]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/shmem.c
Merge tag 'libnvdimm-for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm...
[mirror_ubuntu-hirsute-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
101 */
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
117 int huge;
118 int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 };
123
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127 return totalram_pages() / 2;
128 }
129
130 static unsigned long shmem_default_max_inodes(void)
131 {
132 unsigned long nr_pages = totalram_pages();
133
134 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137
138 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
139 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
140 struct shmem_inode_info *info, pgoff_t index);
141 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
142 struct page **pagep, enum sgp_type sgp,
143 gfp_t gfp, struct vm_area_struct *vma,
144 vm_fault_t *fault_type);
145 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
146 struct page **pagep, enum sgp_type sgp,
147 gfp_t gfp, struct vm_area_struct *vma,
148 struct vm_fault *vmf, vm_fault_t *fault_type);
149
150 int shmem_getpage(struct inode *inode, pgoff_t index,
151 struct page **pagep, enum sgp_type sgp)
152 {
153 return shmem_getpage_gfp(inode, index, pagep, sgp,
154 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
155 }
156
157 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
158 {
159 return sb->s_fs_info;
160 }
161
162 /*
163 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
164 * for shared memory and for shared anonymous (/dev/zero) mappings
165 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
166 * consistent with the pre-accounting of private mappings ...
167 */
168 static inline int shmem_acct_size(unsigned long flags, loff_t size)
169 {
170 return (flags & VM_NORESERVE) ?
171 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
172 }
173
174 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
175 {
176 if (!(flags & VM_NORESERVE))
177 vm_unacct_memory(VM_ACCT(size));
178 }
179
180 static inline int shmem_reacct_size(unsigned long flags,
181 loff_t oldsize, loff_t newsize)
182 {
183 if (!(flags & VM_NORESERVE)) {
184 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
185 return security_vm_enough_memory_mm(current->mm,
186 VM_ACCT(newsize) - VM_ACCT(oldsize));
187 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
188 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
189 }
190 return 0;
191 }
192
193 /*
194 * ... whereas tmpfs objects are accounted incrementally as
195 * pages are allocated, in order to allow large sparse files.
196 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
197 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
198 */
199 static inline int shmem_acct_block(unsigned long flags, long pages)
200 {
201 if (!(flags & VM_NORESERVE))
202 return 0;
203
204 return security_vm_enough_memory_mm(current->mm,
205 pages * VM_ACCT(PAGE_SIZE));
206 }
207
208 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
209 {
210 if (flags & VM_NORESERVE)
211 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
212 }
213
214 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
215 {
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219 if (shmem_acct_block(info->flags, pages))
220 return false;
221
222 if (sbinfo->max_blocks) {
223 if (percpu_counter_compare(&sbinfo->used_blocks,
224 sbinfo->max_blocks - pages) > 0)
225 goto unacct;
226 percpu_counter_add(&sbinfo->used_blocks, pages);
227 }
228
229 return true;
230
231 unacct:
232 shmem_unacct_blocks(info->flags, pages);
233 return false;
234 }
235
236 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
237 {
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
240
241 if (sbinfo->max_blocks)
242 percpu_counter_sub(&sbinfo->used_blocks, pages);
243 shmem_unacct_blocks(info->flags, pages);
244 }
245
246 static const struct super_operations shmem_ops;
247 static const struct address_space_operations shmem_aops;
248 static const struct file_operations shmem_file_operations;
249 static const struct inode_operations shmem_inode_operations;
250 static const struct inode_operations shmem_dir_inode_operations;
251 static const struct inode_operations shmem_special_inode_operations;
252 static const struct vm_operations_struct shmem_vm_ops;
253 static struct file_system_type shmem_fs_type;
254
255 bool vma_is_shmem(struct vm_area_struct *vma)
256 {
257 return vma->vm_ops == &shmem_vm_ops;
258 }
259
260 static LIST_HEAD(shmem_swaplist);
261 static DEFINE_MUTEX(shmem_swaplist_mutex);
262
263 static int shmem_reserve_inode(struct super_block *sb)
264 {
265 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
266 if (sbinfo->max_inodes) {
267 spin_lock(&sbinfo->stat_lock);
268 if (!sbinfo->free_inodes) {
269 spin_unlock(&sbinfo->stat_lock);
270 return -ENOSPC;
271 }
272 sbinfo->free_inodes--;
273 spin_unlock(&sbinfo->stat_lock);
274 }
275 return 0;
276 }
277
278 static void shmem_free_inode(struct super_block *sb)
279 {
280 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
281 if (sbinfo->max_inodes) {
282 spin_lock(&sbinfo->stat_lock);
283 sbinfo->free_inodes++;
284 spin_unlock(&sbinfo->stat_lock);
285 }
286 }
287
288 /**
289 * shmem_recalc_inode - recalculate the block usage of an inode
290 * @inode: inode to recalc
291 *
292 * We have to calculate the free blocks since the mm can drop
293 * undirtied hole pages behind our back.
294 *
295 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
296 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
297 *
298 * It has to be called with the spinlock held.
299 */
300 static void shmem_recalc_inode(struct inode *inode)
301 {
302 struct shmem_inode_info *info = SHMEM_I(inode);
303 long freed;
304
305 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
306 if (freed > 0) {
307 info->alloced -= freed;
308 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
309 shmem_inode_unacct_blocks(inode, freed);
310 }
311 }
312
313 bool shmem_charge(struct inode *inode, long pages)
314 {
315 struct shmem_inode_info *info = SHMEM_I(inode);
316 unsigned long flags;
317
318 if (!shmem_inode_acct_block(inode, pages))
319 return false;
320
321 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
322 inode->i_mapping->nrpages += pages;
323
324 spin_lock_irqsave(&info->lock, flags);
325 info->alloced += pages;
326 inode->i_blocks += pages * BLOCKS_PER_PAGE;
327 shmem_recalc_inode(inode);
328 spin_unlock_irqrestore(&info->lock, flags);
329
330 return true;
331 }
332
333 void shmem_uncharge(struct inode *inode, long pages)
334 {
335 struct shmem_inode_info *info = SHMEM_I(inode);
336 unsigned long flags;
337
338 /* nrpages adjustment done by __delete_from_page_cache() or caller */
339
340 spin_lock_irqsave(&info->lock, flags);
341 info->alloced -= pages;
342 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
343 shmem_recalc_inode(inode);
344 spin_unlock_irqrestore(&info->lock, flags);
345
346 shmem_inode_unacct_blocks(inode, pages);
347 }
348
349 /*
350 * Replace item expected in xarray by a new item, while holding xa_lock.
351 */
352 static int shmem_replace_entry(struct address_space *mapping,
353 pgoff_t index, void *expected, void *replacement)
354 {
355 XA_STATE(xas, &mapping->i_pages, index);
356 void *item;
357
358 VM_BUG_ON(!expected);
359 VM_BUG_ON(!replacement);
360 item = xas_load(&xas);
361 if (item != expected)
362 return -ENOENT;
363 xas_store(&xas, replacement);
364 return 0;
365 }
366
367 /*
368 * Sometimes, before we decide whether to proceed or to fail, we must check
369 * that an entry was not already brought back from swap by a racing thread.
370 *
371 * Checking page is not enough: by the time a SwapCache page is locked, it
372 * might be reused, and again be SwapCache, using the same swap as before.
373 */
374 static bool shmem_confirm_swap(struct address_space *mapping,
375 pgoff_t index, swp_entry_t swap)
376 {
377 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
378 }
379
380 /*
381 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
382 *
383 * SHMEM_HUGE_NEVER:
384 * disables huge pages for the mount;
385 * SHMEM_HUGE_ALWAYS:
386 * enables huge pages for the mount;
387 * SHMEM_HUGE_WITHIN_SIZE:
388 * only allocate huge pages if the page will be fully within i_size,
389 * also respect fadvise()/madvise() hints;
390 * SHMEM_HUGE_ADVISE:
391 * only allocate huge pages if requested with fadvise()/madvise();
392 */
393
394 #define SHMEM_HUGE_NEVER 0
395 #define SHMEM_HUGE_ALWAYS 1
396 #define SHMEM_HUGE_WITHIN_SIZE 2
397 #define SHMEM_HUGE_ADVISE 3
398
399 /*
400 * Special values.
401 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
402 *
403 * SHMEM_HUGE_DENY:
404 * disables huge on shm_mnt and all mounts, for emergency use;
405 * SHMEM_HUGE_FORCE:
406 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
407 *
408 */
409 #define SHMEM_HUGE_DENY (-1)
410 #define SHMEM_HUGE_FORCE (-2)
411
412 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
413 /* ifdef here to avoid bloating shmem.o when not necessary */
414
415 static int shmem_huge __read_mostly;
416
417 #if defined(CONFIG_SYSFS)
418 static int shmem_parse_huge(const char *str)
419 {
420 if (!strcmp(str, "never"))
421 return SHMEM_HUGE_NEVER;
422 if (!strcmp(str, "always"))
423 return SHMEM_HUGE_ALWAYS;
424 if (!strcmp(str, "within_size"))
425 return SHMEM_HUGE_WITHIN_SIZE;
426 if (!strcmp(str, "advise"))
427 return SHMEM_HUGE_ADVISE;
428 if (!strcmp(str, "deny"))
429 return SHMEM_HUGE_DENY;
430 if (!strcmp(str, "force"))
431 return SHMEM_HUGE_FORCE;
432 return -EINVAL;
433 }
434 #endif
435
436 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
437 static const char *shmem_format_huge(int huge)
438 {
439 switch (huge) {
440 case SHMEM_HUGE_NEVER:
441 return "never";
442 case SHMEM_HUGE_ALWAYS:
443 return "always";
444 case SHMEM_HUGE_WITHIN_SIZE:
445 return "within_size";
446 case SHMEM_HUGE_ADVISE:
447 return "advise";
448 case SHMEM_HUGE_DENY:
449 return "deny";
450 case SHMEM_HUGE_FORCE:
451 return "force";
452 default:
453 VM_BUG_ON(1);
454 return "bad_val";
455 }
456 }
457 #endif
458
459 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
460 struct shrink_control *sc, unsigned long nr_to_split)
461 {
462 LIST_HEAD(list), *pos, *next;
463 LIST_HEAD(to_remove);
464 struct inode *inode;
465 struct shmem_inode_info *info;
466 struct page *page;
467 unsigned long batch = sc ? sc->nr_to_scan : 128;
468 int removed = 0, split = 0;
469
470 if (list_empty(&sbinfo->shrinklist))
471 return SHRINK_STOP;
472
473 spin_lock(&sbinfo->shrinklist_lock);
474 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
475 info = list_entry(pos, struct shmem_inode_info, shrinklist);
476
477 /* pin the inode */
478 inode = igrab(&info->vfs_inode);
479
480 /* inode is about to be evicted */
481 if (!inode) {
482 list_del_init(&info->shrinklist);
483 removed++;
484 goto next;
485 }
486
487 /* Check if there's anything to gain */
488 if (round_up(inode->i_size, PAGE_SIZE) ==
489 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
490 list_move(&info->shrinklist, &to_remove);
491 removed++;
492 goto next;
493 }
494
495 list_move(&info->shrinklist, &list);
496 next:
497 if (!--batch)
498 break;
499 }
500 spin_unlock(&sbinfo->shrinklist_lock);
501
502 list_for_each_safe(pos, next, &to_remove) {
503 info = list_entry(pos, struct shmem_inode_info, shrinklist);
504 inode = &info->vfs_inode;
505 list_del_init(&info->shrinklist);
506 iput(inode);
507 }
508
509 list_for_each_safe(pos, next, &list) {
510 int ret;
511
512 info = list_entry(pos, struct shmem_inode_info, shrinklist);
513 inode = &info->vfs_inode;
514
515 if (nr_to_split && split >= nr_to_split)
516 goto leave;
517
518 page = find_get_page(inode->i_mapping,
519 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
520 if (!page)
521 goto drop;
522
523 /* No huge page at the end of the file: nothing to split */
524 if (!PageTransHuge(page)) {
525 put_page(page);
526 goto drop;
527 }
528
529 /*
530 * Leave the inode on the list if we failed to lock
531 * the page at this time.
532 *
533 * Waiting for the lock may lead to deadlock in the
534 * reclaim path.
535 */
536 if (!trylock_page(page)) {
537 put_page(page);
538 goto leave;
539 }
540
541 ret = split_huge_page(page);
542 unlock_page(page);
543 put_page(page);
544
545 /* If split failed leave the inode on the list */
546 if (ret)
547 goto leave;
548
549 split++;
550 drop:
551 list_del_init(&info->shrinklist);
552 removed++;
553 leave:
554 iput(inode);
555 }
556
557 spin_lock(&sbinfo->shrinklist_lock);
558 list_splice_tail(&list, &sbinfo->shrinklist);
559 sbinfo->shrinklist_len -= removed;
560 spin_unlock(&sbinfo->shrinklist_lock);
561
562 return split;
563 }
564
565 static long shmem_unused_huge_scan(struct super_block *sb,
566 struct shrink_control *sc)
567 {
568 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
569
570 if (!READ_ONCE(sbinfo->shrinklist_len))
571 return SHRINK_STOP;
572
573 return shmem_unused_huge_shrink(sbinfo, sc, 0);
574 }
575
576 static long shmem_unused_huge_count(struct super_block *sb,
577 struct shrink_control *sc)
578 {
579 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
580 return READ_ONCE(sbinfo->shrinklist_len);
581 }
582 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
583
584 #define shmem_huge SHMEM_HUGE_DENY
585
586 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
587 struct shrink_control *sc, unsigned long nr_to_split)
588 {
589 return 0;
590 }
591 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
592
593 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
594 {
595 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
596 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
597 shmem_huge != SHMEM_HUGE_DENY)
598 return true;
599 return false;
600 }
601
602 /*
603 * Like add_to_page_cache_locked, but error if expected item has gone.
604 */
605 static int shmem_add_to_page_cache(struct page *page,
606 struct address_space *mapping,
607 pgoff_t index, void *expected, gfp_t gfp,
608 struct mm_struct *charge_mm)
609 {
610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611 unsigned long i = 0;
612 unsigned long nr = compound_nr(page);
613 int error;
614
615 VM_BUG_ON_PAGE(PageTail(page), page);
616 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
617 VM_BUG_ON_PAGE(!PageLocked(page), page);
618 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
619 VM_BUG_ON(expected && PageTransHuge(page));
620
621 page_ref_add(page, nr);
622 page->mapping = mapping;
623 page->index = index;
624
625 if (!PageSwapCache(page)) {
626 error = mem_cgroup_charge(page, charge_mm, gfp);
627 if (error) {
628 if (PageTransHuge(page)) {
629 count_vm_event(THP_FILE_FALLBACK);
630 count_vm_event(THP_FILE_FALLBACK_CHARGE);
631 }
632 goto error;
633 }
634 }
635 cgroup_throttle_swaprate(page, gfp);
636
637 do {
638 void *entry;
639 xas_lock_irq(&xas);
640 entry = xas_find_conflict(&xas);
641 if (entry != expected)
642 xas_set_err(&xas, -EEXIST);
643 xas_create_range(&xas);
644 if (xas_error(&xas))
645 goto unlock;
646 next:
647 xas_store(&xas, page);
648 if (++i < nr) {
649 xas_next(&xas);
650 goto next;
651 }
652 if (PageTransHuge(page)) {
653 count_vm_event(THP_FILE_ALLOC);
654 __inc_node_page_state(page, NR_SHMEM_THPS);
655 }
656 mapping->nrpages += nr;
657 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
658 __mod_lruvec_page_state(page, NR_SHMEM, nr);
659 unlock:
660 xas_unlock_irq(&xas);
661 } while (xas_nomem(&xas, gfp));
662
663 if (xas_error(&xas)) {
664 error = xas_error(&xas);
665 goto error;
666 }
667
668 return 0;
669 error:
670 page->mapping = NULL;
671 page_ref_sub(page, nr);
672 return error;
673 }
674
675 /*
676 * Like delete_from_page_cache, but substitutes swap for page.
