]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slab.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/mempolicy.h>
110 #include <linux/mutex.h>
111 #include <linux/fault-inject.h>
112 #include <linux/rtmutex.h>
113 #include <linux/reciprocal_div.h>
114 #include <linux/debugobjects.h>
115
116 #include <asm/cacheflush.h>
117 #include <asm/tlbflush.h>
118 #include <asm/page.h>
119
120 /*
121 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
122 * 0 for faster, smaller code (especially in the critical paths).
123 *
124 * STATS - 1 to collect stats for /proc/slabinfo.
125 * 0 for faster, smaller code (especially in the critical paths).
126 *
127 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 */
129
130 #ifdef CONFIG_DEBUG_SLAB
131 #define DEBUG 1
132 #define STATS 1
133 #define FORCED_DEBUG 1
134 #else
135 #define DEBUG 0
136 #define STATS 0
137 #define FORCED_DEBUG 0
138 #endif
139
140 /* Shouldn't this be in a header file somewhere? */
141 #define BYTES_PER_WORD sizeof(void *)
142 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
143
144 #ifndef ARCH_KMALLOC_MINALIGN
145 /*
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than the alignment of a 64-bit integer.
151 * ARCH_KMALLOC_MINALIGN allows that.
152 * Note that increasing this value may disable some debug features.
153 */
154 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
155 #endif
156
157 #ifndef ARCH_SLAB_MINALIGN
158 /*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165 #define ARCH_SLAB_MINALIGN 0
166 #endif
167
168 #ifndef ARCH_KMALLOC_FLAGS
169 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170 #endif
171
172 /* Legal flag mask for kmem_cache_create(). */
173 #if DEBUG
174 # define CREATE_MASK (SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176 SLAB_CACHE_DMA | \
177 SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
180 SLAB_DEBUG_OBJECTS)
181 #else
182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_CACHE_DMA | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
186 SLAB_DEBUG_OBJECTS)
187 #endif
188
189 /*
190 * kmem_bufctl_t:
191 *
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
194 *
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 */
207
208 typedef unsigned int kmem_bufctl_t;
209 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
211 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
213
214 /*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221 struct slab {
222 struct list_head list;
223 unsigned long colouroff;
224 void *s_mem; /* including colour offset */
225 unsigned int inuse; /* num of objs active in slab */
226 kmem_bufctl_t free;
227 unsigned short nodeid;
228 };
229
230 /*
231 * struct slab_rcu
232 *
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
240 *
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
243 *
244 * We assume struct slab_rcu can overlay struct slab when destroying.
245 */
246 struct slab_rcu {
247 struct rcu_head head;
248 struct kmem_cache *cachep;
249 void *addr;
250 };
251
252 /*
253 * struct array_cache
254 *
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
259 *
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
262 *
263 */
264 struct array_cache {
265 unsigned int avail;
266 unsigned int limit;
267 unsigned int batchcount;
268 unsigned int touched;
269 spinlock_t lock;
270 void *entry[]; /*
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
273 * the entries.
274 */
275 };
276
277 /*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
280 */
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
285 };
286
287 /*
288 * The slab lists for all objects.
289 */
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
302 };
303
304 /*
305 * Need this for bootstrapping a per node allocator.
306 */
307 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC MAX_NUMNODES
311 #define SIZE_L3 (2 * MAX_NUMNODES)
312
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
317 static int enable_cpucache(struct kmem_cache *cachep);
318 static void cache_reap(struct work_struct *unused);
319
320 /*
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 */
324 static __always_inline int index_of(const size_t size)
325 {
326 extern void __bad_size(void);
327
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331 #define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336 #include <linux/kmalloc_sizes.h>
337 #undef CACHE
338 __bad_size();
339 } else
340 __bad_size();
341 return 0;
342 }
343
344 static int slab_early_init = 1;
345
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
349 static void kmem_list3_init(struct kmem_list3 *parent)
350 {
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
356 parent->colour_next = 0;
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360 }
361
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
366 } while (0)
367
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
374
375 /*
376 * struct kmem_cache
377 *
378 * manages a cache.
379 */
380
381 struct kmem_cache {
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache *array[NR_CPUS];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
388
389 unsigned int buffer_size;
390 u32 reciprocal_buffer_size;
391 /* 3) touched by every alloc & free from the backend */
392
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
395
396 /* 4) cache_grow/shrink */
397 /* order of pgs per slab (2^n) */
398 unsigned int gfporder;
399
400 /* force GFP flags, e.g. GFP_DMA */
401 gfp_t gfpflags;
402
403 size_t colour; /* cache colouring range */
404 unsigned int colour_off; /* colour offset */
405 struct kmem_cache *slabp_cache;
406 unsigned int slab_size;
407 unsigned int dflags; /* dynamic flags */
408
409 /* constructor func */
410 void (*ctor)(void *obj);
411
412 /* 5) cache creation/removal */
413 const char *name;
414 struct list_head next;
415
416 /* 6) statistics */
417 #if STATS
418 unsigned long num_active;
419 unsigned long num_allocations;
420 unsigned long high_mark;
421 unsigned long grown;
422 unsigned long reaped;
423 unsigned long errors;
424 unsigned long max_freeable;
425 unsigned long node_allocs;
426 unsigned long node_frees;
427 unsigned long node_overflow;
428 atomic_t allochit;
429 atomic_t allocmiss;
430 atomic_t freehit;
431 atomic_t freemiss;
432 #endif
433 #if DEBUG
434 /*
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
439 */
440 int obj_offset;
441 int obj_size;
442 #endif
443 /*
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
449 */
450 struct kmem_list3 *nodelists[MAX_NUMNODES];
451 /*
452 * Do not add fields after nodelists[]
453 */
454 };
455
456 #define CFLGS_OFF_SLAB (0x80000000UL)
457 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
458
459 #define BATCHREFILL_LIMIT 16
460 /*
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
463 *
464 * OTOH the cpuarrays can contain lots of objects,
465 * which could lock up otherwise freeable slabs.
466 */
467 #define REAPTIMEOUT_CPUC (2*HZ)
468 #define REAPTIMEOUT_LIST3 (4*HZ)
469
470 #if STATS
471 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
472 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474 #define STATS_INC_GROWN(x) ((x)->grown++)
475 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
476 #define STATS_SET_HIGH(x) \
477 do { \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
480 } while (0)
481 #define STATS_INC_ERR(x) ((x)->errors++)
482 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
483 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
484 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
485 #define STATS_SET_FREEABLE(x, i) \
486 do { \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
489 } while (0)
490 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
494 #else
495 #define STATS_INC_ACTIVE(x) do { } while (0)
496 #define STATS_DEC_ACTIVE(x) do { } while (0)
497 #define STATS_INC_ALLOCED(x) do { } while (0)
498 #define STATS_INC_GROWN(x) do { } while (0)
499 #define STATS_ADD_REAPED(x,y) do { } while (0)
500 #define STATS_SET_HIGH(x) do { } while (0)
501 #define STATS_INC_ERR(x) do { } while (0)
502 #define STATS_INC_NODEALLOCS(x) do { } while (0)
503 #define STATS_INC_NODEFREES(x) do { } while (0)
504 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
505 #define STATS_SET_FREEABLE(x, i) do { } while (0)
506 #define STATS_INC_ALLOCHIT(x) do { } while (0)
507 #define STATS_INC_ALLOCMISS(x) do { } while (0)
508 #define STATS_INC_FREEHIT(x) do { } while (0)
509 #define STATS_INC_FREEMISS(x) do { } while (0)
510 #endif
511
512 #if DEBUG
513
514 /*
515 * memory layout of objects:
516 * 0 : objp
517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
521 * redzone word.
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
526 */
527 static int obj_offset(struct kmem_cache *cachep)
528 {
529 return cachep->obj_offset;
530 }
531
532 static int obj_size(struct kmem_cache *cachep)
533 {
534 return cachep->obj_size;
535 }
536
537 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
538 {
539 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
540 return (unsigned long long*) (objp + obj_offset(cachep) -
541 sizeof(unsigned long long));
542 }
543
544 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
545 {
546 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
547 if (cachep->flags & SLAB_STORE_USER)
548 return (unsigned long long *)(objp + cachep->buffer_size -
549 sizeof(unsigned long long) -
550 REDZONE_ALIGN);
551 return (unsigned long long *) (objp + cachep->buffer_size -
552 sizeof(unsigned long long));
553 }
554
555 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
556 {
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
559 }
560
561 #else
562
563 #define obj_offset(x) 0
564 #define obj_size(cachep) (cachep->buffer_size)
565 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569 #endif
570
571 /*
572 * Do not go above this order unless 0 objects fit into the slab.
573 */
574 #define BREAK_GFP_ORDER_HI 1
575 #define BREAK_GFP_ORDER_LO 0
576 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
577
578 /*
579 * Functions for storing/retrieving the cachep and or slab from the page
580 * allocator. These are used to find the slab an obj belongs to. With kfree(),
581 * these are used to find the cache which an obj belongs to.
582 */
583 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
584 {
585 page->lru.next = (struct list_head *)cache;
586 }
587
588 static inline struct kmem_cache *page_get_cache(struct page *page)
589 {
590 page = compound_head(page);
591 BUG_ON(!PageSlab(page));
592 return (struct kmem_cache *)page->lru.next;
593 }
594
595 static inline void page_set_slab(struct page *page, struct slab *slab)
596 {
597 page->lru.prev = (struct list_head *)slab;
598 }
599
600 static inline struct slab *page_get_slab(struct page *page)
601 {
602 BUG_ON(!PageSlab(page));
603 return (struct slab *)page->lru.prev;
604 }
605
606 static inline struct kmem_cache *virt_to_cache(const void *obj)
607 {
608 struct page *page = virt_to_head_page(obj);
609 return page_get_cache(page);
610 }
611
612 static inline struct slab *virt_to_slab(const void *obj)
613 {
614 struct page *page = virt_to_head_page(obj);
615 return page_get_slab(page);
616 }
617
618 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619 unsigned int idx)
620 {
621 return slab->s_mem + cache->buffer_size * idx;
622 }
623
624 /*
625 * We want to avoid an expensive divide : (offset / cache->buffer_size)
626 * Using the fact that buffer_size is a constant for a particular cache,
627 * we can replace (offset / cache->buffer_size) by
628 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
629 */
630 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
631 const struct slab *slab, void *obj)
632 {
633 u32 offset = (obj - slab->s_mem);
634 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
635 }
636
637 /*
638 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 */
640 struct cache_sizes malloc_sizes[] = {
641 #define CACHE(x) { .cs_size = (x) },
642 #include <linux/kmalloc_sizes.h>
643 CACHE(ULONG_MAX)
644 #undef CACHE
645 };
646 EXPORT_SYMBOL(malloc_sizes);
647
648 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
649 struct cache_names {
650 char *name;
651 char *name_dma;
652 };
653
654 static struct cache_names __initdata cache_names[] = {
655 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
656 #include <linux/kmalloc_sizes.h>
657 {NULL,}
658 #undef CACHE
659 };
660
661 static struct arraycache_init initarray_cache __initdata =
662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
663 static struct arraycache_init initarray_generic =
664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
665
666 /* internal cache of cache description objs */
667 static struct kmem_cache cache_cache = {
668 .batchcount = 1,
669 .limit = BOOT_CPUCACHE_ENTRIES,
670 .shared = 1,
671 .buffer_size = sizeof(struct kmem_cache),
672 .name = "kmem_cache",
673 };
674
675 #define BAD_ALIEN_MAGIC 0x01020304ul
676
677 #ifdef CONFIG_LOCKDEP
678
679 /*
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
685 *
686 * We set lock class for alien array caches which are up during init.
687 * The lock annotation will be lost if all cpus of a node goes down and
688 * then comes back up during hotplug
689 */
690 static struct lock_class_key on_slab_l3_key;
691 static struct lock_class_key on_slab_alc_key;
692
693 static inline void init_lock_keys(void)
694
695 {
696 int q;
697 struct cache_sizes *s = malloc_sizes;
698
699 while (s->cs_size != ULONG_MAX) {
700 for_each_node(q) {
701 struct array_cache **alc;
702 int r;
703 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
704 if (!l3 || OFF_SLAB(s->cs_cachep))
705 continue;
706 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
707 alc = l3->alien;
708 /*
709 * FIXME: This check for BAD_ALIEN_MAGIC
710 * should go away when common slab code is taught to
711 * work even without alien caches.
712 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
713 * for alloc_alien_cache,
714 */
715 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
716 continue;
717 for_each_node(r) {
718 if (alc[r])
719 lockdep_set_class(&alc[r]->lock,
720 &on_slab_alc_key);
721 }
722 }
723 s++;
724 }
725 }
726 #else
727 static inline void init_lock_keys(void)
728 {
729 }
730 #endif
731
732 /*
733 * Guard access to the cache-chain.
734 */
735 static DEFINE_MUTEX(cache_chain_mutex);
736 static struct list_head cache_chain;
737
738 /*
739 * chicken and egg problem: delay the per-cpu array allocation
740 * until the general caches are up.
741 */
742 static enum {
743 NONE,
744 PARTIAL_AC,
745 PARTIAL_L3,
746 FULL
747 } g_cpucache_up;
748
749 /*
750 * used by boot code to determine if it can use slab based allocator
751 */
752 int slab_is_available(void)
753 {
754 return g_cpucache_up == FULL;
755 }
756
757 static DEFINE_PER_CPU(struct delayed_work, reap_work);
758
759 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
760 {
761 return cachep->array[smp_processor_id()];
762 }
763
764 static inline struct kmem_cache *__find_general_cachep(size_t size,
765 gfp_t gfpflags)
766 {
767 struct cache_sizes *csizep = malloc_sizes;
768
769 #if DEBUG
770 /* This happens if someone tries to call
771 * kmem_cache_create(), or __kmalloc(), before
772 * the generic caches are initialized.
773 */
774 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
775 #endif
776 if (!size)
777 return ZERO_SIZE_PTR;
778
779 while (size > csizep->cs_size)
780 csizep++;
781
782 /*
783 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
784 * has cs_{dma,}cachep==NULL. Thus no special case
785 * for large kmalloc calls required.
786 */
787 #ifdef CONFIG_ZONE_DMA
788 if (unlikely(gfpflags & GFP_DMA))
789 return csizep->cs_dmacachep;
790 #endif
791 return csizep->cs_cachep;
792 }
793
794 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
795 {
796 return __find_general_cachep(size, gfpflags);
797 }
798
799 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
800 {
801 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
802 }
803
804 /*
805 * Calculate the number of objects and left-over bytes for a given buffer size.
806 */
807 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
808 size_t align, int flags, size_t *left_over,
809 unsigned int *num)
810 {
811 int nr_objs;
812 size_t mgmt_size;
813 size_t slab_size = PAGE_SIZE << gfporder;
814
815 /*
816 * The slab management structure can be either off the slab or
817 * on it. For the latter case, the memory allocated for a
818 * slab is used for:
819 *
820 * - The struct slab
821 * - One kmem_bufctl_t for each object
822 * - Padding to respect alignment of @align
823 * - @buffer_size bytes for each object
824 *
825 * If the slab management structure is off the slab, then the
826 * alignment will already be calculated into the size. Because
827 * the slabs are all pages aligned, the objects will be at the
828 * correct alignment when allocated.
829 */
830 if (flags & CFLGS_OFF_SLAB) {
831 mgmt_size = 0;
832 nr_objs = slab_size / buffer_size;
833
834 if (nr_objs > SLAB_LIMIT)
835 nr_objs = SLAB_LIMIT;
836 } else {
837 /*
838 * Ignore padding for the initial guess. The padding
839 * is at most @align-1 bytes, and @buffer_size is at
840 * least @align. In the worst case, this result will
841 * be one greater than the number of objects that fit
842 * into the memory allocation when taking the padding
843 * into account.
