]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/shmem.c
Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
86 */
87 struct shmem_falloc {
88 pgoff_t start; /* start of range currently being fallocated */
89 pgoff_t next; /* the next page offset to be fallocated */
90 pgoff_t nr_falloced; /* how many new pages have been fallocated */
91 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
92 };
93
94 /* Flag allocation requirements to shmem_getpage */
95 enum sgp_type {
96 SGP_READ, /* don't exceed i_size, don't allocate page */
97 SGP_CACHE, /* don't exceed i_size, may allocate page */
98 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
99 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
100 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
101 };
102
103 #ifdef CONFIG_TMPFS
104 static unsigned long shmem_default_max_blocks(void)
105 {
106 return totalram_pages / 2;
107 }
108
109 static unsigned long shmem_default_max_inodes(void)
110 {
111 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112 }
113 #endif
114
115 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117 struct shmem_inode_info *info, pgoff_t index);
118 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122 struct page **pagep, enum sgp_type sgp, int *fault_type)
123 {
124 return shmem_getpage_gfp(inode, index, pagep, sgp,
125 mapping_gfp_mask(inode->i_mapping), fault_type);
126 }
127
128 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 {
130 return sb->s_fs_info;
131 }
132
133 /*
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
138 */
139 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 {
141 return (flags & VM_NORESERVE) ?
142 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143 }
144
145 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 {
147 if (!(flags & VM_NORESERVE))
148 vm_unacct_memory(VM_ACCT(size));
149 }
150
151 /*
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156 */
157 static inline int shmem_acct_block(unsigned long flags)
158 {
159 return (flags & VM_NORESERVE) ?
160 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161 }
162
163 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164 {
165 if (flags & VM_NORESERVE)
166 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167 }
168
169 static const struct super_operations shmem_ops;
170 static const struct address_space_operations shmem_aops;
171 static const struct file_operations shmem_file_operations;
172 static const struct inode_operations shmem_inode_operations;
173 static const struct inode_operations shmem_dir_inode_operations;
174 static const struct inode_operations shmem_special_inode_operations;
175 static const struct vm_operations_struct shmem_vm_ops;
176
177 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
178 .ra_pages = 0, /* No readahead */
179 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180 };
181
182 static LIST_HEAD(shmem_swaplist);
183 static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185 static int shmem_reserve_inode(struct super_block *sb)
186 {
187 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188 if (sbinfo->max_inodes) {
189 spin_lock(&sbinfo->stat_lock);
190 if (!sbinfo->free_inodes) {
191 spin_unlock(&sbinfo->stat_lock);
192 return -ENOSPC;
193 }
194 sbinfo->free_inodes--;
195 spin_unlock(&sbinfo->stat_lock);
196 }
197 return 0;
198 }
199
200 static void shmem_free_inode(struct super_block *sb)
201 {
202 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203 if (sbinfo->max_inodes) {
204 spin_lock(&sbinfo->stat_lock);
205 sbinfo->free_inodes++;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208 }
209
210 /**
211 * shmem_recalc_inode - recalculate the block usage of an inode
212 * @inode: inode to recalc
213 *
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
216 *
217 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219 *
220 * It has to be called with the spinlock held.
221 */
222 static void shmem_recalc_inode(struct inode *inode)
223 {
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 long freed;
226
227 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228 if (freed > 0) {
229 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230 if (sbinfo->max_blocks)
231 percpu_counter_add(&sbinfo->used_blocks, -freed);
232 info->alloced -= freed;
233 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234 shmem_unacct_blocks(info->flags, freed);
235 }
236 }
237
238 /*
239 * Replace item expected in radix tree by a new item, while holding tree lock.
240 */
241 static int shmem_radix_tree_replace(struct address_space *mapping,
242 pgoff_t index, void *expected, void *replacement)
243 {
244 void **pslot;
245 void *item;
246
247 VM_BUG_ON(!expected);
248 VM_BUG_ON(!replacement);
249 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250 if (!pslot)
251 return -ENOENT;
252 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
253 if (item != expected)
254 return -ENOENT;
255 radix_tree_replace_slot(pslot, replacement);
256 return 0;
257 }
258
259 /*
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
262 *
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
265 */
266 static bool shmem_confirm_swap(struct address_space *mapping,
267 pgoff_t index, swp_entry_t swap)
268 {
269 void *item;
270
271 rcu_read_lock();
272 item = radix_tree_lookup(&mapping->page_tree, index);
273 rcu_read_unlock();
274 return item == swp_to_radix_entry(swap);
275 }
276
277 /*
278 * Like add_to_page_cache_locked, but error if expected item has gone.
279 */
280 static int shmem_add_to_page_cache(struct page *page,
281 struct address_space *mapping,
282 pgoff_t index, gfp_t gfp, void *expected)
283 {
284 int error;
285
286 VM_BUG_ON_PAGE(!PageLocked(page), page);
287 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
288
289 page_cache_get(page);
290 page->mapping = mapping;
291 page->index = index;
292
293 spin_lock_irq(&mapping->tree_lock);
294 if (!expected)
295 error = radix_tree_insert(&mapping->page_tree, index, page);
296 else
297 error = shmem_radix_tree_replace(mapping, index, expected,
298 page);
299 if (!error) {
300 mapping->nrpages++;
301 __inc_zone_page_state(page, NR_FILE_PAGES);
302 __inc_zone_page_state(page, NR_SHMEM);
303 spin_unlock_irq(&mapping->tree_lock);
304 } else {
305 page->mapping = NULL;
306 spin_unlock_irq(&mapping->tree_lock);
307 page_cache_release(page);
308 }
309 return error;
310 }
311
312 /*
313 * Like delete_from_page_cache, but substitutes swap for page.
314 */
315 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316 {
317 struct address_space *mapping = page->mapping;
318 int error;
319
320 spin_lock_irq(&mapping->tree_lock);
321 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322 page->mapping = NULL;
323 mapping->nrpages--;
324 __dec_zone_page_state(page, NR_FILE_PAGES);
325 __dec_zone_page_state(page, NR_SHMEM);
326 spin_unlock_irq(&mapping->tree_lock);
327 page_cache_release(page);
328 BUG_ON(error);
329 }
330
331 /*
332 * Remove swap entry from radix tree, free the swap and its page cache.
333 */
334 static int shmem_free_swap(struct address_space *mapping,
335 pgoff_t index, void *radswap)
336 {
337 void *old;
338
339 spin_lock_irq(&mapping->tree_lock);
340 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
341 spin_unlock_irq(&mapping->tree_lock);
342 if (old != radswap)
343 return -ENOENT;
344 free_swap_and_cache(radix_to_swp_entry(radswap));
345 return 0;
346 }
347
348 /*
349 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
350 */
351 void shmem_unlock_mapping(struct address_space *mapping)
352 {
353 struct pagevec pvec;
354 pgoff_t indices[PAGEVEC_SIZE];
355 pgoff_t index = 0;
356
357 pagevec_init(&pvec, 0);
358 /*
359 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
360 */
361 while (!mapping_unevictable(mapping)) {
362 /*
363 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
364 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
365 */
366 pvec.nr = find_get_entries(mapping, index,
367 PAGEVEC_SIZE, pvec.pages, indices);
368 if (!pvec.nr)
369 break;
370 index = indices[pvec.nr - 1] + 1;
371 pagevec_remove_exceptionals(&pvec);
372 check_move_unevictable_pages(pvec.pages, pvec.nr);
373 pagevec_release(&pvec);
374 cond_resched();
375 }
376 }
377
378 /*
379 * Remove range of pages and swap entries from radix tree, and free them.
380 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
381 */
382 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
383 bool unfalloc)
384 {
385 struct address_space *mapping = inode->i_mapping;
386 struct shmem_inode_info *info = SHMEM_I(inode);
387 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
388 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
389 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
390 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
391 struct pagevec pvec;
392 pgoff_t indices[PAGEVEC_SIZE];
393 long nr_swaps_freed = 0;
394 pgoff_t index;
395 int i;
396
397 if (lend == -1)
398 end = -1; /* unsigned, so actually very big */
399
400 pagevec_init(&pvec, 0);
401 index = start;
402 while (index < end) {
403 pvec.nr = find_get_entries(mapping, index,
404 min(end - index, (pgoff_t)PAGEVEC_SIZE),
405 pvec.pages, indices);
406 if (!pvec.nr)
407 break;
408 mem_cgroup_uncharge_start();
409 for (i = 0; i < pagevec_count(&pvec); i++) {
410 struct page *page = pvec.pages[i];
411
412 index = indices[i];
413 if (index >= end)
414 break;
415
416 if (radix_tree_exceptional_entry(page)) {
417 if (unfalloc)
418 continue;
419 nr_swaps_freed += !shmem_free_swap(mapping,
420 index, page);
421 continue;
422 }
423
424 if (!trylock_page(page))
425 continue;
426 if (!unfalloc || !PageUptodate(page)) {
427 if (page->mapping == mapping) {
428 VM_BUG_ON_PAGE(PageWriteback(page), page);
429 truncate_inode_page(mapping, page);
430 }
431 }
432 unlock_page(page);
433 }
434 pagevec_remove_exceptionals(&pvec);
435 pagevec_release(&pvec);
436 mem_cgroup_uncharge_end();
437 cond_resched();
438 index++;
439 }
440
441 if (partial_start) {
442 struct page *page = NULL;
443 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
444 if (page) {
445 unsigned int top = PAGE_CACHE_SIZE;
446 if (start > end) {
447 top = partial_end;
448 partial_end = 0;
449 }
450 zero_user_segment(page, partial_start, top);
451 set_page_dirty(page);
452 unlock_page(page);
453 page_cache_release(page);
454 }
455 }
456 if (partial_end) {
457 struct page *page = NULL;
458 shmem_getpage(inode, end, &page, SGP_READ, NULL);
459 if (page) {
460 zero_user_segment(page, 0, partial_end);
461 set_page_dirty(page);
462 unlock_page(page);
463 page_cache_release(page);
464 }
465 }
466 if (start >= end)
467 return;
468
469 index = start;
470 for ( ; ; ) {
471 cond_resched();
472
473 pvec.nr = find_get_entries(mapping, index,
474 min(end - index, (pgoff_t)PAGEVEC_SIZE),
475 pvec.pages, indices);
476 if (!pvec.nr) {
477 if (index == start || unfalloc)
478 break;
479 index = start;
480 continue;
481 }
482 if ((index == start || unfalloc) && indices[0] >= end) {
483 pagevec_remove_exceptionals(&pvec);
484 pagevec_release(&pvec);
485 break;
486 }
487 mem_cgroup_uncharge_start();
488 for (i = 0; i < pagevec_count(&pvec); i++) {
489 struct page *page = pvec.pages[i];
490
491 index = indices[i];
492 if (index >= end)
493 break;
494
495 if (radix_tree_exceptional_entry(page)) {
496 if (unfalloc)
497 continue;
498 nr_swaps_freed += !shmem_free_swap(mapping,
499 index, page);
500 continue;
501 }
502
503 lock_page(page);
504 if (!unfalloc || !PageUptodate(page)) {
505 if (page->mapping == mapping) {
506 VM_BUG_ON_PAGE(PageWriteback(page), page);
507 truncate_inode_page(mapping, page);
508 }
509 }
510 unlock_page(page);
511 }
512 pagevec_remove_exceptionals(&pvec);
513 pagevec_release(&pvec);
514 mem_cgroup_uncharge_end();
515 index++;
516 }
517
518 spin_lock(&info->lock);
519 info->swapped -= nr_swaps_freed;
520 shmem_recalc_inode(inode);
521 spin_unlock(&info->lock);
522 }
523
524 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
525 {
526 shmem_undo_range(inode, lstart, lend, false);
527 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
528 }
529 EXPORT_SYMBOL_GPL(shmem_truncate_range);
530
531 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
532 {
533 struct inode *inode = dentry->d_inode;
534 int error;
535
536 error = inode_change_ok(inode, attr);
537 if (error)
538 return error;
539
540 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
541 loff_t oldsize = inode->i_size;
542 loff_t newsize = attr->ia_size;
543
544 if (newsize != oldsize) {
545 i_size_write(inode, newsize);
546 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547 }
548 if (newsize < oldsize) {
549 loff_t holebegin = round_up(newsize, PAGE_SIZE);
550 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
551 shmem_truncate_range(inode, newsize, (loff_t)-1);
552 /* unmap again to remove racily COWed private pages */
553 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
554 }
555 }
556
557 setattr_copy(inode, attr);
558 if (attr->ia_valid & ATTR_MODE)
559 error = posix_acl_chmod(inode, inode->i_mode);
560 return error;
561 }
562
563 static void shmem_evict_inode(struct inode *inode)
564 {
565 struct shmem_inode_info *info = SHMEM_I(inode);
566
567 if (inode->i_mapping->a_ops == &shmem_aops) {
568 shmem_unacct_size(info->flags, inode->i_size);
569 inode->i_size = 0;
570 shmem_truncate_range(inode, 0, (loff_t)-1);
571 if (!list_empty(&info->swaplist)) {
572 mutex_lock(&shmem_swaplist_mutex);
573 list_del_init(&info->swaplist);
574 mutex_unlock(&shmem_swaplist_mutex);
575 }
576 } else
577 kfree(info->symlink);
578
579 simple_xattrs_free(&info->xattrs);
580 WARN_ON(inode->i_blocks);
581 shmem_free_inode(inode->i_sb);
582 clear_inode(inode);
583 }
584
585 /*
586 * If swap found in inode, free it and move page from swapcache to filecache.
