]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/slab.c
Merge tag 'sound-6.0-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-kernels.git] / mm / slab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/kfence.h>
104 #include <linux/cpu.h>
105 #include <linux/sysctl.h>
106 #include <linux/module.h>
107 #include <linux/rcupdate.h>
108 #include <linux/string.h>
109 #include <linux/uaccess.h>
110 #include <linux/nodemask.h>
111 #include <linux/kmemleak.h>
112 #include <linux/mempolicy.h>
113 #include <linux/mutex.h>
114 #include <linux/fault-inject.h>
115 #include <linux/rtmutex.h>
116 #include <linux/reciprocal_div.h>
117 #include <linux/debugobjects.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
120 #include <linux/sched/task_stack.h>
121
122 #include <net/sock.h>
123
124 #include <asm/cacheflush.h>
125 #include <asm/tlbflush.h>
126 #include <asm/page.h>
127
128 #include <trace/events/kmem.h>
129
130 #include "internal.h"
131
132 #include "slab.h"
133
134 /*
135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * STATS - 1 to collect stats for /proc/slabinfo.
139 * 0 for faster, smaller code (especially in the critical paths).
140 *
141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 */
143
144 #ifdef CONFIG_DEBUG_SLAB
145 #define DEBUG 1
146 #define STATS 1
147 #define FORCED_DEBUG 1
148 #else
149 #define DEBUG 0
150 #define STATS 0
151 #define FORCED_DEBUG 0
152 #endif
153
154 /* Shouldn't this be in a header file somewhere? */
155 #define BYTES_PER_WORD sizeof(void *)
156 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
157
158 #ifndef ARCH_KMALLOC_FLAGS
159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #endif
161
162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164
165 #if FREELIST_BYTE_INDEX
166 typedef unsigned char freelist_idx_t;
167 #else
168 typedef unsigned short freelist_idx_t;
169 #endif
170
171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172
173 /*
174 * struct array_cache
175 *
176 * Purpose:
177 * - LIFO ordering, to hand out cache-warm objects from _alloc
178 * - reduce the number of linked list operations
179 * - reduce spinlock operations
180 *
181 * The limit is stored in the per-cpu structure to reduce the data cache
182 * footprint.
183 *
184 */
185 struct array_cache {
186 unsigned int avail;
187 unsigned int limit;
188 unsigned int batchcount;
189 unsigned int touched;
190 void *entry[]; /*
191 * Must have this definition in here for the proper
192 * alignment of array_cache. Also simplifies accessing
193 * the entries.
194 */
195 };
196
197 struct alien_cache {
198 spinlock_t lock;
199 struct array_cache ac;
200 };
201
202 /*
203 * Need this for bootstrapping a per node allocator.
204 */
205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
207 #define CACHE_CACHE 0
208 #define SIZE_NODE (MAX_NUMNODES)
209
210 static int drain_freelist(struct kmem_cache *cache,
211 struct kmem_cache_node *n, int tofree);
212 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
213 int node, struct list_head *list);
214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
216 static void cache_reap(struct work_struct *unused);
217
218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
219 void **list);
220 static inline void fixup_slab_list(struct kmem_cache *cachep,
221 struct kmem_cache_node *n, struct slab *slab,
222 void **list);
223 static int slab_early_init = 1;
224
225 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
226
227 static void kmem_cache_node_init(struct kmem_cache_node *parent)
228 {
229 INIT_LIST_HEAD(&parent->slabs_full);
230 INIT_LIST_HEAD(&parent->slabs_partial);
231 INIT_LIST_HEAD(&parent->slabs_free);
232 parent->total_slabs = 0;
233 parent->free_slabs = 0;
234 parent->shared = NULL;
235 parent->alien = NULL;
236 parent->colour_next = 0;
237 spin_lock_init(&parent->list_lock);
238 parent->free_objects = 0;
239 parent->free_touched = 0;
240 }
241
242 #define MAKE_LIST(cachep, listp, slab, nodeid) \
243 do { \
244 INIT_LIST_HEAD(listp); \
245 list_splice(&get_node(cachep, nodeid)->slab, listp); \
246 } while (0)
247
248 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
249 do { \
250 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
252 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
253 } while (0)
254
255 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
256 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
257 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
258 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
259
260 #define BATCHREFILL_LIMIT 16
261 /*
262 * Optimization question: fewer reaps means less probability for unnecessary
263 * cpucache drain/refill cycles.
264 *
265 * OTOH the cpuarrays can contain lots of objects,
266 * which could lock up otherwise freeable slabs.
267 */
268 #define REAPTIMEOUT_AC (2*HZ)
269 #define REAPTIMEOUT_NODE (4*HZ)
270
271 #if STATS
272 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
273 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
274 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
275 #define STATS_INC_GROWN(x) ((x)->grown++)
276 #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y))
277 #define STATS_SET_HIGH(x) \
278 do { \
279 if ((x)->num_active > (x)->high_mark) \
280 (x)->high_mark = (x)->num_active; \
281 } while (0)
282 #define STATS_INC_ERR(x) ((x)->errors++)
283 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
284 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
285 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
286 #define STATS_SET_FREEABLE(x, i) \
287 do { \
288 if ((x)->max_freeable < i) \
289 (x)->max_freeable = i; \
290 } while (0)
291 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
292 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
293 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
294 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
295 #else
296 #define STATS_INC_ACTIVE(x) do { } while (0)
297 #define STATS_DEC_ACTIVE(x) do { } while (0)
298 #define STATS_INC_ALLOCED(x) do { } while (0)
299 #define STATS_INC_GROWN(x) do { } while (0)
300 #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0)
301 #define STATS_SET_HIGH(x) do { } while (0)
302 #define STATS_INC_ERR(x) do { } while (0)
303 #define STATS_INC_NODEALLOCS(x) do { } while (0)
304 #define STATS_INC_NODEFREES(x) do { } while (0)
305 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
306 #define STATS_SET_FREEABLE(x, i) do { } while (0)
307 #define STATS_INC_ALLOCHIT(x) do { } while (0)
308 #define STATS_INC_ALLOCMISS(x) do { } while (0)
309 #define STATS_INC_FREEHIT(x) do { } while (0)
310 #define STATS_INC_FREEMISS(x) do { } while (0)
311 #endif
312
313 #if DEBUG
314
315 /*
316 * memory layout of objects:
317 * 0 : objp
318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
319 * the end of an object is aligned with the end of the real
320 * allocation. Catches writes behind the end of the allocation.
321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
322 * redzone word.
323 * cachep->obj_offset: The real object.
324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
325 * cachep->size - 1* BYTES_PER_WORD: last caller address
326 * [BYTES_PER_WORD long]
327 */
328 static int obj_offset(struct kmem_cache *cachep)
329 {
330 return cachep->obj_offset;
331 }
332
333 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
334 {
335 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
336 return (unsigned long long *) (objp + obj_offset(cachep) -
337 sizeof(unsigned long long));
338 }
339
340 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
341 {
342 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
343 if (cachep->flags & SLAB_STORE_USER)
344 return (unsigned long long *)(objp + cachep->size -
345 sizeof(unsigned long long) -
346 REDZONE_ALIGN);
347 return (unsigned long long *) (objp + cachep->size -
348 sizeof(unsigned long long));
349 }
350
351 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
352 {
353 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
354 return (void **)(objp + cachep->size - BYTES_PER_WORD);
355 }
356
357 #else
358
359 #define obj_offset(x) 0
360 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
362 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
363
364 #endif
365
366 /*
367 * Do not go above this order unless 0 objects fit into the slab or
368 * overridden on the command line.
369 */
370 #define SLAB_MAX_ORDER_HI 1
371 #define SLAB_MAX_ORDER_LO 0
372 static int slab_max_order = SLAB_MAX_ORDER_LO;
373 static bool slab_max_order_set __initdata;
374
375 static inline void *index_to_obj(struct kmem_cache *cache,
376 const struct slab *slab, unsigned int idx)
377 {
378 return slab->s_mem + cache->size * idx;
379 }
380
381 #define BOOT_CPUCACHE_ENTRIES 1
382 /* internal cache of cache description objs */
383 static struct kmem_cache kmem_cache_boot = {
384 .batchcount = 1,
385 .limit = BOOT_CPUCACHE_ENTRIES,
386 .shared = 1,
387 .size = sizeof(struct kmem_cache),
388 .name = "kmem_cache",
389 };
390
391 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
392
393 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
394 {
395 return this_cpu_ptr(cachep->cpu_cache);
396 }
397
398 /*
399 * Calculate the number of objects and left-over bytes for a given buffer size.
400 */
401 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
402 slab_flags_t flags, size_t *left_over)
403 {
404 unsigned int num;
405 size_t slab_size = PAGE_SIZE << gfporder;
406
407 /*
408 * The slab management structure can be either off the slab or
409 * on it. For the latter case, the memory allocated for a
410 * slab is used for:
411 *
412 * - @buffer_size bytes for each object
413 * - One freelist_idx_t for each object
414 *
415 * We don't need to consider alignment of freelist because
416 * freelist will be at the end of slab page. The objects will be
417 * at the correct alignment.
418 *
419 * If the slab management structure is off the slab, then the
420 * alignment will already be calculated into the size. Because
421 * the slabs are all pages aligned, the objects will be at the
422 * correct alignment when allocated.
423 */
424 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
425 num = slab_size / buffer_size;
426 *left_over = slab_size % buffer_size;
427 } else {
428 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
429 *left_over = slab_size %
430 (buffer_size + sizeof(freelist_idx_t));
431 }
432
433 return num;
434 }
435
436 #if DEBUG
437 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
438
439 static void __slab_error(const char *function, struct kmem_cache *cachep,
440 char *msg)
441 {
442 pr_err("slab error in %s(): cache `%s': %s\n",
443 function, cachep->name, msg);
444 dump_stack();
445 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
446 }
447 #endif
448
449 /*
450 * By default on NUMA we use alien caches to stage the freeing of
451 * objects allocated from other nodes. This causes massive memory
452 * inefficiencies when using fake NUMA setup to split memory into a
453 * large number of small nodes, so it can be disabled on the command
454 * line
455 */
456
457 static int use_alien_caches __read_mostly = 1;
458 static int __init noaliencache_setup(char *s)
459 {
460 use_alien_caches = 0;
461 return 1;
462 }
463 __setup("noaliencache", noaliencache_setup);
464
465 static int __init slab_max_order_setup(char *str)
466 {
467 get_option(&str, &slab_max_order);
468 slab_max_order = slab_max_order < 0 ? 0 :
469 min(slab_max_order, MAX_ORDER - 1);
470 slab_max_order_set = true;
471
472 return 1;
473 }
474 __setup("slab_max_order=", slab_max_order_setup);
475
476 #ifdef CONFIG_NUMA
477 /*
478 * Special reaping functions for NUMA systems called from cache_reap().
479 * These take care of doing round robin flushing of alien caches (containing
480 * objects freed on different nodes from which they were allocated) and the
481 * flushing of remote pcps by calling drain_node_pages.
482 */
483 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
484
485 static void init_reap_node(int cpu)
486 {
487 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
488 node_online_map);
489 }
490
491 static void next_reap_node(void)
492 {
493 int node = __this_cpu_read(slab_reap_node);
494
495 node = next_node_in(node, node_online_map);
496 __this_cpu_write(slab_reap_node, node);
497 }
498
499 #else
500 #define init_reap_node(cpu) do { } while (0)
501 #define next_reap_node(void) do { } while (0)
502 #endif
503
504 /*
505 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
506 * via the workqueue/eventd.
507 * Add the CPU number into the expiration time to minimize the possibility of
508 * the CPUs getting into lockstep and contending for the global cache chain
509 * lock.
510 */
511 static void start_cpu_timer(int cpu)
512 {
513 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
514
515 if (reap_work->work.func == NULL) {
516 init_reap_node(cpu);
517 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
518 schedule_delayed_work_on(cpu, reap_work,
519 __round_jiffies_relative(HZ, cpu));
520 }
521 }
522
523 static void init_arraycache(struct array_cache *ac, int limit, int batch)
524 {
525 if (ac) {
526 ac->avail = 0;
527 ac->limit = limit;
528 ac->batchcount = batch;
529 ac->touched = 0;
530 }
531 }
532
533 static struct array_cache *alloc_arraycache(int node, int entries,
534 int batchcount, gfp_t gfp)
535 {
536 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
537 struct array_cache *ac = NULL;
538
539 ac = kmalloc_node(memsize, gfp, node);
540 /*
541 * The array_cache structures contain pointers to free object.
542 * However, when such objects are allocated or transferred to another
543 * cache the pointers are not cleared and they could be counted as
544 * valid references during a kmemleak scan. Therefore, kmemleak must
545 * not scan such objects.
546 */
547 kmemleak_no_scan(ac);
548 init_arraycache(ac, entries, batchcount);
549 return ac;
550 }
551
552 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
553 struct slab *slab, void *objp)
554 {
555 struct kmem_cache_node *n;
556 int slab_node;
557 LIST_HEAD(list);
558
559 slab_node = slab_nid(slab);
560 n = get_node(cachep, slab_node);
561
562 spin_lock(&n->list_lock);
563 free_block(cachep, &objp, 1, slab_node, &list);
564 spin_unlock(&n->list_lock);
565
566 slabs_destroy(cachep, &list);
567 }
568
569 /*
570 * Transfer objects in one arraycache to another.
571 * Locking must be handled by the caller.
572 *
573 * Return the number of entries transferred.
574 */
575 static int transfer_objects(struct array_cache *to,
576 struct array_cache *from, unsigned int max)
577 {
578 /* Figure out how many entries to transfer */
579 int nr = min3(from->avail, max, to->limit - to->avail);
580
581 if (!nr)
582 return 0;
583
584 memcpy(to->entry + to->avail, from->entry + from->avail - nr,
585 sizeof(void *) *nr);
586
587 from->avail -= nr;
588 to->avail += nr;
589 return nr;
590 }
591
592 /* &alien->lock must be held by alien callers. */
593 static __always_inline void __free_one(struct array_cache *ac, void *objp)
594 {
595 /* Avoid trivial double-free. */
596 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
597 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
598 return;
599 ac->entry[ac->avail++] = objp;
600 }
601
602 #ifndef CONFIG_NUMA
603
604 #define drain_alien_cache(cachep, alien) do { } while (0)
605 #define reap_alien(cachep, n) do { } while (0)
606
607 static inline struct alien_cache **alloc_alien_cache(int node,
608 int limit, gfp_t gfp)
609 {
610 return NULL;
611 }
612
613 static inline void free_alien_cache(struct alien_cache **ac_ptr)
614 {
615 }
616
617 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
618 {
619 return 0;
620 }
621
622 static inline gfp_t gfp_exact_node(gfp_t flags)
623 {
624 return flags & ~__GFP_NOFAIL;
625 }
626
627 #else /* CONFIG_NUMA */
628
629 static struct alien_cache *__alloc_alien_cache(int node, int entries,
630 int batch, gfp_t gfp)
631 {
632 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
633 struct alien_cache *alc = NULL;
634
635 alc = kmalloc_node(memsize, gfp, node);
636 if (alc) {
637 kmemleak_no_scan(alc);
638 init_arraycache(&alc->ac, entries, batch);
639 spin_lock_init(&alc->lock);
640 }
641 return alc;
642 }
643
644 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
645 {
646 struct alien_cache **alc_ptr;
647 int i;
648
649 if (limit > 1)
650 limit = 12;
651 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
652 if (!alc_ptr)
653 return NULL;
654
655 for_each_node(i) {
656 if (i == node || !node_online(i))
657 continue;
658 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
659 if (!alc_ptr[i]) {
660 for (i--; i >= 0; i--)
661 kfree(alc_ptr[i]);
662 kfree(alc_ptr);
663 return NULL;
664 }
665 }
666 return alc_ptr;
667 }
668
669 static void free_alien_cache(struct alien_cache **alc_ptr)
670 {
671 int i;
672
673 if (!alc_ptr)
674 return;
675 for_each_node(i)
676 kfree(alc_ptr[i]);
677 kfree(alc_ptr);
678 }
679
680 static void __drain_alien_cache(struct kmem_cache *cachep,
681 struct array_cache *ac, int node,
682 struct list_head *list)
683 {
684 struct kmem_cache_node *n = get_node(cachep, node);
685
686 if (ac->avail) {
687 spin_lock(&n->list_lock);
688 /*
689 * Stuff objects into the remote nodes shared array first.
