]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/slab.c
mm, slab: suppress out of memory warning unless debug is enabled
[mirror_ubuntu-focal-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175 static bool pfmemalloc_active __read_mostly;
176
177 /*
178 * struct array_cache
179 *
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189 struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 spinlock_t lock;
195 void *entry[]; /*
196 * Must have this definition in here for the proper
197 * alignment of array_cache. Also simplifies accessing
198 * the entries.
199 *
200 * Entries should not be directly dereferenced as
201 * entries belonging to slabs marked pfmemalloc will
202 * have the lower bits set SLAB_OBJ_PFMEMALLOC
203 */
204 };
205
206 #define SLAB_OBJ_PFMEMALLOC 1
207 static inline bool is_obj_pfmemalloc(void *objp)
208 {
209 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
210 }
211
212 static inline void set_obj_pfmemalloc(void **objp)
213 {
214 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
215 return;
216 }
217
218 static inline void clear_obj_pfmemalloc(void **objp)
219 {
220 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
221 }
222
223 /*
224 * bootstrap: The caches do not work without cpuarrays anymore, but the
225 * cpuarrays are allocated from the generic caches...
226 */
227 #define BOOT_CPUCACHE_ENTRIES 1
228 struct arraycache_init {
229 struct array_cache cache;
230 void *entries[BOOT_CPUCACHE_ENTRIES];
231 };
232
233 /*
234 * Need this for bootstrapping a per node allocator.
235 */
236 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
237 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
238 #define CACHE_CACHE 0
239 #define SIZE_AC MAX_NUMNODES
240 #define SIZE_NODE (2 * MAX_NUMNODES)
241
242 static int drain_freelist(struct kmem_cache *cache,
243 struct kmem_cache_node *n, int tofree);
244 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
245 int node);
246 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
247 static void cache_reap(struct work_struct *unused);
248
249 static int slab_early_init = 1;
250
251 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
252 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
253
254 static void kmem_cache_node_init(struct kmem_cache_node *parent)
255 {
256 INIT_LIST_HEAD(&parent->slabs_full);
257 INIT_LIST_HEAD(&parent->slabs_partial);
258 INIT_LIST_HEAD(&parent->slabs_free);
259 parent->shared = NULL;
260 parent->alien = NULL;
261 parent->colour_next = 0;
262 spin_lock_init(&parent->list_lock);
263 parent->free_objects = 0;
264 parent->free_touched = 0;
265 }
266
267 #define MAKE_LIST(cachep, listp, slab, nodeid) \
268 do { \
269 INIT_LIST_HEAD(listp); \
270 list_splice(&(cachep->node[nodeid]->slab), listp); \
271 } while (0)
272
273 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
274 do { \
275 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
276 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
277 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
278 } while (0)
279
280 #define CFLGS_OFF_SLAB (0x80000000UL)
281 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
282
283 #define BATCHREFILL_LIMIT 16
284 /*
285 * Optimization question: fewer reaps means less probability for unnessary
286 * cpucache drain/refill cycles.
287 *
288 * OTOH the cpuarrays can contain lots of objects,
289 * which could lock up otherwise freeable slabs.
290 */
291 #define REAPTIMEOUT_AC (2*HZ)
292 #define REAPTIMEOUT_NODE (4*HZ)
293
294 #if STATS
295 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
296 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
297 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
298 #define STATS_INC_GROWN(x) ((x)->grown++)
299 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
300 #define STATS_SET_HIGH(x) \
301 do { \
302 if ((x)->num_active > (x)->high_mark) \
303 (x)->high_mark = (x)->num_active; \
304 } while (0)
305 #define STATS_INC_ERR(x) ((x)->errors++)
306 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
307 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
308 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
309 #define STATS_SET_FREEABLE(x, i) \
310 do { \
311 if ((x)->max_freeable < i) \
312 (x)->max_freeable = i; \
313 } while (0)
314 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
315 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
316 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
317 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
318 #else
319 #define STATS_INC_ACTIVE(x) do { } while (0)
320 #define STATS_DEC_ACTIVE(x) do { } while (0)
321 #define STATS_INC_ALLOCED(x) do { } while (0)
322 #define STATS_INC_GROWN(x) do { } while (0)
323 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
324 #define STATS_SET_HIGH(x) do { } while (0)
325 #define STATS_INC_ERR(x) do { } while (0)
326 #define STATS_INC_NODEALLOCS(x) do { } while (0)
327 #define STATS_INC_NODEFREES(x) do { } while (0)
328 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
329 #define STATS_SET_FREEABLE(x, i) do { } while (0)
330 #define STATS_INC_ALLOCHIT(x) do { } while (0)
331 #define STATS_INC_ALLOCMISS(x) do { } while (0)
332 #define STATS_INC_FREEHIT(x) do { } while (0)
333 #define STATS_INC_FREEMISS(x) do { } while (0)
334 #endif
335
336 #if DEBUG
337
338 /*
339 * memory layout of objects:
340 * 0 : objp
341 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
342 * the end of an object is aligned with the end of the real
343 * allocation. Catches writes behind the end of the allocation.
344 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
345 * redzone word.
346 * cachep->obj_offset: The real object.
347 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
348 * cachep->size - 1* BYTES_PER_WORD: last caller address
349 * [BYTES_PER_WORD long]
350 */
351 static int obj_offset(struct kmem_cache *cachep)
352 {
353 return cachep->obj_offset;
354 }
355
356 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
357 {
358 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
359 return (unsigned long long*) (objp + obj_offset(cachep) -
360 sizeof(unsigned long long));
361 }
362
363 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
364 {
365 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
366 if (cachep->flags & SLAB_STORE_USER)
367 return (unsigned long long *)(objp + cachep->size -
368 sizeof(unsigned long long) -
369 REDZONE_ALIGN);
370 return (unsigned long long *) (objp + cachep->size -
371 sizeof(unsigned long long));
372 }
373
374 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
375 {
376 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
377 return (void **)(objp + cachep->size - BYTES_PER_WORD);
378 }
379
380 #else
381
382 #define obj_offset(x) 0
383 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
384 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
385 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
386
387 #endif
388
389 /*
390 * Do not go above this order unless 0 objects fit into the slab or
391 * overridden on the command line.
392 */
393 #define SLAB_MAX_ORDER_HI 1
394 #define SLAB_MAX_ORDER_LO 0
395 static int slab_max_order = SLAB_MAX_ORDER_LO;
396 static bool slab_max_order_set __initdata;
397
398 static inline struct kmem_cache *virt_to_cache(const void *obj)
399 {
400 struct page *page = virt_to_head_page(obj);
401 return page->slab_cache;
402 }
403
404 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
405 unsigned int idx)
406 {
407 return page->s_mem + cache->size * idx;
408 }
409
410 /*
411 * We want to avoid an expensive divide : (offset / cache->size)
412 * Using the fact that size is a constant for a particular cache,
413 * we can replace (offset / cache->size) by
414 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
415 */
416 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
417 const struct page *page, void *obj)
418 {
419 u32 offset = (obj - page->s_mem);
420 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
421 }
422
423 static struct arraycache_init initarray_generic =
424 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
425
426 /* internal cache of cache description objs */
427 static struct kmem_cache kmem_cache_boot = {
428 .batchcount = 1,
429 .limit = BOOT_CPUCACHE_ENTRIES,
430 .shared = 1,
431 .size = sizeof(struct kmem_cache),
432 .name = "kmem_cache",
433 };
434
435 #define BAD_ALIEN_MAGIC 0x01020304ul
436
437 #ifdef CONFIG_LOCKDEP
438
439 /*
440 * Slab sometimes uses the kmalloc slabs to store the slab headers
441 * for other slabs "off slab".
442 * The locking for this is tricky in that it nests within the locks
443 * of all other slabs in a few places; to deal with this special
444 * locking we put on-slab caches into a separate lock-class.
445 *
446 * We set lock class for alien array caches which are up during init.
447 * The lock annotation will be lost if all cpus of a node goes down and
448 * then comes back up during hotplug
449 */
450 static struct lock_class_key on_slab_l3_key;
451 static struct lock_class_key on_slab_alc_key;
452
453 static struct lock_class_key debugobj_l3_key;
454 static struct lock_class_key debugobj_alc_key;
455
456 static void slab_set_lock_classes(struct kmem_cache *cachep,
457 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
458 int q)
459 {
460 struct array_cache **alc;
461 struct kmem_cache_node *n;
462 int r;
463
464 n = cachep->node[q];
465 if (!n)
466 return;
467
468 lockdep_set_class(&n->list_lock, l3_key);
469 alc = n->alien;
470 /*
471 * FIXME: This check for BAD_ALIEN_MAGIC
472 * should go away when common slab code is taught to
473 * work even without alien caches.
474 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
475 * for alloc_alien_cache,
476 */
477 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
478 return;
479 for_each_node(r) {
480 if (alc[r])
481 lockdep_set_class(&alc[r]->lock, alc_key);
482 }
483 }
484
485 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
486 {
487 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
488 }
489
490 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
491 {
492 int node;
493
494 for_each_online_node(node)
495 slab_set_debugobj_lock_classes_node(cachep, node);
496 }
497
498 static void init_node_lock_keys(int q)
499 {
500 int i;
501
502 if (slab_state < UP)
503 return;
504
505 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
506 struct kmem_cache_node *n;
507 struct kmem_cache *cache = kmalloc_caches[i];
508
509 if (!cache)
510 continue;
511
512 n = cache->node[q];
513 if (!n || OFF_SLAB(cache))
514 continue;
515
516 slab_set_lock_classes(cache, &on_slab_l3_key,
517 &on_slab_alc_key, q);
518 }
519 }
520
521 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
522 {
523 if (!cachep->node[q])
524 return;
525
526 slab_set_lock_classes(cachep, &on_slab_l3_key,
527 &on_slab_alc_key, q);
528 }
529
530 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
531 {
532 int node;
533
534 VM_BUG_ON(OFF_SLAB(cachep));
535 for_each_node(node)
536 on_slab_lock_classes_node(cachep, node);
537 }
538
539 static inline void init_lock_keys(void)
540 {
541 int node;
542
543 for_each_node(node)
544 init_node_lock_keys(node);
545 }
546 #else
547 static void init_node_lock_keys(int q)
548 {
549 }
550
551 static inline void init_lock_keys(void)
552 {
553 }
554
555 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
556 {
557 }
558
559 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
560 {
561 }
562
563 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
564 {
565 }
566
567 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
568 {
569 }
570 #endif
571
572 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
573
574 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
575 {
576 return cachep->array[smp_processor_id()];
577 }
578
579 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
580 size_t idx_size, size_t align)
581 {
582 int nr_objs;
583 size_t freelist_size;
584
585 /*
586 * Ignore padding for the initial guess. The padding
587 * is at most @align-1 bytes, and @buffer_size is at
588 * least @align. In the worst case, this result will
589 * be one greater than the number of objects that fit
590 * into the memory allocation when taking the padding
591 * into account.
592 */
593 nr_objs = slab_size / (buffer_size + idx_size);
594
595 /*
596 * This calculated number will be either the right
597 * amount, or one greater than what we want.
598 */
599 freelist_size = slab_size - nr_objs * buffer_size;
600 if (freelist_size < ALIGN(nr_objs * idx_size, align))
601 nr_objs--;
602
603 return nr_objs;
604 }
605
606 /*
607 * Calculate the number of objects and left-over bytes for a given buffer size.
608 */
609 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
610 size_t align, int flags, size_t *left_over,
611 unsigned int *num)
612 {
613 int nr_objs;
614 size_t mgmt_size;
615 size_t slab_size = PAGE_SIZE << gfporder;
616
617 /*
618 * The slab management structure can be either off the slab or
619 * on it. For the latter case, the memory allocated for a
620 * slab is used for:
621 *
622 * - One unsigned int for each object
623 * - Padding to respect alignment of @align
624 * - @buffer_size bytes for each object
625 *
626 * If the slab management structure is off the slab, then the
627 * alignment will already be calculated into the size. Because
628 * the slabs are all pages aligned, the objects will be at the
629 * correct alignment when allocated.
630 */
631 if (flags & CFLGS_OFF_SLAB) {
632 mgmt_size = 0;
633 nr_objs = slab_size / buffer_size;
634
635 } else {
636 nr_objs = calculate_nr_objs(slab_size, buffer_size,
637 sizeof(freelist_idx_t), align);
638 mgmt_size = ALIGN(nr_objs * sizeof(freelist_idx_t), align);
639 }
640 *num = nr_objs;
641 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
642 }
643
644 #if DEBUG
645 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
646
647 static void __slab_error(const char *function, struct kmem_cache *cachep,
648 char *msg)
649 {
650 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
651 function, cachep->name, msg);
652 dump_stack();
653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654 }
655 #endif
656
657 /*
658 * By default on NUMA we use alien caches to stage the freeing of
659 * objects allocated from other nodes. This causes massive memory
660 * inefficiencies when using fake NUMA setup to split memory into a
661 * large number of small nodes, so it can be disabled on the command
662 * line
663 */
664
665 static int use_alien_caches __read_mostly = 1;
666 static int __init noaliencache_setup(char *s)
667 {
668 use_alien_caches = 0;
669 return 1;
670 }
671 __setup("noaliencache", noaliencache_setup);
672
673 static int __init slab_max_order_setup(char *str)
674 {
675 get_option(&str, &slab_max_order);
676 slab_max_order = slab_max_order < 0 ? 0 :
677 min(slab_max_order, MAX_ORDER - 1);
678 slab_max_order_set = true;
679
680 return 1;
681 }
682 __setup("slab_max_order=", slab_max_order_setup);
683
684 #ifdef CONFIG_NUMA
685 /*
686 * Special reaping functions for NUMA systems called from cache_reap().
687 * These take care of doing round robin flushing of alien caches (containing
688 * objects freed on different nodes from which they were allocated) and the
689 * flushing of remote pcps by calling drain_node_pages.
690 */
691 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
692
693 static void init_reap_node(int cpu)
694 {
695 int node;
696
697 node = next_node(cpu_to_mem(cpu), node_online_map);
698 if (node == MAX_NUMNODES)
699 node = first_node(node_online_map);
700
701 per_cpu(slab_reap_node, cpu) = node;
702 }
703
704 static void next_reap_node(void)
705 {
706 int node = __this_cpu_read(slab_reap_node);
707
708 node = next_node(node, node_online_map);
709 if (unlikely(node >= MAX_NUMNODES))
710 node = first_node(node_online_map);
711 __this_cpu_write(slab_reap_node, node);
712 }
713
714 #else
715 #define init_reap_node(cpu) do { } while (0)
716 #define next_reap_node(void) do { } while (0)
717 #endif
718
719 /*
720 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
721 * via the workqueue/eventd.
722 * Add the CPU number into the expiration time to minimize the possibility of
723 * the CPUs getting into lockstep and contending for the global cache chain
724 * lock.
