]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/shmem.c
Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[mirror_ubuntu-artful-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
86 */
87 struct shmem_falloc {
88 int mode; /* FALLOC_FL mode currently operating */
89 pgoff_t start; /* start of range currently being fallocated */
90 pgoff_t next; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97 SGP_READ, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE, /* don't exceed i_size, may allocate page */
99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107 return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125 return shmem_getpage_gfp(inode, index, pagep, sgp,
126 mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131 return sb->s_fs_info;
132 }
133
134 /*
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
139 */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142 return (flags & VM_NORESERVE) ?
143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148 if (!(flags & VM_NORESERVE))
149 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153 * ... whereas tmpfs objects are accounted incrementally as
154 * pages are allocated, in order to allow huge sparse files.
155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157 */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160 return (flags & VM_NORESERVE) ?
161 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166 if (flags & VM_NORESERVE)
167 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
179 .ra_pages = 0, /* No readahead */
180 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189 if (sbinfo->max_inodes) {
190 spin_lock(&sbinfo->stat_lock);
191 if (!sbinfo->free_inodes) {
192 spin_unlock(&sbinfo->stat_lock);
193 return -ENOSPC;
194 }
195 sbinfo->free_inodes--;
196 spin_unlock(&sbinfo->stat_lock);
197 }
198 return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204 if (sbinfo->max_inodes) {
205 spin_lock(&sbinfo->stat_lock);
206 sbinfo->free_inodes++;
207 spin_unlock(&sbinfo->stat_lock);
208 }
209 }
210
211 /**
212 * shmem_recalc_inode - recalculate the block usage of an inode
213 * @inode: inode to recalc
214 *
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
217 *
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220 *
221 * It has to be called with the spinlock held.
222 */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 long freed;
227
228 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 if (freed > 0) {
230 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231 if (sbinfo->max_blocks)
232 percpu_counter_add(&sbinfo->used_blocks, -freed);
233 info->alloced -= freed;
234 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235 shmem_unacct_blocks(info->flags, freed);
236 }
237 }
238
239 /*
240 * Replace item expected in radix tree by a new item, while holding tree lock.
241 */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243 pgoff_t index, void *expected, void *replacement)
244 {
245 void **pslot;
246 void *item;
247
248 VM_BUG_ON(!expected);
249 VM_BUG_ON(!replacement);
250 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
251 if (!pslot)
252 return -ENOENT;
253 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
254 if (item != expected)
255 return -ENOENT;
256 radix_tree_replace_slot(pslot, replacement);
257 return 0;
258 }
259
260 /*
261 * Sometimes, before we decide whether to proceed or to fail, we must check
262 * that an entry was not already brought back from swap by a racing thread.
263 *
264 * Checking page is not enough: by the time a SwapCache page is locked, it
265 * might be reused, and again be SwapCache, using the same swap as before.
266 */
267 static bool shmem_confirm_swap(struct address_space *mapping,
268 pgoff_t index, swp_entry_t swap)
269 {
270 void *item;
271
272 rcu_read_lock();
273 item = radix_tree_lookup(&mapping->page_tree, index);
274 rcu_read_unlock();
275 return item == swp_to_radix_entry(swap);
276 }
277
278 /*
279 * Like add_to_page_cache_locked, but error if expected item has gone.
280 */
281 static int shmem_add_to_page_cache(struct page *page,
282 struct address_space *mapping,
283 pgoff_t index, gfp_t gfp, void *expected)
284 {
285 int error;
286
287 VM_BUG_ON_PAGE(!PageLocked(page), page);
288 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
289
290 page_cache_get(page);
291 page->mapping = mapping;
292 page->index = index;
293
294 spin_lock_irq(&mapping->tree_lock);
295 if (!expected)
296 error = radix_tree_insert(&mapping->page_tree, index, page);
297 else
298 error = shmem_radix_tree_replace(mapping, index, expected,
299 page);
300 if (!error) {
301 mapping->nrpages++;
302 __inc_zone_page_state(page, NR_FILE_PAGES);
303 __inc_zone_page_state(page, NR_SHMEM);
304 spin_unlock_irq(&mapping->tree_lock);
305 } else {
306 page->mapping = NULL;
307 spin_unlock_irq(&mapping->tree_lock);
308 page_cache_release(page);
309 }
310 return error;
311 }
312
313 /*
314 * Like delete_from_page_cache, but substitutes swap for page.
315 */
316 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317 {
318 struct address_space *mapping = page->mapping;
319 int error;
320
321 spin_lock_irq(&mapping->tree_lock);
322 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323 page->mapping = NULL;
324 mapping->nrpages--;
325 __dec_zone_page_state(page, NR_FILE_PAGES);
326 __dec_zone_page_state(page, NR_SHMEM);
327 spin_unlock_irq(&mapping->tree_lock);
328 page_cache_release(page);
329 BUG_ON(error);
330 }
331
332 /*
333 * Remove swap entry from radix tree, free the swap and its page cache.
334 */
335 static int shmem_free_swap(struct address_space *mapping,
336 pgoff_t index, void *radswap)
337 {
338 void *old;
339
340 spin_lock_irq(&mapping->tree_lock);
341 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
342 spin_unlock_irq(&mapping->tree_lock);
343 if (old != radswap)
344 return -ENOENT;
345 free_swap_and_cache(radix_to_swp_entry(radswap));
346 return 0;
347 }
348
349 /*
350 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
351 */
352 void shmem_unlock_mapping(struct address_space *mapping)
353 {
354 struct pagevec pvec;
355 pgoff_t indices[PAGEVEC_SIZE];
356 pgoff_t index = 0;
357
358 pagevec_init(&pvec, 0);
359 /*
360 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
361 */
362 while (!mapping_unevictable(mapping)) {
363 /*
364 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
366 */
367 pvec.nr = find_get_entries(mapping, index,
368 PAGEVEC_SIZE, pvec.pages, indices);
369 if (!pvec.nr)
370 break;
371 index = indices[pvec.nr - 1] + 1;
372 pagevec_remove_exceptionals(&pvec);
373 check_move_unevictable_pages(pvec.pages, pvec.nr);
374 pagevec_release(&pvec);
375 cond_resched();
376 }
377 }
378
379 /*
380 * Remove range of pages and swap entries from radix tree, and free them.
381 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
382 */
383 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
384 bool unfalloc)
385 {
386 struct address_space *mapping = inode->i_mapping;
387 struct shmem_inode_info *info = SHMEM_I(inode);
388 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
389 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
390 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
391 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
392 struct pagevec pvec;
393 pgoff_t indices[PAGEVEC_SIZE];
394 long nr_swaps_freed = 0;
395 pgoff_t index;
396 int i;
397
398 if (lend == -1)
399 end = -1; /* unsigned, so actually very big */
400
401 pagevec_init(&pvec, 0);
402 index = start;
403 while (index < end) {
404 pvec.nr = find_get_entries(mapping, index,
405 min(end - index, (pgoff_t)PAGEVEC_SIZE),
406 pvec.pages, indices);
407 if (!pvec.nr)
408 break;
409 mem_cgroup_uncharge_start();
410 for (i = 0; i < pagevec_count(&pvec); i++) {
411 struct page *page = pvec.pages[i];
412
413 index = indices[i];
414 if (index >= end)
415 break;
416
417 if (radix_tree_exceptional_entry(page)) {
418 if (unfalloc)
419 continue;
420 nr_swaps_freed += !shmem_free_swap(mapping,
421 index, page);
422 continue;
423 }
424
425 if (!trylock_page(page))
426 continue;
427 if (!unfalloc || !PageUptodate(page)) {
428 if (page->mapping == mapping) {
429 VM_BUG_ON_PAGE(PageWriteback(page), page);
430 truncate_inode_page(mapping, page);
431 }
432 }
433 unlock_page(page);
434 }
435 pagevec_remove_exceptionals(&pvec);
436 pagevec_release(&pvec);
437 mem_cgroup_uncharge_end();
438 cond_resched();
439 index++;
440 }
441
442 if (partial_start) {
443 struct page *page = NULL;
444 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
445 if (page) {
446 unsigned int top = PAGE_CACHE_SIZE;
447 if (start > end) {
448 top = partial_end;
449 partial_end = 0;
450 }
451 zero_user_segment(page, partial_start, top);
452 set_page_dirty(page);
453 unlock_page(page);
454 page_cache_release(page);
455 }
456 }
457 if (partial_end) {
458 struct page *page = NULL;
459 shmem_getpage(inode, end, &page, SGP_READ, NULL);
460 if (page) {
461 zero_user_segment(page, 0, partial_end);
462 set_page_dirty(page);
463 unlock_page(page);
464 page_cache_release(page);
465 }
466 }
467 if (start >= end)
468 return;
469
470 index = start;
471 for ( ; ; ) {
472 cond_resched();
473
474 pvec.nr = find_get_entries(mapping, index,
475 min(end - index, (pgoff_t)PAGEVEC_SIZE),
476 pvec.pages, indices);
477 if (!pvec.nr) {
478 if (index == start || unfalloc)
479 break;
480 index = start;
481 continue;
482 }
483 if ((index == start || unfalloc) && indices[0] >= end) {
484 pagevec_remove_exceptionals(&pvec);
485 pagevec_release(&pvec);
486 break;
487 }
488 mem_cgroup_uncharge_start();
489 for (i = 0; i < pagevec_count(&pvec); i++) {
490 struct page *page = pvec.pages[i];
491
492 index = indices[i];
493 if (index >= end)
494 break;
495
496 if (radix_tree_exceptional_entry(page)) {
497 if (unfalloc)
498 continue;
499 nr_swaps_freed += !shmem_free_swap(mapping,
500 index, page);
501 continue;
502 }
503
504 lock_page(page);
505 if (!unfalloc || !PageUptodate(page)) {
506 if (page->mapping == mapping) {
507 VM_BUG_ON_PAGE(PageWriteback(page), page);
508 truncate_inode_page(mapping, page);
509 }
510 }
511 unlock_page(page);
512 }
513 pagevec_remove_exceptionals(&pvec);
514 pagevec_release(&pvec);
515 mem_cgroup_uncharge_end();
516 index++;
517 }
518
519 spin_lock(&info->lock);
520 info->swapped -= nr_swaps_freed;
521 shmem_recalc_inode(inode);
522 spin_unlock(&info->lock);
523 }
524
525 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
526 {
527 shmem_undo_range(inode, lstart, lend, false);
528 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
529 }
530 EXPORT_SYMBOL_GPL(shmem_truncate_range);
531
532 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
533 {
534 struct inode *inode = dentry->d_inode;
535 int error;
536
537 error = inode_change_ok(inode, attr);
538 if (error)
539 return error;
540
541 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
542 loff_t oldsize = inode->i_size;
543 loff_t newsize = attr->ia_size;
544
545 if (newsize != oldsize) {
546 i_size_write(inode, newsize);
547 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548 }
549 if (newsize < oldsize) {
550 loff_t holebegin = round_up(newsize, PAGE_SIZE);
551 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
552 shmem_truncate_range(inode, newsize, (loff_t)-1);
553 /* unmap again to remove racily COWed private pages */
554 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
555 }
556 }
557
558 setattr_copy(inode, attr);
559 if (attr->ia_valid & ATTR_MODE)
560 error = posix_acl_chmod(inode, inode->i_mode);
561 return error;
562 }
563
564 static void shmem_evict_inode(struct inode *inode)
565 {
566 struct shmem_inode_info *info = SHMEM_I(inode);
567
568 if (inode->i_mapping->a_ops == &shmem_aops) {
569 shmem_unacct_size(info->flags, inode->i_size);
570 inode->i_size = 0;
571 shmem_truncate_range(inode, 0, (loff_t)-1);
572 if (!list_empty(&info->swaplist)) {
573 mutex_lock(&shmem_swaplist_mutex);
574 list_del_init(&info->swaplist);
575 mutex_unlock(&shmem_swaplist_mutex);
576 }
577 } else
578 kfree(info->symlink);
579
580 simple_xattrs_free(&info->xattrs);
581 WARN_ON(inode->i_blocks);
582 shmem_free_inode(inode->i_sb);
583 clear_inode(inode);
584 }
585
586 /*
587 * If swap found in inode, free it and move page from swapcache to filecache.
