524 struct mempolicy *mpol = NULL;
3525 uid_t uid;
3526 gid_t gid;
3527
3528 while (options != NULL) {
3529 this_char = options;
3530 for (;;) {
3531 /*
3532 * NUL-terminate this option: unfortunately,
3533 * mount options form a comma-separated list,
3534 * but mpol's nodelist may also contain commas.
3535 */
3536 options = strchr(options, ',');
3537 if (options == NULL)
3538 break;
3539 options++;
3540 if (!isdigit(*options)) {
3541 options[-1] = '\0';
3542 break;
3543 }
3544 }
3545 if (!*this_char)
3546 continue;
3547 if ((value = strchr(this_char,'=')) != NULL) {
3548 *value++ = 0;
3549 } else {
3550 pr_err("tmpfs: No value for mount option '%s'\n",
3551 this_char);
3552 goto error;
3553 }
3554
3555 if (!strcmp(this_char,"size")) {
3556 unsigned long long size;
3557 size = memparse(value,&rest);
3558 if (*rest == '%') {
3559 size <<= PAGE_SHIFT;
3560 size *= totalram_pages;
3561 do_div(size, 100);
3562 rest++;
3563 }
3564 if (*rest)
3565 goto bad_val;
3566 sbinfo->max_blocks =
3567 DIV_ROUND_UP(size, PAGE_SIZE);
3568 } else if (!strcmp(this_char,"nr_blocks")) {
3569 sbinfo->max_blocks = memparse(value, &rest);
3570 if (*rest)
3571 goto bad_val;
3572 } else if (!strcmp(this_char,"nr_inodes")) {
3573 sbinfo->max_inodes = memparse(value, &rest);
3574 if (*rest || sbinfo->max_inodes < 2)
3575 goto bad_val;
3576 } else if (!strcmp(this_char,"mode")) {
3577 if (remount)
3578 continue;
3579 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3580 if (*rest)
3581 goto bad_val;
3582 } else if (!strcmp(this_char,"uid")) {
3583 if (remount)
3584 continue;
3585 uid = simple_strtoul(value, &rest, 0);
3586 if (*rest)
3587 goto bad_val;
3588 sbinfo->uid = make_kuid(current_user_ns(), uid);
3589 if (!uid_valid(sbinfo->uid))
3590 goto bad_val;
3591 } else if (!strcmp(this_char,"gid")) {
3592 if (remount)
3593 continue;
3594 gid = simple_strtoul(value, &rest, 0);
3595 if (*rest)
3596 goto bad_val;
3597 sbinfo->gid = make_kgid(current_user_ns(), gid);
3598 if (!gid_valid(sbinfo->gid))
3599 goto bad_val;
3600 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3601 } else if (!strcmp(this_char, "huge")) {
3602 int huge;
3603 huge = shmem_parse_huge(value);
3604 if (huge < 0)
3605 goto bad_val;
3606 if (!has_transparent_hugepage() &&
3607 huge != SHMEM_HUGE_NEVER)
3608 goto bad_val;
3609 sbinfo->huge = huge;
3610 #endif
3611 #ifdef CONFIG_NUMA
3612 } else if (!strcmp(this_char,"mpol")) {
3613 mpol_put(mpol);
3614 mpol = NULL;
3615 if (mpol_parse_str(value, &mpol))
3616 goto bad_val;
3617 #endif
3618 } else {
3619 pr_err("tmpfs: Bad mount option %s\n", this_char);
3620 goto error;
3621 }
3622 }
3623 sbinfo->mpol = mpol;
3624 return 0;
3625
3626 bad_val:
3627 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3628 value, this_char);
3629 error:
3630 mpol_put(mpol);
3631 return 1;
3632
3633 }
3634
3635 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3636 {
3637 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3638 struct shmem_sb_info config = *sbinfo;
3639 int inodes;
3640 int error = -EINVAL;
3641
3642 config.mpol = NULL;
3643 if (shmem_parse_options(data, &config, true))
3644 return error;
3645
3646 spin_lock(&sbinfo->stat_lock);
3647 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3648 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3649 goto out;
3650 if (config.max_inodes < inodes)
3651 goto out;
3652 /*
3653 * Those tests disallow limited->unlimited while any are in use;
3654 * but we must separately disallow unlimited->limited, because
3655 * in that case we have no record of how much is already in use.
