]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/shmem.c
Merge branch 'perf/core' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux...
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/splice.h>
57 #include <linux/security.h>
58 #include <linux/swapops.h>
59 #include <linux/mempolicy.h>
60 #include <linux/namei.h>
61 #include <linux/ctype.h>
62 #include <linux/migrate.h>
63 #include <linux/highmem.h>
64 #include <linux/seq_file.h>
65 #include <linux/magic.h>
66
67 #include <asm/uaccess.h>
68 #include <asm/pgtable.h>
69
70 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
71 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
72
73 /* Pretend that each entry is of this size in directory's i_size */
74 #define BOGO_DIRENT_SIZE 20
75
76 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
77 #define SHORT_SYMLINK_LEN 128
78
79 struct shmem_xattr {
80 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
81 char *name; /* xattr name */
82 size_t size;
83 char value[0];
84 };
85
86 /* Flag allocation requirements to shmem_getpage */
87 enum sgp_type {
88 SGP_READ, /* don't exceed i_size, don't allocate page */
89 SGP_CACHE, /* don't exceed i_size, may allocate page */
90 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
91 SGP_WRITE, /* may exceed i_size, may allocate page */
92 };
93
94 #ifdef CONFIG_TMPFS
95 static unsigned long shmem_default_max_blocks(void)
96 {
97 return totalram_pages / 2;
98 }
99
100 static unsigned long shmem_default_max_inodes(void)
101 {
102 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
103 }
104 #endif
105
106 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
107 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
108
109 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
110 struct page **pagep, enum sgp_type sgp, int *fault_type)
111 {
112 return shmem_getpage_gfp(inode, index, pagep, sgp,
113 mapping_gfp_mask(inode->i_mapping), fault_type);
114 }
115
116 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
117 {
118 return sb->s_fs_info;
119 }
120
121 /*
122 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
123 * for shared memory and for shared anonymous (/dev/zero) mappings
124 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
125 * consistent with the pre-accounting of private mappings ...
126 */
127 static inline int shmem_acct_size(unsigned long flags, loff_t size)
128 {
129 return (flags & VM_NORESERVE) ?
130 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
131 }
132
133 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
134 {
135 if (!(flags & VM_NORESERVE))
136 vm_unacct_memory(VM_ACCT(size));
137 }
138
139 /*
140 * ... whereas tmpfs objects are accounted incrementally as
141 * pages are allocated, in order to allow huge sparse files.
142 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
143 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
144 */
145 static inline int shmem_acct_block(unsigned long flags)
146 {
147 return (flags & VM_NORESERVE) ?
148 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
149 }
150
151 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
152 {
153 if (flags & VM_NORESERVE)
154 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
155 }
156
157 static const struct super_operations shmem_ops;
158 static const struct address_space_operations shmem_aops;
159 static const struct file_operations shmem_file_operations;
160 static const struct inode_operations shmem_inode_operations;
161 static const struct inode_operations shmem_dir_inode_operations;
162 static const struct inode_operations shmem_special_inode_operations;
163 static const struct vm_operations_struct shmem_vm_ops;
164
165 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
166 .ra_pages = 0, /* No readahead */
167 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
168 };
169
170 static LIST_HEAD(shmem_swaplist);
171 static DEFINE_MUTEX(shmem_swaplist_mutex);
172
173 static int shmem_reserve_inode(struct super_block *sb)
174 {
175 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
176 if (sbinfo->max_inodes) {
177 spin_lock(&sbinfo->stat_lock);
178 if (!sbinfo->free_inodes) {
179 spin_unlock(&sbinfo->stat_lock);
180 return -ENOSPC;
181 }
182 sbinfo->free_inodes--;
183 spin_unlock(&sbinfo->stat_lock);
184 }
185 return 0;
186 }
187
188 static void shmem_free_inode(struct super_block *sb)
189 {
190 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
191 if (sbinfo->max_inodes) {
192 spin_lock(&sbinfo->stat_lock);
193 sbinfo->free_inodes++;
194 spin_unlock(&sbinfo->stat_lock);
195 }
196 }
197
198 /**
199 * shmem_recalc_inode - recalculate the block usage of an inode
200 * @inode: inode to recalc
201 *
202 * We have to calculate the free blocks since the mm can drop
203 * undirtied hole pages behind our back.
204 *
205 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
206 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
207 *
208 * It has to be called with the spinlock held.
209 */
210 static void shmem_recalc_inode(struct inode *inode)
211 {
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 long freed;
214
215 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
216 if (freed > 0) {
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218 if (sbinfo->max_blocks)
219 percpu_counter_add(&sbinfo->used_blocks, -freed);
220 info->alloced -= freed;
221 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
222 shmem_unacct_blocks(info->flags, freed);
223 }
224 }
225
226 /*
227 * Replace item expected in radix tree by a new item, while holding tree lock.
228 */
229 static int shmem_radix_tree_replace(struct address_space *mapping,
230 pgoff_t index, void *expected, void *replacement)
231 {
232 void **pslot;
233 void *item = NULL;
234
235 VM_BUG_ON(!expected);
236 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
237 if (pslot)
238 item = radix_tree_deref_slot_protected(pslot,
239 &mapping->tree_lock);
240 if (item != expected)
241 return -ENOENT;
242 if (replacement)
243 radix_tree_replace_slot(pslot, replacement);
244 else
245 radix_tree_delete(&mapping->page_tree, index);
246 return 0;
247 }
248
249 /*
250 * Like add_to_page_cache_locked, but error if expected item has gone.
251 */
252 static int shmem_add_to_page_cache(struct page *page,
253 struct address_space *mapping,
254 pgoff_t index, gfp_t gfp, void *expected)
255 {
256 int error = 0;
257
258 VM_BUG_ON(!PageLocked(page));
259 VM_BUG_ON(!PageSwapBacked(page));
260
261 if (!expected)
262 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
263 if (!error) {
264 page_cache_get(page);
265 page->mapping = mapping;
266 page->index = index;
267
268 spin_lock_irq(&mapping->tree_lock);
269 if (!expected)
270 error = radix_tree_insert(&mapping->page_tree,
271 index, page);
272 else
273 error = shmem_radix_tree_replace(mapping, index,
274 expected, page);
275 if (!error) {
276 mapping->nrpages++;
277 __inc_zone_page_state(page, NR_FILE_PAGES);
278 __inc_zone_page_state(page, NR_SHMEM);
279 spin_unlock_irq(&mapping->tree_lock);
280 } else {
281 page->mapping = NULL;
282 spin_unlock_irq(&mapping->tree_lock);
283 page_cache_release(page);
284 }
285 if (!expected)
286 radix_tree_preload_end();
287 }
288 if (error)
289 mem_cgroup_uncharge_cache_page(page);
290 return error;
291 }
292
293 /*
294 * Like delete_from_page_cache, but substitutes swap for page.
295 */
296 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
297 {
298 struct address_space *mapping = page->mapping;
299 int error;
300
301 spin_lock_irq(&mapping->tree_lock);
302 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
303 page->mapping = NULL;
304 mapping->nrpages--;
305 __dec_zone_page_state(page, NR_FILE_PAGES);
306 __dec_zone_page_state(page, NR_SHMEM);
307 spin_unlock_irq(&mapping->tree_lock);
308 page_cache_release(page);
309 BUG_ON(error);
310 }
311
312 /*
313 * Like find_get_pages, but collecting swap entries as well as pages.
314 */
315 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
316 pgoff_t start, unsigned int nr_pages,
317 struct page **pages, pgoff_t *indices)
318 {
319 unsigned int i;
320 unsigned int ret;
321 unsigned int nr_found;
322
323 rcu_read_lock();
324 restart:
325 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
326 (void ***)pages, indices, start, nr_pages);
327 ret = 0;
328 for (i = 0; i < nr_found; i++) {
329 struct page *page;
330 repeat:
331 page = radix_tree_deref_slot((void **)pages[i]);
332 if (unlikely(!page))
333 continue;
334 if (radix_tree_exception(page)) {
335 if (radix_tree_deref_retry(page))
336 goto restart;
337 /*
338 * Otherwise, we must be storing a swap entry
339 * here as an exceptional entry: so return it
340 * without attempting to raise page count.
341 */
342 goto export;
343 }
344 if (!page_cache_get_speculative(page))
345 goto repeat;
346
347 /* Has the page moved? */
348 if (unlikely(page != *((void **)pages[i]))) {
349 page_cache_release(page);
350 goto repeat;
351 }
352 export:
353 indices[ret] = indices[i];
354 pages[ret] = page;
355 ret++;
356 }
357 if (unlikely(!ret && nr_found))
358 goto restart;
359 rcu_read_unlock();
360 return ret;
361 }
362
363 /*
364 * Remove swap entry from radix tree, free the swap and its page cache.
365 */
366 static int shmem_free_swap(struct address_space *mapping,
367 pgoff_t index, void *radswap)
368 {
369 int error;
370
371 spin_lock_irq(&mapping->tree_lock);
372 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
373 spin_unlock_irq(&mapping->tree_lock);
374 if (!error)
375 free_swap_and_cache(radix_to_swp_entry(radswap));
376 return error;
377 }
378
379 /*
380 * Pagevec may contain swap entries, so shuffle up pages before releasing.