725 */
726 static void start_cpu_timer(int cpu)
727 {
728 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
729
730 /*
731 * When this gets called from do_initcalls via cpucache_init(),
732 * init_workqueues() has already run, so keventd will be setup
733 * at that time.
734 */
735 if (keventd_up() && reap_work->work.func == NULL) {
736 init_reap_node(cpu);
737 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
738 schedule_delayed_work_on(cpu, reap_work,
739 __round_jiffies_relative(HZ, cpu));
740 }
741 }
742
743 static struct array_cache *alloc_arraycache(int node, int entries,
744 int batchcount, gfp_t gfp)
745 {
746 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
747 struct array_cache *nc = NULL;
748
749 nc = kmalloc_node(memsize, gfp, node);
750 /*
751 * The array_cache structures contain pointers to free object.
752 * However, when such objects are allocated or transferred to another
753 * cache the pointers are not cleared and they could be counted as
754 * valid references during a kmemleak scan. Therefore, kmemleak must
755 * not scan such objects.
756 */
757 kmemleak_no_scan(nc);
758 if (nc) {
759 nc->avail = 0;
760 nc->limit = entries;
761 nc->batchcount = batchcount;
762 nc->touched = 0;
763 spin_lock_init(&nc->lock);
764 }
765 return nc;
766 }
767
768 static inline bool is_slab_pfmemalloc(struct page *page)
769 {
770 return PageSlabPfmemalloc(page);
771 }
772
773 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
774 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
775 struct array_cache *ac)
776 {
777 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
778 struct page *page;
779 unsigned long flags;
780
781 if (!pfmemalloc_active)
782 return;
783
784 spin_lock_irqsave(&n->list_lock, flags);
785 list_for_each_entry(page, &n->slabs_full, lru)
786 if (is_slab_pfmemalloc(page))
787 goto out;
788
789 list_for_each_entry(page, &n->slabs_partial, lru)
790 if (is_slab_pfmemalloc(page))
791 goto out;
792
793 list_for_each_entry(page, &n->slabs_free, lru)
794 if (is_slab_pfmemalloc(page))
795 goto out;
796
797 pfmemalloc_active = false;
798 out:
799 spin_unlock_irqrestore(&n->list_lock, flags);
800 }
801
802 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
803 gfp_t flags, bool force_refill)
804 {
805 int i;
806 void *objp = ac->entry[--ac->avail];
807
808 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
809 if (unlikely(is_obj_pfmemalloc(objp))) {
810 struct kmem_cache_node *n;
811
812 if (gfp_pfmemalloc_allowed(flags)) {
813 clear_obj_pfmemalloc(&objp);
814 return objp;
815 }
816
817 /* The caller cannot use PFMEMALLOC objects, find another one */
818 for (i = 0; i < ac->avail; i++) {
819 /* If a !PFMEMALLOC object is found, swap them */
820 if (!is_obj_pfmemalloc(ac->entry[i])) {
821 objp = ac->entry[i];
822 ac->entry[i] = ac->entry[ac->avail];
823 ac->entry[ac->avail] = objp;
824 return objp;
825 }
826 }
827
828 /*
829 * If there are empty slabs on the slabs_free list and we are
830 * being forced to refill the cache, mark this one !pfmemalloc.
831 */
832 n = cachep->node[numa_mem_id()];
833 if (!list_empty(&n->slabs_free) && force_refill) {
834 struct page *page = virt_to_head_page(objp);
835 ClearPageSlabPfmemalloc(page);
836 clear_obj_pfmemalloc(&objp);
837 recheck_pfmemalloc_active(cachep, ac);
838 return objp;
839 }
840
841 /* No !PFMEMALLOC objects available */
842 ac->avail++;
843 objp = NULL;
844 }
845
846 return objp;
847 }
848
849 static inline void *ac_get_obj(struct kmem_cache *cachep,
850 struct array_cache *ac, gfp_t flags, bool force_refill)
851 {
852 void *objp;
853
854 if (unlikely(sk_memalloc_socks()))
855 objp = __ac_get_obj(cachep, ac, flags, force_refill);
856 else
857 objp = ac->entry[--ac->avail];
858
859 return objp;
860 }
861
862 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
863 void *objp)
864 {
865 if (unlikely(pfmemalloc_active)) {
866 /* Some pfmemalloc slabs exist, check if this is one */
867 struct page *page = virt_to_head_page(objp);
868 if (PageSlabPfmemalloc(page))
869 set_obj_pfmemalloc(&objp);
870 }
871
872 return objp;
873 }
874
875 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
876 void *objp)
877 {
878 if (unlikely(sk_memalloc_socks()))
879 objp = __ac_put_obj(cachep, ac, objp);
880
881 ac->entry[ac->avail++] = objp;
882 }
883
884 /*
885 * Transfer objects in one arraycache to another.
886 * Locking must be handled by the caller.
887 *
888 * Return the number of entries transferred.
889 */
890 static int transfer_objects(struct array_cache *to,
891 struct array_cache *from, unsigned int max)
892 {
893 /* Figure out how many entries to transfer */
894 int nr = min3(from->avail, max, to->limit - to->avail);
895
896 if (!nr)
897 return 0;
898
899 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
900 sizeof(void *) *nr);
901
902 from->avail -= nr;
903 to->avail += nr;
904 return nr;
905 }
906
907 #ifndef CONFIG_NUMA
908
909 #define drain_alien_cache(cachep, alien) do { } while (0)
910 #define reap_alien(cachep, n) do { } while (0)
911
912 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
913 {
914 return (struct array_cache **)BAD_ALIEN_MAGIC;
915 }
916
917 static inline void free_alien_cache(struct array_cache **ac_ptr)
918 {
919 }
920
921 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
922 {
923 return 0;
924 }
925
926 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
927 gfp_t flags)
928 {
929 return NULL;
930 }
931
932 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
933 gfp_t flags, int nodeid)
934 {
935 return NULL;
936 }
937
938 #else /* CONFIG_NUMA */
939
940 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
941 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
942
943 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
944 {
945 struct array_cache **ac_ptr;
946 int memsize = sizeof(void *) * nr_node_ids;
947 int i;
948
949 if (limit > 1)
950 limit = 12;
951 ac_ptr = kzalloc_node(memsize, gfp, node);
952 if (ac_ptr) {
953 for_each_node(i) {
954 if (i == node || !node_online(i))
955 continue;
956 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
957 if (!ac_ptr[i]) {
958 for (i--; i >= 0; i--)
959 kfree(ac_ptr[i]);
960 kfree(ac_ptr);
961 return NULL;
962 }
963 }
964 }
965 return ac_ptr;
966 }
967
968 static void free_alien_cache(struct array_cache **ac_ptr)
969 {
970 int i;
971
972 if (!ac_ptr)
973 return;
974 for_each_node(i)
975 kfree(ac_ptr[i]);
976 kfree(ac_ptr);
977 }
978
979 static void __drain_alien_cache(struct kmem_cache *cachep,
980 struct array_cache *ac, int node)
981 {
982 struct kmem_cache_node *n = cachep->node[node];
983
984 if (ac->avail) {
985 spin_lock(&n->list_lock);
986 /*
987 * Stuff objects into the remote nodes shared array first.
988 * That way we could avoid the overhead of putting the objects
989 * into the free lists and getting them back later.
990 */
991 if (n->shared)
992 transfer_objects(n->shared, ac, ac->limit);
993
994 free_block(cachep, ac->entry, ac->avail, node);
995 ac->avail = 0;
996 spin_unlock(&n->list_lock);
997 }
998 }
999
1000 /*
1001 * Called from cache_reap() to regularly drain alien caches round robin.
1002 */
1003 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1004 {
1005 int node = __this_cpu_read(slab_reap_node);
1006
1007 if (n->alien) {
1008 struct array_cache *ac = n->alien[node];
1009
1010 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1011 __drain_alien_cache(cachep, ac, node);
1012 spin_unlock_irq(&ac->lock);
1013 }
1014 }
1015 }
1016
1017 static void drain_alien_cache(struct kmem_cache *cachep,
1018 struct array_cache **alien)
1019 {
1020 int i = 0;
1021 struct array_cache *ac;
1022 unsigned long flags;
1023
1024 for_each_online_node(i) {
1025 ac = alien[i];
1026 if (ac) {
1027 spin_lock_irqsave(&ac->lock, flags);
1028 __drain_alien_cache(cachep, ac, i);
1029 spin_unlock_irqrestore(&ac->lock, flags);
1030 }
1031 }
1032 }
1033
1034 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1035 {
1036 int nodeid = page_to_nid(virt_to_page(objp));
1037 struct kmem_cache_node *n;
1038 struct array_cache *alien = NULL;
1039 int node;
1040
1041 node = numa_mem_id();
1042
1043 /*
1044 * Make sure we are not freeing a object from another node to the array
1045 * cache on this cpu.
1046 */
1047 if (likely(nodeid == node))
1048 return 0;
1049
1050 n = cachep->node[node];
1051 STATS_INC_NODEFREES(cachep);
1052 if (n->alien && n->alien[nodeid]) {
1053 alien = n->alien[nodeid];
1054 spin_lock(&alien->lock);
1055 if (unlikely(alien->avail == alien->limit)) {
1056 STATS_INC_ACOVERFLOW(cachep);
1057 __drain_alien_cache(cachep, alien, nodeid);
1058 }
1059 ac_put_obj(cachep, alien, objp);
1060 spin_unlock(&alien->lock);
1061 } else {
1062 spin_lock(&(cachep->node[nodeid])->list_lock);
1063 free_block(cachep, &objp, 1, nodeid);
1064 spin_unlock(&(cachep->node[nodeid])->list_lock);
1065 }
1066 return 1;
1067 }
1068 #endif
1069
1070 /*
1071 * Allocates and initializes node for a node on each slab cache, used for
1072 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1073 * will be allocated off-node since memory is not yet online for the new node.
1074 * When hotplugging memory or a cpu, existing node are not replaced if
1075 * already in use.
1076 *
1077 * Must hold slab_mutex.
1078 */
1079 static int init_cache_node_node(int node)
1080 {
1081 struct kmem_cache *cachep;
1082 struct kmem_cache_node *n;
1083 const int memsize = sizeof(struct kmem_cache_node);
1084
1085 list_for_each_entry(cachep, &slab_caches, list) {
1086 /*
1087 * Set up the kmem_cache_node for cpu before we can
1088 * begin anything. Make sure some other cpu on this
1089 * node has not already allocated this
1090 */
1091 if (!cachep->node[node]) {
1092 n = kmalloc_node(memsize, GFP_KERNEL, node);
1093 if (!n)
1094 return -ENOMEM;
1095 kmem_cache_node_init(n);
1096 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1097 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1098
1099 /*
1100 * The kmem_cache_nodes don't come and go as CPUs
1101 * come and go. slab_mutex is sufficient
1102 * protection here.
1103 */
1104 cachep->node[node] = n;
1105 }
1106
1107 spin_lock_irq(&cachep->node[node]->list_lock);
1108 cachep->node[node]->free_limit =
1109 (1 + nr_cpus_node(node)) *
1110 cachep->batchcount + cachep->num;
1111 spin_unlock_irq(&cachep->node[node]->list_lock);
1112 }
1113 return 0;
1114 }
1115
1116 static inline int slabs_tofree(struct kmem_cache *cachep,
1117 struct kmem_cache_node *n)
1118 {
1119 return (n->free_objects + cachep->num - 1) / cachep->num;
1120 }
1121
1122 static void cpuup_canceled(long cpu)
1123 {
1124 struct kmem_cache *cachep;
1125 struct kmem_cache_node *n = NULL;
1126 int node = cpu_to_mem(cpu);
1127 const struct cpumask *mask = cpumask_of_node(node);
1128
1129 list_for_each_entry(cachep, &slab_caches, list) {
1130 struct array_cache *nc;
1131 struct array_cache *shared;
1132 struct array_cache **alien;
1133
1134 /* cpu is dead; no one can alloc from it. */
1135 nc = cachep->array[cpu];
1136 cachep->array[cpu] = NULL;
1137 n = cachep->node[node];
1138
1139 if (!n)
1140 goto free_array_cache;
1141
1142 spin_lock_irq(&n->list_lock);
1143
1144 /* Free limit for this kmem_cache_node */
1145 n->free_limit -= cachep->batchcount;
1146 if (nc)
1147 free_block(cachep, nc->entry, nc->avail, node);
1148
1149 if (!cpumask_empty(mask)) {
1150 spin_unlock_irq(&n->list_lock);
1151 goto free_array_cache;
1152 }
1153
1154 shared = n->shared;
1155 if (shared) {
1156 free_block(cachep, shared->entry,
1157 shared->avail, node);
1158 n->shared = NULL;
1159 }
1160
1161 alien = n->alien;
1162 n->alien = NULL;
1163
1164 spin_unlock_irq(&n->list_lock);
1165
1166 kfree(shared);
1167 if (alien) {
1168 drain_alien_cache(cachep, alien);
1169 free_alien_cache(alien);
1170 }
1171 free_array_cache:
1172 kfree(nc);
1173 }
1174 /*
1175 * In the previous loop, all the objects were freed to
1176 * the respective cache's slabs, now we can go ahead and
1177 * shrink each nodelist to its limit.
1178 */
1179 list_for_each_entry(cachep, &slab_caches, list) {
1180 n = cachep->node[node];
1181 if (!n)
1182 continue;
1183 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1184 }
1185 }
1186
1187 static int cpuup_prepare(long cpu)
1188 {
1189 struct kmem_cache *cachep;
1190 struct kmem_cache_node *n = NULL;
1191 int node = cpu_to_mem(cpu);
1192 int err;
1193
1194 /*
1195 * We need to do this right in the beginning since
1196 * alloc_arraycache's are going to use this list.