844 */
845 nr_objs = (slab_size - sizeof(struct slab)) /
846 (buffer_size + sizeof(kmem_bufctl_t));
847
848 /*
849 * This calculated number will be either the right
850 * amount, or one greater than what we want.
851 */
852 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
853 > slab_size)
854 nr_objs--;
855
856 if (nr_objs > SLAB_LIMIT)
857 nr_objs = SLAB_LIMIT;
858
859 mgmt_size = slab_mgmt_size(nr_objs, align);
860 }
861 *num = nr_objs;
862 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
863 }
864
865 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
866
867 static void __slab_error(const char *function, struct kmem_cache *cachep,
868 char *msg)
869 {
870 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
871 function, cachep->name, msg);
872 dump_stack();
873 }
874
875 /*
876 * By default on NUMA we use alien caches to stage the freeing of
877 * objects allocated from other nodes. This causes massive memory
878 * inefficiencies when using fake NUMA setup to split memory into a
879 * large number of small nodes, so it can be disabled on the command
880 * line
881 */
882
883 static int use_alien_caches __read_mostly = 1;
884 static int numa_platform __read_mostly = 1;
885 static int __init noaliencache_setup(char *s)
886 {
887 use_alien_caches = 0;
888 return 1;
889 }
890 __setup("noaliencache", noaliencache_setup);
891
892 #ifdef CONFIG_NUMA
893 /*
894 * Special reaping functions for NUMA systems called from cache_reap().
895 * These take care of doing round robin flushing of alien caches (containing
896 * objects freed on different nodes from which they were allocated) and the
897 * flushing of remote pcps by calling drain_node_pages.
898 */
899 static DEFINE_PER_CPU(unsigned long, reap_node);
900
901 static void init_reap_node(int cpu)
902 {
903 int node;
904
905 node = next_node(cpu_to_node(cpu), node_online_map);
906 if (node == MAX_NUMNODES)
907 node = first_node(node_online_map);
908
909 per_cpu(reap_node, cpu) = node;
910 }
911
912 static void next_reap_node(void)
913 {
914 int node = __get_cpu_var(reap_node);
915
916 node = next_node(node, node_online_map);
917 if (unlikely(node >= MAX_NUMNODES))
918 node = first_node(node_online_map);
919 __get_cpu_var(reap_node) = node;
920 }
921
922 #else
923 #define init_reap_node(cpu) do { } while (0)
924 #define next_reap_node(void) do { } while (0)
925 #endif
926
927 /*
928 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
929 * via the workqueue/eventd.
930 * Add the CPU number into the expiration time to minimize the possibility of
931 * the CPUs getting into lockstep and contending for the global cache chain
932 * lock.
933 */
934 static void __cpuinit start_cpu_timer(int cpu)
935 {
936 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
937
938 /*
939 * When this gets called from do_initcalls via cpucache_init(),
940 * init_workqueues() has already run, so keventd will be setup
941 * at that time.
942 */
943 if (keventd_up() && reap_work->work.func == NULL) {
944 init_reap_node(cpu);
945 INIT_DELAYED_WORK(reap_work, cache_reap);
946 schedule_delayed_work_on(cpu, reap_work,
947 __round_jiffies_relative(HZ, cpu));
948 }
949 }
950
951 static struct array_cache *alloc_arraycache(int node, int entries,
952 int batchcount)
953 {
954 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
955 struct array_cache *nc = NULL;
956
957 nc = kmalloc_node(memsize, GFP_KERNEL, node);
958 if (nc) {
959 nc->avail = 0;
960 nc->limit = entries;
961 nc->batchcount = batchcount;
962 nc->touched = 0;
963 spin_lock_init(&nc->lock);
964 }
965 return nc;
966 }
967
968 /*
969 * Transfer objects in one arraycache to another.
970 * Locking must be handled by the caller.
971 *
972 * Return the number of entries transferred.
973 */
974 static int transfer_objects(struct array_cache *to,
975 struct array_cache *from, unsigned int max)
976 {
977 /* Figure out how many entries to transfer */
978 int nr = min(min(from->avail, max), to->limit - to->avail);
979
980 if (!nr)
981 return 0;
982
983 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
984 sizeof(void *) *nr);
985
986 from->avail -= nr;
987 to->avail += nr;
988 to->touched = 1;
989 return nr;
990 }
991
992 #ifndef CONFIG_NUMA
993
994 #define drain_alien_cache(cachep, alien) do { } while (0)
995 #define reap_alien(cachep, l3) do { } while (0)
996
997 static inline struct array_cache **alloc_alien_cache(int node, int limit)
998 {
999 return (struct array_cache **)BAD_ALIEN_MAGIC;
1000 }
1001
1002 static inline void free_alien_cache(struct array_cache **ac_ptr)
1003 {
1004 }
1005
1006 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1007 {
1008 return 0;
1009 }
1010
1011 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1012 gfp_t flags)
1013 {
1014 return NULL;
1015 }
1016
1017 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1018 gfp_t flags, int nodeid)
1019 {
1020 return NULL;
1021 }
1022
1023 #else /* CONFIG_NUMA */
1024
1025 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1026 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1027
1028 static struct array_cache **alloc_alien_cache(int node, int limit)
1029 {
1030 struct array_cache **ac_ptr;
1031 int memsize = sizeof(void *) * nr_node_ids;
1032 int i;
1033
1034 if (limit > 1)
1035 limit = 12;
1036 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1037 if (ac_ptr) {
1038 for_each_node(i) {
1039 if (i == node || !node_online(i)) {
1040 ac_ptr[i] = NULL;
1041 continue;
1042 }
1043 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1044 if (!ac_ptr[i]) {
1045 for (i--; i >= 0; i--)
1046 kfree(ac_ptr[i]);
1047 kfree(ac_ptr);
1048 return NULL;
1049 }
1050 }
1051 }
1052 return ac_ptr;
1053 }
1054
1055 static void free_alien_cache(struct array_cache **ac_ptr)
1056 {
1057 int i;
1058
1059 if (!ac_ptr)
1060 return;
1061 for_each_node(i)
1062 kfree(ac_ptr[i]);
1063 kfree(ac_ptr);
1064 }
1065
1066 static void __drain_alien_cache(struct kmem_cache *cachep,
1067 struct array_cache *ac, int node)
1068 {
1069 struct kmem_list3 *rl3 = cachep->nodelists[node];
1070
1071 if (ac->avail) {
1072 spin_lock(&rl3->list_lock);
1073 /*
1074 * Stuff objects into the remote nodes shared array first.
1075 * That way we could avoid the overhead of putting the objects
1076 * into the free lists and getting them back later.
1077 */
1078 if (rl3->shared)
1079 transfer_objects(rl3->shared, ac, ac->limit);
1080
1081 free_block(cachep, ac->entry, ac->avail, node);
1082 ac->avail = 0;
1083 spin_unlock(&rl3->list_lock);
1084 }
1085 }
1086
1087 /*
1088 * Called from cache_reap() to regularly drain alien caches round robin.
1089 */
1090 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1091 {
1092 int node = __get_cpu_var(reap_node);
1093
1094 if (l3->alien) {
1095 struct array_cache *ac = l3->alien[node];
1096
1097 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1098 __drain_alien_cache(cachep, ac, node);
1099 spin_unlock_irq(&ac->lock);
1100 }
1101 }
1102 }
1103
1104 static void drain_alien_cache(struct kmem_cache *cachep,
1105 struct array_cache **alien)
1106 {
1107 int i = 0;
1108 struct array_cache *ac;
1109 unsigned long flags;
1110
1111 for_each_online_node(i) {
1112 ac = alien[i];
1113 if (ac) {
1114 spin_lock_irqsave(&ac->lock, flags);
1115 __drain_alien_cache(cachep, ac, i);
1116 spin_unlock_irqrestore(&ac->lock, flags);
1117 }
1118 }
1119 }
1120
1121 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1122 {
1123 struct slab *slabp = virt_to_slab(objp);
1124 int nodeid = slabp->nodeid;
1125 struct kmem_list3 *l3;
1126 struct array_cache *alien = NULL;
1127 int node;
1128
1129 node = numa_node_id();
1130
1131 /*
1132 * Make sure we are not freeing a object from another node to the array
1133 * cache on this cpu.
1134 */
1135 if (likely(slabp->nodeid == node))
1136 return 0;
1137
1138 l3 = cachep->nodelists[node];
1139 STATS_INC_NODEFREES(cachep);
1140 if (l3->alien && l3->alien[nodeid]) {
1141 alien = l3->alien[nodeid];
1142 spin_lock(&alien->lock);
1143 if (unlikely(alien->avail == alien->limit)) {
1144 STATS_INC_ACOVERFLOW(cachep);
1145 __drain_alien_cache(cachep, alien, nodeid);
1146 }
1147 alien->entry[alien->avail++] = objp;
1148 spin_unlock(&alien->lock);
1149 } else {
1150 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1151 free_block(cachep, &objp, 1, nodeid);
1152 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1153 }
1154 return 1;
1155 }
1156 #endif
1157
1158 static void __cpuinit cpuup_canceled(long cpu)
1159 {
1160 struct kmem_cache *cachep;
1161 struct kmem_list3 *l3 = NULL;
1162 int node = cpu_to_node(cpu);
1163 node_to_cpumask_ptr(mask, node);
1164
1165 list_for_each_entry(cachep, &cache_chain, next) {
1166 struct array_cache *nc;
1167 struct array_cache *shared;
1168 struct array_cache **alien;
1169
1170 /* cpu is dead; no one can alloc from it. */
1171 nc = cachep->array[cpu];
1172 cachep->array[cpu] = NULL;
1173 l3 = cachep->nodelists[node];
1174
1175 if (!l3)
1176 goto free_array_cache;
1177
1178 spin_lock_irq(&l3->list_lock);
1179
1180 /* Free limit for this kmem_list3 */
1181 l3->free_limit -= cachep->batchcount;
1182 if (nc)
1183 free_block(cachep, nc->entry, nc->avail, node);
1184
1185 if (!cpus_empty(*mask)) {
1186 spin_unlock_irq(&l3->list_lock);
1187 goto free_array_cache;
1188 }
1189
1190 shared = l3->shared;
1191 if (shared) {
1192 free_block(cachep, shared->entry,
1193 shared->avail, node);
1194 l3->shared = NULL;
1195 }
1196
1197 alien = l3->alien;
1198 l3->alien = NULL;
1199
1200 spin_unlock_irq(&l3->list_lock);
1201
1202 kfree(shared);
1203 if (alien) {
1204 drain_alien_cache(cachep, alien);
1205 free_alien_cache(alien);
1206 }
1207 free_array_cache:
1208 kfree(nc);
1209 }
1210 /*
1211 * In the previous loop, all the objects were freed to
1212 * the respective cache's slabs, now we can go ahead and
1213 * shrink each nodelist to its limit.
1214 */
1215 list_for_each_entry(cachep, &cache_chain, next) {
1216 l3 = cachep->nodelists[node];
1217 if (!l3)
1218 continue;
1219 drain_freelist(cachep, l3, l3->free_objects);
1220 }
1221 }
1222
1223 static int __cpuinit cpuup_prepare(long cpu)
1224 {
1225 struct kmem_cache *cachep;
1226 struct kmem_list3 *l3 = NULL;
1227 int node = cpu_to_node(cpu);
1228 const int memsize = sizeof(struct kmem_list3);
1229
1230 /*
1231 * We need to do this right in the beginning since
1232 * alloc_arraycache's are going to use this list.
1233 * kmalloc_node allows us to add the slab to the right
1234 * kmem_list3 and not this cpu's kmem_list3
1235 */
1236
1237 list_for_each_entry(cachep, &cache_chain, next) {
1238 /*
1239 * Set up the size64 kmemlist for cpu before we can
1240 * begin anything. Make sure some other cpu on this
1241 * node has not already allocated this
1242 */
1243 if (!cachep->nodelists[node]) {
1244 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1245 if (!l3)
1246 goto bad;
1247 kmem_list3_init(l3);
1248 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1249 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1250
1251 /*
1252 * The l3s don't come and go as CPUs come and
1253 * go. cache_chain_mutex is sufficient
1254 * protection here.
1255 */
1256 cachep->nodelists[node] = l3;
1257 }
1258
1259 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1260 cachep->nodelists[node]->free_limit =
1261 (1 + nr_cpus_node(node)) *
1262 cachep->batchcount + cachep->num;
1263 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1264 }
1265
1266 /*
1267 * Now we can go ahead with allocating the shared arrays and
1268 * array caches
1269 */
1270 list_for_each_entry(cachep, &cache_chain, next) {
1271 struct array_cache *nc;
1272 struct array_cache *shared = NULL;
1273 struct array_cache **alien = NULL;
1274
1275 nc = alloc_arraycache(node, cachep->limit,
1276 cachep->batchcount);
1277 if (!nc)
1278 goto bad;
1279 if (cachep->shared) {
1280 shared = alloc_arraycache(node,
1281 cachep->shared * cachep->batchcount,
1282 0xbaadf00d);
1283 if (!shared) {
1284 kfree(nc);
1285 goto bad;
1286 }
1287 }
1288 if (use_alien_caches) {
1289 alien = alloc_alien_cache(node, cachep->limit);
1290 if (!alien) {
1291 kfree(shared);
1292 kfree(nc);
1293 goto bad;
1294 }
1295 }
1296 cachep->array[cpu] = nc;
1297 l3 = cachep->nodelists[node];
1298 BUG_ON(!l3);
1299
1300 spin_lock_irq(&l3->list_lock);
1301 if (!l3->shared) {
1302 /*
1303 * We are serialised from CPU_DEAD or
1304 * CPU_UP_CANCELLED by the cpucontrol lock
1305 */
1306 l3->shared = shared;
1307 shared = NULL;
1308 }
1309 #ifdef CONFIG_NUMA
1310 if (!l3->alien) {
1311 l3->alien = alien;
1312 alien = NULL;
1313 }
1314 #endif
1315 spin_unlock_irq(&l3->list_lock);
1316 kfree(shared);
1317 free_alien_cache(alien);
1318 }
1319 return 0;
1320 bad:
1321 cpuup_canceled(cpu);
1322 return -ENOMEM;
1323 }
1324
1325 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1326 unsigned long action, void *hcpu)
1327 {
1328 long cpu = (long)hcpu;
1329 int err = 0;
1330
1331 switch (action) {
1332 case CPU_UP_PREPARE:
1333 case CPU_UP_PREPARE_FROZEN:
1334 mutex_lock(&cache_chain_mutex);
1335 err = cpuup_prepare(cpu);
1336 mutex_unlock(&cache_chain_mutex);
1337 break;
1338 case CPU_ONLINE:
1339 case CPU_ONLINE_FROZEN:
1340 start_cpu_timer(cpu);
1341 break;
1342 #ifdef CONFIG_HOTPLUG_CPU
1343 case CPU_DOWN_PREPARE:
1344 case CPU_DOWN_PREPARE_FROZEN:
1345 /*
1346 * Shutdown cache reaper. Note that the cache_chain_mutex is
1347 * held so that if cache_reap() is invoked it cannot do
1348 * anything expensive but will only modify reap_work
1349 * and reschedule the timer.
1350 */
1351 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1352 /* Now the cache_reaper is guaranteed to be not running. */
1353 per_cpu(reap_work, cpu).work.func = NULL;
1354 break;
1355 case CPU_DOWN_FAILED:
1356 case CPU_DOWN_FAILED_FROZEN:
1357 start_cpu_timer(cpu);
1358 break;
1359 case CPU_DEAD:
1360 case CPU_DEAD_FROZEN:
1361 /*
1362 * Even if all the cpus of a node are down, we don't free the
1363 * kmem_list3 of any cache. This to avoid a race between
1364 * cpu_down, and a kmalloc allocation from another cpu for
1365 * memory from the node of the cpu going down. The list3
1366 * structure is usually allocated from kmem_cache_create() and
1367 * gets destroyed at kmem_cache_destroy().