381 */
382 static void shmem_deswap_pagevec(struct pagevec *pvec)
383 {
384 int i, j;
385
386 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
387 struct page *page = pvec->pages[i];
388 if (!radix_tree_exceptional_entry(page))
389 pvec->pages[j++] = page;
390 }
391 pvec->nr = j;
392 }
393
394 /*
395 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
396 */
397 void shmem_unlock_mapping(struct address_space *mapping)
398 {
399 struct pagevec pvec;
400 pgoff_t indices[PAGEVEC_SIZE];
401 pgoff_t index = 0;
402
403 pagevec_init(&pvec, 0);
404 /*
405 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
406 */
407 while (!mapping_unevictable(mapping)) {
408 /*
409 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
410 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
411 */
412 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
413 PAGEVEC_SIZE, pvec.pages, indices);
414 if (!pvec.nr)
415 break;
416 index = indices[pvec.nr - 1] + 1;
417 shmem_deswap_pagevec(&pvec);
418 check_move_unevictable_pages(pvec.pages, pvec.nr);
419 pagevec_release(&pvec);
420 cond_resched();
421 }
422 }
423
424 /*
425 * Remove range of pages and swap entries from radix tree, and free them.
426 */
427 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
428 {
429 struct address_space *mapping = inode->i_mapping;
430 struct shmem_inode_info *info = SHMEM_I(inode);
431 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
432 unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
433 pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
434 struct pagevec pvec;
435 pgoff_t indices[PAGEVEC_SIZE];
436 long nr_swaps_freed = 0;
437 pgoff_t index;
438 int i;
439
440 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
441
442 pagevec_init(&pvec, 0);
443 index = start;
444 while (index <= end) {
445 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
446 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
447 pvec.pages, indices);
448 if (!pvec.nr)
449 break;
450 mem_cgroup_uncharge_start();
451 for (i = 0; i < pagevec_count(&pvec); i++) {
452 struct page *page = pvec.pages[i];
453
454 index = indices[i];
455 if (index > end)
456 break;
457
458 if (radix_tree_exceptional_entry(page)) {
459 nr_swaps_freed += !shmem_free_swap(mapping,
460 index, page);
461 continue;
462 }
463
464 if (!trylock_page(page))
465 continue;
466 if (page->mapping == mapping) {
467 VM_BUG_ON(PageWriteback(page));
468 truncate_inode_page(mapping, page);
469 }
470 unlock_page(page);
471 }
472 shmem_deswap_pagevec(&pvec);
473 pagevec_release(&pvec);
474 mem_cgroup_uncharge_end();
475 cond_resched();
476 index++;
477 }
478
479 if (partial) {
480 struct page *page = NULL;
481 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
482 if (page) {
483 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
484 set_page_dirty(page);
485 unlock_page(page);
486 page_cache_release(page);
487 }
488 }
489
490 index = start;
491 for ( ; ; ) {
492 cond_resched();
493 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
494 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
495 pvec.pages, indices);
496 if (!pvec.nr) {
497 if (index == start)
498 break;
499 index = start;
500 continue;
501 }
502 if (index == start && indices[0] > end) {
503 shmem_deswap_pagevec(&pvec);
504 pagevec_release(&pvec);
505 break;
506 }
507 mem_cgroup_uncharge_start();
508 for (i = 0; i < pagevec_count(&pvec); i++) {
509 struct page *page = pvec.pages[i];
510
511 index = indices[i];
512 if (index > end)
513 break;
514
515 if (radix_tree_exceptional_entry(page)) {
516 nr_swaps_freed += !shmem_free_swap(mapping,
517 index, page);
518 continue;
519 }
520
521 lock_page(page);
522 if (page->mapping == mapping) {
523 VM_BUG_ON(PageWriteback(page));
524 truncate_inode_page(mapping, page);
525 }
526 unlock_page(page);
527 }
528 shmem_deswap_pagevec(&pvec);
529 pagevec_release(&pvec);
530 mem_cgroup_uncharge_end();
531 index++;
532 }
533
534 spin_lock(&info->lock);
535 info->swapped -= nr_swaps_freed;
536 shmem_recalc_inode(inode);
537 spin_unlock(&info->lock);
538
539 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
540 }
541 EXPORT_SYMBOL_GPL(shmem_truncate_range);
542
543 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
544 {
545 struct inode *inode = dentry->d_inode;
546 int error;
547
548 error = inode_change_ok(inode, attr);
549 if (error)
550 return error;
551
552 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
553 loff_t oldsize = inode->i_size;
554 loff_t newsize = attr->ia_size;
555
556 if (newsize != oldsize) {
557 i_size_write(inode, newsize);
558 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
559 }
560 if (newsize < oldsize) {
561 loff_t holebegin = round_up(newsize, PAGE_SIZE);
562 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
563 shmem_truncate_range(inode, newsize, (loff_t)-1);
564 /* unmap again to remove racily COWed private pages */
565 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
566 }
567 }
568
569 setattr_copy(inode, attr);
570 #ifdef CONFIG_TMPFS_POSIX_ACL
571 if (attr->ia_valid & ATTR_MODE)
572 error = generic_acl_chmod(inode);
573 #endif
574 return error;
575 }
576
577 static void shmem_evict_inode(struct inode *inode)
578 {
579 struct shmem_inode_info *info = SHMEM_I(inode);
580 struct shmem_xattr *xattr, *nxattr;
581
582 if (inode->i_mapping->a_ops == &shmem_aops) {
583 shmem_unacct_size(info->flags, inode->i_size);
584 inode->i_size = 0;
585 shmem_truncate_range(inode, 0, (loff_t)-1);
586 if (!list_empty(&info->swaplist)) {
587 mutex_lock(&shmem_swaplist_mutex);
588 list_del_init(&info->swaplist);
589 mutex_unlock(&shmem_swaplist_mutex);
590 }
591 } else
592 kfree(info->symlink);
593
594 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
595 kfree(xattr->name);
596 kfree(xattr);
597 }
598 BUG_ON(inode->i_blocks);
599 shmem_free_inode(inode->i_sb);
600 end_writeback(inode);
601 }
602
603 /*
604 * If swap found in inode, free it and move page from swapcache to filecache.
605 */
606 static int shmem_unuse_inode(struct shmem_inode_info *info,
607 swp_entry_t swap, struct page *page)
608 {
609 struct address_space *mapping = info->vfs_inode.i_mapping;
610 void *radswap;
611 pgoff_t index;
612 int error;
613
614 radswap = swp_to_radix_entry(swap);
615 index = radix_tree_locate_item(&mapping->page_tree, radswap);
616 if (index == -1)
617 return 0;
618
619 /*
620 * Move _head_ to start search for next from here.
621 * But be careful: shmem_evict_inode checks list_empty without taking
622 * mutex, and there's an instant in list_move_tail when info->swaplist
623 * would appear empty, if it were the only one on shmem_swaplist.
624 */
625 if (shmem_swaplist.next != &info->swaplist)
626 list_move_tail(&shmem_swaplist, &info->swaplist);
627
628 /*
629 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
630 * but also to hold up shmem_evict_inode(): so inode cannot be freed
631 * beneath us (pagelock doesn't help until the page is in pagecache).
632 */
633 error = shmem_add_to_page_cache(page, mapping, index,
634 GFP_NOWAIT, radswap);
635 /* which does mem_cgroup_uncharge_cache_page on error */
636
637 if (error != -ENOMEM) {
638 /*
639 * Truncation and eviction use free_swap_and_cache(), which
640 * only does trylock page: if we raced, best clean up here.
641 */
642 delete_from_swap_cache(page);
643 set_page_dirty(page);
644 if (!error) {
645 spin_lock(&info->lock);
646 info->swapped--;
647 spin_unlock(&info->lock);
648 swap_free(swap);
649 }
650 error = 1; /* not an error, but entry was found */
651 }
652 return error;
653 }
654
655 /*
656 * Search through swapped inodes to find and replace swap by page.
657 */
658 int shmem_unuse(swp_entry_t swap, struct page *page)
659 {
660 struct list_head *this, *next;
661 struct shmem_inode_info *info;
662 int found = 0;
663 int error;
664
665 /*
666 * Charge page using GFP_KERNEL while we can wait, before taking
667 * the shmem_swaplist_mutex which might hold up shmem_writepage().
668 * Charged back to the user (not to caller) when swap account is used.
669 */
670 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
671 if (error)
672 goto out;
673 /* No radix_tree_preload: swap entry keeps a place for page in tree */
674
675 mutex_lock(&shmem_swaplist_mutex);
676 list_for_each_safe(this, next, &shmem_swaplist) {
677 info = list_entry(this, struct shmem_inode_info, swaplist);
678 if (info->swapped)
679 found = shmem_unuse_inode(info, swap, page);
680 else
681 list_del_init(&info->swaplist);
682 cond_resched();
683 if (found)
684 break;
685 }
686 mutex_unlock(&shmem_swaplist_mutex);
687
688 if (!found)
689 mem_cgroup_uncharge_cache_page(page);
690 if (found < 0)
691 error = found;
692 out:
693 unlock_page(page);
694 page_cache_release(page);
695 return error;
696 }
697
698 /*
699 * Move the page from the page cache to the swap cache.
700 */
701 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
702 {
703 struct shmem_inode_info *info;
704 struct address_space *mapping;
705 struct inode *inode;
706 swp_entry_t swap;
707 pgoff_t index;
708
709 BUG_ON(!PageLocked(page));
710 mapping = page->mapping;
711 index = page->index;
712 inode = mapping->host;
713 info = SHMEM_I(inode);
714 if (info->flags & VM_LOCKED)
715 goto redirty;
716 if (!total_swap_pages)
717 goto redirty;
718
719 /*
720 * shmem_backing_dev_info's capabilities prevent regular writeback or
721 * sync from ever calling shmem_writepage; but a stacking filesystem
722 * might use ->writepage of its underlying filesystem, in which case
723 * tmpfs should write out to swap only in response to memory pressure,
724 * and not for the writeback threads or sync.
725 */
726 if (!wbc->for_reclaim) {
727 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
728 goto redirty;
729 }
730 swap = get_swap_page();
731 if (!swap.val)
732 goto redirty;
733
734 /*
735 * Add inode to shmem_unuse()'s list of swapped-out inodes,
736 * if it's not already there. Do it now before the page is
737 * moved to swap cache, when its pagelock no longer protects
738 * the inode from eviction. But don't unlock the mutex until
739 * we've incremented swapped, because shmem_unuse_inode() will
740 * prune a !swapped inode from the swaplist under this mutex.