1197 * kmalloc_node allows us to add the slab to the right
1198 * kmem_cache_node and not this cpu's kmem_cache_node
1199 */
1200 err = init_cache_node_node(node);
1201 if (err < 0)
1202 goto bad;
1203
1204 /*
1205 * Now we can go ahead with allocating the shared arrays and
1206 * array caches
1207 */
1208 list_for_each_entry(cachep, &slab_caches, list) {
1209 struct array_cache *nc;
1210 struct array_cache *shared = NULL;
1211 struct array_cache **alien = NULL;
1212
1213 nc = alloc_arraycache(node, cachep->limit,
1214 cachep->batchcount, GFP_KERNEL);
1215 if (!nc)
1216 goto bad;
1217 if (cachep->shared) {
1218 shared = alloc_arraycache(node,
1219 cachep->shared * cachep->batchcount,
1220 0xbaadf00d, GFP_KERNEL);
1221 if (!shared) {
1222 kfree(nc);
1223 goto bad;
1224 }
1225 }
1226 if (use_alien_caches) {
1227 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1228 if (!alien) {
1229 kfree(shared);
1230 kfree(nc);
1231 goto bad;
1232 }
1233 }
1234 cachep->array[cpu] = nc;
1235 n = cachep->node[node];
1236 BUG_ON(!n);
1237
1238 spin_lock_irq(&n->list_lock);
1239 if (!n->shared) {
1240 /*
1241 * We are serialised from CPU_DEAD or
1242 * CPU_UP_CANCELLED by the cpucontrol lock
1243 */
1244 n->shared = shared;
1245 shared = NULL;
1246 }
1247 #ifdef CONFIG_NUMA
1248 if (!n->alien) {
1249 n->alien = alien;
1250 alien = NULL;
1251 }
1252 #endif
1253 spin_unlock_irq(&n->list_lock);
1254 kfree(shared);
1255 free_alien_cache(alien);
1256 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1257 slab_set_debugobj_lock_classes_node(cachep, node);
1258 else if (!OFF_SLAB(cachep) &&
1259 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1260 on_slab_lock_classes_node(cachep, node);
1261 }
1262 init_node_lock_keys(node);
1263
1264 return 0;
1265 bad:
1266 cpuup_canceled(cpu);
1267 return -ENOMEM;
1268 }
1269
1270 static int cpuup_callback(struct notifier_block *nfb,
1271 unsigned long action, void *hcpu)
1272 {
1273 long cpu = (long)hcpu;
1274 int err = 0;
1275
1276 switch (action) {
1277 case CPU_UP_PREPARE:
1278 case CPU_UP_PREPARE_FROZEN:
1279 mutex_lock(&slab_mutex);
1280 err = cpuup_prepare(cpu);
1281 mutex_unlock(&slab_mutex);
1282 break;
1283 case CPU_ONLINE:
1284 case CPU_ONLINE_FROZEN:
1285 start_cpu_timer(cpu);
1286 break;
1287 #ifdef CONFIG_HOTPLUG_CPU
1288 case CPU_DOWN_PREPARE:
1289 case CPU_DOWN_PREPARE_FROZEN:
1290 /*
1291 * Shutdown cache reaper. Note that the slab_mutex is
1292 * held so that if cache_reap() is invoked it cannot do
1293 * anything expensive but will only modify reap_work
1294 * and reschedule the timer.
1295 */
1296 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1297 /* Now the cache_reaper is guaranteed to be not running. */
1298 per_cpu(slab_reap_work, cpu).work.func = NULL;
1299 break;
1300 case CPU_DOWN_FAILED:
1301 case CPU_DOWN_FAILED_FROZEN:
1302 start_cpu_timer(cpu);
1303 break;
1304 case CPU_DEAD:
1305 case CPU_DEAD_FROZEN:
1306 /*
1307 * Even if all the cpus of a node are down, we don't free the
1308 * kmem_cache_node of any cache. This to avoid a race between
1309 * cpu_down, and a kmalloc allocation from another cpu for
1310 * memory from the node of the cpu going down. The node
1311 * structure is usually allocated from kmem_cache_create() and
1312 * gets destroyed at kmem_cache_destroy().
1313 */
1314 /* fall through */
1315 #endif
1316 case CPU_UP_CANCELED:
1317 case CPU_UP_CANCELED_FROZEN:
1318 mutex_lock(&slab_mutex);
1319 cpuup_canceled(cpu);
1320 mutex_unlock(&slab_mutex);
1321 break;
1322 }
1323 return notifier_from_errno(err);
1324 }
1325
1326 static struct notifier_block cpucache_notifier = {
1327 &cpuup_callback, NULL, 0
1328 };
1329
1330 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1331 /*
1332 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1333 * Returns -EBUSY if all objects cannot be drained so that the node is not
1334 * removed.
1335 *
1336 * Must hold slab_mutex.
1337 */
1338 static int __meminit drain_cache_node_node(int node)
1339 {
1340 struct kmem_cache *cachep;
1341 int ret = 0;
1342
1343 list_for_each_entry(cachep, &slab_caches, list) {
1344 struct kmem_cache_node *n;
1345
1346 n = cachep->node[node];
1347 if (!n)
1348 continue;
1349
1350 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1351
1352 if (!list_empty(&n->slabs_full) ||
1353 !list_empty(&n->slabs_partial)) {
1354 ret = -EBUSY;
1355 break;
1356 }
1357 }
1358 return ret;
1359 }
1360
1361 static int __meminit slab_memory_callback(struct notifier_block *self,
1362 unsigned long action, void *arg)
1363 {
1364 struct memory_notify *mnb = arg;
1365 int ret = 0;
1366 int nid;
1367
1368 nid = mnb->status_change_nid;
1369 if (nid < 0)
1370 goto out;
1371
1372 switch (action) {
1373 case MEM_GOING_ONLINE:
1374 mutex_lock(&slab_mutex);
1375 ret = init_cache_node_node(nid);
1376 mutex_unlock(&slab_mutex);
1377 break;
1378 case MEM_GOING_OFFLINE:
1379 mutex_lock(&slab_mutex);
1380 ret = drain_cache_node_node(nid);
1381 mutex_unlock(&slab_mutex);
1382 break;
1383 case MEM_ONLINE:
1384 case MEM_OFFLINE:
1385 case MEM_CANCEL_ONLINE:
1386 case MEM_CANCEL_OFFLINE:
1387 break;
1388 }
1389 out:
1390 return notifier_from_errno(ret);
1391 }
1392 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1393
1394 /*
1395 * swap the static kmem_cache_node with kmalloced memory
1396 */
1397 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1398 int nodeid)
1399 {
1400 struct kmem_cache_node *ptr;
1401
1402 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1403 BUG_ON(!ptr);
1404
1405 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1406 /*
1407 * Do not assume that spinlocks can be initialized via memcpy:
1408 */
1409 spin_lock_init(&ptr->list_lock);
1410
1411 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1412 cachep->node[nodeid] = ptr;
1413 }
1414
1415 /*
1416 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1417 * size of kmem_cache_node.
1418 */
1419 static void __init set_up_node(struct kmem_cache *cachep, int index)
1420 {
1421 int node;
1422
1423 for_each_online_node(node) {
1424 cachep->node[node] = &init_kmem_cache_node[index + node];
1425 cachep->node[node]->next_reap = jiffies +
1426 REAPTIMEOUT_NODE +
1427 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1428 }
1429 }
1430
1431 /*
1432 * The memory after the last cpu cache pointer is used for the
1433 * the node pointer.
1434 */
1435 static void setup_node_pointer(struct kmem_cache *cachep)
1436 {
1437 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1438 }
1439
1440 /*
1441 * Initialisation. Called after the page allocator have been initialised and
1442 * before smp_init().
1443 */
1444 void __init kmem_cache_init(void)
1445 {
1446 int i;
1447
1448 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1449 sizeof(struct rcu_head));
1450 kmem_cache = &kmem_cache_boot;
1451 setup_node_pointer(kmem_cache);
1452
1453 if (num_possible_nodes() == 1)
1454 use_alien_caches = 0;
1455
1456 for (i = 0; i < NUM_INIT_LISTS; i++)
1457 kmem_cache_node_init(&init_kmem_cache_node[i]);
1458
1459 set_up_node(kmem_cache, CACHE_CACHE);
1460
1461 /*
1462 * Fragmentation resistance on low memory - only use bigger
1463 * page orders on machines with more than 32MB of memory if
1464 * not overridden on the command line.
1465 */
1466 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1467 slab_max_order = SLAB_MAX_ORDER_HI;
1468
1469 /* Bootstrap is tricky, because several objects are allocated
1470 * from caches that do not exist yet:
1471 * 1) initialize the kmem_cache cache: it contains the struct
1472 * kmem_cache structures of all caches, except kmem_cache itself:
1473 * kmem_cache is statically allocated.
1474 * Initially an __init data area is used for the head array and the
1475 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1476 * array at the end of the bootstrap.
1477 * 2) Create the first kmalloc cache.
1478 * The struct kmem_cache for the new cache is allocated normally.
1479 * An __init data area is used for the head array.
1480 * 3) Create the remaining kmalloc caches, with minimally sized
1481 * head arrays.
1482 * 4) Replace the __init data head arrays for kmem_cache and the first
1483 * kmalloc cache with kmalloc allocated arrays.
1484 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1485 * the other cache's with kmalloc allocated memory.
1486 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1487 */
1488
1489 /* 1) create the kmem_cache */
1490
1491 /*
1492 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1493 */
1494 create_boot_cache(kmem_cache, "kmem_cache",
1495 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1496 nr_node_ids * sizeof(struct kmem_cache_node *),
1497 SLAB_HWCACHE_ALIGN);
1498 list_add(&kmem_cache->list, &slab_caches);
1499
1500 /* 2+3) create the kmalloc caches */
1501
1502 /*
1503 * Initialize the caches that provide memory for the array cache and the
1504 * kmem_cache_node structures first. Without this, further allocations will
1505 * bug.
1506 */
1507
1508 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1509 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1510
1511 if (INDEX_AC != INDEX_NODE)
1512 kmalloc_caches[INDEX_NODE] =
1513 create_kmalloc_cache("kmalloc-node",
1514 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1515
1516 slab_early_init = 0;
1517
1518 /* 4) Replace the bootstrap head arrays */
1519 {
1520 struct array_cache *ptr;
1521
1522 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1523
1524 memcpy(ptr, cpu_cache_get(kmem_cache),
1525 sizeof(struct arraycache_init));
1526 /*
1527 * Do not assume that spinlocks can be initialized via memcpy:
1528 */
1529 spin_lock_init(&ptr->lock);
1530
1531 kmem_cache->array[smp_processor_id()] = ptr;
1532
1533 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1534
1535 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1536 != &initarray_generic.cache);
1537 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1538 sizeof(struct arraycache_init));
1539 /*
1540 * Do not assume that spinlocks can be initialized via memcpy:
1541 */
1542 spin_lock_init(&ptr->lock);
1543
1544 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1545 }
1546 /* 5) Replace the bootstrap kmem_cache_node */
1547 {
1548 int nid;
1549
1550 for_each_online_node(nid) {
1551 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1552
1553 init_list(kmalloc_caches[INDEX_AC],
1554 &init_kmem_cache_node[SIZE_AC + nid], nid);
1555
1556 if (INDEX_AC != INDEX_NODE) {
1557 init_list(kmalloc_caches[INDEX_NODE],
1558 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1559 }
1560 }
1561 }
1562
1563 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1564 }
1565
1566 void __init kmem_cache_init_late(void)
1567 {
1568 struct kmem_cache *cachep;
1569
1570 slab_state = UP;
1571
1572 /* 6) resize the head arrays to their final sizes */
1573 mutex_lock(&slab_mutex);
1574 list_for_each_entry(cachep, &slab_caches, list)
1575 if (enable_cpucache(cachep, GFP_NOWAIT))
1576 BUG();
1577 mutex_unlock(&slab_mutex);
1578
1579 /* Annotate slab for lockdep -- annotate the malloc caches */
1580 init_lock_keys();
1581
1582 /* Done! */
1583 slab_state = FULL;
1584
1585 /*
1586 * Register a cpu startup notifier callback that initializes
1587 * cpu_cache_get for all new cpus
1588 */
1589 register_cpu_notifier(&cpucache_notifier);
1590
1591 #ifdef CONFIG_NUMA
1592 /*
1593 * Register a memory hotplug callback that initializes and frees
1594 * node.
1595 */
1596 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1597 #endif
1598
1599 /*
1600 * The reap timers are started later, with a module init call: That part
1601 * of the kernel is not yet operational.
1602 */
1603 }
1604
1605 static int __init cpucache_init(void)
1606 {
1607 int cpu;
1608
1609 /*
1610 * Register the timers that return unneeded pages to the page allocator
1611 */
1612 for_each_online_cpu(cpu)
1613 start_cpu_timer(cpu);
1614
1615 /* Done! */
1616 slab_state = FULL;
1617 return 0;
1618 }
1619 __initcall(cpucache_init);
1620
1621 static noinline void
1622 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1623 {
1624 #if DEBUG
1625 struct kmem_cache_node *n;
1626 struct page *page;
1627 unsigned long flags;
1628 int node;
1629 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1630 DEFAULT_RATELIMIT_BURST);
1631
1632 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1633 return;
1634
1635 printk(KERN_WARNING
1636 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1637 nodeid, gfpflags);
1638 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1639 cachep->name, cachep->size, cachep->gfporder);
1640
1641 for_each_online_node(node) {
1642 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1643 unsigned long active_slabs = 0, num_slabs = 0;
1644
1645 n = cachep->node[node];
1646 if (!n)
1647 continue;
1648
1649 spin_lock_irqsave(&n->list_lock, flags);
1650 list_for_each_entry(page, &n->slabs_full, lru) {
1651 active_objs += cachep->num;
1652 active_slabs++;
1653 }
1654 list_for_each_entry(page, &n->slabs_partial, lru) {
1655 active_objs += page->active;
1656 active_slabs++;
1657 }
1658 list_for_each_entry(page, &n->slabs_free, lru)
1659 num_slabs++;
1660
1661 free_objects += n->free_objects;
1662 spin_unlock_irqrestore(&n->list_lock, flags);
1663
1664 num_slabs += active_slabs;
1665 num_objs = num_slabs * cachep->num;
1666 printk(KERN_WARNING
1667 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1668 node, active_slabs, num_slabs, active_objs, num_objs,
1669 free_objects);
1670 }
1671 #endif
1672 }
1673
1674 /*
1675 * Interface to system's page allocator. No need to hold the cache-lock.
1676 *
1677 * If we requested dmaable memory, we will get it. Even if we
1678 * did not request dmaable memory, we might get it, but that
1679 * would be relatively rare and ignorable.
1680 */
1681 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1682 int nodeid)
1683 {
1684 struct page *page;
1685 int nr_pages;
1686
1687 flags |= cachep->allocflags;
1688 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1689 flags |= __GFP_RECLAIMABLE;
1690
1691 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1692 if (!page) {
1693 slab_out_of_memory(cachep, flags, nodeid);
1694 return NULL;
1695 }
1696
1697 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1698 if (unlikely(page->pfmemalloc))
1699 pfmemalloc_active = true;
1700
1701 nr_pages = (1 << cachep->gfporder);
1702 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1703 add_zone_page_state(page_zone(page),
1704 NR_SLAB_RECLAIMABLE, nr_pages);
1705 else
1706 add_zone_page_state(page_zone(page),
1707 NR_SLAB_UNRECLAIMABLE, nr_pages);
1708 __SetPageSlab(page);
1709 if (page->pfmemalloc)
1710 SetPageSlabPfmemalloc(page);
1711 memcg_bind_pages(cachep, cachep->gfporder);
1712
1713 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1714 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1715
1716 if (cachep->ctor)
1717 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1718 else
1719 kmemcheck_mark_unallocated_pages(page, nr_pages);
1720 }
1721
1722 return page;
1723 }
1724
1725 /*
1726 * Interface to system's page release.