587 */
588 static int shmem_unuse_inode(struct shmem_inode_info *info,
589 swp_entry_t swap, struct page **pagep)
590 {
591 struct address_space *mapping = info->vfs_inode.i_mapping;
592 void *radswap;
593 pgoff_t index;
594 gfp_t gfp;
595 int error = 0;
596
597 radswap = swp_to_radix_entry(swap);
598 index = radix_tree_locate_item(&mapping->page_tree, radswap);
599 if (index == -1)
600 return 0;
601
602 /*
603 * Move _head_ to start search for next from here.
604 * But be careful: shmem_evict_inode checks list_empty without taking
605 * mutex, and there's an instant in list_move_tail when info->swaplist
606 * would appear empty, if it were the only one on shmem_swaplist.
607 */
608 if (shmem_swaplist.next != &info->swaplist)
609 list_move_tail(&shmem_swaplist, &info->swaplist);
610
611 gfp = mapping_gfp_mask(mapping);
612 if (shmem_should_replace_page(*pagep, gfp)) {
613 mutex_unlock(&shmem_swaplist_mutex);
614 error = shmem_replace_page(pagep, gfp, info, index);
615 mutex_lock(&shmem_swaplist_mutex);
616 /*
617 * We needed to drop mutex to make that restrictive page
618 * allocation, but the inode might have been freed while we
619 * dropped it: although a racing shmem_evict_inode() cannot
620 * complete without emptying the radix_tree, our page lock
621 * on this swapcache page is not enough to prevent that -
622 * free_swap_and_cache() of our swap entry will only
623 * trylock_page(), removing swap from radix_tree whatever.
624 *
625 * We must not proceed to shmem_add_to_page_cache() if the
626 * inode has been freed, but of course we cannot rely on
627 * inode or mapping or info to check that. However, we can
628 * safely check if our swap entry is still in use (and here
629 * it can't have got reused for another page): if it's still
630 * in use, then the inode cannot have been freed yet, and we
631 * can safely proceed (if it's no longer in use, that tells
632 * nothing about the inode, but we don't need to unuse swap).
633 */
634 if (!page_swapcount(*pagep))
635 error = -ENOENT;
636 }
637
638 /*
639 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
640 * but also to hold up shmem_evict_inode(): so inode cannot be freed
641 * beneath us (pagelock doesn't help until the page is in pagecache).
642 */
643 if (!error)
644 error = shmem_add_to_page_cache(*pagep, mapping, index,
645 GFP_NOWAIT, radswap);
646 if (error != -ENOMEM) {
647 /*
648 * Truncation and eviction use free_swap_and_cache(), which
649 * only does trylock page: if we raced, best clean up here.
650 */
651 delete_from_swap_cache(*pagep);
652 set_page_dirty(*pagep);
653 if (!error) {
654 spin_lock(&info->lock);
655 info->swapped--;
656 spin_unlock(&info->lock);
657 swap_free(swap);
658 }
659 error = 1; /* not an error, but entry was found */
660 }
661 return error;
662 }
663
664 /*
665 * Search through swapped inodes to find and replace swap by page.
666 */
667 int shmem_unuse(swp_entry_t swap, struct page *page)
668 {
669 struct list_head *this, *next;
670 struct shmem_inode_info *info;
671 int found = 0;
672 int error = 0;
673
674 /*
675 * There's a faint possibility that swap page was replaced before
676 * caller locked it: caller will come back later with the right page.
677 */
678 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
679 goto out;
680
681 /*
682 * Charge page using GFP_KERNEL while we can wait, before taking
683 * the shmem_swaplist_mutex which might hold up shmem_writepage().
684 * Charged back to the user (not to caller) when swap account is used.
685 */
686 error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
687 if (error)
688 goto out;
689 /* No radix_tree_preload: swap entry keeps a place for page in tree */
690
691 mutex_lock(&shmem_swaplist_mutex);
692 list_for_each_safe(this, next, &shmem_swaplist) {
693 info = list_entry(this, struct shmem_inode_info, swaplist);
694 if (info->swapped)
695 found = shmem_unuse_inode(info, swap, &page);
696 else
697 list_del_init(&info->swaplist);
698 cond_resched();
699 if (found)
700 break;
701 }
702 mutex_unlock(&shmem_swaplist_mutex);
703
704 if (found < 0)
705 error = found;
706 out:
707 unlock_page(page);
708 page_cache_release(page);
709 return error;
710 }
711
712 /*
713 * Move the page from the page cache to the swap cache.
714 */
715 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
716 {
717 struct shmem_inode_info *info;
718 struct address_space *mapping;
719 struct inode *inode;
720 swp_entry_t swap;
721 pgoff_t index;
722
723 BUG_ON(!PageLocked(page));
724 mapping = page->mapping;
725 index = page->index;
726 inode = mapping->host;
727 info = SHMEM_I(inode);
728 if (info->flags & VM_LOCKED)
729 goto redirty;
730 if (!total_swap_pages)
731 goto redirty;
732
733 /*
734 * shmem_backing_dev_info's capabilities prevent regular writeback or
735 * sync from ever calling shmem_writepage; but a stacking filesystem
736 * might use ->writepage of its underlying filesystem, in which case
737 * tmpfs should write out to swap only in response to memory pressure,
738 * and not for the writeback threads or sync.
739 */
740 if (!wbc->for_reclaim) {
741 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
742 goto redirty;
743 }
744
745 /*
746 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
747 * value into swapfile.c, the only way we can correctly account for a
748 * fallocated page arriving here is now to initialize it and write it.
749 *
750 * That's okay for a page already fallocated earlier, but if we have
751 * not yet completed the fallocation, then (a) we want to keep track
752 * of this page in case we have to undo it, and (b) it may not be a
753 * good idea to continue anyway, once we're pushing into swap. So
754 * reactivate the page, and let shmem_fallocate() quit when too many.
755 */
756 if (!PageUptodate(page)) {
757 if (inode->i_private) {
758 struct shmem_falloc *shmem_falloc;
759 spin_lock(&inode->i_lock);
760 shmem_falloc = inode->i_private;
761 if (shmem_falloc &&
762 index >= shmem_falloc->start &&
763 index < shmem_falloc->next)
764 shmem_falloc->nr_unswapped++;
765 else
766 shmem_falloc = NULL;
767 spin_unlock(&inode->i_lock);
768 if (shmem_falloc)
769 goto redirty;
770 }
771 clear_highpage(page);
772 flush_dcache_page(page);
773 SetPageUptodate(page);
774 }
775
776 swap = get_swap_page();
777 if (!swap.val)
778 goto redirty;
779
780 /*
781 * Add inode to shmem_unuse()'s list of swapped-out inodes,
782 * if it's not already there. Do it now before the page is
783 * moved to swap cache, when its pagelock no longer protects
784 * the inode from eviction. But don't unlock the mutex until
785 * we've incremented swapped, because shmem_unuse_inode() will
786 * prune a !swapped inode from the swaplist under this mutex.