588 */
589 static int shmem_unuse_inode(struct shmem_inode_info *info,
590 swp_entry_t swap, struct page **pagep)
591 {
592 struct address_space *mapping = info->vfs_inode.i_mapping;
593 void *radswap;
594 pgoff_t index;
595 gfp_t gfp;
596 int error = 0;
597
598 radswap = swp_to_radix_entry(swap);
599 index = radix_tree_locate_item(&mapping->page_tree, radswap);
600 if (index == -1)
601 return 0;
602
603 /*
604 * Move _head_ to start search for next from here.
605 * But be careful: shmem_evict_inode checks list_empty without taking
606 * mutex, and there's an instant in list_move_tail when info->swaplist
607 * would appear empty, if it were the only one on shmem_swaplist.
608 */
609 if (shmem_swaplist.next != &info->swaplist)
610 list_move_tail(&shmem_swaplist, &info->swaplist);
611
612 gfp = mapping_gfp_mask(mapping);
613 if (shmem_should_replace_page(*pagep, gfp)) {
614 mutex_unlock(&shmem_swaplist_mutex);
615 error = shmem_replace_page(pagep, gfp, info, index);
616 mutex_lock(&shmem_swaplist_mutex);
617 /*
618 * We needed to drop mutex to make that restrictive page
619 * allocation, but the inode might have been freed while we
620 * dropped it: although a racing shmem_evict_inode() cannot
621 * complete without emptying the radix_tree, our page lock
622 * on this swapcache page is not enough to prevent that -
623 * free_swap_and_cache() of our swap entry will only
624 * trylock_page(), removing swap from radix_tree whatever.
625 *
626 * We must not proceed to shmem_add_to_page_cache() if the
627 * inode has been freed, but of course we cannot rely on
628 * inode or mapping or info to check that. However, we can
629 * safely check if our swap entry is still in use (and here
630 * it can't have got reused for another page): if it's still
631 * in use, then the inode cannot have been freed yet, and we
632 * can safely proceed (if it's no longer in use, that tells
633 * nothing about the inode, but we don't need to unuse swap).
634 */
635 if (!page_swapcount(*pagep))
636 error = -ENOENT;
637 }
638
639 /*
640 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
641 * but also to hold up shmem_evict_inode(): so inode cannot be freed
642 * beneath us (pagelock doesn't help until the page is in pagecache).
643 */
644 if (!error)
645 error = shmem_add_to_page_cache(*pagep, mapping, index,
646 GFP_NOWAIT, radswap);
647 if (error != -ENOMEM) {
648 /*
649 * Truncation and eviction use free_swap_and_cache(), which
650 * only does trylock page: if we raced, best clean up here.
651 */
652 delete_from_swap_cache(*pagep);
653 set_page_dirty(*pagep);
654 if (!error) {
655 spin_lock(&info->lock);
656 info->swapped--;
657 spin_unlock(&info->lock);
658 swap_free(swap);
659 }
660 error = 1; /* not an error, but entry was found */
661 }
662 return error;
663 }
664
665 /*
666 * Search through swapped inodes to find and replace swap by page.
667 */
668 int shmem_unuse(swp_entry_t swap, struct page *page)
669 {
670 struct list_head *this, *next;
671 struct shmem_inode_info *info;
672 int found = 0;
673 int error = 0;
674
675 /*
676 * There's a faint possibility that swap page was replaced before
677 * caller locked it: caller will come back later with the right page.
678 */
679 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
680 goto out;
681
682 /*
683 * Charge page using GFP_KERNEL while we can wait, before taking
684 * the shmem_swaplist_mutex which might hold up shmem_writepage().
685 * Charged back to the user (not to caller) when swap account is used.
686 */
687 error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
688 if (error)
689 goto out;
690 /* No radix_tree_preload: swap entry keeps a place for page in tree */
691
692 mutex_lock(&shmem_swaplist_mutex);
693 list_for_each_safe(this, next, &shmem_swaplist) {
694 info = list_entry(this, struct shmem_inode_info, swaplist);
695 if (info->swapped)
696 found = shmem_unuse_inode(info, swap, &page);
697 else
698 list_del_init(&info->swaplist);
699 cond_resched();
700 if (found)
701 break;
702 }
703 mutex_unlock(&shmem_swaplist_mutex);
704
705 if (found < 0)
706 error = found;
707 out:
708 unlock_page(page);
709 page_cache_release(page);
710 return error;
711 }
712
713 /*
714 * Move the page from the page cache to the swap cache.
715 */
716 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
717 {
718 struct shmem_inode_info *info;
719 struct address_space *mapping;
720 struct inode *inode;
721 swp_entry_t swap;
722 pgoff_t index;
723
724 BUG_ON(!PageLocked(page));
725 mapping = page->mapping;
726 index = page->index;
727 inode = mapping->host;
728 info = SHMEM_I(inode);
729 if (info->flags & VM_LOCKED)
730 goto redirty;
731 if (!total_swap_pages)
732 goto redirty;
733
734 /*
735 * shmem_backing_dev_info's capabilities prevent regular writeback or
736 * sync from ever calling shmem_writepage; but a stacking filesystem
737 * might use ->writepage of its underlying filesystem, in which case
738 * tmpfs should write out to swap only in response to memory pressure,
739 * and not for the writeback threads or sync.
740 */
741 if (!wbc->for_reclaim) {
742 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
743 goto redirty;
744 }
745
746 /*
747 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
748 * value into swapfile.c, the only way we can correctly account for a
749 * fallocated page arriving here is now to initialize it and write it.
750 *
751 * That's okay for a page already fallocated earlier, but if we have
752 * not yet completed the fallocation, then (a) we want to keep track
753 * of this page in case we have to undo it, and (b) it may not be a
754 * good idea to continue anyway, once we're pushing into swap. So
755 * reactivate the page, and let shmem_fallocate() quit when too many.
756 */
757 if (!PageUptodate(page)) {
758 if (inode->i_private) {
759 struct shmem_falloc *shmem_falloc;
760 spin_lock(&inode->i_lock);
761 shmem_falloc = inode->i_private;
762 if (shmem_falloc &&
763 !shmem_falloc->mode &&
764 index >= shmem_falloc->start &&
765 index < shmem_falloc->next)
766 shmem_falloc->nr_unswapped++;
767 else
768 shmem_falloc = NULL;
769 spin_unlock(&inode->i_lock);
770 if (shmem_falloc)
771 goto redirty;
772 }
773 clear_highpage(page);
774 flush_dcache_page(page);
775 SetPageUptodate(page);
776 }
777
778 swap = get_swap_page();
779 if (!swap.val)
780 goto redirty;
781
782 /*
783 * Add inode to shmem_unuse()'s list of swapped-out inodes,
784 * if it's not already there. Do it now before the page is
785 * moved to swap cache, when its pagelock no longer protects
786 * the inode from eviction. But don't unlock the mutex until
787 * we've incremented swapped, because shmem_unuse_inode() will
788 * prune a !swapped inode from the swaplist under this mutex.
789 */
790 mutex_lock(&shmem_swaplist_mutex);
791 if (list_empty(&info->swaplist))
792 list_add_tail(&info->swaplist, &shmem_swaplist);
793
794 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
795 swap_shmem_alloc(swap);
796 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
797
798 spin_lock(&info->lock);
799 info->swapped++;
800 shmem_recalc_inode(inode);
801 spin_unlock(&info->lock);
802
803 mutex_unlock(&shmem_swaplist_mutex);
804 BUG_ON(page_mapped(page));
805 swap_writepage(page, wbc);
806 return 0;
807 }
808
809 mutex_unlock(&shmem_swaplist_mutex);
810 swapcache_free(swap, NULL);
811 redirty:
812 set_page_dirty(page);
813 if (wbc->for_reclaim)
814 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
815 unlock_page(page);
816 return 0;
817 }
818
819 #ifdef CONFIG_NUMA
820 #ifdef CONFIG_TMPFS
821 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
822 {
823 char buffer[64];
824
825 if (!mpol || mpol->mode == MPOL_DEFAULT)
826 return; /* show nothing */
827
828 mpol_to_str(buffer, sizeof(buffer), mpol);
829
830 seq_printf(seq, ",mpol=%s", buffer);
831 }
832
833 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
834 {
835 struct mempolicy *mpol = NULL;
836 if (sbinfo->mpol) {
837 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
838 mpol = sbinfo->mpol;
839 mpol_get(mpol);
840 spin_unlock(&sbinfo->stat_lock);
841 }
842 return mpol;
843 }
844 #endif /* CONFIG_TMPFS */
845
846 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
847 struct shmem_inode_info *info, pgoff_t index)
848 {
849 struct vm_area_struct pvma;
850 struct page *page;
851
852 /* Create a pseudo vma that just contains the policy */
853 pvma.vm_start = 0;
854 /* Bias interleave by inode number to distribute better across nodes */
855 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
856 pvma.vm_ops = NULL;
857 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
858
859 page = swapin_readahead(swap, gfp, &pvma, 0);
860
861 /* Drop reference taken by mpol_shared_policy_lookup() */
862 mpol_cond_put(pvma.vm_policy);
863
864 return page;
865 }
866
867 static struct page *shmem_alloc_page(gfp_t gfp,
868 struct shmem_inode_info *info, pgoff_t index)
869 {
870 struct vm_area_struct pvma;
871 struct page *page;
872
873 /* Create a pseudo vma that just contains the policy */
874 pvma.vm_start = 0;
875 /* Bias interleave by inode number to distribute better across nodes */
876 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
877 pvma.vm_ops = NULL;
878 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
879
880 page = alloc_page_vma(gfp, &pvma, 0);
881
882 /* Drop reference taken by mpol_shared_policy_lookup() */
883 mpol_cond_put(pvma.vm_policy);
884
885 return page;
886 }
887 #else /* !CONFIG_NUMA */
888 #ifdef CONFIG_TMPFS
889 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
890 {
891 }
892 #endif /* CONFIG_TMPFS */
893
894 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
895 struct shmem_inode_info *info, pgoff_t index)
896 {
897 return swapin_readahead(swap, gfp, NULL, 0);
898 }
899
900 static inline struct page *shmem_alloc_page(gfp_t gfp,
901 struct shmem_inode_info *info, pgoff_t index)
902 {
903 return alloc_page(gfp);
904 }
905 #endif /* CONFIG_NUMA */
906
907 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
908 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
909 {
910 return NULL;
911 }
912 #endif
913
914 /*
915 * When a page is moved from swapcache to shmem filecache (either by the
916 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
917 * shmem_unuse_inode()), it may have been read in earlier from swap, in
918 * ignorance of the mapping it belongs to. If that mapping has special
919 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
920 * we may need to copy to a suitable page before moving to filecache.