1727 */
1728 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1729 {
1730 const unsigned long nr_freed = (1 << cachep->gfporder);
1731
1732 kmemcheck_free_shadow(page, cachep->gfporder);
1733
1734 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1735 sub_zone_page_state(page_zone(page),
1736 NR_SLAB_RECLAIMABLE, nr_freed);
1737 else
1738 sub_zone_page_state(page_zone(page),
1739 NR_SLAB_UNRECLAIMABLE, nr_freed);
1740
1741 BUG_ON(!PageSlab(page));
1742 __ClearPageSlabPfmemalloc(page);
1743 __ClearPageSlab(page);
1744 page_mapcount_reset(page);
1745 page->mapping = NULL;
1746
1747 memcg_release_pages(cachep, cachep->gfporder);
1748 if (current->reclaim_state)
1749 current->reclaim_state->reclaimed_slab += nr_freed;
1750 __free_memcg_kmem_pages(page, cachep->gfporder);
1751 }
1752
1753 static void kmem_rcu_free(struct rcu_head *head)
1754 {
1755 struct kmem_cache *cachep;
1756 struct page *page;
1757
1758 page = container_of(head, struct page, rcu_head);
1759 cachep = page->slab_cache;
1760
1761 kmem_freepages(cachep, page);
1762 }
1763
1764 #if DEBUG
1765
1766 #ifdef CONFIG_DEBUG_PAGEALLOC
1767 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1768 unsigned long caller)
1769 {
1770 int size = cachep->object_size;
1771
1772 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1773
1774 if (size < 5 * sizeof(unsigned long))
1775 return;
1776
1777 *addr++ = 0x12345678;
1778 *addr++ = caller;
1779 *addr++ = smp_processor_id();
1780 size -= 3 * sizeof(unsigned long);
1781 {
1782 unsigned long *sptr = &caller;
1783 unsigned long svalue;
1784
1785 while (!kstack_end(sptr)) {
1786 svalue = *sptr++;
1787 if (kernel_text_address(svalue)) {
1788 *addr++ = svalue;
1789 size -= sizeof(unsigned long);
1790 if (size <= sizeof(unsigned long))
1791 break;
1792 }
1793 }
1794
1795 }
1796 *addr++ = 0x87654321;
1797 }
1798 #endif
1799
1800 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1801 {
1802 int size = cachep->object_size;
1803 addr = &((char *)addr)[obj_offset(cachep)];
1804
1805 memset(addr, val, size);
1806 *(unsigned char *)(addr + size - 1) = POISON_END;
1807 }
1808
1809 static void dump_line(char *data, int offset, int limit)
1810 {
1811 int i;
1812 unsigned char error = 0;
1813 int bad_count = 0;
1814
1815 printk(KERN_ERR "%03x: ", offset);
1816 for (i = 0; i < limit; i++) {
1817 if (data[offset + i] != POISON_FREE) {
1818 error = data[offset + i];
1819 bad_count++;
1820 }
1821 }
1822 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1823 &data[offset], limit, 1);
1824
1825 if (bad_count == 1) {
1826 error ^= POISON_FREE;
1827 if (!(error & (error - 1))) {
1828 printk(KERN_ERR "Single bit error detected. Probably "
1829 "bad RAM.\n");
1830 #ifdef CONFIG_X86
1831 printk(KERN_ERR "Run memtest86+ or a similar memory "
1832 "test tool.\n");
1833 #else
1834 printk(KERN_ERR "Run a memory test tool.\n");
1835 #endif
1836 }
1837 }
1838 }
1839 #endif
1840
1841 #if DEBUG
1842
1843 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1844 {
1845 int i, size;
1846 char *realobj;
1847
1848 if (cachep->flags & SLAB_RED_ZONE) {
1849 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1850 *dbg_redzone1(cachep, objp),
1851 *dbg_redzone2(cachep, objp));
1852 }
1853
1854 if (cachep->flags & SLAB_STORE_USER) {
1855 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1856 *dbg_userword(cachep, objp),
1857 *dbg_userword(cachep, objp));
1858 }
1859 realobj = (char *)objp + obj_offset(cachep);
1860 size = cachep->object_size;
1861 for (i = 0; i < size && lines; i += 16, lines--) {
1862 int limit;
1863 limit = 16;
1864 if (i + limit > size)
1865 limit = size - i;
1866 dump_line(realobj, i, limit);
1867 }
1868 }
1869
1870 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1871 {
1872 char *realobj;
1873 int size, i;
1874 int lines = 0;
1875
1876 realobj = (char *)objp + obj_offset(cachep);
1877 size = cachep->object_size;
1878
1879 for (i = 0; i < size; i++) {
1880 char exp = POISON_FREE;
1881 if (i == size - 1)
1882 exp = POISON_END;
1883 if (realobj[i] != exp) {
1884 int limit;
1885 /* Mismatch ! */
1886 /* Print header */
1887 if (lines == 0) {
1888 printk(KERN_ERR
1889 "Slab corruption (%s): %s start=%p, len=%d\n",
1890 print_tainted(), cachep->name, realobj, size);
1891 print_objinfo(cachep, objp, 0);
1892 }
1893 /* Hexdump the affected line */
1894 i = (i / 16) * 16;
1895 limit = 16;
1896 if (i + limit > size)
1897 limit = size - i;
1898 dump_line(realobj, i, limit);
1899 i += 16;
1900 lines++;
1901 /* Limit to 5 lines */
1902 if (lines > 5)
1903 break;
1904 }
1905 }
1906 if (lines != 0) {
1907 /* Print some data about the neighboring objects, if they
1908 * exist:
1909 */
1910 struct page *page = virt_to_head_page(objp);
1911 unsigned int objnr;
1912
1913 objnr = obj_to_index(cachep, page, objp);
1914 if (objnr) {
1915 objp = index_to_obj(cachep, page, objnr - 1);
1916 realobj = (char *)objp + obj_offset(cachep);
1917 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1918 realobj, size);
1919 print_objinfo(cachep, objp, 2);
1920 }
1921 if (objnr + 1 < cachep->num) {
1922 objp = index_to_obj(cachep, page, objnr + 1);
1923 realobj = (char *)objp + obj_offset(cachep);
1924 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1925 realobj, size);
1926 print_objinfo(cachep, objp, 2);
1927 }
1928 }
1929 }
1930 #endif
1931
1932 #if DEBUG
1933 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1934 struct page *page)
1935 {
1936 int i;
1937 for (i = 0; i < cachep->num; i++) {
1938 void *objp = index_to_obj(cachep, page, i);
1939
1940 if (cachep->flags & SLAB_POISON) {
1941 #ifdef CONFIG_DEBUG_PAGEALLOC
1942 if (cachep->size % PAGE_SIZE == 0 &&
1943 OFF_SLAB(cachep))
1944 kernel_map_pages(virt_to_page(objp),
1945 cachep->size / PAGE_SIZE, 1);
1946 else
1947 check_poison_obj(cachep, objp);
1948 #else
1949 check_poison_obj(cachep, objp);
1950 #endif
1951 }
1952 if (cachep->flags & SLAB_RED_ZONE) {
1953 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1954 slab_error(cachep, "start of a freed object "
1955 "was overwritten");
1956 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1957 slab_error(cachep, "end of a freed object "
1958 "was overwritten");
1959 }
1960 }
1961 }
1962 #else
1963 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1964 struct page *page)
1965 {
1966 }
1967 #endif
1968
1969 /**
1970 * slab_destroy - destroy and release all objects in a slab
1971 * @cachep: cache pointer being destroyed
1972 * @page: page pointer being destroyed
1973 *
1974 * Destroy all the objs in a slab, and release the mem back to the system.
1975 * Before calling the slab must have been unlinked from the cache. The
1976 * cache-lock is not held/needed.
1977 */
1978 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1979 {
1980 void *freelist;
1981
1982 freelist = page->freelist;
1983 slab_destroy_debugcheck(cachep, page);
1984 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1985 struct rcu_head *head;
1986
1987 /*
1988 * RCU free overloads the RCU head over the LRU.
1989 * slab_page has been overloeaded over the LRU,
1990 * however it is not used from now on so that
1991 * we can use it safely.
1992 */
1993 head = (void *)&page->rcu_head;
1994 call_rcu(head, kmem_rcu_free);
1995
1996 } else {
1997 kmem_freepages(cachep, page);
1998 }
1999
2000 /*
2001 * From now on, we don't use freelist
2002 * although actual page can be freed in rcu context
2003 */
2004 if (OFF_SLAB(cachep))
2005 kmem_cache_free(cachep->freelist_cache, freelist);
2006 }
2007
2008 /**
2009 * calculate_slab_order - calculate size (page order) of slabs
2010 * @cachep: pointer to the cache that is being created
2011 * @size: size of objects to be created in this cache.
2012 * @align: required alignment for the objects.
2013 * @flags: slab allocation flags
2014 *
2015 * Also calculates the number of objects per slab.
2016 *
2017 * This could be made much more intelligent. For now, try to avoid using
2018 * high order pages for slabs. When the gfp() functions are more friendly
2019 * towards high-order requests, this should be changed.
2020 */
2021 static size_t calculate_slab_order(struct kmem_cache *cachep,
2022 size_t size, size_t align, unsigned long flags)
2023 {
2024 unsigned long offslab_limit;
2025 size_t left_over = 0;
2026 int gfporder;
2027
2028 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2029 unsigned int num;
2030 size_t remainder;
2031
2032 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2033 if (!num)
2034 continue;
2035
2036 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
2037 if (num > SLAB_OBJ_MAX_NUM)
2038 break;
2039
2040 if (flags & CFLGS_OFF_SLAB) {
2041 /*
2042 * Max number of objs-per-slab for caches which
2043 * use off-slab slabs. Needed to avoid a possible
2044 * looping condition in cache_grow().
2045 */
2046 offslab_limit = size;
2047 offslab_limit /= sizeof(freelist_idx_t);
2048
2049 if (num > offslab_limit)
2050 break;
2051 }
2052
2053 /* Found something acceptable - save it away */
2054 cachep->num = num;
2055 cachep->gfporder = gfporder;
2056 left_over = remainder;
2057
2058 /*
2059 * A VFS-reclaimable slab tends to have most allocations
2060 * as GFP_NOFS and we really don't want to have to be allocating
2061 * higher-order pages when we are unable to shrink dcache.
2062 */
2063 if (flags & SLAB_RECLAIM_ACCOUNT)
2064 break;
2065
2066 /*
2067 * Large number of objects is good, but very large slabs are
2068 * currently bad for the gfp()s.
2069 */
2070 if (gfporder >= slab_max_order)
2071 break;
2072
2073 /*
2074 * Acceptable internal fragmentation?
2075 */
2076 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2077 break;
2078 }
2079 return left_over;
2080 }
2081
2082 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2083 {
2084 if (slab_state >= FULL)
2085 return enable_cpucache(cachep, gfp);
2086
2087 if (slab_state == DOWN) {
2088 /*
2089 * Note: Creation of first cache (kmem_cache).
2090 * The setup_node is taken care
2091 * of by the caller of __kmem_cache_create
2092 */
2093 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2094 slab_state = PARTIAL;
2095 } else if (slab_state == PARTIAL) {
2096 /*
2097 * Note: the second kmem_cache_create must create the cache
2098 * that's used by kmalloc(24), otherwise the creation of
2099 * further caches will BUG().
2100 */
2101 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2102
2103 /*
2104 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2105 * the second cache, then we need to set up all its node/,
2106 * otherwise the creation of further caches will BUG().
2107 */
2108 set_up_node(cachep, SIZE_AC);
2109 if (INDEX_AC == INDEX_NODE)
2110 slab_state = PARTIAL_NODE;
2111 else
2112 slab_state = PARTIAL_ARRAYCACHE;
2113 } else {
2114 /* Remaining boot caches */
2115 cachep->array[smp_processor_id()] =
2116 kmalloc(sizeof(struct arraycache_init), gfp);
2117
2118 if (slab_state == PARTIAL_ARRAYCACHE) {
2119 set_up_node(cachep, SIZE_NODE);
2120 slab_state = PARTIAL_NODE;
2121 } else {
2122 int node;
2123 for_each_online_node(node) {
2124 cachep->node[node] =
2125 kmalloc_node(sizeof(struct kmem_cache_node),
2126 gfp, node);
2127 BUG_ON(!cachep->node[node]);
2128 kmem_cache_node_init(cachep->node[node]);
2129 }
2130 }
2131 }
2132 cachep->node[numa_mem_id()]->next_reap =
2133 jiffies + REAPTIMEOUT_NODE +
2134 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2135
2136 cpu_cache_get(cachep)->avail = 0;
2137 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2138 cpu_cache_get(cachep)->batchcount = 1;
2139 cpu_cache_get(cachep)->touched = 0;
2140 cachep->batchcount = 1;
2141 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2142 return 0;
2143 }
2144
2145 /**
2146 * __kmem_cache_create - Create a cache.
2147 * @cachep: cache management descriptor
2148 * @flags: SLAB flags
2149 *
2150 * Returns a ptr to the cache on success, NULL on failure.
2151 * Cannot be called within a int, but can be interrupted.
2152 * The @ctor is run when new pages are allocated by the cache.
2153 *
2154 * The flags are
2155 *
2156 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2157 * to catch references to uninitialised memory.
2158 *
2159 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2160 * for buffer overruns.
2161 *
2162 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2163 * cacheline. This can be beneficial if you're counting cycles as closely
2164 * as davem.
2165 */
2166 int
2167 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2168 {
2169 size_t left_over, freelist_size, ralign;
2170 gfp_t gfp;
2171 int err;
2172 size_t size = cachep->size;
2173
2174 #if DEBUG
2175 #if FORCED_DEBUG
2176 /*
2177 * Enable redzoning and last user accounting, except for caches with
2178 * large objects, if the increased size would increase the object size
2179 * above the next power of two: caches with object sizes just above a
2180 * power of two have a significant amount of internal fragmentation.
2181 */
2182 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2183 2 * sizeof(unsigned long long)))
2184 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2185 if (!(flags & SLAB_DESTROY_BY_RCU))
2186 flags |= SLAB_POISON;
2187 #endif
2188 if (flags & SLAB_DESTROY_BY_RCU)
2189 BUG_ON(flags & SLAB_POISON);
2190 #endif
2191
2192 /*
2193 * Check that size is in terms of words. This is needed to avoid
2194 * unaligned accesses for some archs when redzoning is used, and makes
2195 * sure any on-slab bufctl's are also correctly aligned.
2196 */
2197 if (size & (BYTES_PER_WORD - 1)) {
2198 size += (BYTES_PER_WORD - 1);
2199 size &= ~(BYTES_PER_WORD - 1);
2200 }
2201
2202 /*
2203 * Redzoning and user store require word alignment or possibly larger.
2204 * Note this will be overridden by architecture or caller mandated
2205 * alignment if either is greater than BYTES_PER_WORD.