787 */
788 mutex_lock(&shmem_swaplist_mutex);
789 if (list_empty(&info->swaplist))
790 list_add_tail(&info->swaplist, &shmem_swaplist);
791
792 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
793 swap_shmem_alloc(swap);
794 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
795
796 spin_lock(&info->lock);
797 info->swapped++;
798 shmem_recalc_inode(inode);
799 spin_unlock(&info->lock);
800
801 mutex_unlock(&shmem_swaplist_mutex);
802 BUG_ON(page_mapped(page));
803 swap_writepage(page, wbc);
804 return 0;
805 }
806
807 mutex_unlock(&shmem_swaplist_mutex);
808 swapcache_free(swap, NULL);
809 redirty:
810 set_page_dirty(page);
811 if (wbc->for_reclaim)
812 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
813 unlock_page(page);
814 return 0;
815 }
816
817 #ifdef CONFIG_NUMA
818 #ifdef CONFIG_TMPFS
819 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
820 {
821 char buffer[64];
822
823 if (!mpol || mpol->mode == MPOL_DEFAULT)
824 return; /* show nothing */
825
826 mpol_to_str(buffer, sizeof(buffer), mpol);
827
828 seq_printf(seq, ",mpol=%s", buffer);
829 }
830
831 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
832 {
833 struct mempolicy *mpol = NULL;
834 if (sbinfo->mpol) {
835 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
836 mpol = sbinfo->mpol;
837 mpol_get(mpol);
838 spin_unlock(&sbinfo->stat_lock);
839 }
840 return mpol;
841 }
842 #endif /* CONFIG_TMPFS */
843
844 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
845 struct shmem_inode_info *info, pgoff_t index)
846 {
847 struct vm_area_struct pvma;
848 struct page *page;
849
850 /* Create a pseudo vma that just contains the policy */
851 pvma.vm_start = 0;
852 /* Bias interleave by inode number to distribute better across nodes */
853 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
854 pvma.vm_ops = NULL;
855 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
856
857 page = swapin_readahead(swap, gfp, &pvma, 0);
858
859 /* Drop reference taken by mpol_shared_policy_lookup() */
860 mpol_cond_put(pvma.vm_policy);
861
862 return page;
863 }
864
865 static struct page *shmem_alloc_page(gfp_t gfp,
866 struct shmem_inode_info *info, pgoff_t index)
867 {
868 struct vm_area_struct pvma;
869 struct page *page;
870
871 /* Create a pseudo vma that just contains the policy */
872 pvma.vm_start = 0;
873 /* Bias interleave by inode number to distribute better across nodes */
874 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
875 pvma.vm_ops = NULL;
876 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
877
878 page = alloc_page_vma(gfp, &pvma, 0);
879
880 /* Drop reference taken by mpol_shared_policy_lookup() */
881 mpol_cond_put(pvma.vm_policy);
882
883 return page;
884 }
885 #else /* !CONFIG_NUMA */
886 #ifdef CONFIG_TMPFS
887 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
888 {
889 }
890 #endif /* CONFIG_TMPFS */
891
892 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
893 struct shmem_inode_info *info, pgoff_t index)
894 {
895 return swapin_readahead(swap, gfp, NULL, 0);
896 }
897
898 static inline struct page *shmem_alloc_page(gfp_t gfp,
899 struct shmem_inode_info *info, pgoff_t index)
900 {
901 return alloc_page(gfp);
902 }
903 #endif /* CONFIG_NUMA */
904
905 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
906 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
907 {
908 return NULL;
909 }
910 #endif
911
912 /*
913 * When a page is moved from swapcache to shmem filecache (either by the
914 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
915 * shmem_unuse_inode()), it may have been read in earlier from swap, in
916 * ignorance of the mapping it belongs to. If that mapping has special
917 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
918 * we may need to copy to a suitable page before moving to filecache.
919 *
920 * In a future release, this may well be extended to respect cpuset and
921 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
922 * but for now it is a simple matter of zone.
923 */
924 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
925 {
926 return page_zonenum(page) > gfp_zone(gfp);
927 }
928
929 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
930 struct shmem_inode_info *info, pgoff_t index)
931 {
932 struct page *oldpage, *newpage;
933 struct address_space *swap_mapping;
934 pgoff_t swap_index;
935 int error;
936
937 oldpage = *pagep;
938 swap_index = page_private(oldpage);
939 swap_mapping = page_mapping(oldpage);
940
941 /*
942 * We have arrived here because our zones are constrained, so don't
943 * limit chance of success by further cpuset and node constraints.
944 */
945 gfp &= ~GFP_CONSTRAINT_MASK;
946 newpage = shmem_alloc_page(gfp, info, index);
947 if (!newpage)
948 return -ENOMEM;
949
950 page_cache_get(newpage);
951 copy_highpage(newpage, oldpage);
952 flush_dcache_page(newpage);
953
954 __set_page_locked(newpage);
955 SetPageUptodate(newpage);
956 SetPageSwapBacked(newpage);
957 set_page_private(newpage, swap_index);
958 SetPageSwapCache(newpage);
959
960 /*
961 * Our caller will very soon move newpage out of swapcache, but it's
962 * a nice clean interface for us to replace oldpage by newpage there.
963 */
964 spin_lock_irq(&swap_mapping->tree_lock);
965 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
966 newpage);
967 if (!error) {
968 __inc_zone_page_state(newpage, NR_FILE_PAGES);
969 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
970 }
971 spin_unlock_irq(&swap_mapping->tree_lock);
972
973 if (unlikely(error)) {
974 /*
975 * Is this possible? I think not, now that our callers check
976 * both PageSwapCache and page_private after getting page lock;
977 * but be defensive. Reverse old to newpage for clear and free.
978 */
979 oldpage = newpage;
980 } else {
981 mem_cgroup_replace_page_cache(oldpage, newpage);
982 lru_cache_add_anon(newpage);
983 *pagep = newpage;
984 }
985
986 ClearPageSwapCache(oldpage);
987 set_page_private(oldpage, 0);
988
989 unlock_page(oldpage);
990 page_cache_release(oldpage);
991 page_cache_release(oldpage);
992 return error;
993 }
994
995 /*
996 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
997 *
998 * If we allocate a new one we do not mark it dirty. That's up to the
999 * vm. If we swap it in we mark it dirty since we also free the swap
1000 * entry since a page cannot live in both the swap and page cache
1001 */
1002 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1003 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1004 {
1005 struct address_space *mapping = inode->i_mapping;
1006 struct shmem_inode_info *info;
1007 struct shmem_sb_info *sbinfo;
1008 struct page *page;
1009 swp_entry_t swap;
1010 int error;
1011 int once = 0;
1012 int alloced = 0;
1013
1014 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1015 return -EFBIG;
1016 repeat:
1017 swap.val = 0;
1018 page = find_lock_entry(mapping, index);
1019 if (radix_tree_exceptional_entry(page)) {
1020 swap = radix_to_swp_entry(page);
1021 page = NULL;
1022 }
1023
1024 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1025 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1026 error = -EINVAL;
1027 goto failed;
1028 }
1029
1030 /* fallocated page? */
1031 if (page && !PageUptodate(page)) {
1032 if (sgp != SGP_READ)
1033 goto clear;
1034 unlock_page(page);
1035 page_cache_release(page);
1036 page = NULL;
1037 }
1038 if (page || (sgp == SGP_READ && !swap.val)) {
1039 *pagep = page;
1040 return 0;
1041 }
1042
1043 /*
1044 * Fast cache lookup did not find it:
1045 * bring it back from swap or allocate.
1046 */
1047 info = SHMEM_I(inode);
1048 sbinfo = SHMEM_SB(inode->i_sb);
1049
1050 if (swap.val) {
1051 /* Look it up and read it in.. */
1052 page = lookup_swap_cache(swap);
1053 if (!page) {
1054 /* here we actually do the io */
1055 if (fault_type)
1056 *fault_type |= VM_FAULT_MAJOR;
1057 page = shmem_swapin(swap, gfp, info, index);
1058 if (!page) {
1059 error = -ENOMEM;
1060 goto failed;
1061 }
1062 }
1063
1064 /* We have to do this with page locked to prevent races */
1065 lock_page(page);
1066 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1067 !shmem_confirm_swap(mapping, index, swap)) {
1068 error = -EEXIST; /* try again */
1069 goto unlock;
1070 }
1071 if (!PageUptodate(page)) {
1072 error = -EIO;
1073 goto failed;
1074 }
1075 wait_on_page_writeback(page);
1076
1077 if (shmem_should_replace_page(page, gfp)) {
1078 error = shmem_replace_page(&page, gfp, info, index);
1079 if (error)
1080 goto failed;
1081 }
1082
1083 error = mem_cgroup_charge_file(page, current->mm,
1084 gfp & GFP_RECLAIM_MASK);
1085 if (!error) {
1086 error = shmem_add_to_page_cache(page, mapping, index,
1087 gfp, swp_to_radix_entry(swap));
1088 /*
1089 * We already confirmed swap under page lock, and make
1090 * no memory allocation here, so usually no possibility
1091 * of error; but free_swap_and_cache() only trylocks a
1092 * page, so it is just possible that the entry has been
1093 * truncated or holepunched since swap was confirmed.
1094 * shmem_undo_range() will have done some of the
1095 * unaccounting, now delete_from_swap_cache() will do
1096 * the rest (including mem_cgroup_uncharge_swapcache).
1097 * Reset swap.val? No, leave it so "failed" goes back to
1098 * "repeat": reading a hole and writing should succeed.
1099 */
1100 if (error)
1101 delete_from_swap_cache(page);
1102 }
1103 if (error)
1104 goto failed;
1105
1106 spin_lock(&info->lock);
1107 info->swapped--;
1108 shmem_recalc_inode(inode);
1109 spin_unlock(&info->lock);
1110
1111 delete_from_swap_cache(page);
1112 set_page_dirty(page);
1113 swap_free(swap);
1114
1115 } else {
1116 if (shmem_acct_block(info->flags)) {
1117 error = -ENOSPC;
1118 goto failed;
1119 }
1120 if (sbinfo->max_blocks) {
1121 if (percpu_counter_compare(&sbinfo->used_blocks,
1122 sbinfo->max_blocks) >= 0) {
1123 error = -ENOSPC;
1124 goto unacct;
1125 }
1126 percpu_counter_inc(&sbinfo->used_blocks);
1127 }
1128
1129 page = shmem_alloc_page(gfp, info, index);
1130 if (!page) {
1131 error = -ENOMEM;
1132 goto decused;
1133 }
1134
1135 SetPageSwapBacked(page);
1136 __set_page_locked(page);
1137 error = mem_cgroup_charge_file(page, current->mm,
1138 gfp & GFP_RECLAIM_MASK);
1139 if (error)
1140 goto decused;
1141 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1142 if (!error) {
1143 error = shmem_add_to_page_cache(page, mapping, index,
1144 gfp, NULL);
1145 radix_tree_preload_end();
1146 }
1147 if (error) {
1148 mem_cgroup_uncharge_cache_page(page);
1149 goto decused;
1150 }
1151 lru_cache_add_anon(page);
1152
1153 spin_lock(&info->lock);
1154 info->alloced++;
1155 inode->i_blocks += BLOCKS_PER_PAGE;
1156 shmem_recalc_inode(inode);
1157 spin_unlock(&info->lock);
1158 alloced = true;
1159
1160 /*
1161 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1162 */
1163 if (sgp == SGP_FALLOC)
1164 sgp = SGP_WRITE;
1165 clear:
1166 /*
1167 * Let SGP_WRITE caller clear ends if write does not fill page;
1168 * but SGP_FALLOC on a page fallocated earlier must initialize
1169 * it now, lest undo on failure cancel our earlier guarantee.
1170 */
1171 if (sgp != SGP_WRITE) {
1172 clear_highpage(page);
1173 flush_dcache_page(page);
1174 SetPageUptodate(page);
1175 }
1176 if (sgp == SGP_DIRTY)
1177 set_page_dirty(page);
1178 }
1179
1180 /* Perhaps the file has been truncated since we checked */
1181 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1182 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1183 error = -EINVAL;
1184 if (alloced)
1185 goto trunc;
1186 else
1187 goto failed;
1188 }
1189 *pagep = page;
1190 return 0;
1191
1192 /*
1193 * Error recovery.