3656 */
3657 if (config.max_blocks && !sbinfo->max_blocks)
3658 goto out;
3659 if (config.max_inodes && !sbinfo->max_inodes)
3660 goto out;
3661
3662 error = 0;
3663 sbinfo->huge = config.huge;
3664 sbinfo->max_blocks = config.max_blocks;
3665 sbinfo->max_inodes = config.max_inodes;
3666 sbinfo->free_inodes = config.max_inodes - inodes;
3667
3668 /*
3669 * Preserve previous mempolicy unless mpol remount option was specified.
3670 */
3671 if (config.mpol) {
3672 mpol_put(sbinfo->mpol);
3673 sbinfo->mpol = config.mpol; /* transfers initial ref */
3674 }
3675 out:
3676 spin_unlock(&sbinfo->stat_lock);
3677 return error;
3678 }
3679
3680 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3681 {
3682 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3683
3684 if (sbinfo->max_blocks != shmem_default_max_blocks())
3685 seq_printf(seq, ",size=%luk",
3686 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3687 if (sbinfo->max_inodes != shmem_default_max_inodes())
3688 seq_printf(seq, ",nr_inodes=%d", sbinfo->max_inodes);
3689 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3690 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3691 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3692 seq_printf(seq, ",uid=%u",
3693 from_kuid_munged(&init_user_ns, sbinfo->uid));
3694 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3695 seq_printf(seq, ",gid=%u",
3696 from_kgid_munged(&init_user_ns, sbinfo->gid));
3697 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3698 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3699 if (sbinfo->huge)
3700 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3701 #endif
3702 shmem_show_mpol(seq, sbinfo->mpol);
3703 return 0;
3704 }
3705
3706 #define MFD_NAME_PREFIX "memfd:"
3707 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3708 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3709
3710 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3711
3712 SYSCALL_DEFINE2(memfd_create,
3713 const char __user *, uname,
3714 unsigned int, flags)
3715 {
3716 struct shmem_inode_info *info;
3717 struct file *file;
3718 int fd, error;
3719 char *name;
3720 long len;
3721
3722 if (!(flags & MFD_HUGETLB)) {
3723 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3724 return -EINVAL;
3725 } else {
3726 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3727 if (flags & MFD_ALLOW_SEALING)
3728 return -EINVAL;
3729 /* Allow huge page size encoding in flags. */
3730 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3731 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3732 return -EINVAL;
3733 }
3734
3735 /* length includes terminating zero */
3736 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3737 if (len <= 0)
3738 return -EFAULT;
3739 if (len > MFD_NAME_MAX_LEN + 1)
3740 return -EINVAL;
3741
3742 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3743 if (!name)
3744 return -ENOMEM;
3745
3746 strcpy(name, MFD_NAME_PREFIX);
3747 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3748 error = -EFAULT;
3749 goto err_name;
3750 }
3751
3752 /* terminating-zero may have changed after strnlen_user() returned */
3753 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3754 error = -EFAULT;
3755 goto err_name;
3756 }
3757
3758 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3759 if (fd < 0) {
3760 error = fd;
3761 goto err_name;
3762 }
3763
3764 if (flags & MFD_HUGETLB) {
3765 struct user_struct *user = NULL;
3766
3767 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3768 HUGETLB_ANONHUGE_INODE,
3769 (flags >> MFD_HUGE_SHIFT) &
3770 MFD_HUGE_MASK);
3771 } else
3772 file = shmem_file_setup(name, 0, VM_NORESERVE);
3773 if (IS_ERR(file)) {
3774 error = PTR_ERR(file);
3775 goto err_fd;
3776 }
3777 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3778 file->f_flags |= O_RDWR | O_LARGEFILE;
3779
3780 if (flags & MFD_ALLOW_SEALING) {
3781 /*
3782 * flags check at beginning of function ensures
3783 * this is not a hugetlbfs (MFD_HUGETLB) file.