921 *
922 * In a future release, this may well be extended to respect cpuset and
923 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
924 * but for now it is a simple matter of zone.
925 */
926 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
927 {
928 return page_zonenum(page) > gfp_zone(gfp);
929 }
930
931 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
932 struct shmem_inode_info *info, pgoff_t index)
933 {
934 struct page *oldpage, *newpage;
935 struct address_space *swap_mapping;
936 pgoff_t swap_index;
937 int error;
938
939 oldpage = *pagep;
940 swap_index = page_private(oldpage);
941 swap_mapping = page_mapping(oldpage);
942
943 /*
944 * We have arrived here because our zones are constrained, so don't
945 * limit chance of success by further cpuset and node constraints.
946 */
947 gfp &= ~GFP_CONSTRAINT_MASK;
948 newpage = shmem_alloc_page(gfp, info, index);
949 if (!newpage)
950 return -ENOMEM;
951
952 page_cache_get(newpage);
953 copy_highpage(newpage, oldpage);
954 flush_dcache_page(newpage);
955
956 __set_page_locked(newpage);
957 SetPageUptodate(newpage);
958 SetPageSwapBacked(newpage);
959 set_page_private(newpage, swap_index);
960 SetPageSwapCache(newpage);
961
962 /*
963 * Our caller will very soon move newpage out of swapcache, but it's
964 * a nice clean interface for us to replace oldpage by newpage there.
965 */
966 spin_lock_irq(&swap_mapping->tree_lock);
967 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
968 newpage);
969 if (!error) {
970 __inc_zone_page_state(newpage, NR_FILE_PAGES);
971 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
972 }
973 spin_unlock_irq(&swap_mapping->tree_lock);
974
975 if (unlikely(error)) {
976 /*
977 * Is this possible? I think not, now that our callers check
978 * both PageSwapCache and page_private after getting page lock;
979 * but be defensive. Reverse old to newpage for clear and free.
980 */
981 oldpage = newpage;
982 } else {
983 mem_cgroup_replace_page_cache(oldpage, newpage);
984 lru_cache_add_anon(newpage);
985 *pagep = newpage;
986 }
987
988 ClearPageSwapCache(oldpage);
989 set_page_private(oldpage, 0);
990
991 unlock_page(oldpage);
992 page_cache_release(oldpage);
993 page_cache_release(oldpage);
994 return error;
995 }
996
997 /*
998 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
999 *
1000 * If we allocate a new one we do not mark it dirty. That's up to the
1001 * vm. If we swap it in we mark it dirty since we also free the swap
1002 * entry since a page cannot live in both the swap and page cache
1003 */
1004 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1005 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1006 {
1007 struct address_space *mapping = inode->i_mapping;
1008 struct shmem_inode_info *info;
1009 struct shmem_sb_info *sbinfo;
1010 struct page *page;
1011 swp_entry_t swap;
1012 int error;
1013 int once = 0;
1014 int alloced = 0;
1015
1016 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1017 return -EFBIG;
1018 repeat:
1019 swap.val = 0;
1020 page = find_lock_entry(mapping, index);
1021 if (radix_tree_exceptional_entry(page)) {
1022 swap = radix_to_swp_entry(page);
1023 page = NULL;
1024 }
1025
1026 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1027 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1028 error = -EINVAL;
1029 goto failed;
1030 }
1031
1032 /* fallocated page? */
1033 if (page && !PageUptodate(page)) {
1034 if (sgp != SGP_READ)
1035 goto clear;
1036 unlock_page(page);
1037 page_cache_release(page);
1038 page = NULL;
1039 }
1040 if (page || (sgp == SGP_READ && !swap.val)) {
1041 *pagep = page;
1042 return 0;
1043 }
1044
1045 /*
1046 * Fast cache lookup did not find it:
1047 * bring it back from swap or allocate.
1048 */
1049 info = SHMEM_I(inode);
1050 sbinfo = SHMEM_SB(inode->i_sb);
1051
1052 if (swap.val) {
1053 /* Look it up and read it in.. */
1054 page = lookup_swap_cache(swap);
1055 if (!page) {
1056 /* here we actually do the io */
1057 if (fault_type)
1058 *fault_type |= VM_FAULT_MAJOR;
1059 page = shmem_swapin(swap, gfp, info, index);
1060 if (!page) {
1061 error = -ENOMEM;
1062 goto failed;
1063 }
1064 }
1065
1066 /* We have to do this with page locked to prevent races */
1067 lock_page(page);
1068 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1069 !shmem_confirm_swap(mapping, index, swap)) {
1070 error = -EEXIST; /* try again */
1071 goto unlock;
1072 }
1073 if (!PageUptodate(page)) {
1074 error = -EIO;
1075 goto failed;
1076 }
1077 wait_on_page_writeback(page);
1078
1079 if (shmem_should_replace_page(page, gfp)) {
1080 error = shmem_replace_page(&page, gfp, info, index);
1081 if (error)
1082 goto failed;
1083 }
1084
1085 error = mem_cgroup_charge_file(page, current->mm,
1086 gfp & GFP_RECLAIM_MASK);
1087 if (!error) {
1088 error = shmem_add_to_page_cache(page, mapping, index,
1089 gfp, swp_to_radix_entry(swap));
1090 /*
1091 * We already confirmed swap under page lock, and make
1092 * no memory allocation here, so usually no possibility
1093 * of error; but free_swap_and_cache() only trylocks a
1094 * page, so it is just possible that the entry has been
1095 * truncated or holepunched since swap was confirmed.
1096 * shmem_undo_range() will have done some of the
1097 * unaccounting, now delete_from_swap_cache() will do
1098 * the rest (including mem_cgroup_uncharge_swapcache).
1099 * Reset swap.val? No, leave it so "failed" goes back to
1100 * "repeat": reading a hole and writing should succeed.
1101 */
1102 if (error)
1103 delete_from_swap_cache(page);
1104 }
1105 if (error)
1106 goto failed;
1107
1108 spin_lock(&info->lock);
1109 info->swapped--;
1110 shmem_recalc_inode(inode);
1111 spin_unlock(&info->lock);
1112
1113 delete_from_swap_cache(page);
1114 set_page_dirty(page);
1115 swap_free(swap);
1116
1117 } else {
1118 if (shmem_acct_block(info->flags)) {
1119 error = -ENOSPC;
1120 goto failed;
1121 }
1122 if (sbinfo->max_blocks) {
1123 if (percpu_counter_compare(&sbinfo->used_blocks,
1124 sbinfo->max_blocks) >= 0) {
1125 error = -ENOSPC;
1126 goto unacct;
1127 }
1128 percpu_counter_inc(&sbinfo->used_blocks);
1129 }
1130
1131 page = shmem_alloc_page(gfp, info, index);
1132 if (!page) {
1133 error = -ENOMEM;
1134 goto decused;
1135 }
1136
1137 __SetPageSwapBacked(page);
1138 __set_page_locked(page);
1139 error = mem_cgroup_charge_file(page, current->mm,
1140 gfp & GFP_RECLAIM_MASK);
1141 if (error)
1142 goto decused;
1143 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1144 if (!error) {
1145 error = shmem_add_to_page_cache(page, mapping, index,
1146 gfp, NULL);
1147 radix_tree_preload_end();
1148 }
1149 if (error) {
1150 mem_cgroup_uncharge_cache_page(page);
1151 goto decused;
1152 }
1153 lru_cache_add_anon(page);
1154
1155 spin_lock(&info->lock);
1156 info->alloced++;
1157 inode->i_blocks += BLOCKS_PER_PAGE;
1158 shmem_recalc_inode(inode);
1159 spin_unlock(&info->lock);
1160 alloced = true;
1161
1162 /*
1163 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1164 */
1165 if (sgp == SGP_FALLOC)
1166 sgp = SGP_WRITE;
1167 clear:
1168 /*
1169 * Let SGP_WRITE caller clear ends if write does not fill page;
1170 * but SGP_FALLOC on a page fallocated earlier must initialize
1171 * it now, lest undo on failure cancel our earlier guarantee.
1172 */
1173 if (sgp != SGP_WRITE) {
1174 clear_highpage(page);
1175 flush_dcache_page(page);
1176 SetPageUptodate(page);
1177 }
1178 if (sgp == SGP_DIRTY)
1179 set_page_dirty(page);
1180 }
1181
1182 /* Perhaps the file has been truncated since we checked */
1183 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1184 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1185 error = -EINVAL;
1186 if (alloced)
1187 goto trunc;
1188 else
1189 goto failed;
1190 }
1191 *pagep = page;
1192 return 0;
1193
1194 /*
1195 * Error recovery.
1196 */
1197 trunc:
1198 info = SHMEM_I(inode);
1199 ClearPageDirty(page);
1200 delete_from_page_cache(page);
1201 spin_lock(&info->lock);
1202 info->alloced--;
1203 inode->i_blocks -= BLOCKS_PER_PAGE;
1204 spin_unlock(&info->lock);
1205 decused:
1206 sbinfo = SHMEM_SB(inode->i_sb);
1207 if (sbinfo->max_blocks)
1208 percpu_counter_add(&sbinfo->used_blocks, -1);
1209 unacct:
1210 shmem_unacct_blocks(info->flags, 1);
1211 failed:
1212 if (swap.val && error != -EINVAL &&
1213 !shmem_confirm_swap(mapping, index, swap))
1214 error = -EEXIST;
1215 unlock:
1216 if (page) {
1217 unlock_page(page);
1218 page_cache_release(page);
1219 }
1220 if (error == -ENOSPC && !once++) {
1221 info = SHMEM_I(inode);
1222 spin_lock(&info->lock);
1223 shmem_recalc_inode(inode);
1224 spin_unlock(&info->lock);
1225 goto repeat;
1226 }
1227 if (error == -EEXIST) /* from above or from radix_tree_insert */
1228 goto repeat;
1229 return error;
1230 }
1231
1232 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1233 {
1234 struct inode *inode = file_inode(vma->vm_file);
1235 int error;
1236 int ret = VM_FAULT_LOCKED;
1237
1238 /*
1239 * Trinity finds that probing a hole which tmpfs is punching can
1240 * prevent the hole-punch from ever completing: which in turn
1241 * locks writers out with its hold on i_mutex. So refrain from
1242 * faulting pages into the hole while it's being punched, and
1243 * wait on i_mutex to be released if vmf->flags permits.
