]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/shmem.c
Merge branch 'md-fixes' of https://git.kernel.org/pub/scm/linux/kernel/git/song/md...
[mirror_ubuntu-kernels.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
101 */
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
117 bool full_inums;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 struct page **pagep, enum sgp_type sgp,
149 gfp_t gfp, struct vm_area_struct *vma,
150 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 struct page **pagep, enum sgp_type sgp)
154 {
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 return sb->s_fs_info;
162 }
163
164 /*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 return (flags & VM_NORESERVE) ?
173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 if (!(flags & VM_NORESERVE))
179 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
184 {
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 }
192 return 0;
193 }
194
195 /*
196 * ... whereas tmpfs objects are accounted incrementally as
197 * pages are allocated, in order to allow large sparse files.
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 if (!(flags & VM_NORESERVE))
204 return 0;
205
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221 if (shmem_acct_block(info->flags, pages))
222 return false;
223
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
227 goto unacct;
228 percpu_counter_add(&sbinfo->used_blocks, pages);
229 }
230
231 return true;
232
233 unacct:
234 shmem_unacct_blocks(info->flags, pages);
235 return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
268 *
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
273 */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 ino_t ino;
279
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
281 spin_lock(&sbinfo->stat_lock);
282 if (sbinfo->max_inodes) {
283 if (!sbinfo->free_inodes) {
284 spin_unlock(&sbinfo->stat_lock);
285 return -ENOSPC;
286 }
287 sbinfo->free_inodes--;
288 }
289 if (inop) {
290 ino = sbinfo->next_ino++;
291 if (unlikely(is_zero_ino(ino)))
292 ino = sbinfo->next_ino++;
293 if (unlikely(!sbinfo->full_inums &&
294 ino > UINT_MAX)) {
295 /*
296 * Emulate get_next_ino uint wraparound for
297 * compatibility
298 */
299 if (IS_ENABLED(CONFIG_64BIT))
300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 __func__, MINOR(sb->s_dev));
302 sbinfo->next_ino = 1;
303 ino = sbinfo->next_ino++;
304 }
305 *inop = ino;
306 }
307 spin_unlock(&sbinfo->stat_lock);
308 } else if (inop) {
309 /*
310 * __shmem_file_setup, one of our callers, is lock-free: it
311 * doesn't hold stat_lock in shmem_reserve_inode since
312 * max_inodes is always 0, and is called from potentially
313 * unknown contexts. As such, use a per-cpu batched allocator
314 * which doesn't require the per-sb stat_lock unless we are at
315 * the batch boundary.
316 *
317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 * shmem mounts are not exposed to userspace, so we don't need
319 * to worry about things like glibc compatibility.
320 */
321 ino_t *next_ino;
322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 ino = *next_ino;
324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 spin_lock(&sbinfo->stat_lock);
326 ino = sbinfo->next_ino;
327 sbinfo->next_ino += SHMEM_INO_BATCH;
328 spin_unlock(&sbinfo->stat_lock);
329 if (unlikely(is_zero_ino(ino)))
330 ino++;
331 }
332 *inop = ino;
333 *next_ino = ++ino;
334 put_cpu();
335 }
336
337 return 0;
338 }
339
340 static void shmem_free_inode(struct super_block *sb)
341 {
342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 if (sbinfo->max_inodes) {
344 spin_lock(&sbinfo->stat_lock);
345 sbinfo->free_inodes++;
346 spin_unlock(&sbinfo->stat_lock);
347 }
348 }
349
350 /**
351 * shmem_recalc_inode - recalculate the block usage of an inode
352 * @inode: inode to recalc
353 *
354 * We have to calculate the free blocks since the mm can drop
355 * undirtied hole pages behind our back.
356 *
357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359 *
360 * It has to be called with the spinlock held.
361 */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364 struct shmem_inode_info *info = SHMEM_I(inode);
365 long freed;
366
367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 if (freed > 0) {
369 info->alloced -= freed;
370 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 shmem_inode_unacct_blocks(inode, freed);
372 }
373 }
374
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377 struct shmem_inode_info *info = SHMEM_I(inode);
378 unsigned long flags;
379
380 if (!shmem_inode_acct_block(inode, pages))
381 return false;
382
383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 inode->i_mapping->nrpages += pages;
385
386 spin_lock_irqsave(&info->lock, flags);
387 info->alloced += pages;
388 inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 shmem_recalc_inode(inode);
390 spin_unlock_irqrestore(&info->lock, flags);
391
392 return true;
393 }
394
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397 struct shmem_inode_info *info = SHMEM_I(inode);
398 unsigned long flags;
399
400 /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
402 spin_lock_irqsave(&info->lock, flags);
403 info->alloced -= pages;
404 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 shmem_recalc_inode(inode);
406 spin_unlock_irqrestore(&info->lock, flags);
407
408 shmem_inode_unacct_blocks(inode, pages);
409 }
410
411 /*
412 * Replace item expected in xarray by a new item, while holding xa_lock.
413 */
414 static int shmem_replace_entry(struct address_space *mapping,
415 pgoff_t index, void *expected, void *replacement)
416 {
417 XA_STATE(xas, &mapping->i_pages, index);
418 void *item;
419
420 VM_BUG_ON(!expected);
421 VM_BUG_ON(!replacement);
422 item = xas_load(&xas);
423 if (item != expected)
424 return -ENOENT;
425 xas_store(&xas, replacement);
426 return 0;
427 }
428
429 /*
430 * Sometimes, before we decide whether to proceed or to fail, we must check
431 * that an entry was not already brought back from swap by a racing thread.
432 *
433 * Checking page is not enough: by the time a SwapCache page is locked, it
434 * might be reused, and again be SwapCache, using the same swap as before.
435 */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437 pgoff_t index, swp_entry_t swap)
438 {
439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441
442 /*
443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444 *
445 * SHMEM_HUGE_NEVER:
446 * disables huge pages for the mount;
447 * SHMEM_HUGE_ALWAYS:
448 * enables huge pages for the mount;
449 * SHMEM_HUGE_WITHIN_SIZE:
450 * only allocate huge pages if the page will be fully within i_size,
451 * also respect fadvise()/madvise() hints;
452 * SHMEM_HUGE_ADVISE:
453 * only allocate huge pages if requested with fadvise()/madvise();
454 */
455
456 #define SHMEM_HUGE_NEVER 0
457 #define SHMEM_HUGE_ALWAYS 1
458 #define SHMEM_HUGE_WITHIN_SIZE 2
459 #define SHMEM_HUGE_ADVISE 3
460
461 /*
462 * Special values.
463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464 *
465 * SHMEM_HUGE_DENY:
466 * disables huge on shm_mnt and all mounts, for emergency use;
467 * SHMEM_HUGE_FORCE:
468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469 *
470 */
471 #define SHMEM_HUGE_DENY (-1)
472 #define SHMEM_HUGE_FORCE (-2)
473
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476
477 static int shmem_huge __read_mostly;
478
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482 if (!strcmp(str, "never"))
483 return SHMEM_HUGE_NEVER;
484 if (!strcmp(str, "always"))
485 return SHMEM_HUGE_ALWAYS;
486 if (!strcmp(str, "within_size"))
487 return SHMEM_HUGE_WITHIN_SIZE;
488 if (!strcmp(str, "advise"))
489 return SHMEM_HUGE_ADVISE;
490 if (!strcmp(str, "deny"))
491 return SHMEM_HUGE_DENY;
492 if (!strcmp(str, "force"))
493 return SHMEM_HUGE_FORCE;
494 return -EINVAL;
495 }
496 #endif
497
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501 switch (huge) {
502 case SHMEM_HUGE_NEVER:
503 return "never";
504 case SHMEM_HUGE_ALWAYS:
505 return "always";
506 case SHMEM_HUGE_WITHIN_SIZE:
507 return "within_size";
508 case SHMEM_HUGE_ADVISE:
509 return "advise";
510 case SHMEM_HUGE_DENY:
511 return "deny";
512 case SHMEM_HUGE_FORCE:
513 return "force";
514 default:
515 VM_BUG_ON(1);
516 return "bad_val";
517 }
518 }
519 #endif
520
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 LIST_HEAD(list), *pos, *next;
525 LIST_HEAD(to_remove);
526 struct inode *inode;
527 struct shmem_inode_info *info;
528 struct page *page;
529 unsigned long batch = sc ? sc->nr_to_scan : 128;
530 int removed = 0, split = 0;
531
532 if (list_empty(&sbinfo->shrinklist))
533 return SHRINK_STOP;
534
535 spin_lock(&sbinfo->shrinklist_lock);
536 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539 /* pin the inode */
540 inode = igrab(&info->vfs_inode);
541
542 /* inode is about to be evicted */
543 if (!inode) {
544 list_del_init(&info->shrinklist);
545 removed++;
546 goto next;
547 }
548
549 /* Check if there's anything to gain */
550 if (round_up(inode->i_size, PAGE_SIZE) ==
551 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552 list_move(&info->shrinklist, &to_remove);
553 removed++;
554 goto next;
555 }
556
557 list_move(&info->shrinklist, &list);
558 next:
559 if (!--batch)
560 break;
561 }
562 spin_unlock(&sbinfo->shrinklist_lock);
563
564 list_for_each_safe(pos, next, &to_remove) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 inode = &info->vfs_inode;
567 list_del_init(&info->shrinklist);
568 iput(inode);
569 }
570
571 list_for_each_safe(pos, next, &list) {
572 int ret;
573
574 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 inode = &info->vfs_inode;
576
577 if (nr_to_split && split >= nr_to_split)
578 goto leave;
579
580 page = find_get_page(inode->i_mapping,
581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 if (!page)
583 goto drop;
584
585 /* No huge page at the end of the file: nothing to split */
586 if (!PageTransHuge(page)) {
587 put_page(page);
588 goto drop;
589 }
590
591 /*
592 * Leave the inode on the list if we failed to lock
593 * the page at this time.
594 *
595 * Waiting for the lock may lead to deadlock in the
596 * reclaim path.
597 */
598 if (!trylock_page(page)) {
599 put_page(page);
600 goto leave;
601 }
602
603 ret = split_huge_page(page);
604 unlock_page(page);
605 put_page(page);
606
607 /* If split failed leave the inode on the list */
608 if (ret)
609 goto leave;
610
611 split++;
612 drop:
613 list_del_init(&info->shrinklist);
614 removed++;
615 leave:
616 iput(inode);
617 }
618
619 spin_lock(&sbinfo->shrinklist_lock);
620 list_splice_tail(&list, &sbinfo->shrinklist);
621 sbinfo->shrinklist_len -= removed;
622 spin_unlock(&sbinfo->shrinklist_lock);
623
624 return split;
625 }
626
627 static long shmem_unused_huge_scan(struct super_block *sb,
628 struct shrink_control *sc)
629 {
630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632 if (!READ_ONCE(sbinfo->shrinklist_len))
633 return SHRINK_STOP;
634
635 return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637
638 static long shmem_unused_huge_count(struct super_block *sb,
639 struct shrink_control *sc)
640 {
641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645
646 #define shmem_huge SHMEM_HUGE_DENY
647
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 struct shrink_control *sc, unsigned long nr_to_split)
650 {
651 return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 shmem_huge != SHMEM_HUGE_DENY)
660 return true;
661 return false;
662 }
663
664 /*
665 * Like add_to_page_cache_locked, but error if expected item has gone.
666 */
667 static int shmem_add_to_page_cache(struct page *page,
668 struct address_space *mapping,
669 pgoff_t index, void *expected, gfp_t gfp,
670 struct mm_struct *charge_mm)
671 {
672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 unsigned long i = 0;
674 unsigned long nr = compound_nr(page);
675 int error;
676
677 VM_BUG_ON_PAGE(PageTail(page), page);
678 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679 VM_BUG_ON_PAGE(!PageLocked(page), page);
680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681 VM_BUG_ON(expected && PageTransHuge(page));
682
683 page_ref_add(page, nr);
684 page->mapping = mapping;
685 page->index = index;
686
687 if (!PageSwapCache(page)) {
688 error = mem_cgroup_charge(page, charge_mm, gfp);
689 if (error) {
690 if (PageTransHuge(page)) {
691 count_vm_event(THP_FILE_FALLBACK);
692 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 }
694 goto error;
695 }
696 }
697 cgroup_throttle_swaprate(page, gfp);
698
699 do {
700 void *entry;
701 xas_lock_irq(&xas);
702 entry = xas_find_conflict(&xas);
703 if (entry != expected)
704 xas_set_err(&xas, -EEXIST);
705 xas_create_range(&xas);
706 if (xas_error(&xas))
707 goto unlock;
708 next:
709 xas_store(&xas, page);
710 if (++i < nr) {
711 xas_next(&xas);
712 goto next;
713 }
714 if (PageTransHuge(page)) {
715 count_vm_event(THP_FILE_ALLOC);
716 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
717 }
718 mapping->nrpages += nr;
719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 __mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722 xas_unlock_irq(&xas);
723 } while (xas_nomem(&xas, gfp));
724
725 if (xas_error(&xas)) {
726 error = xas_error(&xas);
727 goto error;
728 }
729
730 return 0;
731 error:
732 page->mapping = NULL;
733 page_ref_sub(page, nr);
734 return error;
735 }
736
737 /*
738 * Like delete_from_page_cache, but substitutes swap for page.
739 */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742 struct address_space *mapping = page->mapping;
743 int error;
744
745 VM_BUG_ON_PAGE(PageCompound(page), page);
746
747 xa_lock_irq(&mapping->i_pages);
748 error = shmem_replace_entry(mapping, page->index, page, radswap);
749 page->mapping = NULL;
750 mapping->nrpages--;
751 __dec_lruvec_page_state(page, NR_FILE_PAGES);
752 __dec_lruvec_page_state(page, NR_SHMEM);
753 xa_unlock_irq(&mapping->i_pages);
754 put_page(page);
755 BUG_ON(error);
756 }
757
758 /*
759 * Remove swap entry from page cache, free the swap and its page cache.
760 */
761 static int shmem_free_swap(struct address_space *mapping,
762 pgoff_t index, void *radswap)
763 {
764 void *old;
765
766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767 if (old != radswap)
768 return -ENOENT;
769 free_swap_and_cache(radix_to_swp_entry(radswap));
770 return 0;
771 }
772
773 /*
774 * Determine (in bytes) how many of the shmem object's pages mapped by the
775 * given offsets are swapped out.
776 *
777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778 * as long as the inode doesn't go away and racy results are not a problem.
779 */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 pgoff_t start, pgoff_t end)
782 {
783 XA_STATE(xas, &mapping->i_pages, start);
784 struct page *page;
785 unsigned long swapped = 0;
786
787 rcu_read_lock();
788 xas_for_each(&xas, page, end - 1) {
789 if (xas_retry(&xas, page))
790 continue;
791 if (xa_is_value(page))
792 swapped++;
793
794 if (need_resched()) {
795 xas_pause(&xas);
796 cond_resched_rcu();
797 }
798 }
799
800 rcu_read_unlock();
801
802 return swapped << PAGE_SHIFT;
803 }
804
805 /*
806 * Determine (in bytes) how many of the shmem object's pages mapped by the
807 * given vma is swapped out.
808 *
809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810 * as long as the inode doesn't go away and racy results are not a problem.