741 */
742 mutex_lock(&shmem_swaplist_mutex);
743 if (list_empty(&info->swaplist))
744 list_add_tail(&info->swaplist, &shmem_swaplist);
745
746 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
747 swap_shmem_alloc(swap);
748 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
749
750 spin_lock(&info->lock);
751 info->swapped++;
752 shmem_recalc_inode(inode);
753 spin_unlock(&info->lock);
754
755 mutex_unlock(&shmem_swaplist_mutex);
756 BUG_ON(page_mapped(page));
757 swap_writepage(page, wbc);
758 return 0;
759 }
760
761 mutex_unlock(&shmem_swaplist_mutex);
762 swapcache_free(swap, NULL);
763 redirty:
764 set_page_dirty(page);
765 if (wbc->for_reclaim)
766 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
767 unlock_page(page);
768 return 0;
769 }
770
771 #ifdef CONFIG_NUMA
772 #ifdef CONFIG_TMPFS
773 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
774 {
775 char buffer[64];
776
777 if (!mpol || mpol->mode == MPOL_DEFAULT)
778 return; /* show nothing */
779
780 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
781
782 seq_printf(seq, ",mpol=%s", buffer);
783 }
784
785 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
786 {
787 struct mempolicy *mpol = NULL;
788 if (sbinfo->mpol) {
789 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
790 mpol = sbinfo->mpol;
791 mpol_get(mpol);
792 spin_unlock(&sbinfo->stat_lock);
793 }
794 return mpol;
795 }
796 #endif /* CONFIG_TMPFS */
797
798 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
799 struct shmem_inode_info *info, pgoff_t index)
800 {
801 struct mempolicy mpol, *spol;
802 struct vm_area_struct pvma;
803
804 spol = mpol_cond_copy(&mpol,
805 mpol_shared_policy_lookup(&info->policy, index));
806
807 /* Create a pseudo vma that just contains the policy */
808 pvma.vm_start = 0;
809 pvma.vm_pgoff = index;
810 pvma.vm_ops = NULL;
811 pvma.vm_policy = spol;
812 return swapin_readahead(swap, gfp, &pvma, 0);
813 }
814
815 static struct page *shmem_alloc_page(gfp_t gfp,
816 struct shmem_inode_info *info, pgoff_t index)
817 {
818 struct vm_area_struct pvma;
819
820 /* Create a pseudo vma that just contains the policy */
821 pvma.vm_start = 0;
822 pvma.vm_pgoff = index;
823 pvma.vm_ops = NULL;
824 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
825
826 /*
827 * alloc_page_vma() will drop the shared policy reference
828 */
829 return alloc_page_vma(gfp, &pvma, 0);
830 }
831 #else /* !CONFIG_NUMA */
832 #ifdef CONFIG_TMPFS
833 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
834 {
835 }
836 #endif /* CONFIG_TMPFS */
837
838 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
839 struct shmem_inode_info *info, pgoff_t index)
840 {
841 return swapin_readahead(swap, gfp, NULL, 0);
842 }
843
844 static inline struct page *shmem_alloc_page(gfp_t gfp,
845 struct shmem_inode_info *info, pgoff_t index)
846 {
847 return alloc_page(gfp);
848 }
849 #endif /* CONFIG_NUMA */
850
851 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
852 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
853 {
854 return NULL;
855 }
856 #endif
857
858 /*
859 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
860 *
861 * If we allocate a new one we do not mark it dirty. That's up to the
862 * vm. If we swap it in we mark it dirty since we also free the swap
863 * entry since a page cannot live in both the swap and page cache
864 */
865 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
866 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
867 {
868 struct address_space *mapping = inode->i_mapping;
869 struct shmem_inode_info *info;
870 struct shmem_sb_info *sbinfo;
871 struct page *page;
872 swp_entry_t swap;
873 int error;
874 int once = 0;
875
876 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
877 return -EFBIG;
878 repeat:
879 swap.val = 0;
880 page = find_lock_page(mapping, index);
881 if (radix_tree_exceptional_entry(page)) {
882 swap = radix_to_swp_entry(page);
883 page = NULL;
884 }
885
886 if (sgp != SGP_WRITE &&
887 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
888 error = -EINVAL;
889 goto failed;
890 }
891
892 if (page || (sgp == SGP_READ && !swap.val)) {
893 /*
894 * Once we can get the page lock, it must be uptodate:
895 * if there were an error in reading back from swap,
896 * the page would not be inserted into the filecache.
897 */
898 BUG_ON(page && !PageUptodate(page));
899 *pagep = page;
900 return 0;
901 }
902
903 /*
904 * Fast cache lookup did not find it:
905 * bring it back from swap or allocate.
906 */
907 info = SHMEM_I(inode);
908 sbinfo = SHMEM_SB(inode->i_sb);
909
910 if (swap.val) {
911 /* Look it up and read it in.. */
912 page = lookup_swap_cache(swap);
913 if (!page) {
914 /* here we actually do the io */
915 if (fault_type)
916 *fault_type |= VM_FAULT_MAJOR;
917 page = shmem_swapin(swap, gfp, info, index);
918 if (!page) {
919 error = -ENOMEM;
920 goto failed;
921 }
922 }
923
924 /* We have to do this with page locked to prevent races */
925 lock_page(page);
926 if (!PageUptodate(page)) {
927 error = -EIO;
928 goto failed;
929 }
930 wait_on_page_writeback(page);
931
932 /* Someone may have already done it for us */
933 if (page->mapping) {
934 if (page->mapping == mapping &&
935 page->index == index)
936 goto done;
937 error = -EEXIST;
938 goto failed;
939 }
940
941 error = mem_cgroup_cache_charge(page, current->mm,
942 gfp & GFP_RECLAIM_MASK);
943 if (!error)
944 error = shmem_add_to_page_cache(page, mapping, index,
945 gfp, swp_to_radix_entry(swap));
946 if (error)
947 goto failed;
948
949 spin_lock(&info->lock);
950 info->swapped--;
951 shmem_recalc_inode(inode);
952 spin_unlock(&info->lock);
953
954 delete_from_swap_cache(page);
955 set_page_dirty(page);
956 swap_free(swap);
957
958 } else {
959 if (shmem_acct_block(info->flags)) {
960 error = -ENOSPC;
961 goto failed;
962 }
963 if (sbinfo->max_blocks) {
964 if (percpu_counter_compare(&sbinfo->used_blocks,
965 sbinfo->max_blocks) >= 0) {
966 error = -ENOSPC;
967 goto unacct;
968 }
969 percpu_counter_inc(&sbinfo->used_blocks);
970 }
971
972 page = shmem_alloc_page(gfp, info, index);
973 if (!page) {
974 error = -ENOMEM;
975 goto decused;
976 }
977
978 SetPageSwapBacked(page);
979 __set_page_locked(page);
980 error = mem_cgroup_cache_charge(page, current->mm,
981 gfp & GFP_RECLAIM_MASK);
982 if (!error)
983 error = shmem_add_to_page_cache(page, mapping, index,
984 gfp, NULL);
985 if (error)
986 goto decused;
987 lru_cache_add_anon(page);
988
989 spin_lock(&info->lock);
990 info->alloced++;
991 inode->i_blocks += BLOCKS_PER_PAGE;
992 shmem_recalc_inode(inode);
993 spin_unlock(&info->lock);
994
995 clear_highpage(page);
996 flush_dcache_page(page);
997 SetPageUptodate(page);
998 if (sgp == SGP_DIRTY)
999 set_page_dirty(page);
1000 }
1001 done:
1002 /* Perhaps the file has been truncated since we checked */
1003 if (sgp != SGP_WRITE &&
1004 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1005 error = -EINVAL;
1006 goto trunc;
1007 }
1008 *pagep = page;
1009 return 0;
1010
1011 /*
1012 * Error recovery.