1244 */
1245 if (unlikely(inode->i_private)) {
1246 struct shmem_falloc *shmem_falloc;
1247
1248 spin_lock(&inode->i_lock);
1249 shmem_falloc = inode->i_private;
1250 if (!shmem_falloc ||
1251 shmem_falloc->mode != FALLOC_FL_PUNCH_HOLE ||
1252 vmf->pgoff < shmem_falloc->start ||
1253 vmf->pgoff >= shmem_falloc->next)
1254 shmem_falloc = NULL;
1255 spin_unlock(&inode->i_lock);
1256 /*
1257 * i_lock has protected us from taking shmem_falloc seriously
1258 * once return from shmem_fallocate() went back up that stack.
1259 * i_lock does not serialize with i_mutex at all, but it does
1260 * not matter if sometimes we wait unnecessarily, or sometimes
1261 * miss out on waiting: we just need to make those cases rare.
1262 */
1263 if (shmem_falloc) {
1264 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1265 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1266 up_read(&vma->vm_mm->mmap_sem);
1267 mutex_lock(&inode->i_mutex);
1268 mutex_unlock(&inode->i_mutex);
1269 return VM_FAULT_RETRY;
1270 }
1271 /* cond_resched? Leave that to GUP or return to user */
1272 return VM_FAULT_NOPAGE;
1273 }
1274 }
1275
1276 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1277 if (error)
1278 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1279
1280 if (ret & VM_FAULT_MAJOR) {
1281 count_vm_event(PGMAJFAULT);
1282 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1283 }
1284 return ret;
1285 }
1286
1287 #ifdef CONFIG_NUMA
1288 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1289 {
1290 struct inode *inode = file_inode(vma->vm_file);
1291 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1292 }
1293
1294 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1295 unsigned long addr)
1296 {
1297 struct inode *inode = file_inode(vma->vm_file);
1298 pgoff_t index;
1299
1300 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1301 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1302 }
1303 #endif
1304
1305 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1306 {
1307 struct inode *inode = file_inode(file);
1308 struct shmem_inode_info *info = SHMEM_I(inode);
1309 int retval = -ENOMEM;
1310
1311 spin_lock(&info->lock);
1312 if (lock && !(info->flags & VM_LOCKED)) {
1313 if (!user_shm_lock(inode->i_size, user))
1314 goto out_nomem;
1315 info->flags |= VM_LOCKED;
1316 mapping_set_unevictable(file->f_mapping);
1317 }
1318 if (!lock && (info->flags & VM_LOCKED) && user) {
1319 user_shm_unlock(inode->i_size, user);
1320 info->flags &= ~VM_LOCKED;
1321 mapping_clear_unevictable(file->f_mapping);
1322 }
1323 retval = 0;
1324
1325 out_nomem:
1326 spin_unlock(&info->lock);
1327 return retval;
1328 }
1329
1330 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1331 {
1332 file_accessed(file);
1333 vma->vm_ops = &shmem_vm_ops;
1334 return 0;
1335 }
1336
1337 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1338 umode_t mode, dev_t dev, unsigned long flags)
1339 {
1340 struct inode *inode;
1341 struct shmem_inode_info *info;
1342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1343
1344 if (shmem_reserve_inode(sb))
1345 return NULL;
1346
1347 inode = new_inode(sb);
1348 if (inode) {
1349 inode->i_ino = get_next_ino();
1350 inode_init_owner(inode, dir, mode);
1351 inode->i_blocks = 0;
1352 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1353 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1354 inode->i_generation = get_seconds();
1355 info = SHMEM_I(inode);
1356 memset(info, 0, (char *)inode - (char *)info);
1357 spin_lock_init(&info->lock);
1358 info->flags = flags & VM_NORESERVE;
1359 INIT_LIST_HEAD(&info->swaplist);
1360 simple_xattrs_init(&info->xattrs);
1361 cache_no_acl(inode);
1362
1363 switch (mode & S_IFMT) {
1364 default:
1365 inode->i_op = &shmem_special_inode_operations;
1366 init_special_inode(inode, mode, dev);
1367 break;
1368 case S_IFREG:
1369 inode->i_mapping->a_ops = &shmem_aops;
1370 inode->i_op = &shmem_inode_operations;
1371 inode->i_fop = &shmem_file_operations;
1372 mpol_shared_policy_init(&info->policy,
1373 shmem_get_sbmpol(sbinfo));
1374 break;
1375 case S_IFDIR:
1376 inc_nlink(inode);
1377 /* Some things misbehave if size == 0 on a directory */
1378 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1379 inode->i_op = &shmem_dir_inode_operations;
1380 inode->i_fop = &simple_dir_operations;
1381 break;
1382 case S_IFLNK:
1383 /*
1384 * Must not load anything in the rbtree,
1385 * mpol_free_shared_policy will not be called.
1386 */
1387 mpol_shared_policy_init(&info->policy, NULL);
1388 break;
1389 }
1390 } else
1391 shmem_free_inode(sb);
1392 return inode;
1393 }
1394
1395 bool shmem_mapping(struct address_space *mapping)
1396 {
1397 return mapping->backing_dev_info == &shmem_backing_dev_info;
1398 }
1399
1400 #ifdef CONFIG_TMPFS
1401 static const struct inode_operations shmem_symlink_inode_operations;
1402 static const struct inode_operations shmem_short_symlink_operations;
1403
1404 #ifdef CONFIG_TMPFS_XATTR
1405 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1406 #else
1407 #define shmem_initxattrs NULL
1408 #endif
1409
1410 static int
1411 shmem_write_begin(struct file *file, struct address_space *mapping,
1412 loff_t pos, unsigned len, unsigned flags,
1413 struct page **pagep, void **fsdata)
1414 {
1415 int ret;
1416 struct inode *inode = mapping->host;
1417 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1418 ret = shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1419 if (ret == 0 && *pagep)
1420 init_page_accessed(*pagep);
1421 return ret;
1422 }
1423
1424 static int
1425 shmem_write_end(struct file *file, struct address_space *mapping,
1426 loff_t pos, unsigned len, unsigned copied,
1427 struct page *page, void *fsdata)
1428 {
1429 struct inode *inode = mapping->host;
1430
1431 if (pos + copied > inode->i_size)
1432 i_size_write(inode, pos + copied);
1433
1434 if (!PageUptodate(page)) {
1435 if (copied < PAGE_CACHE_SIZE) {
1436 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1437 zero_user_segments(page, 0, from,
1438 from + copied, PAGE_CACHE_SIZE);
1439 }
1440 SetPageUptodate(page);
1441 }
1442 set_page_dirty(page);
1443 unlock_page(page);
1444 page_cache_release(page);
1445
1446 return copied;
1447 }
1448
1449 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1450 {
1451 struct file *file = iocb->ki_filp;
1452 struct inode *inode = file_inode(file);
1453 struct address_space *mapping = inode->i_mapping;
1454 pgoff_t index;
1455 unsigned long offset;
1456 enum sgp_type sgp = SGP_READ;
1457 int error = 0;
1458 ssize_t retval = 0;
1459 loff_t *ppos = &iocb->ki_pos;
1460
1461 /*
1462 * Might this read be for a stacking filesystem? Then when reading
1463 * holes of a sparse file, we actually need to allocate those pages,
1464 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1465 */
1466 if (segment_eq(get_fs(), KERNEL_DS))
1467 sgp = SGP_DIRTY;
1468
1469 index = *ppos >> PAGE_CACHE_SHIFT;
1470 offset = *ppos & ~PAGE_CACHE_MASK;
1471
1472 for (;;) {
1473 struct page *page = NULL;
1474 pgoff_t end_index;
1475 unsigned long nr, ret;
1476 loff_t i_size = i_size_read(inode);
1477
1478 end_index = i_size >> PAGE_CACHE_SHIFT;
1479 if (index > end_index)
1480 break;
1481 if (index == end_index) {
1482 nr = i_size & ~PAGE_CACHE_MASK;
1483 if (nr <= offset)
1484 break;
1485 }
1486
1487 error = shmem_getpage(inode, index, &page, sgp, NULL);
1488 if (error) {
1489 if (error == -EINVAL)
1490 error = 0;
1491 break;
1492 }
1493 if (page)
1494 unlock_page(page);
1495
1496 /*
1497 * We must evaluate after, since reads (unlike writes)
1498 * are called without i_mutex protection against truncate
1499 */
1500 nr = PAGE_CACHE_SIZE;
1501 i_size = i_size_read(inode);
1502 end_index = i_size >> PAGE_CACHE_SHIFT;
1503 if (index == end_index) {
1504 nr = i_size & ~PAGE_CACHE_MASK;
1505 if (nr <= offset) {
1506 if (page)
1507 page_cache_release(page);
1508 break;
1509 }
1510 }
1511 nr -= offset;
1512
1513 if (page) {
1514 /*
1515 * If users can be writing to this page using arbitrary
1516 * virtual addresses, take care about potential aliasing
1517 * before reading the page on the kernel side.
1518 */
1519 if (mapping_writably_mapped(mapping))
1520 flush_dcache_page(page);
1521 /*
1522 * Mark the page accessed if we read the beginning.
1523 */
1524 if (!offset)
1525 mark_page_accessed(page);
1526 } else {
1527 page = ZERO_PAGE(0);
1528 page_cache_get(page);
1529 }
1530
1531 /*
1532 * Ok, we have the page, and it's up-to-date, so
1533 * now we can copy it to user space...