811 */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814 struct inode *inode = file_inode(vma->vm_file);
815 struct shmem_inode_info *info = SHMEM_I(inode);
816 struct address_space *mapping = inode->i_mapping;
817 unsigned long swapped;
818
819 /* Be careful as we don't hold info->lock */
820 swapped = READ_ONCE(info->swapped);
821
822 /*
823 * The easier cases are when the shmem object has nothing in swap, or
824 * the vma maps it whole. Then we can simply use the stats that we
825 * already track.
826 */
827 if (!swapped)
828 return 0;
829
830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 return swapped << PAGE_SHIFT;
832
833 /* Here comes the more involved part */
834 return shmem_partial_swap_usage(mapping,
835 linear_page_index(vma, vma->vm_start),
836 linear_page_index(vma, vma->vm_end));
837 }
838
839 /*
840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841 */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844 struct pagevec pvec;
845 pgoff_t index = 0;
846
847 pagevec_init(&pvec);
848 /*
849 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850 */
851 while (!mapping_unevictable(mapping)) {
852 if (!pagevec_lookup(&pvec, mapping, &index))
853 break;
854 check_move_unevictable_pages(&pvec);
855 pagevec_release(&pvec);
856 cond_resched();
857 }
858 }
859
860 /*
861 * Check whether a hole-punch or truncation needs to split a huge page,
862 * returning true if no split was required, or the split has been successful.
863 *
864 * Eviction (or truncation to 0 size) should never need to split a huge page;
865 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866 * head, and then succeeded to trylock on tail.
867 *
868 * A split can only succeed when there are no additional references on the
869 * huge page: so the split below relies upon find_get_entries() having stopped
870 * when it found a subpage of the huge page, without getting further references.
871 */
872 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873 {
874 if (!PageTransCompound(page))
875 return true;
876
877 /* Just proceed to delete a huge page wholly within the range punched */
878 if (PageHead(page) &&
879 page->index >= start && page->index + HPAGE_PMD_NR <= end)
880 return true;
881
882 /* Try to split huge page, so we can truly punch the hole or truncate */
883 return split_huge_page(page) >= 0;
884 }
885
886 /*
887 * Remove range of pages and swap entries from page cache, and free them.
888 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
889 */
890 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891 bool unfalloc)
892 {
893 struct address_space *mapping = inode->i_mapping;
894 struct shmem_inode_info *info = SHMEM_I(inode);
895 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
899 struct pagevec pvec;
900 pgoff_t indices[PAGEVEC_SIZE];
901 long nr_swaps_freed = 0;
902 pgoff_t index;
903 int i;
904
905 if (lend == -1)
906 end = -1; /* unsigned, so actually very big */
907
908 pagevec_init(&pvec);
909 index = start;
910 while (index < end && find_lock_entries(mapping, index, end - 1,
911 &pvec, indices)) {
912 for (i = 0; i < pagevec_count(&pvec); i++) {
913 struct page *page = pvec.pages[i];
914
915 index = indices[i];
916
917 if (xa_is_value(page)) {
918 if (unfalloc)
919 continue;
920 nr_swaps_freed += !shmem_free_swap(mapping,
921 index, page);
922 continue;
923 }
924 index += thp_nr_pages(page) - 1;
925
926 if (!unfalloc || !PageUptodate(page))
927 truncate_inode_page(mapping, page);
928 unlock_page(page);
929 }
930 pagevec_remove_exceptionals(&pvec);
931 pagevec_release(&pvec);
932 cond_resched();
933 index++;
934 }
935
936 if (partial_start) {
937 struct page *page = NULL;
938 shmem_getpage(inode, start - 1, &page, SGP_READ);
939 if (page) {
940 unsigned int top = PAGE_SIZE;
941 if (start > end) {
942 top = partial_end;
943 partial_end = 0;
944 }
945 zero_user_segment(page, partial_start, top);
946 set_page_dirty(page);
947 unlock_page(page);
948 put_page(page);
949 }
950 }
951 if (partial_end) {
952 struct page *page = NULL;
953 shmem_getpage(inode, end, &page, SGP_READ);
954 if (page) {
955 zero_user_segment(page, 0, partial_end);
956 set_page_dirty(page);
957 unlock_page(page);
958 put_page(page);
959 }
960 }
961 if (start >= end)
962 return;
963
964 index = start;
965 while (index < end) {
966 cond_resched();
967
968 if (!find_get_entries(mapping, index, end - 1, &pvec,
969 indices)) {
970 /* If all gone or hole-punch or unfalloc, we're done */
971 if (index == start || end != -1)
972 break;
973 /* But if truncating, restart to make sure all gone */
974 index = start;
975 continue;
976 }
977 for (i = 0; i < pagevec_count(&pvec); i++) {
978 struct page *page = pvec.pages[i];
979
980 index = indices[i];
981 if (xa_is_value(page)) {
982 if (unfalloc)
983 continue;
984 if (shmem_free_swap(mapping, index, page)) {
985 /* Swap was replaced by page: retry */
986 index--;
987 break;
988 }
989 nr_swaps_freed++;
990 continue;
991 }
992
993 lock_page(page);
994
995 if (!unfalloc || !PageUptodate(page)) {
996 if (page_mapping(page) != mapping) {
997 /* Page was replaced by swap: retry */
998 unlock_page(page);
999 index--;
1000 break;
1001 }
1002 VM_BUG_ON_PAGE(PageWriteback(page), page);
1003 if (shmem_punch_compound(page, start, end))
1004 truncate_inode_page(mapping, page);
1005 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1006 /* Wipe the page and don't get stuck */
1007 clear_highpage(page);
1008 flush_dcache_page(page);
1009 set_page_dirty(page);
1010 if (index <
1011 round_up(start, HPAGE_PMD_NR))
1012 start = index + 1;
1013 }
1014 }
1015 unlock_page(page);
1016 }
1017 pagevec_remove_exceptionals(&pvec);
1018 pagevec_release(&pvec);
1019 index++;
1020 }
1021
1022 spin_lock_irq(&info->lock);
1023 info->swapped -= nr_swaps_freed;
1024 shmem_recalc_inode(inode);
1025 spin_unlock_irq(&info->lock);
1026 }
1027
1028 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029 {
1030 shmem_undo_range(inode, lstart, lend, false);
1031 inode->i_ctime = inode->i_mtime = current_time(inode);
1032 }
1033 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1034
1035 static int shmem_getattr(struct user_namespace *mnt_userns,
1036 const struct path *path, struct kstat *stat,
1037 u32 request_mask, unsigned int query_flags)
1038 {
1039 struct inode *inode = path->dentry->d_inode;
1040 struct shmem_inode_info *info = SHMEM_I(inode);
1041 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1042
1043 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1044 spin_lock_irq(&info->lock);
1045 shmem_recalc_inode(inode);
1046 spin_unlock_irq(&info->lock);
1047 }
1048 generic_fillattr(&init_user_ns, inode, stat);
1049
1050 if (is_huge_enabled(sb_info))
1051 stat->blksize = HPAGE_PMD_SIZE;
1052
1053 return 0;
1054 }
1055
1056 static int shmem_setattr(struct user_namespace *mnt_userns,
1057 struct dentry *dentry, struct iattr *attr)
1058 {
1059 struct inode *inode = d_inode(dentry);
1060 struct shmem_inode_info *info = SHMEM_I(inode);
1061 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062 int error;
1063
1064 error = setattr_prepare(&init_user_ns, dentry, attr);
1065 if (error)
1066 return error;
1067
1068 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069 loff_t oldsize = inode->i_size;
1070 loff_t newsize = attr->ia_size;
1071
1072 /* protected by i_mutex */
1073 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075 return -EPERM;
1076
1077 if (newsize != oldsize) {
1078 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079 oldsize, newsize);
1080 if (error)
1081 return error;
1082 i_size_write(inode, newsize);
1083 inode->i_ctime = inode->i_mtime = current_time(inode);
1084 }
1085 if (newsize <= oldsize) {
1086 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1087 if (oldsize > holebegin)
1088 unmap_mapping_range(inode->i_mapping,
1089 holebegin, 0, 1);
1090 if (info->alloced)
1091 shmem_truncate_range(inode,
1092 newsize, (loff_t)-1);
1093 /* unmap again to remove racily COWed private pages */
1094 if (oldsize > holebegin)
1095 unmap_mapping_range(inode->i_mapping,
1096 holebegin, 0, 1);
1097
1098 /*
1099 * Part of the huge page can be beyond i_size: subject
1100 * to shrink under memory pressure.
1101 */
1102 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1103 spin_lock(&sbinfo->shrinklist_lock);
1104 /*
1105 * _careful to defend against unlocked access to
1106 * ->shrink_list in shmem_unused_huge_shrink()
1107 */
1108 if (list_empty_careful(&info->shrinklist)) {
1109 list_add_tail(&info->shrinklist,
1110 &sbinfo->shrinklist);
1111 sbinfo->shrinklist_len++;
1112 }
1113 spin_unlock(&sbinfo->shrinklist_lock);
1114 }
1115 }
1116 }
1117
1118 setattr_copy(&init_user_ns, inode, attr);
1119 if (attr->ia_valid & ATTR_MODE)
1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 return error;
1122 }
1123
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 struct shmem_inode_info *info = SHMEM_I(inode);
1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128
1129 if (shmem_mapping(inode->i_mapping)) {
1130 shmem_unacct_size(info->flags, inode->i_size);
1131 inode->i_size = 0;
1132 shmem_truncate_range(inode, 0, (loff_t)-1);
1133 if (!list_empty(&info->shrinklist)) {
1134 spin_lock(&sbinfo->shrinklist_lock);
1135 if (!list_empty(&info->shrinklist)) {
1136 list_del_init(&info->shrinklist);
1137 sbinfo->shrinklist_len--;
1138 }
1139 spin_unlock(&sbinfo->shrinklist_lock);
1140 }
1141 while (!list_empty(&info->swaplist)) {
1142 /* Wait while shmem_unuse() is scanning this inode... */
1143 wait_var_event(&info->stop_eviction,
1144 !atomic_read(&info->stop_eviction));
1145 mutex_lock(&shmem_swaplist_mutex);
1146 /* ...but beware of the race if we peeked too early */
1147 if (!atomic_read(&info->stop_eviction))
1148 list_del_init(&info->swaplist);
1149 mutex_unlock(&shmem_swaplist_mutex);
1150 }
1151 }
1152
1153 simple_xattrs_free(&info->xattrs);
1154 WARN_ON(inode->i_blocks);
1155 shmem_free_inode(inode->i_sb);
1156 clear_inode(inode);
1157 }
1158
1159 extern struct swap_info_struct *swap_info[];
1160
1161 static int shmem_find_swap_entries(struct address_space *mapping,
1162 pgoff_t start, unsigned int nr_entries,
1163 struct page **entries, pgoff_t *indices,
1164 unsigned int type, bool frontswap)
1165 {
1166 XA_STATE(xas, &mapping->i_pages, start);
1167 struct page *page;
1168 swp_entry_t entry;
1169 unsigned int ret = 0;
1170
1171 if (!nr_entries)
1172 return 0;
1173
1174 rcu_read_lock();
1175 xas_for_each(&xas, page, ULONG_MAX) {
1176 if (xas_retry(&xas, page))
1177 continue;
1178
1179 if (!xa_is_value(page))
1180 continue;
1181
1182 entry = radix_to_swp_entry(page);
1183 if (swp_type(entry) != type)
1184 continue;
1185 if (frontswap &&
1186 !frontswap_test(swap_info[type], swp_offset(entry)))
1187 continue;
1188
1189 indices[ret] = xas.xa_index;
1190 entries[ret] = page;
1191
1192 if (need_resched()) {
1193 xas_pause(&xas);
1194 cond_resched_rcu();
1195 }
1196 if (++ret == nr_entries)
1197 break;
1198 }
1199 rcu_read_unlock();
1200
1201 return ret;
1202 }
1203
1204 /*
1205 * Move the swapped pages for an inode to page cache. Returns the count
1206 * of pages swapped in, or the error in case of failure.
1207 */
1208 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209 pgoff_t *indices)
1210 {
1211 int i = 0;
1212 int ret = 0;
1213 int error = 0;
1214 struct address_space *mapping = inode->i_mapping;
1215
1216 for (i = 0; i < pvec.nr; i++) {
1217 struct page *page = pvec.pages[i];
1218
1219 if (!xa_is_value(page))
1220 continue;
1221 error = shmem_swapin_page(inode, indices[i],
1222 &page, SGP_CACHE,
1223 mapping_gfp_mask(mapping),
1224 NULL, NULL);
1225 if (error == 0) {
1226 unlock_page(page);
1227 put_page(page);
1228 ret++;
1229 }
1230 if (error == -ENOMEM)
1231 break;
1232 error = 0;
1233 }
1234 return error ? error : ret;
1235 }
1236
1237 /*
1238 * If swap found in inode, free it and move page from swapcache to filecache.
1239 */
1240 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241 bool frontswap, unsigned long *fs_pages_to_unuse)
1242 {
1243 struct address_space *mapping = inode->i_mapping;
1244 pgoff_t start = 0;
1245 struct pagevec pvec;
1246 pgoff_t indices[PAGEVEC_SIZE];
1247 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248 int ret = 0;
1249
1250 pagevec_init(&pvec);
1251 do {
1252 unsigned int nr_entries = PAGEVEC_SIZE;
1253
1254 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255 nr_entries = *fs_pages_to_unuse;
1256
1257 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258 pvec.pages, indices,
1259 type, frontswap);
1260 if (pvec.nr == 0) {
1261 ret = 0;
1262 break;
1263 }
1264
1265 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266 if (ret < 0)
1267 break;
1268
1269 if (frontswap_partial) {
1270 *fs_pages_to_unuse -= ret;
1271 if (*fs_pages_to_unuse == 0) {
1272 ret = FRONTSWAP_PAGES_UNUSED;
1273 break;
1274 }
1275 }
1276
1277 start = indices[pvec.nr - 1];
1278 } while (true);
1279
1280 return ret;
1281 }
1282
1283 /*
1284 * Read all the shared memory data that resides in the swap
1285 * device 'type' back into memory, so the swap device can be
1286 * unused.
1287 */
1288 int shmem_unuse(unsigned int type, bool frontswap,
1289 unsigned long *fs_pages_to_unuse)
1290 {
1291 struct shmem_inode_info *info, *next;
1292 int error = 0;
1293
1294 if (list_empty(&shmem_swaplist))
1295 return 0;
1296
1297 mutex_lock(&shmem_swaplist_mutex);
1298 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299 if (!info->swapped) {
1300 list_del_init(&info->swaplist);
1301 continue;
1302 }
1303 /*
1304 * Drop the swaplist mutex while searching the inode for swap;
1305 * but before doing so, make sure shmem_evict_inode() will not
1306 * remove placeholder inode from swaplist, nor let it be freed
1307 * (igrab() would protect from unlink, but not from unmount).
1308 */
1309 atomic_inc(&info->stop_eviction);
1310 mutex_unlock(&shmem_swaplist_mutex);
1311
1312 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1313 fs_pages_to_unuse);
1314 cond_resched();
1315
1316 mutex_lock(&shmem_swaplist_mutex);
1317 next = list_next_entry(info, swaplist);
1318 if (!info->swapped)
1319 list_del_init(&info->swaplist);
1320 if (atomic_dec_and_test(&info->stop_eviction))
1321 wake_up_var(&info->stop_eviction);
1322 if (error)
1323 break;
1324 }
1325 mutex_unlock(&shmem_swaplist_mutex);
1326
1327 return error;
1328 }
1329
1330 /*
1331 * Move the page from the page cache to the swap cache.