1194 */
1195 trunc:
1196 info = SHMEM_I(inode);
1197 ClearPageDirty(page);
1198 delete_from_page_cache(page);
1199 spin_lock(&info->lock);
1200 info->alloced--;
1201 inode->i_blocks -= BLOCKS_PER_PAGE;
1202 spin_unlock(&info->lock);
1203 decused:
1204 sbinfo = SHMEM_SB(inode->i_sb);
1205 if (sbinfo->max_blocks)
1206 percpu_counter_add(&sbinfo->used_blocks, -1);
1207 unacct:
1208 shmem_unacct_blocks(info->flags, 1);
1209 failed:
1210 if (swap.val && error != -EINVAL &&
1211 !shmem_confirm_swap(mapping, index, swap))
1212 error = -EEXIST;
1213 unlock:
1214 if (page) {
1215 unlock_page(page);
1216 page_cache_release(page);
1217 }
1218 if (error == -ENOSPC && !once++) {
1219 info = SHMEM_I(inode);
1220 spin_lock(&info->lock);
1221 shmem_recalc_inode(inode);
1222 spin_unlock(&info->lock);
1223 goto repeat;
1224 }
1225 if (error == -EEXIST) /* from above or from radix_tree_insert */
1226 goto repeat;
1227 return error;
1228 }
1229
1230 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1231 {
1232 struct inode *inode = file_inode(vma->vm_file);
1233 int error;
1234 int ret = VM_FAULT_LOCKED;
1235
1236 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1237 if (error)
1238 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1239
1240 if (ret & VM_FAULT_MAJOR) {
1241 count_vm_event(PGMAJFAULT);
1242 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1243 }
1244 return ret;
1245 }
1246
1247 #ifdef CONFIG_NUMA
1248 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1249 {
1250 struct inode *inode = file_inode(vma->vm_file);
1251 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1252 }
1253
1254 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1255 unsigned long addr)
1256 {
1257 struct inode *inode = file_inode(vma->vm_file);
1258 pgoff_t index;
1259
1260 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1261 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1262 }
1263 #endif
1264
1265 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1266 {
1267 struct inode *inode = file_inode(file);
1268 struct shmem_inode_info *info = SHMEM_I(inode);
1269 int retval = -ENOMEM;
1270
1271 spin_lock(&info->lock);
1272 if (lock && !(info->flags & VM_LOCKED)) {
1273 if (!user_shm_lock(inode->i_size, user))
1274 goto out_nomem;
1275 info->flags |= VM_LOCKED;
1276 mapping_set_unevictable(file->f_mapping);
1277 }
1278 if (!lock && (info->flags & VM_LOCKED) && user) {
1279 user_shm_unlock(inode->i_size, user);
1280 info->flags &= ~VM_LOCKED;
1281 mapping_clear_unevictable(file->f_mapping);
1282 }
1283 retval = 0;
1284
1285 out_nomem:
1286 spin_unlock(&info->lock);
1287 return retval;
1288 }
1289
1290 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1291 {
1292 file_accessed(file);
1293 vma->vm_ops = &shmem_vm_ops;
1294 return 0;
1295 }
1296
1297 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1298 umode_t mode, dev_t dev, unsigned long flags)
1299 {
1300 struct inode *inode;
1301 struct shmem_inode_info *info;
1302 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1303
1304 if (shmem_reserve_inode(sb))
1305 return NULL;
1306
1307 inode = new_inode(sb);
1308 if (inode) {
1309 inode->i_ino = get_next_ino();
1310 inode_init_owner(inode, dir, mode);
1311 inode->i_blocks = 0;
1312 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1313 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1314 inode->i_generation = get_seconds();
1315 info = SHMEM_I(inode);
1316 memset(info, 0, (char *)inode - (char *)info);
1317 spin_lock_init(&info->lock);
1318 info->flags = flags & VM_NORESERVE;
1319 INIT_LIST_HEAD(&info->swaplist);
1320 simple_xattrs_init(&info->xattrs);
1321 cache_no_acl(inode);
1322
1323 switch (mode & S_IFMT) {
1324 default:
1325 inode->i_op = &shmem_special_inode_operations;
1326 init_special_inode(inode, mode, dev);
1327 break;
1328 case S_IFREG:
1329 inode->i_mapping->a_ops = &shmem_aops;
1330 inode->i_op = &shmem_inode_operations;
1331 inode->i_fop = &shmem_file_operations;
1332 mpol_shared_policy_init(&info->policy,
1333 shmem_get_sbmpol(sbinfo));
1334 break;
1335 case S_IFDIR:
1336 inc_nlink(inode);
1337 /* Some things misbehave if size == 0 on a directory */
1338 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1339 inode->i_op = &shmem_dir_inode_operations;
1340 inode->i_fop = &simple_dir_operations;
1341 break;
1342 case S_IFLNK:
1343 /*
1344 * Must not load anything in the rbtree,
1345 * mpol_free_shared_policy will not be called.
1346 */
1347 mpol_shared_policy_init(&info->policy, NULL);
1348 break;
1349 }
1350 } else
1351 shmem_free_inode(sb);
1352 return inode;
1353 }
1354
1355 bool shmem_mapping(struct address_space *mapping)
1356 {
1357 return mapping->backing_dev_info == &shmem_backing_dev_info;
1358 }
1359
1360 #ifdef CONFIG_TMPFS
1361 static const struct inode_operations shmem_symlink_inode_operations;
1362 static const struct inode_operations shmem_short_symlink_operations;
1363
1364 #ifdef CONFIG_TMPFS_XATTR
1365 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1366 #else
1367 #define shmem_initxattrs NULL
1368 #endif
1369
1370 static int
1371 shmem_write_begin(struct file *file, struct address_space *mapping,
1372 loff_t pos, unsigned len, unsigned flags,
1373 struct page **pagep, void **fsdata)
1374 {
1375 struct inode *inode = mapping->host;
1376 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1377 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1378 }
1379
1380 static int
1381 shmem_write_end(struct file *file, struct address_space *mapping,
1382 loff_t pos, unsigned len, unsigned copied,
1383 struct page *page, void *fsdata)
1384 {
1385 struct inode *inode = mapping->host;
1386
1387 if (pos + copied > inode->i_size)
1388 i_size_write(inode, pos + copied);
1389
1390 if (!PageUptodate(page)) {
1391 if (copied < PAGE_CACHE_SIZE) {
1392 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1393 zero_user_segments(page, 0, from,
1394 from + copied, PAGE_CACHE_SIZE);
1395 }
1396 SetPageUptodate(page);
1397 }
1398 set_page_dirty(page);
1399 unlock_page(page);
1400 page_cache_release(page);
1401
1402 return copied;
1403 }
1404
1405 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1406 {
1407 struct inode *inode = file_inode(filp);
1408 struct address_space *mapping = inode->i_mapping;
1409 pgoff_t index;
1410 unsigned long offset;
1411 enum sgp_type sgp = SGP_READ;
1412
1413 /*
1414 * Might this read be for a stacking filesystem? Then when reading
1415 * holes of a sparse file, we actually need to allocate those pages,
1416 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1417 */
1418 if (segment_eq(get_fs(), KERNEL_DS))
1419 sgp = SGP_DIRTY;
1420
1421 index = *ppos >> PAGE_CACHE_SHIFT;
1422 offset = *ppos & ~PAGE_CACHE_MASK;
1423
1424 for (;;) {
1425 struct page *page = NULL;
1426 pgoff_t end_index;
1427 unsigned long nr, ret;
1428 loff_t i_size = i_size_read(inode);
1429
1430 end_index = i_size >> PAGE_CACHE_SHIFT;
1431 if (index > end_index)
1432 break;
1433 if (index == end_index) {
1434 nr = i_size & ~PAGE_CACHE_MASK;
1435 if (nr <= offset)
1436 break;
1437 }
1438
1439 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1440 if (desc->error) {
1441 if (desc->error == -EINVAL)
1442 desc->error = 0;
1443 break;
1444 }
1445 if (page)
1446 unlock_page(page);
1447
1448 /*
1449 * We must evaluate after, since reads (unlike writes)
1450 * are called without i_mutex protection against truncate
1451 */
1452 nr = PAGE_CACHE_SIZE;
1453 i_size = i_size_read(inode);
1454 end_index = i_size >> PAGE_CACHE_SHIFT;
1455 if (index == end_index) {
1456 nr = i_size & ~PAGE_CACHE_MASK;
1457 if (nr <= offset) {
1458 if (page)
1459 page_cache_release(page);
1460 break;
1461 }
1462 }
1463 nr -= offset;
1464
1465 if (page) {
1466 /*
1467 * If users can be writing to this page using arbitrary
1468 * virtual addresses, take care about potential aliasing
1469 * before reading the page on the kernel side.
1470 */
1471 if (mapping_writably_mapped(mapping))
1472 flush_dcache_page(page);
1473 /*
1474 * Mark the page accessed if we read the beginning.
1475 */
1476 if (!offset)
1477 mark_page_accessed(page);
1478 } else {
1479 page = ZERO_PAGE(0);
1480 page_cache_get(page);
1481 }
1482
1483 /*
1484 * Ok, we have the page, and it's up-to-date, so
1485 * now we can copy it to user space...
1486 *
1487 * The actor routine returns how many bytes were actually used..
1488 * NOTE! This may not be the same as how much of a user buffer
1489 * we filled up (we may be padding etc), so we can only update
1490 * "pos" here (the actor routine has to update the user buffer
1491 * pointers and the remaining count).