677 */
678 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
679 {
680 struct address_space *mapping = page->mapping;
681 int error;
682
683 VM_BUG_ON_PAGE(PageCompound(page), page);
684
685 xa_lock_irq(&mapping->i_pages);
686 error = shmem_replace_entry(mapping, page->index, page, radswap);
687 page->mapping = NULL;
688 mapping->nrpages--;
689 __dec_lruvec_page_state(page, NR_FILE_PAGES);
690 __dec_lruvec_page_state(page, NR_SHMEM);
691 xa_unlock_irq(&mapping->i_pages);
692 put_page(page);
693 BUG_ON(error);
694 }
695
696 /*
697 * Remove swap entry from page cache, free the swap and its page cache.
698 */
699 static int shmem_free_swap(struct address_space *mapping,
700 pgoff_t index, void *radswap)
701 {
702 void *old;
703
704 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
705 if (old != radswap)
706 return -ENOENT;
707 free_swap_and_cache(radix_to_swp_entry(radswap));
708 return 0;
709 }
710
711 /*
712 * Determine (in bytes) how many of the shmem object's pages mapped by the
713 * given offsets are swapped out.
714 *
715 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
716 * as long as the inode doesn't go away and racy results are not a problem.
717 */
718 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
719 pgoff_t start, pgoff_t end)
720 {
721 XA_STATE(xas, &mapping->i_pages, start);
722 struct page *page;
723 unsigned long swapped = 0;
724
725 rcu_read_lock();
726 xas_for_each(&xas, page, end - 1) {
727 if (xas_retry(&xas, page))
728 continue;
729 if (xa_is_value(page))
730 swapped++;
731
732 if (need_resched()) {
733 xas_pause(&xas);
734 cond_resched_rcu();
735 }
736 }
737
738 rcu_read_unlock();
739
740 return swapped << PAGE_SHIFT;
741 }
742
743 /*
744 * Determine (in bytes) how many of the shmem object's pages mapped by the
745 * given vma is swapped out.
746 *
747 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
748 * as long as the inode doesn't go away and racy results are not a problem.
749 */
750 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
751 {
752 struct inode *inode = file_inode(vma->vm_file);
753 struct shmem_inode_info *info = SHMEM_I(inode);
754 struct address_space *mapping = inode->i_mapping;
755 unsigned long swapped;
756
757 /* Be careful as we don't hold info->lock */
758 swapped = READ_ONCE(info->swapped);
759
760 /*
761 * The easier cases are when the shmem object has nothing in swap, or
762 * the vma maps it whole. Then we can simply use the stats that we
763 * already track.
764 */
765 if (!swapped)
766 return 0;
767
768 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
769 return swapped << PAGE_SHIFT;
770
771 /* Here comes the more involved part */
772 return shmem_partial_swap_usage(mapping,
773 linear_page_index(vma, vma->vm_start),
774 linear_page_index(vma, vma->vm_end));
775 }
776
777 /*
778 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
779 */
780 void shmem_unlock_mapping(struct address_space *mapping)
781 {
782 struct pagevec pvec;
783 pgoff_t indices[PAGEVEC_SIZE];
784 pgoff_t index = 0;
785
786 pagevec_init(&pvec);
787 /*
788 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
789 */
790 while (!mapping_unevictable(mapping)) {
791 /*
792 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
793 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
794 */
795 pvec.nr = find_get_entries(mapping, index,
796 PAGEVEC_SIZE, pvec.pages, indices);
797 if (!pvec.nr)
798 break;
799 index = indices[pvec.nr - 1] + 1;
800 pagevec_remove_exceptionals(&pvec);
801 check_move_unevictable_pages(&pvec);
802 pagevec_release(&pvec);
803 cond_resched();
804 }
805 }
806
807 /*
808 * Check whether a hole-punch or truncation needs to split a huge page,
809 * returning true if no split was required, or the split has been successful.
810 *
811 * Eviction (or truncation to 0 size) should never need to split a huge page;
812 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
813 * head, and then succeeded to trylock on tail.
814 *
815 * A split can only succeed when there are no additional references on the
816 * huge page: so the split below relies upon find_get_entries() having stopped
817 * when it found a subpage of the huge page, without getting further references.
818 */
819 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
820 {
821 if (!PageTransCompound(page))
822 return true;
823
824 /* Just proceed to delete a huge page wholly within the range punched */
825 if (PageHead(page) &&
826 page->index >= start && page->index + HPAGE_PMD_NR <= end)
827 return true;
828
829 /* Try to split huge page, so we can truly punch the hole or truncate */
830 return split_huge_page(page) >= 0;
831 }
832
833 /*
834 * Remove range of pages and swap entries from page cache, and free them.
835 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
836 */
837 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
838 bool unfalloc)
839 {
840 struct address_space *mapping = inode->i_mapping;
841 struct shmem_inode_info *info = SHMEM_I(inode);
842 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
843 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
844 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
845 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
846 struct pagevec pvec;
847 pgoff_t indices[PAGEVEC_SIZE];
848 long nr_swaps_freed = 0;
849 pgoff_t index;
850 int i;
851
852 if (lend == -1)
853 end = -1; /* unsigned, so actually very big */
854
855 pagevec_init(&pvec);
856 index = start;
857 while (index < end) {
858 pvec.nr = find_get_entries(mapping, index,
859 min(end - index, (pgoff_t)PAGEVEC_SIZE),
860 pvec.pages, indices);
861 if (!pvec.nr)
862 break;
863 for (i = 0; i < pagevec_count(&pvec); i++) {
864 struct page *page = pvec.pages[i];
865
866 index = indices[i];
867 if (index >= end)
868 break;
869
870 if (xa_is_value(page)) {
871 if (unfalloc)
872 continue;
873 nr_swaps_freed += !shmem_free_swap(mapping,
874 index, page);
875 continue;
876 }
877
878 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
879
880 if (!trylock_page(page))
881 continue;
882
883 if ((!unfalloc || !PageUptodate(page)) &&
884 page_mapping(page) == mapping) {
885 VM_BUG_ON_PAGE(PageWriteback(page), page);
886 if (shmem_punch_compound(page, start, end))
887 truncate_inode_page(mapping, page);
888 }
889 unlock_page(page);
890 }
891 pagevec_remove_exceptionals(&pvec);
892 pagevec_release(&pvec);
893 cond_resched();
894 index++;
895 }
896
897 if (partial_start) {
898 struct page *page = NULL;
899 shmem_getpage(inode, start - 1, &page, SGP_READ);
900 if (page) {
901 unsigned int top = PAGE_SIZE;
902 if (start > end) {
903 top = partial_end;
904 partial_end = 0;
905 }
906 zero_user_segment(page, partial_start, top);
907 set_page_dirty(page);
908 unlock_page(page);
909 put_page(page);
910 }
911 }
912 if (partial_end) {
913 struct page *page = NULL;
914 shmem_getpage(inode, end, &page, SGP_READ);
915 if (page) {
916 zero_user_segment(page, 0, partial_end);
917 set_page_dirty(page);
918 unlock_page(page);
919 put_page(page);
920 }
921 }
922 if (start >= end)
923 return;
924
925 index = start;
926 while (index < end) {
927 cond_resched();
928
929 pvec.nr = find_get_entries(mapping, index,
930 min(end - index, (pgoff_t)PAGEVEC_SIZE),
931 pvec.pages, indices);
932 if (!pvec.nr) {
933 /* If all gone or hole-punch or unfalloc, we're done */
934 if (index == start || end != -1)
935 break;
936 /* But if truncating, restart to make sure all gone */
937 index = start;
938 continue;
939 }
940 for (i = 0; i < pagevec_count(&pvec); i++) {
941 struct page *page = pvec.pages[i];
942
943 index = indices[i];
944 if (index >= end)
945 break;
946
947 if (xa_is_value(page)) {
948 if (unfalloc)
949 continue;
950 if (shmem_free_swap(mapping, index, page)) {
951 /* Swap was replaced by page: retry */
952 index--;
953 break;
954 }
955 nr_swaps_freed++;
956 continue;
957 }
958
959 lock_page(page);
960
961 if (!unfalloc || !PageUptodate(page)) {
962 if (page_mapping(page) != mapping) {
963 /* Page was replaced by swap: retry */
964 unlock_page(page);
965 index--;
966 break;
967 }
968 VM_BUG_ON_PAGE(PageWriteback(page), page);
969 if (shmem_punch_compound(page, start, end))
970 truncate_inode_page(mapping, page);
971 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
972 /* Wipe the page and don't get stuck */
973 clear_highpage(page);
974 flush_dcache_page(page);
975 set_page_dirty(page);
976 if (index <
977 round_up(start, HPAGE_PMD_NR))
978 start = index + 1;
979 }
980 }
981 unlock_page(page);
982 }
983 pagevec_remove_exceptionals(&pvec);
984 pagevec_release(&pvec);
985 index++;
986 }
987
988 spin_lock_irq(&info->lock);
989 info->swapped -= nr_swaps_freed;
990 shmem_recalc_inode(inode);
991 spin_unlock_irq(&info->lock);
992 }
993
994 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
995 {
996 shmem_undo_range(inode, lstart, lend, false);
997 inode->i_ctime = inode->i_mtime = current_time(inode);
998 }
999 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1000
1001 static int shmem_getattr(const struct path *path, struct kstat *stat,
1002 u32 request_mask, unsigned int query_flags)
1003 {
1004 struct inode *inode = path->dentry->d_inode;
1005 struct shmem_inode_info *info = SHMEM_I(inode);
1006 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1007
1008 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1009 spin_lock_irq(&info->lock);
1010 shmem_recalc_inode(inode);
1011 spin_unlock_irq(&info->lock);
1012 }
1013 generic_fillattr(inode, stat);
1014
1015 if (is_huge_enabled(sb_info))
1016 stat->blksize = HPAGE_PMD_SIZE;
1017
1018 return 0;
1019 }
1020
1021 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1022 {
1023 struct inode *inode = d_inode(dentry);
1024 struct shmem_inode_info *info = SHMEM_I(inode);
1025 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1026 int error;
1027
1028 error = setattr_prepare(dentry, attr);
1029 if (error)
1030 return error;
1031
1032 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1033 loff_t oldsize = inode->i_size;
1034 loff_t newsize = attr->ia_size;
1035
1036 /* protected by i_mutex */
1037 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1038 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1039 return -EPERM;
1040
1041 if (newsize != oldsize) {
1042 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1043 oldsize, newsize);
1044 if (error)
1045 return error;
1046 i_size_write(inode, newsize);
1047 inode->i_ctime = inode->i_mtime = current_time(inode);
1048 }
1049 if (newsize <= oldsize) {
1050 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1051 if (oldsize > holebegin)
1052 unmap_mapping_range(inode->i_mapping,
1053 holebegin, 0, 1);
1054 if (info->alloced)
1055 shmem_truncate_range(inode,
1056 newsize, (loff_t)-1);
1057 /* unmap again to remove racily COWed private pages */
1058 if (oldsize > holebegin)
1059 unmap_mapping_range(inode->i_mapping,
1060 holebegin, 0, 1);
1061
1062 /*
1063 * Part of the huge page can be beyond i_size: subject
1064 * to shrink under memory pressure.
1065 */
1066 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1067 spin_lock(&sbinfo->shrinklist_lock);
1068 /*
1069 * _careful to defend against unlocked access to
1070 * ->shrink_list in shmem_unused_huge_shrink()
1071 */
1072 if (list_empty_careful(&info->shrinklist)) {
1073 list_add_tail(&info->shrinklist,
1074 &sbinfo->shrinklist);
1075 sbinfo->shrinklist_len++;
1076 }
1077 spin_unlock(&sbinfo->shrinklist_lock);
1078 }
1079 }
1080 }
1081
1082 setattr_copy(inode, attr);
1083 if (attr->ia_valid & ATTR_MODE)
1084 error = posix_acl_chmod(inode, inode->i_mode);
1085 return error;
1086 }
1087
1088 static void shmem_evict_inode(struct inode *inode)
1089 {
1090 struct shmem_inode_info *info = SHMEM_I(inode);
1091 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1092
1093 if (inode->i_mapping->a_ops == &shmem_aops) {
1094 shmem_unacct_size(info->flags, inode->i_size);
1095 inode->i_size = 0;
1096 shmem_truncate_range(inode, 0, (loff_t)-1);
1097 if (!list_empty(&info->shrinklist)) {
1098 spin_lock(&sbinfo->shrinklist_lock);
1099 if (!list_empty(&info->shrinklist)) {
1100 list_del_init(&info->shrinklist);
1101 sbinfo->shrinklist_len--;
1102 }
1103 spin_unlock(&sbinfo->shrinklist_lock);
1104 }
1105 while (!list_empty(&info->swaplist)) {
1106 /* Wait while shmem_unuse() is scanning this inode... */
1107 wait_var_event(&info->stop_eviction,
1108 !atomic_read(&info->stop_eviction));
1109 mutex_lock(&shmem_swaplist_mutex);
1110 /* ...but beware of the race if we peeked too early */
1111 if (!atomic_read(&info->stop_eviction))
1112 list_del_init(&info->swaplist);
1113 mutex_unlock(&shmem_swaplist_mutex);
1114 }
1115 }
1116
1117 simple_xattrs_free(&info->xattrs);
1118 WARN_ON(inode->i_blocks);
1119 shmem_free_inode(inode->i_sb);
1120 clear_inode(inode);
1121 }
1122
1123 extern struct swap_info_struct *swap_info[];
1124
1125 static int shmem_find_swap_entries(struct address_space *mapping,
1126 pgoff_t start, unsigned int nr_entries,
1127 struct page **entries, pgoff_t *indices,
1128 unsigned int type, bool frontswap)
1129 {
1130 XA_STATE(xas, &mapping->i_pages, start);
1131 struct page *page;
1132 swp_entry_t entry;
1133 unsigned int ret = 0;
1134
1135 if (!nr_entries)
1136 return 0;
1137
1138 rcu_read_lock();
1139 xas_for_each(&xas, page, ULONG_MAX) {
1140 if (xas_retry(&xas, page))
1141 continue;
1142
1143 if (!xa_is_value(page))
1144 continue;
1145
1146 entry = radix_to_swp_entry(page);
1147 if (swp_type(entry) != type)
1148 continue;
1149 if (frontswap &&
1150 !frontswap_test(swap_info[type], swp_offset(entry)))
1151 continue;
1152
1153 indices[ret] = xas.xa_index;
1154 entries[ret] = page;
1155
1156 if (need_resched()) {
1157 xas_pause(&xas);
1158 cond_resched_rcu();
1159 }
1160 if (++ret == nr_entries)
1161 break;
1162 }
1163 rcu_read_unlock();
1164
1165 return ret;
1166 }
1167
1168 /*
1169 * Move the swapped pages for an inode to page cache. Returns the count
1170 * of pages swapped in, or the error in case of failure.