1332 */
1333 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334 {
1335 struct shmem_inode_info *info;
1336 struct address_space *mapping;
1337 struct inode *inode;
1338 swp_entry_t swap;
1339 pgoff_t index;
1340
1341 VM_BUG_ON_PAGE(PageCompound(page), page);
1342 BUG_ON(!PageLocked(page));
1343 mapping = page->mapping;
1344 index = page->index;
1345 inode = mapping->host;
1346 info = SHMEM_I(inode);
1347 if (info->flags & VM_LOCKED)
1348 goto redirty;
1349 if (!total_swap_pages)
1350 goto redirty;
1351
1352 /*
1353 * Our capabilities prevent regular writeback or sync from ever calling
1354 * shmem_writepage; but a stacking filesystem might use ->writepage of
1355 * its underlying filesystem, in which case tmpfs should write out to
1356 * swap only in response to memory pressure, and not for the writeback
1357 * threads or sync.
1358 */
1359 if (!wbc->for_reclaim) {
1360 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1361 goto redirty;
1362 }
1363
1364 /*
1365 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366 * value into swapfile.c, the only way we can correctly account for a
1367 * fallocated page arriving here is now to initialize it and write it.
1368 *
1369 * That's okay for a page already fallocated earlier, but if we have
1370 * not yet completed the fallocation, then (a) we want to keep track
1371 * of this page in case we have to undo it, and (b) it may not be a
1372 * good idea to continue anyway, once we're pushing into swap. So
1373 * reactivate the page, and let shmem_fallocate() quit when too many.
1374 */
1375 if (!PageUptodate(page)) {
1376 if (inode->i_private) {
1377 struct shmem_falloc *shmem_falloc;
1378 spin_lock(&inode->i_lock);
1379 shmem_falloc = inode->i_private;
1380 if (shmem_falloc &&
1381 !shmem_falloc->waitq &&
1382 index >= shmem_falloc->start &&
1383 index < shmem_falloc->next)
1384 shmem_falloc->nr_unswapped++;
1385 else
1386 shmem_falloc = NULL;
1387 spin_unlock(&inode->i_lock);
1388 if (shmem_falloc)
1389 goto redirty;
1390 }
1391 clear_highpage(page);
1392 flush_dcache_page(page);
1393 SetPageUptodate(page);
1394 }
1395
1396 swap = get_swap_page(page);
1397 if (!swap.val)
1398 goto redirty;
1399
1400 /*
1401 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1402 * if it's not already there. Do it now before the page is
1403 * moved to swap cache, when its pagelock no longer protects
1404 * the inode from eviction. But don't unlock the mutex until
1405 * we've incremented swapped, because shmem_unuse_inode() will
1406 * prune a !swapped inode from the swaplist under this mutex.
1407 */
1408 mutex_lock(&shmem_swaplist_mutex);
1409 if (list_empty(&info->swaplist))
1410 list_add(&info->swaplist, &shmem_swaplist);
1411
1412 if (add_to_swap_cache(page, swap,
1413 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414 NULL) == 0) {
1415 spin_lock_irq(&info->lock);
1416 shmem_recalc_inode(inode);
1417 info->swapped++;
1418 spin_unlock_irq(&info->lock);
1419
1420 swap_shmem_alloc(swap);
1421 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422
1423 mutex_unlock(&shmem_swaplist_mutex);
1424 BUG_ON(page_mapped(page));
1425 swap_writepage(page, wbc);
1426 return 0;
1427 }
1428
1429 mutex_unlock(&shmem_swaplist_mutex);
1430 put_swap_page(page, swap);
1431 redirty:
1432 set_page_dirty(page);
1433 if (wbc->for_reclaim)
1434 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1435 unlock_page(page);
1436 return 0;
1437 }
1438
1439 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1440 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1441 {
1442 char buffer[64];
1443
1444 if (!mpol || mpol->mode == MPOL_DEFAULT)
1445 return; /* show nothing */
1446
1447 mpol_to_str(buffer, sizeof(buffer), mpol);
1448
1449 seq_printf(seq, ",mpol=%s", buffer);
1450 }
1451
1452 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453 {
1454 struct mempolicy *mpol = NULL;
1455 if (sbinfo->mpol) {
1456 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1457 mpol = sbinfo->mpol;
1458 mpol_get(mpol);
1459 spin_unlock(&sbinfo->stat_lock);
1460 }
1461 return mpol;
1462 }
1463 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1464 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465 {
1466 }
1467 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468 {
1469 return NULL;
1470 }
1471 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472 #ifndef CONFIG_NUMA
1473 #define vm_policy vm_private_data
1474 #endif
1475
1476 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477 struct shmem_inode_info *info, pgoff_t index)
1478 {
1479 /* Create a pseudo vma that just contains the policy */
1480 vma_init(vma, NULL);
1481 /* Bias interleave by inode number to distribute better across nodes */
1482 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1483 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484 }
1485
1486 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487 {
1488 /* Drop reference taken by mpol_shared_policy_lookup() */
1489 mpol_cond_put(vma->vm_policy);
1490 }
1491
1492 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493 struct shmem_inode_info *info, pgoff_t index)
1494 {
1495 struct vm_area_struct pvma;
1496 struct page *page;
1497 struct vm_fault vmf = {
1498 .vma = &pvma,
1499 };
1500
1501 shmem_pseudo_vma_init(&pvma, info, index);
1502 page = swap_cluster_readahead(swap, gfp, &vmf);
1503 shmem_pseudo_vma_destroy(&pvma);
1504
1505 return page;
1506 }
1507
1508 /*
1509 * Make sure huge_gfp is always more limited than limit_gfp.
1510 * Some of the flags set permissions, while others set limitations.
1511 */
1512 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513 {
1514 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1516 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518
1519 /* Allow allocations only from the originally specified zones. */
1520 result |= zoneflags;
1521
1522 /*
1523 * Minimize the result gfp by taking the union with the deny flags,
1524 * and the intersection of the allow flags.
1525 */
1526 result |= (limit_gfp & denyflags);
1527 result |= (huge_gfp & limit_gfp) & allowflags;
1528
1529 return result;
1530 }
1531
1532 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533 struct shmem_inode_info *info, pgoff_t index)
1534 {
1535 struct vm_area_struct pvma;
1536 struct address_space *mapping = info->vfs_inode.i_mapping;
1537 pgoff_t hindex;
1538 struct page *page;
1539
1540 hindex = round_down(index, HPAGE_PMD_NR);
1541 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542 XA_PRESENT))
1543 return NULL;
1544
1545 shmem_pseudo_vma_init(&pvma, info, hindex);
1546 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547 true);
1548 shmem_pseudo_vma_destroy(&pvma);
1549 if (page)
1550 prep_transhuge_page(page);
1551 else
1552 count_vm_event(THP_FILE_FALLBACK);
1553 return page;
1554 }
1555
1556 static struct page *shmem_alloc_page(gfp_t gfp,
1557 struct shmem_inode_info *info, pgoff_t index)
1558 {
1559 struct vm_area_struct pvma;
1560 struct page *page;
1561
1562 shmem_pseudo_vma_init(&pvma, info, index);
1563 page = alloc_page_vma(gfp, &pvma, 0);
1564 shmem_pseudo_vma_destroy(&pvma);
1565
1566 return page;
1567 }
1568
1569 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570 struct inode *inode,
1571 pgoff_t index, bool huge)
1572 {
1573 struct shmem_inode_info *info = SHMEM_I(inode);
1574 struct page *page;
1575 int nr;
1576 int err = -ENOSPC;
1577
1578 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579 huge = false;
1580 nr = huge ? HPAGE_PMD_NR : 1;
1581
1582 if (!shmem_inode_acct_block(inode, nr))
1583 goto failed;
1584
1585 if (huge)
1586 page = shmem_alloc_hugepage(gfp, info, index);
1587 else
1588 page = shmem_alloc_page(gfp, info, index);
1589 if (page) {
1590 __SetPageLocked(page);
1591 __SetPageSwapBacked(page);
1592 return page;
1593 }
1594
1595 err = -ENOMEM;
1596 shmem_inode_unacct_blocks(inode, nr);
1597 failed:
1598 return ERR_PTR(err);
1599 }
1600
1601 /*
1602 * When a page is moved from swapcache to shmem filecache (either by the
1603 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605 * ignorance of the mapping it belongs to. If that mapping has special
1606 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607 * we may need to copy to a suitable page before moving to filecache.
1608 *
1609 * In a future release, this may well be extended to respect cpuset and
1610 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611 * but for now it is a simple matter of zone.
1612 */
1613 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614 {
1615 return page_zonenum(page) > gfp_zone(gfp);
1616 }
1617
1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619 struct shmem_inode_info *info, pgoff_t index)
1620 {
1621 struct page *oldpage, *newpage;
1622 struct address_space *swap_mapping;
1623 swp_entry_t entry;
1624 pgoff_t swap_index;
1625 int error;
1626
1627 oldpage = *pagep;
1628 entry.val = page_private(oldpage);
1629 swap_index = swp_offset(entry);
1630 swap_mapping = page_mapping(oldpage);
1631
1632 /*
1633 * We have arrived here because our zones are constrained, so don't
1634 * limit chance of success by further cpuset and node constraints.
1635 */
1636 gfp &= ~GFP_CONSTRAINT_MASK;
1637 newpage = shmem_alloc_page(gfp, info, index);
1638 if (!newpage)
1639 return -ENOMEM;
1640
1641 get_page(newpage);
1642 copy_highpage(newpage, oldpage);
1643 flush_dcache_page(newpage);
1644
1645 __SetPageLocked(newpage);
1646 __SetPageSwapBacked(newpage);
1647 SetPageUptodate(newpage);
1648 set_page_private(newpage, entry.val);
1649 SetPageSwapCache(newpage);
1650
1651 /*
1652 * Our caller will very soon move newpage out of swapcache, but it's
1653 * a nice clean interface for us to replace oldpage by newpage there.
1654 */
1655 xa_lock_irq(&swap_mapping->i_pages);
1656 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657 if (!error) {
1658 mem_cgroup_migrate(oldpage, newpage);
1659 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1661 }
1662 xa_unlock_irq(&swap_mapping->i_pages);
1663
1664 if (unlikely(error)) {
1665 /*
1666 * Is this possible? I think not, now that our callers check
1667 * both PageSwapCache and page_private after getting page lock;
1668 * but be defensive. Reverse old to newpage for clear and free.
1669 */
1670 oldpage = newpage;
1671 } else {
1672 lru_cache_add(newpage);
1673 *pagep = newpage;
1674 }
1675
1676 ClearPageSwapCache(oldpage);
1677 set_page_private(oldpage, 0);
1678
1679 unlock_page(oldpage);
1680 put_page(oldpage);
1681 put_page(oldpage);
1682 return error;
1683 }
1684
1685 /*
1686 * Swap in the page pointed to by *pagep.
1687 * Caller has to make sure that *pagep contains a valid swapped page.
1688 * Returns 0 and the page in pagep if success. On failure, returns the
1689 * error code and NULL in *pagep.
1690 */
1691 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692 struct page **pagep, enum sgp_type sgp,
1693 gfp_t gfp, struct vm_area_struct *vma,
1694 vm_fault_t *fault_type)
1695 {
1696 struct address_space *mapping = inode->i_mapping;
1697 struct shmem_inode_info *info = SHMEM_I(inode);
1698 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1699 struct swap_info_struct *si;
1700 struct page *page = NULL;
1701 swp_entry_t swap;
1702 int error;
1703
1704 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1705 swap = radix_to_swp_entry(*pagep);
1706 *pagep = NULL;
1707
1708 /* Prevent swapoff from happening to us. */
1709 si = get_swap_device(swap);
1710 if (!si) {
1711 error = EINVAL;
1712 goto failed;
1713 }
1714 /* Look it up and read it in.. */
1715 page = lookup_swap_cache(swap, NULL, 0);
1716 if (!page) {
1717 /* Or update major stats only when swapin succeeds?? */
1718 if (fault_type) {
1719 *fault_type |= VM_FAULT_MAJOR;
1720 count_vm_event(PGMAJFAULT);
1721 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1722 }
1723 /* Here we actually start the io */
1724 page = shmem_swapin(swap, gfp, info, index);
1725 if (!page) {
1726 error = -ENOMEM;
1727 goto failed;
1728 }
1729 }
1730
1731 /* We have to do this with page locked to prevent races */
1732 lock_page(page);
1733 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1734 !shmem_confirm_swap(mapping, index, swap)) {
1735 error = -EEXIST;
1736 goto unlock;
1737 }
1738 if (!PageUptodate(page)) {
1739 error = -EIO;
1740 goto failed;
1741 }
1742 wait_on_page_writeback(page);
1743
1744 /*
1745 * Some architectures may have to restore extra metadata to the
1746 * physical page after reading from swap.
1747 */
1748 arch_swap_restore(swap, page);
1749
1750 if (shmem_should_replace_page(page, gfp)) {
1751 error = shmem_replace_page(&page, gfp, info, index);
1752 if (error)
1753 goto failed;
1754 }
1755
1756 error = shmem_add_to_page_cache(page, mapping, index,
1757 swp_to_radix_entry(swap), gfp,
1758 charge_mm);
1759 if (error)
1760 goto failed;
1761
1762 spin_lock_irq(&info->lock);
1763 info->swapped--;
1764 shmem_recalc_inode(inode);
1765 spin_unlock_irq(&info->lock);
1766
1767 if (sgp == SGP_WRITE)
1768 mark_page_accessed(page);
1769
1770 delete_from_swap_cache(page);
1771 set_page_dirty(page);
1772 swap_free(swap);
1773
1774 *pagep = page;
1775 if (si)
1776 put_swap_device(si);
1777 return 0;
1778 failed:
1779 if (!shmem_confirm_swap(mapping, index, swap))
1780 error = -EEXIST;
1781 unlock:
1782 if (page) {
1783 unlock_page(page);
1784 put_page(page);
1785 }
1786
1787 if (si)
1788 put_swap_device(si);
1789
1790 return error;
1791 }
1792
1793 /*
1794 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1795 *
1796 * If we allocate a new one we do not mark it dirty. That's up to the
1797 * vm. If we swap it in we mark it dirty since we also free the swap
1798 * entry since a page cannot live in both the swap and page cache.
1799 *
1800 * vmf and fault_type are only supplied by shmem_fault:
1801 * otherwise they are NULL.