2206 */
2207 if (flags & SLAB_STORE_USER)
2208 ralign = BYTES_PER_WORD;
2209
2210 if (flags & SLAB_RED_ZONE) {
2211 ralign = REDZONE_ALIGN;
2212 /* If redzoning, ensure that the second redzone is suitably
2213 * aligned, by adjusting the object size accordingly. */
2214 size += REDZONE_ALIGN - 1;
2215 size &= ~(REDZONE_ALIGN - 1);
2216 }
2217
2218 /* 3) caller mandated alignment */
2219 if (ralign < cachep->align) {
2220 ralign = cachep->align;
2221 }
2222 /* disable debug if necessary */
2223 if (ralign > __alignof__(unsigned long long))
2224 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2225 /*
2226 * 4) Store it.
2227 */
2228 cachep->align = ralign;
2229
2230 if (slab_is_available())
2231 gfp = GFP_KERNEL;
2232 else
2233 gfp = GFP_NOWAIT;
2234
2235 setup_node_pointer(cachep);
2236 #if DEBUG
2237
2238 /*
2239 * Both debugging options require word-alignment which is calculated
2240 * into align above.
2241 */
2242 if (flags & SLAB_RED_ZONE) {
2243 /* add space for red zone words */
2244 cachep->obj_offset += sizeof(unsigned long long);
2245 size += 2 * sizeof(unsigned long long);
2246 }
2247 if (flags & SLAB_STORE_USER) {
2248 /* user store requires one word storage behind the end of
2249 * the real object. But if the second red zone needs to be
2250 * aligned to 64 bits, we must allow that much space.
2251 */
2252 if (flags & SLAB_RED_ZONE)
2253 size += REDZONE_ALIGN;
2254 else
2255 size += BYTES_PER_WORD;
2256 }
2257 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2258 if (size >= kmalloc_size(INDEX_NODE + 1)
2259 && cachep->object_size > cache_line_size()
2260 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2261 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2262 size = PAGE_SIZE;
2263 }
2264 #endif
2265 #endif
2266
2267 /*
2268 * Determine if the slab management is 'on' or 'off' slab.
2269 * (bootstrapping cannot cope with offslab caches so don't do
2270 * it too early on. Always use on-slab management when
2271 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2272 */
2273 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2274 !(flags & SLAB_NOLEAKTRACE))
2275 /*
2276 * Size is large, assume best to place the slab management obj
2277 * off-slab (should allow better packing of objs).
2278 */
2279 flags |= CFLGS_OFF_SLAB;
2280
2281 size = ALIGN(size, cachep->align);
2282 /*
2283 * We should restrict the number of objects in a slab to implement
2284 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2285 */
2286 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2287 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2288
2289 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2290
2291 if (!cachep->num)
2292 return -E2BIG;
2293
2294 freelist_size =
2295 ALIGN(cachep->num * sizeof(freelist_idx_t), cachep->align);
2296
2297 /*
2298 * If the slab has been placed off-slab, and we have enough space then
2299 * move it on-slab. This is at the expense of any extra colouring.
2300 */
2301 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2302 flags &= ~CFLGS_OFF_SLAB;
2303 left_over -= freelist_size;
2304 }
2305
2306 if (flags & CFLGS_OFF_SLAB) {
2307 /* really off slab. No need for manual alignment */
2308 freelist_size = cachep->num * sizeof(freelist_idx_t);
2309
2310 #ifdef CONFIG_PAGE_POISONING
2311 /* If we're going to use the generic kernel_map_pages()
2312 * poisoning, then it's going to smash the contents of
2313 * the redzone and userword anyhow, so switch them off.
2314 */
2315 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2316 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2317 #endif
2318 }
2319
2320 cachep->colour_off = cache_line_size();
2321 /* Offset must be a multiple of the alignment. */
2322 if (cachep->colour_off < cachep->align)
2323 cachep->colour_off = cachep->align;
2324 cachep->colour = left_over / cachep->colour_off;
2325 cachep->freelist_size = freelist_size;
2326 cachep->flags = flags;
2327 cachep->allocflags = __GFP_COMP;
2328 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2329 cachep->allocflags |= GFP_DMA;
2330 cachep->size = size;
2331 cachep->reciprocal_buffer_size = reciprocal_value(size);
2332
2333 if (flags & CFLGS_OFF_SLAB) {
2334 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2335 /*
2336 * This is a possibility for one of the kmalloc_{dma,}_caches.
2337 * But since we go off slab only for object size greater than
2338 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2339 * in ascending order,this should not happen at all.
2340 * But leave a BUG_ON for some lucky dude.
2341 */
2342 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2343 }
2344
2345 err = setup_cpu_cache(cachep, gfp);
2346 if (err) {
2347 __kmem_cache_shutdown(cachep);
2348 return err;
2349 }
2350
2351 if (flags & SLAB_DEBUG_OBJECTS) {
2352 /*
2353 * Would deadlock through slab_destroy()->call_rcu()->
2354 * debug_object_activate()->kmem_cache_alloc().
2355 */
2356 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2357
2358 slab_set_debugobj_lock_classes(cachep);
2359 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2360 on_slab_lock_classes(cachep);
2361
2362 return 0;
2363 }
2364
2365 #if DEBUG
2366 static void check_irq_off(void)
2367 {
2368 BUG_ON(!irqs_disabled());
2369 }
2370
2371 static void check_irq_on(void)
2372 {
2373 BUG_ON(irqs_disabled());
2374 }
2375
2376 static void check_spinlock_acquired(struct kmem_cache *cachep)
2377 {
2378 #ifdef CONFIG_SMP
2379 check_irq_off();
2380 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2381 #endif
2382 }
2383
2384 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2385 {
2386 #ifdef CONFIG_SMP
2387 check_irq_off();
2388 assert_spin_locked(&cachep->node[node]->list_lock);
2389 #endif
2390 }
2391
2392 #else
2393 #define check_irq_off() do { } while(0)
2394 #define check_irq_on() do { } while(0)
2395 #define check_spinlock_acquired(x) do { } while(0)
2396 #define check_spinlock_acquired_node(x, y) do { } while(0)
2397 #endif
2398
2399 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2400 struct array_cache *ac,
2401 int force, int node);
2402
2403 static void do_drain(void *arg)
2404 {
2405 struct kmem_cache *cachep = arg;
2406 struct array_cache *ac;
2407 int node = numa_mem_id();
2408
2409 check_irq_off();
2410 ac = cpu_cache_get(cachep);
2411 spin_lock(&cachep->node[node]->list_lock);
2412 free_block(cachep, ac->entry, ac->avail, node);
2413 spin_unlock(&cachep->node[node]->list_lock);
2414 ac->avail = 0;
2415 }
2416
2417 static void drain_cpu_caches(struct kmem_cache *cachep)
2418 {
2419 struct kmem_cache_node *n;
2420 int node;
2421
2422 on_each_cpu(do_drain, cachep, 1);
2423 check_irq_on();
2424 for_each_online_node(node) {
2425 n = cachep->node[node];
2426 if (n && n->alien)
2427 drain_alien_cache(cachep, n->alien);
2428 }
2429
2430 for_each_online_node(node) {
2431 n = cachep->node[node];
2432 if (n)
2433 drain_array(cachep, n, n->shared, 1, node);
2434 }
2435 }
2436
2437 /*
2438 * Remove slabs from the list of free slabs.
2439 * Specify the number of slabs to drain in tofree.
2440 *
2441 * Returns the actual number of slabs released.
2442 */
2443 static int drain_freelist(struct kmem_cache *cache,
2444 struct kmem_cache_node *n, int tofree)
2445 {
2446 struct list_head *p;
2447 int nr_freed;
2448 struct page *page;
2449
2450 nr_freed = 0;
2451 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2452
2453 spin_lock_irq(&n->list_lock);
2454 p = n->slabs_free.prev;
2455 if (p == &n->slabs_free) {
2456 spin_unlock_irq(&n->list_lock);
2457 goto out;
2458 }
2459
2460 page = list_entry(p, struct page, lru);
2461 #if DEBUG
2462 BUG_ON(page->active);
2463 #endif
2464 list_del(&page->lru);
2465 /*
2466 * Safe to drop the lock. The slab is no longer linked
2467 * to the cache.
2468 */
2469 n->free_objects -= cache->num;
2470 spin_unlock_irq(&n->list_lock);
2471 slab_destroy(cache, page);
2472 nr_freed++;
2473 }
2474 out:
2475 return nr_freed;
2476 }
2477
2478 /* Called with slab_mutex held to protect against cpu hotplug */
2479 static int __cache_shrink(struct kmem_cache *cachep)
2480 {
2481 int ret = 0, i = 0;
2482 struct kmem_cache_node *n;
2483
2484 drain_cpu_caches(cachep);
2485
2486 check_irq_on();
2487 for_each_online_node(i) {
2488 n = cachep->node[i];
2489 if (!n)
2490 continue;
2491
2492 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2493
2494 ret += !list_empty(&n->slabs_full) ||
2495 !list_empty(&n->slabs_partial);
2496 }
2497 return (ret ? 1 : 0);
2498 }
2499
2500 /**
2501 * kmem_cache_shrink - Shrink a cache.
2502 * @cachep: The cache to shrink.
2503 *
2504 * Releases as many slabs as possible for a cache.
2505 * To help debugging, a zero exit status indicates all slabs were released.
2506 */
2507 int kmem_cache_shrink(struct kmem_cache *cachep)
2508 {
2509 int ret;
2510 BUG_ON(!cachep || in_interrupt());
2511
2512 get_online_cpus();
2513 mutex_lock(&slab_mutex);
2514 ret = __cache_shrink(cachep);
2515 mutex_unlock(&slab_mutex);
2516 put_online_cpus();
2517 return ret;
2518 }
2519 EXPORT_SYMBOL(kmem_cache_shrink);
2520
2521 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2522 {
2523 int i;
2524 struct kmem_cache_node *n;
2525 int rc = __cache_shrink(cachep);
2526
2527 if (rc)
2528 return rc;
2529
2530 for_each_online_cpu(i)
2531 kfree(cachep->array[i]);
2532
2533 /* NUMA: free the node structures */
2534 for_each_online_node(i) {
2535 n = cachep->node[i];
2536 if (n) {
2537 kfree(n->shared);
2538 free_alien_cache(n->alien);
2539 kfree(n);
2540 }
2541 }
2542 return 0;
2543 }
2544
2545 /*
2546 * Get the memory for a slab management obj.
2547 *
2548 * For a slab cache when the slab descriptor is off-slab, the
2549 * slab descriptor can't come from the same cache which is being created,
2550 * Because if it is the case, that means we defer the creation of
2551 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2552 * And we eventually call down to __kmem_cache_create(), which
2553 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2554 * This is a "chicken-and-egg" problem.
2555 *
2556 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2557 * which are all initialized during kmem_cache_init().
2558 */
2559 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2560 struct page *page, int colour_off,
2561 gfp_t local_flags, int nodeid)
2562 {
2563 void *freelist;
2564 void *addr = page_address(page);
2565
2566 if (OFF_SLAB(cachep)) {
2567 /* Slab management obj is off-slab. */
2568 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2569 local_flags, nodeid);
2570 if (!freelist)
2571 return NULL;
2572 } else {
2573 freelist = addr + colour_off;
2574 colour_off += cachep->freelist_size;
2575 }
2576 page->active = 0;
2577 page->s_mem = addr + colour_off;
2578 return freelist;
2579 }
2580
2581 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2582 {
2583 return ((freelist_idx_t *)page->freelist)[idx];
2584 }
2585
2586 static inline void set_free_obj(struct page *page,
2587 unsigned int idx, freelist_idx_t val)
2588 {
2589 ((freelist_idx_t *)(page->freelist))[idx] = val;
2590 }
2591
2592 static void cache_init_objs(struct kmem_cache *cachep,
2593 struct page *page)
2594 {
2595 int i;
2596
2597 for (i = 0; i < cachep->num; i++) {
2598 void *objp = index_to_obj(cachep, page, i);
2599 #if DEBUG
2600 /* need to poison the objs? */
2601 if (cachep->flags & SLAB_POISON)
2602 poison_obj(cachep, objp, POISON_FREE);
2603 if (cachep->flags & SLAB_STORE_USER)
2604 *dbg_userword(cachep, objp) = NULL;
2605
2606 if (cachep->flags & SLAB_RED_ZONE) {
2607 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2608 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2609 }
2610 /*
2611 * Constructors are not allowed to allocate memory from the same
2612 * cache which they are a constructor for. Otherwise, deadlock.
2613 * They must also be threaded.
2614 */
2615 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2616 cachep->ctor(objp + obj_offset(cachep));
2617
2618 if (cachep->flags & SLAB_RED_ZONE) {
2619 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2620 slab_error(cachep, "constructor overwrote the"
2621 " end of an object");
2622 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2623 slab_error(cachep, "constructor overwrote the"
2624 " start of an object");
2625 }
2626 if ((cachep->size % PAGE_SIZE) == 0 &&
2627 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2628 kernel_map_pages(virt_to_page(objp),
2629 cachep->size / PAGE_SIZE, 0);
2630 #else
2631 if (cachep->ctor)
2632 cachep->ctor(objp);
2633 #endif
2634 set_free_obj(page, i, i);
2635 }
2636 }
2637
2638 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2639 {
2640 if (CONFIG_ZONE_DMA_FLAG) {
2641 if (flags & GFP_DMA)
2642 BUG_ON(!(cachep->allocflags & GFP_DMA));
2643 else
2644 BUG_ON(cachep->allocflags & GFP_DMA);
2645 }
2646 }
2647
2648 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2649 int nodeid)
2650 {
2651 void *objp;
2652
2653 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2654 page->active++;
2655 #if DEBUG
2656 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2657 #endif
2658
2659 return objp;
2660 }
2661
2662 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2663 void *objp, int nodeid)
2664 {
2665 unsigned int objnr = obj_to_index(cachep, page, objp);
2666 #if DEBUG
2667 unsigned int i;
2668
2669 /* Verify that the slab belongs to the intended node */
2670 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2671
2672 /* Verify double free bug */
2673 for (i = page->active; i < cachep->num; i++) {
2674 if (get_free_obj(page, i) == objnr) {
2675 printk(KERN_ERR "slab: double free detected in cache "
2676 "'%s', objp %p\n", cachep->name, objp);
2677 BUG();
2678 }
2679 }
2680 #endif
2681 page->active--;
2682 set_free_obj(page, page->active, objnr);
2683 }
2684
2685 /*
2686 * Map pages beginning at addr to the given cache and slab. This is required
2687 * for the slab allocator to be able to lookup the cache and slab of a
2688 * virtual address for kfree, ksize, and slab debugging.