3784 */
3785 info = SHMEM_I(file_inode(file));
3786 info->seals &= ~F_SEAL_SEAL;
3787 }
3788
3789 fd_install(fd, file);
3790 kfree(name);
3791 return fd;
3792
3793 err_fd:
3794 put_unused_fd(fd);
3795 err_name:
3796 kfree(name);
3797 return error;
3798 }
3799
3800 #endif /* CONFIG_TMPFS */
3801
3802 static void shmem_put_super(struct super_block *sb)
3803 {
3804 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3805
3806 if (!sbinfo->idr_nouse)
3807 idr_destroy(&sbinfo->idr);
3808 percpu_counter_destroy(&sbinfo->used_blocks);
3809 mpol_put(sbinfo->mpol);
3810 kfree(sbinfo);
3811 sb->s_fs_info = NULL;
3812 }
3813
3814 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3815 {
3816 struct inode *inode;
3817 struct shmem_sb_info *sbinfo;
3818 int err = -ENOMEM;
3819
3820 /* Round up to L1_CACHE_BYTES to resist false sharing */
3821 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3822 L1_CACHE_BYTES), GFP_KERNEL);
3823 if (!sbinfo)
3824 return -ENOMEM;
3825
3826 mutex_init(&sbinfo->idr_lock);
3827 idr_init(&sbinfo->idr);
3828 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3829 sbinfo->uid = current_fsuid();
3830 sbinfo->gid = current_fsgid();
3831 sb->s_fs_info = sbinfo;
3832
3833 #ifdef CONFIG_TMPFS
3834 /*
3835 * Per default we only allow half of the physical ram per
3836 * tmpfs instance, limiting inodes to one per page of lowmem;
3837 * but the internal instance is left unlimited.
3838 */
3839 if (!(sb->s_flags & SB_KERNMOUNT)) {
3840 sbinfo->max_blocks = shmem_default_max_blocks();
3841 sbinfo->max_inodes = shmem_default_max_inodes();
3842 if (shmem_parse_options(data, sbinfo, false)) {
3843 err = -EINVAL;
3844 goto failed;
3845 }
3846 } else {
3847 sb->s_flags |= SB_NOUSER;
3848 }
3849 sb->s_export_op = &shmem_export_ops;
3850 sb->s_flags |= SB_NOSEC;
3851 #else
3852 sb->s_flags |= SB_NOUSER;
3853 #endif
3854
3855 spin_lock_init(&sbinfo->stat_lock);
3856 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3857 goto failed;
3858 sbinfo->free_inodes = sbinfo->max_inodes;
3859 spin_lock_init(&sbinfo->shrinklist_lock);
3860 INIT_LIST_HEAD(&sbinfo->shrinklist);
3861
3862 sb->s_maxbytes = MAX_LFS_FILESIZE;
3863 sb->s_blocksize = PAGE_SIZE;
3864 sb->s_blocksize_bits = PAGE_SHIFT;
3865 sb->s_magic = TMPFS_MAGIC;
3866 sb->s_op = &shmem_ops;
3867 sb->s_time_gran = 1;
3868 #ifdef CONFIG_TMPFS_XATTR
3869 sb->s_xattr = shmem_xattr_handlers;
3870 #endif
3871 #ifdef CONFIG_TMPFS_POSIX_ACL
3872 sb->s_flags |= SB_POSIXACL;
3873 #endif
3874 uuid_gen(&sb->s_uuid);
3875
3876 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3877 if (!inode)
3878 goto failed;
3879 inode->i_uid = sbinfo->uid;
3880 inode->i_gid = sbinfo->gid;
3881 sb->s_root = d_make_root(inode);
3882 if (!sb->s_root)
3883 goto failed;
3884 return 0;
3885
3886 failed:
3887 shmem_put_super(sb);
3888 return err;
3889 }
3890
3891 static struct kmem_cache *shmem_inode_cachep;
3892
3893 static struct inode *shmem_alloc_inode(struct super_block *sb)
3894 {
3895 struct shmem_inode_info *info;
3896 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3897 if (!info)
3898 return NULL;
3899 return &info->vfs_inode;
3900 }
3901
3902 static void shmem_destroy_callback(struct rcu_head *head)
3903 {
3904 struct inode *inode = container_of(head, struct inode, i_rcu);
3905 if (S_ISLNK(inode->i_mode))
3906 kfree(inode->i_link);
3907 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3908 }
3909
3910 static void shmem_destroy_inode(struct inode *inode)
3911 {
3912 if (S_ISREG(inode->i_mode))
3913 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3914 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3915 }
3916
3917 static void shmem_init_inode(void *foo)
3918 {