1534 */
1535 ret = copy_page_to_iter(page, offset, nr, to);
1536 retval += ret;
1537 offset += ret;
1538 index += offset >> PAGE_CACHE_SHIFT;
1539 offset &= ~PAGE_CACHE_MASK;
1540
1541 page_cache_release(page);
1542 if (!iov_iter_count(to))
1543 break;
1544 if (ret < nr) {
1545 error = -EFAULT;
1546 break;
1547 }
1548 cond_resched();
1549 }
1550
1551 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1552 file_accessed(file);
1553 return retval ? retval : error;
1554 }
1555
1556 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1557 struct pipe_inode_info *pipe, size_t len,
1558 unsigned int flags)
1559 {
1560 struct address_space *mapping = in->f_mapping;
1561 struct inode *inode = mapping->host;
1562 unsigned int loff, nr_pages, req_pages;
1563 struct page *pages[PIPE_DEF_BUFFERS];
1564 struct partial_page partial[PIPE_DEF_BUFFERS];
1565 struct page *page;
1566 pgoff_t index, end_index;
1567 loff_t isize, left;
1568 int error, page_nr;
1569 struct splice_pipe_desc spd = {
1570 .pages = pages,
1571 .partial = partial,
1572 .nr_pages_max = PIPE_DEF_BUFFERS,
1573 .flags = flags,
1574 .ops = &page_cache_pipe_buf_ops,
1575 .spd_release = spd_release_page,
1576 };
1577
1578 isize = i_size_read(inode);
1579 if (unlikely(*ppos >= isize))
1580 return 0;
1581
1582 left = isize - *ppos;
1583 if (unlikely(left < len))
1584 len = left;
1585
1586 if (splice_grow_spd(pipe, &spd))
1587 return -ENOMEM;
1588
1589 index = *ppos >> PAGE_CACHE_SHIFT;
1590 loff = *ppos & ~PAGE_CACHE_MASK;
1591 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1592 nr_pages = min(req_pages, spd.nr_pages_max);
1593
1594 spd.nr_pages = find_get_pages_contig(mapping, index,
1595 nr_pages, spd.pages);
1596 index += spd.nr_pages;
1597 error = 0;
1598
1599 while (spd.nr_pages < nr_pages) {
1600 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1601 if (error)
1602 break;
1603 unlock_page(page);
1604 spd.pages[spd.nr_pages++] = page;
1605 index++;
1606 }
1607
1608 index = *ppos >> PAGE_CACHE_SHIFT;
1609 nr_pages = spd.nr_pages;
1610 spd.nr_pages = 0;
1611
1612 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1613 unsigned int this_len;
1614
1615 if (!len)
1616 break;
1617
1618 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1619 page = spd.pages[page_nr];
1620
1621 if (!PageUptodate(page) || page->mapping != mapping) {
1622 error = shmem_getpage(inode, index, &page,
1623 SGP_CACHE, NULL);
1624 if (error)
1625 break;
1626 unlock_page(page);
1627 page_cache_release(spd.pages[page_nr]);
1628 spd.pages[page_nr] = page;
1629 }
1630
1631 isize = i_size_read(inode);
1632 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1633 if (unlikely(!isize || index > end_index))
1634 break;
1635
1636 if (end_index == index) {
1637 unsigned int plen;
1638
1639 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1640 if (plen <= loff)
1641 break;
1642
1643 this_len = min(this_len, plen - loff);
1644 len = this_len;
1645 }
1646
1647 spd.partial[page_nr].offset = loff;
1648 spd.partial[page_nr].len = this_len;
1649 len -= this_len;
1650 loff = 0;
1651 spd.nr_pages++;
1652 index++;
1653 }
1654
1655 while (page_nr < nr_pages)
1656 page_cache_release(spd.pages[page_nr++]);
1657
1658 if (spd.nr_pages)
1659 error = splice_to_pipe(pipe, &spd);
1660
1661 splice_shrink_spd(&spd);
1662
1663 if (error > 0) {
1664 *ppos += error;
1665 file_accessed(in);
1666 }
1667 return error;
1668 }
1669
1670 /*
1671 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1672 */
1673 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1674 pgoff_t index, pgoff_t end, int whence)
1675 {
1676 struct page *page;
1677 struct pagevec pvec;
1678 pgoff_t indices[PAGEVEC_SIZE];
1679 bool done = false;
1680 int i;
1681
1682 pagevec_init(&pvec, 0);
1683 pvec.nr = 1; /* start small: we may be there already */
1684 while (!done) {
1685 pvec.nr = find_get_entries(mapping, index,
1686 pvec.nr, pvec.pages, indices);
1687 if (!pvec.nr) {
1688 if (whence == SEEK_DATA)
1689 index = end;
1690 break;
1691 }
1692 for (i = 0; i < pvec.nr; i++, index++) {
1693 if (index < indices[i]) {
1694 if (whence == SEEK_HOLE) {
1695 done = true;
1696 break;
1697 }
1698 index = indices[i];
1699 }
1700 page = pvec.pages[i];
1701 if (page && !radix_tree_exceptional_entry(page)) {
1702 if (!PageUptodate(page))
1703 page = NULL;
1704 }
1705 if (index >= end ||
1706 (page && whence == SEEK_DATA) ||
1707 (!page && whence == SEEK_HOLE)) {
1708 done = true;
1709 break;
1710 }
1711 }
1712 pagevec_remove_exceptionals(&pvec);
1713 pagevec_release(&pvec);
1714 pvec.nr = PAGEVEC_SIZE;
1715 cond_resched();
1716 }
1717 return index;
1718 }
1719
1720 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1721 {
1722 struct address_space *mapping = file->f_mapping;
1723 struct inode *inode = mapping->host;
1724 pgoff_t start, end;
1725 loff_t new_offset;
1726
1727 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1728 return generic_file_llseek_size(file, offset, whence,
1729 MAX_LFS_FILESIZE, i_size_read(inode));
1730 mutex_lock(&inode->i_mutex);
1731 /* We're holding i_mutex so we can access i_size directly */
1732
1733 if (offset < 0)
1734 offset = -EINVAL;
1735 else if (offset >= inode->i_size)
1736 offset = -ENXIO;
1737 else {
1738 start = offset >> PAGE_CACHE_SHIFT;
1739 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1740 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1741 new_offset <<= PAGE_CACHE_SHIFT;
1742 if (new_offset > offset) {
1743 if (new_offset < inode->i_size)
1744 offset = new_offset;
1745 else if (whence == SEEK_DATA)
1746 offset = -ENXIO;
1747 else
1748 offset = inode->i_size;
1749 }
1750 }
1751
1752 if (offset >= 0)
1753 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1754 mutex_unlock(&inode->i_mutex);
1755 return offset;
1756 }
1757
1758 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1759 loff_t len)
1760 {
1761 struct inode *inode = file_inode(file);
1762 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1763 struct shmem_falloc shmem_falloc;
1764 pgoff_t start, index, end;
1765 int error;
1766
1767 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1768 return -EOPNOTSUPP;
1769
1770 mutex_lock(&inode->i_mutex);
1771
1772 shmem_falloc.mode = mode & ~FALLOC_FL_KEEP_SIZE;
1773
1774 if (mode & FALLOC_FL_PUNCH_HOLE) {
1775 struct address_space *mapping = file->f_mapping;
1776 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1777 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1778
1779 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1780 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1781 spin_lock(&inode->i_lock);
1782 inode->i_private = &shmem_falloc;
1783 spin_unlock(&inode->i_lock);
1784
1785 if ((u64)unmap_end > (u64)unmap_start)
1786 unmap_mapping_range(mapping, unmap_start,
1787 1 + unmap_end - unmap_start, 0);
1788 shmem_truncate_range(inode, offset, offset + len - 1);
1789 /* No need to unmap again: hole-punching leaves COWed pages */
1790 error = 0;
1791 goto undone;
1792 }
1793
1794 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1795 error = inode_newsize_ok(inode, offset + len);
1796 if (error)
1797 goto out;
1798
1799 start = offset >> PAGE_CACHE_SHIFT;
1800 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1801 /* Try to avoid a swapstorm if len is impossible to satisfy */
1802 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1803 error = -ENOSPC;
1804 goto out;
1805 }
1806
1807 shmem_falloc.start = start;
1808 shmem_falloc.next = start;
1809 shmem_falloc.nr_falloced = 0;
1810 shmem_falloc.nr_unswapped = 0;
1811 spin_lock(&inode->i_lock);
1812 inode->i_private = &shmem_falloc;
1813 spin_unlock(&inode->i_lock);
1814
1815 for (index = start; index < end; index++) {
1816 struct page *page;
1817
1818 /*
1819 * Good, the fallocate(2) manpage permits EINTR: we may have
1820 * been interrupted because we are using up too much memory.
1821 */
1822 if (signal_pending(current))
1823 error = -EINTR;
1824 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1825 error = -ENOMEM;
1826 else
1827 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1828 NULL);
1829 if (error) {
1830 /* Remove the !PageUptodate pages we added */
1831 shmem_undo_range(inode,
1832 (loff_t)start << PAGE_CACHE_SHIFT,
1833 (loff_t)index << PAGE_CACHE_SHIFT, true);
1834 goto undone;
1835 }
1836
1837 /*
1838 * Inform shmem_writepage() how far we have reached.
1839 * No need for lock or barrier: we have the page lock.
1840 */
1841 shmem_falloc.next++;
1842 if (!PageUptodate(page))
1843 shmem_falloc.nr_falloced++;
1844
1845 /*
1846 * If !PageUptodate, leave it that way so that freeable pages
1847 * can be recognized if we need to rollback on error later.
1848 * But set_page_dirty so that memory pressure will swap rather
1849 * than free the pages we are allocating (and SGP_CACHE pages
1850 * might still be clean: we now need to mark those dirty too).
1851 */
1852 set_page_dirty(page);
1853 unlock_page(page);
1854 page_cache_release(page);
1855 cond_resched();
1856 }
1857
1858 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1859 i_size_write(inode, offset + len);
1860 inode->i_ctime = CURRENT_TIME;
1861 undone:
1862 spin_lock(&inode->i_lock);
1863 inode->i_private = NULL;
1864 spin_unlock(&inode->i_lock);
1865 out:
1866 mutex_unlock(&inode->i_mutex);
1867 return error;
1868 }
1869
1870 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1871 {
1872 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1873
1874 buf->f_type = TMPFS_MAGIC;
1875 buf->f_bsize = PAGE_CACHE_SIZE;
1876 buf->f_namelen = NAME_MAX;
1877 if (sbinfo->max_blocks) {
1878 buf->f_blocks = sbinfo->max_blocks;
1879 buf->f_bavail =
1880 buf->f_bfree = sbinfo->max_blocks -
1881 percpu_counter_sum(&sbinfo->used_blocks);
1882 }
1883 if (sbinfo->max_inodes) {
1884 buf->f_files = sbinfo->max_inodes;
1885 buf->f_ffree = sbinfo->free_inodes;
1886 }
1887 /* else leave those fields 0 like simple_statfs */
1888 return 0;
1889 }
1890
1891 /*
1892 * File creation. Allocate an inode, and we're done..
1893 */
1894 static int
1895 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1896 {
1897 struct inode *inode;
1898 int error = -ENOSPC;
1899
1900 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1901 if (inode) {
1902 error = simple_acl_create(dir, inode);
1903 if (error)
1904 goto out_iput;
1905 error = security_inode_init_security(inode, dir,
1906 &dentry->d_name,
1907 shmem_initxattrs, NULL);
1908 if (error && error != -EOPNOTSUPP)
1909 goto out_iput;
1910
1911 error = 0;
1912 dir->i_size += BOGO_DIRENT_SIZE;
1913 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1914 d_instantiate(dentry, inode);
1915 dget(dentry); /* Extra count - pin the dentry in core */
1916 }
1917 return error;
1918 out_iput:
1919 iput(inode);
1920 return error;
1921 }
1922
1923 static int
1924 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1925 {
1926 struct inode *inode;
1927 int error = -ENOSPC;
1928
1929 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1930 if (inode) {
1931 error = security_inode_init_security(inode, dir,
1932 NULL,
1933 shmem_initxattrs, NULL);
1934 if (error && error != -EOPNOTSUPP)
1935 goto out_iput;
1936 error = simple_acl_create(dir, inode);
1937 if (error)
1938 goto out_iput;
1939 d_tmpfile(dentry, inode);
1940 }
1941 return error;
1942 out_iput:
1943 iput(inode);
1944 return error;
1945 }
1946
1947 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1948 {
1949 int error;
1950
1951 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1952 return error;
1953 inc_nlink(dir);
1954 return 0;
1955 }
1956
1957 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1958 bool excl)
1959 {
1960 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1961 }
1962
1963 /*
1964 * Link a file..