1492 */
1493 ret = actor(desc, page, offset, nr);
1494 offset += ret;
1495 index += offset >> PAGE_CACHE_SHIFT;
1496 offset &= ~PAGE_CACHE_MASK;
1497
1498 page_cache_release(page);
1499 if (ret != nr || !desc->count)
1500 break;
1501
1502 cond_resched();
1503 }
1504
1505 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1506 file_accessed(filp);
1507 }
1508
1509 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1510 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1511 {
1512 struct file *filp = iocb->ki_filp;
1513 ssize_t retval;
1514 unsigned long seg;
1515 size_t count;
1516 loff_t *ppos = &iocb->ki_pos;
1517
1518 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1519 if (retval)
1520 return retval;
1521
1522 for (seg = 0; seg < nr_segs; seg++) {
1523 read_descriptor_t desc;
1524
1525 desc.written = 0;
1526 desc.arg.buf = iov[seg].iov_base;
1527 desc.count = iov[seg].iov_len;
1528 if (desc.count == 0)
1529 continue;
1530 desc.error = 0;
1531 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1532 retval += desc.written;
1533 if (desc.error) {
1534 retval = retval ?: desc.error;
1535 break;
1536 }
1537 if (desc.count > 0)
1538 break;
1539 }
1540 return retval;
1541 }
1542
1543 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1544 struct pipe_inode_info *pipe, size_t len,
1545 unsigned int flags)
1546 {
1547 struct address_space *mapping = in->f_mapping;
1548 struct inode *inode = mapping->host;
1549 unsigned int loff, nr_pages, req_pages;
1550 struct page *pages[PIPE_DEF_BUFFERS];
1551 struct partial_page partial[PIPE_DEF_BUFFERS];
1552 struct page *page;
1553 pgoff_t index, end_index;
1554 loff_t isize, left;
1555 int error, page_nr;
1556 struct splice_pipe_desc spd = {
1557 .pages = pages,
1558 .partial = partial,
1559 .nr_pages_max = PIPE_DEF_BUFFERS,
1560 .flags = flags,
1561 .ops = &page_cache_pipe_buf_ops,
1562 .spd_release = spd_release_page,
1563 };
1564
1565 isize = i_size_read(inode);
1566 if (unlikely(*ppos >= isize))
1567 return 0;
1568
1569 left = isize - *ppos;
1570 if (unlikely(left < len))
1571 len = left;
1572
1573 if (splice_grow_spd(pipe, &spd))
1574 return -ENOMEM;
1575
1576 index = *ppos >> PAGE_CACHE_SHIFT;
1577 loff = *ppos & ~PAGE_CACHE_MASK;
1578 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1579 nr_pages = min(req_pages, pipe->buffers);
1580
1581 spd.nr_pages = find_get_pages_contig(mapping, index,
1582 nr_pages, spd.pages);
1583 index += spd.nr_pages;
1584 error = 0;
1585
1586 while (spd.nr_pages < nr_pages) {
1587 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1588 if (error)
1589 break;
1590 unlock_page(page);
1591 spd.pages[spd.nr_pages++] = page;
1592 index++;
1593 }
1594
1595 index = *ppos >> PAGE_CACHE_SHIFT;
1596 nr_pages = spd.nr_pages;
1597 spd.nr_pages = 0;
1598
1599 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1600 unsigned int this_len;
1601
1602 if (!len)
1603 break;
1604
1605 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1606 page = spd.pages[page_nr];
1607
1608 if (!PageUptodate(page) || page->mapping != mapping) {
1609 error = shmem_getpage(inode, index, &page,
1610 SGP_CACHE, NULL);
1611 if (error)
1612 break;
1613 unlock_page(page);
1614 page_cache_release(spd.pages[page_nr]);
1615 spd.pages[page_nr] = page;
1616 }
1617
1618 isize = i_size_read(inode);
1619 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1620 if (unlikely(!isize || index > end_index))
1621 break;
1622
1623 if (end_index == index) {
1624 unsigned int plen;
1625
1626 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1627 if (plen <= loff)
1628 break;
1629
1630 this_len = min(this_len, plen - loff);
1631 len = this_len;
1632 }
1633
1634 spd.partial[page_nr].offset = loff;
1635 spd.partial[page_nr].len = this_len;
1636 len -= this_len;
1637 loff = 0;
1638 spd.nr_pages++;
1639 index++;
1640 }
1641
1642 while (page_nr < nr_pages)
1643 page_cache_release(spd.pages[page_nr++]);
1644
1645 if (spd.nr_pages)
1646 error = splice_to_pipe(pipe, &spd);
1647
1648 splice_shrink_spd(&spd);
1649
1650 if (error > 0) {
1651 *ppos += error;
1652 file_accessed(in);
1653 }
1654 return error;
1655 }
1656
1657 /*
1658 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1659 */
1660 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1661 pgoff_t index, pgoff_t end, int whence)
1662 {
1663 struct page *page;
1664 struct pagevec pvec;
1665 pgoff_t indices[PAGEVEC_SIZE];
1666 bool done = false;
1667 int i;
1668
1669 pagevec_init(&pvec, 0);
1670 pvec.nr = 1; /* start small: we may be there already */
1671 while (!done) {
1672 pvec.nr = find_get_entries(mapping, index,
1673 pvec.nr, pvec.pages, indices);
1674 if (!pvec.nr) {
1675 if (whence == SEEK_DATA)
1676 index = end;
1677 break;
1678 }
1679 for (i = 0; i < pvec.nr; i++, index++) {
1680 if (index < indices[i]) {
1681 if (whence == SEEK_HOLE) {
1682 done = true;
1683 break;
1684 }
1685 index = indices[i];
1686 }
1687 page = pvec.pages[i];
1688 if (page && !radix_tree_exceptional_entry(page)) {
1689 if (!PageUptodate(page))
1690 page = NULL;
1691 }
1692 if (index >= end ||
1693 (page && whence == SEEK_DATA) ||
1694 (!page && whence == SEEK_HOLE)) {
1695 done = true;
1696 break;
1697 }
1698 }
1699 pagevec_remove_exceptionals(&pvec);
1700 pagevec_release(&pvec);
1701 pvec.nr = PAGEVEC_SIZE;
1702 cond_resched();
1703 }
1704 return index;
1705 }
1706
1707 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1708 {
1709 struct address_space *mapping = file->f_mapping;
1710 struct inode *inode = mapping->host;
1711 pgoff_t start, end;
1712 loff_t new_offset;
1713
1714 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1715 return generic_file_llseek_size(file, offset, whence,
1716 MAX_LFS_FILESIZE, i_size_read(inode));
1717 mutex_lock(&inode->i_mutex);
1718 /* We're holding i_mutex so we can access i_size directly */
1719
1720 if (offset < 0)
1721 offset = -EINVAL;
1722 else if (offset >= inode->i_size)
1723 offset = -ENXIO;
1724 else {
1725 start = offset >> PAGE_CACHE_SHIFT;
1726 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1727 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1728 new_offset <<= PAGE_CACHE_SHIFT;
1729 if (new_offset > offset) {
1730 if (new_offset < inode->i_size)
1731 offset = new_offset;
1732 else if (whence == SEEK_DATA)
1733 offset = -ENXIO;
1734 else
1735 offset = inode->i_size;
1736 }
1737 }
1738
1739 if (offset >= 0)
1740 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1741 mutex_unlock(&inode->i_mutex);
1742 return offset;
1743 }
1744
1745 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1746 loff_t len)
1747 {
1748 struct inode *inode = file_inode(file);
1749 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1750 struct shmem_falloc shmem_falloc;
1751 pgoff_t start, index, end;
1752 int error;
1753
1754 mutex_lock(&inode->i_mutex);
1755
1756 if (mode & FALLOC_FL_PUNCH_HOLE) {
1757 struct address_space *mapping = file->f_mapping;
1758 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1759 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1760
1761 if ((u64)unmap_end > (u64)unmap_start)
1762 unmap_mapping_range(mapping, unmap_start,
1763 1 + unmap_end - unmap_start, 0);
1764 shmem_truncate_range(inode, offset, offset + len - 1);
1765 /* No need to unmap again: hole-punching leaves COWed pages */
1766 error = 0;
1767 goto out;
1768 }
1769
1770 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1771 error = inode_newsize_ok(inode, offset + len);
1772 if (error)
1773 goto out;
1774
1775 start = offset >> PAGE_CACHE_SHIFT;
1776 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1777 /* Try to avoid a swapstorm if len is impossible to satisfy */
1778 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1779 error = -ENOSPC;
1780 goto out;
1781 }
1782
1783 shmem_falloc.start = start;
1784 shmem_falloc.next = start;
1785 shmem_falloc.nr_falloced = 0;
1786 shmem_falloc.nr_unswapped = 0;
1787 spin_lock(&inode->i_lock);
1788 inode->i_private = &shmem_falloc;
1789 spin_unlock(&inode->i_lock);
1790
1791 for (index = start; index < end; index++) {
1792 struct page *page;
1793
1794 /*
1795 * Good, the fallocate(2) manpage permits EINTR: we may have
1796 * been interrupted because we are using up too much memory.
1797 */
1798 if (signal_pending(current))
1799 error = -EINTR;
1800 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1801 error = -ENOMEM;
1802 else
1803 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1804 NULL);
1805 if (error) {
1806 /* Remove the !PageUptodate pages we added */
1807 shmem_undo_range(inode,
1808 (loff_t)start << PAGE_CACHE_SHIFT,
1809 (loff_t)index << PAGE_CACHE_SHIFT, true);
1810 goto undone;
1811 }
1812
1813 /*
1814 * Inform shmem_writepage() how far we have reached.
1815 * No need for lock or barrier: we have the page lock.
1816 */
1817 shmem_falloc.next++;
1818 if (!PageUptodate(page))
1819 shmem_falloc.nr_falloced++;
1820
1821 /*
1822 * If !PageUptodate, leave it that way so that freeable pages
1823 * can be recognized if we need to rollback on error later.
1824 * But set_page_dirty so that memory pressure will swap rather
1825 * than free the pages we are allocating (and SGP_CACHE pages
1826 * might still be clean: we now need to mark those dirty too).
1827 */
1828 set_page_dirty(page);
1829 unlock_page(page);
1830 page_cache_release(page);
1831 cond_resched();
1832 }
1833
1834 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1835 i_size_write(inode, offset + len);
1836 inode->i_ctime = CURRENT_TIME;
1837 undone:
1838 spin_lock(&inode->i_lock);
1839 inode->i_private = NULL;
1840 spin_unlock(&inode->i_lock);
1841 out:
1842 mutex_unlock(&inode->i_mutex);
1843 return error;
1844 }
1845
1846 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1847 {
1848 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1849
1850 buf->f_type = TMPFS_MAGIC;
1851 buf->f_bsize = PAGE_CACHE_SIZE;
1852 buf->f_namelen = NAME_MAX;
1853 if (sbinfo->max_blocks) {
1854 buf->f_blocks = sbinfo->max_blocks;
1855 buf->f_bavail =
1856 buf->f_bfree = sbinfo->max_blocks -
1857 percpu_counter_sum(&sbinfo->used_blocks);
1858 }
1859 if (sbinfo->max_inodes) {
1860 buf->f_files = sbinfo->max_inodes;
1861 buf->f_ffree = sbinfo->free_inodes;
1862 }
1863 /* else leave those fields 0 like simple_statfs */
1864 return 0;
1865 }
1866
1867 /*
1868 * File creation. Allocate an inode, and we're done..
1869 */
1870 static int
1871 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1872 {
1873 struct inode *inode;
1874 int error = -ENOSPC;
1875
1876 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1877 if (inode) {
1878 error = simple_acl_create(dir, inode);
1879 if (error)
1880 goto out_iput;
1881 error = security_inode_init_security(inode, dir,
1882 &dentry->d_name,
1883 shmem_initxattrs, NULL);
1884 if (error && error != -EOPNOTSUPP)
1885 goto out_iput;
1886
1887 error = 0;
1888 dir->i_size += BOGO_DIRENT_SIZE;
1889 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1890 d_instantiate(dentry, inode);
1891 dget(dentry); /* Extra count - pin the dentry in core */
1892 }
1893 return error;
1894 out_iput:
1895 iput(inode);
1896 return error;
1897 }
1898
1899 static int
1900 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1901 {
1902 struct inode *inode;
1903 int error = -ENOSPC;
1904
1905 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1906 if (inode) {
1907 error = security_inode_init_security(inode, dir,
1908 NULL,
1909 shmem_initxattrs, NULL);
1910 if (error && error != -EOPNOTSUPP)
1911 goto out_iput;
1912 error = simple_acl_create(dir, inode);
1913 if (error)
1914 goto out_iput;
1915 d_tmpfile(dentry, inode);
1916 }
1917 return error;
1918 out_iput:
1919 iput(inode);
1920 return error;
1921 }
1922
1923 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1924 {
1925 int error;
1926
1927 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1928 return error;
1929 inc_nlink(dir);
1930 return 0;
1931 }
1932
1933 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1934 bool excl)
1935 {
1936 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1937 }
1938
1939 /*
1940 * Link a file..