1013 */
1014 trunc:
1015 ClearPageDirty(page);
1016 delete_from_page_cache(page);
1017 spin_lock(&info->lock);
1018 info->alloced--;
1019 inode->i_blocks -= BLOCKS_PER_PAGE;
1020 spin_unlock(&info->lock);
1021 decused:
1022 if (sbinfo->max_blocks)
1023 percpu_counter_add(&sbinfo->used_blocks, -1);
1024 unacct:
1025 shmem_unacct_blocks(info->flags, 1);
1026 failed:
1027 if (swap.val && error != -EINVAL) {
1028 struct page *test = find_get_page(mapping, index);
1029 if (test && !radix_tree_exceptional_entry(test))
1030 page_cache_release(test);
1031 /* Have another try if the entry has changed */
1032 if (test != swp_to_radix_entry(swap))
1033 error = -EEXIST;
1034 }
1035 if (page) {
1036 unlock_page(page);
1037 page_cache_release(page);
1038 }
1039 if (error == -ENOSPC && !once++) {
1040 info = SHMEM_I(inode);
1041 spin_lock(&info->lock);
1042 shmem_recalc_inode(inode);
1043 spin_unlock(&info->lock);
1044 goto repeat;
1045 }
1046 if (error == -EEXIST)
1047 goto repeat;
1048 return error;
1049 }
1050
1051 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1052 {
1053 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1054 int error;
1055 int ret = VM_FAULT_LOCKED;
1056
1057 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1058 if (error)
1059 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1060
1061 if (ret & VM_FAULT_MAJOR) {
1062 count_vm_event(PGMAJFAULT);
1063 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1064 }
1065 return ret;
1066 }
1067
1068 #ifdef CONFIG_NUMA
1069 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1070 {
1071 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1072 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1073 }
1074
1075 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1076 unsigned long addr)
1077 {
1078 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1079 pgoff_t index;
1080
1081 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1082 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1083 }
1084 #endif
1085
1086 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1087 {
1088 struct inode *inode = file->f_path.dentry->d_inode;
1089 struct shmem_inode_info *info = SHMEM_I(inode);
1090 int retval = -ENOMEM;
1091
1092 spin_lock(&info->lock);
1093 if (lock && !(info->flags & VM_LOCKED)) {
1094 if (!user_shm_lock(inode->i_size, user))
1095 goto out_nomem;
1096 info->flags |= VM_LOCKED;
1097 mapping_set_unevictable(file->f_mapping);
1098 }
1099 if (!lock && (info->flags & VM_LOCKED) && user) {
1100 user_shm_unlock(inode->i_size, user);
1101 info->flags &= ~VM_LOCKED;
1102 mapping_clear_unevictable(file->f_mapping);
1103 }
1104 retval = 0;
1105
1106 out_nomem:
1107 spin_unlock(&info->lock);
1108 return retval;
1109 }
1110
1111 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1112 {
1113 file_accessed(file);
1114 vma->vm_ops = &shmem_vm_ops;
1115 vma->vm_flags |= VM_CAN_NONLINEAR;
1116 return 0;
1117 }
1118
1119 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1120 umode_t mode, dev_t dev, unsigned long flags)
1121 {
1122 struct inode *inode;
1123 struct shmem_inode_info *info;
1124 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1125
1126 if (shmem_reserve_inode(sb))
1127 return NULL;
1128
1129 inode = new_inode(sb);
1130 if (inode) {
1131 inode->i_ino = get_next_ino();
1132 inode_init_owner(inode, dir, mode);
1133 inode->i_blocks = 0;
1134 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1135 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1136 inode->i_generation = get_seconds();
1137 info = SHMEM_I(inode);
1138 memset(info, 0, (char *)inode - (char *)info);
1139 spin_lock_init(&info->lock);
1140 info->flags = flags & VM_NORESERVE;
1141 INIT_LIST_HEAD(&info->swaplist);
1142 INIT_LIST_HEAD(&info->xattr_list);
1143 cache_no_acl(inode);
1144
1145 switch (mode & S_IFMT) {
1146 default:
1147 inode->i_op = &shmem_special_inode_operations;
1148 init_special_inode(inode, mode, dev);
1149 break;
1150 case S_IFREG:
1151 inode->i_mapping->a_ops = &shmem_aops;
1152 inode->i_op = &shmem_inode_operations;
1153 inode->i_fop = &shmem_file_operations;
1154 mpol_shared_policy_init(&info->policy,
1155 shmem_get_sbmpol(sbinfo));
1156 break;
1157 case S_IFDIR:
1158 inc_nlink(inode);
1159 /* Some things misbehave if size == 0 on a directory */
1160 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1161 inode->i_op = &shmem_dir_inode_operations;
1162 inode->i_fop = &simple_dir_operations;
1163 break;
1164 case S_IFLNK:
1165 /*
1166 * Must not load anything in the rbtree,
1167 * mpol_free_shared_policy will not be called.
1168 */
1169 mpol_shared_policy_init(&info->policy, NULL);
1170 break;
1171 }
1172 } else
1173 shmem_free_inode(sb);
1174 return inode;
1175 }
1176
1177 #ifdef CONFIG_TMPFS
1178 static const struct inode_operations shmem_symlink_inode_operations;
1179 static const struct inode_operations shmem_short_symlink_operations;
1180
1181 #ifdef CONFIG_TMPFS_XATTR
1182 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1183 #else
1184 #define shmem_initxattrs NULL
1185 #endif
1186
1187 static int
1188 shmem_write_begin(struct file *file, struct address_space *mapping,
1189 loff_t pos, unsigned len, unsigned flags,
1190 struct page **pagep, void **fsdata)
1191 {
1192 struct inode *inode = mapping->host;
1193 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1194 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1195 }
1196
1197 static int
1198 shmem_write_end(struct file *file, struct address_space *mapping,
1199 loff_t pos, unsigned len, unsigned copied,
1200 struct page *page, void *fsdata)
1201 {
1202 struct inode *inode = mapping->host;
1203
1204 if (pos + copied > inode->i_size)
1205 i_size_write(inode, pos + copied);
1206
1207 set_page_dirty(page);
1208 unlock_page(page);
1209 page_cache_release(page);
1210
1211 return copied;
1212 }
1213
1214 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1215 {
1216 struct inode *inode = filp->f_path.dentry->d_inode;
1217 struct address_space *mapping = inode->i_mapping;
1218 pgoff_t index;
1219 unsigned long offset;
1220 enum sgp_type sgp = SGP_READ;
1221
1222 /*
1223 * Might this read be for a stacking filesystem? Then when reading
1224 * holes of a sparse file, we actually need to allocate those pages,
1225 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1226 */
1227 if (segment_eq(get_fs(), KERNEL_DS))
1228 sgp = SGP_DIRTY;
1229
1230 index = *ppos >> PAGE_CACHE_SHIFT;
1231 offset = *ppos & ~PAGE_CACHE_MASK;
1232
1233 for (;;) {
1234 struct page *page = NULL;
1235 pgoff_t end_index;
1236 unsigned long nr, ret;
1237 loff_t i_size = i_size_read(inode);
1238
1239 end_index = i_size >> PAGE_CACHE_SHIFT;
1240 if (index > end_index)
1241 break;
1242 if (index == end_index) {
1243 nr = i_size & ~PAGE_CACHE_MASK;
1244 if (nr <= offset)
1245 break;
1246 }
1247
1248 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1249 if (desc->error) {
1250 if (desc->error == -EINVAL)
1251 desc->error = 0;
1252 break;
1253 }
1254 if (page)
1255 unlock_page(page);
1256
1257 /*
1258 * We must evaluate after, since reads (unlike writes)
1259 * are called without i_mutex protection against truncate
1260 */
1261 nr = PAGE_CACHE_SIZE;
1262 i_size = i_size_read(inode);
1263 end_index = i_size >> PAGE_CACHE_SHIFT;
1264 if (index == end_index) {
1265 nr = i_size & ~PAGE_CACHE_MASK;
1266 if (nr <= offset) {
1267 if (page)
1268 page_cache_release(page);
1269 break;
1270 }
1271 }
1272 nr -= offset;
1273
1274 if (page) {
1275 /*
1276 * If users can be writing to this page using arbitrary
1277 * virtual addresses, take care about potential aliasing
1278 * before reading the page on the kernel side.
1279 */
1280 if (mapping_writably_mapped(mapping))
1281 flush_dcache_page(page);
1282 /*
1283 * Mark the page accessed if we read the beginning.
1284 */
1285 if (!offset)
1286 mark_page_accessed(page);
1287 } else {
1288 page = ZERO_PAGE(0);
1289 page_cache_get(page);
1290 }
1291
1292 /*
1293 * Ok, we have the page, and it's up-to-date, so
1294 * now we can copy it to user space...
1295 *
1296 * The actor routine returns how many bytes were actually used..
1297 * NOTE! This may not be the same as how much of a user buffer
1298 * we filled up (we may be padding etc), so we can only update
1299 * "pos" here (the actor routine has to update the user buffer
1300 * pointers and the remaining count).
