]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/shmem.c
Merge tag 'for-gkh' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[mirror_ubuntu-focal-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41
42 static struct vfsmount *shm_mnt;
43
44 #ifdef CONFIG_SHMEM
45 /*
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
49 */
50
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_mutex making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
100 */
101 struct shmem_falloc {
102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 pgoff_t start; /* start of range currently being fallocated */
104 pgoff_t next; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp,
126 gfp_t gfp, struct vm_area_struct *vma,
127 struct vm_fault *vmf, vm_fault_t *fault_type);
128
129 int shmem_getpage(struct inode *inode, pgoff_t index,
130 struct page **pagep, enum sgp_type sgp)
131 {
132 return shmem_getpage_gfp(inode, index, pagep, sgp,
133 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
134 }
135
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138 return sb->s_fs_info;
139 }
140
141 /*
142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143 * for shared memory and for shared anonymous (/dev/zero) mappings
144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145 * consistent with the pre-accounting of private mappings ...
146 */
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149 return (flags & VM_NORESERVE) ?
150 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 }
152
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155 if (!(flags & VM_NORESERVE))
156 vm_unacct_memory(VM_ACCT(size));
157 }
158
159 static inline int shmem_reacct_size(unsigned long flags,
160 loff_t oldsize, loff_t newsize)
161 {
162 if (!(flags & VM_NORESERVE)) {
163 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164 return security_vm_enough_memory_mm(current->mm,
165 VM_ACCT(newsize) - VM_ACCT(oldsize));
166 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168 }
169 return 0;
170 }
171
172 /*
173 * ... whereas tmpfs objects are accounted incrementally as
174 * pages are allocated, in order to allow large sparse files.
175 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177 */
178 static inline int shmem_acct_block(unsigned long flags, long pages)
179 {
180 if (!(flags & VM_NORESERVE))
181 return 0;
182
183 return security_vm_enough_memory_mm(current->mm,
184 pages * VM_ACCT(PAGE_SIZE));
185 }
186
187 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 {
189 if (flags & VM_NORESERVE)
190 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191 }
192
193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 {
195 struct shmem_inode_info *info = SHMEM_I(inode);
196 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197
198 if (shmem_acct_block(info->flags, pages))
199 return false;
200
201 if (sbinfo->max_blocks) {
202 if (percpu_counter_compare(&sbinfo->used_blocks,
203 sbinfo->max_blocks - pages) > 0)
204 goto unacct;
205 percpu_counter_add(&sbinfo->used_blocks, pages);
206 }
207
208 return true;
209
210 unacct:
211 shmem_unacct_blocks(info->flags, pages);
212 return false;
213 }
214
215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 {
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (sbinfo->max_blocks)
221 percpu_counter_sub(&sbinfo->used_blocks, pages);
222 shmem_unacct_blocks(info->flags, pages);
223 }
224
225 static const struct super_operations shmem_ops;
226 static const struct address_space_operations shmem_aops;
227 static const struct file_operations shmem_file_operations;
228 static const struct inode_operations shmem_inode_operations;
229 static const struct inode_operations shmem_dir_inode_operations;
230 static const struct inode_operations shmem_special_inode_operations;
231 static const struct vm_operations_struct shmem_vm_ops;
232 static struct file_system_type shmem_fs_type;
233
234 bool vma_is_shmem(struct vm_area_struct *vma)
235 {
236 return vma->vm_ops == &shmem_vm_ops;
237 }
238
239 static LIST_HEAD(shmem_swaplist);
240 static DEFINE_MUTEX(shmem_swaplist_mutex);
241
242 static int shmem_reserve_inode(struct super_block *sb)
243 {
244 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245 if (sbinfo->max_inodes) {
246 spin_lock(&sbinfo->stat_lock);
247 if (!sbinfo->free_inodes) {
248 spin_unlock(&sbinfo->stat_lock);
249 return -ENOSPC;
250 }
251 sbinfo->free_inodes--;
252 spin_unlock(&sbinfo->stat_lock);
253 }
254 return 0;
255 }
256
257 static void shmem_free_inode(struct super_block *sb)
258 {
259 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260 if (sbinfo->max_inodes) {
261 spin_lock(&sbinfo->stat_lock);
262 sbinfo->free_inodes++;
263 spin_unlock(&sbinfo->stat_lock);
264 }
265 }
266
267 /**
268 * shmem_recalc_inode - recalculate the block usage of an inode
269 * @inode: inode to recalc
270 *
271 * We have to calculate the free blocks since the mm can drop
272 * undirtied hole pages behind our back.
273 *
274 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
275 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276 *
277 * It has to be called with the spinlock held.
278 */
279 static void shmem_recalc_inode(struct inode *inode)
280 {
281 struct shmem_inode_info *info = SHMEM_I(inode);
282 long freed;
283
284 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285 if (freed > 0) {
286 info->alloced -= freed;
287 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
288 shmem_inode_unacct_blocks(inode, freed);
289 }
290 }
291
292 bool shmem_charge(struct inode *inode, long pages)
293 {
294 struct shmem_inode_info *info = SHMEM_I(inode);
295 unsigned long flags;
296
297 if (!shmem_inode_acct_block(inode, pages))
298 return false;
299
300 spin_lock_irqsave(&info->lock, flags);
301 info->alloced += pages;
302 inode->i_blocks += pages * BLOCKS_PER_PAGE;
303 shmem_recalc_inode(inode);
304 spin_unlock_irqrestore(&info->lock, flags);
305 inode->i_mapping->nrpages += pages;
306
307 return true;
308 }
309
310 void shmem_uncharge(struct inode *inode, long pages)
311 {
312 struct shmem_inode_info *info = SHMEM_I(inode);
313 unsigned long flags;
314
315 spin_lock_irqsave(&info->lock, flags);
316 info->alloced -= pages;
317 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
318 shmem_recalc_inode(inode);
319 spin_unlock_irqrestore(&info->lock, flags);
320
321 shmem_inode_unacct_blocks(inode, pages);
322 }
323
324 /*
325 * Replace item expected in radix tree by a new item, while holding tree lock.
326 */
327 static int shmem_radix_tree_replace(struct address_space *mapping,
328 pgoff_t index, void *expected, void *replacement)
329 {
330 struct radix_tree_node *node;
331 void __rcu **pslot;
332 void *item;
333
334 VM_BUG_ON(!expected);
335 VM_BUG_ON(!replacement);
336 item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
337 if (!item)
338 return -ENOENT;
339 if (item != expected)
340 return -ENOENT;
341 __radix_tree_replace(&mapping->i_pages, node, pslot,
342 replacement, NULL);
343 return 0;
344 }
345
346 /*
347 * Sometimes, before we decide whether to proceed or to fail, we must check
348 * that an entry was not already brought back from swap by a racing thread.
349 *
350 * Checking page is not enough: by the time a SwapCache page is locked, it
351 * might be reused, and again be SwapCache, using the same swap as before.
352 */
353 static bool shmem_confirm_swap(struct address_space *mapping,
354 pgoff_t index, swp_entry_t swap)
355 {
356 void *item;
357
358 rcu_read_lock();
359 item = radix_tree_lookup(&mapping->i_pages, index);
360 rcu_read_unlock();
361 return item == swp_to_radix_entry(swap);
362 }
363
364 /*
365 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
366 *
367 * SHMEM_HUGE_NEVER:
368 * disables huge pages for the mount;
369 * SHMEM_HUGE_ALWAYS:
370 * enables huge pages for the mount;
371 * SHMEM_HUGE_WITHIN_SIZE:
372 * only allocate huge pages if the page will be fully within i_size,
373 * also respect fadvise()/madvise() hints;
374 * SHMEM_HUGE_ADVISE:
375 * only allocate huge pages if requested with fadvise()/madvise();
376 */
377
378 #define SHMEM_HUGE_NEVER 0
379 #define SHMEM_HUGE_ALWAYS 1
380 #define SHMEM_HUGE_WITHIN_SIZE 2
381 #define SHMEM_HUGE_ADVISE 3
382
383 /*
384 * Special values.
385 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
386 *
387 * SHMEM_HUGE_DENY:
388 * disables huge on shm_mnt and all mounts, for emergency use;
389 * SHMEM_HUGE_FORCE:
390 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
391 *
392 */
393 #define SHMEM_HUGE_DENY (-1)
394 #define SHMEM_HUGE_FORCE (-2)
395
396 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
397 /* ifdef here to avoid bloating shmem.o when not necessary */
398
399 static int shmem_huge __read_mostly;
400
401 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
402 static int shmem_parse_huge(const char *str)
403 {
404 if (!strcmp(str, "never"))
405 return SHMEM_HUGE_NEVER;
406 if (!strcmp(str, "always"))
407 return SHMEM_HUGE_ALWAYS;
408 if (!strcmp(str, "within_size"))
409 return SHMEM_HUGE_WITHIN_SIZE;
410 if (!strcmp(str, "advise"))
411 return SHMEM_HUGE_ADVISE;
412 if (!strcmp(str, "deny"))
413 return SHMEM_HUGE_DENY;
414 if (!strcmp(str, "force"))
415 return SHMEM_HUGE_FORCE;
416 return -EINVAL;
417 }
418
419 static const char *shmem_format_huge(int huge)
420 {
421 switch (huge) {
422 case SHMEM_HUGE_NEVER:
423 return "never";
424 case SHMEM_HUGE_ALWAYS:
425 return "always";
426 case SHMEM_HUGE_WITHIN_SIZE:
427 return "within_size";
428 case SHMEM_HUGE_ADVISE:
429 return "advise";
430 case SHMEM_HUGE_DENY:
431 return "deny";
432 case SHMEM_HUGE_FORCE:
433 return "force";
434 default:
435 VM_BUG_ON(1);
436 return "bad_val";
437 }
438 }
439 #endif
440
441 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
442 struct shrink_control *sc, unsigned long nr_to_split)
443 {
444 LIST_HEAD(list), *pos, *next;
445 LIST_HEAD(to_remove);
446 struct inode *inode;
447 struct shmem_inode_info *info;
448 struct page *page;
449 unsigned long batch = sc ? sc->nr_to_scan : 128;
450 int removed = 0, split = 0;
451
452 if (list_empty(&sbinfo->shrinklist))
453 return SHRINK_STOP;
454
455 spin_lock(&sbinfo->shrinklist_lock);
456 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
457 info = list_entry(pos, struct shmem_inode_info, shrinklist);
458
459 /* pin the inode */
460 inode = igrab(&info->vfs_inode);
461
462 /* inode is about to be evicted */
463 if (!inode) {
464 list_del_init(&info->shrinklist);
465 removed++;
466 goto next;
467 }
468
469 /* Check if there's anything to gain */
470 if (round_up(inode->i_size, PAGE_SIZE) ==
471 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
472 list_move(&info->shrinklist, &to_remove);
473 removed++;
474 goto next;
475 }
476
477 list_move(&info->shrinklist, &list);
478 next:
479 if (!--batch)
480 break;
481 }
482 spin_unlock(&sbinfo->shrinklist_lock);
483
484 list_for_each_safe(pos, next, &to_remove) {
485 info = list_entry(pos, struct shmem_inode_info, shrinklist);
486 inode = &info->vfs_inode;
487 list_del_init(&info->shrinklist);
488 iput(inode);
489 }
490
491 list_for_each_safe(pos, next, &list) {
492 int ret;
493
494 info = list_entry(pos, struct shmem_inode_info, shrinklist);
495 inode = &info->vfs_inode;
496
497 if (nr_to_split && split >= nr_to_split)
498 goto leave;
499
500 page = find_get_page(inode->i_mapping,
501 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
502 if (!page)
503 goto drop;
504
505 /* No huge page at the end of the file: nothing to split */
506 if (!PageTransHuge(page)) {
507 put_page(page);
508 goto drop;
509 }
510
511 /*
512 * Leave the inode on the list if we failed to lock
513 * the page at this time.
514 *
515 * Waiting for the lock may lead to deadlock in the
516 * reclaim path.
517 */
518 if (!trylock_page(page)) {
519 put_page(page);
520 goto leave;
521 }
522
523 ret = split_huge_page(page);
524 unlock_page(page);
525 put_page(page);
526
527 /* If split failed leave the inode on the list */
528 if (ret)
529 goto leave;
530
531 split++;
532 drop:
533 list_del_init(&info->shrinklist);
534 removed++;
535 leave:
536 iput(inode);
537 }
538
539 spin_lock(&sbinfo->shrinklist_lock);
540 list_splice_tail(&list, &sbinfo->shrinklist);
541 sbinfo->shrinklist_len -= removed;
542 spin_unlock(&sbinfo->shrinklist_lock);
543
544 return split;
545 }
546
547 static long shmem_unused_huge_scan(struct super_block *sb,
548 struct shrink_control *sc)
549 {
550 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
551
552 if (!READ_ONCE(sbinfo->shrinklist_len))
553 return SHRINK_STOP;
554
555 return shmem_unused_huge_shrink(sbinfo, sc, 0);
556 }
557
558 static long shmem_unused_huge_count(struct super_block *sb,
559 struct shrink_control *sc)
560 {
561 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
562 return READ_ONCE(sbinfo->shrinklist_len);
563 }
564 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
565
566 #define shmem_huge SHMEM_HUGE_DENY
567
568 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
569 struct shrink_control *sc, unsigned long nr_to_split)
570 {
571 return 0;
572 }
573 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
574
575 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
576 {
577 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
578 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
579 shmem_huge != SHMEM_HUGE_DENY)
580 return true;
581 return false;
582 }
583
584 /*
585 * Like add_to_page_cache_locked, but error if expected item has gone.
586 */
587 static int shmem_add_to_page_cache(struct page *page,
588 struct address_space *mapping,
589 pgoff_t index, void *expected)
590 {
591 int error, nr = hpage_nr_pages(page);
592
593 VM_BUG_ON_PAGE(PageTail(page), page);
594 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
595 VM_BUG_ON_PAGE(!PageLocked(page), page);
596 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
597 VM_BUG_ON(expected && PageTransHuge(page));
598
599 page_ref_add(page, nr);
600 page->mapping = mapping;
601 page->index = index;
602
603 xa_lock_irq(&mapping->i_pages);
604 if (PageTransHuge(page)) {
605 void __rcu **results;
606 pgoff_t idx;
607 int i;
608
609 error = 0;
610 if (radix_tree_gang_lookup_slot(&mapping->i_pages,
611 &results, &idx, index, 1) &&
612 idx < index + HPAGE_PMD_NR) {
613 error = -EEXIST;
614 }
615
616 if (!error) {
617 for (i = 0; i < HPAGE_PMD_NR; i++) {
618 error = radix_tree_insert(&mapping->i_pages,
619 index + i, page + i);
620 VM_BUG_ON(error);
621 }
622 count_vm_event(THP_FILE_ALLOC);
623 }
624 } else if (!expected) {
625 error = radix_tree_insert(&mapping->i_pages, index, page);
626 } else {
627 error = shmem_radix_tree_replace(mapping, index, expected,
628 page);
629 }
630
631 if (!error) {
632 mapping->nrpages += nr;
633 if (PageTransHuge(page))
634 __inc_node_page_state(page, NR_SHMEM_THPS);
635 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
636 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
637 xa_unlock_irq(&mapping->i_pages);
638 } else {
639 page->mapping = NULL;
640 xa_unlock_irq(&mapping->i_pages);
641 page_ref_sub(page, nr);
642 }
643 return error;
644 }
645
646 /*
647 * Like delete_from_page_cache, but substitutes swap for page.