690 * That way we could avoid the overhead of putting the objects
691 * into the free lists and getting them back later.
692 */
693 if (n->shared)
694 transfer_objects(n->shared, ac, ac->limit);
695
696 free_block(cachep, ac->entry, ac->avail, node, list);
697 ac->avail = 0;
698 spin_unlock(&n->list_lock);
699 }
700 }
701
702 /*
703 * Called from cache_reap() to regularly drain alien caches round robin.
704 */
705 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
706 {
707 int node = __this_cpu_read(slab_reap_node);
708
709 if (n->alien) {
710 struct alien_cache *alc = n->alien[node];
711 struct array_cache *ac;
712
713 if (alc) {
714 ac = &alc->ac;
715 if (ac->avail && spin_trylock_irq(&alc->lock)) {
716 LIST_HEAD(list);
717
718 __drain_alien_cache(cachep, ac, node, &list);
719 spin_unlock_irq(&alc->lock);
720 slabs_destroy(cachep, &list);
721 }
722 }
723 }
724 }
725
726 static void drain_alien_cache(struct kmem_cache *cachep,
727 struct alien_cache **alien)
728 {
729 int i = 0;
730 struct alien_cache *alc;
731 struct array_cache *ac;
732 unsigned long flags;
733
734 for_each_online_node(i) {
735 alc = alien[i];
736 if (alc) {
737 LIST_HEAD(list);
738
739 ac = &alc->ac;
740 spin_lock_irqsave(&alc->lock, flags);
741 __drain_alien_cache(cachep, ac, i, &list);
742 spin_unlock_irqrestore(&alc->lock, flags);
743 slabs_destroy(cachep, &list);
744 }
745 }
746 }
747
748 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
749 int node, int slab_node)
750 {
751 struct kmem_cache_node *n;
752 struct alien_cache *alien = NULL;
753 struct array_cache *ac;
754 LIST_HEAD(list);
755
756 n = get_node(cachep, node);
757 STATS_INC_NODEFREES(cachep);
758 if (n->alien && n->alien[slab_node]) {
759 alien = n->alien[slab_node];
760 ac = &alien->ac;
761 spin_lock(&alien->lock);
762 if (unlikely(ac->avail == ac->limit)) {
763 STATS_INC_ACOVERFLOW(cachep);
764 __drain_alien_cache(cachep, ac, slab_node, &list);
765 }
766 __free_one(ac, objp);
767 spin_unlock(&alien->lock);
768 slabs_destroy(cachep, &list);
769 } else {
770 n = get_node(cachep, slab_node);
771 spin_lock(&n->list_lock);
772 free_block(cachep, &objp, 1, slab_node, &list);
773 spin_unlock(&n->list_lock);
774 slabs_destroy(cachep, &list);
775 }
776 return 1;
777 }
778
779 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
780 {
781 int slab_node = slab_nid(virt_to_slab(objp));
782 int node = numa_mem_id();
783 /*
784 * Make sure we are not freeing an object from another node to the array
785 * cache on this cpu.
786 */
787 if (likely(node == slab_node))
788 return 0;
789
790 return __cache_free_alien(cachep, objp, node, slab_node);
791 }
792
793 /*
794 * Construct gfp mask to allocate from a specific node but do not reclaim or
795 * warn about failures.
796 */
797 static inline gfp_t gfp_exact_node(gfp_t flags)
798 {
799 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
800 }
801 #endif
802
803 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
804 {
805 struct kmem_cache_node *n;
806
807 /*
808 * Set up the kmem_cache_node for cpu before we can
809 * begin anything. Make sure some other cpu on this
810 * node has not already allocated this
811 */
812 n = get_node(cachep, node);
813 if (n) {
814 spin_lock_irq(&n->list_lock);
815 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
816 cachep->num;
817 spin_unlock_irq(&n->list_lock);
818
819 return 0;
820 }
821
822 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
823 if (!n)
824 return -ENOMEM;
825
826 kmem_cache_node_init(n);
827 n->next_reap = jiffies + REAPTIMEOUT_NODE +
828 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
829
830 n->free_limit =
831 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
832
833 /*
834 * The kmem_cache_nodes don't come and go as CPUs
835 * come and go. slab_mutex provides sufficient
836 * protection here.
837 */
838 cachep->node[node] = n;
839
840 return 0;
841 }
842
843 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
844 /*
845 * Allocates and initializes node for a node on each slab cache, used for
846 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
847 * will be allocated off-node since memory is not yet online for the new node.
848 * When hotplugging memory or a cpu, existing nodes are not replaced if
849 * already in use.
850 *
851 * Must hold slab_mutex.
852 */
853 static int init_cache_node_node(int node)
854 {
855 int ret;
856 struct kmem_cache *cachep;
857
858 list_for_each_entry(cachep, &slab_caches, list) {
859 ret = init_cache_node(cachep, node, GFP_KERNEL);
860 if (ret)
861 return ret;
862 }
863
864 return 0;
865 }
866 #endif
867
868 static int setup_kmem_cache_node(struct kmem_cache *cachep,
869 int node, gfp_t gfp, bool force_change)
870 {
871 int ret = -ENOMEM;
872 struct kmem_cache_node *n;
873 struct array_cache *old_shared = NULL;
874 struct array_cache *new_shared = NULL;
875 struct alien_cache **new_alien = NULL;
876 LIST_HEAD(list);
877
878 if (use_alien_caches) {
879 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
880 if (!new_alien)
881 goto fail;
882 }
883
884 if (cachep->shared) {
885 new_shared = alloc_arraycache(node,
886 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
887 if (!new_shared)
888 goto fail;
889 }
890
891 ret = init_cache_node(cachep, node, gfp);
892 if (ret)
893 goto fail;
894
895 n = get_node(cachep, node);
896 spin_lock_irq(&n->list_lock);
897 if (n->shared && force_change) {
898 free_block(cachep, n->shared->entry,
899 n->shared->avail, node, &list);
900 n->shared->avail = 0;
901 }
902
903 if (!n->shared || force_change) {
904 old_shared = n->shared;
905 n->shared = new_shared;
906 new_shared = NULL;
907 }
908
909 if (!n->alien) {
910 n->alien = new_alien;
911 new_alien = NULL;
912 }
913
914 spin_unlock_irq(&n->list_lock);
915 slabs_destroy(cachep, &list);
916
917 /*
918 * To protect lockless access to n->shared during irq disabled context.
919 * If n->shared isn't NULL in irq disabled context, accessing to it is
920 * guaranteed to be valid until irq is re-enabled, because it will be
921 * freed after synchronize_rcu().
922 */
923 if (old_shared && force_change)
924 synchronize_rcu();
925
926 fail:
927 kfree(old_shared);
928 kfree(new_shared);
929 free_alien_cache(new_alien);
930
931 return ret;
932 }
933
934 #ifdef CONFIG_SMP
935
936 static void cpuup_canceled(long cpu)
937 {
938 struct kmem_cache *cachep;
939 struct kmem_cache_node *n = NULL;
940 int node = cpu_to_mem(cpu);
941 const struct cpumask *mask = cpumask_of_node(node);
942
943 list_for_each_entry(cachep, &slab_caches, list) {
944 struct array_cache *nc;
945 struct array_cache *shared;
946 struct alien_cache **alien;
947 LIST_HEAD(list);
948
949 n = get_node(cachep, node);
950 if (!n)
951 continue;
952
953 spin_lock_irq(&n->list_lock);
954
955 /* Free limit for this kmem_cache_node */
956 n->free_limit -= cachep->batchcount;
957
958 /* cpu is dead; no one can alloc from it. */
959 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
960 free_block(cachep, nc->entry, nc->avail, node, &list);
961 nc->avail = 0;
962
963 if (!cpumask_empty(mask)) {
964 spin_unlock_irq(&n->list_lock);
965 goto free_slab;
966 }
967
968 shared = n->shared;
969 if (shared) {
970 free_block(cachep, shared->entry,
971 shared->avail, node, &list);
972 n->shared = NULL;
973 }
974
975 alien = n->alien;
976 n->alien = NULL;
977
978 spin_unlock_irq(&n->list_lock);
979
980 kfree(shared);
981 if (alien) {
982 drain_alien_cache(cachep, alien);
983 free_alien_cache(alien);
984 }
985
986 free_slab:
987 slabs_destroy(cachep, &list);
988 }
989 /*
990 * In the previous loop, all the objects were freed to
991 * the respective cache's slabs, now we can go ahead and
992 * shrink each nodelist to its limit.
993 */
994 list_for_each_entry(cachep, &slab_caches, list) {
995 n = get_node(cachep, node);
996 if (!n)
997 continue;
998 drain_freelist(cachep, n, INT_MAX);
999 }
1000 }
1001
1002 static int cpuup_prepare(long cpu)
1003 {
1004 struct kmem_cache *cachep;
1005 int node = cpu_to_mem(cpu);
1006 int err;
1007
1008 /*
1009 * We need to do this right in the beginning since
1010 * alloc_arraycache's are going to use this list.
1011 * kmalloc_node allows us to add the slab to the right
1012 * kmem_cache_node and not this cpu's kmem_cache_node
1013 */
1014 err = init_cache_node_node(node);
1015 if (err < 0)
1016 goto bad;
1017
1018 /*
1019 * Now we can go ahead with allocating the shared arrays and
1020 * array caches
1021 */
1022 list_for_each_entry(cachep, &slab_caches, list) {
1023 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1024 if (err)
1025 goto bad;
1026 }
1027
1028 return 0;
1029 bad:
1030 cpuup_canceled(cpu);
1031 return -ENOMEM;
1032 }
1033
1034 int slab_prepare_cpu(unsigned int cpu)
1035 {
1036 int err;
1037
1038 mutex_lock(&slab_mutex);
1039 err = cpuup_prepare(cpu);
1040 mutex_unlock(&slab_mutex);
1041 return err;
1042 }
1043
1044 /*
1045 * This is called for a failed online attempt and for a successful
1046 * offline.
1047 *
1048 * Even if all the cpus of a node are down, we don't free the
1049 * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and
1050 * a kmalloc allocation from another cpu for memory from the node of
1051 * the cpu going down. The kmem_cache_node structure is usually allocated from
1052 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1053 */
1054 int slab_dead_cpu(unsigned int cpu)
1055 {
1056 mutex_lock(&slab_mutex);
1057 cpuup_canceled(cpu);
1058 mutex_unlock(&slab_mutex);
1059 return 0;
1060 }
1061 #endif
1062
1063 static int slab_online_cpu(unsigned int cpu)
1064 {
1065 start_cpu_timer(cpu);
1066 return 0;
1067 }
1068
1069 static int slab_offline_cpu(unsigned int cpu)
1070 {
1071 /*
1072 * Shutdown cache reaper. Note that the slab_mutex is held so
1073 * that if cache_reap() is invoked it cannot do anything
1074 * expensive but will only modify reap_work and reschedule the
1075 * timer.
1076 */
1077 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1078 /* Now the cache_reaper is guaranteed to be not running. */
1079 per_cpu(slab_reap_work, cpu).work.func = NULL;
1080 return 0;
1081 }
1082
1083 #if defined(CONFIG_NUMA)
1084 /*
1085 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1086 * Returns -EBUSY if all objects cannot be drained so that the node is not
1087 * removed.
1088 *
1089 * Must hold slab_mutex.
1090 */
1091 static int __meminit drain_cache_node_node(int node)
1092 {
1093 struct kmem_cache *cachep;
1094 int ret = 0;
1095
1096 list_for_each_entry(cachep, &slab_caches, list) {
1097 struct kmem_cache_node *n;
1098
1099 n = get_node(cachep, node);
1100 if (!n)
1101 continue;
1102
1103 drain_freelist(cachep, n, INT_MAX);
1104
1105 if (!list_empty(&n->slabs_full) ||
1106 !list_empty(&n->slabs_partial)) {
1107 ret = -EBUSY;
1108 break;
1109 }
1110 }
1111 return ret;
1112 }
1113
1114 static int __meminit slab_memory_callback(struct notifier_block *self,
1115 unsigned long action, void *arg)
1116 {
1117 struct memory_notify *mnb = arg;
1118 int ret = 0;
1119 int nid;
1120
1121 nid = mnb->status_change_nid;
1122 if (nid < 0)
1123 goto out;
1124
1125 switch (action) {
1126 case MEM_GOING_ONLINE:
1127 mutex_lock(&slab_mutex);
1128 ret = init_cache_node_node(nid);
1129 mutex_unlock(&slab_mutex);
1130 break;
1131 case MEM_GOING_OFFLINE:
1132 mutex_lock(&slab_mutex);
1133 ret = drain_cache_node_node(nid);
1134 mutex_unlock(&slab_mutex);
1135 break;
1136 case MEM_ONLINE:
1137 case MEM_OFFLINE:
1138 case MEM_CANCEL_ONLINE:
1139 case MEM_CANCEL_OFFLINE:
1140 break;
1141 }
1142 out:
1143 return notifier_from_errno(ret);
1144 }
1145 #endif /* CONFIG_NUMA */
1146
1147 /*
1148 * swap the static kmem_cache_node with kmalloced memory
1149 */
1150 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1151 int nodeid)
1152 {
1153 struct kmem_cache_node *ptr;
1154
1155 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1156 BUG_ON(!ptr);
1157
1158 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1159 /*
1160 * Do not assume that spinlocks can be initialized via memcpy:
1161 */
1162 spin_lock_init(&ptr->list_lock);
1163
1164 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1165 cachep->node[nodeid] = ptr;
1166 }
1167
1168 /*
1169 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1170 * size of kmem_cache_node.
1171 */
1172 static void __init set_up_node(struct kmem_cache *cachep, int index)
1173 {
1174 int node;
1175
1176 for_each_online_node(node) {
1177 cachep->node[node] = &init_kmem_cache_node[index + node];
1178 cachep->node[node]->next_reap = jiffies +
1179 REAPTIMEOUT_NODE +
1180 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1181 }
1182 }
1183
1184 /*
1185 * Initialisation. Called after the page allocator have been initialised and
1186 * before smp_init().