1171 */
1172 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1173 pgoff_t *indices)
1174 {
1175 int i = 0;
1176 int ret = 0;
1177 int error = 0;
1178 struct address_space *mapping = inode->i_mapping;
1179
1180 for (i = 0; i < pvec.nr; i++) {
1181 struct page *page = pvec.pages[i];
1182
1183 if (!xa_is_value(page))
1184 continue;
1185 error = shmem_swapin_page(inode, indices[i],
1186 &page, SGP_CACHE,
1187 mapping_gfp_mask(mapping),
1188 NULL, NULL);
1189 if (error == 0) {
1190 unlock_page(page);
1191 put_page(page);
1192 ret++;
1193 }
1194 if (error == -ENOMEM)
1195 break;
1196 error = 0;
1197 }
1198 return error ? error : ret;
1199 }
1200
1201 /*
1202 * If swap found in inode, free it and move page from swapcache to filecache.
1203 */
1204 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1205 bool frontswap, unsigned long *fs_pages_to_unuse)
1206 {
1207 struct address_space *mapping = inode->i_mapping;
1208 pgoff_t start = 0;
1209 struct pagevec pvec;
1210 pgoff_t indices[PAGEVEC_SIZE];
1211 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1212 int ret = 0;
1213
1214 pagevec_init(&pvec);
1215 do {
1216 unsigned int nr_entries = PAGEVEC_SIZE;
1217
1218 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1219 nr_entries = *fs_pages_to_unuse;
1220
1221 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1222 pvec.pages, indices,
1223 type, frontswap);
1224 if (pvec.nr == 0) {
1225 ret = 0;
1226 break;
1227 }
1228
1229 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1230 if (ret < 0)
1231 break;
1232
1233 if (frontswap_partial) {
1234 *fs_pages_to_unuse -= ret;
1235 if (*fs_pages_to_unuse == 0) {
1236 ret = FRONTSWAP_PAGES_UNUSED;
1237 break;
1238 }
1239 }
1240
1241 start = indices[pvec.nr - 1];
1242 } while (true);
1243
1244 return ret;
1245 }
1246
1247 /*
1248 * Read all the shared memory data that resides in the swap
1249 * device 'type' back into memory, so the swap device can be
1250 * unused.
1251 */
1252 int shmem_unuse(unsigned int type, bool frontswap,
1253 unsigned long *fs_pages_to_unuse)
1254 {
1255 struct shmem_inode_info *info, *next;
1256 int error = 0;
1257
1258 if (list_empty(&shmem_swaplist))
1259 return 0;
1260
1261 mutex_lock(&shmem_swaplist_mutex);
1262 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1263 if (!info->swapped) {
1264 list_del_init(&info->swaplist);
1265 continue;
1266 }
1267 /*
1268 * Drop the swaplist mutex while searching the inode for swap;
1269 * but before doing so, make sure shmem_evict_inode() will not
1270 * remove placeholder inode from swaplist, nor let it be freed
1271 * (igrab() would protect from unlink, but not from unmount).
1272 */
1273 atomic_inc(&info->stop_eviction);
1274 mutex_unlock(&shmem_swaplist_mutex);
1275
1276 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1277 fs_pages_to_unuse);
1278 cond_resched();
1279
1280 mutex_lock(&shmem_swaplist_mutex);
1281 next = list_next_entry(info, swaplist);
1282 if (!info->swapped)
1283 list_del_init(&info->swaplist);
1284 if (atomic_dec_and_test(&info->stop_eviction))
1285 wake_up_var(&info->stop_eviction);
1286 if (error)
1287 break;
1288 }
1289 mutex_unlock(&shmem_swaplist_mutex);
1290
1291 return error;
1292 }
1293
1294 /*
1295 * Move the page from the page cache to the swap cache.
1296 */
1297 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1298 {
1299 struct shmem_inode_info *info;
1300 struct address_space *mapping;
1301 struct inode *inode;
1302 swp_entry_t swap;
1303 pgoff_t index;
1304
1305 VM_BUG_ON_PAGE(PageCompound(page), page);
1306 BUG_ON(!PageLocked(page));
1307 mapping = page->mapping;
1308 index = page->index;
1309 inode = mapping->host;
1310 info = SHMEM_I(inode);
1311 if (info->flags & VM_LOCKED)
1312 goto redirty;
1313 if (!total_swap_pages)
1314 goto redirty;
1315
1316 /*
1317 * Our capabilities prevent regular writeback or sync from ever calling
1318 * shmem_writepage; but a stacking filesystem might use ->writepage of
1319 * its underlying filesystem, in which case tmpfs should write out to
1320 * swap only in response to memory pressure, and not for the writeback
1321 * threads or sync.
1322 */
1323 if (!wbc->for_reclaim) {
1324 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1325 goto redirty;
1326 }
1327
1328 /*
1329 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1330 * value into swapfile.c, the only way we can correctly account for a
1331 * fallocated page arriving here is now to initialize it and write it.
1332 *
1333 * That's okay for a page already fallocated earlier, but if we have
1334 * not yet completed the fallocation, then (a) we want to keep track
1335 * of this page in case we have to undo it, and (b) it may not be a
1336 * good idea to continue anyway, once we're pushing into swap. So
1337 * reactivate the page, and let shmem_fallocate() quit when too many.
1338 */
1339 if (!PageUptodate(page)) {
1340 if (inode->i_private) {
1341 struct shmem_falloc *shmem_falloc;
1342 spin_lock(&inode->i_lock);
1343 shmem_falloc = inode->i_private;
1344 if (shmem_falloc &&
1345 !shmem_falloc->waitq &&
1346 index >= shmem_falloc->start &&
1347 index < shmem_falloc->next)
1348 shmem_falloc->nr_unswapped++;
1349 else
1350 shmem_falloc = NULL;
1351 spin_unlock(&inode->i_lock);
1352 if (shmem_falloc)
1353 goto redirty;
1354 }
1355 clear_highpage(page);
1356 flush_dcache_page(page);
1357 SetPageUptodate(page);
1358 }
1359
1360 swap = get_swap_page(page);
1361 if (!swap.val)
1362 goto redirty;
1363
1364 /*
1365 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1366 * if it's not already there. Do it now before the page is
1367 * moved to swap cache, when its pagelock no longer protects
1368 * the inode from eviction. But don't unlock the mutex until
1369 * we've incremented swapped, because shmem_unuse_inode() will
1370 * prune a !swapped inode from the swaplist under this mutex.
1371 */
1372 mutex_lock(&shmem_swaplist_mutex);
1373 if (list_empty(&info->swaplist))
1374 list_add(&info->swaplist, &shmem_swaplist);
1375
1376 if (add_to_swap_cache(page, swap,
1377 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1378 spin_lock_irq(&info->lock);
1379 shmem_recalc_inode(inode);
1380 info->swapped++;
1381 spin_unlock_irq(&info->lock);
1382
1383 swap_shmem_alloc(swap);
1384 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1385
1386 mutex_unlock(&shmem_swaplist_mutex);
1387 BUG_ON(page_mapped(page));
1388 swap_writepage(page, wbc);
1389 return 0;
1390 }
1391
1392 mutex_unlock(&shmem_swaplist_mutex);
1393 put_swap_page(page, swap);
1394 redirty:
1395 set_page_dirty(page);
1396 if (wbc->for_reclaim)
1397 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1398 unlock_page(page);
1399 return 0;
1400 }
1401
1402 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1403 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1404 {
1405 char buffer[64];
1406
1407 if (!mpol || mpol->mode == MPOL_DEFAULT)
1408 return; /* show nothing */
1409
1410 mpol_to_str(buffer, sizeof(buffer), mpol);
1411
1412 seq_printf(seq, ",mpol=%s", buffer);
1413 }
1414
1415 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1416 {
1417 struct mempolicy *mpol = NULL;
1418 if (sbinfo->mpol) {
1419 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1420 mpol = sbinfo->mpol;
1421 mpol_get(mpol);
1422 spin_unlock(&sbinfo->stat_lock);
1423 }
1424 return mpol;
1425 }
1426 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1427 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1428 {
1429 }
1430 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1431 {
1432 return NULL;
1433 }
1434 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1435 #ifndef CONFIG_NUMA
1436 #define vm_policy vm_private_data
1437 #endif
1438
1439 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1440 struct shmem_inode_info *info, pgoff_t index)
1441 {
1442 /* Create a pseudo vma that just contains the policy */
1443 vma_init(vma, NULL);
1444 /* Bias interleave by inode number to distribute better across nodes */
1445 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1446 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1447 }
1448
1449 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1450 {
1451 /* Drop reference taken by mpol_shared_policy_lookup() */
1452 mpol_cond_put(vma->vm_policy);
1453 }
1454
1455 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1456 struct shmem_inode_info *info, pgoff_t index)
1457 {
1458 struct vm_area_struct pvma;
1459 struct page *page;
1460 struct vm_fault vmf;
1461
1462 shmem_pseudo_vma_init(&pvma, info, index);
1463 vmf.vma = &pvma;
1464 vmf.address = 0;
1465 page = swap_cluster_readahead(swap, gfp, &vmf);
1466 shmem_pseudo_vma_destroy(&pvma);
1467
1468 return page;
1469 }
1470
1471 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1472 struct shmem_inode_info *info, pgoff_t index)
1473 {
1474 struct vm_area_struct pvma;
1475 struct address_space *mapping = info->vfs_inode.i_mapping;
1476 pgoff_t hindex;
1477 struct page *page;
1478
1479 hindex = round_down(index, HPAGE_PMD_NR);
1480 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1481 XA_PRESENT))
1482 return NULL;
1483
1484 shmem_pseudo_vma_init(&pvma, info, hindex);
1485 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1486 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1487 shmem_pseudo_vma_destroy(&pvma);
1488 if (page)
1489 prep_transhuge_page(page);
1490 else
1491 count_vm_event(THP_FILE_FALLBACK);
1492 return page;
1493 }
1494
1495 static struct page *shmem_alloc_page(gfp_t gfp,
1496 struct shmem_inode_info *info, pgoff_t index)
1497 {
1498 struct vm_area_struct pvma;
1499 struct page *page;
1500
1501 shmem_pseudo_vma_init(&pvma, info, index);
1502 page = alloc_page_vma(gfp, &pvma, 0);
1503 shmem_pseudo_vma_destroy(&pvma);
1504
1505 return page;
1506 }
1507
1508 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1509 struct inode *inode,
1510 pgoff_t index, bool huge)
1511 {
1512 struct shmem_inode_info *info = SHMEM_I(inode);
1513 struct page *page;
1514 int nr;
1515 int err = -ENOSPC;
1516
1517 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1518 huge = false;
1519 nr = huge ? HPAGE_PMD_NR : 1;
1520
1521 if (!shmem_inode_acct_block(inode, nr))
1522 goto failed;
1523
1524 if (huge)
1525 page = shmem_alloc_hugepage(gfp, info, index);
1526 else
1527 page = shmem_alloc_page(gfp, info, index);
1528 if (page) {
1529 __SetPageLocked(page);
1530 __SetPageSwapBacked(page);
1531 return page;
1532 }
1533
1534 err = -ENOMEM;
1535 shmem_inode_unacct_blocks(inode, nr);
1536 failed:
1537 return ERR_PTR(err);
1538 }
1539
1540 /*
1541 * When a page is moved from swapcache to shmem filecache (either by the
1542 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1543 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1544 * ignorance of the mapping it belongs to. If that mapping has special
1545 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1546 * we may need to copy to a suitable page before moving to filecache.
1547 *
1548 * In a future release, this may well be extended to respect cpuset and
1549 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1550 * but for now it is a simple matter of zone.
1551 */
1552 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1553 {
1554 return page_zonenum(page) > gfp_zone(gfp);
1555 }
1556
1557 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1558 struct shmem_inode_info *info, pgoff_t index)
1559 {
1560 struct page *oldpage, *newpage;
1561 struct address_space *swap_mapping;
1562 swp_entry_t entry;
1563 pgoff_t swap_index;
1564 int error;
1565
1566 oldpage = *pagep;
1567 entry.val = page_private(oldpage);
1568 swap_index = swp_offset(entry);
1569 swap_mapping = page_mapping(oldpage);
1570
1571 /*
1572 * We have arrived here because our zones are constrained, so don't
1573 * limit chance of success by further cpuset and node constraints.
1574 */
1575 gfp &= ~GFP_CONSTRAINT_MASK;
1576 newpage = shmem_alloc_page(gfp, info, index);
1577 if (!newpage)
1578 return -ENOMEM;
1579
1580 get_page(newpage);
1581 copy_highpage(newpage, oldpage);
1582 flush_dcache_page(newpage);
1583
1584 __SetPageLocked(newpage);
1585 __SetPageSwapBacked(newpage);
1586 SetPageUptodate(newpage);
1587 set_page_private(newpage, entry.val);
1588 SetPageSwapCache(newpage);
1589
1590 /*
1591 * Our caller will very soon move newpage out of swapcache, but it's
1592 * a nice clean interface for us to replace oldpage by newpage there.
1593 */
1594 xa_lock_irq(&swap_mapping->i_pages);
1595 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1596 if (!error) {
1597 mem_cgroup_migrate(oldpage, newpage);
1598 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1599 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1600 }
1601 xa_unlock_irq(&swap_mapping->i_pages);
1602
1603 if (unlikely(error)) {
1604 /*
1605 * Is this possible? I think not, now that our callers check
1606 * both PageSwapCache and page_private after getting page lock;
1607 * but be defensive. Reverse old to newpage for clear and free.
1608 */
1609 oldpage = newpage;
1610 } else {
1611 lru_cache_add(newpage);
1612 *pagep = newpage;
1613 }
1614
1615 ClearPageSwapCache(oldpage);
1616 set_page_private(oldpage, 0);
1617
1618 unlock_page(oldpage);
1619 put_page(oldpage);
1620 put_page(oldpage);
1621 return error;
1622 }
1623
1624 /*
1625 * Swap in the page pointed to by *pagep.
1626 * Caller has to make sure that *pagep contains a valid swapped page.
1627 * Returns 0 and the page in pagep if success. On failure, returns the
1628 * the error code and NULL in *pagep.
1629 */
1630 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1631 struct page **pagep, enum sgp_type sgp,
1632 gfp_t gfp, struct vm_area_struct *vma,
1633 vm_fault_t *fault_type)
1634 {
1635 struct address_space *mapping = inode->i_mapping;
1636 struct shmem_inode_info *info = SHMEM_I(inode);
1637 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1638 struct page *page;
1639 swp_entry_t swap;
1640 int error;
1641
1642 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1643 swap = radix_to_swp_entry(*pagep);
1644 *pagep = NULL;
1645
1646 /* Look it up and read it in.. */
1647 page = lookup_swap_cache(swap, NULL, 0);
1648 if (!page) {
1649 /* Or update major stats only when swapin succeeds?? */
1650 if (fault_type) {
1651 *fault_type |= VM_FAULT_MAJOR;
1652 count_vm_event(PGMAJFAULT);
1653 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1654 }
1655 /* Here we actually start the io */
1656 page = shmem_swapin(swap, gfp, info, index);
1657 if (!page) {
1658 error = -ENOMEM;
1659 goto failed;
1660 }
1661 }
1662
1663 /* We have to do this with page locked to prevent races */
1664 lock_page(page);
1665 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1666 !shmem_confirm_swap(mapping, index, swap)) {
1667 error = -EEXIST;
1668 goto unlock;
1669 }
1670 if (!PageUptodate(page)) {
1671 error = -EIO;
1672 goto failed;
1673 }
1674 wait_on_page_writeback(page);
1675
1676 if (shmem_should_replace_page(page, gfp)) {
1677 error = shmem_replace_page(&page, gfp, info, index);
1678 if (error)
1679 goto failed;
1680 }
1681
1682 error = shmem_add_to_page_cache(page, mapping, index,
1683 swp_to_radix_entry(swap), gfp,
1684 charge_mm);
1685 if (error)
1686 goto failed;
1687
1688 spin_lock_irq(&info->lock);
1689 info->swapped--;
1690 shmem_recalc_inode(inode);
1691 spin_unlock_irq(&info->lock);
1692
1693 if (sgp == SGP_WRITE)
1694 mark_page_accessed(page);
1695
1696 delete_from_swap_cache(page);
1697 set_page_dirty(page);
1698 swap_free(swap);
1699
1700 *pagep = page;
1701 return 0;
1702 failed:
1703 if (!shmem_confirm_swap(mapping, index, swap))
1704 error = -EEXIST;
1705 unlock:
1706 if (page) {
1707 unlock_page(page);
1708 put_page(page);
1709 }
1710
1711 return error;
1712 }
1713
1714 /*
1715 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1716 *
1717 * If we allocate a new one we do not mark it dirty. That's up to the
1718 * vm. If we swap it in we mark it dirty since we also free the swap
1719 * entry since a page cannot live in both the swap and page cache.