1301 */
1302 ret = actor(desc, page, offset, nr);
1303 offset += ret;
1304 index += offset >> PAGE_CACHE_SHIFT;
1305 offset &= ~PAGE_CACHE_MASK;
1306
1307 page_cache_release(page);
1308 if (ret != nr || !desc->count)
1309 break;
1310
1311 cond_resched();
1312 }
1313
1314 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1315 file_accessed(filp);
1316 }
1317
1318 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1319 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1320 {
1321 struct file *filp = iocb->ki_filp;
1322 ssize_t retval;
1323 unsigned long seg;
1324 size_t count;
1325 loff_t *ppos = &iocb->ki_pos;
1326
1327 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1328 if (retval)
1329 return retval;
1330
1331 for (seg = 0; seg < nr_segs; seg++) {
1332 read_descriptor_t desc;
1333
1334 desc.written = 0;
1335 desc.arg.buf = iov[seg].iov_base;
1336 desc.count = iov[seg].iov_len;
1337 if (desc.count == 0)
1338 continue;
1339 desc.error = 0;
1340 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1341 retval += desc.written;
1342 if (desc.error) {
1343 retval = retval ?: desc.error;
1344 break;
1345 }
1346 if (desc.count > 0)
1347 break;
1348 }
1349 return retval;
1350 }
1351
1352 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1353 struct pipe_inode_info *pipe, size_t len,
1354 unsigned int flags)
1355 {
1356 struct address_space *mapping = in->f_mapping;
1357 struct inode *inode = mapping->host;
1358 unsigned int loff, nr_pages, req_pages;
1359 struct page *pages[PIPE_DEF_BUFFERS];
1360 struct partial_page partial[PIPE_DEF_BUFFERS];
1361 struct page *page;
1362 pgoff_t index, end_index;
1363 loff_t isize, left;
1364 int error, page_nr;
1365 struct splice_pipe_desc spd = {
1366 .pages = pages,
1367 .partial = partial,
1368 .flags = flags,
1369 .ops = &page_cache_pipe_buf_ops,
1370 .spd_release = spd_release_page,
1371 };
1372
1373 isize = i_size_read(inode);
1374 if (unlikely(*ppos >= isize))
1375 return 0;
1376
1377 left = isize - *ppos;
1378 if (unlikely(left < len))
1379 len = left;
1380
1381 if (splice_grow_spd(pipe, &spd))
1382 return -ENOMEM;
1383
1384 index = *ppos >> PAGE_CACHE_SHIFT;
1385 loff = *ppos & ~PAGE_CACHE_MASK;
1386 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1387 nr_pages = min(req_pages, pipe->buffers);
1388
1389 spd.nr_pages = find_get_pages_contig(mapping, index,
1390 nr_pages, spd.pages);
1391 index += spd.nr_pages;
1392 error = 0;
1393
1394 while (spd.nr_pages < nr_pages) {
1395 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1396 if (error)
1397 break;
1398 unlock_page(page);
1399 spd.pages[spd.nr_pages++] = page;
1400 index++;
1401 }
1402
1403 index = *ppos >> PAGE_CACHE_SHIFT;
1404 nr_pages = spd.nr_pages;
1405 spd.nr_pages = 0;
1406
1407 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1408 unsigned int this_len;
1409
1410 if (!len)
1411 break;
1412
1413 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1414 page = spd.pages[page_nr];
1415
1416 if (!PageUptodate(page) || page->mapping != mapping) {
1417 error = shmem_getpage(inode, index, &page,
1418 SGP_CACHE, NULL);
1419 if (error)
1420 break;
1421 unlock_page(page);
1422 page_cache_release(spd.pages[page_nr]);
1423 spd.pages[page_nr] = page;
1424 }
1425
1426 isize = i_size_read(inode);
1427 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1428 if (unlikely(!isize || index > end_index))
1429 break;
1430
1431 if (end_index == index) {
1432 unsigned int plen;
1433
1434 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1435 if (plen <= loff)
1436 break;
1437
1438 this_len = min(this_len, plen - loff);
1439 len = this_len;
1440 }
1441
1442 spd.partial[page_nr].offset = loff;
1443 spd.partial[page_nr].len = this_len;
1444 len -= this_len;
1445 loff = 0;
1446 spd.nr_pages++;
1447 index++;
1448 }
1449
1450 while (page_nr < nr_pages)
1451 page_cache_release(spd.pages[page_nr++]);
1452
1453 if (spd.nr_pages)
1454 error = splice_to_pipe(pipe, &spd);
1455
1456 splice_shrink_spd(pipe, &spd);
1457
1458 if (error > 0) {
1459 *ppos += error;
1460 file_accessed(in);
1461 }
1462 return error;
1463 }
1464
1465 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1466 {
1467 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1468
1469 buf->f_type = TMPFS_MAGIC;
1470 buf->f_bsize = PAGE_CACHE_SIZE;
1471 buf->f_namelen = NAME_MAX;
1472 if (sbinfo->max_blocks) {
1473 buf->f_blocks = sbinfo->max_blocks;
1474 buf->f_bavail =
1475 buf->f_bfree = sbinfo->max_blocks -
1476 percpu_counter_sum(&sbinfo->used_blocks);
1477 }
1478 if (sbinfo->max_inodes) {
1479 buf->f_files = sbinfo->max_inodes;
1480 buf->f_ffree = sbinfo->free_inodes;
1481 }
1482 /* else leave those fields 0 like simple_statfs */
1483 return 0;
1484 }
1485
1486 /*
1487 * File creation. Allocate an inode, and we're done..
1488 */
1489 static int
1490 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1491 {
1492 struct inode *inode;
1493 int error = -ENOSPC;
1494
1495 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1496 if (inode) {
1497 error = security_inode_init_security(inode, dir,
1498 &dentry->d_name,
1499 shmem_initxattrs, NULL);
1500 if (error) {
1501 if (error != -EOPNOTSUPP) {
1502 iput(inode);
1503 return error;
1504 }
1505 }
1506 #ifdef CONFIG_TMPFS_POSIX_ACL
1507 error = generic_acl_init(inode, dir);
1508 if (error) {
1509 iput(inode);
1510 return error;
1511 }
1512 #else
1513 error = 0;
1514 #endif
1515 dir->i_size += BOGO_DIRENT_SIZE;
1516 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1517 d_instantiate(dentry, inode);
1518 dget(dentry); /* Extra count - pin the dentry in core */
1519 }
1520 return error;
1521 }
1522
1523 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1524 {
1525 int error;
1526
1527 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1528 return error;
1529 inc_nlink(dir);
1530 return 0;
1531 }
1532
1533 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1534 struct nameidata *nd)
1535 {
1536 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1537 }
1538
1539 /*
1540 * Link a file..
1541 */
1542 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1543 {
1544 struct inode *inode = old_dentry->d_inode;
1545 int ret;
1546
1547 /*
1548 * No ordinary (disk based) filesystem counts links as inodes;
1549 * but each new link needs a new dentry, pinning lowmem, and
1550 * tmpfs dentries cannot be pruned until they are unlinked.
1551 */
1552 ret = shmem_reserve_inode(inode->i_sb);
1553 if (ret)
1554 goto out;
1555
1556 dir->i_size += BOGO_DIRENT_SIZE;
1557 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1558 inc_nlink(inode);
1559 ihold(inode); /* New dentry reference */
1560 dget(dentry); /* Extra pinning count for the created dentry */
1561 d_instantiate(dentry, inode);
1562 out:
1563 return ret;
1564 }
1565
1566 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1567 {
1568 struct inode *inode = dentry->d_inode;
1569
1570 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1571 shmem_free_inode(inode->i_sb);
1572
1573 dir->i_size -= BOGO_DIRENT_SIZE;
1574 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1575 drop_nlink(inode);
1576 dput(dentry); /* Undo the count from "create" - this does all the work */
1577 return 0;
1578 }
1579
1580 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1581 {
1582 if (!simple_empty(dentry))
1583 return -ENOTEMPTY;
1584
1585 drop_nlink(dentry->d_inode);
1586 drop_nlink(dir);
1587 return shmem_unlink(dir, dentry);
1588 }
1589
1590 /*
1591 * The VFS layer already does all the dentry stuff for rename,
1592 * we just have to decrement the usage count for the target if
1593 * it exists so that the VFS layer correctly free's it when it
1594 * gets overwritten.
1595 */
1596 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1597 {
1598 struct inode *inode = old_dentry->d_inode;
1599 int they_are_dirs = S_ISDIR(inode->i_mode);
1600
1601 if (!simple_empty(new_dentry))
1602 return -ENOTEMPTY;
1603
1604 if (new_dentry->d_inode) {
1605 (void) shmem_unlink(new_dir, new_dentry);
1606 if (they_are_dirs)
1607 drop_nlink(old_dir);
1608 } else if (they_are_dirs) {
1609 drop_nlink(old_dir);
1610 inc_nlink(new_dir);
1611 }
1612
1613 old_dir->i_size -= BOGO_DIRENT_SIZE;
1614 new_dir->i_size += BOGO_DIRENT_SIZE;
1615 old_dir->i_ctime = old_dir->i_mtime =
1616 new_dir->i_ctime = new_dir->i_mtime =
1617 inode->i_ctime = CURRENT_TIME;
1618 return 0;
1619 }
1620
1621 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1622 {
1623 int error;
1624 int len;
1625 struct inode *inode;
1626 struct page *page;
1627 char *kaddr;
1628 struct shmem_inode_info *info;
1629
1630 len = strlen(symname) + 1;
1631 if (len > PAGE_CACHE_SIZE)
1632 return -ENAMETOOLONG;
1633
1634 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1635 if (!inode)
1636 return -ENOSPC;
1637
1638 error = security_inode_init_security(inode, dir, &dentry->d_name,
1639 shmem_initxattrs, NULL);
1640 if (error) {
1641 if (error != -EOPNOTSUPP) {
1642 iput(inode);
1643 return error;
1644 }
1645 error = 0;
1646 }
1647
1648 info = SHMEM_I(inode);
1649 inode->i_size = len-1;
1650 if (len <= SHORT_SYMLINK_LEN) {
1651 info->symlink = kmemdup(symname, len, GFP_KERNEL);
1652 if (!info->symlink) {
1653 iput(inode);
1654 return -ENOMEM;
1655 }
1656 inode->i_op = &shmem_short_symlink_operations;
1657 } else {
1658 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1659 if (error) {
1660 iput(inode);
1661 return error;
1662 }
1663 inode->i_mapping->a_ops = &shmem_aops;
1664 inode->i_op = &shmem_symlink_inode_operations;
1665 kaddr = kmap_atomic(page);
1666 memcpy(kaddr, symname, len);
1667 kunmap_atomic(kaddr);
1668 set_page_dirty(page);
1669 unlock_page(page);
1670 page_cache_release(page);
1671 }
1672 dir->i_size += BOGO_DIRENT_SIZE;
1673 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1674 d_instantiate(dentry, inode);
1675 dget(dentry);
1676 return 0;
1677 }
1678
1679 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1680 {
1681 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1682 return NULL;
1683 }
1684
1685 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1686 {
1687 struct page *page = NULL;
1688 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1689 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1690 if (page)
1691 unlock_page(page);
1692 return page;
1693 }
1694
1695 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1696 {
1697 if (!IS_ERR(nd_get_link(nd))) {
1698 struct page *page = cookie;
1699 kunmap(page);
1700 mark_page_accessed(page);
1701 page_cache_release(page);
1702 }
1703 }
1704
1705 #ifdef CONFIG_TMPFS_XATTR
1706 /*
1707 * Superblocks without xattr inode operations may get some security.* xattr
1708 * support from the LSM "for free". As soon as we have any other xattrs
1709 * like ACLs, we also need to implement the security.* handlers at
1710 * filesystem level, though.
1711 */
1712
1713 /*
1714 * Allocate new xattr and copy in the value; but leave the name to callers.