1368 */
1369 /* fall through */
1370 #endif
1371 case CPU_UP_CANCELED:
1372 case CPU_UP_CANCELED_FROZEN:
1373 mutex_lock(&cache_chain_mutex);
1374 cpuup_canceled(cpu);
1375 mutex_unlock(&cache_chain_mutex);
1376 break;
1377 }
1378 return err ? NOTIFY_BAD : NOTIFY_OK;
1379 }
1380
1381 static struct notifier_block __cpuinitdata cpucache_notifier = {
1382 &cpuup_callback, NULL, 0
1383 };
1384
1385 /*
1386 * swap the static kmem_list3 with kmalloced memory
1387 */
1388 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1389 int nodeid)
1390 {
1391 struct kmem_list3 *ptr;
1392
1393 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1394 BUG_ON(!ptr);
1395
1396 local_irq_disable();
1397 memcpy(ptr, list, sizeof(struct kmem_list3));
1398 /*
1399 * Do not assume that spinlocks can be initialized via memcpy:
1400 */
1401 spin_lock_init(&ptr->list_lock);
1402
1403 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1404 cachep->nodelists[nodeid] = ptr;
1405 local_irq_enable();
1406 }
1407
1408 /*
1409 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1410 * size of kmem_list3.
1411 */
1412 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1413 {
1414 int node;
1415
1416 for_each_online_node(node) {
1417 cachep->nodelists[node] = &initkmem_list3[index + node];
1418 cachep->nodelists[node]->next_reap = jiffies +
1419 REAPTIMEOUT_LIST3 +
1420 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1421 }
1422 }
1423
1424 /*
1425 * Initialisation. Called after the page allocator have been initialised and
1426 * before smp_init().
1427 */
1428 void __init kmem_cache_init(void)
1429 {
1430 size_t left_over;
1431 struct cache_sizes *sizes;
1432 struct cache_names *names;
1433 int i;
1434 int order;
1435 int node;
1436
1437 if (num_possible_nodes() == 1) {
1438 use_alien_caches = 0;
1439 numa_platform = 0;
1440 }
1441
1442 for (i = 0; i < NUM_INIT_LISTS; i++) {
1443 kmem_list3_init(&initkmem_list3[i]);
1444 if (i < MAX_NUMNODES)
1445 cache_cache.nodelists[i] = NULL;
1446 }
1447 set_up_list3s(&cache_cache, CACHE_CACHE);
1448
1449 /*
1450 * Fragmentation resistance on low memory - only use bigger
1451 * page orders on machines with more than 32MB of memory.
1452 */
1453 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1454 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1455
1456 /* Bootstrap is tricky, because several objects are allocated
1457 * from caches that do not exist yet:
1458 * 1) initialize the cache_cache cache: it contains the struct
1459 * kmem_cache structures of all caches, except cache_cache itself:
1460 * cache_cache is statically allocated.
1461 * Initially an __init data area is used for the head array and the
1462 * kmem_list3 structures, it's replaced with a kmalloc allocated
1463 * array at the end of the bootstrap.
1464 * 2) Create the first kmalloc cache.
1465 * The struct kmem_cache for the new cache is allocated normally.
1466 * An __init data area is used for the head array.
1467 * 3) Create the remaining kmalloc caches, with minimally sized
1468 * head arrays.
1469 * 4) Replace the __init data head arrays for cache_cache and the first
1470 * kmalloc cache with kmalloc allocated arrays.
1471 * 5) Replace the __init data for kmem_list3 for cache_cache and
1472 * the other cache's with kmalloc allocated memory.
1473 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1474 */
1475
1476 node = numa_node_id();
1477
1478 /* 1) create the cache_cache */
1479 INIT_LIST_HEAD(&cache_chain);
1480 list_add(&cache_cache.next, &cache_chain);
1481 cache_cache.colour_off = cache_line_size();
1482 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1483 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1484
1485 /*
1486 * struct kmem_cache size depends on nr_node_ids, which
1487 * can be less than MAX_NUMNODES.
1488 */
1489 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1490 nr_node_ids * sizeof(struct kmem_list3 *);
1491 #if DEBUG
1492 cache_cache.obj_size = cache_cache.buffer_size;
1493 #endif
1494 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1495 cache_line_size());
1496 cache_cache.reciprocal_buffer_size =
1497 reciprocal_value(cache_cache.buffer_size);
1498
1499 for (order = 0; order < MAX_ORDER; order++) {
1500 cache_estimate(order, cache_cache.buffer_size,
1501 cache_line_size(), 0, &left_over, &cache_cache.num);
1502 if (cache_cache.num)
1503 break;
1504 }
1505 BUG_ON(!cache_cache.num);
1506 cache_cache.gfporder = order;
1507 cache_cache.colour = left_over / cache_cache.colour_off;
1508 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1509 sizeof(struct slab), cache_line_size());
1510
1511 /* 2+3) create the kmalloc caches */
1512 sizes = malloc_sizes;
1513 names = cache_names;
1514
1515 /*
1516 * Initialize the caches that provide memory for the array cache and the
1517 * kmem_list3 structures first. Without this, further allocations will
1518 * bug.
1519 */
1520
1521 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1522 sizes[INDEX_AC].cs_size,
1523 ARCH_KMALLOC_MINALIGN,
1524 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1525 NULL);
1526
1527 if (INDEX_AC != INDEX_L3) {
1528 sizes[INDEX_L3].cs_cachep =
1529 kmem_cache_create(names[INDEX_L3].name,
1530 sizes[INDEX_L3].cs_size,
1531 ARCH_KMALLOC_MINALIGN,
1532 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1533 NULL);
1534 }
1535
1536 slab_early_init = 0;
1537
1538 while (sizes->cs_size != ULONG_MAX) {
1539 /*
1540 * For performance, all the general caches are L1 aligned.
1541 * This should be particularly beneficial on SMP boxes, as it
1542 * eliminates "false sharing".
1543 * Note for systems short on memory removing the alignment will
1544 * allow tighter packing of the smaller caches.
1545 */
1546 if (!sizes->cs_cachep) {
1547 sizes->cs_cachep = kmem_cache_create(names->name,
1548 sizes->cs_size,
1549 ARCH_KMALLOC_MINALIGN,
1550 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1551 NULL);
1552 }
1553 #ifdef CONFIG_ZONE_DMA
1554 sizes->cs_dmacachep = kmem_cache_create(
1555 names->name_dma,
1556 sizes->cs_size,
1557 ARCH_KMALLOC_MINALIGN,
1558 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1559 SLAB_PANIC,
1560 NULL);
1561 #endif
1562 sizes++;
1563 names++;
1564 }
1565 /* 4) Replace the bootstrap head arrays */
1566 {
1567 struct array_cache *ptr;
1568
1569 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1570
1571 local_irq_disable();
1572 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1573 memcpy(ptr, cpu_cache_get(&cache_cache),
1574 sizeof(struct arraycache_init));
1575 /*
1576 * Do not assume that spinlocks can be initialized via memcpy:
1577 */
1578 spin_lock_init(&ptr->lock);
1579
1580 cache_cache.array[smp_processor_id()] = ptr;
1581 local_irq_enable();
1582
1583 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1584
1585 local_irq_disable();
1586 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1587 != &initarray_generic.cache);
1588 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1589 sizeof(struct arraycache_init));
1590 /*
1591 * Do not assume that spinlocks can be initialized via memcpy:
1592 */
1593 spin_lock_init(&ptr->lock);
1594
1595 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1596 ptr;
1597 local_irq_enable();
1598 }
1599 /* 5) Replace the bootstrap kmem_list3's */
1600 {
1601 int nid;
1602
1603 for_each_online_node(nid) {
1604 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1605
1606 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1607 &initkmem_list3[SIZE_AC + nid], nid);
1608
1609 if (INDEX_AC != INDEX_L3) {
1610 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1611 &initkmem_list3[SIZE_L3 + nid], nid);
1612 }
1613 }
1614 }
1615
1616 /* 6) resize the head arrays to their final sizes */
1617 {
1618 struct kmem_cache *cachep;
1619 mutex_lock(&cache_chain_mutex);
1620 list_for_each_entry(cachep, &cache_chain, next)
1621 if (enable_cpucache(cachep))
1622 BUG();
1623 mutex_unlock(&cache_chain_mutex);
1624 }
1625
1626 /* Annotate slab for lockdep -- annotate the malloc caches */
1627 init_lock_keys();
1628
1629
1630 /* Done! */
1631 g_cpucache_up = FULL;
1632
1633 /*
1634 * Register a cpu startup notifier callback that initializes
1635 * cpu_cache_get for all new cpus
1636 */
1637 register_cpu_notifier(&cpucache_notifier);
1638
1639 /*
1640 * The reap timers are started later, with a module init call: That part
1641 * of the kernel is not yet operational.
1642 */
1643 }
1644
1645 static int __init cpucache_init(void)
1646 {
1647 int cpu;
1648
1649 /*
1650 * Register the timers that return unneeded pages to the page allocator
1651 */
1652 for_each_online_cpu(cpu)
1653 start_cpu_timer(cpu);
1654 return 0;
1655 }
1656 __initcall(cpucache_init);
1657
1658 /*
1659 * Interface to system's page allocator. No need to hold the cache-lock.
1660 *
1661 * If we requested dmaable memory, we will get it. Even if we
1662 * did not request dmaable memory, we might get it, but that
1663 * would be relatively rare and ignorable.
1664 */
1665 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1666 {
1667 struct page *page;
1668 int nr_pages;
1669 int i;
1670
1671 #ifndef CONFIG_MMU
1672 /*
1673 * Nommu uses slab's for process anonymous memory allocations, and thus
1674 * requires __GFP_COMP to properly refcount higher order allocations
1675 */
1676 flags |= __GFP_COMP;
1677 #endif
1678
1679 flags |= cachep->gfpflags;
1680 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1681 flags |= __GFP_RECLAIMABLE;
1682
1683 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1684 if (!page)
1685 return NULL;
1686
1687 nr_pages = (1 << cachep->gfporder);
1688 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1689 add_zone_page_state(page_zone(page),
1690 NR_SLAB_RECLAIMABLE, nr_pages);
1691 else
1692 add_zone_page_state(page_zone(page),
1693 NR_SLAB_UNRECLAIMABLE, nr_pages);
1694 for (i = 0; i < nr_pages; i++)
1695 __SetPageSlab(page + i);
1696 return page_address(page);
1697 }
1698
1699 /*
1700 * Interface to system's page release.
1701 */
1702 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1703 {
1704 unsigned long i = (1 << cachep->gfporder);
1705 struct page *page = virt_to_page(addr);
1706 const unsigned long nr_freed = i;
1707
1708 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1709 sub_zone_page_state(page_zone(page),
1710 NR_SLAB_RECLAIMABLE, nr_freed);
1711 else
1712 sub_zone_page_state(page_zone(page),
1713 NR_SLAB_UNRECLAIMABLE, nr_freed);
1714 while (i--) {
1715 BUG_ON(!PageSlab(page));
1716 __ClearPageSlab(page);
1717 page++;
1718 }
1719 if (current->reclaim_state)
1720 current->reclaim_state->reclaimed_slab += nr_freed;
1721 free_pages((unsigned long)addr, cachep->gfporder);
1722 }
1723
1724 static void kmem_rcu_free(struct rcu_head *head)
1725 {
1726 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1727 struct kmem_cache *cachep = slab_rcu->cachep;
1728
1729 kmem_freepages(cachep, slab_rcu->addr);
1730 if (OFF_SLAB(cachep))
1731 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1732 }
1733
1734 #if DEBUG
1735
1736 #ifdef CONFIG_DEBUG_PAGEALLOC
1737 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1738 unsigned long caller)
1739 {
1740 int size = obj_size(cachep);
1741
1742 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1743
1744 if (size < 5 * sizeof(unsigned long))
1745 return;
1746
1747 *addr++ = 0x12345678;
1748 *addr++ = caller;
1749 *addr++ = smp_processor_id();
1750 size -= 3 * sizeof(unsigned long);
1751 {
1752 unsigned long *sptr = &caller;
1753 unsigned long svalue;
1754
1755 while (!kstack_end(sptr)) {
1756 svalue = *sptr++;
1757 if (kernel_text_address(svalue)) {
1758 *addr++ = svalue;
1759 size -= sizeof(unsigned long);
1760 if (size <= sizeof(unsigned long))
1761 break;
1762 }
1763 }
1764
1765 }
1766 *addr++ = 0x87654321;
1767 }
1768 #endif
1769
1770 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1771 {
1772 int size = obj_size(cachep);
1773 addr = &((char *)addr)[obj_offset(cachep)];
1774
1775 memset(addr, val, size);
1776 *(unsigned char *)(addr + size - 1) = POISON_END;
1777 }
1778
1779 static void dump_line(char *data, int offset, int limit)
1780 {
1781 int i;
1782 unsigned char error = 0;
1783 int bad_count = 0;
1784
1785 printk(KERN_ERR "%03x:", offset);
1786 for (i = 0; i < limit; i++) {
1787 if (data[offset + i] != POISON_FREE) {
1788 error = data[offset + i];
1789 bad_count++;
1790 }
1791 printk(" %02x", (unsigned char)data[offset + i]);
1792 }
1793 printk("\n");
1794
1795 if (bad_count == 1) {
1796 error ^= POISON_FREE;
1797 if (!(error & (error - 1))) {
1798 printk(KERN_ERR "Single bit error detected. Probably "
1799 "bad RAM.\n");
1800 #ifdef CONFIG_X86
1801 printk(KERN_ERR "Run memtest86+ or a similar memory "
1802 "test tool.\n");
1803 #else
1804 printk(KERN_ERR "Run a memory test tool.\n");
1805 #endif
1806 }
1807 }
1808 }
1809 #endif
1810
1811 #if DEBUG
1812
1813 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1814 {
1815 int i, size;
1816 char *realobj;
1817
1818 if (cachep->flags & SLAB_RED_ZONE) {
1819 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1820 *dbg_redzone1(cachep, objp),
1821 *dbg_redzone2(cachep, objp));
1822 }
1823
1824 if (cachep->flags & SLAB_STORE_USER) {
1825 printk(KERN_ERR "Last user: [<%p>]",
1826 *dbg_userword(cachep, objp));
1827 print_symbol("(%s)",
1828 (unsigned long)*dbg_userword(cachep, objp));
1829 printk("\n");
1830 }
1831 realobj = (char *)objp + obj_offset(cachep);
1832 size = obj_size(cachep);
1833 for (i = 0; i < size && lines; i += 16, lines--) {
1834 int limit;
1835 limit = 16;
1836 if (i + limit > size)
1837 limit = size - i;
1838 dump_line(realobj, i, limit);
1839 }
1840 }
1841
1842 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1843 {
1844 char *realobj;
1845 int size, i;
1846 int lines = 0;
1847
1848 realobj = (char *)objp + obj_offset(cachep);
1849 size = obj_size(cachep);
1850
1851 for (i = 0; i < size; i++) {
1852 char exp = POISON_FREE;
1853 if (i == size - 1)
1854 exp = POISON_END;
1855 if (realobj[i] != exp) {
1856 int limit;
1857 /* Mismatch ! */
1858 /* Print header */
1859 if (lines == 0) {
1860 printk(KERN_ERR
1861 "Slab corruption: %s start=%p, len=%d\n",
1862 cachep->name, realobj, size);
1863 print_objinfo(cachep, objp, 0);
1864 }
1865 /* Hexdump the affected line */
1866 i = (i / 16) * 16;
1867 limit = 16;
1868 if (i + limit > size)
1869 limit = size - i;
1870 dump_line(realobj, i, limit);
1871 i += 16;
1872 lines++;
1873 /* Limit to 5 lines */
1874 if (lines > 5)
1875 break;
1876 }
1877 }
1878 if (lines != 0) {
1879 /* Print some data about the neighboring objects, if they
1880 * exist:
1881 */
1882 struct slab *slabp = virt_to_slab(objp);
1883 unsigned int objnr;
1884
1885 objnr = obj_to_index(cachep, slabp, objp);
1886 if (objnr) {
1887 objp = index_to_obj(cachep, slabp, objnr - 1);
1888 realobj = (char *)objp + obj_offset(cachep);
1889 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1890 realobj, size);
1891 print_objinfo(cachep, objp, 2);
1892 }
1893 if (objnr + 1 < cachep->num) {
1894 objp = index_to_obj(cachep, slabp, objnr + 1);
1895 realobj = (char *)objp + obj_offset(cachep);
1896 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1897 realobj, size);
1898 print_objinfo(cachep, objp, 2);
1899 }
1900 }
1901 }
1902 #endif
1903
1904 #if DEBUG
1905 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1906 {
1907 int i;
1908 for (i = 0; i < cachep->num; i++) {
1909 void *objp = index_to_obj(cachep, slabp, i);
1910
1911 if (cachep->flags & SLAB_POISON) {
1912 #ifdef CONFIG_DEBUG_PAGEALLOC
1913 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1914 OFF_SLAB(cachep))
1915 kernel_map_pages(virt_to_page(objp),
1916 cachep->buffer_size / PAGE_SIZE, 1);
1917 else
1918 check_poison_obj(cachep, objp);
1919 #else
1920 check_poison_obj(cachep, objp);
1921 #endif
1922 }
1923 if (cachep->flags & SLAB_RED_ZONE) {
1924 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1925 slab_error(cachep, "start of a freed object "
1926 "was overwritten");
1927 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1928 slab_error(cachep, "end of a freed object "
1929 "was overwritten");
1930 }
1931 }
1932 }
1933 #else
1934 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1935 {
1936 }
1937 #endif
1938
1939 /**
1940 * slab_destroy - destroy and release all objects in a slab
1941 * @cachep: cache pointer being destroyed
1942 * @slabp: slab pointer being destroyed
1943 *
1944 * Destroy all the objs in a slab, and release the mem back to the system.