2689 */
2690 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2691 void *freelist)
2692 {
2693 page->slab_cache = cache;
2694 page->freelist = freelist;
2695 }
2696
2697 /*
2698 * Grow (by 1) the number of slabs within a cache. This is called by
2699 * kmem_cache_alloc() when there are no active objs left in a cache.
2700 */
2701 static int cache_grow(struct kmem_cache *cachep,
2702 gfp_t flags, int nodeid, struct page *page)
2703 {
2704 void *freelist;
2705 size_t offset;
2706 gfp_t local_flags;
2707 struct kmem_cache_node *n;
2708
2709 /*
2710 * Be lazy and only check for valid flags here, keeping it out of the
2711 * critical path in kmem_cache_alloc().
2712 */
2713 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2714 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2715
2716 /* Take the node list lock to change the colour_next on this node */
2717 check_irq_off();
2718 n = cachep->node[nodeid];
2719 spin_lock(&n->list_lock);
2720
2721 /* Get colour for the slab, and cal the next value. */
2722 offset = n->colour_next;
2723 n->colour_next++;
2724 if (n->colour_next >= cachep->colour)
2725 n->colour_next = 0;
2726 spin_unlock(&n->list_lock);
2727
2728 offset *= cachep->colour_off;
2729
2730 if (local_flags & __GFP_WAIT)
2731 local_irq_enable();
2732
2733 /*
2734 * The test for missing atomic flag is performed here, rather than
2735 * the more obvious place, simply to reduce the critical path length
2736 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2737 * will eventually be caught here (where it matters).
2738 */
2739 kmem_flagcheck(cachep, flags);
2740
2741 /*
2742 * Get mem for the objs. Attempt to allocate a physical page from
2743 * 'nodeid'.
2744 */
2745 if (!page)
2746 page = kmem_getpages(cachep, local_flags, nodeid);
2747 if (!page)
2748 goto failed;
2749
2750 /* Get slab management. */
2751 freelist = alloc_slabmgmt(cachep, page, offset,
2752 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2753 if (!freelist)
2754 goto opps1;
2755
2756 slab_map_pages(cachep, page, freelist);
2757
2758 cache_init_objs(cachep, page);
2759
2760 if (local_flags & __GFP_WAIT)
2761 local_irq_disable();
2762 check_irq_off();
2763 spin_lock(&n->list_lock);
2764
2765 /* Make slab active. */
2766 list_add_tail(&page->lru, &(n->slabs_free));
2767 STATS_INC_GROWN(cachep);
2768 n->free_objects += cachep->num;
2769 spin_unlock(&n->list_lock);
2770 return 1;
2771 opps1:
2772 kmem_freepages(cachep, page);
2773 failed:
2774 if (local_flags & __GFP_WAIT)
2775 local_irq_disable();
2776 return 0;
2777 }
2778
2779 #if DEBUG
2780
2781 /*
2782 * Perform extra freeing checks:
2783 * - detect bad pointers.
2784 * - POISON/RED_ZONE checking
2785 */
2786 static void kfree_debugcheck(const void *objp)
2787 {
2788 if (!virt_addr_valid(objp)) {
2789 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2790 (unsigned long)objp);
2791 BUG();
2792 }
2793 }
2794
2795 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2796 {
2797 unsigned long long redzone1, redzone2;
2798
2799 redzone1 = *dbg_redzone1(cache, obj);
2800 redzone2 = *dbg_redzone2(cache, obj);
2801
2802 /*
2803 * Redzone is ok.
2804 */
2805 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2806 return;
2807
2808 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2809 slab_error(cache, "double free detected");
2810 else
2811 slab_error(cache, "memory outside object was overwritten");
2812
2813 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2814 obj, redzone1, redzone2);
2815 }
2816
2817 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2818 unsigned long caller)
2819 {
2820 unsigned int objnr;
2821 struct page *page;
2822
2823 BUG_ON(virt_to_cache(objp) != cachep);
2824
2825 objp -= obj_offset(cachep);
2826 kfree_debugcheck(objp);
2827 page = virt_to_head_page(objp);
2828
2829 if (cachep->flags & SLAB_RED_ZONE) {
2830 verify_redzone_free(cachep, objp);
2831 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2832 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2833 }
2834 if (cachep->flags & SLAB_STORE_USER)
2835 *dbg_userword(cachep, objp) = (void *)caller;
2836
2837 objnr = obj_to_index(cachep, page, objp);
2838
2839 BUG_ON(objnr >= cachep->num);
2840 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2841
2842 if (cachep->flags & SLAB_POISON) {
2843 #ifdef CONFIG_DEBUG_PAGEALLOC
2844 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2845 store_stackinfo(cachep, objp, caller);
2846 kernel_map_pages(virt_to_page(objp),
2847 cachep->size / PAGE_SIZE, 0);
2848 } else {
2849 poison_obj(cachep, objp, POISON_FREE);
2850 }
2851 #else
2852 poison_obj(cachep, objp, POISON_FREE);
2853 #endif
2854 }
2855 return objp;
2856 }
2857
2858 #else
2859 #define kfree_debugcheck(x) do { } while(0)
2860 #define cache_free_debugcheck(x,objp,z) (objp)
2861 #endif
2862
2863 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2864 bool force_refill)
2865 {
2866 int batchcount;
2867 struct kmem_cache_node *n;
2868 struct array_cache *ac;
2869 int node;
2870
2871 check_irq_off();
2872 node = numa_mem_id();
2873 if (unlikely(force_refill))
2874 goto force_grow;
2875 retry:
2876 ac = cpu_cache_get(cachep);
2877 batchcount = ac->batchcount;
2878 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2879 /*
2880 * If there was little recent activity on this cache, then
2881 * perform only a partial refill. Otherwise we could generate
2882 * refill bouncing.
2883 */
2884 batchcount = BATCHREFILL_LIMIT;
2885 }
2886 n = cachep->node[node];
2887
2888 BUG_ON(ac->avail > 0 || !n);
2889 spin_lock(&n->list_lock);
2890
2891 /* See if we can refill from the shared array */
2892 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2893 n->shared->touched = 1;
2894 goto alloc_done;
2895 }
2896
2897 while (batchcount > 0) {
2898 struct list_head *entry;
2899 struct page *page;
2900 /* Get slab alloc is to come from. */
2901 entry = n->slabs_partial.next;
2902 if (entry == &n->slabs_partial) {
2903 n->free_touched = 1;
2904 entry = n->slabs_free.next;
2905 if (entry == &n->slabs_free)
2906 goto must_grow;
2907 }
2908
2909 page = list_entry(entry, struct page, lru);
2910 check_spinlock_acquired(cachep);
2911
2912 /*
2913 * The slab was either on partial or free list so
2914 * there must be at least one object available for
2915 * allocation.
2916 */
2917 BUG_ON(page->active >= cachep->num);
2918
2919 while (page->active < cachep->num && batchcount--) {
2920 STATS_INC_ALLOCED(cachep);
2921 STATS_INC_ACTIVE(cachep);
2922 STATS_SET_HIGH(cachep);
2923
2924 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2925 node));
2926 }
2927
2928 /* move slabp to correct slabp list: */
2929 list_del(&page->lru);
2930 if (page->active == cachep->num)
2931 list_add(&page->lru, &n->slabs_full);
2932 else
2933 list_add(&page->lru, &n->slabs_partial);
2934 }
2935
2936 must_grow:
2937 n->free_objects -= ac->avail;
2938 alloc_done:
2939 spin_unlock(&n->list_lock);
2940
2941 if (unlikely(!ac->avail)) {
2942 int x;
2943 force_grow:
2944 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2945
2946 /* cache_grow can reenable interrupts, then ac could change. */
2947 ac = cpu_cache_get(cachep);
2948 node = numa_mem_id();
2949
2950 /* no objects in sight? abort */
2951 if (!x && (ac->avail == 0 || force_refill))
2952 return NULL;
2953
2954 if (!ac->avail) /* objects refilled by interrupt? */
2955 goto retry;
2956 }
2957 ac->touched = 1;
2958
2959 return ac_get_obj(cachep, ac, flags, force_refill);
2960 }
2961
2962 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2963 gfp_t flags)
2964 {
2965 might_sleep_if(flags & __GFP_WAIT);
2966 #if DEBUG
2967 kmem_flagcheck(cachep, flags);
2968 #endif
2969 }
2970
2971 #if DEBUG
2972 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2973 gfp_t flags, void *objp, unsigned long caller)
2974 {
2975 if (!objp)
2976 return objp;
2977 if (cachep->flags & SLAB_POISON) {
2978 #ifdef CONFIG_DEBUG_PAGEALLOC
2979 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2980 kernel_map_pages(virt_to_page(objp),
2981 cachep->size / PAGE_SIZE, 1);
2982 else
2983 check_poison_obj(cachep, objp);
2984 #else
2985 check_poison_obj(cachep, objp);
2986 #endif
2987 poison_obj(cachep, objp, POISON_INUSE);
2988 }
2989 if (cachep->flags & SLAB_STORE_USER)
2990 *dbg_userword(cachep, objp) = (void *)caller;
2991
2992 if (cachep->flags & SLAB_RED_ZONE) {
2993 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2994 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2995 slab_error(cachep, "double free, or memory outside"
2996 " object was overwritten");
2997 printk(KERN_ERR
2998 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2999 objp, *dbg_redzone1(cachep, objp),
3000 *dbg_redzone2(cachep, objp));
3001 }
3002 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3003 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3004 }
3005 objp += obj_offset(cachep);
3006 if (cachep->ctor && cachep->flags & SLAB_POISON)
3007 cachep->ctor(objp);
3008 if (ARCH_SLAB_MINALIGN &&
3009 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3010 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3011 objp, (int)ARCH_SLAB_MINALIGN);
3012 }
3013 return objp;
3014 }
3015 #else
3016 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3017 #endif
3018
3019 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3020 {
3021 if (cachep == kmem_cache)
3022 return false;
3023
3024 return should_failslab(cachep->object_size, flags, cachep->flags);
3025 }
3026
3027 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3028 {
3029 void *objp;
3030 struct array_cache *ac;
3031 bool force_refill = false;
3032
3033 check_irq_off();
3034
3035 ac = cpu_cache_get(cachep);
3036 if (likely(ac->avail)) {
3037 ac->touched = 1;
3038 objp = ac_get_obj(cachep, ac, flags, false);
3039
3040 /*
3041 * Allow for the possibility all avail objects are not allowed
3042 * by the current flags
3043 */
3044 if (objp) {
3045 STATS_INC_ALLOCHIT(cachep);
3046 goto out;
3047 }
3048 force_refill = true;
3049 }
3050
3051 STATS_INC_ALLOCMISS(cachep);
3052 objp = cache_alloc_refill(cachep, flags, force_refill);
3053 /*
3054 * the 'ac' may be updated by cache_alloc_refill(),
3055 * and kmemleak_erase() requires its correct value.
3056 */
3057 ac = cpu_cache_get(cachep);
3058
3059 out:
3060 /*
3061 * To avoid a false negative, if an object that is in one of the
3062 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3063 * treat the array pointers as a reference to the object.
3064 */
3065 if (objp)
3066 kmemleak_erase(&ac->entry[ac->avail]);
3067 return objp;
3068 }
3069
3070 #ifdef CONFIG_NUMA
3071 /*
3072 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
3073 *
3074 * If we are in_interrupt, then process context, including cpusets and
3075 * mempolicy, may not apply and should not be used for allocation policy.
3076 */
3077 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3078 {
3079 int nid_alloc, nid_here;
3080
3081 if (in_interrupt() || (flags & __GFP_THISNODE))
3082 return NULL;
3083 nid_alloc = nid_here = numa_mem_id();
3084 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3085 nid_alloc = cpuset_slab_spread_node();
3086 else if (current->mempolicy)
3087 nid_alloc = mempolicy_slab_node();
3088 if (nid_alloc != nid_here)
3089 return ____cache_alloc_node(cachep, flags, nid_alloc);
3090 return NULL;
3091 }
3092
3093 /*
3094 * Fallback function if there was no memory available and no objects on a
3095 * certain node and fall back is permitted. First we scan all the
3096 * available node for available objects. If that fails then we
3097 * perform an allocation without specifying a node. This allows the page
3098 * allocator to do its reclaim / fallback magic. We then insert the
3099 * slab into the proper nodelist and then allocate from it.
3100 */
3101 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3102 {
3103 struct zonelist *zonelist;
3104 gfp_t local_flags;
3105 struct zoneref *z;
3106 struct zone *zone;
3107 enum zone_type high_zoneidx = gfp_zone(flags);
3108 void *obj = NULL;
3109 int nid;
3110 unsigned int cpuset_mems_cookie;
3111
3112 if (flags & __GFP_THISNODE)
3113 return NULL;
3114
3115 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3116
3117 retry_cpuset:
3118 cpuset_mems_cookie = read_mems_allowed_begin();
3119 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3120
3121 retry:
3122 /*
3123 * Look through allowed nodes for objects available
3124 * from existing per node queues.
3125 */
3126 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3127 nid = zone_to_nid(zone);
3128
3129 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3130 cache->node[nid] &&
3131 cache->node[nid]->free_objects) {
3132 obj = ____cache_alloc_node(cache,
3133 flags | GFP_THISNODE, nid);
3134 if (obj)
3135 break;
3136 }
3137 }
3138
3139 if (!obj) {
3140 /*
3141 * This allocation will be performed within the constraints
3142 * of the current cpuset / memory policy requirements.
3143 * We may trigger various forms of reclaim on the allowed
3144 * set and go into memory reserves if necessary.
3145 */
3146 struct page *page;
3147
3148 if (local_flags & __GFP_WAIT)
3149 local_irq_enable();
3150 kmem_flagcheck(cache, flags);
3151 page = kmem_getpages(cache, local_flags, numa_mem_id());
3152 if (local_flags & __GFP_WAIT)
3153 local_irq_disable();
3154 if (page) {
3155 /*
3156 * Insert into the appropriate per node queues
3157 */
3158 nid = page_to_nid(page);
3159 if (cache_grow(cache, flags, nid, page)) {
3160 obj = ____cache_alloc_node(cache,
3161 flags | GFP_THISNODE, nid);
3162 if (!obj)
3163 /*
3164 * Another processor may allocate the
3165 * objects in the slab since we are
3166 * not holding any locks.