648 */
649 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
650 {
651 struct address_space *mapping = page->mapping;
652 int error;
653
654 VM_BUG_ON_PAGE(PageCompound(page), page);
655
656 xa_lock_irq(&mapping->i_pages);
657 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
658 page->mapping = NULL;
659 mapping->nrpages--;
660 __dec_node_page_state(page, NR_FILE_PAGES);
661 __dec_node_page_state(page, NR_SHMEM);
662 xa_unlock_irq(&mapping->i_pages);
663 put_page(page);
664 BUG_ON(error);
665 }
666
667 /*
668 * Remove swap entry from radix tree, free the swap and its page cache.
669 */
670 static int shmem_free_swap(struct address_space *mapping,
671 pgoff_t index, void *radswap)
672 {
673 void *old;
674
675 xa_lock_irq(&mapping->i_pages);
676 old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
677 xa_unlock_irq(&mapping->i_pages);
678 if (old != radswap)
679 return -ENOENT;
680 free_swap_and_cache(radix_to_swp_entry(radswap));
681 return 0;
682 }
683
684 /*
685 * Determine (in bytes) how many of the shmem object's pages mapped by the
686 * given offsets are swapped out.
687 *
688 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
689 * as long as the inode doesn't go away and racy results are not a problem.
690 */
691 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
692 pgoff_t start, pgoff_t end)
693 {
694 struct radix_tree_iter iter;
695 void __rcu **slot;
696 struct page *page;
697 unsigned long swapped = 0;
698
699 rcu_read_lock();
700
701 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
702 if (iter.index >= end)
703 break;
704
705 page = radix_tree_deref_slot(slot);
706
707 if (radix_tree_deref_retry(page)) {
708 slot = radix_tree_iter_retry(&iter);
709 continue;
710 }
711
712 if (radix_tree_exceptional_entry(page))
713 swapped++;
714
715 if (need_resched()) {
716 slot = radix_tree_iter_resume(slot, &iter);
717 cond_resched_rcu();
718 }
719 }
720
721 rcu_read_unlock();
722
723 return swapped << PAGE_SHIFT;
724 }
725
726 /*
727 * Determine (in bytes) how many of the shmem object's pages mapped by the
728 * given vma is swapped out.
729 *
730 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
731 * as long as the inode doesn't go away and racy results are not a problem.
732 */
733 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
734 {
735 struct inode *inode = file_inode(vma->vm_file);
736 struct shmem_inode_info *info = SHMEM_I(inode);
737 struct address_space *mapping = inode->i_mapping;
738 unsigned long swapped;
739
740 /* Be careful as we don't hold info->lock */
741 swapped = READ_ONCE(info->swapped);
742
743 /*
744 * The easier cases are when the shmem object has nothing in swap, or
745 * the vma maps it whole. Then we can simply use the stats that we
746 * already track.
747 */
748 if (!swapped)
749 return 0;
750
751 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
752 return swapped << PAGE_SHIFT;
753
754 /* Here comes the more involved part */
755 return shmem_partial_swap_usage(mapping,
756 linear_page_index(vma, vma->vm_start),
757 linear_page_index(vma, vma->vm_end));
758 }
759
760 /*
761 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
762 */
763 void shmem_unlock_mapping(struct address_space *mapping)
764 {
765 struct pagevec pvec;
766 pgoff_t indices[PAGEVEC_SIZE];
767 pgoff_t index = 0;
768
769 pagevec_init(&pvec);
770 /*
771 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
772 */
773 while (!mapping_unevictable(mapping)) {
774 /*
775 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
776 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
777 */
778 pvec.nr = find_get_entries(mapping, index,
779 PAGEVEC_SIZE, pvec.pages, indices);
780 if (!pvec.nr)
781 break;
782 index = indices[pvec.nr - 1] + 1;
783 pagevec_remove_exceptionals(&pvec);
784 check_move_unevictable_pages(pvec.pages, pvec.nr);
785 pagevec_release(&pvec);
786 cond_resched();
787 }
788 }
789
790 /*
791 * Remove range of pages and swap entries from radix tree, and free them.
792 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
793 */
794 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
795 bool unfalloc)
796 {
797 struct address_space *mapping = inode->i_mapping;
798 struct shmem_inode_info *info = SHMEM_I(inode);
799 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
800 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
801 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
802 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
803 struct pagevec pvec;
804 pgoff_t indices[PAGEVEC_SIZE];
805 long nr_swaps_freed = 0;
806 pgoff_t index;
807 int i;
808
809 if (lend == -1)
810 end = -1; /* unsigned, so actually very big */
811
812 pagevec_init(&pvec);
813 index = start;
814 while (index < end) {
815 pvec.nr = find_get_entries(mapping, index,
816 min(end - index, (pgoff_t)PAGEVEC_SIZE),
817 pvec.pages, indices);
818 if (!pvec.nr)
819 break;
820 for (i = 0; i < pagevec_count(&pvec); i++) {
821 struct page *page = pvec.pages[i];
822
823 index = indices[i];
824 if (index >= end)
825 break;
826
827 if (radix_tree_exceptional_entry(page)) {
828 if (unfalloc)
829 continue;
830 nr_swaps_freed += !shmem_free_swap(mapping,
831 index, page);
832 continue;
833 }
834
835 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
836
837 if (!trylock_page(page))
838 continue;
839
840 if (PageTransTail(page)) {
841 /* Middle of THP: zero out the page */
842 clear_highpage(page);
843 unlock_page(page);
844 continue;
845 } else if (PageTransHuge(page)) {
846 if (index == round_down(end, HPAGE_PMD_NR)) {
847 /*
848 * Range ends in the middle of THP:
849 * zero out the page
850 */
851 clear_highpage(page);
852 unlock_page(page);
853 continue;
854 }
855 index += HPAGE_PMD_NR - 1;
856 i += HPAGE_PMD_NR - 1;
857 }
858
859 if (!unfalloc || !PageUptodate(page)) {
860 VM_BUG_ON_PAGE(PageTail(page), page);
861 if (page_mapping(page) == mapping) {
862 VM_BUG_ON_PAGE(PageWriteback(page), page);
863 truncate_inode_page(mapping, page);
864 }
865 }
866 unlock_page(page);
867 }
868 pagevec_remove_exceptionals(&pvec);
869 pagevec_release(&pvec);
870 cond_resched();
871 index++;
872 }
873
874 if (partial_start) {
875 struct page *page = NULL;
876 shmem_getpage(inode, start - 1, &page, SGP_READ);
877 if (page) {
878 unsigned int top = PAGE_SIZE;
879 if (start > end) {
880 top = partial_end;
881 partial_end = 0;
882 }
883 zero_user_segment(page, partial_start, top);
884 set_page_dirty(page);
885 unlock_page(page);
886 put_page(page);
887 }
888 }
889 if (partial_end) {
890 struct page *page = NULL;
891 shmem_getpage(inode, end, &page, SGP_READ);
892 if (page) {
893 zero_user_segment(page, 0, partial_end);
894 set_page_dirty(page);
895 unlock_page(page);
896 put_page(page);
897 }
898 }
899 if (start >= end)
900 return;
901
902 index = start;
903 while (index < end) {
904 cond_resched();
905
906 pvec.nr = find_get_entries(mapping, index,
907 min(end - index, (pgoff_t)PAGEVEC_SIZE),
908 pvec.pages, indices);
909 if (!pvec.nr) {
910 /* If all gone or hole-punch or unfalloc, we're done */
911 if (index == start || end != -1)
912 break;
913 /* But if truncating, restart to make sure all gone */
914 index = start;
915 continue;
916 }
917 for (i = 0; i < pagevec_count(&pvec); i++) {
918 struct page *page = pvec.pages[i];
919
920 index = indices[i];
921 if (index >= end)
922 break;
923
924 if (radix_tree_exceptional_entry(page)) {
925 if (unfalloc)
926 continue;
927 if (shmem_free_swap(mapping, index, page)) {
928 /* Swap was replaced by page: retry */
929 index--;
930 break;
931 }
932 nr_swaps_freed++;
933 continue;
934 }
935
936 lock_page(page);
937
938 if (PageTransTail(page)) {
939 /* Middle of THP: zero out the page */
940 clear_highpage(page);
941 unlock_page(page);
942 /*
943 * Partial thp truncate due 'start' in middle
944 * of THP: don't need to look on these pages
945 * again on !pvec.nr restart.
946 */
947 if (index != round_down(end, HPAGE_PMD_NR))
948 start++;
949 continue;
950 } else if (PageTransHuge(page)) {
951 if (index == round_down(end, HPAGE_PMD_NR)) {
952 /*
953 * Range ends in the middle of THP:
954 * zero out the page
955 */
956 clear_highpage(page);
957 unlock_page(page);
958 continue;
959 }
960 index += HPAGE_PMD_NR - 1;
961 i += HPAGE_PMD_NR - 1;
962 }
963
964 if (!unfalloc || !PageUptodate(page)) {
965 VM_BUG_ON_PAGE(PageTail(page), page);
966 if (page_mapping(page) == mapping) {
967 VM_BUG_ON_PAGE(PageWriteback(page), page);
968 truncate_inode_page(mapping, page);
969 } else {
970 /* Page was replaced by swap: retry */
971 unlock_page(page);
972 index--;
973 break;
974 }
975 }
976 unlock_page(page);
977 }
978 pagevec_remove_exceptionals(&pvec);
979 pagevec_release(&pvec);
980 index++;
981 }
982
983 spin_lock_irq(&info->lock);
984 info->swapped -= nr_swaps_freed;
985 shmem_recalc_inode(inode);
986 spin_unlock_irq(&info->lock);
987 }
988
989 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
990 {
991 shmem_undo_range(inode, lstart, lend, false);
992 inode->i_ctime = inode->i_mtime = current_time(inode);
993 }
994 EXPORT_SYMBOL_GPL(shmem_truncate_range);
995
996 static int shmem_getattr(const struct path *path, struct kstat *stat,
997 u32 request_mask, unsigned int query_flags)
998 {
999 struct inode *inode = path->dentry->d_inode;
1000 struct shmem_inode_info *info = SHMEM_I(inode);
1001 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1002
1003 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1004 spin_lock_irq(&info->lock);
1005 shmem_recalc_inode(inode);
1006 spin_unlock_irq(&info->lock);
1007 }
1008 generic_fillattr(inode, stat);
1009
1010 if (is_huge_enabled(sb_info))
1011 stat->blksize = HPAGE_PMD_SIZE;
1012
1013 return 0;
1014 }
1015
1016 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1017 {
1018 struct inode *inode = d_inode(dentry);
1019 struct shmem_inode_info *info = SHMEM_I(inode);
1020 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1021 int error;
1022
1023 error = setattr_prepare(dentry, attr);
1024 if (error)
1025 return error;
1026
1027 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1028 loff_t oldsize = inode->i_size;
1029 loff_t newsize = attr->ia_size;
1030
1031 /* protected by i_mutex */
1032 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1033 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1034 return -EPERM;
1035
1036 if (newsize != oldsize) {
1037 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1038 oldsize, newsize);
1039 if (error)
1040 return error;
1041 i_size_write(inode, newsize);
1042 inode->i_ctime = inode->i_mtime = current_time(inode);
1043 }
1044 if (newsize <= oldsize) {
1045 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1046 if (oldsize > holebegin)
1047 unmap_mapping_range(inode->i_mapping,
1048 holebegin, 0, 1);
1049 if (info->alloced)
1050 shmem_truncate_range(inode,
1051 newsize, (loff_t)-1);
1052 /* unmap again to remove racily COWed private pages */
1053 if (oldsize > holebegin)
1054 unmap_mapping_range(inode->i_mapping,
1055 holebegin, 0, 1);
1056
1057 /*
1058 * Part of the huge page can be beyond i_size: subject
1059 * to shrink under memory pressure.
1060 */
1061 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1062 spin_lock(&sbinfo->shrinklist_lock);
1063 /*
1064 * _careful to defend against unlocked access to
1065 * ->shrink_list in shmem_unused_huge_shrink()
1066 */
1067 if (list_empty_careful(&info->shrinklist)) {
1068 list_add_tail(&info->shrinklist,
1069 &sbinfo->shrinklist);
1070 sbinfo->shrinklist_len++;
1071 }
1072 spin_unlock(&sbinfo->shrinklist_lock);
1073 }
1074 }
1075 }
1076
1077 setattr_copy(inode, attr);
1078 if (attr->ia_valid & ATTR_MODE)
1079 error = posix_acl_chmod(inode, inode->i_mode);
1080 return error;
1081 }
1082
1083 static void shmem_evict_inode(struct inode *inode)
1084 {
1085 struct shmem_inode_info *info = SHMEM_I(inode);
1086 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1087
1088 if (inode->i_mapping->a_ops == &shmem_aops) {
1089 shmem_unacct_size(info->flags, inode->i_size);
1090 inode->i_size = 0;
1091 shmem_truncate_range(inode, 0, (loff_t)-1);
1092 if (!list_empty(&info->shrinklist)) {
1093 spin_lock(&sbinfo->shrinklist_lock);
1094 if (!list_empty(&info->shrinklist)) {
1095 list_del_init(&info->shrinklist);
1096 sbinfo->shrinklist_len--;
1097 }
1098 spin_unlock(&sbinfo->shrinklist_lock);
1099 }
1100 if (!list_empty(&info->swaplist)) {
1101 mutex_lock(&shmem_swaplist_mutex);
1102 list_del_init(&info->swaplist);
1103 mutex_unlock(&shmem_swaplist_mutex);
1104 }
1105 }
1106
1107 simple_xattrs_free(&info->xattrs);
1108 WARN_ON(inode->i_blocks);
1109 shmem_free_inode(inode->i_sb);
1110 clear_inode(inode);
1111 }
1112
1113 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1114 {
1115 struct radix_tree_iter iter;
1116 void __rcu **slot;
1117 unsigned long found = -1;
1118 unsigned int checked = 0;
1119
1120 rcu_read_lock();
1121 radix_tree_for_each_slot(slot, root, &iter, 0) {
1122 void *entry = radix_tree_deref_slot(slot);
1123
1124 if (radix_tree_deref_retry(entry)) {
1125 slot = radix_tree_iter_retry(&iter);
1126 continue;
1127 }
1128 if (entry == item) {
1129 found = iter.index;
1130 break;
1131 }
1132 checked++;
1133 if ((checked % 4096) != 0)
1134 continue;
1135 slot = radix_tree_iter_resume(slot, &iter);
1136 cond_resched_rcu();
1137 }
1138
1139 rcu_read_unlock();
1140 return found;
1141 }
1142
1143 /*
1144 * If swap found in inode, free it and move page from swapcache to filecache.