1965 */
1966 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1967 {
1968 struct inode *inode = old_dentry->d_inode;
1969 int ret;
1970
1971 /*
1972 * No ordinary (disk based) filesystem counts links as inodes;
1973 * but each new link needs a new dentry, pinning lowmem, and
1974 * tmpfs dentries cannot be pruned until they are unlinked.
1975 */
1976 ret = shmem_reserve_inode(inode->i_sb);
1977 if (ret)
1978 goto out;
1979
1980 dir->i_size += BOGO_DIRENT_SIZE;
1981 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1982 inc_nlink(inode);
1983 ihold(inode); /* New dentry reference */
1984 dget(dentry); /* Extra pinning count for the created dentry */
1985 d_instantiate(dentry, inode);
1986 out:
1987 return ret;
1988 }
1989
1990 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1991 {
1992 struct inode *inode = dentry->d_inode;
1993
1994 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1995 shmem_free_inode(inode->i_sb);
1996
1997 dir->i_size -= BOGO_DIRENT_SIZE;
1998 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1999 drop_nlink(inode);
2000 dput(dentry); /* Undo the count from "create" - this does all the work */
2001 return 0;
2002 }
2003
2004 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2005 {
2006 if (!simple_empty(dentry))
2007 return -ENOTEMPTY;
2008
2009 drop_nlink(dentry->d_inode);
2010 drop_nlink(dir);
2011 return shmem_unlink(dir, dentry);
2012 }
2013
2014 /*
2015 * The VFS layer already does all the dentry stuff for rename,
2016 * we just have to decrement the usage count for the target if
2017 * it exists so that the VFS layer correctly free's it when it
2018 * gets overwritten.
2019 */
2020 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2021 {
2022 struct inode *inode = old_dentry->d_inode;
2023 int they_are_dirs = S_ISDIR(inode->i_mode);
2024
2025 if (!simple_empty(new_dentry))
2026 return -ENOTEMPTY;
2027
2028 if (new_dentry->d_inode) {
2029 (void) shmem_unlink(new_dir, new_dentry);
2030 if (they_are_dirs)
2031 drop_nlink(old_dir);
2032 } else if (they_are_dirs) {
2033 drop_nlink(old_dir);
2034 inc_nlink(new_dir);
2035 }
2036
2037 old_dir->i_size -= BOGO_DIRENT_SIZE;
2038 new_dir->i_size += BOGO_DIRENT_SIZE;
2039 old_dir->i_ctime = old_dir->i_mtime =
2040 new_dir->i_ctime = new_dir->i_mtime =
2041 inode->i_ctime = CURRENT_TIME;
2042 return 0;
2043 }
2044
2045 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2046 {
2047 int error;
2048 int len;
2049 struct inode *inode;
2050 struct page *page;
2051 char *kaddr;
2052 struct shmem_inode_info *info;
2053
2054 len = strlen(symname) + 1;
2055 if (len > PAGE_CACHE_SIZE)
2056 return -ENAMETOOLONG;
2057
2058 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2059 if (!inode)
2060 return -ENOSPC;
2061
2062 error = security_inode_init_security(inode, dir, &dentry->d_name,
2063 shmem_initxattrs, NULL);
2064 if (error) {
2065 if (error != -EOPNOTSUPP) {
2066 iput(inode);
2067 return error;
2068 }
2069 error = 0;
2070 }
2071
2072 info = SHMEM_I(inode);
2073 inode->i_size = len-1;
2074 if (len <= SHORT_SYMLINK_LEN) {
2075 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2076 if (!info->symlink) {
2077 iput(inode);
2078 return -ENOMEM;
2079 }
2080 inode->i_op = &shmem_short_symlink_operations;
2081 } else {
2082 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2083 if (error) {
2084 iput(inode);
2085 return error;
2086 }
2087 inode->i_mapping->a_ops = &shmem_aops;
2088 inode->i_op = &shmem_symlink_inode_operations;
2089 kaddr = kmap_atomic(page);
2090 memcpy(kaddr, symname, len);
2091 kunmap_atomic(kaddr);
2092 SetPageUptodate(page);
2093 set_page_dirty(page);
2094 unlock_page(page);
2095 page_cache_release(page);
2096 }
2097 dir->i_size += BOGO_DIRENT_SIZE;
2098 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2099 d_instantiate(dentry, inode);
2100 dget(dentry);
2101 return 0;
2102 }
2103
2104 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2105 {
2106 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2107 return NULL;
2108 }
2109
2110 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2111 {
2112 struct page *page = NULL;
2113 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2114 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2115 if (page)
2116 unlock_page(page);
2117 return page;
2118 }
2119
2120 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2121 {
2122 if (!IS_ERR(nd_get_link(nd))) {
2123 struct page *page = cookie;
2124 kunmap(page);
2125 mark_page_accessed(page);
2126 page_cache_release(page);
2127 }
2128 }
2129
2130 #ifdef CONFIG_TMPFS_XATTR
2131 /*
2132 * Superblocks without xattr inode operations may get some security.* xattr
2133 * support from the LSM "for free". As soon as we have any other xattrs
2134 * like ACLs, we also need to implement the security.* handlers at
2135 * filesystem level, though.
2136 */
2137
2138 /*
2139 * Callback for security_inode_init_security() for acquiring xattrs.
2140 */
2141 static int shmem_initxattrs(struct inode *inode,
2142 const struct xattr *xattr_array,
2143 void *fs_info)
2144 {
2145 struct shmem_inode_info *info = SHMEM_I(inode);
2146 const struct xattr *xattr;
2147 struct simple_xattr *new_xattr;
2148 size_t len;
2149
2150 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2151 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2152 if (!new_xattr)
2153 return -ENOMEM;
2154
2155 len = strlen(xattr->name) + 1;
2156 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2157 GFP_KERNEL);
2158 if (!new_xattr->name) {
2159 kfree(new_xattr);
2160 return -ENOMEM;
2161 }
2162
2163 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2164 XATTR_SECURITY_PREFIX_LEN);
2165 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2166 xattr->name, len);
2167
2168 simple_xattr_list_add(&info->xattrs, new_xattr);
2169 }
2170
2171 return 0;
2172 }
2173
2174 static const struct xattr_handler *shmem_xattr_handlers[] = {
2175 #ifdef CONFIG_TMPFS_POSIX_ACL
2176 &posix_acl_access_xattr_handler,
2177 &posix_acl_default_xattr_handler,
2178 #endif
2179 NULL
2180 };
2181
2182 static int shmem_xattr_validate(const char *name)
2183 {
2184 struct { const char *prefix; size_t len; } arr[] = {
2185 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2186 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2187 };
2188 int i;
2189
2190 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2191 size_t preflen = arr[i].len;
2192 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2193 if (!name[preflen])
2194 return -EINVAL;
2195 return 0;
2196 }
2197 }
2198 return -EOPNOTSUPP;
2199 }
2200
2201 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2202 void *buffer, size_t size)
2203 {
2204 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2205 int err;
2206
2207 /*
2208 * If this is a request for a synthetic attribute in the system.*
2209 * namespace use the generic infrastructure to resolve a handler
2210 * for it via sb->s_xattr.
2211 */
2212 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2213 return generic_getxattr(dentry, name, buffer, size);
2214
2215 err = shmem_xattr_validate(name);
2216 if (err)
2217 return err;
2218
2219 return simple_xattr_get(&info->xattrs, name, buffer, size);
2220 }
2221
2222 static int shmem_setxattr(struct dentry *dentry, const char *name,
2223 const void *value, size_t size, int flags)
2224 {
2225 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2226 int err;
2227
2228 /*
2229 * If this is a request for a synthetic attribute in the system.*
2230 * namespace use the generic infrastructure to resolve a handler
2231 * for it via sb->s_xattr.
2232 */
2233 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2234 return generic_setxattr(dentry, name, value, size, flags);
2235
2236 err = shmem_xattr_validate(name);
2237 if (err)
2238 return err;
2239
2240 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2241 }
2242
2243 static int shmem_removexattr(struct dentry *dentry, const char *name)
2244 {
2245 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2246 int err;
2247
2248 /*
2249 * If this is a request for a synthetic attribute in the system.*
2250 * namespace use the generic infrastructure to resolve a handler
2251 * for it via sb->s_xattr.
2252 */
2253 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2254 return generic_removexattr(dentry, name);
2255
2256 err = shmem_xattr_validate(name);
2257 if (err)
2258 return err;
2259
2260 return simple_xattr_remove(&info->xattrs, name);
2261 }
2262
2263 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2264 {
2265 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2266 return simple_xattr_list(&info->xattrs, buffer, size);
2267 }
2268 #endif /* CONFIG_TMPFS_XATTR */
2269
2270 static const struct inode_operations shmem_short_symlink_operations = {
2271 .readlink = generic_readlink,
2272 .follow_link = shmem_follow_short_symlink,
2273 #ifdef CONFIG_TMPFS_XATTR
2274 .setxattr = shmem_setxattr,
2275 .getxattr = shmem_getxattr,
2276 .listxattr = shmem_listxattr,
2277 .removexattr = shmem_removexattr,
2278 #endif
2279 };
2280
2281 static const struct inode_operations shmem_symlink_inode_operations = {
2282 .readlink = generic_readlink,
2283 .follow_link = shmem_follow_link,
2284 .put_link = shmem_put_link,
2285 #ifdef CONFIG_TMPFS_XATTR
2286 .setxattr = shmem_setxattr,
2287 .getxattr = shmem_getxattr,
2288 .listxattr = shmem_listxattr,
2289 .removexattr = shmem_removexattr,
2290 #endif
2291 };
2292
2293 static struct dentry *shmem_get_parent(struct dentry *child)
2294 {
2295 return ERR_PTR(-ESTALE);
2296 }
2297
2298 static int shmem_match(struct inode *ino, void *vfh)
2299 {
2300 __u32 *fh = vfh;
2301 __u64 inum = fh[2];
2302 inum = (inum << 32) | fh[1];
2303 return ino->i_ino == inum && fh[0] == ino->i_generation;
2304 }
2305
2306 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2307 struct fid *fid, int fh_len, int fh_type)
2308 {
2309 struct inode *inode;
2310 struct dentry *dentry = NULL;
2311 u64 inum;
2312
2313 if (fh_len < 3)
2314 return NULL;
2315
2316 inum = fid->raw[2];
2317 inum = (inum << 32) | fid->raw[1];
2318
2319 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2320 shmem_match, fid->raw);
2321 if (inode) {
2322 dentry = d_find_alias(inode);
2323 iput(inode);
2324 }
2325
2326 return dentry;
2327 }
2328
2329 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2330 struct inode *parent)
2331 {
2332 if (*len < 3) {
2333 *len = 3;
2334 return FILEID_INVALID;
2335 }
2336
2337 if (inode_unhashed(inode)) {
2338 /* Unfortunately insert_inode_hash is not idempotent,
2339 * so as we hash inodes here rather than at creation
2340 * time, we need a lock to ensure we only try
2341 * to do it once
2342 */
2343 static DEFINE_SPINLOCK(lock);
2344 spin_lock(&lock);
2345 if (inode_unhashed(inode))
2346 __insert_inode_hash(inode,
2347 inode->i_ino + inode->i_generation);
2348 spin_unlock(&lock);
2349 }
2350
2351 fh[0] = inode->i_generation;
2352 fh[1] = inode->i_ino;
2353 fh[2] = ((__u64)inode->i_ino) >> 32;
2354
2355 *len = 3;
2356 return 1;
2357 }
2358
2359 static const struct export_operations shmem_export_ops = {
2360 .get_parent = shmem_get_parent,
2361 .encode_fh = shmem_encode_fh,
2362 .fh_to_dentry = shmem_fh_to_dentry,
2363 };
2364
2365 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2366 bool remount)
2367 {
2368 char *this_char, *value, *rest;
2369 struct mempolicy *mpol = NULL;
2370 uid_t uid;
2371 gid_t gid;
2372
2373 while (options != NULL) {
2374 this_char = options;
2375 for (;;) {
2376 /*
2377 * NUL-terminate this option: unfortunately,
2378 * mount options form a comma-separated list,
2379 * but mpol's nodelist may also contain commas.