1802 */
1803 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1804 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1805 struct vm_area_struct *vma, struct vm_fault *vmf,
1806 vm_fault_t *fault_type)
1807 {
1808 struct address_space *mapping = inode->i_mapping;
1809 struct shmem_inode_info *info = SHMEM_I(inode);
1810 struct shmem_sb_info *sbinfo;
1811 struct mm_struct *charge_mm;
1812 struct page *page;
1813 enum sgp_type sgp_huge = sgp;
1814 pgoff_t hindex = index;
1815 gfp_t huge_gfp;
1816 int error;
1817 int once = 0;
1818 int alloced = 0;
1819
1820 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1821 return -EFBIG;
1822 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1823 sgp = SGP_CACHE;
1824 repeat:
1825 if (sgp <= SGP_CACHE &&
1826 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1827 return -EINVAL;
1828 }
1829
1830 sbinfo = SHMEM_SB(inode->i_sb);
1831 charge_mm = vma ? vma->vm_mm : NULL;
1832
1833 page = pagecache_get_page(mapping, index,
1834 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1835 if (xa_is_value(page)) {
1836 error = shmem_swapin_page(inode, index, &page,
1837 sgp, gfp, vma, fault_type);
1838 if (error == -EEXIST)
1839 goto repeat;
1840
1841 *pagep = page;
1842 return error;
1843 }
1844
1845 if (page)
1846 hindex = page->index;
1847 if (page && sgp == SGP_WRITE)
1848 mark_page_accessed(page);
1849
1850 /* fallocated page? */
1851 if (page && !PageUptodate(page)) {
1852 if (sgp != SGP_READ)
1853 goto clear;
1854 unlock_page(page);
1855 put_page(page);
1856 page = NULL;
1857 hindex = index;
1858 }
1859 if (page || sgp == SGP_READ)
1860 goto out;
1861
1862 /*
1863 * Fast cache lookup did not find it:
1864 * bring it back from swap or allocate.
1865 */
1866
1867 if (vma && userfaultfd_missing(vma)) {
1868 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1869 return 0;
1870 }
1871
1872 /* shmem_symlink() */
1873 if (!shmem_mapping(mapping))
1874 goto alloc_nohuge;
1875 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1876 goto alloc_nohuge;
1877 if (shmem_huge == SHMEM_HUGE_FORCE)
1878 goto alloc_huge;
1879 switch (sbinfo->huge) {
1880 case SHMEM_HUGE_NEVER:
1881 goto alloc_nohuge;
1882 case SHMEM_HUGE_WITHIN_SIZE: {
1883 loff_t i_size;
1884 pgoff_t off;
1885
1886 off = round_up(index, HPAGE_PMD_NR);
1887 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1888 if (i_size >= HPAGE_PMD_SIZE &&
1889 i_size >> PAGE_SHIFT >= off)
1890 goto alloc_huge;
1891
1892 fallthrough;
1893 }
1894 case SHMEM_HUGE_ADVISE:
1895 if (sgp_huge == SGP_HUGE)
1896 goto alloc_huge;
1897 /* TODO: implement fadvise() hints */
1898 goto alloc_nohuge;
1899 }
1900
1901 alloc_huge:
1902 huge_gfp = vma_thp_gfp_mask(vma);
1903 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1904 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1905 if (IS_ERR(page)) {
1906 alloc_nohuge:
1907 page = shmem_alloc_and_acct_page(gfp, inode,
1908 index, false);
1909 }
1910 if (IS_ERR(page)) {
1911 int retry = 5;
1912
1913 error = PTR_ERR(page);
1914 page = NULL;
1915 if (error != -ENOSPC)
1916 goto unlock;
1917 /*
1918 * Try to reclaim some space by splitting a huge page
1919 * beyond i_size on the filesystem.
1920 */
1921 while (retry--) {
1922 int ret;
1923
1924 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1925 if (ret == SHRINK_STOP)
1926 break;
1927 if (ret)
1928 goto alloc_nohuge;
1929 }
1930 goto unlock;
1931 }
1932
1933 if (PageTransHuge(page))
1934 hindex = round_down(index, HPAGE_PMD_NR);
1935 else
1936 hindex = index;
1937
1938 if (sgp == SGP_WRITE)
1939 __SetPageReferenced(page);
1940
1941 error = shmem_add_to_page_cache(page, mapping, hindex,
1942 NULL, gfp & GFP_RECLAIM_MASK,
1943 charge_mm);
1944 if (error)
1945 goto unacct;
1946 lru_cache_add(page);
1947
1948 spin_lock_irq(&info->lock);
1949 info->alloced += compound_nr(page);
1950 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1951 shmem_recalc_inode(inode);
1952 spin_unlock_irq(&info->lock);
1953 alloced = true;
1954
1955 if (PageTransHuge(page) &&
1956 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1957 hindex + HPAGE_PMD_NR - 1) {
1958 /*
1959 * Part of the huge page is beyond i_size: subject
1960 * to shrink under memory pressure.
1961 */
1962 spin_lock(&sbinfo->shrinklist_lock);
1963 /*
1964 * _careful to defend against unlocked access to
1965 * ->shrink_list in shmem_unused_huge_shrink()
1966 */
1967 if (list_empty_careful(&info->shrinklist)) {
1968 list_add_tail(&info->shrinklist,
1969 &sbinfo->shrinklist);
1970 sbinfo->shrinklist_len++;
1971 }
1972 spin_unlock(&sbinfo->shrinklist_lock);
1973 }
1974
1975 /*
1976 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1977 */
1978 if (sgp == SGP_FALLOC)
1979 sgp = SGP_WRITE;
1980 clear:
1981 /*
1982 * Let SGP_WRITE caller clear ends if write does not fill page;
1983 * but SGP_FALLOC on a page fallocated earlier must initialize
1984 * it now, lest undo on failure cancel our earlier guarantee.
1985 */
1986 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1987 int i;
1988
1989 for (i = 0; i < compound_nr(page); i++) {
1990 clear_highpage(page + i);
1991 flush_dcache_page(page + i);
1992 }
1993 SetPageUptodate(page);
1994 }
1995
1996 /* Perhaps the file has been truncated since we checked */
1997 if (sgp <= SGP_CACHE &&
1998 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1999 if (alloced) {
2000 ClearPageDirty(page);
2001 delete_from_page_cache(page);
2002 spin_lock_irq(&info->lock);
2003 shmem_recalc_inode(inode);
2004 spin_unlock_irq(&info->lock);
2005 }
2006 error = -EINVAL;
2007 goto unlock;
2008 }
2009 out:
2010 *pagep = page + index - hindex;
2011 return 0;
2012
2013 /*
2014 * Error recovery.
2015 */
2016 unacct:
2017 shmem_inode_unacct_blocks(inode, compound_nr(page));
2018
2019 if (PageTransHuge(page)) {
2020 unlock_page(page);
2021 put_page(page);
2022 goto alloc_nohuge;
2023 }
2024 unlock:
2025 if (page) {
2026 unlock_page(page);
2027 put_page(page);
2028 }
2029 if (error == -ENOSPC && !once++) {
2030 spin_lock_irq(&info->lock);
2031 shmem_recalc_inode(inode);
2032 spin_unlock_irq(&info->lock);
2033 goto repeat;
2034 }
2035 if (error == -EEXIST)
2036 goto repeat;
2037 return error;
2038 }
2039
2040 /*
2041 * This is like autoremove_wake_function, but it removes the wait queue
2042 * entry unconditionally - even if something else had already woken the
2043 * target.
2044 */
2045 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2046 {
2047 int ret = default_wake_function(wait, mode, sync, key);
2048 list_del_init(&wait->entry);
2049 return ret;
2050 }
2051
2052 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2053 {
2054 struct vm_area_struct *vma = vmf->vma;
2055 struct inode *inode = file_inode(vma->vm_file);
2056 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2057 enum sgp_type sgp;
2058 int err;
2059 vm_fault_t ret = VM_FAULT_LOCKED;
2060
2061 /*
2062 * Trinity finds that probing a hole which tmpfs is punching can
2063 * prevent the hole-punch from ever completing: which in turn
2064 * locks writers out with its hold on i_mutex. So refrain from
2065 * faulting pages into the hole while it's being punched. Although
2066 * shmem_undo_range() does remove the additions, it may be unable to
2067 * keep up, as each new page needs its own unmap_mapping_range() call,
2068 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2069 *
2070 * It does not matter if we sometimes reach this check just before the
2071 * hole-punch begins, so that one fault then races with the punch:
2072 * we just need to make racing faults a rare case.
2073 *
2074 * The implementation below would be much simpler if we just used a
2075 * standard mutex or completion: but we cannot take i_mutex in fault,
2076 * and bloating every shmem inode for this unlikely case would be sad.
2077 */
2078 if (unlikely(inode->i_private)) {
2079 struct shmem_falloc *shmem_falloc;
2080
2081 spin_lock(&inode->i_lock);
2082 shmem_falloc = inode->i_private;
2083 if (shmem_falloc &&
2084 shmem_falloc->waitq &&
2085 vmf->pgoff >= shmem_falloc->start &&
2086 vmf->pgoff < shmem_falloc->next) {
2087 struct file *fpin;
2088 wait_queue_head_t *shmem_falloc_waitq;
2089 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2090
2091 ret = VM_FAULT_NOPAGE;
2092 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2093 if (fpin)
2094 ret = VM_FAULT_RETRY;
2095
2096 shmem_falloc_waitq = shmem_falloc->waitq;
2097 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2098 TASK_UNINTERRUPTIBLE);
2099 spin_unlock(&inode->i_lock);
2100 schedule();
2101
2102 /*
2103 * shmem_falloc_waitq points into the shmem_fallocate()
2104 * stack of the hole-punching task: shmem_falloc_waitq
2105 * is usually invalid by the time we reach here, but
2106 * finish_wait() does not dereference it in that case;
2107 * though i_lock needed lest racing with wake_up_all().
2108 */
2109 spin_lock(&inode->i_lock);
2110 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2111 spin_unlock(&inode->i_lock);
2112
2113 if (fpin)
2114 fput(fpin);
2115 return ret;
2116 }
2117 spin_unlock(&inode->i_lock);
2118 }
2119
2120 sgp = SGP_CACHE;
2121
2122 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2123 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2124 sgp = SGP_NOHUGE;
2125 else if (vma->vm_flags & VM_HUGEPAGE)
2126 sgp = SGP_HUGE;
2127
2128 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2129 gfp, vma, vmf, &ret);
2130 if (err)
2131 return vmf_error(err);
2132 return ret;
2133 }
2134
2135 unsigned long shmem_get_unmapped_area(struct file *file,
2136 unsigned long uaddr, unsigned long len,
2137 unsigned long pgoff, unsigned long flags)
2138 {
2139 unsigned long (*get_area)(struct file *,
2140 unsigned long, unsigned long, unsigned long, unsigned long);
2141 unsigned long addr;
2142 unsigned long offset;
2143 unsigned long inflated_len;
2144 unsigned long inflated_addr;
2145 unsigned long inflated_offset;
2146
2147 if (len > TASK_SIZE)
2148 return -ENOMEM;
2149
2150 get_area = current->mm->get_unmapped_area;
2151 addr = get_area(file, uaddr, len, pgoff, flags);
2152
2153 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2154 return addr;
2155 if (IS_ERR_VALUE(addr))
2156 return addr;
2157 if (addr & ~PAGE_MASK)
2158 return addr;
2159 if (addr > TASK_SIZE - len)
2160 return addr;
2161
2162 if (shmem_huge == SHMEM_HUGE_DENY)
2163 return addr;
2164 if (len < HPAGE_PMD_SIZE)
2165 return addr;
2166 if (flags & MAP_FIXED)
2167 return addr;
2168 /*
2169 * Our priority is to support MAP_SHARED mapped hugely;
2170 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2171 * But if caller specified an address hint and we allocated area there
2172 * successfully, respect that as before.
2173 */
2174 if (uaddr == addr)
2175 return addr;
2176
2177 if (shmem_huge != SHMEM_HUGE_FORCE) {
2178 struct super_block *sb;
2179
2180 if (file) {
2181 VM_BUG_ON(file->f_op != &shmem_file_operations);
2182 sb = file_inode(file)->i_sb;
2183 } else {
2184 /*
2185 * Called directly from mm/mmap.c, or drivers/char/mem.c
2186 * for "/dev/zero", to create a shared anonymous object.
2187 */
2188 if (IS_ERR(shm_mnt))
2189 return addr;
2190 sb = shm_mnt->mnt_sb;
2191 }
2192 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2193 return addr;
2194 }
2195
2196 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2197 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2198 return addr;
2199 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2200 return addr;
2201
2202 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2203 if (inflated_len > TASK_SIZE)
2204 return addr;
2205 if (inflated_len < len)
2206 return addr;
2207
2208 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2209 if (IS_ERR_VALUE(inflated_addr))
2210 return addr;
2211 if (inflated_addr & ~PAGE_MASK)
2212 return addr;
2213
2214 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2215 inflated_addr += offset - inflated_offset;
2216 if (inflated_offset > offset)
2217 inflated_addr += HPAGE_PMD_SIZE;
2218
2219 if (inflated_addr > TASK_SIZE - len)
2220 return addr;
2221 return inflated_addr;
2222 }
2223
2224 #ifdef CONFIG_NUMA
2225 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2226 {
2227 struct inode *inode = file_inode(vma->vm_file);
2228 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2229 }
2230
2231 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2232 unsigned long addr)
2233 {
2234 struct inode *inode = file_inode(vma->vm_file);
2235 pgoff_t index;
2236
2237 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2238 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2239 }
2240 #endif
2241
2242 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2243 {
2244 struct inode *inode = file_inode(file);
2245 struct shmem_inode_info *info = SHMEM_I(inode);
2246 int retval = -ENOMEM;
2247
2248 /*
2249 * What serializes the accesses to info->flags?
2250 * ipc_lock_object() when called from shmctl_do_lock(),
2251 * no serialization needed when called from shm_destroy().
2252 */
2253 if (lock && !(info->flags & VM_LOCKED)) {
2254 if (!user_shm_lock(inode->i_size, ucounts))
2255 goto out_nomem;
2256 info->flags |= VM_LOCKED;
2257 mapping_set_unevictable(file->f_mapping);
2258 }
2259 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2260 user_shm_unlock(inode->i_size, ucounts);
2261 info->flags &= ~VM_LOCKED;
2262 mapping_clear_unevictable(file->f_mapping);
2263 }
2264 retval = 0;
2265
2266 out_nomem:
2267 return retval;
2268 }
2269
2270 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2271 {
2272 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2273 int ret;
2274
2275 ret = seal_check_future_write(info->seals, vma);
2276 if (ret)
2277 return ret;
2278
2279 /* arm64 - allow memory tagging on RAM-based files */
2280 vma->vm_flags |= VM_MTE_ALLOWED;
2281
2282 file_accessed(file);
2283 vma->vm_ops = &shmem_vm_ops;
2284 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2285 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2286 (vma->vm_end & HPAGE_PMD_MASK)) {
2287 khugepaged_enter(vma, vma->vm_flags);
2288 }
2289 return 0;
2290 }
2291
2292 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2293 umode_t mode, dev_t dev, unsigned long flags)
2294 {
2295 struct inode *inode;
2296 struct shmem_inode_info *info;
2297 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2298 ino_t ino;
2299
2300 if (shmem_reserve_inode(sb, &ino))
2301 return NULL;
2302
2303 inode = new_inode(sb);
2304 if (inode) {
2305 inode->i_ino = ino;
2306 inode_init_owner(&init_user_ns, inode, dir, mode);
2307 inode->i_blocks = 0;
2308 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2309 inode->i_generation = prandom_u32();
2310 info = SHMEM_I(inode);
2311 memset(info, 0, (char *)inode - (char *)info);
2312 spin_lock_init(&info->lock);
2313 atomic_set(&info->stop_eviction, 0);
2314 info->seals = F_SEAL_SEAL;
2315 info->flags = flags & VM_NORESERVE;
2316 INIT_LIST_HEAD(&info->shrinklist);
2317 INIT_LIST_HEAD(&info->swaplist);
2318 simple_xattrs_init(&info->xattrs);
2319 cache_no_acl(inode);
2320
2321 switch (mode & S_IFMT) {
2322 default:
2323 inode->i_op = &shmem_special_inode_operations;
2324 init_special_inode(inode, mode, dev);
2325 break;
2326 case S_IFREG:
2327 inode->i_mapping->a_ops = &shmem_aops;
2328 inode->i_op = &shmem_inode_operations;
2329 inode->i_fop = &shmem_file_operations;
2330 mpol_shared_policy_init(&info->policy,
2331 shmem_get_sbmpol(sbinfo));
2332 break;
2333 case S_IFDIR:
2334 inc_nlink(inode);
2335 /* Some things misbehave if size == 0 on a directory */
2336 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2337 inode->i_op = &shmem_dir_inode_operations;
2338 inode->i_fop = &simple_dir_operations;
2339 break;
2340 case S_IFLNK:
2341 /*
2342 * Must not load anything in the rbtree,
2343 * mpol_free_shared_policy will not be called.