1187 */
1188 void __init kmem_cache_init(void)
1189 {
1190 int i;
1191
1192 kmem_cache = &kmem_cache_boot;
1193
1194 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1195 use_alien_caches = 0;
1196
1197 for (i = 0; i < NUM_INIT_LISTS; i++)
1198 kmem_cache_node_init(&init_kmem_cache_node[i]);
1199
1200 /*
1201 * Fragmentation resistance on low memory - only use bigger
1202 * page orders on machines with more than 32MB of memory if
1203 * not overridden on the command line.
1204 */
1205 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1206 slab_max_order = SLAB_MAX_ORDER_HI;
1207
1208 /* Bootstrap is tricky, because several objects are allocated
1209 * from caches that do not exist yet:
1210 * 1) initialize the kmem_cache cache: it contains the struct
1211 * kmem_cache structures of all caches, except kmem_cache itself:
1212 * kmem_cache is statically allocated.
1213 * Initially an __init data area is used for the head array and the
1214 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1215 * array at the end of the bootstrap.
1216 * 2) Create the first kmalloc cache.
1217 * The struct kmem_cache for the new cache is allocated normally.
1218 * An __init data area is used for the head array.
1219 * 3) Create the remaining kmalloc caches, with minimally sized
1220 * head arrays.
1221 * 4) Replace the __init data head arrays for kmem_cache and the first
1222 * kmalloc cache with kmalloc allocated arrays.
1223 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1224 * the other cache's with kmalloc allocated memory.
1225 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1226 */
1227
1228 /* 1) create the kmem_cache */
1229
1230 /*
1231 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1232 */
1233 create_boot_cache(kmem_cache, "kmem_cache",
1234 offsetof(struct kmem_cache, node) +
1235 nr_node_ids * sizeof(struct kmem_cache_node *),
1236 SLAB_HWCACHE_ALIGN, 0, 0);
1237 list_add(&kmem_cache->list, &slab_caches);
1238 slab_state = PARTIAL;
1239
1240 /*
1241 * Initialize the caches that provide memory for the kmem_cache_node
1242 * structures first. Without this, further allocations will bug.
1243 */
1244 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1245 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1246 kmalloc_info[INDEX_NODE].size,
1247 ARCH_KMALLOC_FLAGS, 0,
1248 kmalloc_info[INDEX_NODE].size);
1249 slab_state = PARTIAL_NODE;
1250 setup_kmalloc_cache_index_table();
1251
1252 slab_early_init = 0;
1253
1254 /* 5) Replace the bootstrap kmem_cache_node */
1255 {
1256 int nid;
1257
1258 for_each_online_node(nid) {
1259 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1260
1261 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1262 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1263 }
1264 }
1265
1266 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1267 }
1268
1269 void __init kmem_cache_init_late(void)
1270 {
1271 struct kmem_cache *cachep;
1272
1273 /* 6) resize the head arrays to their final sizes */
1274 mutex_lock(&slab_mutex);
1275 list_for_each_entry(cachep, &slab_caches, list)
1276 if (enable_cpucache(cachep, GFP_NOWAIT))
1277 BUG();
1278 mutex_unlock(&slab_mutex);
1279
1280 /* Done! */
1281 slab_state = FULL;
1282
1283 #ifdef CONFIG_NUMA
1284 /*
1285 * Register a memory hotplug callback that initializes and frees
1286 * node.
1287 */
1288 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1289 #endif
1290
1291 /*
1292 * The reap timers are started later, with a module init call: That part
1293 * of the kernel is not yet operational.
1294 */
1295 }
1296
1297 static int __init cpucache_init(void)
1298 {
1299 int ret;
1300
1301 /*
1302 * Register the timers that return unneeded pages to the page allocator
1303 */
1304 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1305 slab_online_cpu, slab_offline_cpu);
1306 WARN_ON(ret < 0);
1307
1308 return 0;
1309 }
1310 __initcall(cpucache_init);
1311
1312 static noinline void
1313 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1314 {
1315 #if DEBUG
1316 struct kmem_cache_node *n;
1317 unsigned long flags;
1318 int node;
1319 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1320 DEFAULT_RATELIMIT_BURST);
1321
1322 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1323 return;
1324
1325 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1326 nodeid, gfpflags, &gfpflags);
1327 pr_warn(" cache: %s, object size: %d, order: %d\n",
1328 cachep->name, cachep->size, cachep->gfporder);
1329
1330 for_each_kmem_cache_node(cachep, node, n) {
1331 unsigned long total_slabs, free_slabs, free_objs;
1332
1333 spin_lock_irqsave(&n->list_lock, flags);
1334 total_slabs = n->total_slabs;
1335 free_slabs = n->free_slabs;
1336 free_objs = n->free_objects;
1337 spin_unlock_irqrestore(&n->list_lock, flags);
1338
1339 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1340 node, total_slabs - free_slabs, total_slabs,
1341 (total_slabs * cachep->num) - free_objs,
1342 total_slabs * cachep->num);
1343 }
1344 #endif
1345 }
1346
1347 /*
1348 * Interface to system's page allocator. No need to hold the
1349 * kmem_cache_node ->list_lock.
1350 *
1351 * If we requested dmaable memory, we will get it. Even if we
1352 * did not request dmaable memory, we might get it, but that
1353 * would be relatively rare and ignorable.
1354 */
1355 static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1356 int nodeid)
1357 {
1358 struct folio *folio;
1359 struct slab *slab;
1360
1361 flags |= cachep->allocflags;
1362
1363 folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder);
1364 if (!folio) {
1365 slab_out_of_memory(cachep, flags, nodeid);
1366 return NULL;
1367 }
1368
1369 slab = folio_slab(folio);
1370
1371 account_slab(slab, cachep->gfporder, cachep, flags);
1372 __folio_set_slab(folio);
1373 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1374 if (sk_memalloc_socks() && page_is_pfmemalloc(folio_page(folio, 0)))
1375 slab_set_pfmemalloc(slab);
1376
1377 return slab;
1378 }
1379
1380 /*
1381 * Interface to system's page release.
1382 */
1383 static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab)
1384 {
1385 int order = cachep->gfporder;
1386 struct folio *folio = slab_folio(slab);
1387
1388 BUG_ON(!folio_test_slab(folio));
1389 __slab_clear_pfmemalloc(slab);
1390 __folio_clear_slab(folio);
1391 page_mapcount_reset(folio_page(folio, 0));
1392 folio->mapping = NULL;
1393
1394 if (current->reclaim_state)
1395 current->reclaim_state->reclaimed_slab += 1 << order;
1396 unaccount_slab(slab, order, cachep);
1397 __free_pages(folio_page(folio, 0), order);
1398 }
1399
1400 static void kmem_rcu_free(struct rcu_head *head)
1401 {
1402 struct kmem_cache *cachep;
1403 struct slab *slab;
1404
1405 slab = container_of(head, struct slab, rcu_head);
1406 cachep = slab->slab_cache;
1407
1408 kmem_freepages(cachep, slab);
1409 }
1410
1411 #if DEBUG
1412 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1413 {
1414 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1415 (cachep->size % PAGE_SIZE) == 0)
1416 return true;
1417
1418 return false;
1419 }
1420
1421 #ifdef CONFIG_DEBUG_PAGEALLOC
1422 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1423 {
1424 if (!is_debug_pagealloc_cache(cachep))
1425 return;
1426
1427 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1428 }
1429
1430 #else
1431 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1432 int map) {}
1433
1434 #endif
1435
1436 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1437 {
1438 int size = cachep->object_size;
1439 addr = &((char *)addr)[obj_offset(cachep)];
1440
1441 memset(addr, val, size);
1442 *(unsigned char *)(addr + size - 1) = POISON_END;
1443 }
1444
1445 static void dump_line(char *data, int offset, int limit)
1446 {
1447 int i;
1448 unsigned char error = 0;
1449 int bad_count = 0;
1450
1451 pr_err("%03x: ", offset);
1452 for (i = 0; i < limit; i++) {
1453 if (data[offset + i] != POISON_FREE) {
1454 error = data[offset + i];
1455 bad_count++;
1456 }
1457 }
1458 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1459 &data[offset], limit, 1);
1460
1461 if (bad_count == 1) {
1462 error ^= POISON_FREE;
1463 if (!(error & (error - 1))) {
1464 pr_err("Single bit error detected. Probably bad RAM.\n");
1465 #ifdef CONFIG_X86
1466 pr_err("Run memtest86+ or a similar memory test tool.\n");
1467 #else
1468 pr_err("Run a memory test tool.\n");
1469 #endif
1470 }
1471 }
1472 }
1473 #endif
1474
1475 #if DEBUG
1476
1477 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1478 {
1479 int i, size;
1480 char *realobj;
1481
1482 if (cachep->flags & SLAB_RED_ZONE) {
1483 pr_err("Redzone: 0x%llx/0x%llx\n",
1484 *dbg_redzone1(cachep, objp),
1485 *dbg_redzone2(cachep, objp));
1486 }
1487
1488 if (cachep->flags & SLAB_STORE_USER)
1489 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1490 realobj = (char *)objp + obj_offset(cachep);
1491 size = cachep->object_size;
1492 for (i = 0; i < size && lines; i += 16, lines--) {
1493 int limit;
1494 limit = 16;
1495 if (i + limit > size)
1496 limit = size - i;
1497 dump_line(realobj, i, limit);
1498 }
1499 }
1500
1501 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1502 {
1503 char *realobj;
1504 int size, i;
1505 int lines = 0;
1506
1507 if (is_debug_pagealloc_cache(cachep))
1508 return;
1509
1510 realobj = (char *)objp + obj_offset(cachep);
1511 size = cachep->object_size;
1512
1513 for (i = 0; i < size; i++) {
1514 char exp = POISON_FREE;
1515 if (i == size - 1)
1516 exp = POISON_END;
1517 if (realobj[i] != exp) {
1518 int limit;
1519 /* Mismatch ! */
1520 /* Print header */
1521 if (lines == 0) {
1522 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1523 print_tainted(), cachep->name,
1524 realobj, size);
1525 print_objinfo(cachep, objp, 0);
1526 }
1527 /* Hexdump the affected line */
1528 i = (i / 16) * 16;
1529 limit = 16;
1530 if (i + limit > size)
1531 limit = size - i;
1532 dump_line(realobj, i, limit);
1533 i += 16;
1534 lines++;
1535 /* Limit to 5 lines */
1536 if (lines > 5)
1537 break;
1538 }
1539 }
1540 if (lines != 0) {
1541 /* Print some data about the neighboring objects, if they
1542 * exist:
1543 */
1544 struct slab *slab = virt_to_slab(objp);
1545 unsigned int objnr;
1546
1547 objnr = obj_to_index(cachep, slab, objp);
1548 if (objnr) {
1549 objp = index_to_obj(cachep, slab, objnr - 1);
1550 realobj = (char *)objp + obj_offset(cachep);
1551 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1552 print_objinfo(cachep, objp, 2);
1553 }
1554 if (objnr + 1 < cachep->num) {
1555 objp = index_to_obj(cachep, slab, objnr + 1);
1556 realobj = (char *)objp + obj_offset(cachep);
1557 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1558 print_objinfo(cachep, objp, 2);
1559 }
1560 }
1561 }
1562 #endif
1563
1564 #if DEBUG
1565 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1566 struct slab *slab)
1567 {
1568 int i;
1569
1570 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1571 poison_obj(cachep, slab->freelist - obj_offset(cachep),
1572 POISON_FREE);
1573 }
1574
1575 for (i = 0; i < cachep->num; i++) {
1576 void *objp = index_to_obj(cachep, slab, i);
1577
1578 if (cachep->flags & SLAB_POISON) {
1579 check_poison_obj(cachep, objp);
1580 slab_kernel_map(cachep, objp, 1);
1581 }
1582 if (cachep->flags & SLAB_RED_ZONE) {
1583 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1584 slab_error(cachep, "start of a freed object was overwritten");
1585 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1586 slab_error(cachep, "end of a freed object was overwritten");
1587 }
1588 }
1589 }
1590 #else
1591 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1592 struct slab *slab)
1593 {
1594 }
1595 #endif
1596
1597 /**
1598 * slab_destroy - destroy and release all objects in a slab
1599 * @cachep: cache pointer being destroyed
1600 * @slab: slab being destroyed
1601 *
1602 * Destroy all the objs in a slab, and release the mem back to the system.
1603 * Before calling the slab must have been unlinked from the cache. The
1604 * kmem_cache_node ->list_lock is not held/needed.
1605 */
1606 static void slab_destroy(struct kmem_cache *cachep, struct slab *slab)
1607 {
1608 void *freelist;
1609
1610 freelist = slab->freelist;
1611 slab_destroy_debugcheck(cachep, slab);
1612 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1613 call_rcu(&slab->rcu_head, kmem_rcu_free);
1614 else
1615 kmem_freepages(cachep, slab);
1616
1617 /*
1618 * From now on, we don't use freelist
1619 * although actual page can be freed in rcu context
1620 */
1621 if (OFF_SLAB(cachep))
1622 kmem_cache_free(cachep->freelist_cache, freelist);
1623 }
1624
1625 /*
1626 * Update the size of the caches before calling slabs_destroy as it may
1627 * recursively call kfree.
1628 */
1629 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1630 {
1631 struct slab *slab, *n;
1632
1633 list_for_each_entry_safe(slab, n, list, slab_list) {
1634 list_del(&slab->slab_list);
1635 slab_destroy(cachep, slab);
1636 }
1637 }
1638
1639 /**
1640 * calculate_slab_order - calculate size (page order) of slabs
1641 * @cachep: pointer to the cache that is being created
1642 * @size: size of objects to be created in this cache.
1643 * @flags: slab allocation flags
1644 *
1645 * Also calculates the number of objects per slab.
1646 *
1647 * This could be made much more intelligent. For now, try to avoid using
1648 * high order pages for slabs. When the gfp() functions are more friendly
1649 * towards high-order requests, this should be changed.
1650 *
1651 * Return: number of left-over bytes in a slab
1652 */
1653 static size_t calculate_slab_order(struct kmem_cache *cachep,
1654 size_t size, slab_flags_t flags)
1655 {
1656 size_t left_over = 0;
1657 int gfporder;
1658
1659 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1660 unsigned int num;
1661 size_t remainder;
1662
1663 num = cache_estimate(gfporder, size, flags, &remainder);
1664 if (!num)
1665 continue;
1666
1667 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1668 if (num > SLAB_OBJ_MAX_NUM)
1669 break;
1670
1671 if (flags & CFLGS_OFF_SLAB) {
1672 struct kmem_cache *freelist_cache;
1673 size_t freelist_size;
1674
1675 freelist_size = num * sizeof(freelist_idx_t);
1676 freelist_cache = kmalloc_slab(freelist_size, 0u);
1677 if (!freelist_cache)
1678 continue;
1679
1680 /*
1681 * Needed to avoid possible looping condition
1682 * in cache_grow_begin()
1683 */
1684 if (OFF_SLAB(freelist_cache))
1685 continue;
1686
1687 /* check if off slab has enough benefit */
1688 if (freelist_cache->size > cachep->size / 2)
1689 continue;
1690 }
1691
1692 /* Found something acceptable - save it away */
1693 cachep->num = num;
1694 cachep->gfporder = gfporder;
1695 left_over = remainder;
1696
1697 /*
1698 * A VFS-reclaimable slab tends to have most allocations
1699 * as GFP_NOFS and we really don't want to have to be allocating
1700 * higher-order pages when we are unable to shrink dcache.