3919 struct shmem_inode_info *info = foo;
3920 inode_init_once(&info->vfs_inode);
3921 }
3922
3923 static void shmem_init_inodecache(void)
3924 {
3925 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3926 sizeof(struct shmem_inode_info),
3927 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3928 }
3929
3930 static void shmem_destroy_inodecache(void)
3931 {
3932 kmem_cache_destroy(shmem_inode_cachep);
3933 }
3934
3935 static __init void shmem_no_idr(struct super_block *sb)
3936 {
3937 struct shmem_sb_info *sbinfo;
3938
3939 sbinfo = SHMEM_SB(sb);
3940 sbinfo->idr_nouse = true;
3941 idr_destroy(&sbinfo->idr);
3942 }
3943
3944 static const struct address_space_operations shmem_aops = {
3945 .writepage = shmem_writepage,
3946 .set_page_dirty = __set_page_dirty_no_writeback,
3947 #ifdef CONFIG_TMPFS
3948 .write_begin = shmem_write_begin,
3949 .write_end = shmem_write_end,
3950 #endif
3951 #ifdef CONFIG_MIGRATION
3952 .migratepage = migrate_page,
3953 #endif
3954 .error_remove_page = generic_error_remove_page,
3955 };
3956
3957 static const struct file_operations shmem_file_operations = {
3958 .mmap = shmem_mmap,
3959 .get_unmapped_area = shmem_get_unmapped_area,
3960 #ifdef CONFIG_TMPFS
3961 .llseek = shmem_file_llseek,
3962 .read_iter = shmem_file_read_iter,
3963 .write_iter = generic_file_write_iter,
3964 .fsync = noop_fsync,
3965 .splice_read = generic_file_splice_read,
3966 .splice_write = iter_file_splice_write,
3967 .fallocate = shmem_fallocate,
3968 #endif
3969 };
3970
3971 static const struct inode_operations shmem_inode_operations = {
3972 .getattr = shmem_getattr,
3973 .setattr = shmem_setattr,
3974 #ifdef CONFIG_TMPFS_XATTR
3975 .listxattr = shmem_listxattr,
3976 .set_acl = simple_set_acl,
3977 #endif
3978 };
3979
3980 static const struct inode_operations shmem_dir_inode_operations = {
3981 #ifdef CONFIG_TMPFS
3982 .create = shmem_create,
3983 .lookup = simple_lookup,
3984 .link = shmem_link,
3985 .unlink = shmem_unlink,
3986 .symlink = shmem_symlink,
3987 .mkdir = shmem_mkdir,
3988 .rmdir = shmem_rmdir,
3989 .mknod = shmem_mknod,
3990 .rename = shmem_rename2,
3991 .tmpfile = shmem_tmpfile,
3992 #endif
3993 #ifdef CONFIG_TMPFS_XATTR
3994 .listxattr = shmem_listxattr,
3995 #endif
3996 #ifdef CONFIG_TMPFS_POSIX_ACL
3997 .setattr = shmem_setattr,
3998 .set_acl = simple_set_acl,
3999 #endif
4000 };
4001
4002 static const struct inode_operations shmem_special_inode_operations = {
4003 #ifdef CONFIG_TMPFS_XATTR
4004 .listxattr = shmem_listxattr,
4005 #endif
4006 #ifdef CONFIG_TMPFS_POSIX_ACL
4007 .setattr = shmem_setattr,
4008 .set_acl = simple_set_acl,
4009 #endif
4010 };
4011
4012 static const struct super_operations shmem_ops = {
4013 .alloc_inode = shmem_alloc_inode,
4014 .destroy_inode = shmem_destroy_inode,
4015 #ifdef CONFIG_TMPFS
4016 .statfs = shmem_statfs,
4017 .remount_fs = shmem_remount_fs,
4018 .show_options = shmem_show_options,
4019 #endif
4020 .evict_inode = shmem_evict_inode,
4021 .drop_inode = generic_delete_inode,
4022 .put_super = shmem_put_super,
4023 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4024 .nr_cached_objects = shmem_unused_huge_count,
4025 .free_cached_objects = shmem_unused_huge_scan,
4026 #endif
4027 };
4028
4029 static const struct vm_operations_struct shmem_vm_ops = {
4030 .fault = shmem_fault,
4031 .map_pages = filemap_map_pages,
4032 #ifdef CONFIG_NUMA
4033 .set_policy = shmem_set_policy,
4034 .get_policy = shmem_get_policy,
4035 #endif
4036 };
4037
4038 static struct dentry *shmem_mount(struct file_system_type *fs_type,
4039 int flags, const char *dev_name, void *data)
4040 {
4041 return mount_nodev(fs_type, flags, data, shmem_fill_super);
4042 }
4043
4044 static struct file_system_type shmem_fs_type = {