2344 */
2345 mpol_shared_policy_init(&info->policy, NULL);
2346 break;
2347 }
2348
2349 lockdep_annotate_inode_mutex_key(inode);
2350 } else
2351 shmem_free_inode(sb);
2352 return inode;
2353 }
2354
2355 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2356 pmd_t *dst_pmd,
2357 struct vm_area_struct *dst_vma,
2358 unsigned long dst_addr,
2359 unsigned long src_addr,
2360 bool zeropage,
2361 struct page **pagep)
2362 {
2363 struct inode *inode = file_inode(dst_vma->vm_file);
2364 struct shmem_inode_info *info = SHMEM_I(inode);
2365 struct address_space *mapping = inode->i_mapping;
2366 gfp_t gfp = mapping_gfp_mask(mapping);
2367 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2368 spinlock_t *ptl;
2369 void *page_kaddr;
2370 struct page *page;
2371 pte_t _dst_pte, *dst_pte;
2372 int ret;
2373 pgoff_t offset, max_off;
2374
2375 ret = -ENOMEM;
2376 if (!shmem_inode_acct_block(inode, 1)) {
2377 /*
2378 * We may have got a page, returned -ENOENT triggering a retry,
2379 * and now we find ourselves with -ENOMEM. Release the page, to
2380 * avoid a BUG_ON in our caller.
2381 */
2382 if (unlikely(*pagep)) {
2383 put_page(*pagep);
2384 *pagep = NULL;
2385 }
2386 goto out;
2387 }
2388
2389 if (!*pagep) {
2390 page = shmem_alloc_page(gfp, info, pgoff);
2391 if (!page)
2392 goto out_unacct_blocks;
2393
2394 if (!zeropage) { /* mcopy_atomic */
2395 page_kaddr = kmap_atomic(page);
2396 ret = copy_from_user(page_kaddr,
2397 (const void __user *)src_addr,
2398 PAGE_SIZE);
2399 kunmap_atomic(page_kaddr);
2400
2401 /* fallback to copy_from_user outside mmap_lock */
2402 if (unlikely(ret)) {
2403 *pagep = page;
2404 shmem_inode_unacct_blocks(inode, 1);
2405 /* don't free the page */
2406 return -ENOENT;
2407 }
2408 } else { /* mfill_zeropage_atomic */
2409 clear_highpage(page);
2410 }
2411 } else {
2412 page = *pagep;
2413 *pagep = NULL;
2414 }
2415
2416 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2417 __SetPageLocked(page);
2418 __SetPageSwapBacked(page);
2419 __SetPageUptodate(page);
2420
2421 ret = -EFAULT;
2422 offset = linear_page_index(dst_vma, dst_addr);
2423 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2424 if (unlikely(offset >= max_off))
2425 goto out_release;
2426
2427 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2428 gfp & GFP_RECLAIM_MASK, dst_mm);
2429 if (ret)
2430 goto out_release;
2431
2432 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2433 if (dst_vma->vm_flags & VM_WRITE)
2434 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2435 else {
2436 /*
2437 * We don't set the pte dirty if the vma has no
2438 * VM_WRITE permission, so mark the page dirty or it
2439 * could be freed from under us. We could do it
2440 * unconditionally before unlock_page(), but doing it
2441 * only if VM_WRITE is not set is faster.
2442 */
2443 set_page_dirty(page);
2444 }
2445
2446 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2447
2448 ret = -EFAULT;
2449 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2450 if (unlikely(offset >= max_off))
2451 goto out_release_unlock;
2452
2453 ret = -EEXIST;
2454 if (!pte_none(*dst_pte))
2455 goto out_release_unlock;
2456
2457 lru_cache_add(page);
2458
2459 spin_lock_irq(&info->lock);
2460 info->alloced++;
2461 inode->i_blocks += BLOCKS_PER_PAGE;
2462 shmem_recalc_inode(inode);
2463 spin_unlock_irq(&info->lock);
2464
2465 inc_mm_counter(dst_mm, mm_counter_file(page));
2466 page_add_file_rmap(page, false);
2467 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2468
2469 /* No need to invalidate - it was non-present before */
2470 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2471 pte_unmap_unlock(dst_pte, ptl);
2472 unlock_page(page);
2473 ret = 0;
2474 out:
2475 return ret;
2476 out_release_unlock:
2477 pte_unmap_unlock(dst_pte, ptl);
2478 ClearPageDirty(page);
2479 delete_from_page_cache(page);
2480 out_release:
2481 unlock_page(page);
2482 put_page(page);
2483 out_unacct_blocks:
2484 shmem_inode_unacct_blocks(inode, 1);
2485 goto out;
2486 }
2487
2488 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2489 pmd_t *dst_pmd,
2490 struct vm_area_struct *dst_vma,
2491 unsigned long dst_addr,
2492 unsigned long src_addr,
2493 struct page **pagep)
2494 {
2495 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2496 dst_addr, src_addr, false, pagep);
2497 }
2498
2499 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2500 pmd_t *dst_pmd,
2501 struct vm_area_struct *dst_vma,
2502 unsigned long dst_addr)
2503 {
2504 struct page *page = NULL;
2505
2506 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2507 dst_addr, 0, true, &page);
2508 }
2509
2510 #ifdef CONFIG_TMPFS
2511 static const struct inode_operations shmem_symlink_inode_operations;
2512 static const struct inode_operations shmem_short_symlink_operations;
2513
2514 #ifdef CONFIG_TMPFS_XATTR
2515 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2516 #else
2517 #define shmem_initxattrs NULL
2518 #endif
2519
2520 static int
2521 shmem_write_begin(struct file *file, struct address_space *mapping,
2522 loff_t pos, unsigned len, unsigned flags,
2523 struct page **pagep, void **fsdata)
2524 {
2525 struct inode *inode = mapping->host;
2526 struct shmem_inode_info *info = SHMEM_I(inode);
2527 pgoff_t index = pos >> PAGE_SHIFT;
2528
2529 /* i_mutex is held by caller */
2530 if (unlikely(info->seals & (F_SEAL_GROW |
2531 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2532 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2533 return -EPERM;
2534 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2535 return -EPERM;
2536 }
2537
2538 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2539 }
2540
2541 static int
2542 shmem_write_end(struct file *file, struct address_space *mapping,
2543 loff_t pos, unsigned len, unsigned copied,
2544 struct page *page, void *fsdata)
2545 {
2546 struct inode *inode = mapping->host;
2547
2548 if (pos + copied > inode->i_size)
2549 i_size_write(inode, pos + copied);
2550
2551 if (!PageUptodate(page)) {
2552 struct page *head = compound_head(page);
2553 if (PageTransCompound(page)) {
2554 int i;
2555
2556 for (i = 0; i < HPAGE_PMD_NR; i++) {
2557 if (head + i == page)
2558 continue;
2559 clear_highpage(head + i);
2560 flush_dcache_page(head + i);
2561 }
2562 }
2563 if (copied < PAGE_SIZE) {
2564 unsigned from = pos & (PAGE_SIZE - 1);
2565 zero_user_segments(page, 0, from,
2566 from + copied, PAGE_SIZE);
2567 }
2568 SetPageUptodate(head);
2569 }
2570 set_page_dirty(page);
2571 unlock_page(page);
2572 put_page(page);
2573
2574 return copied;
2575 }
2576
2577 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2578 {
2579 struct file *file = iocb->ki_filp;
2580 struct inode *inode = file_inode(file);
2581 struct address_space *mapping = inode->i_mapping;
2582 pgoff_t index;
2583 unsigned long offset;
2584 enum sgp_type sgp = SGP_READ;
2585 int error = 0;
2586 ssize_t retval = 0;
2587 loff_t *ppos = &iocb->ki_pos;
2588
2589 /*
2590 * Might this read be for a stacking filesystem? Then when reading
2591 * holes of a sparse file, we actually need to allocate those pages,
2592 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2593 */
2594 if (!iter_is_iovec(to))
2595 sgp = SGP_CACHE;
2596
2597 index = *ppos >> PAGE_SHIFT;
2598 offset = *ppos & ~PAGE_MASK;
2599
2600 for (;;) {
2601 struct page *page = NULL;
2602 pgoff_t end_index;
2603 unsigned long nr, ret;
2604 loff_t i_size = i_size_read(inode);
2605
2606 end_index = i_size >> PAGE_SHIFT;
2607 if (index > end_index)
2608 break;
2609 if (index == end_index) {
2610 nr = i_size & ~PAGE_MASK;
2611 if (nr <= offset)
2612 break;
2613 }
2614
2615 error = shmem_getpage(inode, index, &page, sgp);
2616 if (error) {
2617 if (error == -EINVAL)
2618 error = 0;
2619 break;
2620 }
2621 if (page) {
2622 if (sgp == SGP_CACHE)
2623 set_page_dirty(page);
2624 unlock_page(page);
2625 }
2626
2627 /*
2628 * We must evaluate after, since reads (unlike writes)
2629 * are called without i_mutex protection against truncate
2630 */
2631 nr = PAGE_SIZE;
2632 i_size = i_size_read(inode);
2633 end_index = i_size >> PAGE_SHIFT;
2634 if (index == end_index) {
2635 nr = i_size & ~PAGE_MASK;
2636 if (nr <= offset) {
2637 if (page)
2638 put_page(page);
2639 break;
2640 }
2641 }
2642 nr -= offset;
2643
2644 if (page) {
2645 /*
2646 * If users can be writing to this page using arbitrary
2647 * virtual addresses, take care about potential aliasing
2648 * before reading the page on the kernel side.
2649 */
2650 if (mapping_writably_mapped(mapping))
2651 flush_dcache_page(page);
2652 /*
2653 * Mark the page accessed if we read the beginning.
2654 */
2655 if (!offset)
2656 mark_page_accessed(page);
2657 } else {
2658 page = ZERO_PAGE(0);
2659 get_page(page);
2660 }
2661
2662 /*
2663 * Ok, we have the page, and it's up-to-date, so
2664 * now we can copy it to user space...
2665 */
2666 ret = copy_page_to_iter(page, offset, nr, to);
2667 retval += ret;
2668 offset += ret;
2669 index += offset >> PAGE_SHIFT;
2670 offset &= ~PAGE_MASK;
2671
2672 put_page(page);
2673 if (!iov_iter_count(to))
2674 break;
2675 if (ret < nr) {
2676 error = -EFAULT;
2677 break;
2678 }
2679 cond_resched();
2680 }
2681
2682 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2683 file_accessed(file);
2684 return retval ? retval : error;
2685 }
2686
2687 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2688 {
2689 struct address_space *mapping = file->f_mapping;
2690 struct inode *inode = mapping->host;
2691
2692 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2693 return generic_file_llseek_size(file, offset, whence,
2694 MAX_LFS_FILESIZE, i_size_read(inode));
2695 if (offset < 0)
2696 return -ENXIO;
2697
2698 inode_lock(inode);
2699 /* We're holding i_mutex so we can access i_size directly */
2700 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2701 if (offset >= 0)
2702 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2703 inode_unlock(inode);
2704 return offset;
2705 }
2706
2707 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2708 loff_t len)
2709 {
2710 struct inode *inode = file_inode(file);
2711 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2712 struct shmem_inode_info *info = SHMEM_I(inode);
2713 struct shmem_falloc shmem_falloc;
2714 pgoff_t start, index, end;
2715 int error;
2716
2717 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2718 return -EOPNOTSUPP;
2719
2720 inode_lock(inode);
2721
2722 if (mode & FALLOC_FL_PUNCH_HOLE) {
2723 struct address_space *mapping = file->f_mapping;
2724 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2725 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2726 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2727
2728 /* protected by i_mutex */
2729 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2730 error = -EPERM;
2731 goto out;
2732 }
2733
2734 shmem_falloc.waitq = &shmem_falloc_waitq;
2735 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2736 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2737 spin_lock(&inode->i_lock);
2738 inode->i_private = &shmem_falloc;
2739 spin_unlock(&inode->i_lock);
2740
2741 if ((u64)unmap_end > (u64)unmap_start)
2742 unmap_mapping_range(mapping, unmap_start,
2743 1 + unmap_end - unmap_start, 0);
2744 shmem_truncate_range(inode, offset, offset + len - 1);
2745 /* No need to unmap again: hole-punching leaves COWed pages */
2746
2747 spin_lock(&inode->i_lock);
2748 inode->i_private = NULL;
2749 wake_up_all(&shmem_falloc_waitq);
2750 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2751 spin_unlock(&inode->i_lock);
2752 error = 0;
2753 goto out;
2754 }
2755
2756 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2757 error = inode_newsize_ok(inode, offset + len);
2758 if (error)
2759 goto out;
2760
2761 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2762 error = -EPERM;
2763 goto out;
2764 }
2765
2766 start = offset >> PAGE_SHIFT;
2767 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2768 /* Try to avoid a swapstorm if len is impossible to satisfy */
2769 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2770 error = -ENOSPC;
2771 goto out;
2772 }
2773
2774 shmem_falloc.waitq = NULL;
2775 shmem_falloc.start = start;
2776 shmem_falloc.next = start;
2777 shmem_falloc.nr_falloced = 0;
2778 shmem_falloc.nr_unswapped = 0;
2779 spin_lock(&inode->i_lock);
2780 inode->i_private = &shmem_falloc;
2781 spin_unlock(&inode->i_lock);
2782
2783 for (index = start; index < end; index++) {
2784 struct page *page;
2785
2786 /*
2787 * Good, the fallocate(2) manpage permits EINTR: we may have
2788 * been interrupted because we are using up too much memory.
2789 */
2790 if (signal_pending(current))
2791 error = -EINTR;
2792 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2793 error = -ENOMEM;
2794 else
2795 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2796 if (error) {
2797 /* Remove the !PageUptodate pages we added */
2798 if (index > start) {
2799 shmem_undo_range(inode,
2800 (loff_t)start << PAGE_SHIFT,
2801 ((loff_t)index << PAGE_SHIFT) - 1, true);
2802 }
2803 goto undone;
2804 }
2805
2806 /*
2807 * Inform shmem_writepage() how far we have reached.
2808 * No need for lock or barrier: we have the page lock.
2809 */
2810 shmem_falloc.next++;
2811 if (!PageUptodate(page))
2812 shmem_falloc.nr_falloced++;
2813
2814 /*
2815 * If !PageUptodate, leave it that way so that freeable pages
2816 * can be recognized if we need to rollback on error later.