1720 *
1721 * vmf and fault_type are only supplied by shmem_fault:
1722 * otherwise they are NULL.
1723 */
1724 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1725 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1726 struct vm_area_struct *vma, struct vm_fault *vmf,
1727 vm_fault_t *fault_type)
1728 {
1729 struct address_space *mapping = inode->i_mapping;
1730 struct shmem_inode_info *info = SHMEM_I(inode);
1731 struct shmem_sb_info *sbinfo;
1732 struct mm_struct *charge_mm;
1733 struct page *page;
1734 enum sgp_type sgp_huge = sgp;
1735 pgoff_t hindex = index;
1736 int error;
1737 int once = 0;
1738 int alloced = 0;
1739
1740 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1741 return -EFBIG;
1742 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1743 sgp = SGP_CACHE;
1744 repeat:
1745 if (sgp <= SGP_CACHE &&
1746 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1747 return -EINVAL;
1748 }
1749
1750 sbinfo = SHMEM_SB(inode->i_sb);
1751 charge_mm = vma ? vma->vm_mm : current->mm;
1752
1753 page = find_lock_entry(mapping, index);
1754 if (xa_is_value(page)) {
1755 error = shmem_swapin_page(inode, index, &page,
1756 sgp, gfp, vma, fault_type);
1757 if (error == -EEXIST)
1758 goto repeat;
1759
1760 *pagep = page;
1761 return error;
1762 }
1763
1764 if (page && sgp == SGP_WRITE)
1765 mark_page_accessed(page);
1766
1767 /* fallocated page? */
1768 if (page && !PageUptodate(page)) {
1769 if (sgp != SGP_READ)
1770 goto clear;
1771 unlock_page(page);
1772 put_page(page);
1773 page = NULL;
1774 }
1775 if (page || sgp == SGP_READ) {
1776 *pagep = page;
1777 return 0;
1778 }
1779
1780 /*
1781 * Fast cache lookup did not find it:
1782 * bring it back from swap or allocate.
1783 */
1784
1785 if (vma && userfaultfd_missing(vma)) {
1786 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1787 return 0;
1788 }
1789
1790 /* shmem_symlink() */
1791 if (mapping->a_ops != &shmem_aops)
1792 goto alloc_nohuge;
1793 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1794 goto alloc_nohuge;
1795 if (shmem_huge == SHMEM_HUGE_FORCE)
1796 goto alloc_huge;
1797 switch (sbinfo->huge) {
1798 case SHMEM_HUGE_NEVER:
1799 goto alloc_nohuge;
1800 case SHMEM_HUGE_WITHIN_SIZE: {
1801 loff_t i_size;
1802 pgoff_t off;
1803
1804 off = round_up(index, HPAGE_PMD_NR);
1805 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1806 if (i_size >= HPAGE_PMD_SIZE &&
1807 i_size >> PAGE_SHIFT >= off)
1808 goto alloc_huge;
1809
1810 fallthrough;
1811 }
1812 case SHMEM_HUGE_ADVISE:
1813 if (sgp_huge == SGP_HUGE)
1814 goto alloc_huge;
1815 /* TODO: implement fadvise() hints */
1816 goto alloc_nohuge;
1817 }
1818
1819 alloc_huge:
1820 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1821 if (IS_ERR(page)) {
1822 alloc_nohuge:
1823 page = shmem_alloc_and_acct_page(gfp, inode,
1824 index, false);
1825 }
1826 if (IS_ERR(page)) {
1827 int retry = 5;
1828
1829 error = PTR_ERR(page);
1830 page = NULL;
1831 if (error != -ENOSPC)
1832 goto unlock;
1833 /*
1834 * Try to reclaim some space by splitting a huge page
1835 * beyond i_size on the filesystem.
1836 */
1837 while (retry--) {
1838 int ret;
1839
1840 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1841 if (ret == SHRINK_STOP)
1842 break;
1843 if (ret)
1844 goto alloc_nohuge;
1845 }
1846 goto unlock;
1847 }
1848
1849 if (PageTransHuge(page))
1850 hindex = round_down(index, HPAGE_PMD_NR);
1851 else
1852 hindex = index;
1853
1854 if (sgp == SGP_WRITE)
1855 __SetPageReferenced(page);
1856
1857 error = shmem_add_to_page_cache(page, mapping, hindex,
1858 NULL, gfp & GFP_RECLAIM_MASK,
1859 charge_mm);
1860 if (error)
1861 goto unacct;
1862 lru_cache_add(page);
1863
1864 spin_lock_irq(&info->lock);
1865 info->alloced += compound_nr(page);
1866 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1867 shmem_recalc_inode(inode);
1868 spin_unlock_irq(&info->lock);
1869 alloced = true;
1870
1871 if (PageTransHuge(page) &&
1872 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1873 hindex + HPAGE_PMD_NR - 1) {
1874 /*
1875 * Part of the huge page is beyond i_size: subject
1876 * to shrink under memory pressure.
1877 */
1878 spin_lock(&sbinfo->shrinklist_lock);
1879 /*
1880 * _careful to defend against unlocked access to
1881 * ->shrink_list in shmem_unused_huge_shrink()
1882 */
1883 if (list_empty_careful(&info->shrinklist)) {
1884 list_add_tail(&info->shrinklist,
1885 &sbinfo->shrinklist);
1886 sbinfo->shrinklist_len++;
1887 }
1888 spin_unlock(&sbinfo->shrinklist_lock);
1889 }
1890
1891 /*
1892 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1893 */
1894 if (sgp == SGP_FALLOC)
1895 sgp = SGP_WRITE;
1896 clear:
1897 /*
1898 * Let SGP_WRITE caller clear ends if write does not fill page;
1899 * but SGP_FALLOC on a page fallocated earlier must initialize
1900 * it now, lest undo on failure cancel our earlier guarantee.
1901 */
1902 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1903 struct page *head = compound_head(page);
1904 int i;
1905
1906 for (i = 0; i < compound_nr(head); i++) {
1907 clear_highpage(head + i);
1908 flush_dcache_page(head + i);
1909 }
1910 SetPageUptodate(head);
1911 }
1912
1913 /* Perhaps the file has been truncated since we checked */
1914 if (sgp <= SGP_CACHE &&
1915 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1916 if (alloced) {
1917 ClearPageDirty(page);
1918 delete_from_page_cache(page);
1919 spin_lock_irq(&info->lock);
1920 shmem_recalc_inode(inode);
1921 spin_unlock_irq(&info->lock);
1922 }
1923 error = -EINVAL;
1924 goto unlock;
1925 }
1926 *pagep = page + index - hindex;
1927 return 0;
1928
1929 /*
1930 * Error recovery.
1931 */
1932 unacct:
1933 shmem_inode_unacct_blocks(inode, compound_nr(page));
1934
1935 if (PageTransHuge(page)) {
1936 unlock_page(page);
1937 put_page(page);
1938 goto alloc_nohuge;
1939 }
1940 unlock:
1941 if (page) {
1942 unlock_page(page);
1943 put_page(page);
1944 }
1945 if (error == -ENOSPC && !once++) {
1946 spin_lock_irq(&info->lock);
1947 shmem_recalc_inode(inode);
1948 spin_unlock_irq(&info->lock);
1949 goto repeat;
1950 }
1951 if (error == -EEXIST)
1952 goto repeat;
1953 return error;
1954 }
1955
1956 /*
1957 * This is like autoremove_wake_function, but it removes the wait queue
1958 * entry unconditionally - even if something else had already woken the
1959 * target.
1960 */
1961 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1962 {
1963 int ret = default_wake_function(wait, mode, sync, key);
1964 list_del_init(&wait->entry);
1965 return ret;
1966 }
1967
1968 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1969 {
1970 struct vm_area_struct *vma = vmf->vma;
1971 struct inode *inode = file_inode(vma->vm_file);
1972 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1973 enum sgp_type sgp;
1974 int err;
1975 vm_fault_t ret = VM_FAULT_LOCKED;
1976
1977 /*
1978 * Trinity finds that probing a hole which tmpfs is punching can
1979 * prevent the hole-punch from ever completing: which in turn
1980 * locks writers out with its hold on i_mutex. So refrain from
1981 * faulting pages into the hole while it's being punched. Although
1982 * shmem_undo_range() does remove the additions, it may be unable to
1983 * keep up, as each new page needs its own unmap_mapping_range() call,
1984 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1985 *
1986 * It does not matter if we sometimes reach this check just before the
1987 * hole-punch begins, so that one fault then races with the punch:
1988 * we just need to make racing faults a rare case.
1989 *
1990 * The implementation below would be much simpler if we just used a
1991 * standard mutex or completion: but we cannot take i_mutex in fault,
1992 * and bloating every shmem inode for this unlikely case would be sad.
1993 */
1994 if (unlikely(inode->i_private)) {
1995 struct shmem_falloc *shmem_falloc;
1996
1997 spin_lock(&inode->i_lock);
1998 shmem_falloc = inode->i_private;
1999 if (shmem_falloc &&
2000 shmem_falloc->waitq &&
2001 vmf->pgoff >= shmem_falloc->start &&
2002 vmf->pgoff < shmem_falloc->next) {
2003 struct file *fpin;
2004 wait_queue_head_t *shmem_falloc_waitq;
2005 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2006
2007 ret = VM_FAULT_NOPAGE;
2008 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2009 if (fpin)
2010 ret = VM_FAULT_RETRY;
2011
2012 shmem_falloc_waitq = shmem_falloc->waitq;
2013 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2014 TASK_UNINTERRUPTIBLE);
2015 spin_unlock(&inode->i_lock);
2016 schedule();
2017
2018 /*
2019 * shmem_falloc_waitq points into the shmem_fallocate()
2020 * stack of the hole-punching task: shmem_falloc_waitq
2021 * is usually invalid by the time we reach here, but
2022 * finish_wait() does not dereference it in that case;
2023 * though i_lock needed lest racing with wake_up_all().
2024 */
2025 spin_lock(&inode->i_lock);
2026 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2027 spin_unlock(&inode->i_lock);
2028
2029 if (fpin)
2030 fput(fpin);
2031 return ret;
2032 }
2033 spin_unlock(&inode->i_lock);
2034 }
2035
2036 sgp = SGP_CACHE;
2037
2038 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2039 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2040 sgp = SGP_NOHUGE;
2041 else if (vma->vm_flags & VM_HUGEPAGE)
2042 sgp = SGP_HUGE;
2043
2044 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2045 gfp, vma, vmf, &ret);
2046 if (err)
2047 return vmf_error(err);
2048 return ret;
2049 }
2050
2051 unsigned long shmem_get_unmapped_area(struct file *file,
2052 unsigned long uaddr, unsigned long len,
2053 unsigned long pgoff, unsigned long flags)
2054 {
2055 unsigned long (*get_area)(struct file *,
2056 unsigned long, unsigned long, unsigned long, unsigned long);
2057 unsigned long addr;
2058 unsigned long offset;
2059 unsigned long inflated_len;
2060 unsigned long inflated_addr;
2061 unsigned long inflated_offset;
2062
2063 if (len > TASK_SIZE)
2064 return -ENOMEM;
2065
2066 get_area = current->mm->get_unmapped_area;
2067 addr = get_area(file, uaddr, len, pgoff, flags);
2068
2069 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2070 return addr;
2071 if (IS_ERR_VALUE(addr))
2072 return addr;
2073 if (addr & ~PAGE_MASK)
2074 return addr;
2075 if (addr > TASK_SIZE - len)
2076 return addr;
2077
2078 if (shmem_huge == SHMEM_HUGE_DENY)
2079 return addr;
2080 if (len < HPAGE_PMD_SIZE)
2081 return addr;
2082 if (flags & MAP_FIXED)
2083 return addr;
2084 /*
2085 * Our priority is to support MAP_SHARED mapped hugely;
2086 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2087 * But if caller specified an address hint and we allocated area there
2088 * successfully, respect that as before.
2089 */
2090 if (uaddr == addr)
2091 return addr;
2092
2093 if (shmem_huge != SHMEM_HUGE_FORCE) {
2094 struct super_block *sb;
2095
2096 if (file) {
2097 VM_BUG_ON(file->f_op != &shmem_file_operations);
2098 sb = file_inode(file)->i_sb;
2099 } else {
2100 /*
2101 * Called directly from mm/mmap.c, or drivers/char/mem.c
2102 * for "/dev/zero", to create a shared anonymous object.
2103 */
2104 if (IS_ERR(shm_mnt))
2105 return addr;
2106 sb = shm_mnt->mnt_sb;
2107 }
2108 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2109 return addr;
2110 }
2111
2112 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2113 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2114 return addr;
2115 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2116 return addr;
2117
2118 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2119 if (inflated_len > TASK_SIZE)
2120 return addr;
2121 if (inflated_len < len)
2122 return addr;
2123
2124 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2125 if (IS_ERR_VALUE(inflated_addr))
2126 return addr;
2127 if (inflated_addr & ~PAGE_MASK)
2128 return addr;
2129
2130 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2131 inflated_addr += offset - inflated_offset;
2132 if (inflated_offset > offset)
2133 inflated_addr += HPAGE_PMD_SIZE;
2134
2135 if (inflated_addr > TASK_SIZE - len)
2136 return addr;
2137 return inflated_addr;
2138 }
2139
2140 #ifdef CONFIG_NUMA
2141 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2142 {
2143 struct inode *inode = file_inode(vma->vm_file);
2144 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2145 }
2146
2147 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2148 unsigned long addr)
2149 {
2150 struct inode *inode = file_inode(vma->vm_file);
2151 pgoff_t index;
2152
2153 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2154 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2155 }
2156 #endif
2157
2158 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2159 {
2160 struct inode *inode = file_inode(file);
2161 struct shmem_inode_info *info = SHMEM_I(inode);
2162 int retval = -ENOMEM;
2163
2164 /*
2165 * What serializes the accesses to info->flags?
2166 * ipc_lock_object() when called from shmctl_do_lock(),
2167 * no serialization needed when called from shm_destroy().
2168 */
2169 if (lock && !(info->flags & VM_LOCKED)) {
2170 if (!user_shm_lock(inode->i_size, user))
2171 goto out_nomem;
2172 info->flags |= VM_LOCKED;
2173 mapping_set_unevictable(file->f_mapping);
2174 }
2175 if (!lock && (info->flags & VM_LOCKED) && user) {
2176 user_shm_unlock(inode->i_size, user);
2177 info->flags &= ~VM_LOCKED;
2178 mapping_clear_unevictable(file->f_mapping);
2179 }
2180 retval = 0;
2181
2182 out_nomem:
2183 return retval;
2184 }
2185
2186 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2187 {
2188 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2189
2190 if (info->seals & F_SEAL_FUTURE_WRITE) {
2191 /*
2192 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2193 * "future write" seal active.