2380 */
2381 options = strchr(options, ',');
2382 if (options == NULL)
2383 break;
2384 options++;
2385 if (!isdigit(*options)) {
2386 options[-1] = '\0';
2387 break;
2388 }
2389 }
2390 if (!*this_char)
2391 continue;
2392 if ((value = strchr(this_char,'=')) != NULL) {
2393 *value++ = 0;
2394 } else {
2395 printk(KERN_ERR
2396 "tmpfs: No value for mount option '%s'\n",
2397 this_char);
2398 goto error;
2399 }
2400
2401 if (!strcmp(this_char,"size")) {
2402 unsigned long long size;
2403 size = memparse(value,&rest);
2404 if (*rest == '%') {
2405 size <<= PAGE_SHIFT;
2406 size *= totalram_pages;
2407 do_div(size, 100);
2408 rest++;
2409 }
2410 if (*rest)
2411 goto bad_val;
2412 sbinfo->max_blocks =
2413 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2414 } else if (!strcmp(this_char,"nr_blocks")) {
2415 sbinfo->max_blocks = memparse(value, &rest);
2416 if (*rest)
2417 goto bad_val;
2418 } else if (!strcmp(this_char,"nr_inodes")) {
2419 sbinfo->max_inodes = memparse(value, &rest);
2420 if (*rest)
2421 goto bad_val;
2422 } else if (!strcmp(this_char,"mode")) {
2423 if (remount)
2424 continue;
2425 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2426 if (*rest)
2427 goto bad_val;
2428 } else if (!strcmp(this_char,"uid")) {
2429 if (remount)
2430 continue;
2431 uid = simple_strtoul(value, &rest, 0);
2432 if (*rest)
2433 goto bad_val;
2434 sbinfo->uid = make_kuid(current_user_ns(), uid);
2435 if (!uid_valid(sbinfo->uid))
2436 goto bad_val;
2437 } else if (!strcmp(this_char,"gid")) {
2438 if (remount)
2439 continue;
2440 gid = simple_strtoul(value, &rest, 0);
2441 if (*rest)
2442 goto bad_val;
2443 sbinfo->gid = make_kgid(current_user_ns(), gid);
2444 if (!gid_valid(sbinfo->gid))
2445 goto bad_val;
2446 } else if (!strcmp(this_char,"mpol")) {
2447 mpol_put(mpol);
2448 mpol = NULL;
2449 if (mpol_parse_str(value, &mpol))
2450 goto bad_val;
2451 } else {
2452 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2453 this_char);
2454 goto error;
2455 }
2456 }
2457 sbinfo->mpol = mpol;
2458 return 0;
2459
2460 bad_val:
2461 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2462 value, this_char);
2463 error:
2464 mpol_put(mpol);
2465 return 1;
2466
2467 }
2468
2469 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2470 {
2471 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2472 struct shmem_sb_info config = *sbinfo;
2473 unsigned long inodes;
2474 int error = -EINVAL;
2475
2476 config.mpol = NULL;
2477 if (shmem_parse_options(data, &config, true))
2478 return error;
2479
2480 spin_lock(&sbinfo->stat_lock);
2481 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2482 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2483 goto out;
2484 if (config.max_inodes < inodes)
2485 goto out;
2486 /*
2487 * Those tests disallow limited->unlimited while any are in use;
2488 * but we must separately disallow unlimited->limited, because
2489 * in that case we have no record of how much is already in use.
2490 */
2491 if (config.max_blocks && !sbinfo->max_blocks)
2492 goto out;
2493 if (config.max_inodes && !sbinfo->max_inodes)
2494 goto out;
2495
2496 error = 0;
2497 sbinfo->max_blocks = config.max_blocks;
2498 sbinfo->max_inodes = config.max_inodes;
2499 sbinfo->free_inodes = config.max_inodes - inodes;
2500
2501 /*
2502 * Preserve previous mempolicy unless mpol remount option was specified.
2503 */
2504 if (config.mpol) {
2505 mpol_put(sbinfo->mpol);
2506 sbinfo->mpol = config.mpol; /* transfers initial ref */
2507 }
2508 out:
2509 spin_unlock(&sbinfo->stat_lock);
2510 return error;
2511 }
2512
2513 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2514 {
2515 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2516
2517 if (sbinfo->max_blocks != shmem_default_max_blocks())
2518 seq_printf(seq, ",size=%luk",
2519 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2520 if (sbinfo->max_inodes != shmem_default_max_inodes())
2521 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2522 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2523 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2524 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2525 seq_printf(seq, ",uid=%u",
2526 from_kuid_munged(&init_user_ns, sbinfo->uid));
2527 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2528 seq_printf(seq, ",gid=%u",
2529 from_kgid_munged(&init_user_ns, sbinfo->gid));
2530 shmem_show_mpol(seq, sbinfo->mpol);
2531 return 0;
2532 }
2533 #endif /* CONFIG_TMPFS */
2534
2535 static void shmem_put_super(struct super_block *sb)
2536 {
2537 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2538
2539 percpu_counter_destroy(&sbinfo->used_blocks);
2540 mpol_put(sbinfo->mpol);
2541 kfree(sbinfo);
2542 sb->s_fs_info = NULL;
2543 }
2544
2545 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2546 {
2547 struct inode *inode;
2548 struct shmem_sb_info *sbinfo;
2549 int err = -ENOMEM;
2550
2551 /* Round up to L1_CACHE_BYTES to resist false sharing */
2552 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2553 L1_CACHE_BYTES), GFP_KERNEL);
2554 if (!sbinfo)
2555 return -ENOMEM;
2556
2557 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2558 sbinfo->uid = current_fsuid();
2559 sbinfo->gid = current_fsgid();
2560 sb->s_fs_info = sbinfo;
2561
2562 #ifdef CONFIG_TMPFS
2563 /*
2564 * Per default we only allow half of the physical ram per
2565 * tmpfs instance, limiting inodes to one per page of lowmem;
2566 * but the internal instance is left unlimited.