3167 */
3168 goto retry;
3169 } else {
3170 /* cache_grow already freed obj */
3171 obj = NULL;
3172 }
3173 }
3174 }
3175
3176 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3177 goto retry_cpuset;
3178 return obj;
3179 }
3180
3181 /*
3182 * A interface to enable slab creation on nodeid
3183 */
3184 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3185 int nodeid)
3186 {
3187 struct list_head *entry;
3188 struct page *page;
3189 struct kmem_cache_node *n;
3190 void *obj;
3191 int x;
3192
3193 VM_BUG_ON(nodeid > num_online_nodes());
3194 n = cachep->node[nodeid];
3195 BUG_ON(!n);
3196
3197 retry:
3198 check_irq_off();
3199 spin_lock(&n->list_lock);
3200 entry = n->slabs_partial.next;
3201 if (entry == &n->slabs_partial) {
3202 n->free_touched = 1;
3203 entry = n->slabs_free.next;
3204 if (entry == &n->slabs_free)
3205 goto must_grow;
3206 }
3207
3208 page = list_entry(entry, struct page, lru);
3209 check_spinlock_acquired_node(cachep, nodeid);
3210
3211 STATS_INC_NODEALLOCS(cachep);
3212 STATS_INC_ACTIVE(cachep);
3213 STATS_SET_HIGH(cachep);
3214
3215 BUG_ON(page->active == cachep->num);
3216
3217 obj = slab_get_obj(cachep, page, nodeid);
3218 n->free_objects--;
3219 /* move slabp to correct slabp list: */
3220 list_del(&page->lru);
3221
3222 if (page->active == cachep->num)
3223 list_add(&page->lru, &n->slabs_full);
3224 else
3225 list_add(&page->lru, &n->slabs_partial);
3226
3227 spin_unlock(&n->list_lock);
3228 goto done;
3229
3230 must_grow:
3231 spin_unlock(&n->list_lock);
3232 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3233 if (x)
3234 goto retry;
3235
3236 return fallback_alloc(cachep, flags);
3237
3238 done:
3239 return obj;
3240 }
3241
3242 static __always_inline void *
3243 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3244 unsigned long caller)
3245 {
3246 unsigned long save_flags;
3247 void *ptr;
3248 int slab_node = numa_mem_id();
3249
3250 flags &= gfp_allowed_mask;
3251
3252 lockdep_trace_alloc(flags);
3253
3254 if (slab_should_failslab(cachep, flags))
3255 return NULL;
3256
3257 cachep = memcg_kmem_get_cache(cachep, flags);
3258
3259 cache_alloc_debugcheck_before(cachep, flags);
3260 local_irq_save(save_flags);
3261
3262 if (nodeid == NUMA_NO_NODE)
3263 nodeid = slab_node;
3264
3265 if (unlikely(!cachep->node[nodeid])) {
3266 /* Node not bootstrapped yet */
3267 ptr = fallback_alloc(cachep, flags);
3268 goto out;
3269 }
3270
3271 if (nodeid == slab_node) {
3272 /*
3273 * Use the locally cached objects if possible.
3274 * However ____cache_alloc does not allow fallback
3275 * to other nodes. It may fail while we still have
3276 * objects on other nodes available.
3277 */
3278 ptr = ____cache_alloc(cachep, flags);
3279 if (ptr)
3280 goto out;
3281 }
3282 /* ___cache_alloc_node can fall back to other nodes */
3283 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3284 out:
3285 local_irq_restore(save_flags);
3286 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3287 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3288 flags);
3289
3290 if (likely(ptr)) {
3291 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3292 if (unlikely(flags & __GFP_ZERO))
3293 memset(ptr, 0, cachep->object_size);
3294 }
3295
3296 return ptr;
3297 }
3298
3299 static __always_inline void *
3300 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3301 {
3302 void *objp;
3303
3304 if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3305 objp = alternate_node_alloc(cache, flags);
3306 if (objp)
3307 goto out;
3308 }
3309 objp = ____cache_alloc(cache, flags);
3310
3311 /*
3312 * We may just have run out of memory on the local node.
3313 * ____cache_alloc_node() knows how to locate memory on other nodes
3314 */
3315 if (!objp)
3316 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3317
3318 out:
3319 return objp;
3320 }
3321 #else
3322
3323 static __always_inline void *
3324 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3325 {
3326 return ____cache_alloc(cachep, flags);
3327 }
3328
3329 #endif /* CONFIG_NUMA */
3330
3331 static __always_inline void *
3332 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3333 {
3334 unsigned long save_flags;
3335 void *objp;
3336
3337 flags &= gfp_allowed_mask;
3338
3339 lockdep_trace_alloc(flags);
3340
3341 if (slab_should_failslab(cachep, flags))
3342 return NULL;
3343
3344 cachep = memcg_kmem_get_cache(cachep, flags);
3345
3346 cache_alloc_debugcheck_before(cachep, flags);
3347 local_irq_save(save_flags);
3348 objp = __do_cache_alloc(cachep, flags);
3349 local_irq_restore(save_flags);
3350 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3351 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3352 flags);
3353 prefetchw(objp);
3354
3355 if (likely(objp)) {
3356 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3357 if (unlikely(flags & __GFP_ZERO))
3358 memset(objp, 0, cachep->object_size);
3359 }
3360
3361 return objp;
3362 }
3363
3364 /*
3365 * Caller needs to acquire correct kmem_cache_node's list_lock
3366 */
3367 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3368 int node)
3369 {
3370 int i;
3371 struct kmem_cache_node *n;
3372
3373 for (i = 0; i < nr_objects; i++) {
3374 void *objp;
3375 struct page *page;
3376
3377 clear_obj_pfmemalloc(&objpp[i]);
3378 objp = objpp[i];
3379
3380 page = virt_to_head_page(objp);
3381 n = cachep->node[node];
3382 list_del(&page->lru);
3383 check_spinlock_acquired_node(cachep, node);
3384 slab_put_obj(cachep, page, objp, node);
3385 STATS_DEC_ACTIVE(cachep);
3386 n->free_objects++;
3387
3388 /* fixup slab chains */
3389 if (page->active == 0) {
3390 if (n->free_objects > n->free_limit) {
3391 n->free_objects -= cachep->num;
3392 /* No need to drop any previously held
3393 * lock here, even if we have a off-slab slab
3394 * descriptor it is guaranteed to come from
3395 * a different cache, refer to comments before
3396 * alloc_slabmgmt.
3397 */
3398 slab_destroy(cachep, page);
3399 } else {
3400 list_add(&page->lru, &n->slabs_free);
3401 }
3402 } else {
3403 /* Unconditionally move a slab to the end of the
3404 * partial list on free - maximum time for the
3405 * other objects to be freed, too.
3406 */
3407 list_add_tail(&page->lru, &n->slabs_partial);
3408 }
3409 }
3410 }
3411
3412 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3413 {
3414 int batchcount;
3415 struct kmem_cache_node *n;
3416 int node = numa_mem_id();
3417
3418 batchcount = ac->batchcount;
3419 #if DEBUG
3420 BUG_ON(!batchcount || batchcount > ac->avail);
3421 #endif
3422 check_irq_off();
3423 n = cachep->node[node];
3424 spin_lock(&n->list_lock);
3425 if (n->shared) {
3426 struct array_cache *shared_array = n->shared;
3427 int max = shared_array->limit - shared_array->avail;
3428 if (max) {
3429 if (batchcount > max)
3430 batchcount = max;
3431 memcpy(&(shared_array->entry[shared_array->avail]),
3432 ac->entry, sizeof(void *) * batchcount);
3433 shared_array->avail += batchcount;
3434 goto free_done;
3435 }
3436 }
3437
3438 free_block(cachep, ac->entry, batchcount, node);
3439 free_done:
3440 #if STATS
3441 {
3442 int i = 0;
3443 struct list_head *p;
3444
3445 p = n->slabs_free.next;
3446 while (p != &(n->slabs_free)) {
3447 struct page *page;
3448
3449 page = list_entry(p, struct page, lru);
3450 BUG_ON(page->active);
3451
3452 i++;
3453 p = p->next;
3454 }
3455 STATS_SET_FREEABLE(cachep, i);
3456 }
3457 #endif
3458 spin_unlock(&n->list_lock);
3459 ac->avail -= batchcount;
3460 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3461 }
3462
3463 /*
3464 * Release an obj back to its cache. If the obj has a constructed state, it must
3465 * be in this state _before_ it is released. Called with disabled ints.
3466 */
3467 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3468 unsigned long caller)
3469 {
3470 struct array_cache *ac = cpu_cache_get(cachep);
3471
3472 check_irq_off();
3473 kmemleak_free_recursive(objp, cachep->flags);
3474 objp = cache_free_debugcheck(cachep, objp, caller);
3475
3476 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3477
3478 /*
3479 * Skip calling cache_free_alien() when the platform is not numa.
3480 * This will avoid cache misses that happen while accessing slabp (which
3481 * is per page memory reference) to get nodeid. Instead use a global
3482 * variable to skip the call, which is mostly likely to be present in
3483 * the cache.
3484 */
3485 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3486 return;
3487
3488 if (likely(ac->avail < ac->limit)) {
3489 STATS_INC_FREEHIT(cachep);
3490 } else {
3491 STATS_INC_FREEMISS(cachep);
3492 cache_flusharray(cachep, ac);
3493 }
3494
3495 ac_put_obj(cachep, ac, objp);
3496 }
3497
3498 /**
3499 * kmem_cache_alloc - Allocate an object
3500 * @cachep: The cache to allocate from.
3501 * @flags: See kmalloc().
3502 *
3503 * Allocate an object from this cache. The flags are only relevant
3504 * if the cache has no available objects.
3505 */
3506 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3507 {
3508 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3509
3510 trace_kmem_cache_alloc(_RET_IP_, ret,
3511 cachep->object_size, cachep->size, flags);
3512
3513 return ret;
3514 }
3515 EXPORT_SYMBOL(kmem_cache_alloc);
3516
3517 #ifdef CONFIG_TRACING
3518 void *
3519 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3520 {
3521 void *ret;
3522
3523 ret = slab_alloc(cachep, flags, _RET_IP_);
3524
3525 trace_kmalloc(_RET_IP_, ret,
3526 size, cachep->size, flags);
3527 return ret;
3528 }
3529 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3530 #endif
3531
3532 #ifdef CONFIG_NUMA
3533 /**
3534 * kmem_cache_alloc_node - Allocate an object on the specified node
3535 * @cachep: The cache to allocate from.
3536 * @flags: See kmalloc().
3537 * @nodeid: node number of the target node.
3538 *
3539 * Identical to kmem_cache_alloc but it will allocate memory on the given
3540 * node, which can improve the performance for cpu bound structures.
3541 *
3542 * Fallback to other node is possible if __GFP_THISNODE is not set.
3543 */
3544 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3545 {
3546 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3547
3548 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3549 cachep->object_size, cachep->size,
3550 flags, nodeid);
3551
3552 return ret;
3553 }
3554 EXPORT_SYMBOL(kmem_cache_alloc_node);
3555
3556 #ifdef CONFIG_TRACING
3557 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3558 gfp_t flags,
3559 int nodeid,
3560 size_t size)
3561 {
3562 void *ret;
3563
3564 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3565
3566 trace_kmalloc_node(_RET_IP_, ret,
3567 size, cachep->size,
3568 flags, nodeid);
3569 return ret;
3570 }
3571 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3572 #endif
3573
3574 static __always_inline void *
3575 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3576 {
3577 struct kmem_cache *cachep;
3578
3579 cachep = kmalloc_slab(size, flags);
3580 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3581 return cachep;
3582 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3583 }
3584
3585 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3586 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3587 {
3588 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3589 }
3590 EXPORT_SYMBOL(__kmalloc_node);
3591
3592 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3593 int node, unsigned long caller)
3594 {
3595 return __do_kmalloc_node(size, flags, node, caller);
3596 }
3597 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3598 #else
3599 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3600 {
3601 return __do_kmalloc_node(size, flags, node, 0);
3602 }
3603 EXPORT_SYMBOL(__kmalloc_node);
3604 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3605 #endif /* CONFIG_NUMA */
3606
3607 /**
3608 * __do_kmalloc - allocate memory
3609 * @size: how many bytes of memory are required.
3610 * @flags: the type of memory to allocate (see kmalloc).
3611 * @caller: function caller for debug tracking of the caller
3612 */
3613 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3614 unsigned long caller)
3615 {
3616 struct kmem_cache *cachep;
3617 void *ret;
3618
3619 cachep = kmalloc_slab(size, flags);
3620 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3621 return cachep;
3622 ret = slab_alloc(cachep, flags, caller);
3623
3624 trace_kmalloc(caller, ret,
3625 size, cachep->size, flags);
3626
3627 return ret;
3628 }
3629
3630
3631 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3632 void *__kmalloc(size_t size, gfp_t flags)
3633 {
3634 return __do_kmalloc(size, flags, _RET_IP_);
3635 }
3636 EXPORT_SYMBOL(__kmalloc);
3637
3638 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3639 {
3640 return __do_kmalloc(size, flags, caller);
3641 }
3642 EXPORT_SYMBOL(__kmalloc_track_caller);
3643
3644 #else
3645 void *__kmalloc(size_t size, gfp_t flags)
3646 {
3647 return __do_kmalloc(size, flags, 0);
3648 }
3649 EXPORT_SYMBOL(__kmalloc);
3650 #endif
3651
3652 /**
3653 * kmem_cache_free - Deallocate an object
3654 * @cachep: The cache the allocation was from.
3655 * @objp: The previously allocated object.
3656 *
3657 * Free an object which was previously allocated from this
3658 * cache.
3659 */
3660 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3661 {
3662 unsigned long flags;
3663 cachep = cache_from_obj(cachep, objp);
3664 if (!cachep)
3665 return;
3666
3667 local_irq_save(flags);
3668 debug_check_no_locks_freed(objp, cachep->object_size);
3669 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3670 debug_check_no_obj_freed(objp, cachep->object_size);
3671 __cache_free(cachep, objp, _RET_IP_);
3672 local_irq_restore(flags);
3673
3674 trace_kmem_cache_free(_RET_IP_, objp);
3675 }
3676 EXPORT_SYMBOL(kmem_cache_free);
3677
3678 /**
3679 * kfree - free previously allocated memory
3680 * @objp: pointer returned by kmalloc.
3681 *
3682 * If @objp is NULL, no operation is performed.
3683 *
3684 * Don't free memory not originally allocated by kmalloc()
3685 * or you will run into trouble.
3686 */
3687 void kfree(const void *objp)
3688 {
3689 struct kmem_cache *c;
3690 unsigned long flags;
3691
3692 trace_kfree(_RET_IP_, objp);
3693
3694 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3695 return;
3696 local_irq_save(flags);
3697 kfree_debugcheck(objp);
3698 c = virt_to_cache(objp);
3699 debug_check_no_locks_freed(objp, c->object_size);
3700
3701 debug_check_no_obj_freed(objp, c->object_size);
3702 __cache_free(c, (void *)objp, _RET_IP_);
3703 local_irq_restore(flags);
3704 }
3705 EXPORT_SYMBOL(kfree);
3706
3707 /*
3708 * This initializes kmem_cache_node or resizes various caches for all nodes.