1701 */
1702 if (flags & SLAB_RECLAIM_ACCOUNT)
1703 break;
1704
1705 /*
1706 * Large number of objects is good, but very large slabs are
1707 * currently bad for the gfp()s.
1708 */
1709 if (gfporder >= slab_max_order)
1710 break;
1711
1712 /*
1713 * Acceptable internal fragmentation?
1714 */
1715 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1716 break;
1717 }
1718 return left_over;
1719 }
1720
1721 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1722 struct kmem_cache *cachep, int entries, int batchcount)
1723 {
1724 int cpu;
1725 size_t size;
1726 struct array_cache __percpu *cpu_cache;
1727
1728 size = sizeof(void *) * entries + sizeof(struct array_cache);
1729 cpu_cache = __alloc_percpu(size, sizeof(void *));
1730
1731 if (!cpu_cache)
1732 return NULL;
1733
1734 for_each_possible_cpu(cpu) {
1735 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1736 entries, batchcount);
1737 }
1738
1739 return cpu_cache;
1740 }
1741
1742 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1743 {
1744 if (slab_state >= FULL)
1745 return enable_cpucache(cachep, gfp);
1746
1747 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1748 if (!cachep->cpu_cache)
1749 return 1;
1750
1751 if (slab_state == DOWN) {
1752 /* Creation of first cache (kmem_cache). */
1753 set_up_node(kmem_cache, CACHE_CACHE);
1754 } else if (slab_state == PARTIAL) {
1755 /* For kmem_cache_node */
1756 set_up_node(cachep, SIZE_NODE);
1757 } else {
1758 int node;
1759
1760 for_each_online_node(node) {
1761 cachep->node[node] = kmalloc_node(
1762 sizeof(struct kmem_cache_node), gfp, node);
1763 BUG_ON(!cachep->node[node]);
1764 kmem_cache_node_init(cachep->node[node]);
1765 }
1766 }
1767
1768 cachep->node[numa_mem_id()]->next_reap =
1769 jiffies + REAPTIMEOUT_NODE +
1770 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1771
1772 cpu_cache_get(cachep)->avail = 0;
1773 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1774 cpu_cache_get(cachep)->batchcount = 1;
1775 cpu_cache_get(cachep)->touched = 0;
1776 cachep->batchcount = 1;
1777 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1778 return 0;
1779 }
1780
1781 slab_flags_t kmem_cache_flags(unsigned int object_size,
1782 slab_flags_t flags, const char *name)
1783 {
1784 return flags;
1785 }
1786
1787 struct kmem_cache *
1788 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1789 slab_flags_t flags, void (*ctor)(void *))
1790 {
1791 struct kmem_cache *cachep;
1792
1793 cachep = find_mergeable(size, align, flags, name, ctor);
1794 if (cachep) {
1795 cachep->refcount++;
1796
1797 /*
1798 * Adjust the object sizes so that we clear
1799 * the complete object on kzalloc.
1800 */
1801 cachep->object_size = max_t(int, cachep->object_size, size);
1802 }
1803 return cachep;
1804 }
1805
1806 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1807 size_t size, slab_flags_t flags)
1808 {
1809 size_t left;
1810
1811 cachep->num = 0;
1812
1813 /*
1814 * If slab auto-initialization on free is enabled, store the freelist
1815 * off-slab, so that its contents don't end up in one of the allocated
1816 * objects.
1817 */
1818 if (unlikely(slab_want_init_on_free(cachep)))
1819 return false;
1820
1821 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1822 return false;
1823
1824 left = calculate_slab_order(cachep, size,
1825 flags | CFLGS_OBJFREELIST_SLAB);
1826 if (!cachep->num)
1827 return false;
1828
1829 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1830 return false;
1831
1832 cachep->colour = left / cachep->colour_off;
1833
1834 return true;
1835 }
1836
1837 static bool set_off_slab_cache(struct kmem_cache *cachep,
1838 size_t size, slab_flags_t flags)
1839 {
1840 size_t left;
1841
1842 cachep->num = 0;
1843
1844 /*
1845 * Always use on-slab management when SLAB_NOLEAKTRACE
1846 * to avoid recursive calls into kmemleak.
1847 */
1848 if (flags & SLAB_NOLEAKTRACE)
1849 return false;
1850
1851 /*
1852 * Size is large, assume best to place the slab management obj
1853 * off-slab (should allow better packing of objs).
1854 */
1855 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1856 if (!cachep->num)
1857 return false;
1858
1859 /*
1860 * If the slab has been placed off-slab, and we have enough space then
1861 * move it on-slab. This is at the expense of any extra colouring.
1862 */
1863 if (left >= cachep->num * sizeof(freelist_idx_t))
1864 return false;
1865
1866 cachep->colour = left / cachep->colour_off;
1867
1868 return true;
1869 }
1870
1871 static bool set_on_slab_cache(struct kmem_cache *cachep,
1872 size_t size, slab_flags_t flags)
1873 {
1874 size_t left;
1875
1876 cachep->num = 0;
1877
1878 left = calculate_slab_order(cachep, size, flags);
1879 if (!cachep->num)
1880 return false;
1881
1882 cachep->colour = left / cachep->colour_off;
1883
1884 return true;
1885 }
1886
1887 /**
1888 * __kmem_cache_create - Create a cache.
1889 * @cachep: cache management descriptor
1890 * @flags: SLAB flags
1891 *
1892 * Returns a ptr to the cache on success, NULL on failure.
1893 * Cannot be called within an int, but can be interrupted.
1894 * The @ctor is run when new pages are allocated by the cache.
1895 *
1896 * The flags are
1897 *
1898 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1899 * to catch references to uninitialised memory.
1900 *
1901 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1902 * for buffer overruns.
1903 *
1904 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1905 * cacheline. This can be beneficial if you're counting cycles as closely
1906 * as davem.
1907 *
1908 * Return: a pointer to the created cache or %NULL in case of error
1909 */
1910 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1911 {
1912 size_t ralign = BYTES_PER_WORD;
1913 gfp_t gfp;
1914 int err;
1915 unsigned int size = cachep->size;
1916
1917 #if DEBUG
1918 #if FORCED_DEBUG
1919 /*
1920 * Enable redzoning and last user accounting, except for caches with
1921 * large objects, if the increased size would increase the object size
1922 * above the next power of two: caches with object sizes just above a
1923 * power of two have a significant amount of internal fragmentation.
1924 */
1925 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1926 2 * sizeof(unsigned long long)))
1927 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1928 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1929 flags |= SLAB_POISON;
1930 #endif
1931 #endif
1932
1933 /*
1934 * Check that size is in terms of words. This is needed to avoid
1935 * unaligned accesses for some archs when redzoning is used, and makes
1936 * sure any on-slab bufctl's are also correctly aligned.
1937 */
1938 size = ALIGN(size, BYTES_PER_WORD);
1939
1940 if (flags & SLAB_RED_ZONE) {
1941 ralign = REDZONE_ALIGN;
1942 /* If redzoning, ensure that the second redzone is suitably
1943 * aligned, by adjusting the object size accordingly. */
1944 size = ALIGN(size, REDZONE_ALIGN);
1945 }
1946
1947 /* 3) caller mandated alignment */
1948 if (ralign < cachep->align) {
1949 ralign = cachep->align;
1950 }
1951 /* disable debug if necessary */
1952 if (ralign > __alignof__(unsigned long long))
1953 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1954 /*
1955 * 4) Store it.
1956 */
1957 cachep->align = ralign;
1958 cachep->colour_off = cache_line_size();
1959 /* Offset must be a multiple of the alignment. */
1960 if (cachep->colour_off < cachep->align)
1961 cachep->colour_off = cachep->align;
1962
1963 if (slab_is_available())
1964 gfp = GFP_KERNEL;
1965 else
1966 gfp = GFP_NOWAIT;
1967
1968 #if DEBUG
1969
1970 /*
1971 * Both debugging options require word-alignment which is calculated
1972 * into align above.
1973 */
1974 if (flags & SLAB_RED_ZONE) {
1975 /* add space for red zone words */
1976 cachep->obj_offset += sizeof(unsigned long long);
1977 size += 2 * sizeof(unsigned long long);
1978 }
1979 if (flags & SLAB_STORE_USER) {
1980 /* user store requires one word storage behind the end of
1981 * the real object. But if the second red zone needs to be
1982 * aligned to 64 bits, we must allow that much space.
1983 */
1984 if (flags & SLAB_RED_ZONE)
1985 size += REDZONE_ALIGN;
1986 else
1987 size += BYTES_PER_WORD;
1988 }
1989 #endif
1990
1991 kasan_cache_create(cachep, &size, &flags);
1992
1993 size = ALIGN(size, cachep->align);
1994 /*
1995 * We should restrict the number of objects in a slab to implement
1996 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
1997 */
1998 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
1999 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2000
2001 #if DEBUG
2002 /*
2003 * To activate debug pagealloc, off-slab management is necessary
2004 * requirement. In early phase of initialization, small sized slab
2005 * doesn't get initialized so it would not be possible. So, we need
2006 * to check size >= 256. It guarantees that all necessary small
2007 * sized slab is initialized in current slab initialization sequence.
2008 */
2009 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2010 size >= 256 && cachep->object_size > cache_line_size()) {
2011 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2012 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2013
2014 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2015 flags |= CFLGS_OFF_SLAB;
2016 cachep->obj_offset += tmp_size - size;
2017 size = tmp_size;
2018 goto done;
2019 }
2020 }
2021 }
2022 #endif
2023
2024 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2025 flags |= CFLGS_OBJFREELIST_SLAB;
2026 goto done;
2027 }
2028
2029 if (set_off_slab_cache(cachep, size, flags)) {
2030 flags |= CFLGS_OFF_SLAB;
2031 goto done;
2032 }
2033
2034 if (set_on_slab_cache(cachep, size, flags))
2035 goto done;
2036
2037 return -E2BIG;
2038
2039 done:
2040 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2041 cachep->flags = flags;
2042 cachep->allocflags = __GFP_COMP;
2043 if (flags & SLAB_CACHE_DMA)
2044 cachep->allocflags |= GFP_DMA;
2045 if (flags & SLAB_CACHE_DMA32)
2046 cachep->allocflags |= GFP_DMA32;
2047 if (flags & SLAB_RECLAIM_ACCOUNT)
2048 cachep->allocflags |= __GFP_RECLAIMABLE;
2049 cachep->size = size;
2050 cachep->reciprocal_buffer_size = reciprocal_value(size);
2051
2052 #if DEBUG
2053 /*
2054 * If we're going to use the generic kernel_map_pages()
2055 * poisoning, then it's going to smash the contents of
2056 * the redzone and userword anyhow, so switch them off.
2057 */
2058 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2059 (cachep->flags & SLAB_POISON) &&
2060 is_debug_pagealloc_cache(cachep))
2061 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2062 #endif
2063
2064 if (OFF_SLAB(cachep)) {
2065 cachep->freelist_cache =
2066 kmalloc_slab(cachep->freelist_size, 0u);
2067 }
2068
2069 err = setup_cpu_cache(cachep, gfp);
2070 if (err) {
2071 __kmem_cache_release(cachep);
2072 return err;
2073 }
2074
2075 return 0;
2076 }
2077
2078 #if DEBUG
2079 static void check_irq_off(void)
2080 {
2081 BUG_ON(!irqs_disabled());
2082 }
2083
2084 static void check_irq_on(void)
2085 {
2086 BUG_ON(irqs_disabled());
2087 }
2088
2089 static void check_mutex_acquired(void)
2090 {
2091 BUG_ON(!mutex_is_locked(&slab_mutex));
2092 }
2093
2094 static void check_spinlock_acquired(struct kmem_cache *cachep)
2095 {
2096 #ifdef CONFIG_SMP
2097 check_irq_off();
2098 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2099 #endif
2100 }
2101
2102 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2103 {
2104 #ifdef CONFIG_SMP
2105 check_irq_off();
2106 assert_spin_locked(&get_node(cachep, node)->list_lock);
2107 #endif
2108 }
2109
2110 #else
2111 #define check_irq_off() do { } while(0)
2112 #define check_irq_on() do { } while(0)
2113 #define check_mutex_acquired() do { } while(0)
2114 #define check_spinlock_acquired(x) do { } while(0)
2115 #define check_spinlock_acquired_node(x, y) do { } while(0)
2116 #endif
2117
2118 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2119 int node, bool free_all, struct list_head *list)
2120 {
2121 int tofree;
2122
2123 if (!ac || !ac->avail)
2124 return;
2125
2126 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2127 if (tofree > ac->avail)
2128 tofree = (ac->avail + 1) / 2;
2129
2130 free_block(cachep, ac->entry, tofree, node, list);
2131 ac->avail -= tofree;
2132 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2133 }
2134
2135 static void do_drain(void *arg)
2136 {
2137 struct kmem_cache *cachep = arg;
2138 struct array_cache *ac;
2139 int node = numa_mem_id();
2140 struct kmem_cache_node *n;
2141 LIST_HEAD(list);
2142
2143 check_irq_off();
2144 ac = cpu_cache_get(cachep);
2145 n = get_node(cachep, node);
2146 spin_lock(&n->list_lock);
2147 free_block(cachep, ac->entry, ac->avail, node, &list);
2148 spin_unlock(&n->list_lock);
2149 ac->avail = 0;
2150 slabs_destroy(cachep, &list);
2151 }
2152
2153 static void drain_cpu_caches(struct kmem_cache *cachep)
2154 {
2155 struct kmem_cache_node *n;
2156 int node;
2157 LIST_HEAD(list);
2158
2159 on_each_cpu(do_drain, cachep, 1);
2160 check_irq_on();
2161 for_each_kmem_cache_node(cachep, node, n)
2162 if (n->alien)
2163 drain_alien_cache(cachep, n->alien);
2164
2165 for_each_kmem_cache_node(cachep, node, n) {
2166 spin_lock_irq(&n->list_lock);
2167 drain_array_locked(cachep, n->shared, node, true, &list);
2168 spin_unlock_irq(&n->list_lock);
2169
2170 slabs_destroy(cachep, &list);
2171 }
2172 }
2173
2174 /*
2175 * Remove slabs from the list of free slabs.
2176 * Specify the number of slabs to drain in tofree.
2177 *
2178 * Returns the actual number of slabs released.
2179 */
2180 static int drain_freelist(struct kmem_cache *cache,
2181 struct kmem_cache_node *n, int tofree)
2182 {
2183 struct list_head *p;
2184 int nr_freed;
2185 struct slab *slab;
2186
2187 nr_freed = 0;
2188 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2189
2190 spin_lock_irq(&n->list_lock);
2191 p = n->slabs_free.prev;
2192 if (p == &n->slabs_free) {
2193 spin_unlock_irq(&n->list_lock);
2194 goto out;
2195 }
2196
2197 slab = list_entry(p, struct slab, slab_list);
2198 list_del(&slab->slab_list);
2199 n->free_slabs--;
2200 n->total_slabs--;
2201 /*
2202 * Safe to drop the lock. The slab is no longer linked
2203 * to the cache.