1945 * Before calling the slab must have been unlinked from the cache. The
1946 * cache-lock is not held/needed.
1947 */
1948 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1949 {
1950 void *addr = slabp->s_mem - slabp->colouroff;
1951
1952 slab_destroy_debugcheck(cachep, slabp);
1953 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1954 struct slab_rcu *slab_rcu;
1955
1956 slab_rcu = (struct slab_rcu *)slabp;
1957 slab_rcu->cachep = cachep;
1958 slab_rcu->addr = addr;
1959 call_rcu(&slab_rcu->head, kmem_rcu_free);
1960 } else {
1961 kmem_freepages(cachep, addr);
1962 if (OFF_SLAB(cachep))
1963 kmem_cache_free(cachep->slabp_cache, slabp);
1964 }
1965 }
1966
1967 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1968 {
1969 int i;
1970 struct kmem_list3 *l3;
1971
1972 for_each_online_cpu(i)
1973 kfree(cachep->array[i]);
1974
1975 /* NUMA: free the list3 structures */
1976 for_each_online_node(i) {
1977 l3 = cachep->nodelists[i];
1978 if (l3) {
1979 kfree(l3->shared);
1980 free_alien_cache(l3->alien);
1981 kfree(l3);
1982 }
1983 }
1984 kmem_cache_free(&cache_cache, cachep);
1985 }
1986
1987
1988 /**
1989 * calculate_slab_order - calculate size (page order) of slabs
1990 * @cachep: pointer to the cache that is being created
1991 * @size: size of objects to be created in this cache.
1992 * @align: required alignment for the objects.
1993 * @flags: slab allocation flags
1994 *
1995 * Also calculates the number of objects per slab.
1996 *
1997 * This could be made much more intelligent. For now, try to avoid using
1998 * high order pages for slabs. When the gfp() functions are more friendly
1999 * towards high-order requests, this should be changed.
2000 */
2001 static size_t calculate_slab_order(struct kmem_cache *cachep,
2002 size_t size, size_t align, unsigned long flags)
2003 {
2004 unsigned long offslab_limit;
2005 size_t left_over = 0;
2006 int gfporder;
2007
2008 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2009 unsigned int num;
2010 size_t remainder;
2011
2012 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2013 if (!num)
2014 continue;
2015
2016 if (flags & CFLGS_OFF_SLAB) {
2017 /*
2018 * Max number of objs-per-slab for caches which
2019 * use off-slab slabs. Needed to avoid a possible
2020 * looping condition in cache_grow().
2021 */
2022 offslab_limit = size - sizeof(struct slab);
2023 offslab_limit /= sizeof(kmem_bufctl_t);
2024
2025 if (num > offslab_limit)
2026 break;
2027 }
2028
2029 /* Found something acceptable - save it away */
2030 cachep->num = num;
2031 cachep->gfporder = gfporder;
2032 left_over = remainder;
2033
2034 /*
2035 * A VFS-reclaimable slab tends to have most allocations
2036 * as GFP_NOFS and we really don't want to have to be allocating
2037 * higher-order pages when we are unable to shrink dcache.
2038 */
2039 if (flags & SLAB_RECLAIM_ACCOUNT)
2040 break;
2041
2042 /*
2043 * Large number of objects is good, but very large slabs are
2044 * currently bad for the gfp()s.
2045 */
2046 if (gfporder >= slab_break_gfp_order)
2047 break;
2048
2049 /*
2050 * Acceptable internal fragmentation?
2051 */
2052 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2053 break;
2054 }
2055 return left_over;
2056 }
2057
2058 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2059 {
2060 if (g_cpucache_up == FULL)
2061 return enable_cpucache(cachep);
2062
2063 if (g_cpucache_up == NONE) {
2064 /*
2065 * Note: the first kmem_cache_create must create the cache
2066 * that's used by kmalloc(24), otherwise the creation of
2067 * further caches will BUG().
2068 */
2069 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2070
2071 /*
2072 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2073 * the first cache, then we need to set up all its list3s,
2074 * otherwise the creation of further caches will BUG().
2075 */
2076 set_up_list3s(cachep, SIZE_AC);
2077 if (INDEX_AC == INDEX_L3)
2078 g_cpucache_up = PARTIAL_L3;
2079 else
2080 g_cpucache_up = PARTIAL_AC;
2081 } else {
2082 cachep->array[smp_processor_id()] =
2083 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2084
2085 if (g_cpucache_up == PARTIAL_AC) {
2086 set_up_list3s(cachep, SIZE_L3);
2087 g_cpucache_up = PARTIAL_L3;
2088 } else {
2089 int node;
2090 for_each_online_node(node) {
2091 cachep->nodelists[node] =
2092 kmalloc_node(sizeof(struct kmem_list3),
2093 GFP_KERNEL, node);
2094 BUG_ON(!cachep->nodelists[node]);
2095 kmem_list3_init(cachep->nodelists[node]);
2096 }
2097 }
2098 }
2099 cachep->nodelists[numa_node_id()]->next_reap =
2100 jiffies + REAPTIMEOUT_LIST3 +
2101 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2102
2103 cpu_cache_get(cachep)->avail = 0;
2104 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2105 cpu_cache_get(cachep)->batchcount = 1;
2106 cpu_cache_get(cachep)->touched = 0;
2107 cachep->batchcount = 1;
2108 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2109 return 0;
2110 }
2111
2112 /**
2113 * kmem_cache_create - Create a cache.
2114 * @name: A string which is used in /proc/slabinfo to identify this cache.
2115 * @size: The size of objects to be created in this cache.
2116 * @align: The required alignment for the objects.
2117 * @flags: SLAB flags
2118 * @ctor: A constructor for the objects.
2119 *
2120 * Returns a ptr to the cache on success, NULL on failure.
2121 * Cannot be called within a int, but can be interrupted.
2122 * The @ctor is run when new pages are allocated by the cache.
2123 *
2124 * @name must be valid until the cache is destroyed. This implies that
2125 * the module calling this has to destroy the cache before getting unloaded.
2126 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2127 * therefore applications must manage it themselves.
2128 *
2129 * The flags are
2130 *
2131 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2132 * to catch references to uninitialised memory.
2133 *
2134 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2135 * for buffer overruns.
2136 *
2137 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2138 * cacheline. This can be beneficial if you're counting cycles as closely
2139 * as davem.
2140 */
2141 struct kmem_cache *
2142 kmem_cache_create (const char *name, size_t size, size_t align,
2143 unsigned long flags, void (*ctor)(void *))
2144 {
2145 size_t left_over, slab_size, ralign;
2146 struct kmem_cache *cachep = NULL, *pc;
2147
2148 /*
2149 * Sanity checks... these are all serious usage bugs.
2150 */
2151 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2152 size > KMALLOC_MAX_SIZE) {
2153 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2154 name);
2155 BUG();
2156 }
2157
2158 /*
2159 * We use cache_chain_mutex to ensure a consistent view of
2160 * cpu_online_mask as well. Please see cpuup_callback
2161 */
2162 get_online_cpus();
2163 mutex_lock(&cache_chain_mutex);
2164
2165 list_for_each_entry(pc, &cache_chain, next) {
2166 char tmp;
2167 int res;
2168
2169 /*
2170 * This happens when the module gets unloaded and doesn't
2171 * destroy its slab cache and no-one else reuses the vmalloc
2172 * area of the module. Print a warning.
2173 */
2174 res = probe_kernel_address(pc->name, tmp);
2175 if (res) {
2176 printk(KERN_ERR
2177 "SLAB: cache with size %d has lost its name\n",
2178 pc->buffer_size);
2179 continue;
2180 }
2181
2182 if (!strcmp(pc->name, name)) {
2183 printk(KERN_ERR
2184 "kmem_cache_create: duplicate cache %s\n", name);
2185 dump_stack();
2186 goto oops;
2187 }
2188 }
2189
2190 #if DEBUG
2191 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2192 #if FORCED_DEBUG
2193 /*
2194 * Enable redzoning and last user accounting, except for caches with
2195 * large objects, if the increased size would increase the object size
2196 * above the next power of two: caches with object sizes just above a
2197 * power of two have a significant amount of internal fragmentation.
2198 */
2199 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2200 2 * sizeof(unsigned long long)))
2201 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2202 if (!(flags & SLAB_DESTROY_BY_RCU))
2203 flags |= SLAB_POISON;
2204 #endif
2205 if (flags & SLAB_DESTROY_BY_RCU)
2206 BUG_ON(flags & SLAB_POISON);
2207 #endif
2208 /*
2209 * Always checks flags, a caller might be expecting debug support which
2210 * isn't available.
2211 */
2212 BUG_ON(flags & ~CREATE_MASK);
2213
2214 /*
2215 * Check that size is in terms of words. This is needed to avoid
2216 * unaligned accesses for some archs when redzoning is used, and makes
2217 * sure any on-slab bufctl's are also correctly aligned.
2218 */
2219 if (size & (BYTES_PER_WORD - 1)) {
2220 size += (BYTES_PER_WORD - 1);
2221 size &= ~(BYTES_PER_WORD - 1);
2222 }
2223
2224 /* calculate the final buffer alignment: */
2225
2226 /* 1) arch recommendation: can be overridden for debug */
2227 if (flags & SLAB_HWCACHE_ALIGN) {
2228 /*
2229 * Default alignment: as specified by the arch code. Except if
2230 * an object is really small, then squeeze multiple objects into
2231 * one cacheline.
2232 */
2233 ralign = cache_line_size();
2234 while (size <= ralign / 2)
2235 ralign /= 2;
2236 } else {
2237 ralign = BYTES_PER_WORD;
2238 }
2239
2240 /*
2241 * Redzoning and user store require word alignment or possibly larger.
2242 * Note this will be overridden by architecture or caller mandated
2243 * alignment if either is greater than BYTES_PER_WORD.
2244 */
2245 if (flags & SLAB_STORE_USER)
2246 ralign = BYTES_PER_WORD;
2247
2248 if (flags & SLAB_RED_ZONE) {
2249 ralign = REDZONE_ALIGN;
2250 /* If redzoning, ensure that the second redzone is suitably
2251 * aligned, by adjusting the object size accordingly. */
2252 size += REDZONE_ALIGN - 1;
2253 size &= ~(REDZONE_ALIGN - 1);
2254 }
2255
2256 /* 2) arch mandated alignment */
2257 if (ralign < ARCH_SLAB_MINALIGN) {
2258 ralign = ARCH_SLAB_MINALIGN;
2259 }
2260 /* 3) caller mandated alignment */
2261 if (ralign < align) {
2262 ralign = align;
2263 }
2264 /* disable debug if necessary */
2265 if (ralign > __alignof__(unsigned long long))
2266 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2267 /*
2268 * 4) Store it.
2269 */
2270 align = ralign;
2271
2272 /* Get cache's description obj. */
2273 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2274 if (!cachep)
2275 goto oops;
2276
2277 #if DEBUG
2278 cachep->obj_size = size;
2279
2280 /*
2281 * Both debugging options require word-alignment which is calculated
2282 * into align above.
2283 */
2284 if (flags & SLAB_RED_ZONE) {
2285 /* add space for red zone words */
2286 cachep->obj_offset += sizeof(unsigned long long);
2287 size += 2 * sizeof(unsigned long long);
2288 }
2289 if (flags & SLAB_STORE_USER) {
2290 /* user store requires one word storage behind the end of
2291 * the real object. But if the second red zone needs to be
2292 * aligned to 64 bits, we must allow that much space.
2293 */
2294 if (flags & SLAB_RED_ZONE)
2295 size += REDZONE_ALIGN;
2296 else
2297 size += BYTES_PER_WORD;
2298 }
2299 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2300 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2301 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2302 cachep->obj_offset += PAGE_SIZE - size;
2303 size = PAGE_SIZE;
2304 }
2305 #endif
2306 #endif
2307
2308 /*
2309 * Determine if the slab management is 'on' or 'off' slab.
2310 * (bootstrapping cannot cope with offslab caches so don't do
2311 * it too early on.)
2312 */
2313 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2314 /*
2315 * Size is large, assume best to place the slab management obj
2316 * off-slab (should allow better packing of objs).
2317 */
2318 flags |= CFLGS_OFF_SLAB;
2319
2320 size = ALIGN(size, align);
2321
2322 left_over = calculate_slab_order(cachep, size, align, flags);
2323
2324 if (!cachep->num) {
2325 printk(KERN_ERR
2326 "kmem_cache_create: couldn't create cache %s.\n", name);
2327 kmem_cache_free(&cache_cache, cachep);
2328 cachep = NULL;
2329 goto oops;
2330 }
2331 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2332 + sizeof(struct slab), align);
2333
2334 /*
2335 * If the slab has been placed off-slab, and we have enough space then
2336 * move it on-slab. This is at the expense of any extra colouring.
2337 */
2338 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2339 flags &= ~CFLGS_OFF_SLAB;
2340 left_over -= slab_size;
2341 }
2342
2343 if (flags & CFLGS_OFF_SLAB) {
2344 /* really off slab. No need for manual alignment */
2345 slab_size =
2346 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2347 }
2348
2349 cachep->colour_off = cache_line_size();
2350 /* Offset must be a multiple of the alignment. */
2351 if (cachep->colour_off < align)
2352 cachep->colour_off = align;
2353 cachep->colour = left_over / cachep->colour_off;
2354 cachep->slab_size = slab_size;
2355 cachep->flags = flags;
2356 cachep->gfpflags = 0;
2357 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2358 cachep->gfpflags |= GFP_DMA;
2359 cachep->buffer_size = size;
2360 cachep->reciprocal_buffer_size = reciprocal_value(size);
2361
2362 if (flags & CFLGS_OFF_SLAB) {
2363 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2364 /*
2365 * This is a possibility for one of the malloc_sizes caches.