4045 .owner = THIS_MODULE,
4046 .name = "tmpfs",
4047 .mount = shmem_mount,
4048 .kill_sb = kill_litter_super,
4049 .fs_flags = FS_USERNS_MOUNT,
4050 };
4051
4052 int __init shmem_init(void)
4053 {
4054 int error;
4055
4056 /* If rootfs called this, don't re-init */
4057 if (shmem_inode_cachep)
4058 return 0;
4059
4060 shmem_init_inodecache();
4061
4062 error = register_filesystem(&shmem_fs_type);
4063 if (error) {
4064 pr_err("Could not register tmpfs\n");
4065 goto out2;
4066 }
4067
4068 shm_mnt = kern_mount(&shmem_fs_type);
4069 if (IS_ERR(shm_mnt)) {
4070 error = PTR_ERR(shm_mnt);
4071 pr_err("Could not kern_mount tmpfs\n");
4072 goto out1;
4073 }
4074 shmem_no_idr(shm_mnt->mnt_sb);
4075
4076 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4077 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4078 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4079 else
4080 shmem_huge = 0; /* just in case it was patched */
4081 #endif
4082 return 0;
4083
4084 out1:
4085 unregister_filesystem(&shmem_fs_type);
4086 out2:
4087 shmem_destroy_inodecache();
4088 shm_mnt = ERR_PTR(error);
4089 return error;
4090 }
4091
4092 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4093 static ssize_t shmem_enabled_show(struct kobject *kobj,
4094 struct kobj_attribute *attr, char *buf)
4095 {
4096 int values[] = {
4097 SHMEM_HUGE_ALWAYS,
4098 SHMEM_HUGE_WITHIN_SIZE,
4099 SHMEM_HUGE_ADVISE,
4100 SHMEM_HUGE_NEVER,
4101 SHMEM_HUGE_DENY,
4102 SHMEM_HUGE_FORCE,
4103 };
4104 int i, count;
4105
4106 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4107 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4108
4109 count += sprintf(buf + count, fmt,
4110 shmem_format_huge(values[i]));
4111 }
4112 buf[count - 1] = '\n';
4113 return count;
4114 }
4115
4116 static ssize_t shmem_enabled_store(struct kobject *kobj,
4117 struct kobj_attribute *attr, const char *buf, size_t count)
4118 {
4119 char tmp[16];
4120 int huge;
4121
4122 if (count + 1 > sizeof(tmp))
4123 return -EINVAL;
4124 memcpy(tmp, buf, count);
4125 tmp[count] = '\0';
4126 if (count && tmp[count - 1] == '\n')
4127 tmp[count - 1] = '\0';
4128
4129 huge = shmem_parse_huge(tmp);
4130 if (huge == -EINVAL)
4131 return -EINVAL;
4132 if (!has_transparent_hugepage() &&
4133 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4134 return -EINVAL;
4135
4136 shmem_huge = huge;
4137 if (shmem_huge > SHMEM_HUGE_DENY)
4138 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4139 return count;
4140 }
4141
4142 struct kobj_attribute shmem_enabled_attr =
4143 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4144 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4145
4146 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4147 bool shmem_huge_enabled(struct vm_area_struct *vma)
4148 {
4149 struct inode *inode = file_inode(vma->vm_file);
4150 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4151 loff_t i_size;
4152 pgoff_t off;
4153
4154 if (shmem_huge == SHMEM_HUGE_FORCE)
4155 return true;
4156 if (shmem_huge == SHMEM_HUGE_DENY)
4157 return false;
4158 switch (sbinfo->huge) {
4159 case SHMEM_HUGE_NEVER:
4160 return false;
4161 case SHMEM_HUGE_ALWAYS:
4162 return true;
4163 case SHMEM_HUGE_WITHIN_SIZE:
4164 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4165 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4166 if (i_size >= HPAGE_PMD_SIZE &&
4167 i_size >> PAGE_SHIFT >= off)
4168 return true;
4169 /* fall through */
4170 case SHMEM_HUGE_ADVISE:
4171 /* TODO: implement fadvise() hints */
4172 return (vma->vm_flags & VM_HUGEPAGE);
4173 default:
4174 VM_BUG_ON(1);
4175 return false;
4176 }
4177 }
4178 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4179
4180 #else /* !CONFIG_SHMEM */