2194 */
2195 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2196 return -EPERM;
2197
2198 /*
2199 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2200 * MAP_SHARED and read-only, take care to not allow mprotect to
2201 * revert protections on such mappings. Do this only for shared
2202 * mappings. For private mappings, don't need to mask
2203 * VM_MAYWRITE as we still want them to be COW-writable.
2204 */
2205 if (vma->vm_flags & VM_SHARED)
2206 vma->vm_flags &= ~(VM_MAYWRITE);
2207 }
2208
2209 file_accessed(file);
2210 vma->vm_ops = &shmem_vm_ops;
2211 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2212 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2213 (vma->vm_end & HPAGE_PMD_MASK)) {
2214 khugepaged_enter(vma, vma->vm_flags);
2215 }
2216 return 0;
2217 }
2218
2219 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2220 umode_t mode, dev_t dev, unsigned long flags)
2221 {
2222 struct inode *inode;
2223 struct shmem_inode_info *info;
2224 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2225
2226 if (shmem_reserve_inode(sb))
2227 return NULL;
2228
2229 inode = new_inode(sb);
2230 if (inode) {
2231 inode->i_ino = get_next_ino();
2232 inode_init_owner(inode, dir, mode);
2233 inode->i_blocks = 0;
2234 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2235 inode->i_generation = prandom_u32();
2236 info = SHMEM_I(inode);
2237 memset(info, 0, (char *)inode - (char *)info);
2238 spin_lock_init(&info->lock);
2239 atomic_set(&info->stop_eviction, 0);
2240 info->seals = F_SEAL_SEAL;
2241 info->flags = flags & VM_NORESERVE;
2242 INIT_LIST_HEAD(&info->shrinklist);
2243 INIT_LIST_HEAD(&info->swaplist);
2244 simple_xattrs_init(&info->xattrs);
2245 cache_no_acl(inode);
2246
2247 switch (mode & S_IFMT) {
2248 default:
2249 inode->i_op = &shmem_special_inode_operations;
2250 init_special_inode(inode, mode, dev);
2251 break;
2252 case S_IFREG:
2253 inode->i_mapping->a_ops = &shmem_aops;
2254 inode->i_op = &shmem_inode_operations;
2255 inode->i_fop = &shmem_file_operations;
2256 mpol_shared_policy_init(&info->policy,
2257 shmem_get_sbmpol(sbinfo));
2258 break;
2259 case S_IFDIR:
2260 inc_nlink(inode);
2261 /* Some things misbehave if size == 0 on a directory */
2262 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2263 inode->i_op = &shmem_dir_inode_operations;
2264 inode->i_fop = &simple_dir_operations;
2265 break;
2266 case S_IFLNK:
2267 /*
2268 * Must not load anything in the rbtree,
2269 * mpol_free_shared_policy will not be called.
2270 */
2271 mpol_shared_policy_init(&info->policy, NULL);
2272 break;
2273 }
2274
2275 lockdep_annotate_inode_mutex_key(inode);
2276 } else
2277 shmem_free_inode(sb);
2278 return inode;
2279 }
2280
2281 bool shmem_mapping(struct address_space *mapping)
2282 {
2283 return mapping->a_ops == &shmem_aops;
2284 }
2285
2286 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2287 pmd_t *dst_pmd,
2288 struct vm_area_struct *dst_vma,
2289 unsigned long dst_addr,
2290 unsigned long src_addr,
2291 bool zeropage,
2292 struct page **pagep)
2293 {
2294 struct inode *inode = file_inode(dst_vma->vm_file);
2295 struct shmem_inode_info *info = SHMEM_I(inode);
2296 struct address_space *mapping = inode->i_mapping;
2297 gfp_t gfp = mapping_gfp_mask(mapping);
2298 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2299 spinlock_t *ptl;
2300 void *page_kaddr;
2301 struct page *page;
2302 pte_t _dst_pte, *dst_pte;
2303 int ret;
2304 pgoff_t offset, max_off;
2305
2306 ret = -ENOMEM;
2307 if (!shmem_inode_acct_block(inode, 1))
2308 goto out;
2309
2310 if (!*pagep) {
2311 page = shmem_alloc_page(gfp, info, pgoff);
2312 if (!page)
2313 goto out_unacct_blocks;
2314
2315 if (!zeropage) { /* mcopy_atomic */
2316 page_kaddr = kmap_atomic(page);
2317 ret = copy_from_user(page_kaddr,
2318 (const void __user *)src_addr,
2319 PAGE_SIZE);
2320 kunmap_atomic(page_kaddr);
2321
2322 /* fallback to copy_from_user outside mmap_lock */
2323 if (unlikely(ret)) {
2324 *pagep = page;
2325 shmem_inode_unacct_blocks(inode, 1);
2326 /* don't free the page */
2327 return -ENOENT;
2328 }
2329 } else { /* mfill_zeropage_atomic */
2330 clear_highpage(page);
2331 }
2332 } else {
2333 page = *pagep;
2334 *pagep = NULL;
2335 }
2336
2337 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2338 __SetPageLocked(page);
2339 __SetPageSwapBacked(page);
2340 __SetPageUptodate(page);
2341
2342 ret = -EFAULT;
2343 offset = linear_page_index(dst_vma, dst_addr);
2344 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2345 if (unlikely(offset >= max_off))
2346 goto out_release;
2347
2348 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2349 gfp & GFP_RECLAIM_MASK, dst_mm);
2350 if (ret)
2351 goto out_release;
2352
2353 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2354 if (dst_vma->vm_flags & VM_WRITE)
2355 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2356 else {
2357 /*
2358 * We don't set the pte dirty if the vma has no
2359 * VM_WRITE permission, so mark the page dirty or it
2360 * could be freed from under us. We could do it
2361 * unconditionally before unlock_page(), but doing it
2362 * only if VM_WRITE is not set is faster.
2363 */
2364 set_page_dirty(page);
2365 }
2366
2367 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2368
2369 ret = -EFAULT;
2370 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2371 if (unlikely(offset >= max_off))
2372 goto out_release_unlock;
2373
2374 ret = -EEXIST;
2375 if (!pte_none(*dst_pte))
2376 goto out_release_unlock;
2377
2378 lru_cache_add(page);
2379
2380 spin_lock_irq(&info->lock);
2381 info->alloced++;
2382 inode->i_blocks += BLOCKS_PER_PAGE;
2383 shmem_recalc_inode(inode);
2384 spin_unlock_irq(&info->lock);
2385
2386 inc_mm_counter(dst_mm, mm_counter_file(page));
2387 page_add_file_rmap(page, false);
2388 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2389
2390 /* No need to invalidate - it was non-present before */
2391 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2392 pte_unmap_unlock(dst_pte, ptl);
2393 unlock_page(page);
2394 ret = 0;
2395 out:
2396 return ret;
2397 out_release_unlock:
2398 pte_unmap_unlock(dst_pte, ptl);
2399 ClearPageDirty(page);
2400 delete_from_page_cache(page);
2401 out_release:
2402 unlock_page(page);
2403 put_page(page);
2404 out_unacct_blocks:
2405 shmem_inode_unacct_blocks(inode, 1);
2406 goto out;
2407 }
2408
2409 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2410 pmd_t *dst_pmd,
2411 struct vm_area_struct *dst_vma,
2412 unsigned long dst_addr,
2413 unsigned long src_addr,
2414 struct page **pagep)
2415 {
2416 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2417 dst_addr, src_addr, false, pagep);
2418 }
2419
2420 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2421 pmd_t *dst_pmd,
2422 struct vm_area_struct *dst_vma,
2423 unsigned long dst_addr)
2424 {
2425 struct page *page = NULL;
2426
2427 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2428 dst_addr, 0, true, &page);
2429 }
2430
2431 #ifdef CONFIG_TMPFS
2432 static const struct inode_operations shmem_symlink_inode_operations;
2433 static const struct inode_operations shmem_short_symlink_operations;
2434
2435 #ifdef CONFIG_TMPFS_XATTR
2436 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2437 #else
2438 #define shmem_initxattrs NULL
2439 #endif
2440
2441 static int
2442 shmem_write_begin(struct file *file, struct address_space *mapping,
2443 loff_t pos, unsigned len, unsigned flags,
2444 struct page **pagep, void **fsdata)
2445 {
2446 struct inode *inode = mapping->host;
2447 struct shmem_inode_info *info = SHMEM_I(inode);
2448 pgoff_t index = pos >> PAGE_SHIFT;
2449
2450 /* i_mutex is held by caller */
2451 if (unlikely(info->seals & (F_SEAL_GROW |
2452 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2453 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2454 return -EPERM;
2455 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2456 return -EPERM;
2457 }
2458
2459 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2460 }
2461
2462 static int
2463 shmem_write_end(struct file *file, struct address_space *mapping,
2464 loff_t pos, unsigned len, unsigned copied,
2465 struct page *page, void *fsdata)
2466 {
2467 struct inode *inode = mapping->host;
2468
2469 if (pos + copied > inode->i_size)
2470 i_size_write(inode, pos + copied);
2471
2472 if (!PageUptodate(page)) {
2473 struct page *head = compound_head(page);
2474 if (PageTransCompound(page)) {
2475 int i;
2476
2477 for (i = 0; i < HPAGE_PMD_NR; i++) {
2478 if (head + i == page)
2479 continue;
2480 clear_highpage(head + i);
2481 flush_dcache_page(head + i);
2482 }
2483 }
2484 if (copied < PAGE_SIZE) {
2485 unsigned from = pos & (PAGE_SIZE - 1);
2486 zero_user_segments(page, 0, from,
2487 from + copied, PAGE_SIZE);
2488 }
2489 SetPageUptodate(head);
2490 }
2491 set_page_dirty(page);
2492 unlock_page(page);
2493 put_page(page);
2494
2495 return copied;
2496 }
2497
2498 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2499 {
2500 struct file *file = iocb->ki_filp;
2501 struct inode *inode = file_inode(file);
2502 struct address_space *mapping = inode->i_mapping;
2503 pgoff_t index;
2504 unsigned long offset;
2505 enum sgp_type sgp = SGP_READ;
2506 int error = 0;
2507 ssize_t retval = 0;
2508 loff_t *ppos = &iocb->ki_pos;
2509
2510 /*
2511 * Might this read be for a stacking filesystem? Then when reading
2512 * holes of a sparse file, we actually need to allocate those pages,
2513 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2514 */
2515 if (!iter_is_iovec(to))
2516 sgp = SGP_CACHE;
2517
2518 index = *ppos >> PAGE_SHIFT;
2519 offset = *ppos & ~PAGE_MASK;
2520
2521 for (;;) {
2522 struct page *page = NULL;
2523 pgoff_t end_index;
2524 unsigned long nr, ret;
2525 loff_t i_size = i_size_read(inode);
2526
2527 end_index = i_size >> PAGE_SHIFT;
2528 if (index > end_index)
2529 break;
2530 if (index == end_index) {
2531 nr = i_size & ~PAGE_MASK;
2532 if (nr <= offset)
2533 break;
2534 }
2535
2536 error = shmem_getpage(inode, index, &page, sgp);
2537 if (error) {
2538 if (error == -EINVAL)
2539 error = 0;
2540 break;
2541 }
2542 if (page) {
2543 if (sgp == SGP_CACHE)
2544 set_page_dirty(page);
2545 unlock_page(page);
2546 }
2547
2548 /*
2549 * We must evaluate after, since reads (unlike writes)
2550 * are called without i_mutex protection against truncate
2551 */
2552 nr = PAGE_SIZE;
2553 i_size = i_size_read(inode);
2554 end_index = i_size >> PAGE_SHIFT;
2555 if (index == end_index) {
2556 nr = i_size & ~PAGE_MASK;
2557 if (nr <= offset) {
2558 if (page)
2559 put_page(page);
2560 break;
2561 }
2562 }
2563 nr -= offset;
2564
2565 if (page) {
2566 /*
2567 * If users can be writing to this page using arbitrary
2568 * virtual addresses, take care about potential aliasing
2569 * before reading the page on the kernel side.
2570 */
2571 if (mapping_writably_mapped(mapping))
2572 flush_dcache_page(page);
2573 /*
2574 * Mark the page accessed if we read the beginning.
2575 */
2576 if (!offset)
2577 mark_page_accessed(page);
2578 } else {
2579 page = ZERO_PAGE(0);
2580 get_page(page);
2581 }
2582
2583 /*
2584 * Ok, we have the page, and it's up-to-date, so
2585 * now we can copy it to user space...
2586 */
2587 ret = copy_page_to_iter(page, offset, nr, to);
2588 retval += ret;
2589 offset += ret;
2590 index += offset >> PAGE_SHIFT;
2591 offset &= ~PAGE_MASK;
2592
2593 put_page(page);
2594 if (!iov_iter_count(to))
2595 break;
2596 if (ret < nr) {
2597 error = -EFAULT;
2598 break;
2599 }
2600 cond_resched();
2601 }
2602
2603 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2604 file_accessed(file);
2605 return retval ? retval : error;
2606 }
2607
2608 /*
2609 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2610 */
2611 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2612 pgoff_t index, pgoff_t end, int whence)
2613 {
2614 struct page *page;
2615 struct pagevec pvec;
2616 pgoff_t indices[PAGEVEC_SIZE];
2617 bool done = false;
2618 int i;
2619
2620 pagevec_init(&pvec);
2621 pvec.nr = 1; /* start small: we may be there already */
2622 while (!done) {
2623 pvec.nr = find_get_entries(mapping, index,
2624 pvec.nr, pvec.pages, indices);
2625 if (!pvec.nr) {
2626 if (whence == SEEK_DATA)
2627 index = end;
2628 break;
2629 }
2630 for (i = 0; i < pvec.nr; i++, index++) {
2631 if (index < indices[i]) {
2632 if (whence == SEEK_HOLE) {
2633 done = true;
2634 break;
2635 }
2636 index = indices[i];
2637 }
2638 page = pvec.pages[i];
2639 if (page && !xa_is_value(page)) {
2640 if (!PageUptodate(page))
2641 page = NULL;
2642 }
2643 if (index >= end ||
2644 (page && whence == SEEK_DATA) ||
2645 (!page && whence == SEEK_HOLE)) {
2646 done = true;
2647 break;
2648 }
2649 }
2650 pagevec_remove_exceptionals(&pvec);
2651 pagevec_release(&pvec);
2652 pvec.nr = PAGEVEC_SIZE;
2653 cond_resched();
2654 }
2655 return index;
2656 }
2657
2658 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2659 {
2660 struct address_space *mapping = file->f_mapping;
2661 struct inode *inode = mapping->host;
2662 pgoff_t start, end;
2663 loff_t new_offset;
2664
2665 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2666 return generic_file_llseek_size(file, offset, whence,
2667 MAX_LFS_FILESIZE, i_size_read(inode));
2668 inode_lock(inode);
2669 /* We're holding i_mutex so we can access i_size directly */
2670
2671 if (offset < 0 || offset >= inode->i_size)
2672 offset = -ENXIO;
2673 else {
2674 start = offset >> PAGE_SHIFT;
2675 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2676 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2677 new_offset <<= PAGE_SHIFT;
2678 if (new_offset > offset) {
2679 if (new_offset < inode->i_size)
2680 offset = new_offset;
2681 else if (whence == SEEK_DATA)
2682 offset = -ENXIO;
2683 else
2684 offset = inode->i_size;
2685 }
2686 }
2687
2688 if (offset >= 0)
2689 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2690 inode_unlock(inode);
2691 return offset;
2692 }
2693
2694 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2695 loff_t len)
2696 {
2697 struct inode *inode = file_inode(file);
2698 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2699 struct shmem_inode_info *info = SHMEM_I(inode);
2700 struct shmem_falloc shmem_falloc;
2701 pgoff_t start, index, end;
2702 int error;
2703
2704 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2705 return -EOPNOTSUPP;
2706
2707 inode_lock(inode);
2708
2709 if (mode & FALLOC_FL_PUNCH_HOLE) {
2710 struct address_space *mapping = file->f_mapping;
2711 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2712 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2713 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2714
2715 /* protected by i_mutex */
2716 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2717 error = -EPERM;
2718 goto out;
2719 }
2720
2721 shmem_falloc.waitq = &shmem_falloc_waitq;
2722 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2723 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2724 spin_lock(&inode->i_lock);
2725 inode->i_private = &shmem_falloc;
2726 spin_unlock(&inode->i_lock);
2727
2728 if ((u64)unmap_end > (u64)unmap_start)
2729 unmap_mapping_range(mapping, unmap_start,
2730 1 + unmap_end - unmap_start, 0);
2731 shmem_truncate_range(inode, offset, offset + len - 1);
2732 /* No need to unmap again: hole-punching leaves COWed pages */
2733
2734 spin_lock(&inode->i_lock);
2735 inode->i_private = NULL;
2736 wake_up_all(&shmem_falloc_waitq);
2737 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2738 spin_unlock(&inode->i_lock);
2739 error = 0;
2740 goto out;
2741 }
2742
2743 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2744 error = inode_newsize_ok(inode, offset + len);
2745 if (error)
2746 goto out;
2747
2748 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2749 error = -EPERM;
2750 goto out;
2751 }
2752
2753 start = offset >> PAGE_SHIFT;
2754 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2755 /* Try to avoid a swapstorm if len is impossible to satisfy */
2756 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2757 error = -ENOSPC;
2758 goto out;
2759 }
2760
2761 shmem_falloc.waitq = NULL;
2762 shmem_falloc.start = start;
2763 shmem_falloc.next = start;
2764 shmem_falloc.nr_falloced = 0;
2765 shmem_falloc.nr_unswapped = 0;
2766 spin_lock(&inode->i_lock);
2767 inode->i_private = &shmem_falloc;
2768 spin_unlock(&inode->i_lock);
2769
2770 for (index = start; index < end; index++) {
2771 struct page *page;
2772
2773 /*
2774 * Good, the fallocate(2) manpage permits EINTR: we may have
2775 * been interrupted because we are using up too much memory.