1941 */
1942 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1943 {
1944 struct inode *inode = old_dentry->d_inode;
1945 int ret;
1946
1947 /*
1948 * No ordinary (disk based) filesystem counts links as inodes;
1949 * but each new link needs a new dentry, pinning lowmem, and
1950 * tmpfs dentries cannot be pruned until they are unlinked.
1951 */
1952 ret = shmem_reserve_inode(inode->i_sb);
1953 if (ret)
1954 goto out;
1955
1956 dir->i_size += BOGO_DIRENT_SIZE;
1957 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1958 inc_nlink(inode);
1959 ihold(inode); /* New dentry reference */
1960 dget(dentry); /* Extra pinning count for the created dentry */
1961 d_instantiate(dentry, inode);
1962 out:
1963 return ret;
1964 }
1965
1966 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1967 {
1968 struct inode *inode = dentry->d_inode;
1969
1970 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1971 shmem_free_inode(inode->i_sb);
1972
1973 dir->i_size -= BOGO_DIRENT_SIZE;
1974 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1975 drop_nlink(inode);
1976 dput(dentry); /* Undo the count from "create" - this does all the work */
1977 return 0;
1978 }
1979
1980 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1981 {
1982 if (!simple_empty(dentry))
1983 return -ENOTEMPTY;
1984
1985 drop_nlink(dentry->d_inode);
1986 drop_nlink(dir);
1987 return shmem_unlink(dir, dentry);
1988 }
1989
1990 /*
1991 * The VFS layer already does all the dentry stuff for rename,
1992 * we just have to decrement the usage count for the target if
1993 * it exists so that the VFS layer correctly free's it when it
1994 * gets overwritten.
1995 */
1996 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1997 {
1998 struct inode *inode = old_dentry->d_inode;
1999 int they_are_dirs = S_ISDIR(inode->i_mode);
2000
2001 if (!simple_empty(new_dentry))
2002 return -ENOTEMPTY;
2003
2004 if (new_dentry->d_inode) {
2005 (void) shmem_unlink(new_dir, new_dentry);
2006 if (they_are_dirs)
2007 drop_nlink(old_dir);
2008 } else if (they_are_dirs) {
2009 drop_nlink(old_dir);
2010 inc_nlink(new_dir);
2011 }
2012
2013 old_dir->i_size -= BOGO_DIRENT_SIZE;
2014 new_dir->i_size += BOGO_DIRENT_SIZE;
2015 old_dir->i_ctime = old_dir->i_mtime =
2016 new_dir->i_ctime = new_dir->i_mtime =
2017 inode->i_ctime = CURRENT_TIME;
2018 return 0;
2019 }
2020
2021 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2022 {
2023 int error;
2024 int len;
2025 struct inode *inode;
2026 struct page *page;
2027 char *kaddr;
2028 struct shmem_inode_info *info;
2029
2030 len = strlen(symname) + 1;
2031 if (len > PAGE_CACHE_SIZE)
2032 return -ENAMETOOLONG;
2033
2034 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2035 if (!inode)
2036 return -ENOSPC;
2037
2038 error = security_inode_init_security(inode, dir, &dentry->d_name,
2039 shmem_initxattrs, NULL);
2040 if (error) {
2041 if (error != -EOPNOTSUPP) {
2042 iput(inode);
2043 return error;
2044 }
2045 error = 0;
2046 }
2047
2048 info = SHMEM_I(inode);
2049 inode->i_size = len-1;
2050 if (len <= SHORT_SYMLINK_LEN) {
2051 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2052 if (!info->symlink) {
2053 iput(inode);
2054 return -ENOMEM;
2055 }
2056 inode->i_op = &shmem_short_symlink_operations;
2057 } else {
2058 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2059 if (error) {
2060 iput(inode);
2061 return error;
2062 }
2063 inode->i_mapping->a_ops = &shmem_aops;
2064 inode->i_op = &shmem_symlink_inode_operations;
2065 kaddr = kmap_atomic(page);
2066 memcpy(kaddr, symname, len);
2067 kunmap_atomic(kaddr);
2068 SetPageUptodate(page);
2069 set_page_dirty(page);
2070 unlock_page(page);
2071 page_cache_release(page);
2072 }
2073 dir->i_size += BOGO_DIRENT_SIZE;
2074 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2075 d_instantiate(dentry, inode);
2076 dget(dentry);
2077 return 0;
2078 }
2079
2080 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2081 {
2082 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2083 return NULL;
2084 }
2085
2086 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2087 {
2088 struct page *page = NULL;
2089 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2090 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2091 if (page)
2092 unlock_page(page);
2093 return page;
2094 }
2095
2096 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2097 {
2098 if (!IS_ERR(nd_get_link(nd))) {
2099 struct page *page = cookie;
2100 kunmap(page);
2101 mark_page_accessed(page);
2102 page_cache_release(page);
2103 }
2104 }
2105
2106 #ifdef CONFIG_TMPFS_XATTR
2107 /*
2108 * Superblocks without xattr inode operations may get some security.* xattr
2109 * support from the LSM "for free". As soon as we have any other xattrs
2110 * like ACLs, we also need to implement the security.* handlers at
2111 * filesystem level, though.
2112 */
2113
2114 /*
2115 * Callback for security_inode_init_security() for acquiring xattrs.
2116 */
2117 static int shmem_initxattrs(struct inode *inode,
2118 const struct xattr *xattr_array,
2119 void *fs_info)
2120 {
2121 struct shmem_inode_info *info = SHMEM_I(inode);
2122 const struct xattr *xattr;
2123 struct simple_xattr *new_xattr;
2124 size_t len;
2125
2126 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2127 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2128 if (!new_xattr)
2129 return -ENOMEM;
2130
2131 len = strlen(xattr->name) + 1;
2132 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2133 GFP_KERNEL);
2134 if (!new_xattr->name) {
2135 kfree(new_xattr);
2136 return -ENOMEM;
2137 }
2138
2139 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2140 XATTR_SECURITY_PREFIX_LEN);
2141 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2142 xattr->name, len);
2143
2144 simple_xattr_list_add(&info->xattrs, new_xattr);
2145 }
2146
2147 return 0;
2148 }
2149
2150 static const struct xattr_handler *shmem_xattr_handlers[] = {
2151 #ifdef CONFIG_TMPFS_POSIX_ACL
2152 &posix_acl_access_xattr_handler,
2153 &posix_acl_default_xattr_handler,
2154 #endif
2155 NULL
2156 };
2157
2158 static int shmem_xattr_validate(const char *name)
2159 {
2160 struct { const char *prefix; size_t len; } arr[] = {
2161 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2162 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2163 };
2164 int i;
2165
2166 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2167 size_t preflen = arr[i].len;
2168 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2169 if (!name[preflen])
2170 return -EINVAL;
2171 return 0;
2172 }
2173 }
2174 return -EOPNOTSUPP;
2175 }
2176
2177 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2178 void *buffer, size_t size)
2179 {
2180 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2181 int err;
2182
2183 /*
2184 * If this is a request for a synthetic attribute in the system.*
2185 * namespace use the generic infrastructure to resolve a handler
2186 * for it via sb->s_xattr.
2187 */
2188 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2189 return generic_getxattr(dentry, name, buffer, size);
2190
2191 err = shmem_xattr_validate(name);
2192 if (err)
2193 return err;
2194
2195 return simple_xattr_get(&info->xattrs, name, buffer, size);
2196 }
2197
2198 static int shmem_setxattr(struct dentry *dentry, const char *name,
2199 const void *value, size_t size, int flags)
2200 {
2201 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2202 int err;
2203
2204 /*
2205 * If this is a request for a synthetic attribute in the system.*
2206 * namespace use the generic infrastructure to resolve a handler
2207 * for it via sb->s_xattr.
2208 */
2209 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2210 return generic_setxattr(dentry, name, value, size, flags);
2211
2212 err = shmem_xattr_validate(name);
2213 if (err)
2214 return err;
2215
2216 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2217 }
2218
2219 static int shmem_removexattr(struct dentry *dentry, const char *name)
2220 {
2221 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2222 int err;
2223
2224 /*
2225 * If this is a request for a synthetic attribute in the system.*
2226 * namespace use the generic infrastructure to resolve a handler
2227 * for it via sb->s_xattr.
2228 */
2229 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2230 return generic_removexattr(dentry, name);
2231
2232 err = shmem_xattr_validate(name);
2233 if (err)
2234 return err;
2235
2236 return simple_xattr_remove(&info->xattrs, name);
2237 }
2238
2239 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2240 {
2241 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2242 return simple_xattr_list(&info->xattrs, buffer, size);
2243 }
2244 #endif /* CONFIG_TMPFS_XATTR */
2245
2246 static const struct inode_operations shmem_short_symlink_operations = {
2247 .readlink = generic_readlink,
2248 .follow_link = shmem_follow_short_symlink,
2249 #ifdef CONFIG_TMPFS_XATTR
2250 .setxattr = shmem_setxattr,
2251 .getxattr = shmem_getxattr,
2252 .listxattr = shmem_listxattr,
2253 .removexattr = shmem_removexattr,
2254 #endif
2255 };
2256
2257 static const struct inode_operations shmem_symlink_inode_operations = {
2258 .readlink = generic_readlink,
2259 .follow_link = shmem_follow_link,
2260 .put_link = shmem_put_link,
2261 #ifdef CONFIG_TMPFS_XATTR
2262 .setxattr = shmem_setxattr,
2263 .getxattr = shmem_getxattr,
2264 .listxattr = shmem_listxattr,
2265 .removexattr = shmem_removexattr,
2266 #endif
2267 };
2268
2269 static struct dentry *shmem_get_parent(struct dentry *child)
2270 {
2271 return ERR_PTR(-ESTALE);
2272 }
2273
2274 static int shmem_match(struct inode *ino, void *vfh)
2275 {
2276 __u32 *fh = vfh;
2277 __u64 inum = fh[2];
2278 inum = (inum << 32) | fh[1];
2279 return ino->i_ino == inum && fh[0] == ino->i_generation;
2280 }
2281
2282 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2283 struct fid *fid, int fh_len, int fh_type)
2284 {
2285 struct inode *inode;
2286 struct dentry *dentry = NULL;
2287 u64 inum;
2288
2289 if (fh_len < 3)
2290 return NULL;
2291
2292 inum = fid->raw[2];
2293 inum = (inum << 32) | fid->raw[1];
2294
2295 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2296 shmem_match, fid->raw);
2297 if (inode) {
2298 dentry = d_find_alias(inode);
2299 iput(inode);
2300 }
2301
2302 return dentry;
2303 }
2304
2305 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2306 struct inode *parent)
2307 {
2308 if (*len < 3) {
2309 *len = 3;
2310 return FILEID_INVALID;
2311 }
2312
2313 if (inode_unhashed(inode)) {
2314 /* Unfortunately insert_inode_hash is not idempotent,
2315 * so as we hash inodes here rather than at creation
2316 * time, we need a lock to ensure we only try
2317 * to do it once
2318 */
2319 static DEFINE_SPINLOCK(lock);
2320 spin_lock(&lock);
2321 if (inode_unhashed(inode))
2322 __insert_inode_hash(inode,
2323 inode->i_ino + inode->i_generation);
2324 spin_unlock(&lock);
2325 }
2326
2327 fh[0] = inode->i_generation;
2328 fh[1] = inode->i_ino;
2329 fh[2] = ((__u64)inode->i_ino) >> 32;
2330
2331 *len = 3;
2332 return 1;
2333 }
2334
2335 static const struct export_operations shmem_export_ops = {
2336 .get_parent = shmem_get_parent,
2337 .encode_fh = shmem_encode_fh,
2338 .fh_to_dentry = shmem_fh_to_dentry,
2339 };
2340
2341 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2342 bool remount)
2343 {
2344 char *this_char, *value, *rest;
2345 struct mempolicy *mpol = NULL;
2346 uid_t uid;
2347 gid_t gid;
2348
2349 while (options != NULL) {
2350 this_char = options;
2351 for (;;) {
2352 /*
2353 * NUL-terminate this option: unfortunately,
2354 * mount options form a comma-separated list,
2355 * but mpol's nodelist may also contain commas.