1145 */
1146 static int shmem_unuse_inode(struct shmem_inode_info *info,
1147 swp_entry_t swap, struct page **pagep)
1148 {
1149 struct address_space *mapping = info->vfs_inode.i_mapping;
1150 void *radswap;
1151 pgoff_t index;
1152 gfp_t gfp;
1153 int error = 0;
1154
1155 radswap = swp_to_radix_entry(swap);
1156 index = find_swap_entry(&mapping->i_pages, radswap);
1157 if (index == -1)
1158 return -EAGAIN; /* tell shmem_unuse we found nothing */
1159
1160 /*
1161 * Move _head_ to start search for next from here.
1162 * But be careful: shmem_evict_inode checks list_empty without taking
1163 * mutex, and there's an instant in list_move_tail when info->swaplist
1164 * would appear empty, if it were the only one on shmem_swaplist.
1165 */
1166 if (shmem_swaplist.next != &info->swaplist)
1167 list_move_tail(&shmem_swaplist, &info->swaplist);
1168
1169 gfp = mapping_gfp_mask(mapping);
1170 if (shmem_should_replace_page(*pagep, gfp)) {
1171 mutex_unlock(&shmem_swaplist_mutex);
1172 error = shmem_replace_page(pagep, gfp, info, index);
1173 mutex_lock(&shmem_swaplist_mutex);
1174 /*
1175 * We needed to drop mutex to make that restrictive page
1176 * allocation, but the inode might have been freed while we
1177 * dropped it: although a racing shmem_evict_inode() cannot
1178 * complete without emptying the radix_tree, our page lock
1179 * on this swapcache page is not enough to prevent that -
1180 * free_swap_and_cache() of our swap entry will only
1181 * trylock_page(), removing swap from radix_tree whatever.
1182 *
1183 * We must not proceed to shmem_add_to_page_cache() if the
1184 * inode has been freed, but of course we cannot rely on
1185 * inode or mapping or info to check that. However, we can
1186 * safely check if our swap entry is still in use (and here
1187 * it can't have got reused for another page): if it's still
1188 * in use, then the inode cannot have been freed yet, and we
1189 * can safely proceed (if it's no longer in use, that tells
1190 * nothing about the inode, but we don't need to unuse swap).
1191 */
1192 if (!page_swapcount(*pagep))
1193 error = -ENOENT;
1194 }
1195
1196 /*
1197 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1198 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1199 * beneath us (pagelock doesn't help until the page is in pagecache).
1200 */
1201 if (!error)
1202 error = shmem_add_to_page_cache(*pagep, mapping, index,
1203 radswap);
1204 if (error != -ENOMEM) {
1205 /*
1206 * Truncation and eviction use free_swap_and_cache(), which
1207 * only does trylock page: if we raced, best clean up here.
1208 */
1209 delete_from_swap_cache(*pagep);
1210 set_page_dirty(*pagep);
1211 if (!error) {
1212 spin_lock_irq(&info->lock);
1213 info->swapped--;
1214 spin_unlock_irq(&info->lock);
1215 swap_free(swap);
1216 }
1217 }
1218 return error;
1219 }
1220
1221 /*
1222 * Search through swapped inodes to find and replace swap by page.
1223 */
1224 int shmem_unuse(swp_entry_t swap, struct page *page)
1225 {
1226 struct list_head *this, *next;
1227 struct shmem_inode_info *info;
1228 struct mem_cgroup *memcg;
1229 int error = 0;
1230
1231 /*
1232 * There's a faint possibility that swap page was replaced before
1233 * caller locked it: caller will come back later with the right page.
1234 */
1235 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1236 goto out;
1237
1238 /*
1239 * Charge page using GFP_KERNEL while we can wait, before taking
1240 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1241 * Charged back to the user (not to caller) when swap account is used.
1242 */
1243 error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1244 &memcg, false);
1245 if (error)
1246 goto out;
1247 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1248 error = -EAGAIN;
1249
1250 mutex_lock(&shmem_swaplist_mutex);
1251 list_for_each_safe(this, next, &shmem_swaplist) {
1252 info = list_entry(this, struct shmem_inode_info, swaplist);
1253 if (info->swapped)
1254 error = shmem_unuse_inode(info, swap, &page);
1255 else
1256 list_del_init(&info->swaplist);
1257 cond_resched();
1258 if (error != -EAGAIN)
1259 break;
1260 /* found nothing in this: move on to search the next */
1261 }
1262 mutex_unlock(&shmem_swaplist_mutex);
1263
1264 if (error) {
1265 if (error != -ENOMEM)
1266 error = 0;
1267 mem_cgroup_cancel_charge(page, memcg, false);
1268 } else
1269 mem_cgroup_commit_charge(page, memcg, true, false);
1270 out:
1271 unlock_page(page);
1272 put_page(page);
1273 return error;
1274 }
1275
1276 /*
1277 * Move the page from the page cache to the swap cache.
1278 */
1279 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1280 {
1281 struct shmem_inode_info *info;
1282 struct address_space *mapping;
1283 struct inode *inode;
1284 swp_entry_t swap;
1285 pgoff_t index;
1286
1287 VM_BUG_ON_PAGE(PageCompound(page), page);
1288 BUG_ON(!PageLocked(page));
1289 mapping = page->mapping;
1290 index = page->index;
1291 inode = mapping->host;
1292 info = SHMEM_I(inode);
1293 if (info->flags & VM_LOCKED)
1294 goto redirty;
1295 if (!total_swap_pages)
1296 goto redirty;
1297
1298 /*
1299 * Our capabilities prevent regular writeback or sync from ever calling
1300 * shmem_writepage; but a stacking filesystem might use ->writepage of
1301 * its underlying filesystem, in which case tmpfs should write out to
1302 * swap only in response to memory pressure, and not for the writeback
1303 * threads or sync.
1304 */
1305 if (!wbc->for_reclaim) {
1306 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1307 goto redirty;
1308 }
1309
1310 /*
1311 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1312 * value into swapfile.c, the only way we can correctly account for a
1313 * fallocated page arriving here is now to initialize it and write it.
1314 *
1315 * That's okay for a page already fallocated earlier, but if we have
1316 * not yet completed the fallocation, then (a) we want to keep track
1317 * of this page in case we have to undo it, and (b) it may not be a
1318 * good idea to continue anyway, once we're pushing into swap. So
1319 * reactivate the page, and let shmem_fallocate() quit when too many.
1320 */
1321 if (!PageUptodate(page)) {
1322 if (inode->i_private) {
1323 struct shmem_falloc *shmem_falloc;
1324 spin_lock(&inode->i_lock);
1325 shmem_falloc = inode->i_private;
1326 if (shmem_falloc &&
1327 !shmem_falloc->waitq &&
1328 index >= shmem_falloc->start &&
1329 index < shmem_falloc->next)
1330 shmem_falloc->nr_unswapped++;
1331 else
1332 shmem_falloc = NULL;
1333 spin_unlock(&inode->i_lock);
1334 if (shmem_falloc)
1335 goto redirty;
1336 }
1337 clear_highpage(page);
1338 flush_dcache_page(page);
1339 SetPageUptodate(page);
1340 }
1341
1342 swap = get_swap_page(page);
1343 if (!swap.val)
1344 goto redirty;
1345
1346 /*
1347 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1348 * if it's not already there. Do it now before the page is
1349 * moved to swap cache, when its pagelock no longer protects
1350 * the inode from eviction. But don't unlock the mutex until
1351 * we've incremented swapped, because shmem_unuse_inode() will
1352 * prune a !swapped inode from the swaplist under this mutex.
1353 */
1354 mutex_lock(&shmem_swaplist_mutex);
1355 if (list_empty(&info->swaplist))
1356 list_add_tail(&info->swaplist, &shmem_swaplist);
1357
1358 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1359 spin_lock_irq(&info->lock);
1360 shmem_recalc_inode(inode);
1361 info->swapped++;
1362 spin_unlock_irq(&info->lock);
1363
1364 swap_shmem_alloc(swap);
1365 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1366
1367 mutex_unlock(&shmem_swaplist_mutex);
1368 BUG_ON(page_mapped(page));
1369 swap_writepage(page, wbc);
1370 return 0;
1371 }
1372
1373 mutex_unlock(&shmem_swaplist_mutex);
1374 put_swap_page(page, swap);
1375 redirty:
1376 set_page_dirty(page);
1377 if (wbc->for_reclaim)
1378 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1379 unlock_page(page);
1380 return 0;
1381 }
1382
1383 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1384 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1385 {
1386 char buffer[64];
1387
1388 if (!mpol || mpol->mode == MPOL_DEFAULT)
1389 return; /* show nothing */
1390
1391 mpol_to_str(buffer, sizeof(buffer), mpol);
1392
1393 seq_printf(seq, ",mpol=%s", buffer);
1394 }
1395
1396 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1397 {
1398 struct mempolicy *mpol = NULL;
1399 if (sbinfo->mpol) {
1400 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1401 mpol = sbinfo->mpol;
1402 mpol_get(mpol);
1403 spin_unlock(&sbinfo->stat_lock);
1404 }
1405 return mpol;
1406 }
1407 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1408 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1409 {
1410 }
1411 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1412 {
1413 return NULL;
1414 }
1415 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1416 #ifndef CONFIG_NUMA
1417 #define vm_policy vm_private_data
1418 #endif
1419
1420 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1421 struct shmem_inode_info *info, pgoff_t index)
1422 {
1423 /* Create a pseudo vma that just contains the policy */
1424 vma_init(vma, NULL);
1425 /* Bias interleave by inode number to distribute better across nodes */
1426 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1427 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1428 }
1429
1430 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1431 {
1432 /* Drop reference taken by mpol_shared_policy_lookup() */
1433 mpol_cond_put(vma->vm_policy);
1434 }
1435
1436 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1437 struct shmem_inode_info *info, pgoff_t index)
1438 {
1439 struct vm_area_struct pvma;
1440 struct page *page;
1441 struct vm_fault vmf;
1442
1443 shmem_pseudo_vma_init(&pvma, info, index);
1444 vmf.vma = &pvma;
1445 vmf.address = 0;
1446 page = swap_cluster_readahead(swap, gfp, &vmf);
1447 shmem_pseudo_vma_destroy(&pvma);
1448
1449 return page;
1450 }
1451
1452 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1453 struct shmem_inode_info *info, pgoff_t index)
1454 {
1455 struct vm_area_struct pvma;
1456 struct inode *inode = &info->vfs_inode;
1457 struct address_space *mapping = inode->i_mapping;
1458 pgoff_t idx, hindex;
1459 void __rcu **results;
1460 struct page *page;
1461
1462 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1463 return NULL;
1464
1465 hindex = round_down(index, HPAGE_PMD_NR);
1466 rcu_read_lock();
1467 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1468 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1469 rcu_read_unlock();
1470 return NULL;
1471 }
1472 rcu_read_unlock();
1473
1474 shmem_pseudo_vma_init(&pvma, info, hindex);
1475 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1476 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1477 shmem_pseudo_vma_destroy(&pvma);
1478 if (page)
1479 prep_transhuge_page(page);
1480 return page;
1481 }
1482
1483 static struct page *shmem_alloc_page(gfp_t gfp,
1484 struct shmem_inode_info *info, pgoff_t index)
1485 {
1486 struct vm_area_struct pvma;
1487 struct page *page;
1488
1489 shmem_pseudo_vma_init(&pvma, info, index);
1490 page = alloc_page_vma(gfp, &pvma, 0);
1491 shmem_pseudo_vma_destroy(&pvma);
1492
1493 return page;
1494 }
1495
1496 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1497 struct inode *inode,
1498 pgoff_t index, bool huge)
1499 {
1500 struct shmem_inode_info *info = SHMEM_I(inode);
1501 struct page *page;
1502 int nr;
1503 int err = -ENOSPC;
1504
1505 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1506 huge = false;
1507 nr = huge ? HPAGE_PMD_NR : 1;
1508
1509 if (!shmem_inode_acct_block(inode, nr))
1510 goto failed;
1511
1512 if (huge)
1513 page = shmem_alloc_hugepage(gfp, info, index);
1514 else
1515 page = shmem_alloc_page(gfp, info, index);
1516 if (page) {
1517 __SetPageLocked(page);
1518 __SetPageSwapBacked(page);
1519 return page;
1520 }
1521
1522 err = -ENOMEM;
1523 shmem_inode_unacct_blocks(inode, nr);
1524 failed:
1525 return ERR_PTR(err);
1526 }
1527
1528 /*
1529 * When a page is moved from swapcache to shmem filecache (either by the
1530 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1531 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1532 * ignorance of the mapping it belongs to. If that mapping has special
1533 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1534 * we may need to copy to a suitable page before moving to filecache.
1535 *
1536 * In a future release, this may well be extended to respect cpuset and
1537 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1538 * but for now it is a simple matter of zone.
1539 */
1540 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1541 {
1542 return page_zonenum(page) > gfp_zone(gfp);
1543 }
1544
1545 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1546 struct shmem_inode_info *info, pgoff_t index)
1547 {
1548 struct page *oldpage, *newpage;
1549 struct address_space *swap_mapping;
1550 pgoff_t swap_index;
1551 int error;
1552
1553 oldpage = *pagep;
1554 swap_index = page_private(oldpage);
1555 swap_mapping = page_mapping(oldpage);
1556
1557 /*
1558 * We have arrived here because our zones are constrained, so don't
1559 * limit chance of success by further cpuset and node constraints.
1560 */
1561 gfp &= ~GFP_CONSTRAINT_MASK;
1562 newpage = shmem_alloc_page(gfp, info, index);
1563 if (!newpage)
1564 return -ENOMEM;
1565
1566 get_page(newpage);
1567 copy_highpage(newpage, oldpage);
1568 flush_dcache_page(newpage);
1569
1570 __SetPageLocked(newpage);
1571 __SetPageSwapBacked(newpage);
1572 SetPageUptodate(newpage);
1573 set_page_private(newpage, swap_index);
1574 SetPageSwapCache(newpage);
1575
1576 /*
1577 * Our caller will very soon move newpage out of swapcache, but it's
1578 * a nice clean interface for us to replace oldpage by newpage there.
1579 */
1580 xa_lock_irq(&swap_mapping->i_pages);
1581 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1582 newpage);
1583 if (!error) {
1584 __inc_node_page_state(newpage, NR_FILE_PAGES);
1585 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1586 }
1587 xa_unlock_irq(&swap_mapping->i_pages);
1588
1589 if (unlikely(error)) {
1590 /*
1591 * Is this possible? I think not, now that our callers check
1592 * both PageSwapCache and page_private after getting page lock;
1593 * but be defensive. Reverse old to newpage for clear and free.
1594 */
1595 oldpage = newpage;
1596 } else {
1597 mem_cgroup_migrate(oldpage, newpage);
1598 lru_cache_add_anon(newpage);
1599 *pagep = newpage;
1600 }
1601
1602 ClearPageSwapCache(oldpage);
1603 set_page_private(oldpage, 0);
1604
1605 unlock_page(oldpage);
1606 put_page(oldpage);
1607 put_page(oldpage);
1608 return error;
1609 }
1610
1611 /*
1612 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1613 *
1614 * If we allocate a new one we do not mark it dirty. That's up to the
1615 * vm. If we swap it in we mark it dirty since we also free the swap
1616 * entry since a page cannot live in both the swap and page cache.