2776 */
2777 if (signal_pending(current))
2778 error = -EINTR;
2779 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2780 error = -ENOMEM;
2781 else
2782 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2783 if (error) {
2784 /* Remove the !PageUptodate pages we added */
2785 if (index > start) {
2786 shmem_undo_range(inode,
2787 (loff_t)start << PAGE_SHIFT,
2788 ((loff_t)index << PAGE_SHIFT) - 1, true);
2789 }
2790 goto undone;
2791 }
2792
2793 /*
2794 * Inform shmem_writepage() how far we have reached.
2795 * No need for lock or barrier: we have the page lock.
2796 */
2797 shmem_falloc.next++;
2798 if (!PageUptodate(page))
2799 shmem_falloc.nr_falloced++;
2800
2801 /*
2802 * If !PageUptodate, leave it that way so that freeable pages
2803 * can be recognized if we need to rollback on error later.
2804 * But set_page_dirty so that memory pressure will swap rather
2805 * than free the pages we are allocating (and SGP_CACHE pages
2806 * might still be clean: we now need to mark those dirty too).
2807 */
2808 set_page_dirty(page);
2809 unlock_page(page);
2810 put_page(page);
2811 cond_resched();
2812 }
2813
2814 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2815 i_size_write(inode, offset + len);
2816 inode->i_ctime = current_time(inode);
2817 undone:
2818 spin_lock(&inode->i_lock);
2819 inode->i_private = NULL;
2820 spin_unlock(&inode->i_lock);
2821 out:
2822 inode_unlock(inode);
2823 return error;
2824 }
2825
2826 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2827 {
2828 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2829
2830 buf->f_type = TMPFS_MAGIC;
2831 buf->f_bsize = PAGE_SIZE;
2832 buf->f_namelen = NAME_MAX;
2833 if (sbinfo->max_blocks) {
2834 buf->f_blocks = sbinfo->max_blocks;
2835 buf->f_bavail =
2836 buf->f_bfree = sbinfo->max_blocks -
2837 percpu_counter_sum(&sbinfo->used_blocks);
2838 }
2839 if (sbinfo->max_inodes) {
2840 buf->f_files = sbinfo->max_inodes;
2841 buf->f_ffree = sbinfo->free_inodes;
2842 }
2843 /* else leave those fields 0 like simple_statfs */
2844 return 0;
2845 }
2846
2847 /*
2848 * File creation. Allocate an inode, and we're done..
2849 */
2850 static int
2851 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2852 {
2853 struct inode *inode;
2854 int error = -ENOSPC;
2855
2856 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2857 if (inode) {
2858 error = simple_acl_create(dir, inode);
2859 if (error)
2860 goto out_iput;
2861 error = security_inode_init_security(inode, dir,
2862 &dentry->d_name,
2863 shmem_initxattrs, NULL);
2864 if (error && error != -EOPNOTSUPP)
2865 goto out_iput;
2866
2867 error = 0;
2868 dir->i_size += BOGO_DIRENT_SIZE;
2869 dir->i_ctime = dir->i_mtime = current_time(dir);
2870 d_instantiate(dentry, inode);
2871 dget(dentry); /* Extra count - pin the dentry in core */
2872 }
2873 return error;
2874 out_iput:
2875 iput(inode);
2876 return error;
2877 }
2878
2879 static int
2880 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2881 {
2882 struct inode *inode;
2883 int error = -ENOSPC;
2884
2885 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2886 if (inode) {
2887 error = security_inode_init_security(inode, dir,
2888 NULL,
2889 shmem_initxattrs, NULL);
2890 if (error && error != -EOPNOTSUPP)
2891 goto out_iput;
2892 error = simple_acl_create(dir, inode);
2893 if (error)
2894 goto out_iput;
2895 d_tmpfile(dentry, inode);
2896 }
2897 return error;
2898 out_iput:
2899 iput(inode);
2900 return error;
2901 }
2902
2903 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2904 {
2905 int error;
2906
2907 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2908 return error;
2909 inc_nlink(dir);
2910 return 0;
2911 }
2912
2913 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2914 bool excl)
2915 {
2916 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2917 }
2918
2919 /*
2920 * Link a file..
2921 */
2922 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2923 {
2924 struct inode *inode = d_inode(old_dentry);
2925 int ret = 0;
2926
2927 /*
2928 * No ordinary (disk based) filesystem counts links as inodes;
2929 * but each new link needs a new dentry, pinning lowmem, and
2930 * tmpfs dentries cannot be pruned until they are unlinked.
2931 * But if an O_TMPFILE file is linked into the tmpfs, the
2932 * first link must skip that, to get the accounting right.
2933 */
2934 if (inode->i_nlink) {
2935 ret = shmem_reserve_inode(inode->i_sb);
2936 if (ret)
2937 goto out;
2938 }
2939
2940 dir->i_size += BOGO_DIRENT_SIZE;
2941 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2942 inc_nlink(inode);
2943 ihold(inode); /* New dentry reference */
2944 dget(dentry); /* Extra pinning count for the created dentry */
2945 d_instantiate(dentry, inode);
2946 out:
2947 return ret;
2948 }
2949
2950 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2951 {
2952 struct inode *inode = d_inode(dentry);
2953
2954 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2955 shmem_free_inode(inode->i_sb);
2956
2957 dir->i_size -= BOGO_DIRENT_SIZE;
2958 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2959 drop_nlink(inode);
2960 dput(dentry); /* Undo the count from "create" - this does all the work */
2961 return 0;
2962 }
2963
2964 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2965 {
2966 if (!simple_empty(dentry))
2967 return -ENOTEMPTY;
2968
2969 drop_nlink(d_inode(dentry));
2970 drop_nlink(dir);
2971 return shmem_unlink(dir, dentry);
2972 }
2973
2974 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2975 {
2976 bool old_is_dir = d_is_dir(old_dentry);
2977 bool new_is_dir = d_is_dir(new_dentry);
2978
2979 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2980 if (old_is_dir) {
2981 drop_nlink(old_dir);
2982 inc_nlink(new_dir);
2983 } else {
2984 drop_nlink(new_dir);
2985 inc_nlink(old_dir);
2986 }
2987 }
2988 old_dir->i_ctime = old_dir->i_mtime =
2989 new_dir->i_ctime = new_dir->i_mtime =
2990 d_inode(old_dentry)->i_ctime =
2991 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2992
2993 return 0;
2994 }
2995
2996 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2997 {
2998 struct dentry *whiteout;
2999 int error;
3000
3001 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3002 if (!whiteout)
3003 return -ENOMEM;
3004
3005 error = shmem_mknod(old_dir, whiteout,
3006 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3007 dput(whiteout);
3008 if (error)
3009 return error;
3010
3011 /*
3012 * Cheat and hash the whiteout while the old dentry is still in
3013 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3014 *
3015 * d_lookup() will consistently find one of them at this point,
3016 * not sure which one, but that isn't even important.
3017 */
3018 d_rehash(whiteout);
3019 return 0;
3020 }
3021
3022 /*
3023 * The VFS layer already does all the dentry stuff for rename,
3024 * we just have to decrement the usage count for the target if
3025 * it exists so that the VFS layer correctly free's it when it
3026 * gets overwritten.
3027 */
3028 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3029 {
3030 struct inode *inode = d_inode(old_dentry);
3031 int they_are_dirs = S_ISDIR(inode->i_mode);
3032
3033 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3034 return -EINVAL;
3035
3036 if (flags & RENAME_EXCHANGE)
3037 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3038
3039 if (!simple_empty(new_dentry))
3040 return -ENOTEMPTY;
3041
3042 if (flags & RENAME_WHITEOUT) {
3043 int error;
3044
3045 error = shmem_whiteout(old_dir, old_dentry);
3046 if (error)
3047 return error;
3048 }
3049
3050 if (d_really_is_positive(new_dentry)) {
3051 (void) shmem_unlink(new_dir, new_dentry);
3052 if (they_are_dirs) {
3053 drop_nlink(d_inode(new_dentry));
3054 drop_nlink(old_dir);
3055 }
3056 } else if (they_are_dirs) {
3057 drop_nlink(old_dir);
3058 inc_nlink(new_dir);
3059 }
3060
3061 old_dir->i_size -= BOGO_DIRENT_SIZE;
3062 new_dir->i_size += BOGO_DIRENT_SIZE;
3063 old_dir->i_ctime = old_dir->i_mtime =
3064 new_dir->i_ctime = new_dir->i_mtime =
3065 inode->i_ctime = current_time(old_dir);
3066 return 0;
3067 }
3068
3069 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3070 {
3071 int error;
3072 int len;
3073 struct inode *inode;
3074 struct page *page;
3075
3076 len = strlen(symname) + 1;
3077 if (len > PAGE_SIZE)
3078 return -ENAMETOOLONG;
3079
3080 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3081 VM_NORESERVE);
3082 if (!inode)
3083 return -ENOSPC;
3084
3085 error = security_inode_init_security(inode, dir, &dentry->d_name,
3086 shmem_initxattrs, NULL);
3087 if (error && error != -EOPNOTSUPP) {
3088 iput(inode);
3089 return error;
3090 }
3091
3092 inode->i_size = len-1;
3093 if (len <= SHORT_SYMLINK_LEN) {
3094 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3095 if (!inode->i_link) {
3096 iput(inode);
3097 return -ENOMEM;
3098 }
3099 inode->i_op = &shmem_short_symlink_operations;
3100 } else {
3101 inode_nohighmem(inode);
3102 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3103 if (error) {
3104 iput(inode);
3105 return error;
3106 }
3107 inode->i_mapping->a_ops = &shmem_aops;
3108 inode->i_op = &shmem_symlink_inode_operations;
3109 memcpy(page_address(page), symname, len);
3110 SetPageUptodate(page);
3111 set_page_dirty(page);
3112 unlock_page(page);
3113 put_page(page);
3114 }
3115 dir->i_size += BOGO_DIRENT_SIZE;
3116 dir->i_ctime = dir->i_mtime = current_time(dir);
3117 d_instantiate(dentry, inode);
3118 dget(dentry);
3119 return 0;
3120 }
3121
3122 static void shmem_put_link(void *arg)
3123 {
3124 mark_page_accessed(arg);
3125 put_page(arg);
3126 }
3127
3128 static const char *shmem_get_link(struct dentry *dentry,
3129 struct inode *inode,
3130 struct delayed_call *done)
3131 {
3132 struct page *page = NULL;
3133 int error;
3134 if (!dentry) {
3135 page = find_get_page(inode->i_mapping, 0);
3136 if (!page)
3137 return ERR_PTR(-ECHILD);
3138 if (!PageUptodate(page)) {
3139 put_page(page);
3140 return ERR_PTR(-ECHILD);
3141 }
3142 } else {
3143 error = shmem_getpage(inode, 0, &page, SGP_READ);
3144 if (error)
3145 return ERR_PTR(error);
3146 unlock_page(page);
3147 }
3148 set_delayed_call(done, shmem_put_link, page);
3149 return page_address(page);
3150 }
3151
3152 #ifdef CONFIG_TMPFS_XATTR
3153 /*
3154 * Superblocks without xattr inode operations may get some security.* xattr
3155 * support from the LSM "for free". As soon as we have any other xattrs
3156 * like ACLs, we also need to implement the security.* handlers at
3157 * filesystem level, though.
3158 */
3159
3160 /*
3161 * Callback for security_inode_init_security() for acquiring xattrs.