2366 * But since we go off slab only for object size greater than
2367 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2368 * this should not happen at all.
2369 * But leave a BUG_ON for some lucky dude.
2370 */
2371 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2372 }
2373 cachep->ctor = ctor;
2374 cachep->name = name;
2375
2376 if (setup_cpu_cache(cachep)) {
2377 __kmem_cache_destroy(cachep);
2378 cachep = NULL;
2379 goto oops;
2380 }
2381
2382 /* cache setup completed, link it into the list */
2383 list_add(&cachep->next, &cache_chain);
2384 oops:
2385 if (!cachep && (flags & SLAB_PANIC))
2386 panic("kmem_cache_create(): failed to create slab `%s'\n",
2387 name);
2388 mutex_unlock(&cache_chain_mutex);
2389 put_online_cpus();
2390 return cachep;
2391 }
2392 EXPORT_SYMBOL(kmem_cache_create);
2393
2394 #if DEBUG
2395 static void check_irq_off(void)
2396 {
2397 BUG_ON(!irqs_disabled());
2398 }
2399
2400 static void check_irq_on(void)
2401 {
2402 BUG_ON(irqs_disabled());
2403 }
2404
2405 static void check_spinlock_acquired(struct kmem_cache *cachep)
2406 {
2407 #ifdef CONFIG_SMP
2408 check_irq_off();
2409 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2410 #endif
2411 }
2412
2413 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2414 {
2415 #ifdef CONFIG_SMP
2416 check_irq_off();
2417 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2418 #endif
2419 }
2420
2421 #else
2422 #define check_irq_off() do { } while(0)
2423 #define check_irq_on() do { } while(0)
2424 #define check_spinlock_acquired(x) do { } while(0)
2425 #define check_spinlock_acquired_node(x, y) do { } while(0)
2426 #endif
2427
2428 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2429 struct array_cache *ac,
2430 int force, int node);
2431
2432 static void do_drain(void *arg)
2433 {
2434 struct kmem_cache *cachep = arg;
2435 struct array_cache *ac;
2436 int node = numa_node_id();
2437
2438 check_irq_off();
2439 ac = cpu_cache_get(cachep);
2440 spin_lock(&cachep->nodelists[node]->list_lock);
2441 free_block(cachep, ac->entry, ac->avail, node);
2442 spin_unlock(&cachep->nodelists[node]->list_lock);
2443 ac->avail = 0;
2444 }
2445
2446 static void drain_cpu_caches(struct kmem_cache *cachep)
2447 {
2448 struct kmem_list3 *l3;
2449 int node;
2450
2451 on_each_cpu(do_drain, cachep, 1);
2452 check_irq_on();
2453 for_each_online_node(node) {
2454 l3 = cachep->nodelists[node];
2455 if (l3 && l3->alien)
2456 drain_alien_cache(cachep, l3->alien);
2457 }
2458
2459 for_each_online_node(node) {
2460 l3 = cachep->nodelists[node];
2461 if (l3)
2462 drain_array(cachep, l3, l3->shared, 1, node);
2463 }
2464 }
2465
2466 /*
2467 * Remove slabs from the list of free slabs.
2468 * Specify the number of slabs to drain in tofree.
2469 *
2470 * Returns the actual number of slabs released.
2471 */
2472 static int drain_freelist(struct kmem_cache *cache,
2473 struct kmem_list3 *l3, int tofree)
2474 {
2475 struct list_head *p;
2476 int nr_freed;
2477 struct slab *slabp;
2478
2479 nr_freed = 0;
2480 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2481
2482 spin_lock_irq(&l3->list_lock);
2483 p = l3->slabs_free.prev;
2484 if (p == &l3->slabs_free) {
2485 spin_unlock_irq(&l3->list_lock);
2486 goto out;
2487 }
2488
2489 slabp = list_entry(p, struct slab, list);
2490 #if DEBUG
2491 BUG_ON(slabp->inuse);
2492 #endif
2493 list_del(&slabp->list);
2494 /*
2495 * Safe to drop the lock. The slab is no longer linked
2496 * to the cache.
2497 */
2498 l3->free_objects -= cache->num;
2499 spin_unlock_irq(&l3->list_lock);
2500 slab_destroy(cache, slabp);
2501 nr_freed++;
2502 }
2503 out:
2504 return nr_freed;
2505 }
2506
2507 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2508 static int __cache_shrink(struct kmem_cache *cachep)
2509 {
2510 int ret = 0, i = 0;
2511 struct kmem_list3 *l3;
2512
2513 drain_cpu_caches(cachep);
2514
2515 check_irq_on();
2516 for_each_online_node(i) {
2517 l3 = cachep->nodelists[i];
2518 if (!l3)
2519 continue;
2520
2521 drain_freelist(cachep, l3, l3->free_objects);
2522
2523 ret += !list_empty(&l3->slabs_full) ||
2524 !list_empty(&l3->slabs_partial);
2525 }
2526 return (ret ? 1 : 0);
2527 }
2528
2529 /**
2530 * kmem_cache_shrink - Shrink a cache.
2531 * @cachep: The cache to shrink.
2532 *
2533 * Releases as many slabs as possible for a cache.
2534 * To help debugging, a zero exit status indicates all slabs were released.
2535 */
2536 int kmem_cache_shrink(struct kmem_cache *cachep)
2537 {
2538 int ret;
2539 BUG_ON(!cachep || in_interrupt());
2540
2541 get_online_cpus();
2542 mutex_lock(&cache_chain_mutex);
2543 ret = __cache_shrink(cachep);
2544 mutex_unlock(&cache_chain_mutex);
2545 put_online_cpus();
2546 return ret;
2547 }
2548 EXPORT_SYMBOL(kmem_cache_shrink);
2549
2550 /**
2551 * kmem_cache_destroy - delete a cache
2552 * @cachep: the cache to destroy
2553 *
2554 * Remove a &struct kmem_cache object from the slab cache.
2555 *
2556 * It is expected this function will be called by a module when it is
2557 * unloaded. This will remove the cache completely, and avoid a duplicate
2558 * cache being allocated each time a module is loaded and unloaded, if the
2559 * module doesn't have persistent in-kernel storage across loads and unloads.
2560 *
2561 * The cache must be empty before calling this function.
2562 *
2563 * The caller must guarantee that noone will allocate memory from the cache
2564 * during the kmem_cache_destroy().
2565 */
2566 void kmem_cache_destroy(struct kmem_cache *cachep)
2567 {
2568 BUG_ON(!cachep || in_interrupt());
2569
2570 /* Find the cache in the chain of caches. */
2571 get_online_cpus();
2572 mutex_lock(&cache_chain_mutex);
2573 /*
2574 * the chain is never empty, cache_cache is never destroyed
2575 */
2576 list_del(&cachep->next);
2577 if (__cache_shrink(cachep)) {
2578 slab_error(cachep, "Can't free all objects");
2579 list_add(&cachep->next, &cache_chain);
2580 mutex_unlock(&cache_chain_mutex);
2581 put_online_cpus();
2582 return;
2583 }
2584
2585 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2586 synchronize_rcu();
2587
2588 __kmem_cache_destroy(cachep);
2589 mutex_unlock(&cache_chain_mutex);
2590 put_online_cpus();
2591 }
2592 EXPORT_SYMBOL(kmem_cache_destroy);
2593
2594 /*
2595 * Get the memory for a slab management obj.
2596 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2597 * always come from malloc_sizes caches. The slab descriptor cannot
2598 * come from the same cache which is getting created because,
2599 * when we are searching for an appropriate cache for these
2600 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2601 * If we are creating a malloc_sizes cache here it would not be visible to
2602 * kmem_find_general_cachep till the initialization is complete.
2603 * Hence we cannot have slabp_cache same as the original cache.
2604 */
2605 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2606 int colour_off, gfp_t local_flags,
2607 int nodeid)
2608 {
2609 struct slab *slabp;
2610
2611 if (OFF_SLAB(cachep)) {
2612 /* Slab management obj is off-slab. */
2613 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2614 local_flags, nodeid);
2615 if (!slabp)
2616 return NULL;
2617 } else {
2618 slabp = objp + colour_off;
2619 colour_off += cachep->slab_size;
2620 }
2621 slabp->inuse = 0;
2622 slabp->colouroff = colour_off;
2623 slabp->s_mem = objp + colour_off;
2624 slabp->nodeid = nodeid;
2625 slabp->free = 0;
2626 return slabp;
2627 }
2628
2629 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2630 {
2631 return (kmem_bufctl_t *) (slabp + 1);
2632 }
2633
2634 static void cache_init_objs(struct kmem_cache *cachep,
2635 struct slab *slabp)
2636 {
2637 int i;
2638
2639 for (i = 0; i < cachep->num; i++) {
2640 void *objp = index_to_obj(cachep, slabp, i);
2641 #if DEBUG
2642 /* need to poison the objs? */
2643 if (cachep->flags & SLAB_POISON)
2644 poison_obj(cachep, objp, POISON_FREE);
2645 if (cachep->flags & SLAB_STORE_USER)
2646 *dbg_userword(cachep, objp) = NULL;
2647
2648 if (cachep->flags & SLAB_RED_ZONE) {
2649 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2650 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2651 }
2652 /*
2653 * Constructors are not allowed to allocate memory from the same
2654 * cache which they are a constructor for. Otherwise, deadlock.
2655 * They must also be threaded.
2656 */
2657 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2658 cachep->ctor(objp + obj_offset(cachep));
2659
2660 if (cachep->flags & SLAB_RED_ZONE) {
2661 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2662 slab_error(cachep, "constructor overwrote the"
2663 " end of an object");
2664 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2665 slab_error(cachep, "constructor overwrote the"
2666 " start of an object");
2667 }
2668 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2669 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2670 kernel_map_pages(virt_to_page(objp),
2671 cachep->buffer_size / PAGE_SIZE, 0);
2672 #else
2673 if (cachep->ctor)
2674 cachep->ctor(objp);
2675 #endif
2676 slab_bufctl(slabp)[i] = i + 1;
2677 }
2678 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2679 }
2680
2681 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2682 {
2683 if (CONFIG_ZONE_DMA_FLAG) {
2684 if (flags & GFP_DMA)
2685 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2686 else
2687 BUG_ON(cachep->gfpflags & GFP_DMA);
2688 }
2689 }
2690
2691 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2692 int nodeid)
2693 {
2694 void *objp = index_to_obj(cachep, slabp, slabp->free);
2695 kmem_bufctl_t next;
2696
2697 slabp->inuse++;
2698 next = slab_bufctl(slabp)[slabp->free];
2699 #if DEBUG
2700 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2701 WARN_ON(slabp->nodeid != nodeid);
2702 #endif
2703 slabp->free = next;
2704
2705 return objp;
2706 }
2707
2708 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2709 void *objp, int nodeid)
2710 {
2711 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2712
2713 #if DEBUG
2714 /* Verify that the slab belongs to the intended node */
2715 WARN_ON(slabp->nodeid != nodeid);
2716
2717 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2718 printk(KERN_ERR "slab: double free detected in cache "
2719 "'%s', objp %p\n", cachep->name, objp);
2720 BUG();
2721 }
2722 #endif
2723 slab_bufctl(slabp)[objnr] = slabp->free;
2724 slabp->free = objnr;
2725 slabp->inuse--;
2726 }
2727
2728 /*
2729 * Map pages beginning at addr to the given cache and slab. This is required
2730 * for the slab allocator to be able to lookup the cache and slab of a
2731 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2732 */
2733 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2734 void *addr)
2735 {
2736 int nr_pages;
2737 struct page *page;
2738
2739 page = virt_to_page(addr);
2740
2741 nr_pages = 1;
2742 if (likely(!PageCompound(page)))
2743 nr_pages <<= cache->gfporder;
2744
2745 do {
2746 page_set_cache(page, cache);
2747 page_set_slab(page, slab);
2748 page++;
2749 } while (--nr_pages);
2750 }
2751
2752 /*
2753 * Grow (by 1) the number of slabs within a cache. This is called by
2754 * kmem_cache_alloc() when there are no active objs left in a cache.
2755 */
2756 static int cache_grow(struct kmem_cache *cachep,
2757 gfp_t flags, int nodeid, void *objp)
2758 {
2759 struct slab *slabp;
2760 size_t offset;
2761 gfp_t local_flags;
2762 struct kmem_list3 *l3;
2763
2764 /*
2765 * Be lazy and only check for valid flags here, keeping it out of the
2766 * critical path in kmem_cache_alloc().
2767 */
2768 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2769 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2770
2771 /* Take the l3 list lock to change the colour_next on this node */
2772 check_irq_off();
2773 l3 = cachep->nodelists[nodeid];
2774 spin_lock(&l3->list_lock);
2775
2776 /* Get colour for the slab, and cal the next value. */
2777 offset = l3->colour_next;
2778 l3->colour_next++;
2779 if (l3->colour_next >= cachep->colour)
2780 l3->colour_next = 0;
2781 spin_unlock(&l3->list_lock);
2782
2783 offset *= cachep->colour_off;
2784
2785 if (local_flags & __GFP_WAIT)
2786 local_irq_enable();
2787
2788 /*
2789 * The test for missing atomic flag is performed here, rather than
2790 * the more obvious place, simply to reduce the critical path length
2791 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2792 * will eventually be caught here (where it matters).
2793 */
2794 kmem_flagcheck(cachep, flags);
2795
2796 /*
2797 * Get mem for the objs. Attempt to allocate a physical page from
2798 * 'nodeid'.
2799 */
2800 if (!objp)
2801 objp = kmem_getpages(cachep, local_flags, nodeid);
2802 if (!objp)
2803 goto failed;
2804
2805 /* Get slab management. */
2806 slabp = alloc_slabmgmt(cachep, objp, offset,
2807 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2808 if (!slabp)
2809 goto opps1;
2810
2811 slab_map_pages(cachep, slabp, objp);
2812
2813 cache_init_objs(cachep, slabp);
2814
2815 if (local_flags & __GFP_WAIT)
2816 local_irq_disable();
2817 check_irq_off();
2818 spin_lock(&l3->list_lock);
2819
2820 /* Make slab active. */
2821 list_add_tail(&slabp->list, &(l3->slabs_free));
2822 STATS_INC_GROWN(cachep);
2823 l3->free_objects += cachep->num;
2824 spin_unlock(&l3->list_lock);
2825 return 1;
2826 opps1:
2827 kmem_freepages(cachep, objp);
2828 failed:
2829 if (local_flags & __GFP_WAIT)
2830 local_irq_disable();
2831 return 0;
2832 }
2833
2834 #if DEBUG
2835
2836 /*
2837 * Perform extra freeing checks:
2838 * - detect bad pointers.
2839 * - POISON/RED_ZONE checking
2840 */
2841 static void kfree_debugcheck(const void *objp)
2842 {
2843 if (!virt_addr_valid(objp)) {
2844 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2845 (unsigned long)objp);
2846 BUG();
2847 }
2848 }
2849
2850 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2851 {
2852 unsigned long long redzone1, redzone2;
2853
2854 redzone1 = *dbg_redzone1(cache, obj);
2855 redzone2 = *dbg_redzone2(cache, obj);
2856
2857 /*
2858 * Redzone is ok.