1715 */
1716 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
1717 {
1718 struct shmem_xattr *new_xattr;
1719 size_t len;
1720
1721 /* wrap around? */
1722 len = sizeof(*new_xattr) + size;
1723 if (len <= sizeof(*new_xattr))
1724 return NULL;
1725
1726 new_xattr = kmalloc(len, GFP_KERNEL);
1727 if (!new_xattr)
1728 return NULL;
1729
1730 new_xattr->size = size;
1731 memcpy(new_xattr->value, value, size);
1732 return new_xattr;
1733 }
1734
1735 /*
1736 * Callback for security_inode_init_security() for acquiring xattrs.
1737 */
1738 static int shmem_initxattrs(struct inode *inode,
1739 const struct xattr *xattr_array,
1740 void *fs_info)
1741 {
1742 struct shmem_inode_info *info = SHMEM_I(inode);
1743 const struct xattr *xattr;
1744 struct shmem_xattr *new_xattr;
1745 size_t len;
1746
1747 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
1748 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
1749 if (!new_xattr)
1750 return -ENOMEM;
1751
1752 len = strlen(xattr->name) + 1;
1753 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
1754 GFP_KERNEL);
1755 if (!new_xattr->name) {
1756 kfree(new_xattr);
1757 return -ENOMEM;
1758 }
1759
1760 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
1761 XATTR_SECURITY_PREFIX_LEN);
1762 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
1763 xattr->name, len);
1764
1765 spin_lock(&info->lock);
1766 list_add(&new_xattr->list, &info->xattr_list);
1767 spin_unlock(&info->lock);
1768 }
1769
1770 return 0;
1771 }
1772
1773 static int shmem_xattr_get(struct dentry *dentry, const char *name,
1774 void *buffer, size_t size)
1775 {
1776 struct shmem_inode_info *info;
1777 struct shmem_xattr *xattr;
1778 int ret = -ENODATA;
1779
1780 info = SHMEM_I(dentry->d_inode);
1781
1782 spin_lock(&info->lock);
1783 list_for_each_entry(xattr, &info->xattr_list, list) {
1784 if (strcmp(name, xattr->name))
1785 continue;
1786
1787 ret = xattr->size;
1788 if (buffer) {
1789 if (size < xattr->size)
1790 ret = -ERANGE;
1791 else
1792 memcpy(buffer, xattr->value, xattr->size);
1793 }
1794 break;
1795 }
1796 spin_unlock(&info->lock);
1797 return ret;
1798 }
1799
1800 static int shmem_xattr_set(struct inode *inode, const char *name,
1801 const void *value, size_t size, int flags)
1802 {
1803 struct shmem_inode_info *info = SHMEM_I(inode);
1804 struct shmem_xattr *xattr;
1805 struct shmem_xattr *new_xattr = NULL;
1806 int err = 0;
1807
1808 /* value == NULL means remove */
1809 if (value) {
1810 new_xattr = shmem_xattr_alloc(value, size);
1811 if (!new_xattr)
1812 return -ENOMEM;
1813
1814 new_xattr->name = kstrdup(name, GFP_KERNEL);
1815 if (!new_xattr->name) {
1816 kfree(new_xattr);
1817 return -ENOMEM;
1818 }
1819 }
1820
1821 spin_lock(&info->lock);
1822 list_for_each_entry(xattr, &info->xattr_list, list) {
1823 if (!strcmp(name, xattr->name)) {
1824 if (flags & XATTR_CREATE) {
1825 xattr = new_xattr;
1826 err = -EEXIST;
1827 } else if (new_xattr) {
1828 list_replace(&xattr->list, &new_xattr->list);
1829 } else {
1830 list_del(&xattr->list);
1831 }
1832 goto out;
1833 }
1834 }
1835 if (flags & XATTR_REPLACE) {
1836 xattr = new_xattr;
1837 err = -ENODATA;
1838 } else {
1839 list_add(&new_xattr->list, &info->xattr_list);
1840 xattr = NULL;
1841 }
1842 out:
1843 spin_unlock(&info->lock);
1844 if (xattr)
1845 kfree(xattr->name);
1846 kfree(xattr);
1847 return err;
1848 }
1849
1850 static const struct xattr_handler *shmem_xattr_handlers[] = {
1851 #ifdef CONFIG_TMPFS_POSIX_ACL
1852 &generic_acl_access_handler,
1853 &generic_acl_default_handler,
1854 #endif
1855 NULL
1856 };
1857
1858 static int shmem_xattr_validate(const char *name)
1859 {
1860 struct { const char *prefix; size_t len; } arr[] = {
1861 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1862 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1863 };
1864 int i;
1865
1866 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1867 size_t preflen = arr[i].len;
1868 if (strncmp(name, arr[i].prefix, preflen) == 0) {
1869 if (!name[preflen])
1870 return -EINVAL;
1871 return 0;
1872 }
1873 }
1874 return -EOPNOTSUPP;
1875 }
1876
1877 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1878 void *buffer, size_t size)
1879 {
1880 int err;
1881
1882 /*
1883 * If this is a request for a synthetic attribute in the system.*
1884 * namespace use the generic infrastructure to resolve a handler
1885 * for it via sb->s_xattr.
1886 */
1887 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1888 return generic_getxattr(dentry, name, buffer, size);
1889
1890 err = shmem_xattr_validate(name);
1891 if (err)
1892 return err;
1893
1894 return shmem_xattr_get(dentry, name, buffer, size);
1895 }
1896
1897 static int shmem_setxattr(struct dentry *dentry, const char *name,
1898 const void *value, size_t size, int flags)
1899 {
1900 int err;
1901
1902 /*
1903 * If this is a request for a synthetic attribute in the system.*
1904 * namespace use the generic infrastructure to resolve a handler
1905 * for it via sb->s_xattr.
1906 */
1907 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1908 return generic_setxattr(dentry, name, value, size, flags);
1909
1910 err = shmem_xattr_validate(name);
1911 if (err)
1912 return err;
1913
1914 if (size == 0)
1915 value = ""; /* empty EA, do not remove */
1916
1917 return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
1918
1919 }
1920
1921 static int shmem_removexattr(struct dentry *dentry, const char *name)
1922 {
1923 int err;
1924
1925 /*
1926 * If this is a request for a synthetic attribute in the system.*
1927 * namespace use the generic infrastructure to resolve a handler
1928 * for it via sb->s_xattr.
1929 */
1930 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1931 return generic_removexattr(dentry, name);
1932
1933 err = shmem_xattr_validate(name);
1934 if (err)
1935 return err;
1936
1937 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
1938 }
1939
1940 static bool xattr_is_trusted(const char *name)
1941 {
1942 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1943 }
1944
1945 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1946 {
1947 bool trusted = capable(CAP_SYS_ADMIN);
1948 struct shmem_xattr *xattr;
1949 struct shmem_inode_info *info;
1950 size_t used = 0;
1951
1952 info = SHMEM_I(dentry->d_inode);
1953
1954 spin_lock(&info->lock);
1955 list_for_each_entry(xattr, &info->xattr_list, list) {
1956 size_t len;
1957
1958 /* skip "trusted." attributes for unprivileged callers */
1959 if (!trusted && xattr_is_trusted(xattr->name))
1960 continue;
1961
1962 len = strlen(xattr->name) + 1;
1963 used += len;
1964 if (buffer) {
1965 if (size < used) {
1966 used = -ERANGE;
1967 break;
1968 }
1969 memcpy(buffer, xattr->name, len);
1970 buffer += len;
1971 }
1972 }
1973 spin_unlock(&info->lock);
1974
1975 return used;
1976 }
1977 #endif /* CONFIG_TMPFS_XATTR */
1978
1979 static const struct inode_operations shmem_short_symlink_operations = {
1980 .readlink = generic_readlink,
1981 .follow_link = shmem_follow_short_symlink,
1982 #ifdef CONFIG_TMPFS_XATTR
1983 .setxattr = shmem_setxattr,
1984 .getxattr = shmem_getxattr,
1985 .listxattr = shmem_listxattr,
1986 .removexattr = shmem_removexattr,
1987 #endif
1988 };
1989
1990 static const struct inode_operations shmem_symlink_inode_operations = {
1991 .readlink = generic_readlink,
1992 .follow_link = shmem_follow_link,
1993 .put_link = shmem_put_link,
1994 #ifdef CONFIG_TMPFS_XATTR
1995 .setxattr = shmem_setxattr,
1996 .getxattr = shmem_getxattr,
1997 .listxattr = shmem_listxattr,
1998 .removexattr = shmem_removexattr,
1999 #endif
2000 };
2001
2002 static struct dentry *shmem_get_parent(struct dentry *child)
2003 {
2004 return ERR_PTR(-ESTALE);
2005 }
2006
2007 static int shmem_match(struct inode *ino, void *vfh)
2008 {
2009 __u32 *fh = vfh;
2010 __u64 inum = fh[2];
2011 inum = (inum << 32) | fh[1];
2012 return ino->i_ino == inum && fh[0] == ino->i_generation;
2013 }
2014
2015 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2016 struct fid *fid, int fh_len, int fh_type)
2017 {
2018 struct inode *inode;
2019 struct dentry *dentry = NULL;
2020 u64 inum = fid->raw[2];
2021 inum = (inum << 32) | fid->raw[1];
2022
2023 if (fh_len < 3)
2024 return NULL;
2025
2026 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2027 shmem_match, fid->raw);
2028 if (inode) {
2029 dentry = d_find_alias(inode);
2030 iput(inode);
2031 }
2032
2033 return dentry;
2034 }
2035
2036 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2037 int connectable)
2038 {
2039 struct inode *inode = dentry->d_inode;
2040
2041 if (*len < 3) {
2042 *len = 3;
2043 return 255;
2044 }
2045
2046 if (inode_unhashed(inode)) {
2047 /* Unfortunately insert_inode_hash is not idempotent,
2048 * so as we hash inodes here rather than at creation
2049 * time, we need a lock to ensure we only try
2050 * to do it once
2051 */
2052 static DEFINE_SPINLOCK(lock);
2053 spin_lock(&lock);
2054 if (inode_unhashed(inode))
2055 __insert_inode_hash(inode,
2056 inode->i_ino + inode->i_generation);
2057 spin_unlock(&lock);
2058 }
2059
2060 fh[0] = inode->i_generation;
2061 fh[1] = inode->i_ino;
2062 fh[2] = ((__u64)inode->i_ino) >> 32;
2063
2064 *len = 3;
2065 return 1;
2066 }
2067
2068 static const struct export_operations shmem_export_ops = {
2069 .get_parent = shmem_get_parent,
2070 .encode_fh = shmem_encode_fh,
2071 .fh_to_dentry = shmem_fh_to_dentry,
2072 };
2073
2074 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2075 bool remount)
2076 {
2077 char *this_char, *value, *rest;
2078 uid_t uid;
2079 gid_t gid;
2080
2081 while (options != NULL) {
2082 this_char = options;
2083 for (;;) {
2084 /*
2085 * NUL-terminate this option: unfortunately,
2086 * mount options form a comma-separated list,
2087 * but mpol's nodelist may also contain commas.