2817 * But set_page_dirty so that memory pressure will swap rather
2818 * than free the pages we are allocating (and SGP_CACHE pages
2819 * might still be clean: we now need to mark those dirty too).
2820 */
2821 set_page_dirty(page);
2822 unlock_page(page);
2823 put_page(page);
2824 cond_resched();
2825 }
2826
2827 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2828 i_size_write(inode, offset + len);
2829 inode->i_ctime = current_time(inode);
2830 undone:
2831 spin_lock(&inode->i_lock);
2832 inode->i_private = NULL;
2833 spin_unlock(&inode->i_lock);
2834 out:
2835 inode_unlock(inode);
2836 return error;
2837 }
2838
2839 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2840 {
2841 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2842
2843 buf->f_type = TMPFS_MAGIC;
2844 buf->f_bsize = PAGE_SIZE;
2845 buf->f_namelen = NAME_MAX;
2846 if (sbinfo->max_blocks) {
2847 buf->f_blocks = sbinfo->max_blocks;
2848 buf->f_bavail =
2849 buf->f_bfree = sbinfo->max_blocks -
2850 percpu_counter_sum(&sbinfo->used_blocks);
2851 }
2852 if (sbinfo->max_inodes) {
2853 buf->f_files = sbinfo->max_inodes;
2854 buf->f_ffree = sbinfo->free_inodes;
2855 }
2856 /* else leave those fields 0 like simple_statfs */
2857
2858 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2859
2860 return 0;
2861 }
2862
2863 /*
2864 * File creation. Allocate an inode, and we're done..
2865 */
2866 static int
2867 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2868 struct dentry *dentry, umode_t mode, dev_t dev)
2869 {
2870 struct inode *inode;
2871 int error = -ENOSPC;
2872
2873 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2874 if (inode) {
2875 error = simple_acl_create(dir, inode);
2876 if (error)
2877 goto out_iput;
2878 error = security_inode_init_security(inode, dir,
2879 &dentry->d_name,
2880 shmem_initxattrs, NULL);
2881 if (error && error != -EOPNOTSUPP)
2882 goto out_iput;
2883
2884 error = 0;
2885 dir->i_size += BOGO_DIRENT_SIZE;
2886 dir->i_ctime = dir->i_mtime = current_time(dir);
2887 d_instantiate(dentry, inode);
2888 dget(dentry); /* Extra count - pin the dentry in core */
2889 }
2890 return error;
2891 out_iput:
2892 iput(inode);
2893 return error;
2894 }
2895
2896 static int
2897 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2898 struct dentry *dentry, umode_t mode)
2899 {
2900 struct inode *inode;
2901 int error = -ENOSPC;
2902
2903 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2904 if (inode) {
2905 error = security_inode_init_security(inode, dir,
2906 NULL,
2907 shmem_initxattrs, NULL);
2908 if (error && error != -EOPNOTSUPP)
2909 goto out_iput;
2910 error = simple_acl_create(dir, inode);
2911 if (error)
2912 goto out_iput;
2913 d_tmpfile(dentry, inode);
2914 }
2915 return error;
2916 out_iput:
2917 iput(inode);
2918 return error;
2919 }
2920
2921 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2922 struct dentry *dentry, umode_t mode)
2923 {
2924 int error;
2925
2926 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2927 mode | S_IFDIR, 0)))
2928 return error;
2929 inc_nlink(dir);
2930 return 0;
2931 }
2932
2933 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2934 struct dentry *dentry, umode_t mode, bool excl)
2935 {
2936 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2937 }
2938
2939 /*
2940 * Link a file..
2941 */
2942 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2943 {
2944 struct inode *inode = d_inode(old_dentry);
2945 int ret = 0;
2946
2947 /*
2948 * No ordinary (disk based) filesystem counts links as inodes;
2949 * but each new link needs a new dentry, pinning lowmem, and
2950 * tmpfs dentries cannot be pruned until they are unlinked.
2951 * But if an O_TMPFILE file is linked into the tmpfs, the
2952 * first link must skip that, to get the accounting right.
2953 */
2954 if (inode->i_nlink) {
2955 ret = shmem_reserve_inode(inode->i_sb, NULL);
2956 if (ret)
2957 goto out;
2958 }
2959
2960 dir->i_size += BOGO_DIRENT_SIZE;
2961 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2962 inc_nlink(inode);
2963 ihold(inode); /* New dentry reference */
2964 dget(dentry); /* Extra pinning count for the created dentry */
2965 d_instantiate(dentry, inode);
2966 out:
2967 return ret;
2968 }
2969
2970 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2971 {
2972 struct inode *inode = d_inode(dentry);
2973
2974 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2975 shmem_free_inode(inode->i_sb);
2976
2977 dir->i_size -= BOGO_DIRENT_SIZE;
2978 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2979 drop_nlink(inode);
2980 dput(dentry); /* Undo the count from "create" - this does all the work */
2981 return 0;
2982 }
2983
2984 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2985 {
2986 if (!simple_empty(dentry))
2987 return -ENOTEMPTY;
2988
2989 drop_nlink(d_inode(dentry));
2990 drop_nlink(dir);
2991 return shmem_unlink(dir, dentry);
2992 }
2993
2994 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2995 {
2996 bool old_is_dir = d_is_dir(old_dentry);
2997 bool new_is_dir = d_is_dir(new_dentry);
2998
2999 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3000 if (old_is_dir) {
3001 drop_nlink(old_dir);
3002 inc_nlink(new_dir);
3003 } else {
3004 drop_nlink(new_dir);
3005 inc_nlink(old_dir);
3006 }
3007 }
3008 old_dir->i_ctime = old_dir->i_mtime =
3009 new_dir->i_ctime = new_dir->i_mtime =
3010 d_inode(old_dentry)->i_ctime =
3011 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3012
3013 return 0;
3014 }
3015
3016 static int shmem_whiteout(struct user_namespace *mnt_userns,
3017 struct inode *old_dir, struct dentry *old_dentry)
3018 {
3019 struct dentry *whiteout;
3020 int error;
3021
3022 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3023 if (!whiteout)
3024 return -ENOMEM;
3025
3026 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3027 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3028 dput(whiteout);
3029 if (error)
3030 return error;
3031
3032 /*
3033 * Cheat and hash the whiteout while the old dentry is still in
3034 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3035 *
3036 * d_lookup() will consistently find one of them at this point,
3037 * not sure which one, but that isn't even important.
3038 */
3039 d_rehash(whiteout);
3040 return 0;
3041 }
3042
3043 /*
3044 * The VFS layer already does all the dentry stuff for rename,
3045 * we just have to decrement the usage count for the target if
3046 * it exists so that the VFS layer correctly free's it when it
3047 * gets overwritten.
3048 */
3049 static int shmem_rename2(struct user_namespace *mnt_userns,
3050 struct inode *old_dir, struct dentry *old_dentry,
3051 struct inode *new_dir, struct dentry *new_dentry,
3052 unsigned int flags)
3053 {
3054 struct inode *inode = d_inode(old_dentry);
3055 int they_are_dirs = S_ISDIR(inode->i_mode);
3056
3057 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3058 return -EINVAL;
3059
3060 if (flags & RENAME_EXCHANGE)
3061 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3062
3063 if (!simple_empty(new_dentry))
3064 return -ENOTEMPTY;
3065
3066 if (flags & RENAME_WHITEOUT) {
3067 int error;
3068
3069 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3070 if (error)
3071 return error;
3072 }
3073
3074 if (d_really_is_positive(new_dentry)) {
3075 (void) shmem_unlink(new_dir, new_dentry);
3076 if (they_are_dirs) {
3077 drop_nlink(d_inode(new_dentry));
3078 drop_nlink(old_dir);
3079 }
3080 } else if (they_are_dirs) {
3081 drop_nlink(old_dir);
3082 inc_nlink(new_dir);
3083 }
3084
3085 old_dir->i_size -= BOGO_DIRENT_SIZE;
3086 new_dir->i_size += BOGO_DIRENT_SIZE;
3087 old_dir->i_ctime = old_dir->i_mtime =
3088 new_dir->i_ctime = new_dir->i_mtime =
3089 inode->i_ctime = current_time(old_dir);
3090 return 0;
3091 }
3092
3093 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3094 struct dentry *dentry, const char *symname)
3095 {
3096 int error;
3097 int len;
3098 struct inode *inode;
3099 struct page *page;
3100
3101 len = strlen(symname) + 1;
3102 if (len > PAGE_SIZE)
3103 return -ENAMETOOLONG;
3104
3105 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3106 VM_NORESERVE);
3107 if (!inode)
3108 return -ENOSPC;
3109
3110 error = security_inode_init_security(inode, dir, &dentry->d_name,
3111 shmem_initxattrs, NULL);
3112 if (error && error != -EOPNOTSUPP) {
3113 iput(inode);
3114 return error;
3115 }
3116
3117 inode->i_size = len-1;
3118 if (len <= SHORT_SYMLINK_LEN) {
3119 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3120 if (!inode->i_link) {
3121 iput(inode);
3122 return -ENOMEM;
3123 }
3124 inode->i_op = &shmem_short_symlink_operations;
3125 } else {
3126 inode_nohighmem(inode);
3127 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3128 if (error) {
3129 iput(inode);
3130 return error;
3131 }
3132 inode->i_mapping->a_ops = &shmem_aops;
3133 inode->i_op = &shmem_symlink_inode_operations;
3134 memcpy(page_address(page), symname, len);
3135 SetPageUptodate(page);
3136 set_page_dirty(page);
3137 unlock_page(page);
3138 put_page(page);
3139 }
3140 dir->i_size += BOGO_DIRENT_SIZE;
3141 dir->i_ctime = dir->i_mtime = current_time(dir);
3142 d_instantiate(dentry, inode);
3143 dget(dentry);
3144 return 0;
3145 }
3146
3147 static void shmem_put_link(void *arg)
3148 {
3149 mark_page_accessed(arg);
3150 put_page(arg);
3151 }
3152
3153 static const char *shmem_get_link(struct dentry *dentry,
3154 struct inode *inode,
3155 struct delayed_call *done)
3156 {
3157 struct page *page = NULL;
3158 int error;
3159 if (!dentry) {
3160 page = find_get_page(inode->i_mapping, 0);
3161 if (!page)
3162 return ERR_PTR(-ECHILD);
3163 if (!PageUptodate(page)) {
3164 put_page(page);
3165 return ERR_PTR(-ECHILD);
3166 }
3167 } else {
3168 error = shmem_getpage(inode, 0, &page, SGP_READ);
3169 if (error)
3170 return ERR_PTR(error);
3171 unlock_page(page);
3172 }
3173 set_delayed_call(done, shmem_put_link, page);
3174 return page_address(page);
3175 }
3176
3177 #ifdef CONFIG_TMPFS_XATTR
3178 /*
3179 * Superblocks without xattr inode operations may get some security.* xattr
3180 * support from the LSM "for free". As soon as we have any other xattrs
3181 * like ACLs, we also need to implement the security.* handlers at
3182 * filesystem level, though.
3183 */
3184
3185 /*
3186 * Callback for security_inode_init_security() for acquiring xattrs.