2859 */
2860 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2861 return;
2862
2863 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2864 slab_error(cache, "double free detected");
2865 else
2866 slab_error(cache, "memory outside object was overwritten");
2867
2868 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2869 obj, redzone1, redzone2);
2870 }
2871
2872 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2873 void *caller)
2874 {
2875 struct page *page;
2876 unsigned int objnr;
2877 struct slab *slabp;
2878
2879 BUG_ON(virt_to_cache(objp) != cachep);
2880
2881 objp -= obj_offset(cachep);
2882 kfree_debugcheck(objp);
2883 page = virt_to_head_page(objp);
2884
2885 slabp = page_get_slab(page);
2886
2887 if (cachep->flags & SLAB_RED_ZONE) {
2888 verify_redzone_free(cachep, objp);
2889 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2890 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2891 }
2892 if (cachep->flags & SLAB_STORE_USER)
2893 *dbg_userword(cachep, objp) = caller;
2894
2895 objnr = obj_to_index(cachep, slabp, objp);
2896
2897 BUG_ON(objnr >= cachep->num);
2898 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2899
2900 #ifdef CONFIG_DEBUG_SLAB_LEAK
2901 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2902 #endif
2903 if (cachep->flags & SLAB_POISON) {
2904 #ifdef CONFIG_DEBUG_PAGEALLOC
2905 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2906 store_stackinfo(cachep, objp, (unsigned long)caller);
2907 kernel_map_pages(virt_to_page(objp),
2908 cachep->buffer_size / PAGE_SIZE, 0);
2909 } else {
2910 poison_obj(cachep, objp, POISON_FREE);
2911 }
2912 #else
2913 poison_obj(cachep, objp, POISON_FREE);
2914 #endif
2915 }
2916 return objp;
2917 }
2918
2919 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2920 {
2921 kmem_bufctl_t i;
2922 int entries = 0;
2923
2924 /* Check slab's freelist to see if this obj is there. */
2925 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2926 entries++;
2927 if (entries > cachep->num || i >= cachep->num)
2928 goto bad;
2929 }
2930 if (entries != cachep->num - slabp->inuse) {
2931 bad:
2932 printk(KERN_ERR "slab: Internal list corruption detected in "
2933 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2934 cachep->name, cachep->num, slabp, slabp->inuse);
2935 for (i = 0;
2936 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2937 i++) {
2938 if (i % 16 == 0)
2939 printk("\n%03x:", i);
2940 printk(" %02x", ((unsigned char *)slabp)[i]);
2941 }
2942 printk("\n");
2943 BUG();
2944 }
2945 }
2946 #else
2947 #define kfree_debugcheck(x) do { } while(0)
2948 #define cache_free_debugcheck(x,objp,z) (objp)
2949 #define check_slabp(x,y) do { } while(0)
2950 #endif
2951
2952 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2953 {
2954 int batchcount;
2955 struct kmem_list3 *l3;
2956 struct array_cache *ac;
2957 int node;
2958
2959 retry:
2960 check_irq_off();
2961 node = numa_node_id();
2962 ac = cpu_cache_get(cachep);
2963 batchcount = ac->batchcount;
2964 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2965 /*
2966 * If there was little recent activity on this cache, then
2967 * perform only a partial refill. Otherwise we could generate
2968 * refill bouncing.
2969 */
2970 batchcount = BATCHREFILL_LIMIT;
2971 }
2972 l3 = cachep->nodelists[node];
2973
2974 BUG_ON(ac->avail > 0 || !l3);
2975 spin_lock(&l3->list_lock);
2976
2977 /* See if we can refill from the shared array */
2978 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2979 goto alloc_done;
2980
2981 while (batchcount > 0) {
2982 struct list_head *entry;
2983 struct slab *slabp;
2984 /* Get slab alloc is to come from. */
2985 entry = l3->slabs_partial.next;
2986 if (entry == &l3->slabs_partial) {
2987 l3->free_touched = 1;
2988 entry = l3->slabs_free.next;
2989 if (entry == &l3->slabs_free)
2990 goto must_grow;
2991 }
2992
2993 slabp = list_entry(entry, struct slab, list);
2994 check_slabp(cachep, slabp);
2995 check_spinlock_acquired(cachep);
2996
2997 /*
2998 * The slab was either on partial or free list so
2999 * there must be at least one object available for
3000 * allocation.
3001 */
3002 BUG_ON(slabp->inuse >= cachep->num);
3003
3004 while (slabp->inuse < cachep->num && batchcount--) {
3005 STATS_INC_ALLOCED(cachep);
3006 STATS_INC_ACTIVE(cachep);
3007 STATS_SET_HIGH(cachep);
3008
3009 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3010 node);
3011 }
3012 check_slabp(cachep, slabp);
3013
3014 /* move slabp to correct slabp list: */
3015 list_del(&slabp->list);
3016 if (slabp->free == BUFCTL_END)
3017 list_add(&slabp->list, &l3->slabs_full);
3018 else
3019 list_add(&slabp->list, &l3->slabs_partial);
3020 }
3021
3022 must_grow:
3023 l3->free_objects -= ac->avail;
3024 alloc_done:
3025 spin_unlock(&l3->list_lock);
3026
3027 if (unlikely(!ac->avail)) {
3028 int x;
3029 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3030
3031 /* cache_grow can reenable interrupts, then ac could change. */
3032 ac = cpu_cache_get(cachep);
3033 if (!x && ac->avail == 0) /* no objects in sight? abort */
3034 return NULL;
3035
3036 if (!ac->avail) /* objects refilled by interrupt? */
3037 goto retry;
3038 }
3039 ac->touched = 1;
3040 return ac->entry[--ac->avail];
3041 }
3042
3043 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3044 gfp_t flags)
3045 {
3046 might_sleep_if(flags & __GFP_WAIT);
3047 #if DEBUG
3048 kmem_flagcheck(cachep, flags);
3049 #endif
3050 }
3051
3052 #if DEBUG
3053 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3054 gfp_t flags, void *objp, void *caller)
3055 {
3056 if (!objp)
3057 return objp;
3058 if (cachep->flags & SLAB_POISON) {
3059 #ifdef CONFIG_DEBUG_PAGEALLOC
3060 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3061 kernel_map_pages(virt_to_page(objp),
3062 cachep->buffer_size / PAGE_SIZE, 1);
3063 else
3064 check_poison_obj(cachep, objp);
3065 #else
3066 check_poison_obj(cachep, objp);
3067 #endif
3068 poison_obj(cachep, objp, POISON_INUSE);
3069 }
3070 if (cachep->flags & SLAB_STORE_USER)
3071 *dbg_userword(cachep, objp) = caller;
3072
3073 if (cachep->flags & SLAB_RED_ZONE) {
3074 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3075 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3076 slab_error(cachep, "double free, or memory outside"
3077 " object was overwritten");
3078 printk(KERN_ERR
3079 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3080 objp, *dbg_redzone1(cachep, objp),
3081 *dbg_redzone2(cachep, objp));
3082 }
3083 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3084 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3085 }
3086 #ifdef CONFIG_DEBUG_SLAB_LEAK
3087 {
3088 struct slab *slabp;
3089 unsigned objnr;
3090
3091 slabp = page_get_slab(virt_to_head_page(objp));
3092 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3093 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3094 }
3095 #endif
3096 objp += obj_offset(cachep);
3097 if (cachep->ctor && cachep->flags & SLAB_POISON)
3098 cachep->ctor(objp);
3099 #if ARCH_SLAB_MINALIGN
3100 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3101 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3102 objp, ARCH_SLAB_MINALIGN);
3103 }
3104 #endif
3105 return objp;
3106 }
3107 #else
3108 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3109 #endif
3110
3111 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3112 {
3113 if (cachep == &cache_cache)
3114 return false;
3115
3116 return should_failslab(obj_size(cachep), flags);
3117 }
3118
3119 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3120 {
3121 void *objp;
3122 struct array_cache *ac;
3123
3124 check_irq_off();
3125
3126 ac = cpu_cache_get(cachep);
3127 if (likely(ac->avail)) {
3128 STATS_INC_ALLOCHIT(cachep);
3129 ac->touched = 1;
3130 objp = ac->entry[--ac->avail];
3131 } else {
3132 STATS_INC_ALLOCMISS(cachep);
3133 objp = cache_alloc_refill(cachep, flags);
3134 }
3135 return objp;
3136 }
3137
3138 #ifdef CONFIG_NUMA
3139 /*
3140 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3141 *
3142 * If we are in_interrupt, then process context, including cpusets and
3143 * mempolicy, may not apply and should not be used for allocation policy.
3144 */
3145 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3146 {
3147 int nid_alloc, nid_here;
3148
3149 if (in_interrupt() || (flags & __GFP_THISNODE))
3150 return NULL;
3151 nid_alloc = nid_here = numa_node_id();
3152 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3153 nid_alloc = cpuset_mem_spread_node();
3154 else if (current->mempolicy)
3155 nid_alloc = slab_node(current->mempolicy);
3156 if (nid_alloc != nid_here)
3157 return ____cache_alloc_node(cachep, flags, nid_alloc);
3158 return NULL;
3159 }
3160
3161 /*
3162 * Fallback function if there was no memory available and no objects on a
3163 * certain node and fall back is permitted. First we scan all the
3164 * available nodelists for available objects. If that fails then we
3165 * perform an allocation without specifying a node. This allows the page
3166 * allocator to do its reclaim / fallback magic. We then insert the
3167 * slab into the proper nodelist and then allocate from it.
3168 */
3169 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3170 {
3171 struct zonelist *zonelist;
3172 gfp_t local_flags;
3173 struct zoneref *z;
3174 struct zone *zone;
3175 enum zone_type high_zoneidx = gfp_zone(flags);
3176 void *obj = NULL;
3177 int nid;
3178
3179 if (flags & __GFP_THISNODE)
3180 return NULL;
3181
3182 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3183 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3184
3185 retry:
3186 /*
3187 * Look through allowed nodes for objects available
3188 * from existing per node queues.
3189 */
3190 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3191 nid = zone_to_nid(zone);
3192
3193 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3194 cache->nodelists[nid] &&
3195 cache->nodelists[nid]->free_objects) {
3196 obj = ____cache_alloc_node(cache,
3197 flags | GFP_THISNODE, nid);
3198 if (obj)
3199 break;
3200 }
3201 }
3202
3203 if (!obj) {
3204 /*
3205 * This allocation will be performed within the constraints
3206 * of the current cpuset / memory policy requirements.
3207 * We may trigger various forms of reclaim on the allowed
3208 * set and go into memory reserves if necessary.
3209 */
3210 if (local_flags & __GFP_WAIT)
3211 local_irq_enable();
3212 kmem_flagcheck(cache, flags);
3213 obj = kmem_getpages(cache, local_flags, -1);
3214 if (local_flags & __GFP_WAIT)
3215 local_irq_disable();
3216 if (obj) {
3217 /*
3218 * Insert into the appropriate per node queues
3219 */
3220 nid = page_to_nid(virt_to_page(obj));
3221 if (cache_grow(cache, flags, nid, obj)) {
3222 obj = ____cache_alloc_node(cache,
3223 flags | GFP_THISNODE, nid);
3224 if (!obj)
3225 /*
3226 * Another processor may allocate the
3227 * objects in the slab since we are
3228 * not holding any locks.
3229 */
3230 goto retry;
3231 } else {
3232 /* cache_grow already freed obj */
3233 obj = NULL;
3234 }
3235 }
3236 }
3237 return obj;
3238 }
3239
3240 /*
3241 * A interface to enable slab creation on nodeid
3242 */
3243 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3244 int nodeid)
3245 {
3246 struct list_head *entry;
3247 struct slab *slabp;
3248 struct kmem_list3 *l3;
3249 void *obj;
3250 int x;
3251
3252 l3 = cachep->nodelists[nodeid];
3253 BUG_ON(!l3);
3254
3255 retry:
3256 check_irq_off();
3257 spin_lock(&l3->list_lock);
3258 entry = l3->slabs_partial.next;
3259 if (entry == &l3->slabs_partial) {
3260 l3->free_touched = 1;
3261 entry = l3->slabs_free.next;
3262 if (entry == &l3->slabs_free)
3263 goto must_grow;
3264 }
3265
3266 slabp = list_entry(entry, struct slab, list);
3267 check_spinlock_acquired_node(cachep, nodeid);
3268 check_slabp(cachep, slabp);
3269
3270 STATS_INC_NODEALLOCS(cachep);
3271 STATS_INC_ACTIVE(cachep);
3272 STATS_SET_HIGH(cachep);
3273
3274 BUG_ON(slabp->inuse == cachep->num);
3275
3276 obj = slab_get_obj(cachep, slabp, nodeid);
3277 check_slabp(cachep, slabp);
3278 l3->free_objects--;
3279 /* move slabp to correct slabp list: */
3280 list_del(&slabp->list);
3281
3282 if (slabp->free == BUFCTL_END)
3283 list_add(&slabp->list, &l3->slabs_full);
3284 else
3285 list_add(&slabp->list, &l3->slabs_partial);
3286
3287 spin_unlock(&l3->list_lock);
3288 goto done;
3289
3290 must_grow:
3291 spin_unlock(&l3->list_lock);
3292 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3293 if (x)
3294 goto retry;
3295
3296 return fallback_alloc(cachep, flags);
3297
3298 done:
3299 return obj;
3300 }
3301
3302 /**
3303 * kmem_cache_alloc_node - Allocate an object on the specified node
3304 * @cachep: The cache to allocate from.
3305 * @flags: See kmalloc().
3306 * @nodeid: node number of the target node.
3307 * @caller: return address of caller, used for debug information
3308 *
3309 * Identical to kmem_cache_alloc but it will allocate memory on the given
3310 * node, which can improve the performance for cpu bound structures.
3311 *
3312 * Fallback to other node is possible if __GFP_THISNODE is not set.
3313 */
3314 static __always_inline void *
3315 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3316 void *caller)
3317 {
3318 unsigned long save_flags;
3319 void *ptr;
3320
3321 lockdep_trace_alloc(flags);
3322
3323 if (slab_should_failslab(cachep, flags))
3324 return NULL;
3325
3326 cache_alloc_debugcheck_before(cachep, flags);
3327 local_irq_save(save_flags);
3328
3329 if (unlikely(nodeid == -1))
3330 nodeid = numa_node_id();
3331
3332 if (unlikely(!cachep->nodelists[nodeid])) {
3333 /* Node not bootstrapped yet */
3334 ptr = fallback_alloc(cachep, flags);
3335 goto out;
3336 }
3337
3338 if (nodeid == numa_node_id()) {
3339 /*
3340 * Use the locally cached objects if possible.
3341 * However ____cache_alloc does not allow fallback
3342 * to other nodes. It may fail while we still have
3343 * objects on other nodes available.
3344 */
3345 ptr = ____cache_alloc(cachep, flags);
3346 if (ptr)
3347 goto out;
3348 }
3349 /* ___cache_alloc_node can fall back to other nodes */
3350 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3351 out:
3352 local_irq_restore(save_flags);
3353 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3354
3355 if (unlikely((flags & __GFP_ZERO) && ptr))
3356 memset(ptr, 0, obj_size(cachep));
3357
3358 return ptr;
3359 }
3360
3361 static __always_inline void *
3362 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3363 {
3364 void *objp;
3365
3366 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3367 objp = alternate_node_alloc(cache, flags);
3368 if (objp)
3369 goto out;
3370 }
3371 objp = ____cache_alloc(cache, flags);
3372
3373 /*
3374 * We may just have run out of memory on the local node.