4181
4182 /*
4183 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4184 *
4185 * This is intended for small system where the benefits of the full
4186 * shmem code (swap-backed and resource-limited) are outweighed by
4187 * their complexity. On systems without swap this code should be
4188 * effectively equivalent, but much lighter weight.
4189 */
4190
4191 static struct file_system_type shmem_fs_type = {
4192 .name = "tmpfs",
4193 .mount = ramfs_mount,
4194 .kill_sb = kill_litter_super,
4195 .fs_flags = FS_USERNS_MOUNT,
4196 };
4197
4198 int __init shmem_init(void)
4199 {
4200 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4201
4202 shm_mnt = kern_mount(&shmem_fs_type);
4203 BUG_ON(IS_ERR(shm_mnt));
4204
4205 return 0;
4206 }
4207
4208 int shmem_unuse(swp_entry_t swap, struct page *page)
4209 {
4210 return 0;
4211 }
4212
4213 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4214 {
4215 return 0;
4216 }
4217
4218 void shmem_unlock_mapping(struct address_space *mapping)
4219 {
4220 }
4221
4222 #ifdef CONFIG_MMU
4223 unsigned long shmem_get_unmapped_area(struct file *file,
4224 unsigned long addr, unsigned long len,
4225 unsigned long pgoff, unsigned long flags)
4226 {
4227 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4228 }
4229 #endif
4230
4231 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4232 {
4233 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4234 }
4235 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4236
4237 #define shmem_vm_ops generic_file_vm_ops
4238 #define shmem_file_operations ramfs_file_operations
4239 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4240 #define shmem_acct_size(flags, size) 0
4241 #define shmem_unacct_size(flags, size) do {} while (0)
4242
4243 #endif /* CONFIG_SHMEM */
4244
4245 /* common code */
4246
4247 static const struct dentry_operations anon_ops = {
4248 .d_dname = simple_dname
4249 };
4250
4251 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4252 unsigned long flags, unsigned int i_flags)
4253 {
4254 struct file *res;
4255 struct inode *inode;
4256 struct path path;
4257 struct super_block *sb;
4258 struct qstr this;
4259
4260 if (IS_ERR(mnt))
4261 return ERR_CAST(mnt);
4262
4263 if (size < 0 || size > MAX_LFS_FILESIZE)
4264 return ERR_PTR(-EINVAL);
4265
4266 if (shmem_acct_size(flags, size))
4267 return ERR_PTR(-ENOMEM);
4268
4269 res = ERR_PTR(-ENOMEM);
4270 this.name = name;
4271 this.len = strlen(name);
4272 this.hash = 0; /* will go */
4273 sb = mnt->mnt_sb;
4274 path.mnt = mntget(mnt);
4275 path.dentry = d_alloc_pseudo(sb, &this);
4276 if (!path.dentry)
4277 goto put_memory;
4278 d_set_d_op(path.dentry, &anon_ops);
4279
4280 res = ERR_PTR(-ENOSPC);
4281 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4282 if (!inode)
4283 goto put_memory;
4284
4285 inode->i_flags |= i_flags;
4286 d_instantiate(path.dentry, inode);
4287 inode->i_size = size;
4288 clear_nlink(inode); /* It is unlinked */
4289 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4290 if (IS_ERR(res))
4291 goto put_path;
4292
4293 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4294 &shmem_file_operations);
4295 if (IS_ERR(res))
4296 goto put_path;
4297
4298 return res;
4299
4300 put_memory:
4301 shmem_unacct_size(flags, size);
4302 put_path:
4303 path_put(&path);
4304 return res;
4305 }
4306
4307 /**
4308 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4309 * kernel internal. There will be NO LSM permission checks against the
4310 * underlying inode. So users of this interface must do LSM checks at a
4311 * higher layer. The users are the big_key and shm implementations. LSM
4312 * checks are provided at the key or shm level rather than the inode.