3187 */
3188 static int shmem_initxattrs(struct inode *inode,
3189 const struct xattr *xattr_array,
3190 void *fs_info)
3191 {
3192 struct shmem_inode_info *info = SHMEM_I(inode);
3193 const struct xattr *xattr;
3194 struct simple_xattr *new_xattr;
3195 size_t len;
3196
3197 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3198 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3199 if (!new_xattr)
3200 return -ENOMEM;
3201
3202 len = strlen(xattr->name) + 1;
3203 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3204 GFP_KERNEL);
3205 if (!new_xattr->name) {
3206 kvfree(new_xattr);
3207 return -ENOMEM;
3208 }
3209
3210 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3211 XATTR_SECURITY_PREFIX_LEN);
3212 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3213 xattr->name, len);
3214
3215 simple_xattr_list_add(&info->xattrs, new_xattr);
3216 }
3217
3218 return 0;
3219 }
3220
3221 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3222 struct dentry *unused, struct inode *inode,
3223 const char *name, void *buffer, size_t size)
3224 {
3225 struct shmem_inode_info *info = SHMEM_I(inode);
3226
3227 name = xattr_full_name(handler, name);
3228 return simple_xattr_get(&info->xattrs, name, buffer, size);
3229 }
3230
3231 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3232 struct user_namespace *mnt_userns,
3233 struct dentry *unused, struct inode *inode,
3234 const char *name, const void *value,
3235 size_t size, int flags)
3236 {
3237 struct shmem_inode_info *info = SHMEM_I(inode);
3238
3239 name = xattr_full_name(handler, name);
3240 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3241 }
3242
3243 static const struct xattr_handler shmem_security_xattr_handler = {
3244 .prefix = XATTR_SECURITY_PREFIX,
3245 .get = shmem_xattr_handler_get,
3246 .set = shmem_xattr_handler_set,
3247 };
3248
3249 static const struct xattr_handler shmem_trusted_xattr_handler = {
3250 .prefix = XATTR_TRUSTED_PREFIX,
3251 .get = shmem_xattr_handler_get,
3252 .set = shmem_xattr_handler_set,
3253 };
3254
3255 static const struct xattr_handler *shmem_xattr_handlers[] = {
3256 #ifdef CONFIG_TMPFS_POSIX_ACL
3257 &posix_acl_access_xattr_handler,
3258 &posix_acl_default_xattr_handler,
3259 #endif
3260 &shmem_security_xattr_handler,
3261 &shmem_trusted_xattr_handler,
3262 NULL
3263 };
3264
3265 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3266 {
3267 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3268 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3269 }
3270 #endif /* CONFIG_TMPFS_XATTR */
3271
3272 static const struct inode_operations shmem_short_symlink_operations = {
3273 .get_link = simple_get_link,
3274 #ifdef CONFIG_TMPFS_XATTR
3275 .listxattr = shmem_listxattr,
3276 #endif
3277 };
3278
3279 static const struct inode_operations shmem_symlink_inode_operations = {
3280 .get_link = shmem_get_link,
3281 #ifdef CONFIG_TMPFS_XATTR
3282 .listxattr = shmem_listxattr,
3283 #endif
3284 };
3285
3286 static struct dentry *shmem_get_parent(struct dentry *child)
3287 {
3288 return ERR_PTR(-ESTALE);
3289 }
3290
3291 static int shmem_match(struct inode *ino, void *vfh)
3292 {
3293 __u32 *fh = vfh;
3294 __u64 inum = fh[2];
3295 inum = (inum << 32) | fh[1];
3296 return ino->i_ino == inum && fh[0] == ino->i_generation;
3297 }
3298
3299 /* Find any alias of inode, but prefer a hashed alias */
3300 static struct dentry *shmem_find_alias(struct inode *inode)
3301 {
3302 struct dentry *alias = d_find_alias(inode);
3303
3304 return alias ?: d_find_any_alias(inode);
3305 }
3306
3307
3308 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3309 struct fid *fid, int fh_len, int fh_type)
3310 {
3311 struct inode *inode;
3312 struct dentry *dentry = NULL;
3313 u64 inum;
3314
3315 if (fh_len < 3)
3316 return NULL;
3317
3318 inum = fid->raw[2];
3319 inum = (inum << 32) | fid->raw[1];
3320
3321 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3322 shmem_match, fid->raw);
3323 if (inode) {
3324 dentry = shmem_find_alias(inode);
3325 iput(inode);
3326 }
3327
3328 return dentry;
3329 }
3330
3331 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3332 struct inode *parent)
3333 {
3334 if (*len < 3) {
3335 *len = 3;
3336 return FILEID_INVALID;
3337 }
3338
3339 if (inode_unhashed(inode)) {
3340 /* Unfortunately insert_inode_hash is not idempotent,
3341 * so as we hash inodes here rather than at creation
3342 * time, we need a lock to ensure we only try
3343 * to do it once
3344 */
3345 static DEFINE_SPINLOCK(lock);
3346 spin_lock(&lock);
3347 if (inode_unhashed(inode))
3348 __insert_inode_hash(inode,
3349 inode->i_ino + inode->i_generation);
3350 spin_unlock(&lock);
3351 }
3352
3353 fh[0] = inode->i_generation;
3354 fh[1] = inode->i_ino;
3355 fh[2] = ((__u64)inode->i_ino) >> 32;
3356
3357 *len = 3;
3358 return 1;
3359 }
3360
3361 static const struct export_operations shmem_export_ops = {
3362 .get_parent = shmem_get_parent,
3363 .encode_fh = shmem_encode_fh,
3364 .fh_to_dentry = shmem_fh_to_dentry,
3365 };
3366
3367 enum shmem_param {
3368 Opt_gid,
3369 Opt_huge,
3370 Opt_mode,
3371 Opt_mpol,
3372 Opt_nr_blocks,
3373 Opt_nr_inodes,
3374 Opt_size,
3375 Opt_uid,
3376 Opt_inode32,
3377 Opt_inode64,
3378 };
3379
3380 static const struct constant_table shmem_param_enums_huge[] = {
3381 {"never", SHMEM_HUGE_NEVER },
3382 {"always", SHMEM_HUGE_ALWAYS },
3383 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3384 {"advise", SHMEM_HUGE_ADVISE },
3385 {}
3386 };
3387
3388 const struct fs_parameter_spec shmem_fs_parameters[] = {
3389 fsparam_u32 ("gid", Opt_gid),
3390 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3391 fsparam_u32oct("mode", Opt_mode),
3392 fsparam_string("mpol", Opt_mpol),
3393 fsparam_string("nr_blocks", Opt_nr_blocks),
3394 fsparam_string("nr_inodes", Opt_nr_inodes),
3395 fsparam_string("size", Opt_size),
3396 fsparam_u32 ("uid", Opt_uid),
3397 fsparam_flag ("inode32", Opt_inode32),
3398 fsparam_flag ("inode64", Opt_inode64),
3399 {}
3400 };
3401
3402 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3403 {
3404 struct shmem_options *ctx = fc->fs_private;
3405 struct fs_parse_result result;
3406 unsigned long long size;
3407 char *rest;
3408 int opt;
3409
3410 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3411 if (opt < 0)
3412 return opt;
3413
3414 switch (opt) {
3415 case Opt_size:
3416 size = memparse(param->string, &rest);
3417 if (*rest == '%') {
3418 size <<= PAGE_SHIFT;
3419 size *= totalram_pages();
3420 do_div(size, 100);
3421 rest++;
3422 }
3423 if (*rest)
3424 goto bad_value;
3425 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3426 ctx->seen |= SHMEM_SEEN_BLOCKS;
3427 break;
3428 case Opt_nr_blocks:
3429 ctx->blocks = memparse(param->string, &rest);
3430 if (*rest)
3431 goto bad_value;
3432 ctx->seen |= SHMEM_SEEN_BLOCKS;
3433 break;
3434 case Opt_nr_inodes:
3435 ctx->inodes = memparse(param->string, &rest);
3436 if (*rest)
3437 goto bad_value;
3438 ctx->seen |= SHMEM_SEEN_INODES;
3439 break;
3440 case Opt_mode:
3441 ctx->mode = result.uint_32 & 07777;
3442 break;
3443 case Opt_uid:
3444 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3445 if (!uid_valid(ctx->uid))
3446 goto bad_value;
3447 break;
3448 case Opt_gid:
3449 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3450 if (!gid_valid(ctx->gid))
3451 goto bad_value;
3452 break;
3453 case Opt_huge:
3454 ctx->huge = result.uint_32;
3455 if (ctx->huge != SHMEM_HUGE_NEVER &&
3456 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3457 has_transparent_hugepage()))
3458 goto unsupported_parameter;
3459 ctx->seen |= SHMEM_SEEN_HUGE;
3460 break;
3461 case Opt_mpol:
3462 if (IS_ENABLED(CONFIG_NUMA)) {
3463 mpol_put(ctx->mpol);
3464 ctx->mpol = NULL;
3465 if (mpol_parse_str(param->string, &ctx->mpol))
3466 goto bad_value;
3467 break;
3468 }
3469 goto unsupported_parameter;
3470 case Opt_inode32:
3471 ctx->full_inums = false;
3472 ctx->seen |= SHMEM_SEEN_INUMS;
3473 break;
3474 case Opt_inode64:
3475 if (sizeof(ino_t) < 8) {
3476 return invalfc(fc,
3477 "Cannot use inode64 with <64bit inums in kernel\n");
3478 }
3479 ctx->full_inums = true;
3480 ctx->seen |= SHMEM_SEEN_INUMS;
3481 break;
3482 }
3483 return 0;
3484
3485 unsupported_parameter:
3486 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3487 bad_value:
3488 return invalfc(fc, "Bad value for '%s'", param->key);
3489 }
3490
3491 static int shmem_parse_options(struct fs_context *fc, void *data)
3492 {
3493 char *options = data;
3494
3495 if (options) {
3496 int err = security_sb_eat_lsm_opts(options, &fc->security);
3497 if (err)
3498 return err;
3499 }
3500
3501 while (options != NULL) {
3502 char *this_char = options;
3503 for (;;) {
3504 /*
3505 * NUL-terminate this option: unfortunately,
3506 * mount options form a comma-separated list,
3507 * but mpol's nodelist may also contain commas.
3508 */
3509 options = strchr(options, ',');
3510 if (options == NULL)
3511 break;
3512 options++;
3513 if (!isdigit(*options)) {
3514 options[-1] = '\0';
3515 break;
3516 }
3517 }
3518 if (*this_char) {
3519 char *value = strchr(this_char, '=');
3520 size_t len = 0;
3521 int err;
3522
3523 if (value) {
3524 *value++ = '\0';
3525 len = strlen(value);
3526 }
3527 err = vfs_parse_fs_string(fc, this_char, value, len);
3528 if (err < 0)
3529 return err;
3530 }
3531 }
3532 return 0;
3533 }
3534
3535 /*
3536 * Reconfigure a shmem filesystem.
3537 *
3538 * Note that we disallow change from limited->unlimited blocks/inodes while any
3539 * are in use; but we must separately disallow unlimited->limited, because in
3540 * that case we have no record of how much is already in use.
3541 */
3542 static int shmem_reconfigure(struct fs_context *fc)
3543 {
3544 struct shmem_options *ctx = fc->fs_private;
3545 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3546 unsigned long inodes;
3547 const char *err;
3548
3549 spin_lock(&sbinfo->stat_lock);
3550 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3551 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3552 if (!sbinfo->max_blocks) {
3553 err = "Cannot retroactively limit size";
3554 goto out;
3555 }
3556 if (percpu_counter_compare(&sbinfo->used_blocks,
3557 ctx->blocks) > 0) {
3558 err = "Too small a size for current use";
3559 goto out;
3560 }
3561 }
3562 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3563 if (!sbinfo->max_inodes) {
3564 err = "Cannot retroactively limit inodes";
3565 goto out;
3566 }
3567 if (ctx->inodes < inodes) {
3568 err = "Too few inodes for current use";
3569 goto out;
3570 }
3571 }
3572
3573 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3574 sbinfo->next_ino > UINT_MAX) {
3575 err = "Current inum too high to switch to 32-bit inums";
3576 goto out;
3577 }
3578
3579 if (ctx->seen & SHMEM_SEEN_HUGE)
3580 sbinfo->huge = ctx->huge;
3581 if (ctx->seen & SHMEM_SEEN_INUMS)
3582 sbinfo->full_inums = ctx->full_inums;
3583 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3584 sbinfo->max_blocks = ctx->blocks;
3585 if (ctx->seen & SHMEM_SEEN_INODES) {
3586 sbinfo->max_inodes = ctx->inodes;
3587 sbinfo->free_inodes = ctx->inodes - inodes;
3588 }
3589
3590 /*
3591 * Preserve previous mempolicy unless mpol remount option was specified.
3592 */
3593 if (ctx->mpol) {
3594 mpol_put(sbinfo->mpol);
3595 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3596 ctx->mpol = NULL;
3597 }
3598 spin_unlock(&sbinfo->stat_lock);
3599 return 0;
3600 out:
3601 spin_unlock(&sbinfo->stat_lock);
3602 return invalfc(fc, "%s", err);
3603 }
3604
3605 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3606 {
3607 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3608
3609 if (sbinfo->max_blocks != shmem_default_max_blocks())
3610 seq_printf(seq, ",size=%luk",
3611 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3612 if (sbinfo->max_inodes != shmem_default_max_inodes())
3613 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3614 if (sbinfo->mode != (0777 | S_ISVTX))
3615 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3616 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3617 seq_printf(seq, ",uid=%u",
3618 from_kuid_munged(&init_user_ns, sbinfo->uid));
3619 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3620 seq_printf(seq, ",gid=%u",
3621 from_kgid_munged(&init_user_ns, sbinfo->gid));
3622
3623 /*
3624 * Showing inode{64,32} might be useful even if it's the system default,
3625 * since then people don't have to resort to checking both here and
3626 * /proc/config.gz to confirm 64-bit inums were successfully applied
3627 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3628 *
3629 * We hide it when inode64 isn't the default and we are using 32-bit
3630 * inodes, since that probably just means the feature isn't even under
3631 * consideration.
3632 *
3633 * As such:
3634 *
3635 * +-----------------+-----------------+
3636 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3637 * +------------------+-----------------+-----------------+
3638 * | full_inums=true | show | show |
3639 * | full_inums=false | show | hide |
3640 * +------------------+-----------------+-----------------+
3641 *
3642 */
3643 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3644 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3645 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3646 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3647 if (sbinfo->huge)
3648 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3649 #endif
3650 shmem_show_mpol(seq, sbinfo->mpol);
3651 return 0;
3652 }
3653
3654 #endif /* CONFIG_TMPFS */
3655
3656 static void shmem_put_super(struct super_block *sb)
3657 {
3658 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3659
3660 free_percpu(sbinfo->ino_batch);
3661 percpu_counter_destroy(&sbinfo->used_blocks);
3662 mpol_put(sbinfo->mpol);
3663 kfree(sbinfo);
3664 sb->s_fs_info = NULL;
3665 }
3666
3667 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3668 {
3669 struct shmem_options *ctx = fc->fs_private;
3670 struct inode *inode;
3671 struct shmem_sb_info *sbinfo;
3672 int err = -ENOMEM;
3673
3674 /* Round up to L1_CACHE_BYTES to resist false sharing */
3675 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3676 L1_CACHE_BYTES), GFP_KERNEL);
3677 if (!sbinfo)
3678 return -ENOMEM;
3679
3680 sb->s_fs_info = sbinfo;
3681
3682 #ifdef CONFIG_TMPFS
3683 /*
3684 * Per default we only allow half of the physical ram per
3685 * tmpfs instance, limiting inodes to one per page of lowmem;
3686 * but the internal instance is left unlimited.