1617 *
1618 * fault_mm and fault_type are only supplied by shmem_fault:
1619 * otherwise they are NULL.
1620 */
1621 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1622 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1623 struct vm_area_struct *vma, struct vm_fault *vmf,
1624 vm_fault_t *fault_type)
1625 {
1626 struct address_space *mapping = inode->i_mapping;
1627 struct shmem_inode_info *info = SHMEM_I(inode);
1628 struct shmem_sb_info *sbinfo;
1629 struct mm_struct *charge_mm;
1630 struct mem_cgroup *memcg;
1631 struct page *page;
1632 swp_entry_t swap;
1633 enum sgp_type sgp_huge = sgp;
1634 pgoff_t hindex = index;
1635 int error;
1636 int once = 0;
1637 int alloced = 0;
1638
1639 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1640 return -EFBIG;
1641 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1642 sgp = SGP_CACHE;
1643 repeat:
1644 swap.val = 0;
1645 page = find_lock_entry(mapping, index);
1646 if (radix_tree_exceptional_entry(page)) {
1647 swap = radix_to_swp_entry(page);
1648 page = NULL;
1649 }
1650
1651 if (sgp <= SGP_CACHE &&
1652 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1653 error = -EINVAL;
1654 goto unlock;
1655 }
1656
1657 if (page && sgp == SGP_WRITE)
1658 mark_page_accessed(page);
1659
1660 /* fallocated page? */
1661 if (page && !PageUptodate(page)) {
1662 if (sgp != SGP_READ)
1663 goto clear;
1664 unlock_page(page);
1665 put_page(page);
1666 page = NULL;
1667 }
1668 if (page || (sgp == SGP_READ && !swap.val)) {
1669 *pagep = page;
1670 return 0;
1671 }
1672
1673 /*
1674 * Fast cache lookup did not find it:
1675 * bring it back from swap or allocate.
1676 */
1677 sbinfo = SHMEM_SB(inode->i_sb);
1678 charge_mm = vma ? vma->vm_mm : current->mm;
1679
1680 if (swap.val) {
1681 /* Look it up and read it in.. */
1682 page = lookup_swap_cache(swap, NULL, 0);
1683 if (!page) {
1684 /* Or update major stats only when swapin succeeds?? */
1685 if (fault_type) {
1686 *fault_type |= VM_FAULT_MAJOR;
1687 count_vm_event(PGMAJFAULT);
1688 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1689 }
1690 /* Here we actually start the io */
1691 page = shmem_swapin(swap, gfp, info, index);
1692 if (!page) {
1693 error = -ENOMEM;
1694 goto failed;
1695 }
1696 }
1697
1698 /* We have to do this with page locked to prevent races */
1699 lock_page(page);
1700 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1701 !shmem_confirm_swap(mapping, index, swap)) {
1702 error = -EEXIST; /* try again */
1703 goto unlock;
1704 }
1705 if (!PageUptodate(page)) {
1706 error = -EIO;
1707 goto failed;
1708 }
1709 wait_on_page_writeback(page);
1710
1711 if (shmem_should_replace_page(page, gfp)) {
1712 error = shmem_replace_page(&page, gfp, info, index);
1713 if (error)
1714 goto failed;
1715 }
1716
1717 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1718 false);
1719 if (!error) {
1720 error = shmem_add_to_page_cache(page, mapping, index,
1721 swp_to_radix_entry(swap));
1722 /*
1723 * We already confirmed swap under page lock, and make
1724 * no memory allocation here, so usually no possibility
1725 * of error; but free_swap_and_cache() only trylocks a
1726 * page, so it is just possible that the entry has been
1727 * truncated or holepunched since swap was confirmed.
1728 * shmem_undo_range() will have done some of the
1729 * unaccounting, now delete_from_swap_cache() will do
1730 * the rest.
1731 * Reset swap.val? No, leave it so "failed" goes back to
1732 * "repeat": reading a hole and writing should succeed.
1733 */
1734 if (error) {
1735 mem_cgroup_cancel_charge(page, memcg, false);
1736 delete_from_swap_cache(page);
1737 }
1738 }
1739 if (error)
1740 goto failed;
1741
1742 mem_cgroup_commit_charge(page, memcg, true, false);
1743
1744 spin_lock_irq(&info->lock);
1745 info->swapped--;
1746 shmem_recalc_inode(inode);
1747 spin_unlock_irq(&info->lock);
1748
1749 if (sgp == SGP_WRITE)
1750 mark_page_accessed(page);
1751
1752 delete_from_swap_cache(page);
1753 set_page_dirty(page);
1754 swap_free(swap);
1755
1756 } else {
1757 if (vma && userfaultfd_missing(vma)) {
1758 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1759 return 0;
1760 }
1761
1762 /* shmem_symlink() */
1763 if (mapping->a_ops != &shmem_aops)
1764 goto alloc_nohuge;
1765 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1766 goto alloc_nohuge;
1767 if (shmem_huge == SHMEM_HUGE_FORCE)
1768 goto alloc_huge;
1769 switch (sbinfo->huge) {
1770 loff_t i_size;
1771 pgoff_t off;
1772 case SHMEM_HUGE_NEVER:
1773 goto alloc_nohuge;
1774 case SHMEM_HUGE_WITHIN_SIZE:
1775 off = round_up(index, HPAGE_PMD_NR);
1776 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1777 if (i_size >= HPAGE_PMD_SIZE &&
1778 i_size >> PAGE_SHIFT >= off)
1779 goto alloc_huge;
1780 /* fallthrough */
1781 case SHMEM_HUGE_ADVISE:
1782 if (sgp_huge == SGP_HUGE)
1783 goto alloc_huge;
1784 /* TODO: implement fadvise() hints */
1785 goto alloc_nohuge;
1786 }
1787
1788 alloc_huge:
1789 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1790 if (IS_ERR(page)) {
1791 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1792 index, false);
1793 }
1794 if (IS_ERR(page)) {
1795 int retry = 5;
1796 error = PTR_ERR(page);
1797 page = NULL;
1798 if (error != -ENOSPC)
1799 goto failed;
1800 /*
1801 * Try to reclaim some spece by splitting a huge page
1802 * beyond i_size on the filesystem.
1803 */
1804 while (retry--) {
1805 int ret;
1806 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1807 if (ret == SHRINK_STOP)
1808 break;
1809 if (ret)
1810 goto alloc_nohuge;
1811 }
1812 goto failed;
1813 }
1814
1815 if (PageTransHuge(page))
1816 hindex = round_down(index, HPAGE_PMD_NR);
1817 else
1818 hindex = index;
1819
1820 if (sgp == SGP_WRITE)
1821 __SetPageReferenced(page);
1822
1823 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1824 PageTransHuge(page));
1825 if (error)
1826 goto unacct;
1827 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1828 compound_order(page));
1829 if (!error) {
1830 error = shmem_add_to_page_cache(page, mapping, hindex,
1831 NULL);
1832 radix_tree_preload_end();
1833 }
1834 if (error) {
1835 mem_cgroup_cancel_charge(page, memcg,
1836 PageTransHuge(page));
1837 goto unacct;
1838 }
1839 mem_cgroup_commit_charge(page, memcg, false,
1840 PageTransHuge(page));
1841 lru_cache_add_anon(page);
1842
1843 spin_lock_irq(&info->lock);
1844 info->alloced += 1 << compound_order(page);
1845 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1846 shmem_recalc_inode(inode);
1847 spin_unlock_irq(&info->lock);
1848 alloced = true;
1849
1850 if (PageTransHuge(page) &&
1851 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1852 hindex + HPAGE_PMD_NR - 1) {
1853 /*
1854 * Part of the huge page is beyond i_size: subject
1855 * to shrink under memory pressure.
1856 */
1857 spin_lock(&sbinfo->shrinklist_lock);
1858 /*
1859 * _careful to defend against unlocked access to
1860 * ->shrink_list in shmem_unused_huge_shrink()
1861 */
1862 if (list_empty_careful(&info->shrinklist)) {
1863 list_add_tail(&info->shrinklist,
1864 &sbinfo->shrinklist);
1865 sbinfo->shrinklist_len++;
1866 }
1867 spin_unlock(&sbinfo->shrinklist_lock);
1868 }
1869
1870 /*
1871 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1872 */
1873 if (sgp == SGP_FALLOC)
1874 sgp = SGP_WRITE;
1875 clear:
1876 /*
1877 * Let SGP_WRITE caller clear ends if write does not fill page;
1878 * but SGP_FALLOC on a page fallocated earlier must initialize
1879 * it now, lest undo on failure cancel our earlier guarantee.
1880 */
1881 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1882 struct page *head = compound_head(page);
1883 int i;
1884
1885 for (i = 0; i < (1 << compound_order(head)); i++) {
1886 clear_highpage(head + i);
1887 flush_dcache_page(head + i);
1888 }
1889 SetPageUptodate(head);
1890 }
1891 }
1892
1893 /* Perhaps the file has been truncated since we checked */
1894 if (sgp <= SGP_CACHE &&
1895 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1896 if (alloced) {
1897 ClearPageDirty(page);
1898 delete_from_page_cache(page);
1899 spin_lock_irq(&info->lock);
1900 shmem_recalc_inode(inode);
1901 spin_unlock_irq(&info->lock);
1902 }
1903 error = -EINVAL;
1904 goto unlock;
1905 }
1906 *pagep = page + index - hindex;
1907 return 0;
1908
1909 /*
1910 * Error recovery.
1911 */
1912 unacct:
1913 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1914
1915 if (PageTransHuge(page)) {
1916 unlock_page(page);
1917 put_page(page);
1918 goto alloc_nohuge;
1919 }
1920 failed:
1921 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1922 error = -EEXIST;
1923 unlock:
1924 if (page) {
1925 unlock_page(page);
1926 put_page(page);
1927 }
1928 if (error == -ENOSPC && !once++) {
1929 spin_lock_irq(&info->lock);
1930 shmem_recalc_inode(inode);
1931 spin_unlock_irq(&info->lock);
1932 goto repeat;
1933 }
1934 if (error == -EEXIST) /* from above or from radix_tree_insert */
1935 goto repeat;
1936 return error;
1937 }
1938
1939 /*
1940 * This is like autoremove_wake_function, but it removes the wait queue
1941 * entry unconditionally - even if something else had already woken the
1942 * target.
1943 */
1944 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1945 {
1946 int ret = default_wake_function(wait, mode, sync, key);
1947 list_del_init(&wait->entry);
1948 return ret;
1949 }
1950
1951 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1952 {
1953 struct vm_area_struct *vma = vmf->vma;
1954 struct inode *inode = file_inode(vma->vm_file);
1955 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1956 enum sgp_type sgp;
1957 int err;
1958 vm_fault_t ret = VM_FAULT_LOCKED;
1959
1960 /*
1961 * Trinity finds that probing a hole which tmpfs is punching can
1962 * prevent the hole-punch from ever completing: which in turn
1963 * locks writers out with its hold on i_mutex. So refrain from
1964 * faulting pages into the hole while it's being punched. Although
1965 * shmem_undo_range() does remove the additions, it may be unable to
1966 * keep up, as each new page needs its own unmap_mapping_range() call,
1967 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1968 *
1969 * It does not matter if we sometimes reach this check just before the
1970 * hole-punch begins, so that one fault then races with the punch:
1971 * we just need to make racing faults a rare case.
1972 *
1973 * The implementation below would be much simpler if we just used a
1974 * standard mutex or completion: but we cannot take i_mutex in fault,
1975 * and bloating every shmem inode for this unlikely case would be sad.
1976 */
1977 if (unlikely(inode->i_private)) {
1978 struct shmem_falloc *shmem_falloc;
1979
1980 spin_lock(&inode->i_lock);
1981 shmem_falloc = inode->i_private;
1982 if (shmem_falloc &&
1983 shmem_falloc->waitq &&
1984 vmf->pgoff >= shmem_falloc->start &&
1985 vmf->pgoff < shmem_falloc->next) {
1986 wait_queue_head_t *shmem_falloc_waitq;
1987 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1988
1989 ret = VM_FAULT_NOPAGE;
1990 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1991 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1992 /* It's polite to up mmap_sem if we can */
1993 up_read(&vma->vm_mm->mmap_sem);
1994 ret = VM_FAULT_RETRY;
1995 }
1996
1997 shmem_falloc_waitq = shmem_falloc->waitq;
1998 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1999 TASK_UNINTERRUPTIBLE);
2000 spin_unlock(&inode->i_lock);
2001 schedule();
2002
2003 /*
2004 * shmem_falloc_waitq points into the shmem_fallocate()
2005 * stack of the hole-punching task: shmem_falloc_waitq
2006 * is usually invalid by the time we reach here, but
2007 * finish_wait() does not dereference it in that case;
2008 * though i_lock needed lest racing with wake_up_all().
2009 */
2010 spin_lock(&inode->i_lock);
2011 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2012 spin_unlock(&inode->i_lock);
2013 return ret;
2014 }
2015 spin_unlock(&inode->i_lock);
2016 }
2017
2018 sgp = SGP_CACHE;
2019
2020 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2021 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2022 sgp = SGP_NOHUGE;
2023 else if (vma->vm_flags & VM_HUGEPAGE)
2024 sgp = SGP_HUGE;
2025
2026 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2027 gfp, vma, vmf, &ret);
2028 if (err)
2029 return vmf_error(err);
2030 return ret;
2031 }
2032
2033 unsigned long shmem_get_unmapped_area(struct file *file,
2034 unsigned long uaddr, unsigned long len,
2035 unsigned long pgoff, unsigned long flags)
2036 {
2037 unsigned long (*get_area)(struct file *,
2038 unsigned long, unsigned long, unsigned long, unsigned long);
2039 unsigned long addr;
2040 unsigned long offset;
2041 unsigned long inflated_len;
2042 unsigned long inflated_addr;
2043 unsigned long inflated_offset;
2044
2045 if (len > TASK_SIZE)
2046 return -ENOMEM;
2047
2048 get_area = current->mm->get_unmapped_area;
2049 addr = get_area(file, uaddr, len, pgoff, flags);
2050
2051 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2052 return addr;
2053 if (IS_ERR_VALUE(addr))
2054 return addr;
2055 if (addr & ~PAGE_MASK)
2056 return addr;
2057 if (addr > TASK_SIZE - len)
2058 return addr;
2059
2060 if (shmem_huge == SHMEM_HUGE_DENY)
2061 return addr;
2062 if (len < HPAGE_PMD_SIZE)
2063 return addr;
2064 if (flags & MAP_FIXED)
2065 return addr;
2066 /*
2067 * Our priority is to support MAP_SHARED mapped hugely;
2068 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2069 * But if caller specified an address hint, respect that as before.