2204 */
2205 n->free_objects -= cache->num;
2206 spin_unlock_irq(&n->list_lock);
2207 slab_destroy(cache, slab);
2208 nr_freed++;
2209 }
2210 out:
2211 return nr_freed;
2212 }
2213
2214 bool __kmem_cache_empty(struct kmem_cache *s)
2215 {
2216 int node;
2217 struct kmem_cache_node *n;
2218
2219 for_each_kmem_cache_node(s, node, n)
2220 if (!list_empty(&n->slabs_full) ||
2221 !list_empty(&n->slabs_partial))
2222 return false;
2223 return true;
2224 }
2225
2226 int __kmem_cache_shrink(struct kmem_cache *cachep)
2227 {
2228 int ret = 0;
2229 int node;
2230 struct kmem_cache_node *n;
2231
2232 drain_cpu_caches(cachep);
2233
2234 check_irq_on();
2235 for_each_kmem_cache_node(cachep, node, n) {
2236 drain_freelist(cachep, n, INT_MAX);
2237
2238 ret += !list_empty(&n->slabs_full) ||
2239 !list_empty(&n->slabs_partial);
2240 }
2241 return (ret ? 1 : 0);
2242 }
2243
2244 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2245 {
2246 return __kmem_cache_shrink(cachep);
2247 }
2248
2249 void __kmem_cache_release(struct kmem_cache *cachep)
2250 {
2251 int i;
2252 struct kmem_cache_node *n;
2253
2254 cache_random_seq_destroy(cachep);
2255
2256 free_percpu(cachep->cpu_cache);
2257
2258 /* NUMA: free the node structures */
2259 for_each_kmem_cache_node(cachep, i, n) {
2260 kfree(n->shared);
2261 free_alien_cache(n->alien);
2262 kfree(n);
2263 cachep->node[i] = NULL;
2264 }
2265 }
2266
2267 /*
2268 * Get the memory for a slab management obj.
2269 *
2270 * For a slab cache when the slab descriptor is off-slab, the
2271 * slab descriptor can't come from the same cache which is being created,
2272 * Because if it is the case, that means we defer the creation of
2273 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2274 * And we eventually call down to __kmem_cache_create(), which
2275 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
2276 * This is a "chicken-and-egg" problem.
2277 *
2278 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2279 * which are all initialized during kmem_cache_init().
2280 */
2281 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2282 struct slab *slab, int colour_off,
2283 gfp_t local_flags, int nodeid)
2284 {
2285 void *freelist;
2286 void *addr = slab_address(slab);
2287
2288 slab->s_mem = addr + colour_off;
2289 slab->active = 0;
2290
2291 if (OBJFREELIST_SLAB(cachep))
2292 freelist = NULL;
2293 else if (OFF_SLAB(cachep)) {
2294 /* Slab management obj is off-slab. */
2295 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2296 local_flags, nodeid);
2297 } else {
2298 /* We will use last bytes at the slab for freelist */
2299 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2300 cachep->freelist_size;
2301 }
2302
2303 return freelist;
2304 }
2305
2306 static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx)
2307 {
2308 return ((freelist_idx_t *) slab->freelist)[idx];
2309 }
2310
2311 static inline void set_free_obj(struct slab *slab,
2312 unsigned int idx, freelist_idx_t val)
2313 {
2314 ((freelist_idx_t *)(slab->freelist))[idx] = val;
2315 }
2316
2317 static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab)
2318 {
2319 #if DEBUG
2320 int i;
2321
2322 for (i = 0; i < cachep->num; i++) {
2323 void *objp = index_to_obj(cachep, slab, i);
2324
2325 if (cachep->flags & SLAB_STORE_USER)
2326 *dbg_userword(cachep, objp) = NULL;
2327
2328 if (cachep->flags & SLAB_RED_ZONE) {
2329 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2330 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2331 }
2332 /*
2333 * Constructors are not allowed to allocate memory from the same
2334 * cache which they are a constructor for. Otherwise, deadlock.
2335 * They must also be threaded.
2336 */
2337 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2338 kasan_unpoison_object_data(cachep,
2339 objp + obj_offset(cachep));
2340 cachep->ctor(objp + obj_offset(cachep));
2341 kasan_poison_object_data(
2342 cachep, objp + obj_offset(cachep));
2343 }
2344
2345 if (cachep->flags & SLAB_RED_ZONE) {
2346 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2347 slab_error(cachep, "constructor overwrote the end of an object");
2348 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2349 slab_error(cachep, "constructor overwrote the start of an object");
2350 }
2351 /* need to poison the objs? */
2352 if (cachep->flags & SLAB_POISON) {
2353 poison_obj(cachep, objp, POISON_FREE);
2354 slab_kernel_map(cachep, objp, 0);
2355 }
2356 }
2357 #endif
2358 }
2359
2360 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2361 /* Hold information during a freelist initialization */
2362 union freelist_init_state {
2363 struct {
2364 unsigned int pos;
2365 unsigned int *list;
2366 unsigned int count;
2367 };
2368 struct rnd_state rnd_state;
2369 };
2370
2371 /*
2372 * Initialize the state based on the randomization method available.
2373 * return true if the pre-computed list is available, false otherwise.
2374 */
2375 static bool freelist_state_initialize(union freelist_init_state *state,
2376 struct kmem_cache *cachep,
2377 unsigned int count)
2378 {
2379 bool ret;
2380 unsigned int rand;
2381
2382 /* Use best entropy available to define a random shift */
2383 rand = get_random_int();
2384
2385 /* Use a random state if the pre-computed list is not available */
2386 if (!cachep->random_seq) {
2387 prandom_seed_state(&state->rnd_state, rand);
2388 ret = false;
2389 } else {
2390 state->list = cachep->random_seq;
2391 state->count = count;
2392 state->pos = rand % count;
2393 ret = true;
2394 }
2395 return ret;
2396 }
2397
2398 /* Get the next entry on the list and randomize it using a random shift */
2399 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2400 {
2401 if (state->pos >= state->count)
2402 state->pos = 0;
2403 return state->list[state->pos++];
2404 }
2405
2406 /* Swap two freelist entries */
2407 static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b)
2408 {
2409 swap(((freelist_idx_t *) slab->freelist)[a],
2410 ((freelist_idx_t *) slab->freelist)[b]);
2411 }
2412
2413 /*
2414 * Shuffle the freelist initialization state based on pre-computed lists.
2415 * return true if the list was successfully shuffled, false otherwise.
2416 */
2417 static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab)
2418 {
2419 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2420 union freelist_init_state state;
2421 bool precomputed;
2422
2423 if (count < 2)
2424 return false;
2425
2426 precomputed = freelist_state_initialize(&state, cachep, count);
2427
2428 /* Take a random entry as the objfreelist */
2429 if (OBJFREELIST_SLAB(cachep)) {
2430 if (!precomputed)
2431 objfreelist = count - 1;
2432 else
2433 objfreelist = next_random_slot(&state);
2434 slab->freelist = index_to_obj(cachep, slab, objfreelist) +
2435 obj_offset(cachep);
2436 count--;
2437 }
2438
2439 /*
2440 * On early boot, generate the list dynamically.
2441 * Later use a pre-computed list for speed.
2442 */
2443 if (!precomputed) {
2444 for (i = 0; i < count; i++)
2445 set_free_obj(slab, i, i);
2446
2447 /* Fisher-Yates shuffle */
2448 for (i = count - 1; i > 0; i--) {
2449 rand = prandom_u32_state(&state.rnd_state);
2450 rand %= (i + 1);
2451 swap_free_obj(slab, i, rand);
2452 }
2453 } else {
2454 for (i = 0; i < count; i++)
2455 set_free_obj(slab, i, next_random_slot(&state));
2456 }
2457
2458 if (OBJFREELIST_SLAB(cachep))
2459 set_free_obj(slab, cachep->num - 1, objfreelist);
2460
2461 return true;
2462 }
2463 #else
2464 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2465 struct slab *slab)
2466 {
2467 return false;
2468 }
2469 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2470
2471 static void cache_init_objs(struct kmem_cache *cachep,
2472 struct slab *slab)
2473 {
2474 int i;
2475 void *objp;
2476 bool shuffled;
2477
2478 cache_init_objs_debug(cachep, slab);
2479
2480 /* Try to randomize the freelist if enabled */
2481 shuffled = shuffle_freelist(cachep, slab);
2482
2483 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2484 slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) +
2485 obj_offset(cachep);
2486 }
2487
2488 for (i = 0; i < cachep->num; i++) {
2489 objp = index_to_obj(cachep, slab, i);
2490 objp = kasan_init_slab_obj(cachep, objp);
2491
2492 /* constructor could break poison info */
2493 if (DEBUG == 0 && cachep->ctor) {
2494 kasan_unpoison_object_data(cachep, objp);
2495 cachep->ctor(objp);
2496 kasan_poison_object_data(cachep, objp);
2497 }
2498
2499 if (!shuffled)
2500 set_free_obj(slab, i, i);
2501 }
2502 }
2503
2504 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab)
2505 {
2506 void *objp;
2507
2508 objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active));
2509 slab->active++;
2510
2511 return objp;
2512 }
2513
2514 static void slab_put_obj(struct kmem_cache *cachep,
2515 struct slab *slab, void *objp)
2516 {
2517 unsigned int objnr = obj_to_index(cachep, slab, objp);
2518 #if DEBUG
2519 unsigned int i;
2520
2521 /* Verify double free bug */
2522 for (i = slab->active; i < cachep->num; i++) {
2523 if (get_free_obj(slab, i) == objnr) {
2524 pr_err("slab: double free detected in cache '%s', objp %px\n",
2525 cachep->name, objp);
2526 BUG();
2527 }
2528 }
2529 #endif
2530 slab->active--;
2531 if (!slab->freelist)
2532 slab->freelist = objp + obj_offset(cachep);
2533
2534 set_free_obj(slab, slab->active, objnr);
2535 }
2536
2537 /*
2538 * Grow (by 1) the number of slabs within a cache. This is called by
2539 * kmem_cache_alloc() when there are no active objs left in a cache.
2540 */
2541 static struct slab *cache_grow_begin(struct kmem_cache *cachep,
2542 gfp_t flags, int nodeid)
2543 {
2544 void *freelist;
2545 size_t offset;
2546 gfp_t local_flags;
2547 int slab_node;
2548 struct kmem_cache_node *n;
2549 struct slab *slab;
2550
2551 /*
2552 * Be lazy and only check for valid flags here, keeping it out of the
2553 * critical path in kmem_cache_alloc().
2554 */
2555 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2556 flags = kmalloc_fix_flags(flags);
2557
2558 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2559 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2560
2561 check_irq_off();
2562 if (gfpflags_allow_blocking(local_flags))
2563 local_irq_enable();
2564
2565 /*
2566 * Get mem for the objs. Attempt to allocate a physical page from
2567 * 'nodeid'.
2568 */
2569 slab = kmem_getpages(cachep, local_flags, nodeid);
2570 if (!slab)
2571 goto failed;
2572
2573 slab_node = slab_nid(slab);
2574 n = get_node(cachep, slab_node);
2575
2576 /* Get colour for the slab, and cal the next value. */
2577 n->colour_next++;
2578 if (n->colour_next >= cachep->colour)
2579 n->colour_next = 0;
2580
2581 offset = n->colour_next;
2582 if (offset >= cachep->colour)
2583 offset = 0;
2584
2585 offset *= cachep->colour_off;
2586
2587 /*
2588 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2589 * page_address() in the latter returns a non-tagged pointer,
2590 * as it should be for slab pages.
2591 */
2592 kasan_poison_slab(slab);
2593
2594 /* Get slab management. */
2595 freelist = alloc_slabmgmt(cachep, slab, offset,
2596 local_flags & ~GFP_CONSTRAINT_MASK, slab_node);
2597 if (OFF_SLAB(cachep) && !freelist)
2598 goto opps1;
2599
2600 slab->slab_cache = cachep;
2601 slab->freelist = freelist;
2602
2603 cache_init_objs(cachep, slab);
2604
2605 if (gfpflags_allow_blocking(local_flags))
2606 local_irq_disable();
2607
2608 return slab;
2609
2610 opps1:
2611 kmem_freepages(cachep, slab);
2612 failed:
2613 if (gfpflags_allow_blocking(local_flags))
2614 local_irq_disable();
2615 return NULL;
2616 }
2617
2618 static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab)
2619 {
2620 struct kmem_cache_node *n;
2621 void *list = NULL;
2622
2623 check_irq_off();
2624
2625 if (!slab)
2626 return;
2627
2628 INIT_LIST_HEAD(&slab->slab_list);
2629 n = get_node(cachep, slab_nid(slab));
2630
2631 spin_lock(&n->list_lock);
2632 n->total_slabs++;
2633 if (!slab->active) {
2634 list_add_tail(&slab->slab_list, &n->slabs_free);
2635 n->free_slabs++;
2636 } else
2637 fixup_slab_list(cachep, n, slab, &list);
2638
2639 STATS_INC_GROWN(cachep);
2640 n->free_objects += cachep->num - slab->active;
2641 spin_unlock(&n->list_lock);
2642
2643 fixup_objfreelist_debug(cachep, &list);
2644 }
2645
2646 #if DEBUG
2647
2648 /*
2649 * Perform extra freeing checks:
2650 * - detect bad pointers.
2651 * - POISON/RED_ZONE checking
2652 */
2653 static void kfree_debugcheck(const void *objp)
2654 {
2655 if (!virt_addr_valid(objp)) {
2656 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2657 (unsigned long)objp);
2658 BUG();
2659 }
2660 }
2661
2662 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2663 {
2664 unsigned long long redzone1, redzone2;
2665
2666 redzone1 = *dbg_redzone1(cache, obj);
2667 redzone2 = *dbg_redzone2(cache, obj);
2668
2669 /*
2670 * Redzone is ok.