3687 */
3688 if (!(sb->s_flags & SB_KERNMOUNT)) {
3689 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3690 ctx->blocks = shmem_default_max_blocks();
3691 if (!(ctx->seen & SHMEM_SEEN_INODES))
3692 ctx->inodes = shmem_default_max_inodes();
3693 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3694 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3695 } else {
3696 sb->s_flags |= SB_NOUSER;
3697 }
3698 sb->s_export_op = &shmem_export_ops;
3699 sb->s_flags |= SB_NOSEC;
3700 #else
3701 sb->s_flags |= SB_NOUSER;
3702 #endif
3703 sbinfo->max_blocks = ctx->blocks;
3704 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3705 if (sb->s_flags & SB_KERNMOUNT) {
3706 sbinfo->ino_batch = alloc_percpu(ino_t);
3707 if (!sbinfo->ino_batch)
3708 goto failed;
3709 }
3710 sbinfo->uid = ctx->uid;
3711 sbinfo->gid = ctx->gid;
3712 sbinfo->full_inums = ctx->full_inums;
3713 sbinfo->mode = ctx->mode;
3714 sbinfo->huge = ctx->huge;
3715 sbinfo->mpol = ctx->mpol;
3716 ctx->mpol = NULL;
3717
3718 spin_lock_init(&sbinfo->stat_lock);
3719 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3720 goto failed;
3721 spin_lock_init(&sbinfo->shrinklist_lock);
3722 INIT_LIST_HEAD(&sbinfo->shrinklist);
3723
3724 sb->s_maxbytes = MAX_LFS_FILESIZE;
3725 sb->s_blocksize = PAGE_SIZE;
3726 sb->s_blocksize_bits = PAGE_SHIFT;
3727 sb->s_magic = TMPFS_MAGIC;
3728 sb->s_op = &shmem_ops;
3729 sb->s_time_gran = 1;
3730 #ifdef CONFIG_TMPFS_XATTR
3731 sb->s_xattr = shmem_xattr_handlers;
3732 #endif
3733 #ifdef CONFIG_TMPFS_POSIX_ACL
3734 sb->s_flags |= SB_POSIXACL;
3735 #endif
3736 uuid_gen(&sb->s_uuid);
3737
3738 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3739 if (!inode)
3740 goto failed;
3741 inode->i_uid = sbinfo->uid;
3742 inode->i_gid = sbinfo->gid;
3743 sb->s_root = d_make_root(inode);
3744 if (!sb->s_root)
3745 goto failed;
3746 return 0;
3747
3748 failed:
3749 shmem_put_super(sb);
3750 return err;
3751 }
3752
3753 static int shmem_get_tree(struct fs_context *fc)
3754 {
3755 return get_tree_nodev(fc, shmem_fill_super);
3756 }
3757
3758 static void shmem_free_fc(struct fs_context *fc)
3759 {
3760 struct shmem_options *ctx = fc->fs_private;
3761
3762 if (ctx) {
3763 mpol_put(ctx->mpol);
3764 kfree(ctx);
3765 }
3766 }
3767
3768 static const struct fs_context_operations shmem_fs_context_ops = {
3769 .free = shmem_free_fc,
3770 .get_tree = shmem_get_tree,
3771 #ifdef CONFIG_TMPFS
3772 .parse_monolithic = shmem_parse_options,
3773 .parse_param = shmem_parse_one,
3774 .reconfigure = shmem_reconfigure,
3775 #endif
3776 };
3777
3778 static struct kmem_cache *shmem_inode_cachep;
3779
3780 static struct inode *shmem_alloc_inode(struct super_block *sb)
3781 {
3782 struct shmem_inode_info *info;
3783 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3784 if (!info)
3785 return NULL;
3786 return &info->vfs_inode;
3787 }
3788
3789 static void shmem_free_in_core_inode(struct inode *inode)
3790 {
3791 if (S_ISLNK(inode->i_mode))
3792 kfree(inode->i_link);
3793 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3794 }
3795
3796 static void shmem_destroy_inode(struct inode *inode)
3797 {
3798 if (S_ISREG(inode->i_mode))
3799 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3800 }
3801
3802 static void shmem_init_inode(void *foo)
3803 {
3804 struct shmem_inode_info *info = foo;
3805 inode_init_once(&info->vfs_inode);
3806 }
3807
3808 static void shmem_init_inodecache(void)
3809 {
3810 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3811 sizeof(struct shmem_inode_info),
3812 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3813 }
3814
3815 static void shmem_destroy_inodecache(void)
3816 {
3817 kmem_cache_destroy(shmem_inode_cachep);
3818 }
3819
3820 const struct address_space_operations shmem_aops = {
3821 .writepage = shmem_writepage,
3822 .set_page_dirty = __set_page_dirty_no_writeback,
3823 #ifdef CONFIG_TMPFS
3824 .write_begin = shmem_write_begin,
3825 .write_end = shmem_write_end,
3826 #endif
3827 #ifdef CONFIG_MIGRATION
3828 .migratepage = migrate_page,
3829 #endif
3830 .error_remove_page = generic_error_remove_page,
3831 };
3832 EXPORT_SYMBOL(shmem_aops);
3833
3834 static const struct file_operations shmem_file_operations = {
3835 .mmap = shmem_mmap,
3836 .get_unmapped_area = shmem_get_unmapped_area,
3837 #ifdef CONFIG_TMPFS
3838 .llseek = shmem_file_llseek,
3839 .read_iter = shmem_file_read_iter,
3840 .write_iter = generic_file_write_iter,
3841 .fsync = noop_fsync,
3842 .splice_read = generic_file_splice_read,
3843 .splice_write = iter_file_splice_write,
3844 .fallocate = shmem_fallocate,
3845 #endif
3846 };
3847
3848 static const struct inode_operations shmem_inode_operations = {
3849 .getattr = shmem_getattr,
3850 .setattr = shmem_setattr,
3851 #ifdef CONFIG_TMPFS_XATTR
3852 .listxattr = shmem_listxattr,
3853 .set_acl = simple_set_acl,
3854 #endif
3855 };
3856
3857 static const struct inode_operations shmem_dir_inode_operations = {
3858 #ifdef CONFIG_TMPFS
3859 .create = shmem_create,
3860 .lookup = simple_lookup,
3861 .link = shmem_link,
3862 .unlink = shmem_unlink,
3863 .symlink = shmem_symlink,
3864 .mkdir = shmem_mkdir,
3865 .rmdir = shmem_rmdir,
3866 .mknod = shmem_mknod,
3867 .rename = shmem_rename2,
3868 .tmpfile = shmem_tmpfile,
3869 #endif
3870 #ifdef CONFIG_TMPFS_XATTR
3871 .listxattr = shmem_listxattr,
3872 #endif
3873 #ifdef CONFIG_TMPFS_POSIX_ACL
3874 .setattr = shmem_setattr,
3875 .set_acl = simple_set_acl,
3876 #endif
3877 };
3878
3879 static const struct inode_operations shmem_special_inode_operations = {
3880 #ifdef CONFIG_TMPFS_XATTR
3881 .listxattr = shmem_listxattr,
3882 #endif
3883 #ifdef CONFIG_TMPFS_POSIX_ACL
3884 .setattr = shmem_setattr,
3885 .set_acl = simple_set_acl,
3886 #endif
3887 };
3888
3889 static const struct super_operations shmem_ops = {
3890 .alloc_inode = shmem_alloc_inode,
3891 .free_inode = shmem_free_in_core_inode,
3892 .destroy_inode = shmem_destroy_inode,
3893 #ifdef CONFIG_TMPFS
3894 .statfs = shmem_statfs,
3895 .show_options = shmem_show_options,
3896 #endif
3897 .evict_inode = shmem_evict_inode,
3898 .drop_inode = generic_delete_inode,
3899 .put_super = shmem_put_super,
3900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3901 .nr_cached_objects = shmem_unused_huge_count,
3902 .free_cached_objects = shmem_unused_huge_scan,
3903 #endif
3904 };
3905
3906 static const struct vm_operations_struct shmem_vm_ops = {
3907 .fault = shmem_fault,
3908 .map_pages = filemap_map_pages,
3909 #ifdef CONFIG_NUMA
3910 .set_policy = shmem_set_policy,
3911 .get_policy = shmem_get_policy,
3912 #endif
3913 };
3914
3915 int shmem_init_fs_context(struct fs_context *fc)
3916 {
3917 struct shmem_options *ctx;
3918
3919 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3920 if (!ctx)
3921 return -ENOMEM;
3922
3923 ctx->mode = 0777 | S_ISVTX;
3924 ctx->uid = current_fsuid();
3925 ctx->gid = current_fsgid();
3926
3927 fc->fs_private = ctx;
3928 fc->ops = &shmem_fs_context_ops;
3929 return 0;
3930 }
3931
3932 static struct file_system_type shmem_fs_type = {
3933 .owner = THIS_MODULE,
3934 .name = "tmpfs",
3935 .init_fs_context = shmem_init_fs_context,
3936 #ifdef CONFIG_TMPFS
3937 .parameters = shmem_fs_parameters,
3938 #endif
3939 .kill_sb = kill_litter_super,
3940 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3941 };
3942
3943 int __init shmem_init(void)
3944 {
3945 int error;
3946
3947 shmem_init_inodecache();
3948
3949 error = register_filesystem(&shmem_fs_type);
3950 if (error) {
3951 pr_err("Could not register tmpfs\n");
3952 goto out2;
3953 }
3954
3955 shm_mnt = kern_mount(&shmem_fs_type);
3956 if (IS_ERR(shm_mnt)) {
3957 error = PTR_ERR(shm_mnt);
3958 pr_err("Could not kern_mount tmpfs\n");
3959 goto out1;
3960 }
3961
3962 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3963 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3964 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3965 else
3966 shmem_huge = 0; /* just in case it was patched */
3967 #endif
3968 return 0;
3969
3970 out1:
3971 unregister_filesystem(&shmem_fs_type);
3972 out2:
3973 shmem_destroy_inodecache();
3974 shm_mnt = ERR_PTR(error);
3975 return error;
3976 }
3977
3978 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3979 static ssize_t shmem_enabled_show(struct kobject *kobj,
3980 struct kobj_attribute *attr, char *buf)
3981 {
3982 static const int values[] = {
3983 SHMEM_HUGE_ALWAYS,
3984 SHMEM_HUGE_WITHIN_SIZE,
3985 SHMEM_HUGE_ADVISE,
3986 SHMEM_HUGE_NEVER,
3987 SHMEM_HUGE_DENY,
3988 SHMEM_HUGE_FORCE,
3989 };
3990 int len = 0;
3991 int i;
3992
3993 for (i = 0; i < ARRAY_SIZE(values); i++) {
3994 len += sysfs_emit_at(buf, len,
3995 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3996 i ? " " : "",
3997 shmem_format_huge(values[i]));
3998 }
3999
4000 len += sysfs_emit_at(buf, len, "\n");
4001
4002 return len;
4003 }
4004
4005 static ssize_t shmem_enabled_store(struct kobject *kobj,
4006 struct kobj_attribute *attr, const char *buf, size_t count)
4007 {
4008 char tmp[16];
4009 int huge;
4010
4011 if (count + 1 > sizeof(tmp))
4012 return -EINVAL;
4013 memcpy(tmp, buf, count);
4014 tmp[count] = '\0';
4015 if (count && tmp[count - 1] == '\n')
4016 tmp[count - 1] = '\0';
4017
4018 huge = shmem_parse_huge(tmp);
4019 if (huge == -EINVAL)
4020 return -EINVAL;
4021 if (!has_transparent_hugepage() &&
4022 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4023 return -EINVAL;
4024
4025 shmem_huge = huge;
4026 if (shmem_huge > SHMEM_HUGE_DENY)
4027 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4028 return count;
4029 }
4030
4031 struct kobj_attribute shmem_enabled_attr =
4032 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4033 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4034
4035 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4036 bool shmem_huge_enabled(struct vm_area_struct *vma)
4037 {
4038 struct inode *inode = file_inode(vma->vm_file);
4039 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4040 loff_t i_size;
4041 pgoff_t off;
4042
4043 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4044 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4045 return false;
4046 if (shmem_huge == SHMEM_HUGE_FORCE)
4047 return true;
4048 if (shmem_huge == SHMEM_HUGE_DENY)
4049 return false;
4050 switch (sbinfo->huge) {
4051 case SHMEM_HUGE_NEVER:
4052 return false;
4053 case SHMEM_HUGE_ALWAYS:
4054 return true;
4055 case SHMEM_HUGE_WITHIN_SIZE:
4056 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4057 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4058 if (i_size >= HPAGE_PMD_SIZE &&
4059 i_size >> PAGE_SHIFT >= off)
4060 return true;
4061 fallthrough;
4062 case SHMEM_HUGE_ADVISE:
4063 /* TODO: implement fadvise() hints */
4064 return (vma->vm_flags & VM_HUGEPAGE);
4065 default:
4066 VM_BUG_ON(1);
4067 return false;
4068 }
4069 }
4070 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4071
4072 #else /* !CONFIG_SHMEM */
4073
4074 /*
4075 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4076 *
4077 * This is intended for small system where the benefits of the full
4078 * shmem code (swap-backed and resource-limited) are outweighed by
4079 * their complexity. On systems without swap this code should be
4080 * effectively equivalent, but much lighter weight.
4081 */
4082
4083 static struct file_system_type shmem_fs_type = {
4084 .name = "tmpfs",
4085 .init_fs_context = ramfs_init_fs_context,
4086 .parameters = ramfs_fs_parameters,
4087 .kill_sb = kill_litter_super,
4088 .fs_flags = FS_USERNS_MOUNT,
4089 };
4090
4091 int __init shmem_init(void)
4092 {
4093 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4094
4095 shm_mnt = kern_mount(&shmem_fs_type);
4096 BUG_ON(IS_ERR(shm_mnt));
4097
4098 return 0;
4099 }
4100
4101 int shmem_unuse(unsigned int type, bool frontswap,
4102 unsigned long *fs_pages_to_unuse)
4103 {
4104 return 0;
4105 }
4106
4107 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4108 {
4109 return 0;
4110 }
4111
4112 void shmem_unlock_mapping(struct address_space *mapping)
4113 {
4114 }
4115
4116 #ifdef CONFIG_MMU
4117 unsigned long shmem_get_unmapped_area(struct file *file,
4118 unsigned long addr, unsigned long len,
4119 unsigned long pgoff, unsigned long flags)
4120 {
4121 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4122 }
4123 #endif
4124
4125 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4126 {
4127 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4128 }
4129 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4130
4131 #define shmem_vm_ops generic_file_vm_ops
4132 #define shmem_file_operations ramfs_file_operations
4133 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4134 #define shmem_acct_size(flags, size) 0
4135 #define shmem_unacct_size(flags, size) do {} while (0)
4136
4137 #endif /* CONFIG_SHMEM */
4138
4139 /* common code */
4140
4141 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4142 unsigned long flags, unsigned int i_flags)
4143 {
4144 struct inode *inode;
4145 struct file *res;
4146
4147 if (IS_ERR(mnt))
4148 return ERR_CAST(mnt);
4149
4150 if (size < 0 || size > MAX_LFS_FILESIZE)
4151 return ERR_PTR(-EINVAL);
4152
4153 if (shmem_acct_size(flags, size))
4154 return ERR_PTR(-ENOMEM);
4155
4156 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4157 flags);
4158 if (unlikely(!inode)) {
4159 shmem_unacct_size(flags, size);
4160 return ERR_PTR(-ENOSPC);
4161 }
4162 inode->i_flags |= i_flags;
4163 inode->i_size = size;
4164 clear_nlink(inode); /* It is unlinked */
4165 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4166 if (!IS_ERR(res))
4167 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4168 &shmem_file_operations);
4169 if (IS_ERR(res))
4170 iput(inode);
4171 return res;
4172 }
4173
4174 /**
4175 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4176 * kernel internal. There will be NO LSM permission checks against the
4177 * underlying inode. So users of this interface must do LSM checks at a
4178 * higher layer. The users are the big_key and shm implementations. LSM
4179 * checks are provided at the key or shm level rather than the inode.
4180 * @name: name for dentry (to be seen in /proc/<pid>/maps
4181 * @size: size to be set for the file
4182 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4183 */
4184 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4185 {
4186 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4187 }
4188
4189 /**
4190 * shmem_file_setup - get an unlinked file living in tmpfs
4191 * @name: name for dentry (to be seen in /proc/<pid>/maps
4192 * @size: size to be set for the file
4193 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4194 */
4195 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4196 {
4197 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4198 }
4199 EXPORT_SYMBOL_GPL(shmem_file_setup);
4200
4201 /**
4202 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4203 * @mnt: the tmpfs mount where the file will be created
4204 * @name: name for dentry (to be seen in /proc/<pid>/maps
4205 * @size: size to be set for the file
4206 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4207 */
4208 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4209 loff_t size, unsigned long flags)
4210 {
4211 return __shmem_file_setup(mnt, name, size, flags, 0);
4212 }
4213 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4214
4215 /**
4216 * shmem_zero_setup - setup a shared anonymous mapping
4217 * @vma: the vma to be mmapped is prepared by do_mmap
4218 */
4219 int shmem_zero_setup(struct vm_area_struct *vma)
4220 {
4221 struct file *file;
4222 loff_t size = vma->vm_end - vma->vm_start;
4223
4224 /*
4225 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4226 * between XFS directory reading and selinux: since this file is only
4227 * accessible to the user through its mapping, use S_PRIVATE flag to
4228 * bypass file security, in the same way as shmem_kernel_file_setup().
4229 */
4230 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4231 if (IS_ERR(file))
4232 return PTR_ERR(file);
4233
4234 if (vma->vm_file)
4235 fput(vma->vm_file);
4236 vma->vm_file = file;
4237 vma->vm_ops = &shmem_vm_ops;
4238
4239 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4240 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4241 (vma->vm_end & HPAGE_PMD_MASK)) {
4242 khugepaged_enter(vma, vma->vm_flags);
4243 }
4244
4245 return 0;
4246 }
4247
4248 /**
4249 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4250 * @mapping: the page's address_space
4251 * @index: the page index
4252 * @gfp: the page allocator flags to use if allocating
4253 *
4254 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4255 * with any new page allocations done using the specified allocation flags.
4256 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4257 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4258 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4259 *
4260 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4261 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4262 */
4263 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4264 pgoff_t index, gfp_t gfp)
4265 {
4266 #ifdef CONFIG_SHMEM
4267 struct inode *inode = mapping->host;
4268 struct page *page;
4269 int error;
4270
4271 BUG_ON(!shmem_mapping(mapping));
4272 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4273 gfp, NULL, NULL, NULL);
4274 if (error)
4275 page = ERR_PTR(error);
4276 else
4277 unlock_page(page);
4278 return page;
4279 #else
4280 /*
4281 * The tiny !SHMEM case uses ramfs without swap
4282 */
4283 return read_cache_page_gfp(mapping, index, gfp);
4284 #endif
4285 }
4286 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);