2088 */
2089 options = strchr(options, ',');
2090 if (options == NULL)
2091 break;
2092 options++;
2093 if (!isdigit(*options)) {
2094 options[-1] = '\0';
2095 break;
2096 }
2097 }
2098 if (!*this_char)
2099 continue;
2100 if ((value = strchr(this_char,'=')) != NULL) {
2101 *value++ = 0;
2102 } else {
2103 printk(KERN_ERR
2104 "tmpfs: No value for mount option '%s'\n",
2105 this_char);
2106 return 1;
2107 }
2108
2109 if (!strcmp(this_char,"size")) {
2110 unsigned long long size;
2111 size = memparse(value,&rest);
2112 if (*rest == '%') {
2113 size <<= PAGE_SHIFT;
2114 size *= totalram_pages;
2115 do_div(size, 100);
2116 rest++;
2117 }
2118 if (*rest)
2119 goto bad_val;
2120 sbinfo->max_blocks =
2121 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2122 } else if (!strcmp(this_char,"nr_blocks")) {
2123 sbinfo->max_blocks = memparse(value, &rest);
2124 if (*rest)
2125 goto bad_val;
2126 } else if (!strcmp(this_char,"nr_inodes")) {
2127 sbinfo->max_inodes = memparse(value, &rest);
2128 if (*rest)
2129 goto bad_val;
2130 } else if (!strcmp(this_char,"mode")) {
2131 if (remount)
2132 continue;
2133 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2134 if (*rest)
2135 goto bad_val;
2136 } else if (!strcmp(this_char,"uid")) {
2137 if (remount)
2138 continue;
2139 uid = simple_strtoul(value, &rest, 0);
2140 if (*rest)
2141 goto bad_val;
2142 sbinfo->uid = make_kuid(current_user_ns(), uid);
2143 if (!uid_valid(sbinfo->uid))
2144 goto bad_val;
2145 } else if (!strcmp(this_char,"gid")) {
2146 if (remount)
2147 continue;
2148 gid = simple_strtoul(value, &rest, 0);
2149 if (*rest)
2150 goto bad_val;
2151 sbinfo->gid = make_kgid(current_user_ns(), gid);
2152 if (!gid_valid(sbinfo->gid))
2153 goto bad_val;
2154 } else if (!strcmp(this_char,"mpol")) {
2155 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2156 goto bad_val;
2157 } else {
2158 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2159 this_char);
2160 return 1;
2161 }
2162 }
2163 return 0;
2164
2165 bad_val:
2166 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2167 value, this_char);
2168 return 1;
2169
2170 }
2171
2172 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2173 {
2174 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2175 struct shmem_sb_info config = *sbinfo;
2176 unsigned long inodes;
2177 int error = -EINVAL;
2178
2179 if (shmem_parse_options(data, &config, true))
2180 return error;
2181
2182 spin_lock(&sbinfo->stat_lock);
2183 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2184 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2185 goto out;
2186 if (config.max_inodes < inodes)
2187 goto out;
2188 /*
2189 * Those tests disallow limited->unlimited while any are in use;
2190 * but we must separately disallow unlimited->limited, because
2191 * in that case we have no record of how much is already in use.
2192 */
2193 if (config.max_blocks && !sbinfo->max_blocks)
2194 goto out;
2195 if (config.max_inodes && !sbinfo->max_inodes)
2196 goto out;
2197
2198 error = 0;
2199 sbinfo->max_blocks = config.max_blocks;
2200 sbinfo->max_inodes = config.max_inodes;
2201 sbinfo->free_inodes = config.max_inodes - inodes;
2202
2203 mpol_put(sbinfo->mpol);
2204 sbinfo->mpol = config.mpol; /* transfers initial ref */
2205 out:
2206 spin_unlock(&sbinfo->stat_lock);
2207 return error;
2208 }
2209
2210 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2211 {
2212 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2213
2214 if (sbinfo->max_blocks != shmem_default_max_blocks())
2215 seq_printf(seq, ",size=%luk",
2216 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2217 if (sbinfo->max_inodes != shmem_default_max_inodes())
2218 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2219 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2220 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2221 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2222 seq_printf(seq, ",uid=%u",
2223 from_kuid_munged(&init_user_ns, sbinfo->uid));
2224 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2225 seq_printf(seq, ",gid=%u",
2226 from_kgid_munged(&init_user_ns, sbinfo->gid));
2227 shmem_show_mpol(seq, sbinfo->mpol);
2228 return 0;
2229 }
2230 #endif /* CONFIG_TMPFS */
2231
2232 static void shmem_put_super(struct super_block *sb)
2233 {
2234 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2235
2236 percpu_counter_destroy(&sbinfo->used_blocks);
2237 kfree(sbinfo);
2238 sb->s_fs_info = NULL;
2239 }
2240
2241 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2242 {
2243 struct inode *inode;
2244 struct shmem_sb_info *sbinfo;
2245 int err = -ENOMEM;
2246
2247 /* Round up to L1_CACHE_BYTES to resist false sharing */
2248 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2249 L1_CACHE_BYTES), GFP_KERNEL);
2250 if (!sbinfo)
2251 return -ENOMEM;
2252
2253 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2254 sbinfo->uid = current_fsuid();
2255 sbinfo->gid = current_fsgid();
2256 sb->s_fs_info = sbinfo;
2257
2258 #ifdef CONFIG_TMPFS
2259 /*
2260 * Per default we only allow half of the physical ram per
2261 * tmpfs instance, limiting inodes to one per page of lowmem;
2262 * but the internal instance is left unlimited.
2263 */
2264 if (!(sb->s_flags & MS_NOUSER)) {
2265 sbinfo->max_blocks = shmem_default_max_blocks();
2266 sbinfo->max_inodes = shmem_default_max_inodes();
2267 if (shmem_parse_options(data, sbinfo, false)) {
2268 err = -EINVAL;
2269 goto failed;
2270 }
2271 }
2272 sb->s_export_op = &shmem_export_ops;
2273 #else
2274 sb->s_flags |= MS_NOUSER;
2275 #endif
2276
2277 spin_lock_init(&sbinfo->stat_lock);
2278 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2279 goto failed;
2280 sbinfo->free_inodes = sbinfo->max_inodes;
2281
2282 sb->s_maxbytes = MAX_LFS_FILESIZE;
2283 sb->s_blocksize = PAGE_CACHE_SIZE;
2284 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2285 sb->s_magic = TMPFS_MAGIC;
2286 sb->s_op = &shmem_ops;
2287 sb->s_time_gran = 1;
2288 #ifdef CONFIG_TMPFS_XATTR
2289 sb->s_xattr = shmem_xattr_handlers;
2290 #endif
2291 #ifdef CONFIG_TMPFS_POSIX_ACL
2292 sb->s_flags |= MS_POSIXACL;
2293 #endif
2294
2295 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2296 if (!inode)
2297 goto failed;
2298 inode->i_uid = sbinfo->uid;
2299 inode->i_gid = sbinfo->gid;
2300 sb->s_root = d_make_root(inode);
2301 if (!sb->s_root)
2302 goto failed;
2303 return 0;
2304
2305 failed:
2306 shmem_put_super(sb);
2307 return err;
2308 }
2309
2310 static struct kmem_cache *shmem_inode_cachep;
2311
2312 static struct inode *shmem_alloc_inode(struct super_block *sb)
2313 {
2314 struct shmem_inode_info *info;
2315 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2316 if (!info)
2317 return NULL;
2318 return &info->vfs_inode;
2319 }
2320
2321 static void shmem_destroy_callback(struct rcu_head *head)
2322 {
2323 struct inode *inode = container_of(head, struct inode, i_rcu);
2324 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2325 }
2326
2327 static void shmem_destroy_inode(struct inode *inode)
2328 {
2329 if (S_ISREG(inode->i_mode))
2330 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2331 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2332 }
2333
2334 static void shmem_init_inode(void *foo)
2335 {
2336 struct shmem_inode_info *info = foo;
2337 inode_init_once(&info->vfs_inode);
2338 }
2339
2340 static int shmem_init_inodecache(void)
2341 {
2342 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2343 sizeof(struct shmem_inode_info),
2344 0, SLAB_PANIC, shmem_init_inode);
2345 return 0;
2346 }
2347
2348 static void shmem_destroy_inodecache(void)
2349 {
2350 kmem_cache_destroy(shmem_inode_cachep);
2351 }
2352
2353 static const struct address_space_operations shmem_aops = {
2354 .writepage = shmem_writepage,
2355 .set_page_dirty = __set_page_dirty_no_writeback,
2356 #ifdef CONFIG_TMPFS
2357 .write_begin = shmem_write_begin,
2358 .write_end = shmem_write_end,
2359 #endif
2360 .migratepage = migrate_page,
2361 .error_remove_page = generic_error_remove_page,
2362 };
2363
2364 static const struct file_operations shmem_file_operations = {
2365 .mmap = shmem_mmap,
2366 #ifdef CONFIG_TMPFS
2367 .llseek = generic_file_llseek,
2368 .read = do_sync_read,
2369 .write = do_sync_write,
2370 .aio_read = shmem_file_aio_read,
2371 .aio_write = generic_file_aio_write,
2372 .fsync = noop_fsync,