3375 * ____cache_alloc_node() knows how to locate memory on other nodes
3376 */
3377 if (!objp)
3378 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3379
3380 out:
3381 return objp;
3382 }
3383 #else
3384
3385 static __always_inline void *
3386 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3387 {
3388 return ____cache_alloc(cachep, flags);
3389 }
3390
3391 #endif /* CONFIG_NUMA */
3392
3393 static __always_inline void *
3394 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3395 {
3396 unsigned long save_flags;
3397 void *objp;
3398
3399 lockdep_trace_alloc(flags);
3400
3401 if (slab_should_failslab(cachep, flags))
3402 return NULL;
3403
3404 cache_alloc_debugcheck_before(cachep, flags);
3405 local_irq_save(save_flags);
3406 objp = __do_cache_alloc(cachep, flags);
3407 local_irq_restore(save_flags);
3408 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3409 prefetchw(objp);
3410
3411 if (unlikely((flags & __GFP_ZERO) && objp))
3412 memset(objp, 0, obj_size(cachep));
3413
3414 return objp;
3415 }
3416
3417 /*
3418 * Caller needs to acquire correct kmem_list's list_lock
3419 */
3420 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3421 int node)
3422 {
3423 int i;
3424 struct kmem_list3 *l3;
3425
3426 for (i = 0; i < nr_objects; i++) {
3427 void *objp = objpp[i];
3428 struct slab *slabp;
3429
3430 slabp = virt_to_slab(objp);
3431 l3 = cachep->nodelists[node];
3432 list_del(&slabp->list);
3433 check_spinlock_acquired_node(cachep, node);
3434 check_slabp(cachep, slabp);
3435 slab_put_obj(cachep, slabp, objp, node);
3436 STATS_DEC_ACTIVE(cachep);
3437 l3->free_objects++;
3438 check_slabp(cachep, slabp);
3439
3440 /* fixup slab chains */
3441 if (slabp->inuse == 0) {
3442 if (l3->free_objects > l3->free_limit) {
3443 l3->free_objects -= cachep->num;
3444 /* No need to drop any previously held
3445 * lock here, even if we have a off-slab slab
3446 * descriptor it is guaranteed to come from
3447 * a different cache, refer to comments before
3448 * alloc_slabmgmt.
3449 */
3450 slab_destroy(cachep, slabp);
3451 } else {
3452 list_add(&slabp->list, &l3->slabs_free);
3453 }
3454 } else {
3455 /* Unconditionally move a slab to the end of the
3456 * partial list on free - maximum time for the
3457 * other objects to be freed, too.
3458 */
3459 list_add_tail(&slabp->list, &l3->slabs_partial);
3460 }
3461 }
3462 }
3463
3464 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3465 {
3466 int batchcount;
3467 struct kmem_list3 *l3;
3468 int node = numa_node_id();
3469
3470 batchcount = ac->batchcount;
3471 #if DEBUG
3472 BUG_ON(!batchcount || batchcount > ac->avail);
3473 #endif
3474 check_irq_off();
3475 l3 = cachep->nodelists[node];
3476 spin_lock(&l3->list_lock);
3477 if (l3->shared) {
3478 struct array_cache *shared_array = l3->shared;
3479 int max = shared_array->limit - shared_array->avail;
3480 if (max) {
3481 if (batchcount > max)
3482 batchcount = max;
3483 memcpy(&(shared_array->entry[shared_array->avail]),
3484 ac->entry, sizeof(void *) * batchcount);
3485 shared_array->avail += batchcount;
3486 goto free_done;
3487 }
3488 }
3489
3490 free_block(cachep, ac->entry, batchcount, node);
3491 free_done:
3492 #if STATS
3493 {
3494 int i = 0;
3495 struct list_head *p;
3496
3497 p = l3->slabs_free.next;
3498 while (p != &(l3->slabs_free)) {
3499 struct slab *slabp;
3500
3501 slabp = list_entry(p, struct slab, list);
3502 BUG_ON(slabp->inuse);
3503
3504 i++;
3505 p = p->next;
3506 }
3507 STATS_SET_FREEABLE(cachep, i);
3508 }
3509 #endif
3510 spin_unlock(&l3->list_lock);
3511 ac->avail -= batchcount;
3512 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3513 }
3514
3515 /*
3516 * Release an obj back to its cache. If the obj has a constructed state, it must
3517 * be in this state _before_ it is released. Called with disabled ints.
3518 */
3519 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3520 {
3521 struct array_cache *ac = cpu_cache_get(cachep);
3522
3523 check_irq_off();
3524 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3525
3526 /*
3527 * Skip calling cache_free_alien() when the platform is not numa.
3528 * This will avoid cache misses that happen while accessing slabp (which
3529 * is per page memory reference) to get nodeid. Instead use a global
3530 * variable to skip the call, which is mostly likely to be present in
3531 * the cache.
3532 */
3533 if (numa_platform && cache_free_alien(cachep, objp))
3534 return;
3535
3536 if (likely(ac->avail < ac->limit)) {
3537 STATS_INC_FREEHIT(cachep);
3538 ac->entry[ac->avail++] = objp;
3539 return;
3540 } else {
3541 STATS_INC_FREEMISS(cachep);
3542 cache_flusharray(cachep, ac);
3543 ac->entry[ac->avail++] = objp;
3544 }
3545 }
3546
3547 /**
3548 * kmem_cache_alloc - Allocate an object
3549 * @cachep: The cache to allocate from.
3550 * @flags: See kmalloc().
3551 *
3552 * Allocate an object from this cache. The flags are only relevant
3553 * if the cache has no available objects.
3554 */
3555 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3556 {
3557 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3558 }
3559 EXPORT_SYMBOL(kmem_cache_alloc);
3560
3561 /**
3562 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3563 * @cachep: the cache we're checking against
3564 * @ptr: pointer to validate
3565 *
3566 * This verifies that the untrusted pointer looks sane;
3567 * it is _not_ a guarantee that the pointer is actually
3568 * part of the slab cache in question, but it at least
3569 * validates that the pointer can be dereferenced and
3570 * looks half-way sane.
3571 *
3572 * Currently only used for dentry validation.
3573 */
3574 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3575 {
3576 unsigned long addr = (unsigned long)ptr;
3577 unsigned long min_addr = PAGE_OFFSET;
3578 unsigned long align_mask = BYTES_PER_WORD - 1;
3579 unsigned long size = cachep->buffer_size;
3580 struct page *page;
3581
3582 if (unlikely(addr < min_addr))
3583 goto out;
3584 if (unlikely(addr > (unsigned long)high_memory - size))
3585 goto out;
3586 if (unlikely(addr & align_mask))
3587 goto out;
3588 if (unlikely(!kern_addr_valid(addr)))
3589 goto out;
3590 if (unlikely(!kern_addr_valid(addr + size - 1)))
3591 goto out;
3592 page = virt_to_page(ptr);
3593 if (unlikely(!PageSlab(page)))
3594 goto out;
3595 if (unlikely(page_get_cache(page) != cachep))
3596 goto out;
3597 return 1;
3598 out:
3599 return 0;
3600 }
3601
3602 #ifdef CONFIG_NUMA
3603 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3604 {
3605 return __cache_alloc_node(cachep, flags, nodeid,
3606 __builtin_return_address(0));
3607 }
3608 EXPORT_SYMBOL(kmem_cache_alloc_node);
3609
3610 static __always_inline void *
3611 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3612 {
3613 struct kmem_cache *cachep;
3614
3615 cachep = kmem_find_general_cachep(size, flags);
3616 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3617 return cachep;
3618 return kmem_cache_alloc_node(cachep, flags, node);
3619 }
3620
3621 #ifdef CONFIG_DEBUG_SLAB
3622 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3623 {
3624 return __do_kmalloc_node(size, flags, node,
3625 __builtin_return_address(0));
3626 }
3627 EXPORT_SYMBOL(__kmalloc_node);
3628
3629 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3630 int node, unsigned long caller)
3631 {
3632 return __do_kmalloc_node(size, flags, node, (void *)caller);
3633 }
3634 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3635 #else
3636 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3637 {
3638 return __do_kmalloc_node(size, flags, node, NULL);
3639 }
3640 EXPORT_SYMBOL(__kmalloc_node);
3641 #endif /* CONFIG_DEBUG_SLAB */
3642 #endif /* CONFIG_NUMA */
3643
3644 /**
3645 * __do_kmalloc - allocate memory
3646 * @size: how many bytes of memory are required.
3647 * @flags: the type of memory to allocate (see kmalloc).
3648 * @caller: function caller for debug tracking of the caller
3649 */
3650 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3651 void *caller)
3652 {
3653 struct kmem_cache *cachep;
3654
3655 /* If you want to save a few bytes .text space: replace
3656 * __ with kmem_.
3657 * Then kmalloc uses the uninlined functions instead of the inline
3658 * functions.
3659 */
3660 cachep = __find_general_cachep(size, flags);
3661 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3662 return cachep;
3663 return __cache_alloc(cachep, flags, caller);
3664 }
3665
3666
3667 #ifdef CONFIG_DEBUG_SLAB
3668 void *__kmalloc(size_t size, gfp_t flags)
3669 {
3670 return __do_kmalloc(size, flags, __builtin_return_address(0));
3671 }
3672 EXPORT_SYMBOL(__kmalloc);
3673
3674 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3675 {
3676 return __do_kmalloc(size, flags, (void *)caller);
3677 }
3678 EXPORT_SYMBOL(__kmalloc_track_caller);
3679
3680 #else
3681 void *__kmalloc(size_t size, gfp_t flags)
3682 {
3683 return __do_kmalloc(size, flags, NULL);
3684 }
3685 EXPORT_SYMBOL(__kmalloc);
3686 #endif
3687
3688 /**
3689 * kmem_cache_free - Deallocate an object
3690 * @cachep: The cache the allocation was from.
3691 * @objp: The previously allocated object.
3692 *
3693 * Free an object which was previously allocated from this
3694 * cache.
3695 */
3696 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3697 {
3698 unsigned long flags;
3699
3700 local_irq_save(flags);
3701 debug_check_no_locks_freed(objp, obj_size(cachep));
3702 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3703 debug_check_no_obj_freed(objp, obj_size(cachep));
3704 __cache_free(cachep, objp);
3705 local_irq_restore(flags);
3706 }
3707 EXPORT_SYMBOL(kmem_cache_free);
3708
3709 /**
3710 * kfree - free previously allocated memory
3711 * @objp: pointer returned by kmalloc.
3712 *
3713 * If @objp is NULL, no operation is performed.
3714 *
3715 * Don't free memory not originally allocated by kmalloc()
3716 * or you will run into trouble.
3717 */
3718 void kfree(const void *objp)
3719 {
3720 struct kmem_cache *c;
3721 unsigned long flags;
3722
3723 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3724 return;
3725 local_irq_save(flags);
3726 kfree_debugcheck(objp);
3727 c = virt_to_cache(objp);
3728 debug_check_no_locks_freed(objp, obj_size(c));
3729 debug_check_no_obj_freed(objp, obj_size(c));
3730 __cache_free(c, (void *)objp);
3731 local_irq_restore(flags);
3732 }
3733 EXPORT_SYMBOL(kfree);
3734
3735 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3736 {
3737 return obj_size(cachep);
3738 }
3739 EXPORT_SYMBOL(kmem_cache_size);
3740
3741 const char *kmem_cache_name(struct kmem_cache *cachep)
3742 {
3743 return cachep->name;
3744 }
3745 EXPORT_SYMBOL_GPL(kmem_cache_name);
3746
3747 /*
3748 * This initializes kmem_list3 or resizes various caches for all nodes.
3749 */
3750 static int alloc_kmemlist(struct kmem_cache *cachep)
3751 {
3752 int node;
3753 struct kmem_list3 *l3;
3754 struct array_cache *new_shared;
3755 struct array_cache **new_alien = NULL;
3756
3757 for_each_online_node(node) {
3758
3759 if (use_alien_caches) {
3760 new_alien = alloc_alien_cache(node, cachep->limit);
3761 if (!new_alien)
3762 goto fail;
3763 }
3764
3765 new_shared = NULL;
3766 if (cachep->shared) {
3767 new_shared = alloc_arraycache(node,
3768 cachep->shared*cachep->batchcount,
3769 0xbaadf00d);
3770 if (!new_shared) {
3771 free_alien_cache(new_alien);
3772 goto fail;
3773 }
3774 }
3775
3776 l3 = cachep->nodelists[node];
3777 if (l3) {
3778 struct array_cache *shared = l3->shared;
3779
3780 spin_lock_irq(&l3->list_lock);
3781
3782 if (shared)
3783 free_block(cachep, shared->entry,
3784 shared->avail, node);
3785
3786 l3->shared = new_shared;
3787 if (!l3->alien) {
3788 l3->alien = new_alien;
3789 new_alien = NULL;
3790 }
3791 l3->free_limit = (1 + nr_cpus_node(node)) *
3792 cachep->batchcount + cachep->num;
3793 spin_unlock_irq(&l3->list_lock);
3794 kfree(shared);
3795 free_alien_cache(new_alien);
3796 continue;
3797 }
3798 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3799 if (!l3) {
3800 free_alien_cache(new_alien);
3801 kfree(new_shared);
3802 goto fail;
3803 }
3804
3805 kmem_list3_init(l3);
3806 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3807 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3808 l3->shared = new_shared;
3809 l3->alien = new_alien;
3810 l3->free_limit = (1 + nr_cpus_node(node)) *
3811 cachep->batchcount + cachep->num;
3812 cachep->nodelists[node] = l3;
3813 }
3814 return 0;
3815
3816 fail:
3817 if (!cachep->next.next) {
3818 /* Cache is not active yet. Roll back what we did */
3819 node--;
3820 while (node >= 0) {
3821 if (cachep->nodelists[node]) {
3822 l3 = cachep->nodelists[node];
3823
3824 kfree(l3->shared);
3825 free_alien_cache(l3->alien);
3826 kfree(l3);
3827 cachep->nodelists[node] = NULL;
3828 }
3829 node--;
3830 }
3831 }
3832 return -ENOMEM;
3833 }
3834
3835 struct ccupdate_struct {
3836 struct kmem_cache *cachep;
3837 struct array_cache *new[NR_CPUS];
3838 };
3839
3840 static void do_ccupdate_local(void *info)
3841 {
3842 struct ccupdate_struct *new = info;
3843 struct array_cache *old;
3844
3845 check_irq_off();
3846 old = cpu_cache_get(new->cachep);
3847
3848 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3849 new->new[smp_processor_id()] = old;
3850 }
3851
3852 /* Always called with the cache_chain_mutex held */
3853 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3854 int batchcount, int shared)
3855 {
3856 struct ccupdate_struct *new;
3857 int i;
3858
3859 new = kzalloc(sizeof(*new), GFP_KERNEL);
3860 if (!new)
3861 return -ENOMEM;
3862
3863 for_each_online_cpu(i) {
3864 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3865 batchcount);
3866 if (!new->new[i]) {
3867 for (i--; i >= 0; i--)
3868 kfree(new->new[i]);
3869 kfree(new);
3870 return -ENOMEM;
3871 }
3872 }
3873 new->cachep = cachep;
3874
3875 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3876
3877 check_irq_on();
3878 cachep->batchcount = batchcount;
3879 cachep->limit = limit;
3880 cachep->shared = shared;
3881
3882 for_each_online_cpu(i) {
3883 struct array_cache *ccold = new->new[i];
3884 if (!ccold)
3885 continue;
3886 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3887 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3888 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3889 kfree(ccold);
3890 }
3891 kfree(new);
3892 return alloc_kmemlist(cachep);
3893 }
3894
3895 /* Called with cache_chain_mutex held always */
3896 static int enable_cpucache(struct kmem_cache *cachep)
3897 {
3898 int err;
3899 int limit, shared;
3900
3901 /*
3902 * The head array serves three purposes:
3903 * - create a LIFO ordering, i.e. return objects that are cache-warm
3904 * - reduce the number of spinlock operations.
3905 * - reduce the number of linked list operations on the slab and
3906 * bufctl chains: array operations are cheaper.
3907 * The numbers are guessed, we should auto-tune as described by
3908 * Bonwick.
3909 */
3910 if (cachep->buffer_size > 131072)
3911 limit = 1;
3912 else if (cachep->buffer_size > PAGE_SIZE)
3913 limit = 8;
3914 else if (cachep->buffer_size > 1024)
3915 limit = 24;
3916 else if (cachep->buffer_size > 256)
3917 limit = 54;
3918 else
3919 limit = 120;
3920
3921 /*
3922 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3923 * allocation behaviour: Most allocs on one cpu, most free operations
3924 * on another cpu. For these cases, an efficient object passing between
3925 * cpus is necessary. This is provided by a shared array. The array
3926 * replaces Bonwick's magazine layer.