3162 */
3163 static int shmem_initxattrs(struct inode *inode,
3164 const struct xattr *xattr_array,
3165 void *fs_info)
3166 {
3167 struct shmem_inode_info *info = SHMEM_I(inode);
3168 const struct xattr *xattr;
3169 struct simple_xattr *new_xattr;
3170 size_t len;
3171
3172 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3173 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3174 if (!new_xattr)
3175 return -ENOMEM;
3176
3177 len = strlen(xattr->name) + 1;
3178 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3179 GFP_KERNEL);
3180 if (!new_xattr->name) {
3181 kfree(new_xattr);
3182 return -ENOMEM;
3183 }
3184
3185 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3186 XATTR_SECURITY_PREFIX_LEN);
3187 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3188 xattr->name, len);
3189
3190 simple_xattr_list_add(&info->xattrs, new_xattr);
3191 }
3192
3193 return 0;
3194 }
3195
3196 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3197 struct dentry *unused, struct inode *inode,
3198 const char *name, void *buffer, size_t size)
3199 {
3200 struct shmem_inode_info *info = SHMEM_I(inode);
3201
3202 name = xattr_full_name(handler, name);
3203 return simple_xattr_get(&info->xattrs, name, buffer, size);
3204 }
3205
3206 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3207 struct dentry *unused, struct inode *inode,
3208 const char *name, const void *value,
3209 size_t size, int flags)
3210 {
3211 struct shmem_inode_info *info = SHMEM_I(inode);
3212
3213 name = xattr_full_name(handler, name);
3214 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3215 }
3216
3217 static const struct xattr_handler shmem_security_xattr_handler = {
3218 .prefix = XATTR_SECURITY_PREFIX,
3219 .get = shmem_xattr_handler_get,
3220 .set = shmem_xattr_handler_set,
3221 };
3222
3223 static const struct xattr_handler shmem_trusted_xattr_handler = {
3224 .prefix = XATTR_TRUSTED_PREFIX,
3225 .get = shmem_xattr_handler_get,
3226 .set = shmem_xattr_handler_set,
3227 };
3228
3229 static const struct xattr_handler *shmem_xattr_handlers[] = {
3230 #ifdef CONFIG_TMPFS_POSIX_ACL
3231 &posix_acl_access_xattr_handler,
3232 &posix_acl_default_xattr_handler,
3233 #endif
3234 &shmem_security_xattr_handler,
3235 &shmem_trusted_xattr_handler,
3236 NULL
3237 };
3238
3239 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3240 {
3241 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3242 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3243 }
3244 #endif /* CONFIG_TMPFS_XATTR */
3245
3246 static const struct inode_operations shmem_short_symlink_operations = {
3247 .get_link = simple_get_link,
3248 #ifdef CONFIG_TMPFS_XATTR
3249 .listxattr = shmem_listxattr,
3250 #endif
3251 };
3252
3253 static const struct inode_operations shmem_symlink_inode_operations = {
3254 .get_link = shmem_get_link,
3255 #ifdef CONFIG_TMPFS_XATTR
3256 .listxattr = shmem_listxattr,
3257 #endif
3258 };
3259
3260 static struct dentry *shmem_get_parent(struct dentry *child)
3261 {
3262 return ERR_PTR(-ESTALE);
3263 }
3264
3265 static int shmem_match(struct inode *ino, void *vfh)
3266 {
3267 __u32 *fh = vfh;
3268 __u64 inum = fh[2];
3269 inum = (inum << 32) | fh[1];
3270 return ino->i_ino == inum && fh[0] == ino->i_generation;
3271 }
3272
3273 /* Find any alias of inode, but prefer a hashed alias */
3274 static struct dentry *shmem_find_alias(struct inode *inode)
3275 {
3276 struct dentry *alias = d_find_alias(inode);
3277
3278 return alias ?: d_find_any_alias(inode);
3279 }
3280
3281
3282 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3283 struct fid *fid, int fh_len, int fh_type)
3284 {
3285 struct inode *inode;
3286 struct dentry *dentry = NULL;
3287 u64 inum;
3288
3289 if (fh_len < 3)
3290 return NULL;
3291
3292 inum = fid->raw[2];
3293 inum = (inum << 32) | fid->raw[1];
3294
3295 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3296 shmem_match, fid->raw);
3297 if (inode) {
3298 dentry = shmem_find_alias(inode);
3299 iput(inode);
3300 }
3301
3302 return dentry;
3303 }
3304
3305 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3306 struct inode *parent)
3307 {
3308 if (*len < 3) {
3309 *len = 3;
3310 return FILEID_INVALID;
3311 }
3312
3313 if (inode_unhashed(inode)) {
3314 /* Unfortunately insert_inode_hash is not idempotent,
3315 * so as we hash inodes here rather than at creation
3316 * time, we need a lock to ensure we only try
3317 * to do it once
3318 */
3319 static DEFINE_SPINLOCK(lock);
3320 spin_lock(&lock);
3321 if (inode_unhashed(inode))
3322 __insert_inode_hash(inode,
3323 inode->i_ino + inode->i_generation);
3324 spin_unlock(&lock);
3325 }
3326
3327 fh[0] = inode->i_generation;
3328 fh[1] = inode->i_ino;
3329 fh[2] = ((__u64)inode->i_ino) >> 32;
3330
3331 *len = 3;
3332 return 1;
3333 }
3334
3335 static const struct export_operations shmem_export_ops = {
3336 .get_parent = shmem_get_parent,
3337 .encode_fh = shmem_encode_fh,
3338 .fh_to_dentry = shmem_fh_to_dentry,
3339 };
3340
3341 enum shmem_param {
3342 Opt_gid,
3343 Opt_huge,
3344 Opt_mode,
3345 Opt_mpol,
3346 Opt_nr_blocks,
3347 Opt_nr_inodes,
3348 Opt_size,
3349 Opt_uid,
3350 };
3351
3352 static const struct constant_table shmem_param_enums_huge[] = {
3353 {"never", SHMEM_HUGE_NEVER },
3354 {"always", SHMEM_HUGE_ALWAYS },
3355 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3356 {"advise", SHMEM_HUGE_ADVISE },
3357 {}
3358 };
3359
3360 const struct fs_parameter_spec shmem_fs_parameters[] = {
3361 fsparam_u32 ("gid", Opt_gid),
3362 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3363 fsparam_u32oct("mode", Opt_mode),
3364 fsparam_string("mpol", Opt_mpol),
3365 fsparam_string("nr_blocks", Opt_nr_blocks),
3366 fsparam_string("nr_inodes", Opt_nr_inodes),
3367 fsparam_string("size", Opt_size),
3368 fsparam_u32 ("uid", Opt_uid),
3369 {}
3370 };
3371
3372 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3373 {
3374 struct shmem_options *ctx = fc->fs_private;
3375 struct fs_parse_result result;
3376 unsigned long long size;
3377 char *rest;
3378 int opt;
3379
3380 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3381 if (opt < 0)
3382 return opt;
3383
3384 switch (opt) {
3385 case Opt_size:
3386 size = memparse(param->string, &rest);
3387 if (*rest == '%') {
3388 size <<= PAGE_SHIFT;
3389 size *= totalram_pages();
3390 do_div(size, 100);
3391 rest++;
3392 }
3393 if (*rest)
3394 goto bad_value;
3395 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3396 ctx->seen |= SHMEM_SEEN_BLOCKS;
3397 break;
3398 case Opt_nr_blocks:
3399 ctx->blocks = memparse(param->string, &rest);
3400 if (*rest)
3401 goto bad_value;
3402 ctx->seen |= SHMEM_SEEN_BLOCKS;
3403 break;
3404 case Opt_nr_inodes:
3405 ctx->inodes = memparse(param->string, &rest);
3406 if (*rest)
3407 goto bad_value;
3408 ctx->seen |= SHMEM_SEEN_INODES;
3409 break;
3410 case Opt_mode:
3411 ctx->mode = result.uint_32 & 07777;
3412 break;
3413 case Opt_uid:
3414 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3415 if (!uid_valid(ctx->uid))
3416 goto bad_value;
3417 break;
3418 case Opt_gid:
3419 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3420 if (!gid_valid(ctx->gid))
3421 goto bad_value;
3422 break;
3423 case Opt_huge:
3424 ctx->huge = result.uint_32;
3425 if (ctx->huge != SHMEM_HUGE_NEVER &&
3426 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3427 has_transparent_hugepage()))
3428 goto unsupported_parameter;
3429 ctx->seen |= SHMEM_SEEN_HUGE;
3430 break;
3431 case Opt_mpol:
3432 if (IS_ENABLED(CONFIG_NUMA)) {
3433 mpol_put(ctx->mpol);
3434 ctx->mpol = NULL;
3435 if (mpol_parse_str(param->string, &ctx->mpol))
3436 goto bad_value;
3437 break;
3438 }
3439 goto unsupported_parameter;
3440 }
3441 return 0;
3442
3443 unsupported_parameter:
3444 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3445 bad_value:
3446 return invalfc(fc, "Bad value for '%s'", param->key);
3447 }
3448
3449 static int shmem_parse_options(struct fs_context *fc, void *data)
3450 {
3451 char *options = data;
3452
3453 if (options) {
3454 int err = security_sb_eat_lsm_opts(options, &fc->security);
3455 if (err)
3456 return err;
3457 }
3458
3459 while (options != NULL) {
3460 char *this_char = options;
3461 for (;;) {
3462 /*
3463 * NUL-terminate this option: unfortunately,
3464 * mount options form a comma-separated list,
3465 * but mpol's nodelist may also contain commas.
3466 */
3467 options = strchr(options, ',');
3468 if (options == NULL)
3469 break;
3470 options++;
3471 if (!isdigit(*options)) {
3472 options[-1] = '\0';
3473 break;
3474 }
3475 }
3476 if (*this_char) {
3477 char *value = strchr(this_char,'=');
3478 size_t len = 0;
3479 int err;
3480
3481 if (value) {
3482 *value++ = '\0';
3483 len = strlen(value);
3484 }
3485 err = vfs_parse_fs_string(fc, this_char, value, len);
3486 if (err < 0)
3487 return err;
3488 }
3489 }
3490 return 0;
3491 }
3492
3493 /*
3494 * Reconfigure a shmem filesystem.
3495 *
3496 * Note that we disallow change from limited->unlimited blocks/inodes while any
3497 * are in use; but we must separately disallow unlimited->limited, because in
3498 * that case we have no record of how much is already in use.
3499 */
3500 static int shmem_reconfigure(struct fs_context *fc)
3501 {
3502 struct shmem_options *ctx = fc->fs_private;
3503 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3504 unsigned long inodes;
3505 const char *err;
3506
3507 spin_lock(&sbinfo->stat_lock);
3508 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3509 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3510 if (!sbinfo->max_blocks) {
3511 err = "Cannot retroactively limit size";
3512 goto out;
3513 }
3514 if (percpu_counter_compare(&sbinfo->used_blocks,
3515 ctx->blocks) > 0) {
3516 err = "Too small a size for current use";
3517 goto out;
3518 }
3519 }
3520 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3521 if (!sbinfo->max_inodes) {
3522 err = "Cannot retroactively limit inodes";
3523 goto out;
3524 }
3525 if (ctx->inodes < inodes) {
3526 err = "Too few inodes for current use";
3527 goto out;
3528 }
3529 }
3530
3531 if (ctx->seen & SHMEM_SEEN_HUGE)
3532 sbinfo->huge = ctx->huge;
3533 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3534 sbinfo->max_blocks = ctx->blocks;
3535 if (ctx->seen & SHMEM_SEEN_INODES) {
3536 sbinfo->max_inodes = ctx->inodes;
3537 sbinfo->free_inodes = ctx->inodes - inodes;
3538 }
3539
3540 /*
3541 * Preserve previous mempolicy unless mpol remount option was specified.
3542 */
3543 if (ctx->mpol) {
3544 mpol_put(sbinfo->mpol);
3545 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3546 ctx->mpol = NULL;
3547 }
3548 spin_unlock(&sbinfo->stat_lock);
3549 return 0;
3550 out:
3551 spin_unlock(&sbinfo->stat_lock);
3552 return invalfc(fc, "%s", err);
3553 }
3554
3555 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3556 {
3557 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3558
3559 if (sbinfo->max_blocks != shmem_default_max_blocks())
3560 seq_printf(seq, ",size=%luk",
3561 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3562 if (sbinfo->max_inodes != shmem_default_max_inodes())
3563 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3564 if (sbinfo->mode != (0777 | S_ISVTX))
3565 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3566 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3567 seq_printf(seq, ",uid=%u",
3568 from_kuid_munged(&init_user_ns, sbinfo->uid));
3569 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3570 seq_printf(seq, ",gid=%u",
3571 from_kgid_munged(&init_user_ns, sbinfo->gid));
3572 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3573 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3574 if (sbinfo->huge)
3575 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3576 #endif
3577 shmem_show_mpol(seq, sbinfo->mpol);
3578 return 0;
3579 }
3580
3581 #endif /* CONFIG_TMPFS */
3582
3583 static void shmem_put_super(struct super_block *sb)
3584 {
3585 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3586
3587 percpu_counter_destroy(&sbinfo->used_blocks);
3588 mpol_put(sbinfo->mpol);
3589 kfree(sbinfo);
3590 sb->s_fs_info = NULL;
3591 }
3592
3593 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3594 {
3595 struct shmem_options *ctx = fc->fs_private;
3596 struct inode *inode;
3597 struct shmem_sb_info *sbinfo;
3598 int err = -ENOMEM;
3599
3600 /* Round up to L1_CACHE_BYTES to resist false sharing */
3601 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3602 L1_CACHE_BYTES), GFP_KERNEL);
3603 if (!sbinfo)
3604 return -ENOMEM;
3605
3606 sb->s_fs_info = sbinfo;
3607
3608 #ifdef CONFIG_TMPFS
3609 /*
3610 * Per default we only allow half of the physical ram per
3611 * tmpfs instance, limiting inodes to one per page of lowmem;
3612 * but the internal instance is left unlimited.