2567 */
2568 if (!(sb->s_flags & MS_KERNMOUNT)) {
2569 sbinfo->max_blocks = shmem_default_max_blocks();
2570 sbinfo->max_inodes = shmem_default_max_inodes();
2571 if (shmem_parse_options(data, sbinfo, false)) {
2572 err = -EINVAL;
2573 goto failed;
2574 }
2575 } else {
2576 sb->s_flags |= MS_NOUSER;
2577 }
2578 sb->s_export_op = &shmem_export_ops;
2579 sb->s_flags |= MS_NOSEC;
2580 #else
2581 sb->s_flags |= MS_NOUSER;
2582 #endif
2583
2584 spin_lock_init(&sbinfo->stat_lock);
2585 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2586 goto failed;
2587 sbinfo->free_inodes = sbinfo->max_inodes;
2588
2589 sb->s_maxbytes = MAX_LFS_FILESIZE;
2590 sb->s_blocksize = PAGE_CACHE_SIZE;
2591 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2592 sb->s_magic = TMPFS_MAGIC;
2593 sb->s_op = &shmem_ops;
2594 sb->s_time_gran = 1;
2595 #ifdef CONFIG_TMPFS_XATTR
2596 sb->s_xattr = shmem_xattr_handlers;
2597 #endif
2598 #ifdef CONFIG_TMPFS_POSIX_ACL
2599 sb->s_flags |= MS_POSIXACL;
2600 #endif
2601
2602 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2603 if (!inode)
2604 goto failed;
2605 inode->i_uid = sbinfo->uid;
2606 inode->i_gid = sbinfo->gid;
2607 sb->s_root = d_make_root(inode);
2608 if (!sb->s_root)
2609 goto failed;
2610 return 0;
2611
2612 failed:
2613 shmem_put_super(sb);
2614 return err;
2615 }
2616
2617 static struct kmem_cache *shmem_inode_cachep;
2618
2619 static struct inode *shmem_alloc_inode(struct super_block *sb)
2620 {
2621 struct shmem_inode_info *info;
2622 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2623 if (!info)
2624 return NULL;
2625 return &info->vfs_inode;
2626 }
2627
2628 static void shmem_destroy_callback(struct rcu_head *head)
2629 {
2630 struct inode *inode = container_of(head, struct inode, i_rcu);
2631 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2632 }
2633
2634 static void shmem_destroy_inode(struct inode *inode)
2635 {
2636 if (S_ISREG(inode->i_mode))
2637 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2638 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2639 }
2640
2641 static void shmem_init_inode(void *foo)
2642 {
2643 struct shmem_inode_info *info = foo;
2644 inode_init_once(&info->vfs_inode);
2645 }
2646
2647 static int shmem_init_inodecache(void)
2648 {
2649 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2650 sizeof(struct shmem_inode_info),
2651 0, SLAB_PANIC, shmem_init_inode);
2652 return 0;
2653 }
2654
2655 static void shmem_destroy_inodecache(void)
2656 {
2657 kmem_cache_destroy(shmem_inode_cachep);
2658 }
2659
2660 static const struct address_space_operations shmem_aops = {
2661 .writepage = shmem_writepage,
2662 .set_page_dirty = __set_page_dirty_no_writeback,
2663 #ifdef CONFIG_TMPFS
2664 .write_begin = shmem_write_begin,
2665 .write_end = shmem_write_end,
2666 #endif
2667 .migratepage = migrate_page,
2668 .error_remove_page = generic_error_remove_page,
2669 };
2670
2671 static const struct file_operations shmem_file_operations = {
2672 .mmap = shmem_mmap,
2673 #ifdef CONFIG_TMPFS
2674 .llseek = shmem_file_llseek,
2675 .read = new_sync_read,
2676 .write = new_sync_write,
2677 .read_iter = shmem_file_read_iter,
2678 .write_iter = generic_file_write_iter,
2679 .fsync = noop_fsync,
2680 .splice_read = shmem_file_splice_read,
2681 .splice_write = iter_file_splice_write,
2682 .fallocate = shmem_fallocate,
2683 #endif
2684 };
2685
2686 static const struct inode_operations shmem_inode_operations = {
2687 .setattr = shmem_setattr,
2688 #ifdef CONFIG_TMPFS_XATTR
2689 .setxattr = shmem_setxattr,
2690 .getxattr = shmem_getxattr,
2691 .listxattr = shmem_listxattr,
2692 .removexattr = shmem_removexattr,
2693 .set_acl = simple_set_acl,
2694 #endif
2695 };
2696
2697 static const struct inode_operations shmem_dir_inode_operations = {
2698 #ifdef CONFIG_TMPFS
2699 .create = shmem_create,
2700 .lookup = simple_lookup,
2701 .link = shmem_link,
2702 .unlink = shmem_unlink,
2703 .symlink = shmem_symlink,
2704 .mkdir = shmem_mkdir,
2705 .rmdir = shmem_rmdir,
2706 .mknod = shmem_mknod,
2707 .rename = shmem_rename,
2708 .tmpfile = shmem_tmpfile,
2709 #endif
2710 #ifdef CONFIG_TMPFS_XATTR
2711 .setxattr = shmem_setxattr,
2712 .getxattr = shmem_getxattr,
2713 .listxattr = shmem_listxattr,
2714 .removexattr = shmem_removexattr,
2715 #endif
2716 #ifdef CONFIG_TMPFS_POSIX_ACL
2717 .setattr = shmem_setattr,
2718 .set_acl = simple_set_acl,
2719 #endif
2720 };
2721
2722 static const struct inode_operations shmem_special_inode_operations = {
2723 #ifdef CONFIG_TMPFS_XATTR
2724 .setxattr = shmem_setxattr,
2725 .getxattr = shmem_getxattr,
2726 .listxattr = shmem_listxattr,
2727 .removexattr = shmem_removexattr,
2728 #endif
2729 #ifdef CONFIG_TMPFS_POSIX_ACL
2730 .setattr = shmem_setattr,
2731 .set_acl = simple_set_acl,
2732 #endif
2733 };
2734
2735 static const struct super_operations shmem_ops = {
2736 .alloc_inode = shmem_alloc_inode,
2737 .destroy_inode = shmem_destroy_inode,
2738 #ifdef CONFIG_TMPFS
2739 .statfs = shmem_statfs,
2740 .remount_fs = shmem_remount_fs,
2741 .show_options = shmem_show_options,
2742 #endif
2743 .evict_inode = shmem_evict_inode,
2744 .drop_inode = generic_delete_inode,
2745 .put_super = shmem_put_super,
2746 };
2747
2748 static const struct vm_operations_struct shmem_vm_ops = {
2749 .fault = shmem_fault,
2750 .map_pages = filemap_map_pages,
2751 #ifdef CONFIG_NUMA
2752 .set_policy = shmem_set_policy,
2753 .get_policy = shmem_get_policy,
2754 #endif
2755 .remap_pages = generic_file_remap_pages,
2756 };
2757
2758 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2759 int flags, const char *dev_name, void *data)
2760 {
2761 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2762 }
2763
2764 static struct file_system_type shmem_fs_type = {
2765 .owner = THIS_MODULE,
2766 .name = "tmpfs",
2767 .mount = shmem_mount,
2768 .kill_sb = kill_litter_super,
2769 .fs_flags = FS_USERNS_MOUNT,
2770 };
2771
2772 int __init shmem_init(void)
2773 {
2774 int error;
2775
2776 /* If rootfs called this, don't re-init */
2777 if (shmem_inode_cachep)
2778 return 0;
2779
2780 error = bdi_init(&shmem_backing_dev_info);
2781 if (error)
2782 goto out4;
2783
2784 error = shmem_init_inodecache();
2785 if (error)
2786 goto out3;
2787
2788 error = register_filesystem(&shmem_fs_type);
2789 if (error) {
2790 printk(KERN_ERR "Could not register tmpfs\n");
2791 goto out2;
2792 }
2793
2794 shm_mnt = kern_mount(&shmem_fs_type);
2795 if (IS_ERR(shm_mnt)) {
2796 error = PTR_ERR(shm_mnt);
2797 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2798 goto out1;
2799 }
2800 return 0;
2801
2802 out1:
2803 unregister_filesystem(&shmem_fs_type);
2804 out2:
2805 shmem_destroy_inodecache();
2806 out3:
2807 bdi_destroy(&shmem_backing_dev_info);
2808 out4:
2809 shm_mnt = ERR_PTR(error);
2810 return error;
2811 }
2812
2813 #else /* !CONFIG_SHMEM */
2814
2815 /*
2816 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2817 *
2818 * This is intended for small system where the benefits of the full
2819 * shmem code (swap-backed and resource-limited) are outweighed by
2820 * their complexity. On systems without swap this code should be
2821 * effectively equivalent, but much lighter weight.
2822 */
2823
2824 static struct file_system_type shmem_fs_type = {
2825 .name = "tmpfs",
2826 .mount = ramfs_mount,
2827 .kill_sb = kill_litter_super,
2828 .fs_flags = FS_USERNS_MOUNT,
2829 };
2830
2831 int __init shmem_init(void)
2832 {
2833 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2834
2835 shm_mnt = kern_mount(&shmem_fs_type);
2836 BUG_ON(IS_ERR(shm_mnt));
2837
2838 return 0;
2839 }
2840
2841 int shmem_unuse(swp_entry_t swap, struct page *page)
2842 {
2843 return 0;
2844 }
2845
2846 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2847 {
2848 return 0;
2849 }
2850
2851 void shmem_unlock_mapping(struct address_space *mapping)
2852 {
2853 }
2854
2855 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2856 {
2857 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2858 }
2859 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2860
2861 #define shmem_vm_ops generic_file_vm_ops
2862 #define shmem_file_operations ramfs_file_operations
2863 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2864 #define shmem_acct_size(flags, size) 0
2865 #define shmem_unacct_size(flags, size) do {} while (0)
2866
2867 #endif /* CONFIG_SHMEM */
2868
2869 /* common code */
2870
2871 static struct dentry_operations anon_ops = {
2872 .d_dname = simple_dname
2873 };
2874
2875 static struct file *__shmem_file_setup(const char *name, loff_t size,
2876 unsigned long flags, unsigned int i_flags)
2877 {
2878 struct file *res;
2879 struct inode *inode;
2880 struct path path;
2881 struct super_block *sb;
2882 struct qstr this;
2883
2884 if (IS_ERR(shm_mnt))
2885 return ERR_CAST(shm_mnt);
2886
2887 if (size < 0 || size > MAX_LFS_FILESIZE)
2888 return ERR_PTR(-EINVAL);
2889
2890 if (shmem_acct_size(flags, size))
2891 return ERR_PTR(-ENOMEM);
2892
2893 res = ERR_PTR(-ENOMEM);
2894 this.name = name;
2895 this.len = strlen(name);
2896 this.hash = 0; /* will go */
2897 sb = shm_mnt->mnt_sb;
2898 path.dentry = d_alloc_pseudo(sb, &this);
2899 if (!path.dentry)
2900 goto put_memory;
2901 d_set_d_op(path.dentry, &anon_ops);
2902 path.mnt = mntget(shm_mnt);
2903
2904 res = ERR_PTR(-ENOSPC);
2905 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2906 if (!inode)
2907 goto put_dentry;
2908
2909 inode->i_flags |= i_flags;
2910 d_instantiate(path.dentry, inode);
2911 inode->i_size = size;
2912 clear_nlink(inode); /* It is unlinked */
2913 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2914 if (IS_ERR(res))
2915 goto put_dentry;
2916
2917 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2918 &shmem_file_operations);
2919 if (IS_ERR(res))
2920 goto put_dentry;
2921
2922 return res;
2923
2924 put_dentry:
2925 path_put(&path);
2926 put_memory:
2927 shmem_unacct_size(flags, size);
2928 return res;
2929 }
2930
2931 /**
2932 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2933 * kernel internal. There will be NO LSM permission checks against the
2934 * underlying inode. So users of this interface must do LSM checks at a
2935 * higher layer. The one user is the big_key implementation. LSM checks
2936 * are provided at the key level rather than the inode level.
2937 * @name: name for dentry (to be seen in /proc/<pid>/maps
2938 * @size: size to be set for the file
2939 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2940 */
2941 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2942 {
2943 return __shmem_file_setup(name, size, flags, S_PRIVATE);
2944 }
2945
2946 /**
2947 * shmem_file_setup - get an unlinked file living in tmpfs
2948 * @name: name for dentry (to be seen in /proc/<pid>/maps
2949 * @size: size to be set for the file
2950 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2951 */
2952 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2953 {
2954 return __shmem_file_setup(name, size, flags, 0);
2955 }
2956 EXPORT_SYMBOL_GPL(shmem_file_setup);
2957
2958 /**
2959 * shmem_zero_setup - setup a shared anonymous mapping
2960 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2961 */
2962 int shmem_zero_setup(struct vm_area_struct *vma)
2963 {
2964 struct file *file;
2965 loff_t size = vma->vm_end - vma->vm_start;
2966
2967 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2968 if (IS_ERR(file))
2969 return PTR_ERR(file);
2970
2971 if (vma->vm_file)
2972 fput(vma->vm_file);
2973 vma->vm_file = file;
2974 vma->vm_ops = &shmem_vm_ops;
2975 return 0;
2976 }
2977
2978 /**
2979 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2980 * @mapping: the page's address_space
2981 * @index: the page index
2982 * @gfp: the page allocator flags to use if allocating
2983 *
2984 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2985 * with any new page allocations done using the specified allocation flags.
2986 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2987 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2988 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2989 *
2990 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2991 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2992 */
2993 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2994 pgoff_t index, gfp_t gfp)
2995 {
2996 #ifdef CONFIG_SHMEM
2997 struct inode *inode = mapping->host;
2998 struct page *page;
2999 int error;
3000
3001 BUG_ON(mapping->a_ops != &shmem_aops);
3002 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3003 if (error)
3004 page = ERR_PTR(error);
3005 else
3006 unlock_page(page);
3007 return page;
3008 #else
3009 /*
3010 * The tiny !SHMEM case uses ramfs without swap
3011 */
3012 return read_cache_page_gfp(mapping, index, gfp);
3013 #endif
3014 }
3015 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);