2356 */
2357 options = strchr(options, ',');
2358 if (options == NULL)
2359 break;
2360 options++;
2361 if (!isdigit(*options)) {
2362 options[-1] = '\0';
2363 break;
2364 }
2365 }
2366 if (!*this_char)
2367 continue;
2368 if ((value = strchr(this_char,'=')) != NULL) {
2369 *value++ = 0;
2370 } else {
2371 printk(KERN_ERR
2372 "tmpfs: No value for mount option '%s'\n",
2373 this_char);
2374 goto error;
2375 }
2376
2377 if (!strcmp(this_char,"size")) {
2378 unsigned long long size;
2379 size = memparse(value,&rest);
2380 if (*rest == '%') {
2381 size <<= PAGE_SHIFT;
2382 size *= totalram_pages;
2383 do_div(size, 100);
2384 rest++;
2385 }
2386 if (*rest)
2387 goto bad_val;
2388 sbinfo->max_blocks =
2389 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2390 } else if (!strcmp(this_char,"nr_blocks")) {
2391 sbinfo->max_blocks = memparse(value, &rest);
2392 if (*rest)
2393 goto bad_val;
2394 } else if (!strcmp(this_char,"nr_inodes")) {
2395 sbinfo->max_inodes = memparse(value, &rest);
2396 if (*rest)
2397 goto bad_val;
2398 } else if (!strcmp(this_char,"mode")) {
2399 if (remount)
2400 continue;
2401 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2402 if (*rest)
2403 goto bad_val;
2404 } else if (!strcmp(this_char,"uid")) {
2405 if (remount)
2406 continue;
2407 uid = simple_strtoul(value, &rest, 0);
2408 if (*rest)
2409 goto bad_val;
2410 sbinfo->uid = make_kuid(current_user_ns(), uid);
2411 if (!uid_valid(sbinfo->uid))
2412 goto bad_val;
2413 } else if (!strcmp(this_char,"gid")) {
2414 if (remount)
2415 continue;
2416 gid = simple_strtoul(value, &rest, 0);
2417 if (*rest)
2418 goto bad_val;
2419 sbinfo->gid = make_kgid(current_user_ns(), gid);
2420 if (!gid_valid(sbinfo->gid))
2421 goto bad_val;
2422 } else if (!strcmp(this_char,"mpol")) {
2423 mpol_put(mpol);
2424 mpol = NULL;
2425 if (mpol_parse_str(value, &mpol))
2426 goto bad_val;
2427 } else {
2428 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2429 this_char);
2430 goto error;
2431 }
2432 }
2433 sbinfo->mpol = mpol;
2434 return 0;
2435
2436 bad_val:
2437 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2438 value, this_char);
2439 error:
2440 mpol_put(mpol);
2441 return 1;
2442
2443 }
2444
2445 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2446 {
2447 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2448 struct shmem_sb_info config = *sbinfo;
2449 unsigned long inodes;
2450 int error = -EINVAL;
2451
2452 config.mpol = NULL;
2453 if (shmem_parse_options(data, &config, true))
2454 return error;
2455
2456 spin_lock(&sbinfo->stat_lock);
2457 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2458 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2459 goto out;
2460 if (config.max_inodes < inodes)
2461 goto out;
2462 /*
2463 * Those tests disallow limited->unlimited while any are in use;
2464 * but we must separately disallow unlimited->limited, because
2465 * in that case we have no record of how much is already in use.
2466 */
2467 if (config.max_blocks && !sbinfo->max_blocks)
2468 goto out;
2469 if (config.max_inodes && !sbinfo->max_inodes)
2470 goto out;
2471
2472 error = 0;
2473 sbinfo->max_blocks = config.max_blocks;
2474 sbinfo->max_inodes = config.max_inodes;
2475 sbinfo->free_inodes = config.max_inodes - inodes;
2476
2477 /*
2478 * Preserve previous mempolicy unless mpol remount option was specified.
2479 */
2480 if (config.mpol) {
2481 mpol_put(sbinfo->mpol);
2482 sbinfo->mpol = config.mpol; /* transfers initial ref */
2483 }
2484 out:
2485 spin_unlock(&sbinfo->stat_lock);
2486 return error;
2487 }
2488
2489 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2490 {
2491 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2492
2493 if (sbinfo->max_blocks != shmem_default_max_blocks())
2494 seq_printf(seq, ",size=%luk",
2495 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2496 if (sbinfo->max_inodes != shmem_default_max_inodes())
2497 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2498 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2499 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2500 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2501 seq_printf(seq, ",uid=%u",
2502 from_kuid_munged(&init_user_ns, sbinfo->uid));
2503 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2504 seq_printf(seq, ",gid=%u",
2505 from_kgid_munged(&init_user_ns, sbinfo->gid));
2506 shmem_show_mpol(seq, sbinfo->mpol);
2507 return 0;
2508 }
2509 #endif /* CONFIG_TMPFS */
2510
2511 static void shmem_put_super(struct super_block *sb)
2512 {
2513 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2514
2515 percpu_counter_destroy(&sbinfo->used_blocks);
2516 mpol_put(sbinfo->mpol);
2517 kfree(sbinfo);
2518 sb->s_fs_info = NULL;
2519 }
2520
2521 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2522 {
2523 struct inode *inode;
2524 struct shmem_sb_info *sbinfo;
2525 int err = -ENOMEM;
2526
2527 /* Round up to L1_CACHE_BYTES to resist false sharing */
2528 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2529 L1_CACHE_BYTES), GFP_KERNEL);
2530 if (!sbinfo)
2531 return -ENOMEM;
2532
2533 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2534 sbinfo->uid = current_fsuid();
2535 sbinfo->gid = current_fsgid();
2536 sb->s_fs_info = sbinfo;
2537
2538 #ifdef CONFIG_TMPFS
2539 /*
2540 * Per default we only allow half of the physical ram per
2541 * tmpfs instance, limiting inodes to one per page of lowmem;
2542 * but the internal instance is left unlimited.