2671 */
2672 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2673 return;
2674
2675 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2676 slab_error(cache, "double free detected");
2677 else
2678 slab_error(cache, "memory outside object was overwritten");
2679
2680 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2681 obj, redzone1, redzone2);
2682 }
2683
2684 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2685 unsigned long caller)
2686 {
2687 unsigned int objnr;
2688 struct slab *slab;
2689
2690 BUG_ON(virt_to_cache(objp) != cachep);
2691
2692 objp -= obj_offset(cachep);
2693 kfree_debugcheck(objp);
2694 slab = virt_to_slab(objp);
2695
2696 if (cachep->flags & SLAB_RED_ZONE) {
2697 verify_redzone_free(cachep, objp);
2698 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2699 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2700 }
2701 if (cachep->flags & SLAB_STORE_USER)
2702 *dbg_userword(cachep, objp) = (void *)caller;
2703
2704 objnr = obj_to_index(cachep, slab, objp);
2705
2706 BUG_ON(objnr >= cachep->num);
2707 BUG_ON(objp != index_to_obj(cachep, slab, objnr));
2708
2709 if (cachep->flags & SLAB_POISON) {
2710 poison_obj(cachep, objp, POISON_FREE);
2711 slab_kernel_map(cachep, objp, 0);
2712 }
2713 return objp;
2714 }
2715
2716 #else
2717 #define kfree_debugcheck(x) do { } while(0)
2718 #define cache_free_debugcheck(x, objp, z) (objp)
2719 #endif
2720
2721 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2722 void **list)
2723 {
2724 #if DEBUG
2725 void *next = *list;
2726 void *objp;
2727
2728 while (next) {
2729 objp = next - obj_offset(cachep);
2730 next = *(void **)next;
2731 poison_obj(cachep, objp, POISON_FREE);
2732 }
2733 #endif
2734 }
2735
2736 static inline void fixup_slab_list(struct kmem_cache *cachep,
2737 struct kmem_cache_node *n, struct slab *slab,
2738 void **list)
2739 {
2740 /* move slabp to correct slabp list: */
2741 list_del(&slab->slab_list);
2742 if (slab->active == cachep->num) {
2743 list_add(&slab->slab_list, &n->slabs_full);
2744 if (OBJFREELIST_SLAB(cachep)) {
2745 #if DEBUG
2746 /* Poisoning will be done without holding the lock */
2747 if (cachep->flags & SLAB_POISON) {
2748 void **objp = slab->freelist;
2749
2750 *objp = *list;
2751 *list = objp;
2752 }
2753 #endif
2754 slab->freelist = NULL;
2755 }
2756 } else
2757 list_add(&slab->slab_list, &n->slabs_partial);
2758 }
2759
2760 /* Try to find non-pfmemalloc slab if needed */
2761 static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n,
2762 struct slab *slab, bool pfmemalloc)
2763 {
2764 if (!slab)
2765 return NULL;
2766
2767 if (pfmemalloc)
2768 return slab;
2769
2770 if (!slab_test_pfmemalloc(slab))
2771 return slab;
2772
2773 /* No need to keep pfmemalloc slab if we have enough free objects */
2774 if (n->free_objects > n->free_limit) {
2775 slab_clear_pfmemalloc(slab);
2776 return slab;
2777 }
2778
2779 /* Move pfmemalloc slab to the end of list to speed up next search */
2780 list_del(&slab->slab_list);
2781 if (!slab->active) {
2782 list_add_tail(&slab->slab_list, &n->slabs_free);
2783 n->free_slabs++;
2784 } else
2785 list_add_tail(&slab->slab_list, &n->slabs_partial);
2786
2787 list_for_each_entry(slab, &n->slabs_partial, slab_list) {
2788 if (!slab_test_pfmemalloc(slab))
2789 return slab;
2790 }
2791
2792 n->free_touched = 1;
2793 list_for_each_entry(slab, &n->slabs_free, slab_list) {
2794 if (!slab_test_pfmemalloc(slab)) {
2795 n->free_slabs--;
2796 return slab;
2797 }
2798 }
2799
2800 return NULL;
2801 }
2802
2803 static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2804 {
2805 struct slab *slab;
2806
2807 assert_spin_locked(&n->list_lock);
2808 slab = list_first_entry_or_null(&n->slabs_partial, struct slab,
2809 slab_list);
2810 if (!slab) {
2811 n->free_touched = 1;
2812 slab = list_first_entry_or_null(&n->slabs_free, struct slab,
2813 slab_list);
2814 if (slab)
2815 n->free_slabs--;
2816 }
2817
2818 if (sk_memalloc_socks())
2819 slab = get_valid_first_slab(n, slab, pfmemalloc);
2820
2821 return slab;
2822 }
2823
2824 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2825 struct kmem_cache_node *n, gfp_t flags)
2826 {
2827 struct slab *slab;
2828 void *obj;
2829 void *list = NULL;
2830
2831 if (!gfp_pfmemalloc_allowed(flags))
2832 return NULL;
2833
2834 spin_lock(&n->list_lock);
2835 slab = get_first_slab(n, true);
2836 if (!slab) {
2837 spin_unlock(&n->list_lock);
2838 return NULL;
2839 }
2840
2841 obj = slab_get_obj(cachep, slab);
2842 n->free_objects--;
2843
2844 fixup_slab_list(cachep, n, slab, &list);
2845
2846 spin_unlock(&n->list_lock);
2847 fixup_objfreelist_debug(cachep, &list);
2848
2849 return obj;
2850 }
2851
2852 /*
2853 * Slab list should be fixed up by fixup_slab_list() for existing slab
2854 * or cache_grow_end() for new slab
2855 */
2856 static __always_inline int alloc_block(struct kmem_cache *cachep,
2857 struct array_cache *ac, struct slab *slab, int batchcount)
2858 {
2859 /*
2860 * There must be at least one object available for
2861 * allocation.
2862 */
2863 BUG_ON(slab->active >= cachep->num);
2864
2865 while (slab->active < cachep->num && batchcount--) {
2866 STATS_INC_ALLOCED(cachep);
2867 STATS_INC_ACTIVE(cachep);
2868 STATS_SET_HIGH(cachep);
2869
2870 ac->entry[ac->avail++] = slab_get_obj(cachep, slab);
2871 }
2872
2873 return batchcount;
2874 }
2875
2876 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2877 {
2878 int batchcount;
2879 struct kmem_cache_node *n;
2880 struct array_cache *ac, *shared;
2881 int node;
2882 void *list = NULL;
2883 struct slab *slab;
2884
2885 check_irq_off();
2886 node = numa_mem_id();
2887
2888 ac = cpu_cache_get(cachep);
2889 batchcount = ac->batchcount;
2890 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2891 /*
2892 * If there was little recent activity on this cache, then
2893 * perform only a partial refill. Otherwise we could generate
2894 * refill bouncing.
2895 */
2896 batchcount = BATCHREFILL_LIMIT;
2897 }
2898 n = get_node(cachep, node);
2899
2900 BUG_ON(ac->avail > 0 || !n);
2901 shared = READ_ONCE(n->shared);
2902 if (!n->free_objects && (!shared || !shared->avail))
2903 goto direct_grow;
2904
2905 spin_lock(&n->list_lock);
2906 shared = READ_ONCE(n->shared);
2907
2908 /* See if we can refill from the shared array */
2909 if (shared && transfer_objects(ac, shared, batchcount)) {
2910 shared->touched = 1;
2911 goto alloc_done;
2912 }
2913
2914 while (batchcount > 0) {
2915 /* Get slab alloc is to come from. */
2916 slab = get_first_slab(n, false);
2917 if (!slab)
2918 goto must_grow;
2919
2920 check_spinlock_acquired(cachep);
2921
2922 batchcount = alloc_block(cachep, ac, slab, batchcount);
2923 fixup_slab_list(cachep, n, slab, &list);
2924 }
2925
2926 must_grow:
2927 n->free_objects -= ac->avail;
2928 alloc_done:
2929 spin_unlock(&n->list_lock);
2930 fixup_objfreelist_debug(cachep, &list);
2931
2932 direct_grow:
2933 if (unlikely(!ac->avail)) {
2934 /* Check if we can use obj in pfmemalloc slab */
2935 if (sk_memalloc_socks()) {
2936 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2937
2938 if (obj)
2939 return obj;
2940 }
2941
2942 slab = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2943
2944 /*
2945 * cache_grow_begin() can reenable interrupts,
2946 * then ac could change.
2947 */
2948 ac = cpu_cache_get(cachep);
2949 if (!ac->avail && slab)
2950 alloc_block(cachep, ac, slab, batchcount);
2951 cache_grow_end(cachep, slab);
2952
2953 if (!ac->avail)
2954 return NULL;
2955 }
2956 ac->touched = 1;
2957
2958 return ac->entry[--ac->avail];
2959 }
2960
2961 #if DEBUG
2962 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2963 gfp_t flags, void *objp, unsigned long caller)
2964 {
2965 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2966 if (!objp || is_kfence_address(objp))
2967 return objp;
2968 if (cachep->flags & SLAB_POISON) {
2969 check_poison_obj(cachep, objp);
2970 slab_kernel_map(cachep, objp, 1);
2971 poison_obj(cachep, objp, POISON_INUSE);
2972 }
2973 if (cachep->flags & SLAB_STORE_USER)
2974 *dbg_userword(cachep, objp) = (void *)caller;
2975
2976 if (cachep->flags & SLAB_RED_ZONE) {
2977 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2978 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2979 slab_error(cachep, "double free, or memory outside object was overwritten");
2980 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2981 objp, *dbg_redzone1(cachep, objp),
2982 *dbg_redzone2(cachep, objp));
2983 }
2984 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2985 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2986 }
2987
2988 objp += obj_offset(cachep);
2989 if (cachep->ctor && cachep->flags & SLAB_POISON)
2990 cachep->ctor(objp);
2991 if ((unsigned long)objp & (arch_slab_minalign() - 1)) {
2992 pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp,
2993 arch_slab_minalign());
2994 }
2995 return objp;
2996 }
2997 #else
2998 #define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
2999 #endif
3000
3001 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3002 {
3003 void *objp;
3004 struct array_cache *ac;
3005
3006 check_irq_off();
3007
3008 ac = cpu_cache_get(cachep);
3009 if (likely(ac->avail)) {
3010 ac->touched = 1;
3011 objp = ac->entry[--ac->avail];
3012
3013 STATS_INC_ALLOCHIT(cachep);
3014 goto out;
3015 }
3016
3017 STATS_INC_ALLOCMISS(cachep);
3018 objp = cache_alloc_refill(cachep, flags);
3019 /*
3020 * the 'ac' may be updated by cache_alloc_refill(),
3021 * and kmemleak_erase() requires its correct value.
3022 */
3023 ac = cpu_cache_get(cachep);
3024
3025 out:
3026 /*
3027 * To avoid a false negative, if an object that is in one of the
3028 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3029 * treat the array pointers as a reference to the object.
3030 */
3031 if (objp)
3032 kmemleak_erase(&ac->entry[ac->avail]);
3033 return objp;
3034 }
3035
3036 #ifdef CONFIG_NUMA
3037 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
3038
3039 /*
3040 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3041 *
3042 * If we are in_interrupt, then process context, including cpusets and
3043 * mempolicy, may not apply and should not be used for allocation policy.
3044 */
3045 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3046 {
3047 int nid_alloc, nid_here;
3048
3049 if (in_interrupt() || (flags & __GFP_THISNODE))
3050 return NULL;
3051 nid_alloc = nid_here = numa_mem_id();
3052 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3053 nid_alloc = cpuset_slab_spread_node();
3054 else if (current->mempolicy)
3055 nid_alloc = mempolicy_slab_node();
3056 if (nid_alloc != nid_here)
3057 return ____cache_alloc_node(cachep, flags, nid_alloc);
3058 return NULL;
3059 }
3060
3061 /*
3062 * Fallback function if there was no memory available and no objects on a
3063 * certain node and fall back is permitted. First we scan all the
3064 * available node for available objects. If that fails then we
3065 * perform an allocation without specifying a node. This allows the page
3066 * allocator to do its reclaim / fallback magic. We then insert the
3067 * slab into the proper nodelist and then allocate from it.
3068 */
3069 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3070 {
3071 struct zonelist *zonelist;
3072 struct zoneref *z;
3073 struct zone *zone;
3074 enum zone_type highest_zoneidx = gfp_zone(flags);
3075 void *obj = NULL;
3076 struct slab *slab;
3077 int nid;
3078 unsigned int cpuset_mems_cookie;
3079
3080 if (flags & __GFP_THISNODE)
3081 return NULL;
3082
3083 retry_cpuset:
3084 cpuset_mems_cookie = read_mems_allowed_begin();
3085 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3086
3087 retry:
3088 /*
3089 * Look through allowed nodes for objects available
3090 * from existing per node queues.
3091 */
3092 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3093 nid = zone_to_nid(zone);
3094
3095 if (cpuset_zone_allowed(zone, flags) &&
3096 get_node(cache, nid) &&
3097 get_node(cache, nid)->free_objects) {
3098 obj = ____cache_alloc_node(cache,
3099 gfp_exact_node(flags), nid);
3100 if (obj)
3101 break;
3102 }
3103 }
3104
3105 if (!obj) {
3106 /*
3107 * This allocation will be performed within the constraints
3108 * of the current cpuset / memory policy requirements.
3109 * We may trigger various forms of reclaim on the allowed
3110 * set and go into memory reserves if necessary.
3111 */
3112 slab = cache_grow_begin(cache, flags, numa_mem_id());
3113 cache_grow_end(cache, slab);
3114 if (slab) {
3115 nid = slab_nid(slab);
3116 obj = ____cache_alloc_node(cache,
3117 gfp_exact_node(flags), nid);
3118
3119 /*
3120 * Another processor may allocate the objects in
3121 * the slab since we are not holding any locks.
3122 */
3123 if (!obj)
3124 goto retry;
3125 }
3126 }
3127
3128 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3129 goto retry_cpuset;
3130 return obj;
3131 }
3132
3133 /*
3134 * An interface to enable slab creation on nodeid
3135 */
3136 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3137 int nodeid)
3138 {
3139 struct slab *slab;
3140 struct kmem_cache_node *n;
3141 void *obj = NULL;
3142 void *list = NULL;
3143
3144 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3145 n = get_node(cachep, nodeid);
3146 BUG_ON(!n);
3147
3148 check_irq_off();
3149 spin_lock(&n->list_lock);
3150 slab = get_first_slab(n, false);
3151 if (!slab)
3152 goto must_grow;
3153
3154 check_spinlock_acquired_node(cachep, nodeid);
3155
3156 STATS_INC_NODEALLOCS(cachep);
3157 STATS_INC_ACTIVE(cachep);
3158 STATS_SET_HIGH(cachep);
3159
3160 BUG_ON(slab->active == cachep->num);
3161
3162 obj = slab_get_obj(cachep, slab);
3163 n->free_objects--;
3164
3165 fixup_slab_list(cachep, n, slab, &list);
3166
3167 spin_unlock(&n->list_lock);
3168 fixup_objfreelist_debug(cachep, &list);
3169 return obj;
3170
3171 must_grow:
3172 spin_unlock(&n->list_lock);
3173 slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3174 if (slab) {
3175 /* This slab isn't counted yet so don't update free_objects */
3176 obj = slab_get_obj(cachep, slab);
3177 }
3178 cache_grow_end(cachep, slab);
3179
3180 return obj ? obj : fallback_alloc(cachep, flags);
3181 }
3182
3183 static __always_inline void *
3184 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size,
3185 unsigned long caller)
3186 {
3187 unsigned long save_flags;
3188 void *ptr;
3189 int slab_node = numa_mem_id();
3190 struct obj_cgroup *objcg = NULL;
3191 bool init = false;
3192
3193 flags &= gfp_allowed_mask;
3194 cachep = slab_pre_alloc_hook(cachep, NULL, &objcg, 1, flags);
3195 if (unlikely(!cachep))
3196 return NULL;
3197
3198 ptr = kfence_alloc(cachep, orig_size, flags);
3199 if (unlikely(ptr))
3200 goto out_hooks;
3201
3202 local_irq_save(save_flags);
3203
3204 if (nodeid == NUMA_NO_NODE)
3205 nodeid = slab_node;
3206
3207 if (unlikely(!get_node(cachep, nodeid))) {
3208 /* Node not bootstrapped yet */
3209 ptr = fallback_alloc(cachep, flags);
3210 goto out;
3211 }
3212
3213 if (nodeid == slab_node) {
3214 /*
3215 * Use the locally cached objects if possible.