2070 */
2071 if (uaddr)
2072 return addr;
2073
2074 if (shmem_huge != SHMEM_HUGE_FORCE) {
2075 struct super_block *sb;
2076
2077 if (file) {
2078 VM_BUG_ON(file->f_op != &shmem_file_operations);
2079 sb = file_inode(file)->i_sb;
2080 } else {
2081 /*
2082 * Called directly from mm/mmap.c, or drivers/char/mem.c
2083 * for "/dev/zero", to create a shared anonymous object.
2084 */
2085 if (IS_ERR(shm_mnt))
2086 return addr;
2087 sb = shm_mnt->mnt_sb;
2088 }
2089 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2090 return addr;
2091 }
2092
2093 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2094 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2095 return addr;
2096 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2097 return addr;
2098
2099 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2100 if (inflated_len > TASK_SIZE)
2101 return addr;
2102 if (inflated_len < len)
2103 return addr;
2104
2105 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2106 if (IS_ERR_VALUE(inflated_addr))
2107 return addr;
2108 if (inflated_addr & ~PAGE_MASK)
2109 return addr;
2110
2111 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2112 inflated_addr += offset - inflated_offset;
2113 if (inflated_offset > offset)
2114 inflated_addr += HPAGE_PMD_SIZE;
2115
2116 if (inflated_addr > TASK_SIZE - len)
2117 return addr;
2118 return inflated_addr;
2119 }
2120
2121 #ifdef CONFIG_NUMA
2122 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2123 {
2124 struct inode *inode = file_inode(vma->vm_file);
2125 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2126 }
2127
2128 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2129 unsigned long addr)
2130 {
2131 struct inode *inode = file_inode(vma->vm_file);
2132 pgoff_t index;
2133
2134 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2135 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2136 }
2137 #endif
2138
2139 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2140 {
2141 struct inode *inode = file_inode(file);
2142 struct shmem_inode_info *info = SHMEM_I(inode);
2143 int retval = -ENOMEM;
2144
2145 spin_lock_irq(&info->lock);
2146 if (lock && !(info->flags & VM_LOCKED)) {
2147 if (!user_shm_lock(inode->i_size, user))
2148 goto out_nomem;
2149 info->flags |= VM_LOCKED;
2150 mapping_set_unevictable(file->f_mapping);
2151 }
2152 if (!lock && (info->flags & VM_LOCKED) && user) {
2153 user_shm_unlock(inode->i_size, user);
2154 info->flags &= ~VM_LOCKED;
2155 mapping_clear_unevictable(file->f_mapping);
2156 }
2157 retval = 0;
2158
2159 out_nomem:
2160 spin_unlock_irq(&info->lock);
2161 return retval;
2162 }
2163
2164 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2165 {
2166 file_accessed(file);
2167 vma->vm_ops = &shmem_vm_ops;
2168 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2169 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2170 (vma->vm_end & HPAGE_PMD_MASK)) {
2171 khugepaged_enter(vma, vma->vm_flags);
2172 }
2173 return 0;
2174 }
2175
2176 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2177 umode_t mode, dev_t dev, unsigned long flags)
2178 {
2179 struct inode *inode;
2180 struct shmem_inode_info *info;
2181 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2182
2183 if (shmem_reserve_inode(sb))
2184 return NULL;
2185
2186 inode = new_inode(sb);
2187 if (inode) {
2188 inode->i_ino = get_next_ino();
2189 inode_init_owner(inode, dir, mode);
2190 inode->i_blocks = 0;
2191 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2192 inode->i_generation = prandom_u32();
2193 info = SHMEM_I(inode);
2194 memset(info, 0, (char *)inode - (char *)info);
2195 spin_lock_init(&info->lock);
2196 info->seals = F_SEAL_SEAL;
2197 info->flags = flags & VM_NORESERVE;
2198 INIT_LIST_HEAD(&info->shrinklist);
2199 INIT_LIST_HEAD(&info->swaplist);
2200 simple_xattrs_init(&info->xattrs);
2201 cache_no_acl(inode);
2202
2203 switch (mode & S_IFMT) {
2204 default:
2205 inode->i_op = &shmem_special_inode_operations;
2206 init_special_inode(inode, mode, dev);
2207 break;
2208 case S_IFREG:
2209 inode->i_mapping->a_ops = &shmem_aops;
2210 inode->i_op = &shmem_inode_operations;
2211 inode->i_fop = &shmem_file_operations;
2212 mpol_shared_policy_init(&info->policy,
2213 shmem_get_sbmpol(sbinfo));
2214 break;
2215 case S_IFDIR:
2216 inc_nlink(inode);
2217 /* Some things misbehave if size == 0 on a directory */
2218 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2219 inode->i_op = &shmem_dir_inode_operations;
2220 inode->i_fop = &simple_dir_operations;
2221 break;
2222 case S_IFLNK:
2223 /*
2224 * Must not load anything in the rbtree,
2225 * mpol_free_shared_policy will not be called.
2226 */
2227 mpol_shared_policy_init(&info->policy, NULL);
2228 break;
2229 }
2230
2231 lockdep_annotate_inode_mutex_key(inode);
2232 } else
2233 shmem_free_inode(sb);
2234 return inode;
2235 }
2236
2237 bool shmem_mapping(struct address_space *mapping)
2238 {
2239 return mapping->a_ops == &shmem_aops;
2240 }
2241
2242 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2243 pmd_t *dst_pmd,
2244 struct vm_area_struct *dst_vma,
2245 unsigned long dst_addr,
2246 unsigned long src_addr,
2247 bool zeropage,
2248 struct page **pagep)
2249 {
2250 struct inode *inode = file_inode(dst_vma->vm_file);
2251 struct shmem_inode_info *info = SHMEM_I(inode);
2252 struct address_space *mapping = inode->i_mapping;
2253 gfp_t gfp = mapping_gfp_mask(mapping);
2254 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2255 struct mem_cgroup *memcg;
2256 spinlock_t *ptl;
2257 void *page_kaddr;
2258 struct page *page;
2259 pte_t _dst_pte, *dst_pte;
2260 int ret;
2261
2262 ret = -ENOMEM;
2263 if (!shmem_inode_acct_block(inode, 1))
2264 goto out;
2265
2266 if (!*pagep) {
2267 page = shmem_alloc_page(gfp, info, pgoff);
2268 if (!page)
2269 goto out_unacct_blocks;
2270
2271 if (!zeropage) { /* mcopy_atomic */
2272 page_kaddr = kmap_atomic(page);
2273 ret = copy_from_user(page_kaddr,
2274 (const void __user *)src_addr,
2275 PAGE_SIZE);
2276 kunmap_atomic(page_kaddr);
2277
2278 /* fallback to copy_from_user outside mmap_sem */
2279 if (unlikely(ret)) {
2280 *pagep = page;
2281 shmem_inode_unacct_blocks(inode, 1);
2282 /* don't free the page */
2283 return -EFAULT;
2284 }
2285 } else { /* mfill_zeropage_atomic */
2286 clear_highpage(page);
2287 }
2288 } else {
2289 page = *pagep;
2290 *pagep = NULL;
2291 }
2292
2293 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2294 __SetPageLocked(page);
2295 __SetPageSwapBacked(page);
2296 __SetPageUptodate(page);
2297
2298 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2299 if (ret)
2300 goto out_release;
2301
2302 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2303 if (!ret) {
2304 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2305 radix_tree_preload_end();
2306 }
2307 if (ret)
2308 goto out_release_uncharge;
2309
2310 mem_cgroup_commit_charge(page, memcg, false, false);
2311
2312 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2313 if (dst_vma->vm_flags & VM_WRITE)
2314 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2315
2316 ret = -EEXIST;
2317 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2318 if (!pte_none(*dst_pte))
2319 goto out_release_uncharge_unlock;
2320
2321 lru_cache_add_anon(page);
2322
2323 spin_lock(&info->lock);
2324 info->alloced++;
2325 inode->i_blocks += BLOCKS_PER_PAGE;
2326 shmem_recalc_inode(inode);
2327 spin_unlock(&info->lock);
2328
2329 inc_mm_counter(dst_mm, mm_counter_file(page));
2330 page_add_file_rmap(page, false);
2331 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2332
2333 /* No need to invalidate - it was non-present before */
2334 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2335 unlock_page(page);
2336 pte_unmap_unlock(dst_pte, ptl);
2337 ret = 0;
2338 out:
2339 return ret;
2340 out_release_uncharge_unlock:
2341 pte_unmap_unlock(dst_pte, ptl);
2342 out_release_uncharge:
2343 mem_cgroup_cancel_charge(page, memcg, false);
2344 out_release:
2345 unlock_page(page);
2346 put_page(page);
2347 out_unacct_blocks:
2348 shmem_inode_unacct_blocks(inode, 1);
2349 goto out;
2350 }
2351
2352 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2353 pmd_t *dst_pmd,
2354 struct vm_area_struct *dst_vma,
2355 unsigned long dst_addr,
2356 unsigned long src_addr,
2357 struct page **pagep)
2358 {
2359 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2360 dst_addr, src_addr, false, pagep);
2361 }
2362
2363 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2364 pmd_t *dst_pmd,
2365 struct vm_area_struct *dst_vma,
2366 unsigned long dst_addr)
2367 {
2368 struct page *page = NULL;
2369
2370 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2371 dst_addr, 0, true, &page);
2372 }
2373
2374 #ifdef CONFIG_TMPFS
2375 static const struct inode_operations shmem_symlink_inode_operations;
2376 static const struct inode_operations shmem_short_symlink_operations;
2377
2378 #ifdef CONFIG_TMPFS_XATTR
2379 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2380 #else
2381 #define shmem_initxattrs NULL
2382 #endif
2383
2384 static int
2385 shmem_write_begin(struct file *file, struct address_space *mapping,
2386 loff_t pos, unsigned len, unsigned flags,
2387 struct page **pagep, void **fsdata)
2388 {
2389 struct inode *inode = mapping->host;
2390 struct shmem_inode_info *info = SHMEM_I(inode);
2391 pgoff_t index = pos >> PAGE_SHIFT;
2392
2393 /* i_mutex is held by caller */
2394 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2395 if (info->seals & F_SEAL_WRITE)
2396 return -EPERM;
2397 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2398 return -EPERM;
2399 }
2400
2401 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2402 }
2403
2404 static int
2405 shmem_write_end(struct file *file, struct address_space *mapping,
2406 loff_t pos, unsigned len, unsigned copied,
2407 struct page *page, void *fsdata)
2408 {
2409 struct inode *inode = mapping->host;
2410
2411 if (pos + copied > inode->i_size)
2412 i_size_write(inode, pos + copied);
2413
2414 if (!PageUptodate(page)) {
2415 struct page *head = compound_head(page);
2416 if (PageTransCompound(page)) {
2417 int i;
2418
2419 for (i = 0; i < HPAGE_PMD_NR; i++) {
2420 if (head + i == page)
2421 continue;
2422 clear_highpage(head + i);
2423 flush_dcache_page(head + i);
2424 }
2425 }
2426 if (copied < PAGE_SIZE) {
2427 unsigned from = pos & (PAGE_SIZE - 1);
2428 zero_user_segments(page, 0, from,
2429 from + copied, PAGE_SIZE);
2430 }
2431 SetPageUptodate(head);
2432 }
2433 set_page_dirty(page);
2434 unlock_page(page);
2435 put_page(page);
2436
2437 return copied;
2438 }
2439
2440 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2441 {
2442 struct file *file = iocb->ki_filp;
2443 struct inode *inode = file_inode(file);
2444 struct address_space *mapping = inode->i_mapping;
2445 pgoff_t index;
2446 unsigned long offset;
2447 enum sgp_type sgp = SGP_READ;
2448 int error = 0;
2449 ssize_t retval = 0;
2450 loff_t *ppos = &iocb->ki_pos;
2451
2452 /*
2453 * Might this read be for a stacking filesystem? Then when reading
2454 * holes of a sparse file, we actually need to allocate those pages,
2455 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2456 */
2457 if (!iter_is_iovec(to))
2458 sgp = SGP_CACHE;
2459
2460 index = *ppos >> PAGE_SHIFT;
2461 offset = *ppos & ~PAGE_MASK;
2462
2463 for (;;) {
2464 struct page *page = NULL;
2465 pgoff_t end_index;
2466 unsigned long nr, ret;
2467 loff_t i_size = i_size_read(inode);
2468
2469 end_index = i_size >> PAGE_SHIFT;
2470 if (index > end_index)
2471 break;
2472 if (index == end_index) {
2473 nr = i_size & ~PAGE_MASK;
2474 if (nr <= offset)
2475 break;
2476 }
2477
2478 error = shmem_getpage(inode, index, &page, sgp);
2479 if (error) {
2480 if (error == -EINVAL)
2481 error = 0;
2482 break;
2483 }
2484 if (page) {
2485 if (sgp == SGP_CACHE)
2486 set_page_dirty(page);
2487 unlock_page(page);
2488 }
2489
2490 /*
2491 * We must evaluate after, since reads (unlike writes)
2492 * are called without i_mutex protection against truncate
2493 */
2494 nr = PAGE_SIZE;
2495 i_size = i_size_read(inode);
2496 end_index = i_size >> PAGE_SHIFT;
2497 if (index == end_index) {
2498 nr = i_size & ~PAGE_MASK;
2499 if (nr <= offset) {
2500 if (page)
2501 put_page(page);
2502 break;
2503 }
2504 }
2505 nr -= offset;
2506
2507 if (page) {
2508 /*
2509 * If users can be writing to this page using arbitrary
2510 * virtual addresses, take care about potential aliasing
2511 * before reading the page on the kernel side.
2512 */
2513 if (mapping_writably_mapped(mapping))
2514 flush_dcache_page(page);
2515 /*
2516 * Mark the page accessed if we read the beginning.
2517 */
2518 if (!offset)
2519 mark_page_accessed(page);
2520 } else {
2521 page = ZERO_PAGE(0);
2522 get_page(page);
2523 }
2524
2525 /*
2526 * Ok, we have the page, and it's up-to-date, so
2527 * now we can copy it to user space...