2373 .splice_read = shmem_file_splice_read,
2374 .splice_write = generic_file_splice_write,
2375 #endif
2376 };
2377
2378 static const struct inode_operations shmem_inode_operations = {
2379 .setattr = shmem_setattr,
2380 .truncate_range = shmem_truncate_range,
2381 #ifdef CONFIG_TMPFS_XATTR
2382 .setxattr = shmem_setxattr,
2383 .getxattr = shmem_getxattr,
2384 .listxattr = shmem_listxattr,
2385 .removexattr = shmem_removexattr,
2386 #endif
2387 };
2388
2389 static const struct inode_operations shmem_dir_inode_operations = {
2390 #ifdef CONFIG_TMPFS
2391 .create = shmem_create,
2392 .lookup = simple_lookup,
2393 .link = shmem_link,
2394 .unlink = shmem_unlink,
2395 .symlink = shmem_symlink,
2396 .mkdir = shmem_mkdir,
2397 .rmdir = shmem_rmdir,
2398 .mknod = shmem_mknod,
2399 .rename = shmem_rename,
2400 #endif
2401 #ifdef CONFIG_TMPFS_XATTR
2402 .setxattr = shmem_setxattr,
2403 .getxattr = shmem_getxattr,
2404 .listxattr = shmem_listxattr,
2405 .removexattr = shmem_removexattr,
2406 #endif
2407 #ifdef CONFIG_TMPFS_POSIX_ACL
2408 .setattr = shmem_setattr,
2409 #endif
2410 };
2411
2412 static const struct inode_operations shmem_special_inode_operations = {
2413 #ifdef CONFIG_TMPFS_XATTR
2414 .setxattr = shmem_setxattr,
2415 .getxattr = shmem_getxattr,
2416 .listxattr = shmem_listxattr,
2417 .removexattr = shmem_removexattr,
2418 #endif
2419 #ifdef CONFIG_TMPFS_POSIX_ACL
2420 .setattr = shmem_setattr,
2421 #endif
2422 };
2423
2424 static const struct super_operations shmem_ops = {
2425 .alloc_inode = shmem_alloc_inode,
2426 .destroy_inode = shmem_destroy_inode,
2427 #ifdef CONFIG_TMPFS
2428 .statfs = shmem_statfs,
2429 .remount_fs = shmem_remount_fs,
2430 .show_options = shmem_show_options,
2431 #endif
2432 .evict_inode = shmem_evict_inode,
2433 .drop_inode = generic_delete_inode,
2434 .put_super = shmem_put_super,
2435 };
2436
2437 static const struct vm_operations_struct shmem_vm_ops = {
2438 .fault = shmem_fault,
2439 #ifdef CONFIG_NUMA
2440 .set_policy = shmem_set_policy,
2441 .get_policy = shmem_get_policy,
2442 #endif
2443 };
2444
2445 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2446 int flags, const char *dev_name, void *data)
2447 {
2448 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2449 }
2450
2451 static struct file_system_type shmem_fs_type = {
2452 .owner = THIS_MODULE,
2453 .name = "tmpfs",
2454 .mount = shmem_mount,
2455 .kill_sb = kill_litter_super,
2456 };
2457
2458 int __init shmem_init(void)
2459 {
2460 int error;
2461
2462 error = bdi_init(&shmem_backing_dev_info);
2463 if (error)
2464 goto out4;
2465
2466 error = shmem_init_inodecache();
2467 if (error)
2468 goto out3;
2469
2470 error = register_filesystem(&shmem_fs_type);
2471 if (error) {
2472 printk(KERN_ERR "Could not register tmpfs\n");
2473 goto out2;
2474 }
2475
2476 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2477 shmem_fs_type.name, NULL);
2478 if (IS_ERR(shm_mnt)) {
2479 error = PTR_ERR(shm_mnt);
2480 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2481 goto out1;
2482 }
2483 return 0;
2484
2485 out1:
2486 unregister_filesystem(&shmem_fs_type);
2487 out2:
2488 shmem_destroy_inodecache();
2489 out3:
2490 bdi_destroy(&shmem_backing_dev_info);
2491 out4:
2492 shm_mnt = ERR_PTR(error);
2493 return error;
2494 }
2495
2496 #else /* !CONFIG_SHMEM */
2497
2498 /*
2499 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2500 *
2501 * This is intended for small system where the benefits of the full
2502 * shmem code (swap-backed and resource-limited) are outweighed by
2503 * their complexity. On systems without swap this code should be
2504 * effectively equivalent, but much lighter weight.
2505 */
2506
2507 #include <linux/ramfs.h>
2508
2509 static struct file_system_type shmem_fs_type = {
2510 .name = "tmpfs",
2511 .mount = ramfs_mount,
2512 .kill_sb = kill_litter_super,
2513 };
2514
2515 int __init shmem_init(void)
2516 {
2517 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2518
2519 shm_mnt = kern_mount(&shmem_fs_type);
2520 BUG_ON(IS_ERR(shm_mnt));
2521
2522 return 0;
2523 }
2524
2525 int shmem_unuse(swp_entry_t swap, struct page *page)
2526 {
2527 return 0;
2528 }
2529
2530 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2531 {
2532 return 0;
2533 }
2534
2535 void shmem_unlock_mapping(struct address_space *mapping)
2536 {
2537 }
2538
2539 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2540 {
2541 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2542 }
2543 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2544
2545 #define shmem_vm_ops generic_file_vm_ops
2546 #define shmem_file_operations ramfs_file_operations
2547 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2548 #define shmem_acct_size(flags, size) 0
2549 #define shmem_unacct_size(flags, size) do {} while (0)
2550
2551 #endif /* CONFIG_SHMEM */
2552
2553 /* common code */
2554
2555 /**
2556 * shmem_file_setup - get an unlinked file living in tmpfs
2557 * @name: name for dentry (to be seen in /proc/<pid>/maps
2558 * @size: size to be set for the file
2559 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2560 */
2561 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2562 {
2563 int error;
2564 struct file *file;
2565 struct inode *inode;
2566 struct path path;
2567 struct dentry *root;
2568 struct qstr this;
2569
2570 if (IS_ERR(shm_mnt))
2571 return (void *)shm_mnt;
2572
2573 if (size < 0 || size > MAX_LFS_FILESIZE)
2574 return ERR_PTR(-EINVAL);
2575
2576 if (shmem_acct_size(flags, size))
2577 return ERR_PTR(-ENOMEM);
2578
2579 error = -ENOMEM;
2580 this.name = name;
2581 this.len = strlen(name);
2582 this.hash = 0; /* will go */
2583 root = shm_mnt->mnt_root;
2584 path.dentry = d_alloc(root, &this);
2585 if (!path.dentry)
2586 goto put_memory;
2587 path.mnt = mntget(shm_mnt);
2588
2589 error = -ENOSPC;
2590 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2591 if (!inode)
2592 goto put_dentry;
2593
2594 d_instantiate(path.dentry, inode);
2595 inode->i_size = size;
2596 clear_nlink(inode); /* It is unlinked */
2597 #ifndef CONFIG_MMU
2598 error = ramfs_nommu_expand_for_mapping(inode, size);
2599 if (error)
2600 goto put_dentry;
2601 #endif
2602
2603 error = -ENFILE;
2604 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2605 &shmem_file_operations);
2606 if (!file)
2607 goto put_dentry;
2608
2609 return file;
2610
2611 put_dentry:
2612 path_put(&path);
2613 put_memory:
2614 shmem_unacct_size(flags, size);
2615 return ERR_PTR(error);
2616 }
2617 EXPORT_SYMBOL_GPL(shmem_file_setup);
2618
2619 /**
2620 * shmem_zero_setup - setup a shared anonymous mapping
2621 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2622 */
2623 int shmem_zero_setup(struct vm_area_struct *vma)
2624 {
2625 struct file *file;
2626 loff_t size = vma->vm_end - vma->vm_start;
2627
2628 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2629 if (IS_ERR(file))
2630 return PTR_ERR(file);
2631
2632 if (vma->vm_file)
2633 fput(vma->vm_file);
2634 vma->vm_file = file;
2635 vma->vm_ops = &shmem_vm_ops;
2636 vma->vm_flags |= VM_CAN_NONLINEAR;
2637 return 0;
2638 }
2639
2640 /**
2641 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2642 * @mapping: the page's address_space
2643 * @index: the page index
2644 * @gfp: the page allocator flags to use if allocating
2645 *
2646 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2647 * with any new page allocations done using the specified allocation flags.
2648 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2649 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2650 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2651 *
2652 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2653 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2654 */
2655 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2656 pgoff_t index, gfp_t gfp)
2657 {
2658 #ifdef CONFIG_SHMEM
2659 struct inode *inode = mapping->host;
2660 struct page *page;
2661 int error;
2662
2663 BUG_ON(mapping->a_ops != &shmem_aops);
2664 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2665 if (error)
2666 page = ERR_PTR(error);
2667 else
2668 unlock_page(page);
2669 return page;
2670 #else
2671 /*
2672 * The tiny !SHMEM case uses ramfs without swap
2673 */
2674 return read_cache_page_gfp(mapping, index, gfp);
2675 #endif
2676 }
2677 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);