3216 * However ____cache_alloc does not allow fallback
3217 * to other nodes. It may fail while we still have
3218 * objects on other nodes available.
3219 */
3220 ptr = ____cache_alloc(cachep, flags);
3221 if (ptr)
3222 goto out;
3223 }
3224 /* ___cache_alloc_node can fall back to other nodes */
3225 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3226 out:
3227 local_irq_restore(save_flags);
3228 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3229 init = slab_want_init_on_alloc(flags, cachep);
3230
3231 out_hooks:
3232 slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr, init);
3233 return ptr;
3234 }
3235
3236 static __always_inline void *
3237 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3238 {
3239 void *objp;
3240
3241 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3242 objp = alternate_node_alloc(cache, flags);
3243 if (objp)
3244 goto out;
3245 }
3246 objp = ____cache_alloc(cache, flags);
3247
3248 /*
3249 * We may just have run out of memory on the local node.
3250 * ____cache_alloc_node() knows how to locate memory on other nodes
3251 */
3252 if (!objp)
3253 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3254
3255 out:
3256 return objp;
3257 }
3258 #else
3259
3260 static __always_inline void *
3261 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3262 {
3263 return ____cache_alloc(cachep, flags);
3264 }
3265
3266 #endif /* CONFIG_NUMA */
3267
3268 static __always_inline void *
3269 slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
3270 size_t orig_size, unsigned long caller)
3271 {
3272 unsigned long save_flags;
3273 void *objp;
3274 struct obj_cgroup *objcg = NULL;
3275 bool init = false;
3276
3277 flags &= gfp_allowed_mask;
3278 cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags);
3279 if (unlikely(!cachep))
3280 return NULL;
3281
3282 objp = kfence_alloc(cachep, orig_size, flags);
3283 if (unlikely(objp))
3284 goto out;
3285
3286 local_irq_save(save_flags);
3287 objp = __do_cache_alloc(cachep, flags);
3288 local_irq_restore(save_flags);
3289 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3290 prefetchw(objp);
3291 init = slab_want_init_on_alloc(flags, cachep);
3292
3293 out:
3294 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init);
3295 return objp;
3296 }
3297
3298 /*
3299 * Caller needs to acquire correct kmem_cache_node's list_lock
3300 * @list: List of detached free slabs should be freed by caller
3301 */
3302 static void free_block(struct kmem_cache *cachep, void **objpp,
3303 int nr_objects, int node, struct list_head *list)
3304 {
3305 int i;
3306 struct kmem_cache_node *n = get_node(cachep, node);
3307 struct slab *slab;
3308
3309 n->free_objects += nr_objects;
3310
3311 for (i = 0; i < nr_objects; i++) {
3312 void *objp;
3313 struct slab *slab;
3314
3315 objp = objpp[i];
3316
3317 slab = virt_to_slab(objp);
3318 list_del(&slab->slab_list);
3319 check_spinlock_acquired_node(cachep, node);
3320 slab_put_obj(cachep, slab, objp);
3321 STATS_DEC_ACTIVE(cachep);
3322
3323 /* fixup slab chains */
3324 if (slab->active == 0) {
3325 list_add(&slab->slab_list, &n->slabs_free);
3326 n->free_slabs++;
3327 } else {
3328 /* Unconditionally move a slab to the end of the
3329 * partial list on free - maximum time for the
3330 * other objects to be freed, too.
3331 */
3332 list_add_tail(&slab->slab_list, &n->slabs_partial);
3333 }
3334 }
3335
3336 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3337 n->free_objects -= cachep->num;
3338
3339 slab = list_last_entry(&n->slabs_free, struct slab, slab_list);
3340 list_move(&slab->slab_list, list);
3341 n->free_slabs--;
3342 n->total_slabs--;
3343 }
3344 }
3345
3346 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3347 {
3348 int batchcount;
3349 struct kmem_cache_node *n;
3350 int node = numa_mem_id();
3351 LIST_HEAD(list);
3352
3353 batchcount = ac->batchcount;
3354
3355 check_irq_off();
3356 n = get_node(cachep, node);
3357 spin_lock(&n->list_lock);
3358 if (n->shared) {
3359 struct array_cache *shared_array = n->shared;
3360 int max = shared_array->limit - shared_array->avail;
3361 if (max) {
3362 if (batchcount > max)
3363 batchcount = max;
3364 memcpy(&(shared_array->entry[shared_array->avail]),
3365 ac->entry, sizeof(void *) * batchcount);
3366 shared_array->avail += batchcount;
3367 goto free_done;
3368 }
3369 }
3370
3371 free_block(cachep, ac->entry, batchcount, node, &list);
3372 free_done:
3373 #if STATS
3374 {
3375 int i = 0;
3376 struct slab *slab;
3377
3378 list_for_each_entry(slab, &n->slabs_free, slab_list) {
3379 BUG_ON(slab->active);
3380
3381 i++;
3382 }
3383 STATS_SET_FREEABLE(cachep, i);
3384 }
3385 #endif
3386 spin_unlock(&n->list_lock);
3387 ac->avail -= batchcount;
3388 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3389 slabs_destroy(cachep, &list);
3390 }
3391
3392 /*
3393 * Release an obj back to its cache. If the obj has a constructed state, it must
3394 * be in this state _before_ it is released. Called with disabled ints.
3395 */
3396 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3397 unsigned long caller)
3398 {
3399 bool init;
3400
3401 memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1);
3402
3403 if (is_kfence_address(objp)) {
3404 kmemleak_free_recursive(objp, cachep->flags);
3405 __kfence_free(objp);
3406 return;
3407 }
3408
3409 /*
3410 * As memory initialization might be integrated into KASAN,
3411 * kasan_slab_free and initialization memset must be
3412 * kept together to avoid discrepancies in behavior.
3413 */
3414 init = slab_want_init_on_free(cachep);
3415 if (init && !kasan_has_integrated_init())
3416 memset(objp, 0, cachep->object_size);
3417 /* KASAN might put objp into memory quarantine, delaying its reuse. */
3418 if (kasan_slab_free(cachep, objp, init))
3419 return;
3420
3421 /* Use KCSAN to help debug racy use-after-free. */
3422 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3423 __kcsan_check_access(objp, cachep->object_size,
3424 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3425
3426 ___cache_free(cachep, objp, caller);
3427 }
3428
3429 void ___cache_free(struct kmem_cache *cachep, void *objp,
3430 unsigned long caller)
3431 {
3432 struct array_cache *ac = cpu_cache_get(cachep);
3433
3434 check_irq_off();
3435 kmemleak_free_recursive(objp, cachep->flags);
3436 objp = cache_free_debugcheck(cachep, objp, caller);
3437
3438 /*
3439 * Skip calling cache_free_alien() when the platform is not numa.
3440 * This will avoid cache misses that happen while accessing slabp (which
3441 * is per page memory reference) to get nodeid. Instead use a global
3442 * variable to skip the call, which is mostly likely to be present in
3443 * the cache.
3444 */
3445 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3446 return;
3447
3448 if (ac->avail < ac->limit) {
3449 STATS_INC_FREEHIT(cachep);
3450 } else {
3451 STATS_INC_FREEMISS(cachep);
3452 cache_flusharray(cachep, ac);
3453 }
3454
3455 if (sk_memalloc_socks()) {
3456 struct slab *slab = virt_to_slab(objp);
3457
3458 if (unlikely(slab_test_pfmemalloc(slab))) {
3459 cache_free_pfmemalloc(cachep, slab, objp);
3460 return;
3461 }
3462 }
3463
3464 __free_one(ac, objp);
3465 }
3466
3467 static __always_inline
3468 void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3469 gfp_t flags)
3470 {
3471 void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_);
3472
3473 trace_kmem_cache_alloc(_RET_IP_, ret, cachep,
3474 cachep->object_size, cachep->size, flags);
3475
3476 return ret;
3477 }
3478
3479 /**
3480 * kmem_cache_alloc - Allocate an object
3481 * @cachep: The cache to allocate from.
3482 * @flags: See kmalloc().
3483 *
3484 * Allocate an object from this cache. The flags are only relevant
3485 * if the cache has no available objects.
3486 *
3487 * Return: pointer to the new object or %NULL in case of error
3488 */
3489 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3490 {
3491 return __kmem_cache_alloc_lru(cachep, NULL, flags);
3492 }
3493 EXPORT_SYMBOL(kmem_cache_alloc);
3494
3495 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3496 gfp_t flags)
3497 {
3498 return __kmem_cache_alloc_lru(cachep, lru, flags);
3499 }
3500 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3501
3502 static __always_inline void
3503 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3504 size_t size, void **p, unsigned long caller)
3505 {
3506 size_t i;
3507
3508 for (i = 0; i < size; i++)
3509 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3510 }
3511
3512 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3513 void **p)
3514 {
3515 size_t i;
3516 struct obj_cgroup *objcg = NULL;
3517
3518 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3519 if (!s)
3520 return 0;
3521
3522 local_irq_disable();
3523 for (i = 0; i < size; i++) {
3524 void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags);
3525
3526 if (unlikely(!objp))
3527 goto error;
3528 p[i] = objp;
3529 }
3530 local_irq_enable();
3531
3532 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3533
3534 /*
3535 * memcg and kmem_cache debug support and memory initialization.
3536 * Done outside of the IRQ disabled section.
3537 */
3538 slab_post_alloc_hook(s, objcg, flags, size, p,
3539 slab_want_init_on_alloc(flags, s));
3540 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3541 return size;
3542 error:
3543 local_irq_enable();
3544 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3545 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3546 kmem_cache_free_bulk(s, i, p);
3547 return 0;
3548 }
3549 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3550
3551 #ifdef CONFIG_TRACING
3552 void *
3553 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3554 {
3555 void *ret;
3556
3557 ret = slab_alloc(cachep, NULL, flags, size, _RET_IP_);
3558
3559 ret = kasan_kmalloc(cachep, ret, size, flags);
3560 trace_kmalloc(_RET_IP_, ret, cachep,
3561 size, cachep->size, flags);
3562 return ret;
3563 }
3564 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3565 #endif
3566
3567 #ifdef CONFIG_NUMA
3568 /**
3569 * kmem_cache_alloc_node - Allocate an object on the specified node
3570 * @cachep: The cache to allocate from.
3571 * @flags: See kmalloc().
3572 * @nodeid: node number of the target node.
3573 *
3574 * Identical to kmem_cache_alloc but it will allocate memory on the given
3575 * node, which can improve the performance for cpu bound structures.
3576 *
3577 * Fallback to other node is possible if __GFP_THISNODE is not set.
3578 *
3579 * Return: pointer to the new object or %NULL in case of error
3580 */
3581 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3582 {
3583 void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_);
3584
3585 trace_kmem_cache_alloc_node(_RET_IP_, ret, cachep,
3586 cachep->object_size, cachep->size,
3587 flags, nodeid);
3588
3589 return ret;
3590 }
3591 EXPORT_SYMBOL(kmem_cache_alloc_node);
3592
3593 #ifdef CONFIG_TRACING
3594 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3595 gfp_t flags,
3596 int nodeid,
3597 size_t size)
3598 {
3599 void *ret;
3600
3601 ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_);
3602
3603 ret = kasan_kmalloc(cachep, ret, size, flags);
3604 trace_kmalloc_node(_RET_IP_, ret, cachep,
3605 size, cachep->size,
3606 flags, nodeid);
3607 return ret;
3608 }
3609 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3610 #endif
3611
3612 static __always_inline void *
3613 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3614 {
3615 struct kmem_cache *cachep;
3616 void *ret;
3617
3618 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3619 return NULL;
3620 cachep = kmalloc_slab(size, flags);
3621 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3622 return cachep;
3623 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3624 ret = kasan_kmalloc(cachep, ret, size, flags);
3625
3626 return ret;
3627 }
3628
3629 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3630 {
3631 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3632 }
3633 EXPORT_SYMBOL(__kmalloc_node);
3634
3635 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3636 int node, unsigned long caller)
3637 {
3638 return __do_kmalloc_node(size, flags, node, caller);
3639 }
3640 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3641 #endif /* CONFIG_NUMA */
3642
3643 #ifdef CONFIG_PRINTK
3644 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
3645 {
3646 struct kmem_cache *cachep;
3647 unsigned int objnr;
3648 void *objp;
3649
3650 kpp->kp_ptr = object;
3651 kpp->kp_slab = slab;
3652 cachep = slab->slab_cache;
3653 kpp->kp_slab_cache = cachep;
3654 objp = object - obj_offset(cachep);
3655 kpp->kp_data_offset = obj_offset(cachep);
3656 slab = virt_to_slab(objp);
3657 objnr = obj_to_index(cachep, slab, objp);
3658 objp = index_to_obj(cachep, slab, objnr);
3659 kpp->kp_objp = objp;
3660 if (DEBUG && cachep->flags & SLAB_STORE_USER)
3661 kpp->kp_ret = *dbg_userword(cachep, objp);
3662 }
3663 #endif
3664
3665 /**
3666 * __do_kmalloc - allocate memory
3667 * @size: how many bytes of memory are required.
3668 * @flags: the type of memory to allocate (see kmalloc).
3669 * @caller: function caller for debug tracking of the caller
3670 *
3671 * Return: pointer to the allocated memory or %NULL in case of error
3672 */
3673 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3674 unsigned long caller)
3675 {
3676 struct kmem_cache *cachep;
3677 void *ret;
3678
3679 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3680 return NULL;
3681 cachep = kmalloc_slab(size, flags);
3682 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3683 return cachep;
3684 ret = slab_alloc(cachep, NULL, flags, size, caller);
3685
3686 ret = kasan_kmalloc(cachep, ret, size, flags);
3687 trace_kmalloc(caller, ret, cachep,
3688 size, cachep->size, flags);
3689
3690 return ret;
3691 }
3692
3693 void *__kmalloc(size_t size, gfp_t flags)
3694 {
3695 return __do_kmalloc(size, flags, _RET_IP_);
3696 }
3697 EXPORT_SYMBOL(__kmalloc);
3698
3699 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3700 {
3701 return __do_kmalloc(size, flags, caller);
3702 }
3703 EXPORT_SYMBOL(__kmalloc_track_caller);
3704
3705 /**
3706 * kmem_cache_free - Deallocate an object
3707 * @cachep: The cache the allocation was from.
3708 * @objp: The previously allocated object.
3709 *
3710 * Free an object which was previously allocated from this
3711 * cache.