2528 */
2529 ret = copy_page_to_iter(page, offset, nr, to);
2530 retval += ret;
2531 offset += ret;
2532 index += offset >> PAGE_SHIFT;
2533 offset &= ~PAGE_MASK;
2534
2535 put_page(page);
2536 if (!iov_iter_count(to))
2537 break;
2538 if (ret < nr) {
2539 error = -EFAULT;
2540 break;
2541 }
2542 cond_resched();
2543 }
2544
2545 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2546 file_accessed(file);
2547 return retval ? retval : error;
2548 }
2549
2550 /*
2551 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2552 */
2553 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2554 pgoff_t index, pgoff_t end, int whence)
2555 {
2556 struct page *page;
2557 struct pagevec pvec;
2558 pgoff_t indices[PAGEVEC_SIZE];
2559 bool done = false;
2560 int i;
2561
2562 pagevec_init(&pvec);
2563 pvec.nr = 1; /* start small: we may be there already */
2564 while (!done) {
2565 pvec.nr = find_get_entries(mapping, index,
2566 pvec.nr, pvec.pages, indices);
2567 if (!pvec.nr) {
2568 if (whence == SEEK_DATA)
2569 index = end;
2570 break;
2571 }
2572 for (i = 0; i < pvec.nr; i++, index++) {
2573 if (index < indices[i]) {
2574 if (whence == SEEK_HOLE) {
2575 done = true;
2576 break;
2577 }
2578 index = indices[i];
2579 }
2580 page = pvec.pages[i];
2581 if (page && !radix_tree_exceptional_entry(page)) {
2582 if (!PageUptodate(page))
2583 page = NULL;
2584 }
2585 if (index >= end ||
2586 (page && whence == SEEK_DATA) ||
2587 (!page && whence == SEEK_HOLE)) {
2588 done = true;
2589 break;
2590 }
2591 }
2592 pagevec_remove_exceptionals(&pvec);
2593 pagevec_release(&pvec);
2594 pvec.nr = PAGEVEC_SIZE;
2595 cond_resched();
2596 }
2597 return index;
2598 }
2599
2600 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2601 {
2602 struct address_space *mapping = file->f_mapping;
2603 struct inode *inode = mapping->host;
2604 pgoff_t start, end;
2605 loff_t new_offset;
2606
2607 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2608 return generic_file_llseek_size(file, offset, whence,
2609 MAX_LFS_FILESIZE, i_size_read(inode));
2610 inode_lock(inode);
2611 /* We're holding i_mutex so we can access i_size directly */
2612
2613 if (offset < 0)
2614 offset = -EINVAL;
2615 else if (offset >= inode->i_size)
2616 offset = -ENXIO;
2617 else {
2618 start = offset >> PAGE_SHIFT;
2619 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2620 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2621 new_offset <<= PAGE_SHIFT;
2622 if (new_offset > offset) {
2623 if (new_offset < inode->i_size)
2624 offset = new_offset;
2625 else if (whence == SEEK_DATA)
2626 offset = -ENXIO;
2627 else
2628 offset = inode->i_size;
2629 }
2630 }
2631
2632 if (offset >= 0)
2633 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2634 inode_unlock(inode);
2635 return offset;
2636 }
2637
2638 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2639 loff_t len)
2640 {
2641 struct inode *inode = file_inode(file);
2642 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2643 struct shmem_inode_info *info = SHMEM_I(inode);
2644 struct shmem_falloc shmem_falloc;
2645 pgoff_t start, index, end;
2646 int error;
2647
2648 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2649 return -EOPNOTSUPP;
2650
2651 inode_lock(inode);
2652
2653 if (mode & FALLOC_FL_PUNCH_HOLE) {
2654 struct address_space *mapping = file->f_mapping;
2655 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2656 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2657 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2658
2659 /* protected by i_mutex */
2660 if (info->seals & F_SEAL_WRITE) {
2661 error = -EPERM;
2662 goto out;
2663 }
2664
2665 shmem_falloc.waitq = &shmem_falloc_waitq;
2666 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2667 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2668 spin_lock(&inode->i_lock);
2669 inode->i_private = &shmem_falloc;
2670 spin_unlock(&inode->i_lock);
2671
2672 if ((u64)unmap_end > (u64)unmap_start)
2673 unmap_mapping_range(mapping, unmap_start,
2674 1 + unmap_end - unmap_start, 0);
2675 shmem_truncate_range(inode, offset, offset + len - 1);
2676 /* No need to unmap again: hole-punching leaves COWed pages */
2677
2678 spin_lock(&inode->i_lock);
2679 inode->i_private = NULL;
2680 wake_up_all(&shmem_falloc_waitq);
2681 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2682 spin_unlock(&inode->i_lock);
2683 error = 0;
2684 goto out;
2685 }
2686
2687 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2688 error = inode_newsize_ok(inode, offset + len);
2689 if (error)
2690 goto out;
2691
2692 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2693 error = -EPERM;
2694 goto out;
2695 }
2696
2697 start = offset >> PAGE_SHIFT;
2698 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2699 /* Try to avoid a swapstorm if len is impossible to satisfy */
2700 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2701 error = -ENOSPC;
2702 goto out;
2703 }
2704
2705 shmem_falloc.waitq = NULL;
2706 shmem_falloc.start = start;
2707 shmem_falloc.next = start;
2708 shmem_falloc.nr_falloced = 0;
2709 shmem_falloc.nr_unswapped = 0;
2710 spin_lock(&inode->i_lock);
2711 inode->i_private = &shmem_falloc;
2712 spin_unlock(&inode->i_lock);
2713
2714 for (index = start; index < end; index++) {
2715 struct page *page;
2716
2717 /*
2718 * Good, the fallocate(2) manpage permits EINTR: we may have
2719 * been interrupted because we are using up too much memory.
2720 */
2721 if (signal_pending(current))
2722 error = -EINTR;
2723 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2724 error = -ENOMEM;
2725 else
2726 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2727 if (error) {
2728 /* Remove the !PageUptodate pages we added */
2729 if (index > start) {
2730 shmem_undo_range(inode,
2731 (loff_t)start << PAGE_SHIFT,
2732 ((loff_t)index << PAGE_SHIFT) - 1, true);
2733 }
2734 goto undone;
2735 }
2736
2737 /*
2738 * Inform shmem_writepage() how far we have reached.
2739 * No need for lock or barrier: we have the page lock.
2740 */
2741 shmem_falloc.next++;
2742 if (!PageUptodate(page))
2743 shmem_falloc.nr_falloced++;
2744
2745 /*
2746 * If !PageUptodate, leave it that way so that freeable pages
2747 * can be recognized if we need to rollback on error later.
2748 * But set_page_dirty so that memory pressure will swap rather
2749 * than free the pages we are allocating (and SGP_CACHE pages
2750 * might still be clean: we now need to mark those dirty too).
2751 */
2752 set_page_dirty(page);
2753 unlock_page(page);
2754 put_page(page);
2755 cond_resched();
2756 }
2757
2758 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2759 i_size_write(inode, offset + len);
2760 inode->i_ctime = current_time(inode);
2761 undone:
2762 spin_lock(&inode->i_lock);
2763 inode->i_private = NULL;
2764 spin_unlock(&inode->i_lock);
2765 out:
2766 inode_unlock(inode);
2767 return error;
2768 }
2769
2770 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2771 {
2772 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2773
2774 buf->f_type = TMPFS_MAGIC;
2775 buf->f_bsize = PAGE_SIZE;
2776 buf->f_namelen = NAME_MAX;
2777 if (sbinfo->max_blocks) {
2778 buf->f_blocks = sbinfo->max_blocks;
2779 buf->f_bavail =
2780 buf->f_bfree = sbinfo->max_blocks -
2781 percpu_counter_sum(&sbinfo->used_blocks);
2782 }
2783 if (sbinfo->max_inodes) {
2784 buf->f_files = sbinfo->max_inodes;
2785 buf->f_ffree = sbinfo->free_inodes;
2786 }
2787 /* else leave those fields 0 like simple_statfs */
2788 return 0;
2789 }
2790
2791 /*
2792 * File creation. Allocate an inode, and we're done..
2793 */
2794 static int
2795 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2796 {
2797 struct inode *inode;
2798 int error = -ENOSPC;
2799
2800 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2801 if (inode) {
2802 error = simple_acl_create(dir, inode);
2803 if (error)
2804 goto out_iput;
2805 error = security_inode_init_security(inode, dir,
2806 &dentry->d_name,
2807 shmem_initxattrs, NULL);
2808 if (error && error != -EOPNOTSUPP)
2809 goto out_iput;
2810
2811 error = 0;
2812 dir->i_size += BOGO_DIRENT_SIZE;
2813 dir->i_ctime = dir->i_mtime = current_time(dir);
2814 d_instantiate(dentry, inode);
2815 dget(dentry); /* Extra count - pin the dentry in core */
2816 }
2817 return error;
2818 out_iput:
2819 iput(inode);
2820 return error;
2821 }
2822
2823 static int
2824 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2825 {
2826 struct inode *inode;
2827 int error = -ENOSPC;
2828
2829 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2830 if (inode) {
2831 error = security_inode_init_security(inode, dir,
2832 NULL,
2833 shmem_initxattrs, NULL);
2834 if (error && error != -EOPNOTSUPP)
2835 goto out_iput;
2836 error = simple_acl_create(dir, inode);
2837 if (error)
2838 goto out_iput;
2839 d_tmpfile(dentry, inode);
2840 }
2841 return error;
2842 out_iput:
2843 iput(inode);
2844 return error;
2845 }
2846
2847 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2848 {
2849 int error;
2850
2851 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2852 return error;
2853 inc_nlink(dir);
2854 return 0;
2855 }
2856
2857 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2858 bool excl)
2859 {
2860 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2861 }
2862
2863 /*
2864 * Link a file..
2865 */
2866 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2867 {
2868 struct inode *inode = d_inode(old_dentry);
2869 int ret;
2870
2871 /*
2872 * No ordinary (disk based) filesystem counts links as inodes;
2873 * but each new link needs a new dentry, pinning lowmem, and
2874 * tmpfs dentries cannot be pruned until they are unlinked.
2875 */
2876 ret = shmem_reserve_inode(inode->i_sb);
2877 if (ret)
2878 goto out;
2879
2880 dir->i_size += BOGO_DIRENT_SIZE;
2881 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2882 inc_nlink(inode);
2883 ihold(inode); /* New dentry reference */
2884 dget(dentry); /* Extra pinning count for the created dentry */
2885 d_instantiate(dentry, inode);
2886 out:
2887 return ret;
2888 }
2889
2890 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2891 {
2892 struct inode *inode = d_inode(dentry);
2893
2894 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2895 shmem_free_inode(inode->i_sb);
2896
2897 dir->i_size -= BOGO_DIRENT_SIZE;
2898 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2899 drop_nlink(inode);
2900 dput(dentry); /* Undo the count from "create" - this does all the work */
2901 return 0;
2902 }
2903
2904 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2905 {
2906 if (!simple_empty(dentry))
2907 return -ENOTEMPTY;
2908
2909 drop_nlink(d_inode(dentry));
2910 drop_nlink(dir);
2911 return shmem_unlink(dir, dentry);
2912 }
2913
2914 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2915 {
2916 bool old_is_dir = d_is_dir(old_dentry);
2917 bool new_is_dir = d_is_dir(new_dentry);
2918
2919 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2920 if (old_is_dir) {
2921 drop_nlink(old_dir);
2922 inc_nlink(new_dir);
2923 } else {
2924 drop_nlink(new_dir);
2925 inc_nlink(old_dir);
2926 }
2927 }
2928 old_dir->i_ctime = old_dir->i_mtime =
2929 new_dir->i_ctime = new_dir->i_mtime =
2930 d_inode(old_dentry)->i_ctime =
2931 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2932
2933 return 0;
2934 }
2935
2936 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2937 {
2938 struct dentry *whiteout;
2939 int error;
2940
2941 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2942 if (!whiteout)
2943 return -ENOMEM;
2944
2945 error = shmem_mknod(old_dir, whiteout,
2946 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2947 dput(whiteout);
2948 if (error)
2949 return error;
2950
2951 /*
2952 * Cheat and hash the whiteout while the old dentry is still in
2953 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2954 *
2955 * d_lookup() will consistently find one of them at this point,
2956 * not sure which one, but that isn't even important.
2957 */
2958 d_rehash(whiteout);
2959 return 0;
2960 }
2961
2962 /*
2963 * The VFS layer already does all the dentry stuff for rename,
2964 * we just have to decrement the usage count for the target if
2965 * it exists so that the VFS layer correctly free's it when it
2966 * gets overwritten.
2967 */
2968 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2969 {
2970 struct inode *inode = d_inode(old_dentry);
2971 int they_are_dirs = S_ISDIR(inode->i_mode);
2972
2973 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2974 return -EINVAL;
2975
2976 if (flags & RENAME_EXCHANGE)
2977 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2978
2979 if (!simple_empty(new_dentry))
2980 return -ENOTEMPTY;
2981
2982 if (flags & RENAME_WHITEOUT) {
2983 int error;
2984
2985 error = shmem_whiteout(old_dir, old_dentry);
2986 if (error)
2987 return error;
2988 }
2989
2990 if (d_really_is_positive(new_dentry)) {
2991 (void) shmem_unlink(new_dir, new_dentry);
2992 if (they_are_dirs) {
2993 drop_nlink(d_inode(new_dentry));
2994 drop_nlink(old_dir);
2995 }
2996 } else if (they_are_dirs) {
2997 drop_nlink(old_dir);
2998 inc_nlink(new_dir);
2999 }
3000
3001 old_dir->i_size -= BOGO_DIRENT_SIZE;
3002 new_dir->i_size += BOGO_DIRENT_SIZE;
3003 old_dir->i_ctime = old_dir->i_mtime =
3004 new_dir->i_ctime = new_dir->i_mtime =
3005 inode->i_ctime = current_time(old_dir);
3006 return 0;
3007 }
3008
3009 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3010 {
3011 int error;
3012 int len;
3013 struct inode *inode;
3014 struct page *page;
3015
3016 len = strlen(symname) + 1;
3017 if (len > PAGE_SIZE)
3018 return -ENAMETOOLONG;
3019
3020 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3021 VM_NORESERVE);
3022 if (!inode)
3023 return -ENOSPC;
3024
3025 error = security_inode_init_security(inode, dir, &dentry->d_name,
3026 shmem_initxattrs, NULL);
3027 if (error) {
3028 if (error != -EOPNOTSUPP) {
3029 iput(inode);
3030 return error;
3031 }
3032 error = 0;
3033 }
3034
3035 inode->i_size = len-1;
3036 if (len <= SHORT_SYMLINK_LEN) {
3037 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3038 if (!inode->i_link) {
3039 iput(inode);
3040 return -ENOMEM;
3041 }
3042 inode->i_op = &shmem_short_symlink_operations;
3043 } else {
3044 inode_nohighmem(inode);
3045 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3046 if (error) {
3047 iput(inode);
3048 return error;
3049 }
3050 inode->i_mapping->a_ops = &shmem_aops;
3051 inode->i_op = &shmem_symlink_inode_operations;
3052 memcpy(page_address(page), symname, len);
3053 SetPageUptodate(page);
3054 set_page_dirty(page);
3055 unlock_page(page);
3056 put_page(page);
3057 }
3058 dir->i_size += BOGO_DIRENT_SIZE;
3059 dir->i_ctime = dir->i_mtime = current_time(dir);
3060 d_instantiate(dentry, inode);
3061 dget(dentry);
3062 return 0;
3063 }
3064
3065 static void shmem_put_link(void *arg)
3066 {
3067 mark_page_accessed(arg);
3068 put_page(arg);
3069 }
3070
3071 static const char *shmem_get_link(struct dentry *dentry,
3072 struct inode *inode,
3073 struct delayed_call *done)
3074 {
3075 struct page *page = NULL;
3076 int error;
3077 if (!dentry) {
3078 page = find_get_page(inode->i_mapping, 0);
3079 if (!page)
3080 return ERR_PTR(-ECHILD);
3081 if (!PageUptodate(page)) {
3082 put_page(page);
3083 return ERR_PTR(-ECHILD);
3084 }
3085 } else {
3086 error = shmem_getpage(inode, 0, &page, SGP_READ);
3087 if (error)
3088 return ERR_PTR(error);
3089 unlock_page(page);
3090 }
3091 set_delayed_call(done, shmem_put_link, page);
3092 return page_address(page);
3093 }
3094
3095 #ifdef CONFIG_TMPFS_XATTR
3096 /*
3097 * Superblocks without xattr inode operations may get some security.* xattr
3098 * support from the LSM "for free". As soon as we have any other xattrs
3099 * like ACLs, we also need to implement the security.* handlers at
3100 * filesystem level, though.