3927 * On uniprocessor, it's functionally equivalent (but less efficient)
3928 * to a larger limit. Thus disabled by default.
3929 */
3930 shared = 0;
3931 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3932 shared = 8;
3933
3934 #if DEBUG
3935 /*
3936 * With debugging enabled, large batchcount lead to excessively long
3937 * periods with disabled local interrupts. Limit the batchcount
3938 */
3939 if (limit > 32)
3940 limit = 32;
3941 #endif
3942 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3943 if (err)
3944 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3945 cachep->name, -err);
3946 return err;
3947 }
3948
3949 /*
3950 * Drain an array if it contains any elements taking the l3 lock only if
3951 * necessary. Note that the l3 listlock also protects the array_cache
3952 * if drain_array() is used on the shared array.
3953 */
3954 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3955 struct array_cache *ac, int force, int node)
3956 {
3957 int tofree;
3958
3959 if (!ac || !ac->avail)
3960 return;
3961 if (ac->touched && !force) {
3962 ac->touched = 0;
3963 } else {
3964 spin_lock_irq(&l3->list_lock);
3965 if (ac->avail) {
3966 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3967 if (tofree > ac->avail)
3968 tofree = (ac->avail + 1) / 2;
3969 free_block(cachep, ac->entry, tofree, node);
3970 ac->avail -= tofree;
3971 memmove(ac->entry, &(ac->entry[tofree]),
3972 sizeof(void *) * ac->avail);
3973 }
3974 spin_unlock_irq(&l3->list_lock);
3975 }
3976 }
3977
3978 /**
3979 * cache_reap - Reclaim memory from caches.
3980 * @w: work descriptor
3981 *
3982 * Called from workqueue/eventd every few seconds.
3983 * Purpose:
3984 * - clear the per-cpu caches for this CPU.
3985 * - return freeable pages to the main free memory pool.
3986 *
3987 * If we cannot acquire the cache chain mutex then just give up - we'll try
3988 * again on the next iteration.
3989 */
3990 static void cache_reap(struct work_struct *w)
3991 {
3992 struct kmem_cache *searchp;
3993 struct kmem_list3 *l3;
3994 int node = numa_node_id();
3995 struct delayed_work *work = to_delayed_work(w);
3996
3997 if (!mutex_trylock(&cache_chain_mutex))
3998 /* Give up. Setup the next iteration. */
3999 goto out;
4000
4001 list_for_each_entry(searchp, &cache_chain, next) {
4002 check_irq_on();
4003
4004 /*
4005 * We only take the l3 lock if absolutely necessary and we
4006 * have established with reasonable certainty that
4007 * we can do some work if the lock was obtained.
4008 */
4009 l3 = searchp->nodelists[node];
4010
4011 reap_alien(searchp, l3);
4012
4013 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4014
4015 /*
4016 * These are racy checks but it does not matter
4017 * if we skip one check or scan twice.
4018 */
4019 if (time_after(l3->next_reap, jiffies))
4020 goto next;
4021
4022 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4023
4024 drain_array(searchp, l3, l3->shared, 0, node);
4025
4026 if (l3->free_touched)
4027 l3->free_touched = 0;
4028 else {
4029 int freed;
4030
4031 freed = drain_freelist(searchp, l3, (l3->free_limit +
4032 5 * searchp->num - 1) / (5 * searchp->num));
4033 STATS_ADD_REAPED(searchp, freed);
4034 }
4035 next:
4036 cond_resched();
4037 }
4038 check_irq_on();
4039 mutex_unlock(&cache_chain_mutex);
4040 next_reap_node();
4041 out:
4042 /* Set up the next iteration */
4043 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4044 }
4045
4046 #ifdef CONFIG_SLABINFO
4047
4048 static void print_slabinfo_header(struct seq_file *m)
4049 {
4050 /*
4051 * Output format version, so at least we can change it
4052 * without _too_ many complaints.
4053 */
4054 #if STATS
4055 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4056 #else
4057 seq_puts(m, "slabinfo - version: 2.1\n");
4058 #endif
4059 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4060 "<objperslab> <pagesperslab>");
4061 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4062 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4063 #if STATS
4064 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4065 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4066 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4067 #endif
4068 seq_putc(m, '\n');
4069 }
4070
4071 static void *s_start(struct seq_file *m, loff_t *pos)
4072 {
4073 loff_t n = *pos;
4074
4075 mutex_lock(&cache_chain_mutex);
4076 if (!n)
4077 print_slabinfo_header(m);
4078
4079 return seq_list_start(&cache_chain, *pos);
4080 }
4081
4082 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4083 {
4084 return seq_list_next(p, &cache_chain, pos);
4085 }
4086
4087 static void s_stop(struct seq_file *m, void *p)
4088 {
4089 mutex_unlock(&cache_chain_mutex);
4090 }
4091
4092 static int s_show(struct seq_file *m, void *p)
4093 {
4094 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4095 struct slab *slabp;
4096 unsigned long active_objs;
4097 unsigned long num_objs;
4098 unsigned long active_slabs = 0;
4099 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4100 const char *name;
4101 char *error = NULL;
4102 int node;
4103 struct kmem_list3 *l3;
4104
4105 active_objs = 0;
4106 num_slabs = 0;
4107 for_each_online_node(node) {
4108 l3 = cachep->nodelists[node];
4109 if (!l3)
4110 continue;
4111
4112 check_irq_on();
4113 spin_lock_irq(&l3->list_lock);
4114
4115 list_for_each_entry(slabp, &l3->slabs_full, list) {
4116 if (slabp->inuse != cachep->num && !error)
4117 error = "slabs_full accounting error";
4118 active_objs += cachep->num;
4119 active_slabs++;
4120 }
4121 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4122 if (slabp->inuse == cachep->num && !error)
4123 error = "slabs_partial inuse accounting error";
4124 if (!slabp->inuse && !error)
4125 error = "slabs_partial/inuse accounting error";
4126 active_objs += slabp->inuse;
4127 active_slabs++;
4128 }
4129 list_for_each_entry(slabp, &l3->slabs_free, list) {
4130 if (slabp->inuse && !error)
4131 error = "slabs_free/inuse accounting error";
4132 num_slabs++;
4133 }
4134 free_objects += l3->free_objects;
4135 if (l3->shared)
4136 shared_avail += l3->shared->avail;
4137
4138 spin_unlock_irq(&l3->list_lock);
4139 }
4140 num_slabs += active_slabs;
4141 num_objs = num_slabs * cachep->num;
4142 if (num_objs - active_objs != free_objects && !error)
4143 error = "free_objects accounting error";
4144
4145 name = cachep->name;
4146 if (error)
4147 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4148
4149 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4150 name, active_objs, num_objs, cachep->buffer_size,
4151 cachep->num, (1 << cachep->gfporder));
4152 seq_printf(m, " : tunables %4u %4u %4u",
4153 cachep->limit, cachep->batchcount, cachep->shared);
4154 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4155 active_slabs, num_slabs, shared_avail);
4156 #if STATS
4157 { /* list3 stats */
4158 unsigned long high = cachep->high_mark;
4159 unsigned long allocs = cachep->num_allocations;
4160 unsigned long grown = cachep->grown;
4161 unsigned long reaped = cachep->reaped;
4162 unsigned long errors = cachep->errors;
4163 unsigned long max_freeable = cachep->max_freeable;
4164 unsigned long node_allocs = cachep->node_allocs;
4165 unsigned long node_frees = cachep->node_frees;
4166 unsigned long overflows = cachep->node_overflow;
4167
4168 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4169 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4170 reaped, errors, max_freeable, node_allocs,
4171 node_frees, overflows);
4172 }
4173 /* cpu stats */
4174 {
4175 unsigned long allochit = atomic_read(&cachep->allochit);
4176 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4177 unsigned long freehit = atomic_read(&cachep->freehit);
4178 unsigned long freemiss = atomic_read(&cachep->freemiss);
4179
4180 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4181 allochit, allocmiss, freehit, freemiss);
4182 }
4183 #endif
4184 seq_putc(m, '\n');
4185 return 0;
4186 }
4187
4188 /*
4189 * slabinfo_op - iterator that generates /proc/slabinfo
4190 *
4191 * Output layout:
4192 * cache-name
4193 * num-active-objs
4194 * total-objs
4195 * object size
4196 * num-active-slabs
4197 * total-slabs
4198 * num-pages-per-slab
4199 * + further values on SMP and with statistics enabled
4200 */
4201
4202 static const struct seq_operations slabinfo_op = {
4203 .start = s_start,
4204 .next = s_next,
4205 .stop = s_stop,
4206 .show = s_show,
4207 };
4208
4209 #define MAX_SLABINFO_WRITE 128
4210 /**
4211 * slabinfo_write - Tuning for the slab allocator
4212 * @file: unused
4213 * @buffer: user buffer
4214 * @count: data length
4215 * @ppos: unused
4216 */
4217 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4218 size_t count, loff_t *ppos)
4219 {
4220 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4221 int limit, batchcount, shared, res;
4222 struct kmem_cache *cachep;
4223
4224 if (count > MAX_SLABINFO_WRITE)
4225 return -EINVAL;
4226 if (copy_from_user(&kbuf, buffer, count))
4227 return -EFAULT;
4228 kbuf[MAX_SLABINFO_WRITE] = '\0';
4229
4230 tmp = strchr(kbuf, ' ');
4231 if (!tmp)
4232 return -EINVAL;
4233 *tmp = '\0';
4234 tmp++;
4235 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4236 return -EINVAL;
4237
4238 /* Find the cache in the chain of caches. */
4239 mutex_lock(&cache_chain_mutex);
4240 res = -EINVAL;
4241 list_for_each_entry(cachep, &cache_chain, next) {
4242 if (!strcmp(cachep->name, kbuf)) {
4243 if (limit < 1 || batchcount < 1 ||
4244 batchcount > limit || shared < 0) {
4245 res = 0;
4246 } else {
4247 res = do_tune_cpucache(cachep, limit,
4248 batchcount, shared);
4249 }
4250 break;
4251 }
4252 }
4253 mutex_unlock(&cache_chain_mutex);
4254 if (res >= 0)
4255 res = count;
4256 return res;
4257 }
4258
4259 static int slabinfo_open(struct inode *inode, struct file *file)
4260 {
4261 return seq_open(file, &slabinfo_op);
4262 }
4263
4264 static const struct file_operations proc_slabinfo_operations = {
4265 .open = slabinfo_open,
4266 .read = seq_read,
4267 .write = slabinfo_write,
4268 .llseek = seq_lseek,
4269 .release = seq_release,
4270 };
4271
4272 #ifdef CONFIG_DEBUG_SLAB_LEAK
4273
4274 static void *leaks_start(struct seq_file *m, loff_t *pos)
4275 {
4276 mutex_lock(&cache_chain_mutex);
4277 return seq_list_start(&cache_chain, *pos);
4278 }
4279
4280 static inline int add_caller(unsigned long *n, unsigned long v)
4281 {
4282 unsigned long *p;
4283 int l;
4284 if (!v)
4285 return 1;
4286 l = n[1];
4287 p = n + 2;
4288 while (l) {
4289 int i = l/2;
4290 unsigned long *q = p + 2 * i;
4291 if (*q == v) {
4292 q[1]++;
4293 return 1;
4294 }
4295 if (*q > v) {
4296 l = i;
4297 } else {
4298 p = q + 2;
4299 l -= i + 1;
4300 }
4301 }
4302 if (++n[1] == n[0])
4303 return 0;
4304 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4305 p[0] = v;
4306 p[1] = 1;
4307 return 1;
4308 }
4309
4310 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4311 {
4312 void *p;
4313 int i;
4314 if (n[0] == n[1])
4315 return;
4316 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4317 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4318 continue;
4319 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4320 return;
4321 }
4322 }
4323
4324 static void show_symbol(struct seq_file *m, unsigned long address)
4325 {
4326 #ifdef CONFIG_KALLSYMS
4327 unsigned long offset, size;
4328 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4329
4330 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4331 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4332 if (modname[0])
4333 seq_printf(m, " [%s]", modname);
4334 return;
4335 }
4336 #endif
4337 seq_printf(m, "%p", (void *)address);
4338 }
4339
4340 static int leaks_show(struct seq_file *m, void *p)
4341 {
4342 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4343 struct slab *slabp;
4344 struct kmem_list3 *l3;
4345 const char *name;
4346 unsigned long *n = m->private;
4347 int node;
4348 int i;
4349
4350 if (!(cachep->flags & SLAB_STORE_USER))
4351 return 0;
4352 if (!(cachep->flags & SLAB_RED_ZONE))
4353 return 0;
4354
4355 /* OK, we can do it */
4356
4357 n[1] = 0;
4358
4359 for_each_online_node(node) {
4360 l3 = cachep->nodelists[node];
4361 if (!l3)
4362 continue;
4363
4364 check_irq_on();
4365 spin_lock_irq(&l3->list_lock);
4366
4367 list_for_each_entry(slabp, &l3->slabs_full, list)
4368 handle_slab(n, cachep, slabp);
4369 list_for_each_entry(slabp, &l3->slabs_partial, list)
4370 handle_slab(n, cachep, slabp);
4371 spin_unlock_irq(&l3->list_lock);
4372 }
4373 name = cachep->name;
4374 if (n[0] == n[1]) {
4375 /* Increase the buffer size */
4376 mutex_unlock(&cache_chain_mutex);
4377 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4378 if (!m->private) {
4379 /* Too bad, we are really out */
4380 m->private = n;
4381 mutex_lock(&cache_chain_mutex);
4382 return -ENOMEM;
4383 }
4384 *(unsigned long *)m->private = n[0] * 2;
4385 kfree(n);
4386 mutex_lock(&cache_chain_mutex);
4387 /* Now make sure this entry will be retried */
4388 m->count = m->size;
4389 return 0;
4390 }
4391 for (i = 0; i < n[1]; i++) {
4392 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4393 show_symbol(m, n[2*i+2]);
4394 seq_putc(m, '\n');
4395 }
4396
4397 return 0;
4398 }
4399
4400 static const struct seq_operations slabstats_op = {
4401 .start = leaks_start,
4402 .next = s_next,
4403 .stop = s_stop,
4404 .show = leaks_show,
4405 };
4406
4407 static int slabstats_open(struct inode *inode, struct file *file)
4408 {
4409 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4410 int ret = -ENOMEM;
4411 if (n) {
4412 ret = seq_open(file, &slabstats_op);
4413 if (!ret) {
4414 struct seq_file *m = file->private_data;
4415 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4416 m->private = n;
4417 n = NULL;
4418 }
4419 kfree(n);
4420 }
4421 return ret;
4422 }
4423
4424 static const struct file_operations proc_slabstats_operations = {
4425 .open = slabstats_open,
4426 .read = seq_read,
4427 .llseek = seq_lseek,
4428 .release = seq_release_private,
4429 };
4430 #endif
4431
4432 static int __init slab_proc_init(void)
4433 {
4434 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4435 #ifdef CONFIG_DEBUG_SLAB_LEAK
4436 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4437 #endif
4438 return 0;
4439 }
4440 module_init(slab_proc_init);
4441 #endif
4442
4443 /**
4444 * ksize - get the actual amount of memory allocated for a given object
4445 * @objp: Pointer to the object
4446 *
4447 * kmalloc may internally round up allocations and return more memory
4448 * than requested. ksize() can be used to determine the actual amount of
4449 * memory allocated. The caller may use this additional memory, even though
4450 * a smaller amount of memory was initially specified with the kmalloc call.
4451 * The caller must guarantee that objp points to a valid object previously
4452 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4453 * must not be freed during the duration of the call.
4454 */
4455 size_t ksize(const void *objp)
4456 {
4457 BUG_ON(!objp);
4458 if (unlikely(objp == ZERO_SIZE_PTR))
4459 return 0;
4460
4461 return obj_size(virt_to_cache(objp));
4462 }
4463 EXPORT_SYMBOL(ksize);