4313 * @name: name for dentry (to be seen in /proc/<pid>/maps
4314 * @size: size to be set for the file
4315 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4316 */
4317 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4318 {
4319 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4320 }
4321
4322 /**
4323 * shmem_file_setup - get an unlinked file living in tmpfs
4324 * @name: name for dentry (to be seen in /proc/<pid>/maps
4325 * @size: size to be set for the file
4326 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4327 */
4328 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4329 {
4330 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4331 }
4332 EXPORT_SYMBOL_GPL(shmem_file_setup);
4333
4334 /**
4335 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4336 * @mnt: the tmpfs mount where the file will be created
4337 * @name: name for dentry (to be seen in /proc/<pid>/maps
4338 * @size: size to be set for the file
4339 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4340 */
4341 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4342 loff_t size, unsigned long flags)
4343 {
4344 return __shmem_file_setup(mnt, name, size, flags, 0);
4345 }
4346 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4347
4348 /**
4349 * shmem_zero_setup - setup a shared anonymous mapping
4350 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4351 */
4352 int shmem_zero_setup(struct vm_area_struct *vma)
4353 {
4354 struct file *file;
4355 loff_t size = vma->vm_end - vma->vm_start;
4356
4357 /*
4358 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4359 * between XFS directory reading and selinux: since this file is only
4360 * accessible to the user through its mapping, use S_PRIVATE flag to
4361 * bypass file security, in the same way as shmem_kernel_file_setup().
4362 */
4363 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4364 if (IS_ERR(file))
4365 return PTR_ERR(file);
4366
4367 if (vma->vm_file)
4368 fput(vma->vm_file);
4369 vma->vm_file = file;
4370 vma->vm_ops = &shmem_vm_ops;
4371
4372 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4373 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4374 (vma->vm_end & HPAGE_PMD_MASK)) {
4375 khugepaged_enter(vma, vma->vm_flags);
4376 }
4377
4378 return 0;
4379 }
4380
4381 /**
4382 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4383 * @mapping: the page's address_space
4384 * @index: the page index
4385 * @gfp: the page allocator flags to use if allocating
4386 *
4387 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4388 * with any new page allocations done using the specified allocation flags.
4389 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4390 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4391 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4392 *
4393 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4394 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4395 */
4396 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4397 pgoff_t index, gfp_t gfp)
4398 {
4399 #ifdef CONFIG_SHMEM
4400 struct inode *inode = mapping->host;
4401 struct page *page;
4402 int error;
4403
4404 BUG_ON(mapping->a_ops != &shmem_aops);
4405 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4406 gfp, NULL, NULL, NULL);
4407 if (error)
4408 page = ERR_PTR(error);
4409 else
4410 unlock_page(page);
4411 return page;
4412 #else
4413 /*
4414 * The tiny !SHMEM case uses ramfs without swap
4415 */
4416 return read_cache_page_gfp(mapping, index, gfp);
4417 #endif
4418 }
4419 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);