3101 */
3102
3103 /*
3104 * Callback for security_inode_init_security() for acquiring xattrs.
3105 */
3106 static int shmem_initxattrs(struct inode *inode,
3107 const struct xattr *xattr_array,
3108 void *fs_info)
3109 {
3110 struct shmem_inode_info *info = SHMEM_I(inode);
3111 const struct xattr *xattr;
3112 struct simple_xattr *new_xattr;
3113 size_t len;
3114
3115 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3116 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3117 if (!new_xattr)
3118 return -ENOMEM;
3119
3120 len = strlen(xattr->name) + 1;
3121 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3122 GFP_KERNEL);
3123 if (!new_xattr->name) {
3124 kfree(new_xattr);
3125 return -ENOMEM;
3126 }
3127
3128 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3129 XATTR_SECURITY_PREFIX_LEN);
3130 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3131 xattr->name, len);
3132
3133 simple_xattr_list_add(&info->xattrs, new_xattr);
3134 }
3135
3136 return 0;
3137 }
3138
3139 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3140 struct dentry *unused, struct inode *inode,
3141 const char *name, void *buffer, size_t size)
3142 {
3143 struct shmem_inode_info *info = SHMEM_I(inode);
3144
3145 name = xattr_full_name(handler, name);
3146 return simple_xattr_get(&info->xattrs, name, buffer, size);
3147 }
3148
3149 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3150 struct dentry *unused, struct inode *inode,
3151 const char *name, const void *value,
3152 size_t size, int flags)
3153 {
3154 struct shmem_inode_info *info = SHMEM_I(inode);
3155
3156 name = xattr_full_name(handler, name);
3157 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3158 }
3159
3160 static const struct xattr_handler shmem_security_xattr_handler = {
3161 .prefix = XATTR_SECURITY_PREFIX,
3162 .get = shmem_xattr_handler_get,
3163 .set = shmem_xattr_handler_set,
3164 };
3165
3166 static const struct xattr_handler shmem_trusted_xattr_handler = {
3167 .prefix = XATTR_TRUSTED_PREFIX,
3168 .get = shmem_xattr_handler_get,
3169 .set = shmem_xattr_handler_set,
3170 };
3171
3172 static const struct xattr_handler *shmem_xattr_handlers[] = {
3173 #ifdef CONFIG_TMPFS_POSIX_ACL
3174 &posix_acl_access_xattr_handler,
3175 &posix_acl_default_xattr_handler,
3176 #endif
3177 &shmem_security_xattr_handler,
3178 &shmem_trusted_xattr_handler,
3179 NULL
3180 };
3181
3182 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3183 {
3184 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3185 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3186 }
3187 #endif /* CONFIG_TMPFS_XATTR */
3188
3189 static const struct inode_operations shmem_short_symlink_operations = {
3190 .get_link = simple_get_link,
3191 #ifdef CONFIG_TMPFS_XATTR
3192 .listxattr = shmem_listxattr,
3193 #endif
3194 };
3195
3196 static const struct inode_operations shmem_symlink_inode_operations = {
3197 .get_link = shmem_get_link,
3198 #ifdef CONFIG_TMPFS_XATTR
3199 .listxattr = shmem_listxattr,
3200 #endif
3201 };
3202
3203 static struct dentry *shmem_get_parent(struct dentry *child)
3204 {
3205 return ERR_PTR(-ESTALE);
3206 }
3207
3208 static int shmem_match(struct inode *ino, void *vfh)
3209 {
3210 __u32 *fh = vfh;
3211 __u64 inum = fh[2];
3212 inum = (inum << 32) | fh[1];
3213 return ino->i_ino == inum && fh[0] == ino->i_generation;
3214 }
3215
3216 /* Find any alias of inode, but prefer a hashed alias */
3217 static struct dentry *shmem_find_alias(struct inode *inode)
3218 {
3219 struct dentry *alias = d_find_alias(inode);
3220
3221 return alias ?: d_find_any_alias(inode);
3222 }
3223
3224
3225 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3226 struct fid *fid, int fh_len, int fh_type)
3227 {
3228 struct inode *inode;
3229 struct dentry *dentry = NULL;
3230 u64 inum;
3231
3232 if (fh_len < 3)
3233 return NULL;
3234
3235 inum = fid->raw[2];
3236 inum = (inum << 32) | fid->raw[1];
3237
3238 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3239 shmem_match, fid->raw);
3240 if (inode) {
3241 dentry = shmem_find_alias(inode);
3242 iput(inode);
3243 }
3244
3245 return dentry;
3246 }
3247
3248 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3249 struct inode *parent)
3250 {
3251 if (*len < 3) {
3252 *len = 3;
3253 return FILEID_INVALID;
3254 }
3255
3256 if (inode_unhashed(inode)) {
3257 /* Unfortunately insert_inode_hash is not idempotent,
3258 * so as we hash inodes here rather than at creation
3259 * time, we need a lock to ensure we only try
3260 * to do it once
3261 */
3262 static DEFINE_SPINLOCK(lock);
3263 spin_lock(&lock);
3264 if (inode_unhashed(inode))
3265 __insert_inode_hash(inode,
3266 inode->i_ino + inode->i_generation);
3267 spin_unlock(&lock);
3268 }
3269
3270 fh[0] = inode->i_generation;
3271 fh[1] = inode->i_ino;
3272 fh[2] = ((__u64)inode->i_ino) >> 32;
3273
3274 *len = 3;
3275 return 1;
3276 }
3277
3278 static const struct export_operations shmem_export_ops = {
3279 .get_parent = shmem_get_parent,
3280 .encode_fh = shmem_encode_fh,
3281 .fh_to_dentry = shmem_fh_to_dentry,
3282 };
3283
3284 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3285 bool remount)
3286 {
3287 char *this_char, *value, *rest;
3288 struct mempolicy *mpol = NULL;
3289 uid_t uid;
3290 gid_t gid;
3291
3292 while (options != NULL) {
3293 this_char = options;
3294 for (;;) {
3295 /*
3296 * NUL-terminate this option: unfortunately,
3297 * mount options form a comma-separated list,
3298 * but mpol's nodelist may also contain commas.
3299 */
3300 options = strchr(options, ',');
3301 if (options == NULL)
3302 break;
3303 options++;
3304 if (!isdigit(*options)) {
3305 options[-1] = '\0';
3306 break;
3307 }
3308 }
3309 if (!*this_char)
3310 continue;
3311 if ((value = strchr(this_char,'=')) != NULL) {
3312 *value++ = 0;
3313 } else {
3314 pr_err("tmpfs: No value for mount option '%s'\n",
3315 this_char);
3316 goto error;
3317 }
3318
3319 if (!strcmp(this_char,"size")) {
3320 unsigned long long size;
3321 size = memparse(value,&rest);
3322 if (*rest == '%') {
3323 size <<= PAGE_SHIFT;
3324 size *= totalram_pages;
3325 do_div(size, 100);
3326 rest++;
3327 }
3328 if (*rest)
3329 goto bad_val;
3330 sbinfo->max_blocks =
3331 DIV_ROUND_UP(size, PAGE_SIZE);
3332 } else if (!strcmp(this_char,"nr_blocks")) {
3333 sbinfo->max_blocks = memparse(value, &rest);
3334 if (*rest)
3335 goto bad_val;
3336 } else if (!strcmp(this_char,"nr_inodes")) {
3337 sbinfo->max_inodes = memparse(value, &rest);
3338 if (*rest)
3339 goto bad_val;
3340 } else if (!strcmp(this_char,"mode")) {
3341 if (remount)
3342 continue;
3343 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3344 if (*rest)
3345 goto bad_val;
3346 } else if (!strcmp(this_char,"uid")) {
3347 if (remount)
3348 continue;
3349 uid = simple_strtoul(value, &rest, 0);
3350 if (*rest)
3351 goto bad_val;
3352 sbinfo->uid = make_kuid(current_user_ns(), uid);
3353 if (!uid_valid(sbinfo->uid))
3354 goto bad_val;
3355 } else if (!strcmp(this_char,"gid")) {
3356 if (remount)
3357 continue;
3358 gid = simple_strtoul(value, &rest, 0);
3359 if (*rest)
3360 goto bad_val;
3361 sbinfo->gid = make_kgid(current_user_ns(), gid);
3362 if (!gid_valid(sbinfo->gid))
3363 goto bad_val;
3364 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3365 } else if (!strcmp(this_char, "huge")) {
3366 int huge;
3367 huge = shmem_parse_huge(value);
3368 if (huge < 0)
3369 goto bad_val;
3370 if (!has_transparent_hugepage() &&
3371 huge != SHMEM_HUGE_NEVER)
3372 goto bad_val;
3373 sbinfo->huge = huge;
3374 #endif
3375 #ifdef CONFIG_NUMA
3376 } else if (!strcmp(this_char,"mpol")) {
3377 mpol_put(mpol);
3378 mpol = NULL;
3379 if (mpol_parse_str(value, &mpol))
3380 goto bad_val;
3381 #endif
3382 } else {
3383 pr_err("tmpfs: Bad mount option %s\n", this_char);
3384 goto error;
3385 }
3386 }
3387 sbinfo->mpol = mpol;
3388 return 0;
3389
3390 bad_val:
3391 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3392 value, this_char);
3393 error:
3394 mpol_put(mpol);
3395 return 1;
3396
3397 }
3398
3399 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3400 {
3401 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3402 struct shmem_sb_info config = *sbinfo;
3403 unsigned long inodes;
3404 int error = -EINVAL;
3405
3406 config.mpol = NULL;
3407 if (shmem_parse_options(data, &config, true))
3408 return error;
3409
3410 spin_lock(&sbinfo->stat_lock);
3411 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3412 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3413 goto out;
3414 if (config.max_inodes < inodes)
3415 goto out;
3416 /*
3417 * Those tests disallow limited->unlimited while any are in use;
3418 * but we must separately disallow unlimited->limited, because
3419 * in that case we have no record of how much is already in use.
3420 */
3421 if (config.max_blocks && !sbinfo->max_blocks)
3422 goto out;
3423 if (config.max_inodes && !sbinfo->max_inodes)
3424 goto out;
3425
3426 error = 0;
3427 sbinfo->huge = config.huge;
3428 sbinfo->max_blocks = config.max_blocks;
3429 sbinfo->max_inodes = config.max_inodes;
3430 sbinfo->free_inodes = config.max_inodes - inodes;
3431
3432 /*
3433 * Preserve previous mempolicy unless mpol remount option was specified.
3434 */
3435 if (config.mpol) {
3436 mpol_put(sbinfo->mpol);
3437 sbinfo->mpol = config.mpol; /* transfers initial ref */
3438 }
3439 out:
3440 spin_unlock(&sbinfo->stat_lock);
3441 return error;
3442 }
3443
3444 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3445 {
3446 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3447
3448 if (sbinfo->max_blocks != shmem_default_max_blocks())
3449 seq_printf(seq, ",size=%luk",
3450 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3451 if (sbinfo->max_inodes != shmem_default_max_inodes())
3452 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3453 if (sbinfo->mode != (0777 | S_ISVTX))
3454 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3455 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3456 seq_printf(seq, ",uid=%u",
3457 from_kuid_munged(&init_user_ns, sbinfo->uid));
3458 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3459 seq_printf(seq, ",gid=%u",
3460 from_kgid_munged(&init_user_ns, sbinfo->gid));
3461 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3462 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3463 if (sbinfo->huge)
3464 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3465 #endif
3466 shmem_show_mpol(seq, sbinfo->mpol);
3467 return 0;
3468 }
3469
3470 #endif /* CONFIG_TMPFS */
3471
3472 static void shmem_put_super(struct super_block *sb)
3473 {
3474 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3475
3476 percpu_counter_destroy(&sbinfo->used_blocks);
3477 mpol_put(sbinfo->mpol);
3478 kfree(sbinfo);
3479 sb->s_fs_info = NULL;
3480 }
3481
3482 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3483 {
3484 struct inode *inode;
3485 struct shmem_sb_info *sbinfo;
3486 int err = -ENOMEM;
3487
3488 /* Round up to L1_CACHE_BYTES to resist false sharing */
3489 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3490 L1_CACHE_BYTES), GFP_KERNEL);
3491 if (!sbinfo)
3492 return -ENOMEM;
3493
3494 sbinfo->mode = 0777 | S_ISVTX;
3495 sbinfo->uid = current_fsuid();
3496 sbinfo->gid = current_fsgid();
3497 sb->s_fs_info = sbinfo;
3498
3499 #ifdef CONFIG_TMPFS
3500 /*
3501 * Per default we only allow half of the physical ram per
3502 * tmpfs instance, limiting inodes to one per page of lowmem;
3503 * but the internal instance is left unlimited.