3712 */
3713 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3714 {
3715 unsigned long flags;
3716 cachep = cache_from_obj(cachep, objp);
3717 if (!cachep)
3718 return;
3719
3720 trace_kmem_cache_free(_RET_IP_, objp, cachep->name);
3721 local_irq_save(flags);
3722 debug_check_no_locks_freed(objp, cachep->object_size);
3723 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3724 debug_check_no_obj_freed(objp, cachep->object_size);
3725 __cache_free(cachep, objp, _RET_IP_);
3726 local_irq_restore(flags);
3727 }
3728 EXPORT_SYMBOL(kmem_cache_free);
3729
3730 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3731 {
3732 struct kmem_cache *s;
3733 size_t i;
3734
3735 local_irq_disable();
3736 for (i = 0; i < size; i++) {
3737 void *objp = p[i];
3738
3739 if (!orig_s) /* called via kfree_bulk */
3740 s = virt_to_cache(objp);
3741 else
3742 s = cache_from_obj(orig_s, objp);
3743 if (!s)
3744 continue;
3745
3746 debug_check_no_locks_freed(objp, s->object_size);
3747 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3748 debug_check_no_obj_freed(objp, s->object_size);
3749
3750 __cache_free(s, objp, _RET_IP_);
3751 }
3752 local_irq_enable();
3753
3754 /* FIXME: add tracing */
3755 }
3756 EXPORT_SYMBOL(kmem_cache_free_bulk);
3757
3758 /**
3759 * kfree - free previously allocated memory
3760 * @objp: pointer returned by kmalloc.
3761 *
3762 * If @objp is NULL, no operation is performed.
3763 *
3764 * Don't free memory not originally allocated by kmalloc()
3765 * or you will run into trouble.
3766 */
3767 void kfree(const void *objp)
3768 {
3769 struct kmem_cache *c;
3770 unsigned long flags;
3771
3772 trace_kfree(_RET_IP_, objp);
3773
3774 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3775 return;
3776 local_irq_save(flags);
3777 kfree_debugcheck(objp);
3778 c = virt_to_cache(objp);
3779 if (!c) {
3780 local_irq_restore(flags);
3781 return;
3782 }
3783 debug_check_no_locks_freed(objp, c->object_size);
3784
3785 debug_check_no_obj_freed(objp, c->object_size);
3786 __cache_free(c, (void *)objp, _RET_IP_);
3787 local_irq_restore(flags);
3788 }
3789 EXPORT_SYMBOL(kfree);
3790
3791 /*
3792 * This initializes kmem_cache_node or resizes various caches for all nodes.
3793 */
3794 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3795 {
3796 int ret;
3797 int node;
3798 struct kmem_cache_node *n;
3799
3800 for_each_online_node(node) {
3801 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3802 if (ret)
3803 goto fail;
3804
3805 }
3806
3807 return 0;
3808
3809 fail:
3810 if (!cachep->list.next) {
3811 /* Cache is not active yet. Roll back what we did */
3812 node--;
3813 while (node >= 0) {
3814 n = get_node(cachep, node);
3815 if (n) {
3816 kfree(n->shared);
3817 free_alien_cache(n->alien);
3818 kfree(n);
3819 cachep->node[node] = NULL;
3820 }
3821 node--;
3822 }
3823 }
3824 return -ENOMEM;
3825 }
3826
3827 /* Always called with the slab_mutex held */
3828 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3829 int batchcount, int shared, gfp_t gfp)
3830 {
3831 struct array_cache __percpu *cpu_cache, *prev;
3832 int cpu;
3833
3834 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3835 if (!cpu_cache)
3836 return -ENOMEM;
3837
3838 prev = cachep->cpu_cache;
3839 cachep->cpu_cache = cpu_cache;
3840 /*
3841 * Without a previous cpu_cache there's no need to synchronize remote
3842 * cpus, so skip the IPIs.
3843 */
3844 if (prev)
3845 kick_all_cpus_sync();
3846
3847 check_irq_on();
3848 cachep->batchcount = batchcount;
3849 cachep->limit = limit;
3850 cachep->shared = shared;
3851
3852 if (!prev)
3853 goto setup_node;
3854
3855 for_each_online_cpu(cpu) {
3856 LIST_HEAD(list);
3857 int node;
3858 struct kmem_cache_node *n;
3859 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3860
3861 node = cpu_to_mem(cpu);
3862 n = get_node(cachep, node);
3863 spin_lock_irq(&n->list_lock);
3864 free_block(cachep, ac->entry, ac->avail, node, &list);
3865 spin_unlock_irq(&n->list_lock);
3866 slabs_destroy(cachep, &list);
3867 }
3868 free_percpu(prev);
3869
3870 setup_node:
3871 return setup_kmem_cache_nodes(cachep, gfp);
3872 }
3873
3874 /* Called with slab_mutex held always */
3875 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3876 {
3877 int err;
3878 int limit = 0;
3879 int shared = 0;
3880 int batchcount = 0;
3881
3882 err = cache_random_seq_create(cachep, cachep->num, gfp);
3883 if (err)
3884 goto end;
3885
3886 /*
3887 * The head array serves three purposes:
3888 * - create a LIFO ordering, i.e. return objects that are cache-warm
3889 * - reduce the number of spinlock operations.
3890 * - reduce the number of linked list operations on the slab and
3891 * bufctl chains: array operations are cheaper.
3892 * The numbers are guessed, we should auto-tune as described by
3893 * Bonwick.
3894 */
3895 if (cachep->size > 131072)
3896 limit = 1;
3897 else if (cachep->size > PAGE_SIZE)
3898 limit = 8;
3899 else if (cachep->size > 1024)
3900 limit = 24;
3901 else if (cachep->size > 256)
3902 limit = 54;
3903 else
3904 limit = 120;
3905
3906 /*
3907 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3908 * allocation behaviour: Most allocs on one cpu, most free operations
3909 * on another cpu. For these cases, an efficient object passing between
3910 * cpus is necessary. This is provided by a shared array. The array
3911 * replaces Bonwick's magazine layer.
3912 * On uniprocessor, it's functionally equivalent (but less efficient)
3913 * to a larger limit. Thus disabled by default.
3914 */
3915 shared = 0;
3916 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3917 shared = 8;
3918
3919 #if DEBUG
3920 /*
3921 * With debugging enabled, large batchcount lead to excessively long
3922 * periods with disabled local interrupts. Limit the batchcount
3923 */
3924 if (limit > 32)
3925 limit = 32;
3926 #endif
3927 batchcount = (limit + 1) / 2;
3928 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3929 end:
3930 if (err)
3931 pr_err("enable_cpucache failed for %s, error %d\n",
3932 cachep->name, -err);
3933 return err;
3934 }
3935
3936 /*
3937 * Drain an array if it contains any elements taking the node lock only if
3938 * necessary. Note that the node listlock also protects the array_cache
3939 * if drain_array() is used on the shared array.
3940 */
3941 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3942 struct array_cache *ac, int node)
3943 {
3944 LIST_HEAD(list);
3945
3946 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3947 check_mutex_acquired();
3948
3949 if (!ac || !ac->avail)
3950 return;
3951
3952 if (ac->touched) {
3953 ac->touched = 0;
3954 return;
3955 }
3956
3957 spin_lock_irq(&n->list_lock);
3958 drain_array_locked(cachep, ac, node, false, &list);
3959 spin_unlock_irq(&n->list_lock);
3960
3961 slabs_destroy(cachep, &list);
3962 }
3963
3964 /**
3965 * cache_reap - Reclaim memory from caches.
3966 * @w: work descriptor
3967 *
3968 * Called from workqueue/eventd every few seconds.
3969 * Purpose:
3970 * - clear the per-cpu caches for this CPU.
3971 * - return freeable pages to the main free memory pool.
3972 *
3973 * If we cannot acquire the cache chain mutex then just give up - we'll try
3974 * again on the next iteration.
3975 */
3976 static void cache_reap(struct work_struct *w)
3977 {
3978 struct kmem_cache *searchp;
3979 struct kmem_cache_node *n;
3980 int node = numa_mem_id();
3981 struct delayed_work *work = to_delayed_work(w);
3982
3983 if (!mutex_trylock(&slab_mutex))
3984 /* Give up. Setup the next iteration. */
3985 goto out;
3986
3987 list_for_each_entry(searchp, &slab_caches, list) {
3988 check_irq_on();
3989
3990 /*
3991 * We only take the node lock if absolutely necessary and we
3992 * have established with reasonable certainty that
3993 * we can do some work if the lock was obtained.
3994 */
3995 n = get_node(searchp, node);
3996
3997 reap_alien(searchp, n);
3998
3999 drain_array(searchp, n, cpu_cache_get(searchp), node);
4000
4001 /*
4002 * These are racy checks but it does not matter
4003 * if we skip one check or scan twice.
4004 */
4005 if (time_after(n->next_reap, jiffies))
4006 goto next;
4007
4008 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4009
4010 drain_array(searchp, n, n->shared, node);
4011
4012 if (n->free_touched)
4013 n->free_touched = 0;
4014 else {
4015 int freed;
4016
4017 freed = drain_freelist(searchp, n, (n->free_limit +
4018 5 * searchp->num - 1) / (5 * searchp->num));
4019 STATS_ADD_REAPED(searchp, freed);
4020 }
4021 next:
4022 cond_resched();
4023 }
4024 check_irq_on();
4025 mutex_unlock(&slab_mutex);
4026 next_reap_node();
4027 out:
4028 /* Set up the next iteration */
4029 schedule_delayed_work_on(smp_processor_id(), work,
4030 round_jiffies_relative(REAPTIMEOUT_AC));
4031 }
4032
4033 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4034 {
4035 unsigned long active_objs, num_objs, active_slabs;
4036 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4037 unsigned long free_slabs = 0;
4038 int node;
4039 struct kmem_cache_node *n;
4040
4041 for_each_kmem_cache_node(cachep, node, n) {
4042 check_irq_on();
4043 spin_lock_irq(&n->list_lock);
4044
4045 total_slabs += n->total_slabs;
4046 free_slabs += n->free_slabs;
4047 free_objs += n->free_objects;
4048
4049 if (n->shared)
4050 shared_avail += n->shared->avail;
4051
4052 spin_unlock_irq(&n->list_lock);
4053 }
4054 num_objs = total_slabs * cachep->num;
4055 active_slabs = total_slabs - free_slabs;
4056 active_objs = num_objs - free_objs;
4057
4058 sinfo->active_objs = active_objs;
4059 sinfo->num_objs = num_objs;
4060 sinfo->active_slabs = active_slabs;
4061 sinfo->num_slabs = total_slabs;
4062 sinfo->shared_avail = shared_avail;
4063 sinfo->limit = cachep->limit;
4064 sinfo->batchcount = cachep->batchcount;
4065 sinfo->shared = cachep->shared;
4066 sinfo->objects_per_slab = cachep->num;
4067 sinfo->cache_order = cachep->gfporder;
4068 }
4069
4070 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4071 {
4072 #if STATS
4073 { /* node stats */
4074 unsigned long high = cachep->high_mark;
4075 unsigned long allocs = cachep->num_allocations;
4076 unsigned long grown = cachep->grown;
4077 unsigned long reaped = cachep->reaped;
4078 unsigned long errors = cachep->errors;
4079 unsigned long max_freeable = cachep->max_freeable;
4080 unsigned long node_allocs = cachep->node_allocs;
4081 unsigned long node_frees = cachep->node_frees;
4082 unsigned long overflows = cachep->node_overflow;
4083
4084 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4085 allocs, high, grown,
4086 reaped, errors, max_freeable, node_allocs,
4087 node_frees, overflows);
4088 }
4089 /* cpu stats */
4090 {
4091 unsigned long allochit = atomic_read(&cachep->allochit);
4092 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4093 unsigned long freehit = atomic_read(&cachep->freehit);
4094 unsigned long freemiss = atomic_read(&cachep->freemiss);
4095
4096 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4097 allochit, allocmiss, freehit, freemiss);
4098 }
4099 #endif
4100 }
4101
4102 #define MAX_SLABINFO_WRITE 128
4103 /**
4104 * slabinfo_write - Tuning for the slab allocator
4105 * @file: unused
4106 * @buffer: user buffer
4107 * @count: data length
4108 * @ppos: unused
4109 *
4110 * Return: %0 on success, negative error code otherwise.
4111 */
4112 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4113 size_t count, loff_t *ppos)
4114 {
4115 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4116 int limit, batchcount, shared, res;
4117 struct kmem_cache *cachep;
4118
4119 if (count > MAX_SLABINFO_WRITE)
4120 return -EINVAL;
4121 if (copy_from_user(&kbuf, buffer, count))
4122 return -EFAULT;
4123 kbuf[MAX_SLABINFO_WRITE] = '\0';
4124
4125 tmp = strchr(kbuf, ' ');
4126 if (!tmp)
4127 return -EINVAL;
4128 *tmp = '\0';
4129 tmp++;
4130 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4131 return -EINVAL;
4132
4133 /* Find the cache in the chain of caches. */
4134 mutex_lock(&slab_mutex);
4135 res = -EINVAL;
4136 list_for_each_entry(cachep, &slab_caches, list) {
4137 if (!strcmp(cachep->name, kbuf)) {
4138 if (limit < 1 || batchcount < 1 ||
4139 batchcount > limit || shared < 0) {
4140 res = 0;
4141 } else {
4142 res = do_tune_cpucache(cachep, limit,
4143 batchcount, shared,
4144 GFP_KERNEL);
4145 }
4146 break;
4147 }
4148 }
4149 mutex_unlock(&slab_mutex);
4150 if (res >= 0)
4151 res = count;
4152 return res;
4153 }
4154
4155 #ifdef CONFIG_HARDENED_USERCOPY
4156 /*
4157 * Rejects incorrectly sized objects and objects that are to be copied
4158 * to/from userspace but do not fall entirely within the containing slab
4159 * cache's usercopy region.
4160 *
4161 * Returns NULL if check passes, otherwise const char * to name of cache
4162 * to indicate an error.
4163 */
4164 void __check_heap_object(const void *ptr, unsigned long n,
4165 const struct slab *slab, bool to_user)
4166 {
4167 struct kmem_cache *cachep;
4168 unsigned int objnr;
4169 unsigned long offset;
4170
4171 ptr = kasan_reset_tag(ptr);
4172
4173 /* Find and validate object. */
4174 cachep = slab->slab_cache;
4175 objnr = obj_to_index(cachep, slab, (void *)ptr);
4176 BUG_ON(objnr >= cachep->num);
4177
4178 /* Find offset within object. */
4179 if (is_kfence_address(ptr))
4180 offset = ptr - kfence_object_start(ptr);
4181 else
4182 offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep);
4183
4184 /* Allow address range falling entirely within usercopy region. */
4185 if (offset >= cachep->useroffset &&
4186 offset - cachep->useroffset <= cachep->usersize &&
4187 n <= cachep->useroffset - offset + cachep->usersize)
4188 return;
4189
4190 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4191 }
4192 #endif /* CONFIG_HARDENED_USERCOPY */
4193
4194 /**
4195 * __ksize -- Uninstrumented ksize.
4196 * @objp: pointer to the object
4197 *
4198 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4199 * safety checks as ksize() with KASAN instrumentation enabled.
4200 *
4201 * Return: size of the actual memory used by @objp in bytes
4202 */
4203 size_t __ksize(const void *objp)
4204 {
4205 struct kmem_cache *c;
4206 size_t size;
4207
4208 BUG_ON(!objp);
4209 if (unlikely(objp == ZERO_SIZE_PTR))
4210 return 0;
4211
4212 c = virt_to_cache(objp);
4213 size = c ? c->object_size : 0;
4214
4215 return size;
4216 }
4217 EXPORT_SYMBOL(__ksize);