2543 */
2544 if (!(sb->s_flags & MS_KERNMOUNT)) {
2545 sbinfo->max_blocks = shmem_default_max_blocks();
2546 sbinfo->max_inodes = shmem_default_max_inodes();
2547 if (shmem_parse_options(data, sbinfo, false)) {
2548 err = -EINVAL;
2549 goto failed;
2550 }
2551 } else {
2552 sb->s_flags |= MS_NOUSER;
2553 }
2554 sb->s_export_op = &shmem_export_ops;
2555 sb->s_flags |= MS_NOSEC;
2556 #else
2557 sb->s_flags |= MS_NOUSER;
2558 #endif
2559
2560 spin_lock_init(&sbinfo->stat_lock);
2561 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2562 goto failed;
2563 sbinfo->free_inodes = sbinfo->max_inodes;
2564
2565 sb->s_maxbytes = MAX_LFS_FILESIZE;
2566 sb->s_blocksize = PAGE_CACHE_SIZE;
2567 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2568 sb->s_magic = TMPFS_MAGIC;
2569 sb->s_op = &shmem_ops;
2570 sb->s_time_gran = 1;
2571 #ifdef CONFIG_TMPFS_XATTR
2572 sb->s_xattr = shmem_xattr_handlers;
2573 #endif
2574 #ifdef CONFIG_TMPFS_POSIX_ACL
2575 sb->s_flags |= MS_POSIXACL;
2576 #endif
2577
2578 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2579 if (!inode)
2580 goto failed;
2581 inode->i_uid = sbinfo->uid;
2582 inode->i_gid = sbinfo->gid;
2583 sb->s_root = d_make_root(inode);
2584 if (!sb->s_root)
2585 goto failed;
2586 return 0;
2587
2588 failed:
2589 shmem_put_super(sb);
2590 return err;
2591 }
2592
2593 static struct kmem_cache *shmem_inode_cachep;
2594
2595 static struct inode *shmem_alloc_inode(struct super_block *sb)
2596 {
2597 struct shmem_inode_info *info;
2598 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2599 if (!info)
2600 return NULL;
2601 return &info->vfs_inode;
2602 }
2603
2604 static void shmem_destroy_callback(struct rcu_head *head)
2605 {
2606 struct inode *inode = container_of(head, struct inode, i_rcu);
2607 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2608 }
2609
2610 static void shmem_destroy_inode(struct inode *inode)
2611 {
2612 if (S_ISREG(inode->i_mode))
2613 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2614 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2615 }
2616
2617 static void shmem_init_inode(void *foo)
2618 {
2619 struct shmem_inode_info *info = foo;
2620 inode_init_once(&info->vfs_inode);
2621 }
2622
2623 static int shmem_init_inodecache(void)
2624 {
2625 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2626 sizeof(struct shmem_inode_info),
2627 0, SLAB_PANIC, shmem_init_inode);
2628 return 0;
2629 }
2630
2631 static void shmem_destroy_inodecache(void)
2632 {
2633 kmem_cache_destroy(shmem_inode_cachep);
2634 }
2635
2636 static const struct address_space_operations shmem_aops = {
2637 .writepage = shmem_writepage,
2638 .set_page_dirty = __set_page_dirty_no_writeback,
2639 #ifdef CONFIG_TMPFS
2640 .write_begin = shmem_write_begin,
2641 .write_end = shmem_write_end,
2642 #endif
2643 .migratepage = migrate_page,
2644 .error_remove_page = generic_error_remove_page,
2645 };
2646
2647 static const struct file_operations shmem_file_operations = {
2648 .mmap = shmem_mmap,
2649 #ifdef CONFIG_TMPFS
2650 .llseek = shmem_file_llseek,
2651 .read = do_sync_read,
2652 .write = do_sync_write,
2653 .aio_read = shmem_file_aio_read,
2654 .aio_write = generic_file_aio_write,
2655 .fsync = noop_fsync,
2656 .splice_read = shmem_file_splice_read,
2657 .splice_write = generic_file_splice_write,
2658 .fallocate = shmem_fallocate,
2659 #endif
2660 };
2661
2662 static const struct inode_operations shmem_inode_operations = {
2663 .setattr = shmem_setattr,
2664 #ifdef CONFIG_TMPFS_XATTR
2665 .setxattr = shmem_setxattr,
2666 .getxattr = shmem_getxattr,
2667 .listxattr = shmem_listxattr,
2668 .removexattr = shmem_removexattr,
2669 .set_acl = simple_set_acl,
2670 #endif
2671 };
2672
2673 static const struct inode_operations shmem_dir_inode_operations = {
2674 #ifdef CONFIG_TMPFS
2675 .create = shmem_create,
2676 .lookup = simple_lookup,
2677 .link = shmem_link,
2678 .unlink = shmem_unlink,
2679 .symlink = shmem_symlink,
2680 .mkdir = shmem_mkdir,
2681 .rmdir = shmem_rmdir,
2682 .mknod = shmem_mknod,
2683 .rename = shmem_rename,
2684 .tmpfile = shmem_tmpfile,
2685 #endif
2686 #ifdef CONFIG_TMPFS_XATTR
2687 .setxattr = shmem_setxattr,
2688 .getxattr = shmem_getxattr,
2689 .listxattr = shmem_listxattr,
2690 .removexattr = shmem_removexattr,
2691 #endif
2692 #ifdef CONFIG_TMPFS_POSIX_ACL
2693 .setattr = shmem_setattr,
2694 .set_acl = simple_set_acl,
2695 #endif
2696 };
2697
2698 static const struct inode_operations shmem_special_inode_operations = {
2699 #ifdef CONFIG_TMPFS_XATTR
2700 .setxattr = shmem_setxattr,
2701 .getxattr = shmem_getxattr,
2702 .listxattr = shmem_listxattr,
2703 .removexattr = shmem_removexattr,
2704 #endif
2705 #ifdef CONFIG_TMPFS_POSIX_ACL
2706 .setattr = shmem_setattr,
2707 .set_acl = simple_set_acl,
2708 #endif
2709 };
2710
2711 static const struct super_operations shmem_ops = {
2712 .alloc_inode = shmem_alloc_inode,
2713 .destroy_inode = shmem_destroy_inode,
2714 #ifdef CONFIG_TMPFS
2715 .statfs = shmem_statfs,
2716 .remount_fs = shmem_remount_fs,
2717 .show_options = shmem_show_options,
2718 #endif
2719 .evict_inode = shmem_evict_inode,
2720 .drop_inode = generic_delete_inode,
2721 .put_super = shmem_put_super,
2722 };
2723
2724 static const struct vm_operations_struct shmem_vm_ops = {
2725 .fault = shmem_fault,
2726 .map_pages = filemap_map_pages,
2727 #ifdef CONFIG_NUMA
2728 .set_policy = shmem_set_policy,
2729 .get_policy = shmem_get_policy,
2730 #endif
2731 .remap_pages = generic_file_remap_pages,
2732 };
2733
2734 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2735 int flags, const char *dev_name, void *data)
2736 {
2737 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2738 }
2739
2740 static struct file_system_type shmem_fs_type = {
2741 .owner = THIS_MODULE,
2742 .name = "tmpfs",
2743 .mount = shmem_mount,
2744 .kill_sb = kill_litter_super,
2745 .fs_flags = FS_USERNS_MOUNT,
2746 };
2747
2748 int __init shmem_init(void)
2749 {
2750 int error;
2751
2752 /* If rootfs called this, don't re-init */
2753 if (shmem_inode_cachep)
2754 return 0;
2755
2756 error = bdi_init(&shmem_backing_dev_info);
2757 if (error)
2758 goto out4;
2759
2760 error = shmem_init_inodecache();
2761 if (error)
2762 goto out3;
2763
2764 error = register_filesystem(&shmem_fs_type);
2765 if (error) {
2766 printk(KERN_ERR "Could not register tmpfs\n");
2767 goto out2;
2768 }
2769
2770 shm_mnt = kern_mount(&shmem_fs_type);
2771 if (IS_ERR(shm_mnt)) {
2772 error = PTR_ERR(shm_mnt);
2773 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2774 goto out1;
2775 }
2776 return 0;
2777
2778 out1:
2779 unregister_filesystem(&shmem_fs_type);
2780 out2:
2781 shmem_destroy_inodecache();
2782 out3:
2783 bdi_destroy(&shmem_backing_dev_info);
2784 out4:
2785 shm_mnt = ERR_PTR(error);
2786 return error;
2787 }
2788
2789 #else /* !CONFIG_SHMEM */
2790
2791 /*
2792 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2793 *
2794 * This is intended for small system where the benefits of the full
2795 * shmem code (swap-backed and resource-limited) are outweighed by
2796 * their complexity. On systems without swap this code should be
2797 * effectively equivalent, but much lighter weight.
2798 */
2799
2800 static struct file_system_type shmem_fs_type = {
2801 .name = "tmpfs",
2802 .mount = ramfs_mount,
2803 .kill_sb = kill_litter_super,
2804 .fs_flags = FS_USERNS_MOUNT,
2805 };
2806
2807 int __init shmem_init(void)
2808 {
2809 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2810
2811 shm_mnt = kern_mount(&shmem_fs_type);
2812 BUG_ON(IS_ERR(shm_mnt));
2813
2814 return 0;
2815 }
2816
2817 int shmem_unuse(swp_entry_t swap, struct page *page)
2818 {
2819 return 0;
2820 }
2821
2822 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2823 {
2824 return 0;
2825 }
2826
2827 void shmem_unlock_mapping(struct address_space *mapping)
2828 {
2829 }
2830
2831 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2832 {
2833 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2834 }
2835 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2836
2837 #define shmem_vm_ops generic_file_vm_ops
2838 #define shmem_file_operations ramfs_file_operations
2839 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2840 #define shmem_acct_size(flags, size) 0
2841 #define shmem_unacct_size(flags, size) do {} while (0)
2842
2843 #endif /* CONFIG_SHMEM */
2844
2845 /* common code */
2846
2847 static struct dentry_operations anon_ops = {
2848 .d_dname = simple_dname
2849 };
2850
2851 static struct file *__shmem_file_setup(const char *name, loff_t size,
2852 unsigned long flags, unsigned int i_flags)
2853 {
2854 struct file *res;
2855 struct inode *inode;
2856 struct path path;
2857 struct super_block *sb;
2858 struct qstr this;
2859
2860 if (IS_ERR(shm_mnt))
2861 return ERR_CAST(shm_mnt);
2862
2863 if (size < 0 || size > MAX_LFS_FILESIZE)
2864 return ERR_PTR(-EINVAL);
2865
2866 if (shmem_acct_size(flags, size))
2867 return ERR_PTR(-ENOMEM);
2868
2869 res = ERR_PTR(-ENOMEM);
2870 this.name = name;
2871 this.len = strlen(name);
2872 this.hash = 0; /* will go */
2873 sb = shm_mnt->mnt_sb;
2874 path.dentry = d_alloc_pseudo(sb, &this);
2875 if (!path.dentry)
2876 goto put_memory;
2877 d_set_d_op(path.dentry, &anon_ops);
2878 path.mnt = mntget(shm_mnt);
2879
2880 res = ERR_PTR(-ENOSPC);
2881 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2882 if (!inode)
2883 goto put_dentry;
2884
2885 inode->i_flags |= i_flags;
2886 d_instantiate(path.dentry, inode);
2887 inode->i_size = size;
2888 clear_nlink(inode); /* It is unlinked */
2889 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2890 if (IS_ERR(res))
2891 goto put_dentry;
2892
2893 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2894 &shmem_file_operations);
2895 if (IS_ERR(res))
2896 goto put_dentry;
2897
2898 return res;
2899
2900 put_dentry:
2901 path_put(&path);
2902 put_memory:
2903 shmem_unacct_size(flags, size);
2904 return res;
2905 }
2906
2907 /**
2908 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2909 * kernel internal. There will be NO LSM permission checks against the
2910 * underlying inode. So users of this interface must do LSM checks at a
2911 * higher layer. The one user is the big_key implementation. LSM checks
2912 * are provided at the key level rather than the inode level.
2913 * @name: name for dentry (to be seen in /proc/<pid>/maps
2914 * @size: size to be set for the file
2915 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2916 */
2917 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2918 {
2919 return __shmem_file_setup(name, size, flags, S_PRIVATE);
2920 }
2921
2922 /**
2923 * shmem_file_setup - get an unlinked file living in tmpfs
2924 * @name: name for dentry (to be seen in /proc/<pid>/maps
2925 * @size: size to be set for the file
2926 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2927 */
2928 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2929 {
2930 return __shmem_file_setup(name, size, flags, 0);
2931 }
2932 EXPORT_SYMBOL_GPL(shmem_file_setup);
2933
2934 /**
2935 * shmem_zero_setup - setup a shared anonymous mapping
2936 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2937 */
2938 int shmem_zero_setup(struct vm_area_struct *vma)
2939 {
2940 struct file *file;
2941 loff_t size = vma->vm_end - vma->vm_start;
2942
2943 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2944 if (IS_ERR(file))
2945 return PTR_ERR(file);
2946
2947 if (vma->vm_file)
2948 fput(vma->vm_file);
2949 vma->vm_file = file;
2950 vma->vm_ops = &shmem_vm_ops;
2951 return 0;
2952 }
2953
2954 /**
2955 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2956 * @mapping: the page's address_space
2957 * @index: the page index
2958 * @gfp: the page allocator flags to use if allocating
2959 *
2960 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2961 * with any new page allocations done using the specified allocation flags.
2962 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2963 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2964 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2965 *
2966 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2967 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2968 */
2969 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2970 pgoff_t index, gfp_t gfp)
2971 {
2972 #ifdef CONFIG_SHMEM
2973 struct inode *inode = mapping->host;
2974 struct page *page;
2975 int error;
2976
2977 BUG_ON(mapping->a_ops != &shmem_aops);
2978 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2979 if (error)
2980 page = ERR_PTR(error);
2981 else
2982 unlock_page(page);
2983 return page;
2984 #else
2985 /*
2986 * The tiny !SHMEM case uses ramfs without swap
2987 */
2988 return read_cache_page_gfp(mapping, index, gfp);
2989 #endif
2990 }
2991 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);