3504 */
3505 if (!(sb->s_flags & SB_KERNMOUNT)) {
3506 sbinfo->max_blocks = shmem_default_max_blocks();
3507 sbinfo->max_inodes = shmem_default_max_inodes();
3508 if (shmem_parse_options(data, sbinfo, false)) {
3509 err = -EINVAL;
3510 goto failed;
3511 }
3512 } else {
3513 sb->s_flags |= SB_NOUSER;
3514 }
3515 sb->s_export_op = &shmem_export_ops;
3516 sb->s_flags |= SB_NOSEC;
3517 #else
3518 sb->s_flags |= SB_NOUSER;
3519 #endif
3520
3521 spin_lock_init(&sbinfo->stat_lock);
3522 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3523 goto failed;
3524 sbinfo->free_inodes = sbinfo->max_inodes;
3525 spin_lock_init(&sbinfo->shrinklist_lock);
3526 INIT_LIST_HEAD(&sbinfo->shrinklist);
3527
3528 sb->s_maxbytes = MAX_LFS_FILESIZE;
3529 sb->s_blocksize = PAGE_SIZE;
3530 sb->s_blocksize_bits = PAGE_SHIFT;
3531 sb->s_magic = TMPFS_MAGIC;
3532 sb->s_op = &shmem_ops;
3533 sb->s_time_gran = 1;
3534 #ifdef CONFIG_TMPFS_XATTR
3535 sb->s_xattr = shmem_xattr_handlers;
3536 #endif
3537 #ifdef CONFIG_TMPFS_POSIX_ACL
3538 sb->s_flags |= SB_POSIXACL;
3539 #endif
3540 uuid_gen(&sb->s_uuid);
3541
3542 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3543 if (!inode)
3544 goto failed;
3545 inode->i_uid = sbinfo->uid;
3546 inode->i_gid = sbinfo->gid;
3547 sb->s_root = d_make_root(inode);
3548 if (!sb->s_root)
3549 goto failed;
3550 return 0;
3551
3552 failed:
3553 shmem_put_super(sb);
3554 return err;
3555 }
3556
3557 static struct kmem_cache *shmem_inode_cachep;
3558
3559 static struct inode *shmem_alloc_inode(struct super_block *sb)
3560 {
3561 struct shmem_inode_info *info;
3562 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3563 if (!info)
3564 return NULL;
3565 return &info->vfs_inode;
3566 }
3567
3568 static void shmem_destroy_callback(struct rcu_head *head)
3569 {
3570 struct inode *inode = container_of(head, struct inode, i_rcu);
3571 if (S_ISLNK(inode->i_mode))
3572 kfree(inode->i_link);
3573 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3574 }
3575
3576 static void shmem_destroy_inode(struct inode *inode)
3577 {
3578 if (S_ISREG(inode->i_mode))
3579 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3580 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3581 }
3582
3583 static void shmem_init_inode(void *foo)
3584 {
3585 struct shmem_inode_info *info = foo;
3586 inode_init_once(&info->vfs_inode);
3587 }
3588
3589 static void shmem_init_inodecache(void)
3590 {
3591 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3592 sizeof(struct shmem_inode_info),
3593 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3594 }
3595
3596 static void shmem_destroy_inodecache(void)
3597 {
3598 kmem_cache_destroy(shmem_inode_cachep);
3599 }
3600
3601 static const struct address_space_operations shmem_aops = {
3602 .writepage = shmem_writepage,
3603 .set_page_dirty = __set_page_dirty_no_writeback,
3604 #ifdef CONFIG_TMPFS
3605 .write_begin = shmem_write_begin,
3606 .write_end = shmem_write_end,
3607 #endif
3608 #ifdef CONFIG_MIGRATION
3609 .migratepage = migrate_page,
3610 #endif
3611 .error_remove_page = generic_error_remove_page,
3612 };
3613
3614 static const struct file_operations shmem_file_operations = {
3615 .mmap = shmem_mmap,
3616 .get_unmapped_area = shmem_get_unmapped_area,
3617 #ifdef CONFIG_TMPFS
3618 .llseek = shmem_file_llseek,
3619 .read_iter = shmem_file_read_iter,
3620 .write_iter = generic_file_write_iter,
3621 .fsync = noop_fsync,
3622 .splice_read = generic_file_splice_read,
3623 .splice_write = iter_file_splice_write,
3624 .fallocate = shmem_fallocate,
3625 #endif
3626 };
3627
3628 static const struct inode_operations shmem_inode_operations = {
3629 .getattr = shmem_getattr,
3630 .setattr = shmem_setattr,
3631 #ifdef CONFIG_TMPFS_XATTR
3632 .listxattr = shmem_listxattr,
3633 .set_acl = simple_set_acl,
3634 #endif
3635 };
3636
3637 static const struct inode_operations shmem_dir_inode_operations = {
3638 #ifdef CONFIG_TMPFS
3639 .create = shmem_create,
3640 .lookup = simple_lookup,
3641 .link = shmem_link,
3642 .unlink = shmem_unlink,
3643 .symlink = shmem_symlink,
3644 .mkdir = shmem_mkdir,
3645 .rmdir = shmem_rmdir,
3646 .mknod = shmem_mknod,
3647 .rename = shmem_rename2,
3648 .tmpfile = shmem_tmpfile,
3649 #endif
3650 #ifdef CONFIG_TMPFS_XATTR
3651 .listxattr = shmem_listxattr,
3652 #endif
3653 #ifdef CONFIG_TMPFS_POSIX_ACL
3654 .setattr = shmem_setattr,
3655 .set_acl = simple_set_acl,
3656 #endif
3657 };
3658
3659 static const struct inode_operations shmem_special_inode_operations = {
3660 #ifdef CONFIG_TMPFS_XATTR
3661 .listxattr = shmem_listxattr,
3662 #endif
3663 #ifdef CONFIG_TMPFS_POSIX_ACL
3664 .setattr = shmem_setattr,
3665 .set_acl = simple_set_acl,
3666 #endif
3667 };
3668
3669 static const struct super_operations shmem_ops = {
3670 .alloc_inode = shmem_alloc_inode,
3671 .destroy_inode = shmem_destroy_inode,
3672 #ifdef CONFIG_TMPFS
3673 .statfs = shmem_statfs,
3674 .remount_fs = shmem_remount_fs,
3675 .show_options = shmem_show_options,
3676 #endif
3677 .evict_inode = shmem_evict_inode,
3678 .drop_inode = generic_delete_inode,
3679 .put_super = shmem_put_super,
3680 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3681 .nr_cached_objects = shmem_unused_huge_count,
3682 .free_cached_objects = shmem_unused_huge_scan,
3683 #endif
3684 };
3685
3686 static const struct vm_operations_struct shmem_vm_ops = {
3687 .fault = shmem_fault,
3688 .map_pages = filemap_map_pages,
3689 #ifdef CONFIG_NUMA
3690 .set_policy = shmem_set_policy,
3691 .get_policy = shmem_get_policy,
3692 #endif
3693 };
3694
3695 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3696 int flags, const char *dev_name, void *data)
3697 {
3698 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3699 }
3700
3701 static struct file_system_type shmem_fs_type = {
3702 .owner = THIS_MODULE,
3703 .name = "tmpfs",
3704 .mount = shmem_mount,
3705 .kill_sb = kill_litter_super,
3706 .fs_flags = FS_USERNS_MOUNT,
3707 };
3708
3709 int __init shmem_init(void)
3710 {
3711 int error;
3712
3713 /* If rootfs called this, don't re-init */
3714 if (shmem_inode_cachep)
3715 return 0;
3716
3717 shmem_init_inodecache();
3718
3719 error = register_filesystem(&shmem_fs_type);
3720 if (error) {
3721 pr_err("Could not register tmpfs\n");
3722 goto out2;
3723 }
3724
3725 shm_mnt = kern_mount(&shmem_fs_type);
3726 if (IS_ERR(shm_mnt)) {
3727 error = PTR_ERR(shm_mnt);
3728 pr_err("Could not kern_mount tmpfs\n");
3729 goto out1;
3730 }
3731
3732 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3733 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3734 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3735 else
3736 shmem_huge = 0; /* just in case it was patched */
3737 #endif
3738 return 0;
3739
3740 out1:
3741 unregister_filesystem(&shmem_fs_type);
3742 out2:
3743 shmem_destroy_inodecache();
3744 shm_mnt = ERR_PTR(error);
3745 return error;
3746 }
3747
3748 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3749 static ssize_t shmem_enabled_show(struct kobject *kobj,
3750 struct kobj_attribute *attr, char *buf)
3751 {
3752 int values[] = {
3753 SHMEM_HUGE_ALWAYS,
3754 SHMEM_HUGE_WITHIN_SIZE,
3755 SHMEM_HUGE_ADVISE,
3756 SHMEM_HUGE_NEVER,
3757 SHMEM_HUGE_DENY,
3758 SHMEM_HUGE_FORCE,
3759 };
3760 int i, count;
3761
3762 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3763 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3764
3765 count += sprintf(buf + count, fmt,
3766 shmem_format_huge(values[i]));
3767 }
3768 buf[count - 1] = '\n';
3769 return count;
3770 }
3771
3772 static ssize_t shmem_enabled_store(struct kobject *kobj,
3773 struct kobj_attribute *attr, const char *buf, size_t count)
3774 {
3775 char tmp[16];
3776 int huge;
3777
3778 if (count + 1 > sizeof(tmp))
3779 return -EINVAL;
3780 memcpy(tmp, buf, count);
3781 tmp[count] = '\0';
3782 if (count && tmp[count - 1] == '\n')
3783 tmp[count - 1] = '\0';
3784
3785 huge = shmem_parse_huge(tmp);
3786 if (huge == -EINVAL)
3787 return -EINVAL;
3788 if (!has_transparent_hugepage() &&
3789 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3790 return -EINVAL;
3791
3792 shmem_huge = huge;
3793 if (shmem_huge > SHMEM_HUGE_DENY)
3794 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3795 return count;
3796 }
3797
3798 struct kobj_attribute shmem_enabled_attr =
3799 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3800 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3801
3802 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3803 bool shmem_huge_enabled(struct vm_area_struct *vma)
3804 {
3805 struct inode *inode = file_inode(vma->vm_file);
3806 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3807 loff_t i_size;
3808 pgoff_t off;
3809
3810 if (shmem_huge == SHMEM_HUGE_FORCE)
3811 return true;
3812 if (shmem_huge == SHMEM_HUGE_DENY)
3813 return false;
3814 switch (sbinfo->huge) {
3815 case SHMEM_HUGE_NEVER:
3816 return false;
3817 case SHMEM_HUGE_ALWAYS:
3818 return true;
3819 case SHMEM_HUGE_WITHIN_SIZE:
3820 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3821 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3822 if (i_size >= HPAGE_PMD_SIZE &&
3823 i_size >> PAGE_SHIFT >= off)
3824 return true;
3825 /* fall through */
3826 case SHMEM_HUGE_ADVISE:
3827 /* TODO: implement fadvise() hints */
3828 return (vma->vm_flags & VM_HUGEPAGE);
3829 default:
3830 VM_BUG_ON(1);
3831 return false;
3832 }
3833 }
3834 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3835
3836 #else /* !CONFIG_SHMEM */
3837
3838 /*
3839 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3840 *
3841 * This is intended for small system where the benefits of the full
3842 * shmem code (swap-backed and resource-limited) are outweighed by
3843 * their complexity. On systems without swap this code should be
3844 * effectively equivalent, but much lighter weight.
3845 */
3846
3847 static struct file_system_type shmem_fs_type = {
3848 .name = "tmpfs",
3849 .mount = ramfs_mount,
3850 .kill_sb = kill_litter_super,
3851 .fs_flags = FS_USERNS_MOUNT,
3852 };
3853
3854 int __init shmem_init(void)
3855 {
3856 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3857
3858 shm_mnt = kern_mount(&shmem_fs_type);
3859 BUG_ON(IS_ERR(shm_mnt));
3860
3861 return 0;
3862 }
3863
3864 int shmem_unuse(swp_entry_t swap, struct page *page)
3865 {
3866 return 0;
3867 }
3868
3869 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3870 {
3871 return 0;
3872 }
3873
3874 void shmem_unlock_mapping(struct address_space *mapping)
3875 {
3876 }
3877
3878 #ifdef CONFIG_MMU
3879 unsigned long shmem_get_unmapped_area(struct file *file,
3880 unsigned long addr, unsigned long len,
3881 unsigned long pgoff, unsigned long flags)
3882 {
3883 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3884 }
3885 #endif
3886
3887 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3888 {
3889 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3890 }
3891 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3892
3893 #define shmem_vm_ops generic_file_vm_ops
3894 #define shmem_file_operations ramfs_file_operations
3895 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3896 #define shmem_acct_size(flags, size) 0
3897 #define shmem_unacct_size(flags, size) do {} while (0)
3898
3899 #endif /* CONFIG_SHMEM */
3900
3901 /* common code */
3902
3903 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3904 unsigned long flags, unsigned int i_flags)
3905 {
3906 struct inode *inode;
3907 struct file *res;
3908
3909 if (IS_ERR(mnt))
3910 return ERR_CAST(mnt);
3911
3912 if (size < 0 || size > MAX_LFS_FILESIZE)
3913 return ERR_PTR(-EINVAL);
3914
3915 if (shmem_acct_size(flags, size))
3916 return ERR_PTR(-ENOMEM);
3917
3918 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3919 flags);
3920 if (unlikely(!inode)) {
3921 shmem_unacct_size(flags, size);
3922 return ERR_PTR(-ENOSPC);
3923 }
3924 inode->i_flags |= i_flags;
3925 inode->i_size = size;
3926 clear_nlink(inode); /* It is unlinked */
3927 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3928 if (!IS_ERR(res))
3929 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3930 &shmem_file_operations);
3931 if (IS_ERR(res))
3932 iput(inode);
3933 return res;
3934 }
3935
3936 /**
3937 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3938 * kernel internal. There will be NO LSM permission checks against the
3939 * underlying inode. So users of this interface must do LSM checks at a
3940 * higher layer. The users are the big_key and shm implementations. LSM
3941 * checks are provided at the key or shm level rather than the inode.
3942 * @name: name for dentry (to be seen in /proc/<pid>/maps
3943 * @size: size to be set for the file
3944 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3945 */
3946 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3947 {
3948 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3949 }
3950
3951 /**
3952 * shmem_file_setup - get an unlinked file living in tmpfs
3953 * @name: name for dentry (to be seen in /proc/<pid>/maps
3954 * @size: size to be set for the file
3955 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3956 */
3957 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3958 {
3959 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3960 }
3961 EXPORT_SYMBOL_GPL(shmem_file_setup);
3962
3963 /**
3964 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3965 * @mnt: the tmpfs mount where the file will be created
3966 * @name: name for dentry (to be seen in /proc/<pid>/maps
3967 * @size: size to be set for the file
3968 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3969 */
3970 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3971 loff_t size, unsigned long flags)
3972 {
3973 return __shmem_file_setup(mnt, name, size, flags, 0);
3974 }
3975 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3976
3977 /**
3978 * shmem_zero_setup - setup a shared anonymous mapping
3979 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3980 */
3981 int shmem_zero_setup(struct vm_area_struct *vma)
3982 {
3983 struct file *file;
3984 loff_t size = vma->vm_end - vma->vm_start;
3985
3986 /*
3987 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3988 * between XFS directory reading and selinux: since this file is only
3989 * accessible to the user through its mapping, use S_PRIVATE flag to
3990 * bypass file security, in the same way as shmem_kernel_file_setup().
3991 */
3992 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
3993 if (IS_ERR(file))
3994 return PTR_ERR(file);
3995
3996 if (vma->vm_file)
3997 fput(vma->vm_file);
3998 vma->vm_file = file;
3999 vma->vm_ops = &shmem_vm_ops;
4000
4001 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4002 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4003 (vma->vm_end & HPAGE_PMD_MASK)) {
4004 khugepaged_enter(vma, vma->vm_flags);
4005 }
4006
4007 return 0;
4008 }
4009
4010 /**
4011 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4012 * @mapping: the page's address_space
4013 * @index: the page index
4014 * @gfp: the page allocator flags to use if allocating
4015 *
4016 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4017 * with any new page allocations done using the specified allocation flags.
4018 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4019 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4020 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4021 *
4022 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4023 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4024 */
4025 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4026 pgoff_t index, gfp_t gfp)
4027 {
4028 #ifdef CONFIG_SHMEM
4029 struct inode *inode = mapping->host;
4030 struct page *page;
4031 int error;
4032
4033 BUG_ON(mapping->a_ops != &shmem_aops);
4034 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4035 gfp, NULL, NULL, NULL);
4036 if (error)
4037 page = ERR_PTR(error);
4038 else
4039 unlock_page(page);
4040 return page;
4041 #else
4042 /*
4043 * The tiny !SHMEM case uses ramfs without swap
4044 */
4045 return read_cache_page_gfp(mapping, index, gfp);
4046 #endif
4047 }
4048 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);