3613 */
3614 if (!(sb->s_flags & SB_KERNMOUNT)) {
3615 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3616 ctx->blocks = shmem_default_max_blocks();
3617 if (!(ctx->seen & SHMEM_SEEN_INODES))
3618 ctx->inodes = shmem_default_max_inodes();
3619 } else {
3620 sb->s_flags |= SB_NOUSER;
3621 }
3622 sb->s_export_op = &shmem_export_ops;
3623 sb->s_flags |= SB_NOSEC;
3624 #else
3625 sb->s_flags |= SB_NOUSER;
3626 #endif
3627 sbinfo->max_blocks = ctx->blocks;
3628 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3629 sbinfo->uid = ctx->uid;
3630 sbinfo->gid = ctx->gid;
3631 sbinfo->mode = ctx->mode;
3632 sbinfo->huge = ctx->huge;
3633 sbinfo->mpol = ctx->mpol;
3634 ctx->mpol = NULL;
3635
3636 spin_lock_init(&sbinfo->stat_lock);
3637 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3638 goto failed;
3639 spin_lock_init(&sbinfo->shrinklist_lock);
3640 INIT_LIST_HEAD(&sbinfo->shrinklist);
3641
3642 sb->s_maxbytes = MAX_LFS_FILESIZE;
3643 sb->s_blocksize = PAGE_SIZE;
3644 sb->s_blocksize_bits = PAGE_SHIFT;
3645 sb->s_magic = TMPFS_MAGIC;
3646 sb->s_op = &shmem_ops;
3647 sb->s_time_gran = 1;
3648 #ifdef CONFIG_TMPFS_XATTR
3649 sb->s_xattr = shmem_xattr_handlers;
3650 #endif
3651 #ifdef CONFIG_TMPFS_POSIX_ACL
3652 sb->s_flags |= SB_POSIXACL;
3653 #endif
3654 uuid_gen(&sb->s_uuid);
3655
3656 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3657 if (!inode)
3658 goto failed;
3659 inode->i_uid = sbinfo->uid;
3660 inode->i_gid = sbinfo->gid;
3661 sb->s_root = d_make_root(inode);
3662 if (!sb->s_root)
3663 goto failed;
3664 return 0;
3665
3666 failed:
3667 shmem_put_super(sb);
3668 return err;
3669 }
3670
3671 static int shmem_get_tree(struct fs_context *fc)
3672 {
3673 return get_tree_nodev(fc, shmem_fill_super);
3674 }
3675
3676 static void shmem_free_fc(struct fs_context *fc)
3677 {
3678 struct shmem_options *ctx = fc->fs_private;
3679
3680 if (ctx) {
3681 mpol_put(ctx->mpol);
3682 kfree(ctx);
3683 }
3684 }
3685
3686 static const struct fs_context_operations shmem_fs_context_ops = {
3687 .free = shmem_free_fc,
3688 .get_tree = shmem_get_tree,
3689 #ifdef CONFIG_TMPFS
3690 .parse_monolithic = shmem_parse_options,
3691 .parse_param = shmem_parse_one,
3692 .reconfigure = shmem_reconfigure,
3693 #endif
3694 };
3695
3696 static struct kmem_cache *shmem_inode_cachep;
3697
3698 static struct inode *shmem_alloc_inode(struct super_block *sb)
3699 {
3700 struct shmem_inode_info *info;
3701 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3702 if (!info)
3703 return NULL;
3704 return &info->vfs_inode;
3705 }
3706
3707 static void shmem_free_in_core_inode(struct inode *inode)
3708 {
3709 if (S_ISLNK(inode->i_mode))
3710 kfree(inode->i_link);
3711 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3712 }
3713
3714 static void shmem_destroy_inode(struct inode *inode)
3715 {
3716 if (S_ISREG(inode->i_mode))
3717 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3718 }
3719
3720 static void shmem_init_inode(void *foo)
3721 {
3722 struct shmem_inode_info *info = foo;
3723 inode_init_once(&info->vfs_inode);
3724 }
3725
3726 static void shmem_init_inodecache(void)
3727 {
3728 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3729 sizeof(struct shmem_inode_info),
3730 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3731 }
3732
3733 static void shmem_destroy_inodecache(void)
3734 {
3735 kmem_cache_destroy(shmem_inode_cachep);
3736 }
3737
3738 static const struct address_space_operations shmem_aops = {
3739 .writepage = shmem_writepage,
3740 .set_page_dirty = __set_page_dirty_no_writeback,
3741 #ifdef CONFIG_TMPFS
3742 .write_begin = shmem_write_begin,
3743 .write_end = shmem_write_end,
3744 #endif
3745 #ifdef CONFIG_MIGRATION
3746 .migratepage = migrate_page,
3747 #endif
3748 .error_remove_page = generic_error_remove_page,
3749 };
3750
3751 static const struct file_operations shmem_file_operations = {
3752 .mmap = shmem_mmap,
3753 .get_unmapped_area = shmem_get_unmapped_area,
3754 #ifdef CONFIG_TMPFS
3755 .llseek = shmem_file_llseek,
3756 .read_iter = shmem_file_read_iter,
3757 .write_iter = generic_file_write_iter,
3758 .fsync = noop_fsync,
3759 .splice_read = generic_file_splice_read,
3760 .splice_write = iter_file_splice_write,
3761 .fallocate = shmem_fallocate,
3762 #endif
3763 };
3764
3765 static const struct inode_operations shmem_inode_operations = {
3766 .getattr = shmem_getattr,
3767 .setattr = shmem_setattr,
3768 #ifdef CONFIG_TMPFS_XATTR
3769 .listxattr = shmem_listxattr,
3770 .set_acl = simple_set_acl,
3771 #endif
3772 };
3773
3774 static const struct inode_operations shmem_dir_inode_operations = {
3775 #ifdef CONFIG_TMPFS
3776 .create = shmem_create,
3777 .lookup = simple_lookup,
3778 .link = shmem_link,
3779 .unlink = shmem_unlink,
3780 .symlink = shmem_symlink,
3781 .mkdir = shmem_mkdir,
3782 .rmdir = shmem_rmdir,
3783 .mknod = shmem_mknod,
3784 .rename = shmem_rename2,
3785 .tmpfile = shmem_tmpfile,
3786 #endif
3787 #ifdef CONFIG_TMPFS_XATTR
3788 .listxattr = shmem_listxattr,
3789 #endif
3790 #ifdef CONFIG_TMPFS_POSIX_ACL
3791 .setattr = shmem_setattr,
3792 .set_acl = simple_set_acl,
3793 #endif
3794 };
3795
3796 static const struct inode_operations shmem_special_inode_operations = {
3797 #ifdef CONFIG_TMPFS_XATTR
3798 .listxattr = shmem_listxattr,
3799 #endif
3800 #ifdef CONFIG_TMPFS_POSIX_ACL
3801 .setattr = shmem_setattr,
3802 .set_acl = simple_set_acl,
3803 #endif
3804 };
3805
3806 static const struct super_operations shmem_ops = {
3807 .alloc_inode = shmem_alloc_inode,
3808 .free_inode = shmem_free_in_core_inode,
3809 .destroy_inode = shmem_destroy_inode,
3810 #ifdef CONFIG_TMPFS
3811 .statfs = shmem_statfs,
3812 .show_options = shmem_show_options,
3813 #endif
3814 .evict_inode = shmem_evict_inode,
3815 .drop_inode = generic_delete_inode,
3816 .put_super = shmem_put_super,
3817 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3818 .nr_cached_objects = shmem_unused_huge_count,
3819 .free_cached_objects = shmem_unused_huge_scan,
3820 #endif
3821 };
3822
3823 static const struct vm_operations_struct shmem_vm_ops = {
3824 .fault = shmem_fault,
3825 .map_pages = filemap_map_pages,
3826 #ifdef CONFIG_NUMA
3827 .set_policy = shmem_set_policy,
3828 .get_policy = shmem_get_policy,
3829 #endif
3830 };
3831
3832 int shmem_init_fs_context(struct fs_context *fc)
3833 {
3834 struct shmem_options *ctx;
3835
3836 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3837 if (!ctx)
3838 return -ENOMEM;
3839
3840 ctx->mode = 0777 | S_ISVTX;
3841 ctx->uid = current_fsuid();
3842 ctx->gid = current_fsgid();
3843
3844 fc->fs_private = ctx;
3845 fc->ops = &shmem_fs_context_ops;
3846 return 0;
3847 }
3848
3849 static struct file_system_type shmem_fs_type = {
3850 .owner = THIS_MODULE,
3851 .name = "tmpfs",
3852 .init_fs_context = shmem_init_fs_context,
3853 #ifdef CONFIG_TMPFS
3854 .parameters = shmem_fs_parameters,
3855 #endif
3856 .kill_sb = kill_litter_super,
3857 .fs_flags = FS_USERNS_MOUNT,
3858 };
3859
3860 int __init shmem_init(void)
3861 {
3862 int error;
3863
3864 shmem_init_inodecache();
3865
3866 error = register_filesystem(&shmem_fs_type);
3867 if (error) {
3868 pr_err("Could not register tmpfs\n");
3869 goto out2;
3870 }
3871
3872 shm_mnt = kern_mount(&shmem_fs_type);
3873 if (IS_ERR(shm_mnt)) {
3874 error = PTR_ERR(shm_mnt);
3875 pr_err("Could not kern_mount tmpfs\n");
3876 goto out1;
3877 }
3878
3879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3880 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3881 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3882 else
3883 shmem_huge = 0; /* just in case it was patched */
3884 #endif
3885 return 0;
3886
3887 out1:
3888 unregister_filesystem(&shmem_fs_type);
3889 out2:
3890 shmem_destroy_inodecache();
3891 shm_mnt = ERR_PTR(error);
3892 return error;
3893 }
3894
3895 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3896 static ssize_t shmem_enabled_show(struct kobject *kobj,
3897 struct kobj_attribute *attr, char *buf)
3898 {
3899 static const int values[] = {
3900 SHMEM_HUGE_ALWAYS,
3901 SHMEM_HUGE_WITHIN_SIZE,
3902 SHMEM_HUGE_ADVISE,
3903 SHMEM_HUGE_NEVER,
3904 SHMEM_HUGE_DENY,
3905 SHMEM_HUGE_FORCE,
3906 };
3907 int i, count;
3908
3909 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3910 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3911
3912 count += sprintf(buf + count, fmt,
3913 shmem_format_huge(values[i]));
3914 }
3915 buf[count - 1] = '\n';
3916 return count;
3917 }
3918
3919 static ssize_t shmem_enabled_store(struct kobject *kobj,
3920 struct kobj_attribute *attr, const char *buf, size_t count)
3921 {
3922 char tmp[16];
3923 int huge;
3924
3925 if (count + 1 > sizeof(tmp))
3926 return -EINVAL;
3927 memcpy(tmp, buf, count);
3928 tmp[count] = '\0';
3929 if (count && tmp[count - 1] == '\n')
3930 tmp[count - 1] = '\0';
3931
3932 huge = shmem_parse_huge(tmp);
3933 if (huge == -EINVAL)
3934 return -EINVAL;
3935 if (!has_transparent_hugepage() &&
3936 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3937 return -EINVAL;
3938
3939 shmem_huge = huge;
3940 if (shmem_huge > SHMEM_HUGE_DENY)
3941 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3942 return count;
3943 }
3944
3945 struct kobj_attribute shmem_enabled_attr =
3946 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3947 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3948
3949 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3950 bool shmem_huge_enabled(struct vm_area_struct *vma)
3951 {
3952 struct inode *inode = file_inode(vma->vm_file);
3953 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3954 loff_t i_size;
3955 pgoff_t off;
3956
3957 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3958 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3959 return false;
3960 if (shmem_huge == SHMEM_HUGE_FORCE)
3961 return true;
3962 if (shmem_huge == SHMEM_HUGE_DENY)
3963 return false;
3964 switch (sbinfo->huge) {
3965 case SHMEM_HUGE_NEVER:
3966 return false;
3967 case SHMEM_HUGE_ALWAYS:
3968 return true;
3969 case SHMEM_HUGE_WITHIN_SIZE:
3970 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3971 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3972 if (i_size >= HPAGE_PMD_SIZE &&
3973 i_size >> PAGE_SHIFT >= off)
3974 return true;
3975 fallthrough;
3976 case SHMEM_HUGE_ADVISE:
3977 /* TODO: implement fadvise() hints */
3978 return (vma->vm_flags & VM_HUGEPAGE);
3979 default:
3980 VM_BUG_ON(1);
3981 return false;
3982 }
3983 }
3984 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3985
3986 #else /* !CONFIG_SHMEM */
3987
3988 /*
3989 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3990 *
3991 * This is intended for small system where the benefits of the full
3992 * shmem code (swap-backed and resource-limited) are outweighed by
3993 * their complexity. On systems without swap this code should be
3994 * effectively equivalent, but much lighter weight.
3995 */
3996
3997 static struct file_system_type shmem_fs_type = {
3998 .name = "tmpfs",
3999 .init_fs_context = ramfs_init_fs_context,
4000 .parameters = ramfs_fs_parameters,
4001 .kill_sb = kill_litter_super,
4002 .fs_flags = FS_USERNS_MOUNT,
4003 };
4004
4005 int __init shmem_init(void)
4006 {
4007 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4008
4009 shm_mnt = kern_mount(&shmem_fs_type);
4010 BUG_ON(IS_ERR(shm_mnt));
4011
4012 return 0;
4013 }
4014
4015 int shmem_unuse(unsigned int type, bool frontswap,
4016 unsigned long *fs_pages_to_unuse)
4017 {
4018 return 0;
4019 }
4020
4021 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4022 {
4023 return 0;
4024 }
4025
4026 void shmem_unlock_mapping(struct address_space *mapping)
4027 {
4028 }
4029
4030 #ifdef CONFIG_MMU
4031 unsigned long shmem_get_unmapped_area(struct file *file,
4032 unsigned long addr, unsigned long len,
4033 unsigned long pgoff, unsigned long flags)
4034 {
4035 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4036 }
4037 #endif
4038
4039 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4040 {
4041 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4042 }
4043 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4044
4045 #define shmem_vm_ops generic_file_vm_ops
4046 #define shmem_file_operations ramfs_file_operations
4047 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4048 #define shmem_acct_size(flags, size) 0
4049 #define shmem_unacct_size(flags, size) do {} while (0)
4050
4051 #endif /* CONFIG_SHMEM */
4052
4053 /* common code */
4054
4055 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4056 unsigned long flags, unsigned int i_flags)
4057 {
4058 struct inode *inode;
4059 struct file *res;
4060
4061 if (IS_ERR(mnt))
4062 return ERR_CAST(mnt);
4063
4064 if (size < 0 || size > MAX_LFS_FILESIZE)
4065 return ERR_PTR(-EINVAL);
4066
4067 if (shmem_acct_size(flags, size))
4068 return ERR_PTR(-ENOMEM);
4069
4070 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4071 flags);
4072 if (unlikely(!inode)) {
4073 shmem_unacct_size(flags, size);
4074 return ERR_PTR(-ENOSPC);
4075 }
4076 inode->i_flags |= i_flags;
4077 inode->i_size = size;
4078 clear_nlink(inode); /* It is unlinked */
4079 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4080 if (!IS_ERR(res))
4081 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4082 &shmem_file_operations);
4083 if (IS_ERR(res))
4084 iput(inode);
4085 return res;
4086 }
4087
4088 /**
4089 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4090 * kernel internal. There will be NO LSM permission checks against the
4091 * underlying inode. So users of this interface must do LSM checks at a
4092 * higher layer. The users are the big_key and shm implementations. LSM
4093 * checks are provided at the key or shm level rather than the inode.
4094 * @name: name for dentry (to be seen in /proc/<pid>/maps
4095 * @size: size to be set for the file
4096 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4097 */
4098 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4099 {
4100 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4101 }
4102
4103 /**
4104 * shmem_file_setup - get an unlinked file living in tmpfs
4105 * @name: name for dentry (to be seen in /proc/<pid>/maps
4106 * @size: size to be set for the file
4107 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4108 */
4109 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4110 {
4111 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4112 }
4113 EXPORT_SYMBOL_GPL(shmem_file_setup);
4114
4115 /**
4116 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4117 * @mnt: the tmpfs mount where the file will be created
4118 * @name: name for dentry (to be seen in /proc/<pid>/maps
4119 * @size: size to be set for the file
4120 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4121 */
4122 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4123 loff_t size, unsigned long flags)
4124 {
4125 return __shmem_file_setup(mnt, name, size, flags, 0);
4126 }
4127 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4128
4129 /**
4130 * shmem_zero_setup - setup a shared anonymous mapping
4131 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4132 */
4133 int shmem_zero_setup(struct vm_area_struct *vma)
4134 {
4135 struct file *file;
4136 loff_t size = vma->vm_end - vma->vm_start;
4137
4138 /*
4139 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4140 * between XFS directory reading and selinux: since this file is only
4141 * accessible to the user through its mapping, use S_PRIVATE flag to
4142 * bypass file security, in the same way as shmem_kernel_file_setup().
4143 */
4144 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4145 if (IS_ERR(file))
4146 return PTR_ERR(file);
4147
4148 if (vma->vm_file)
4149 fput(vma->vm_file);
4150 vma->vm_file = file;
4151 vma->vm_ops = &shmem_vm_ops;
4152
4153 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4154 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4155 (vma->vm_end & HPAGE_PMD_MASK)) {
4156 khugepaged_enter(vma, vma->vm_flags);
4157 }
4158
4159 return 0;
4160 }
4161
4162 /**
4163 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4164 * @mapping: the page's address_space
4165 * @index: the page index
4166 * @gfp: the page allocator flags to use if allocating
4167 *
4168 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4169 * with any new page allocations done using the specified allocation flags.
4170 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4171 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4172 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4173 *
4174 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4175 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4176 */
4177 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4178 pgoff_t index, gfp_t gfp)
4179 {
4180 #ifdef CONFIG_SHMEM
4181 struct inode *inode = mapping->host;
4182 struct page *page;
4183 int error;
4184
4185 BUG_ON(mapping->a_ops != &shmem_aops);
4186 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4187 gfp, NULL, NULL, NULL);
4188 if (error)
4189 page = ERR_PTR(error);
4190 else
4191 unlock_page(page);
4192 return page;
4193 #else
4194 /*
4195 * The tiny !SHMEM case uses ramfs without swap
4196 */
4197 return read_cache_page_gfp(mapping, index, gfp);
4198 #endif
4199 }
4200 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);