3709 */
3710 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3711 {
3712 int node;
3713 struct kmem_cache_node *n;
3714 struct array_cache *new_shared;
3715 struct array_cache **new_alien = NULL;
3716
3717 for_each_online_node(node) {
3718
3719 if (use_alien_caches) {
3720 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3721 if (!new_alien)
3722 goto fail;
3723 }
3724
3725 new_shared = NULL;
3726 if (cachep->shared) {
3727 new_shared = alloc_arraycache(node,
3728 cachep->shared*cachep->batchcount,
3729 0xbaadf00d, gfp);
3730 if (!new_shared) {
3731 free_alien_cache(new_alien);
3732 goto fail;
3733 }
3734 }
3735
3736 n = cachep->node[node];
3737 if (n) {
3738 struct array_cache *shared = n->shared;
3739
3740 spin_lock_irq(&n->list_lock);
3741
3742 if (shared)
3743 free_block(cachep, shared->entry,
3744 shared->avail, node);
3745
3746 n->shared = new_shared;
3747 if (!n->alien) {
3748 n->alien = new_alien;
3749 new_alien = NULL;
3750 }
3751 n->free_limit = (1 + nr_cpus_node(node)) *
3752 cachep->batchcount + cachep->num;
3753 spin_unlock_irq(&n->list_lock);
3754 kfree(shared);
3755 free_alien_cache(new_alien);
3756 continue;
3757 }
3758 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3759 if (!n) {
3760 free_alien_cache(new_alien);
3761 kfree(new_shared);
3762 goto fail;
3763 }
3764
3765 kmem_cache_node_init(n);
3766 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3767 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3768 n->shared = new_shared;
3769 n->alien = new_alien;
3770 n->free_limit = (1 + nr_cpus_node(node)) *
3771 cachep->batchcount + cachep->num;
3772 cachep->node[node] = n;
3773 }
3774 return 0;
3775
3776 fail:
3777 if (!cachep->list.next) {
3778 /* Cache is not active yet. Roll back what we did */
3779 node--;
3780 while (node >= 0) {
3781 if (cachep->node[node]) {
3782 n = cachep->node[node];
3783
3784 kfree(n->shared);
3785 free_alien_cache(n->alien);
3786 kfree(n);
3787 cachep->node[node] = NULL;
3788 }
3789 node--;
3790 }
3791 }
3792 return -ENOMEM;
3793 }
3794
3795 struct ccupdate_struct {
3796 struct kmem_cache *cachep;
3797 struct array_cache *new[0];
3798 };
3799
3800 static void do_ccupdate_local(void *info)
3801 {
3802 struct ccupdate_struct *new = info;
3803 struct array_cache *old;
3804
3805 check_irq_off();
3806 old = cpu_cache_get(new->cachep);
3807
3808 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3809 new->new[smp_processor_id()] = old;
3810 }
3811
3812 /* Always called with the slab_mutex held */
3813 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3814 int batchcount, int shared, gfp_t gfp)
3815 {
3816 struct ccupdate_struct *new;
3817 int i;
3818
3819 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3820 gfp);
3821 if (!new)
3822 return -ENOMEM;
3823
3824 for_each_online_cpu(i) {
3825 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3826 batchcount, gfp);
3827 if (!new->new[i]) {
3828 for (i--; i >= 0; i--)
3829 kfree(new->new[i]);
3830 kfree(new);
3831 return -ENOMEM;
3832 }
3833 }
3834 new->cachep = cachep;
3835
3836 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3837
3838 check_irq_on();
3839 cachep->batchcount = batchcount;
3840 cachep->limit = limit;
3841 cachep->shared = shared;
3842
3843 for_each_online_cpu(i) {
3844 struct array_cache *ccold = new->new[i];
3845 if (!ccold)
3846 continue;
3847 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3848 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3849 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3850 kfree(ccold);
3851 }
3852 kfree(new);
3853 return alloc_kmem_cache_node(cachep, gfp);
3854 }
3855
3856 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3857 int batchcount, int shared, gfp_t gfp)
3858 {
3859 int ret;
3860 struct kmem_cache *c = NULL;
3861 int i = 0;
3862
3863 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3864
3865 if (slab_state < FULL)
3866 return ret;
3867
3868 if ((ret < 0) || !is_root_cache(cachep))
3869 return ret;
3870
3871 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3872 for_each_memcg_cache_index(i) {
3873 c = cache_from_memcg_idx(cachep, i);
3874 if (c)
3875 /* return value determined by the parent cache only */
3876 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3877 }
3878
3879 return ret;
3880 }
3881
3882 /* Called with slab_mutex held always */
3883 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3884 {
3885 int err;
3886 int limit = 0;
3887 int shared = 0;
3888 int batchcount = 0;
3889
3890 if (!is_root_cache(cachep)) {
3891 struct kmem_cache *root = memcg_root_cache(cachep);
3892 limit = root->limit;
3893 shared = root->shared;
3894 batchcount = root->batchcount;
3895 }
3896
3897 if (limit && shared && batchcount)
3898 goto skip_setup;
3899 /*
3900 * The head array serves three purposes:
3901 * - create a LIFO ordering, i.e. return objects that are cache-warm
3902 * - reduce the number of spinlock operations.
3903 * - reduce the number of linked list operations on the slab and
3904 * bufctl chains: array operations are cheaper.
3905 * The numbers are guessed, we should auto-tune as described by
3906 * Bonwick.
3907 */
3908 if (cachep->size > 131072)
3909 limit = 1;
3910 else if (cachep->size > PAGE_SIZE)
3911 limit = 8;
3912 else if (cachep->size > 1024)
3913 limit = 24;
3914 else if (cachep->size > 256)
3915 limit = 54;
3916 else
3917 limit = 120;
3918
3919 /*
3920 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3921 * allocation behaviour: Most allocs on one cpu, most free operations
3922 * on another cpu. For these cases, an efficient object passing between
3923 * cpus is necessary. This is provided by a shared array. The array
3924 * replaces Bonwick's magazine layer.
3925 * On uniprocessor, it's functionally equivalent (but less efficient)
3926 * to a larger limit. Thus disabled by default.
3927 */
3928 shared = 0;
3929 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3930 shared = 8;
3931
3932 #if DEBUG
3933 /*
3934 * With debugging enabled, large batchcount lead to excessively long
3935 * periods with disabled local interrupts. Limit the batchcount
3936 */
3937 if (limit > 32)
3938 limit = 32;
3939 #endif
3940 batchcount = (limit + 1) / 2;
3941 skip_setup:
3942 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3943 if (err)
3944 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3945 cachep->name, -err);
3946 return err;
3947 }
3948
3949 /*
3950 * Drain an array if it contains any elements taking the node lock only if
3951 * necessary. Note that the node listlock also protects the array_cache
3952 * if drain_array() is used on the shared array.
3953 */
3954 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3955 struct array_cache *ac, int force, int node)
3956 {
3957 int tofree;
3958
3959 if (!ac || !ac->avail)
3960 return;
3961 if (ac->touched && !force) {
3962 ac->touched = 0;
3963 } else {
3964 spin_lock_irq(&n->list_lock);
3965 if (ac->avail) {
3966 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3967 if (tofree > ac->avail)
3968 tofree = (ac->avail + 1) / 2;
3969 free_block(cachep, ac->entry, tofree, node);
3970 ac->avail -= tofree;
3971 memmove(ac->entry, &(ac->entry[tofree]),
3972 sizeof(void *) * ac->avail);
3973 }
3974 spin_unlock_irq(&n->list_lock);
3975 }
3976 }
3977
3978 /**
3979 * cache_reap - Reclaim memory from caches.
3980 * @w: work descriptor
3981 *
3982 * Called from workqueue/eventd every few seconds.
3983 * Purpose:
3984 * - clear the per-cpu caches for this CPU.
3985 * - return freeable pages to the main free memory pool.
3986 *
3987 * If we cannot acquire the cache chain mutex then just give up - we'll try
3988 * again on the next iteration.
3989 */
3990 static void cache_reap(struct work_struct *w)
3991 {
3992 struct kmem_cache *searchp;
3993 struct kmem_cache_node *n;
3994 int node = numa_mem_id();
3995 struct delayed_work *work = to_delayed_work(w);
3996
3997 if (!mutex_trylock(&slab_mutex))
3998 /* Give up. Setup the next iteration. */
3999 goto out;
4000
4001 list_for_each_entry(searchp, &slab_caches, list) {
4002 check_irq_on();
4003
4004 /*
4005 * We only take the node lock if absolutely necessary and we
4006 * have established with reasonable certainty that
4007 * we can do some work if the lock was obtained.
4008 */
4009 n = searchp->node[node];
4010
4011 reap_alien(searchp, n);
4012
4013 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
4014
4015 /*
4016 * These are racy checks but it does not matter
4017 * if we skip one check or scan twice.
4018 */
4019 if (time_after(n->next_reap, jiffies))
4020 goto next;
4021
4022 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4023
4024 drain_array(searchp, n, n->shared, 0, node);
4025
4026 if (n->free_touched)
4027 n->free_touched = 0;
4028 else {
4029 int freed;
4030
4031 freed = drain_freelist(searchp, n, (n->free_limit +
4032 5 * searchp->num - 1) / (5 * searchp->num));
4033 STATS_ADD_REAPED(searchp, freed);
4034 }
4035 next:
4036 cond_resched();
4037 }
4038 check_irq_on();
4039 mutex_unlock(&slab_mutex);
4040 next_reap_node();
4041 out:
4042 /* Set up the next iteration */
4043 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4044 }
4045
4046 #ifdef CONFIG_SLABINFO
4047 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4048 {
4049 struct page *page;
4050 unsigned long active_objs;
4051 unsigned long num_objs;
4052 unsigned long active_slabs = 0;
4053 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4054 const char *name;
4055 char *error = NULL;
4056 int node;
4057 struct kmem_cache_node *n;
4058
4059 active_objs = 0;
4060 num_slabs = 0;
4061 for_each_online_node(node) {
4062 n = cachep->node[node];
4063 if (!n)
4064 continue;
4065
4066 check_irq_on();
4067 spin_lock_irq(&n->list_lock);
4068
4069 list_for_each_entry(page, &n->slabs_full, lru) {
4070 if (page->active != cachep->num && !error)
4071 error = "slabs_full accounting error";
4072 active_objs += cachep->num;
4073 active_slabs++;
4074 }
4075 list_for_each_entry(page, &n->slabs_partial, lru) {
4076 if (page->active == cachep->num && !error)
4077 error = "slabs_partial accounting error";
4078 if (!page->active && !error)
4079 error = "slabs_partial accounting error";
4080 active_objs += page->active;
4081 active_slabs++;
4082 }
4083 list_for_each_entry(page, &n->slabs_free, lru) {
4084 if (page->active && !error)
4085 error = "slabs_free accounting error";
4086 num_slabs++;
4087 }
4088 free_objects += n->free_objects;
4089 if (n->shared)
4090 shared_avail += n->shared->avail;
4091
4092 spin_unlock_irq(&n->list_lock);
4093 }
4094 num_slabs += active_slabs;
4095 num_objs = num_slabs * cachep->num;
4096 if (num_objs - active_objs != free_objects && !error)
4097 error = "free_objects accounting error";
4098
4099 name = cachep->name;
4100 if (error)
4101 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4102
4103 sinfo->active_objs = active_objs;
4104 sinfo->num_objs = num_objs;
4105 sinfo->active_slabs = active_slabs;
4106 sinfo->num_slabs = num_slabs;
4107 sinfo->shared_avail = shared_avail;
4108 sinfo->limit = cachep->limit;
4109 sinfo->batchcount = cachep->batchcount;
4110 sinfo->shared = cachep->shared;
4111 sinfo->objects_per_slab = cachep->num;
4112 sinfo->cache_order = cachep->gfporder;
4113 }
4114
4115 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4116 {
4117 #if STATS
4118 { /* node stats */
4119 unsigned long high = cachep->high_mark;
4120 unsigned long allocs = cachep->num_allocations;
4121 unsigned long grown = cachep->grown;
4122 unsigned long reaped = cachep->reaped;
4123 unsigned long errors = cachep->errors;
4124 unsigned long max_freeable = cachep->max_freeable;
4125 unsigned long node_allocs = cachep->node_allocs;
4126 unsigned long node_frees = cachep->node_frees;
4127 unsigned long overflows = cachep->node_overflow;
4128
4129 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4130 "%4lu %4lu %4lu %4lu %4lu",
4131 allocs, high, grown,
4132 reaped, errors, max_freeable, node_allocs,
4133 node_frees, overflows);
4134 }
4135 /* cpu stats */
4136 {
4137 unsigned long allochit = atomic_read(&cachep->allochit);
4138 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4139 unsigned long freehit = atomic_read(&cachep->freehit);
4140 unsigned long freemiss = atomic_read(&cachep->freemiss);
4141
4142 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4143 allochit, allocmiss, freehit, freemiss);
4144 }
4145 #endif
4146 }
4147
4148 #define MAX_SLABINFO_WRITE 128
4149 /**
4150 * slabinfo_write - Tuning for the slab allocator
4151 * @file: unused
4152 * @buffer: user buffer
4153 * @count: data length
4154 * @ppos: unused
4155 */
4156 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4157 size_t count, loff_t *ppos)
4158 {
4159 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4160 int limit, batchcount, shared, res;
4161 struct kmem_cache *cachep;
4162
4163 if (count > MAX_SLABINFO_WRITE)
4164 return -EINVAL;
4165 if (copy_from_user(&kbuf, buffer, count))
4166 return -EFAULT;
4167 kbuf[MAX_SLABINFO_WRITE] = '\0';
4168
4169 tmp = strchr(kbuf, ' ');
4170 if (!tmp)
4171 return -EINVAL;
4172 *tmp = '\0';
4173 tmp++;
4174 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4175 return -EINVAL;
4176
4177 /* Find the cache in the chain of caches. */
4178 mutex_lock(&slab_mutex);
4179 res = -EINVAL;
4180 list_for_each_entry(cachep, &slab_caches, list) {
4181 if (!strcmp(cachep->name, kbuf)) {
4182 if (limit < 1 || batchcount < 1 ||
4183 batchcount > limit || shared < 0) {
4184 res = 0;
4185 } else {
4186 res = do_tune_cpucache(cachep, limit,
4187 batchcount, shared,
4188 GFP_KERNEL);
4189 }
4190 break;
4191 }
4192 }
4193 mutex_unlock(&slab_mutex);
4194 if (res >= 0)
4195 res = count;
4196 return res;
4197 }
4198
4199 #ifdef CONFIG_DEBUG_SLAB_LEAK
4200
4201 static void *leaks_start(struct seq_file *m, loff_t *pos)
4202 {
4203 mutex_lock(&slab_mutex);
4204 return seq_list_start(&slab_caches, *pos);
4205 }
4206
4207 static inline int add_caller(unsigned long *n, unsigned long v)
4208 {
4209 unsigned long *p;
4210 int l;
4211 if (!v)
4212 return 1;
4213 l = n[1];
4214 p = n + 2;
4215 while (l) {
4216 int i = l/2;
4217 unsigned long *q = p + 2 * i;
4218 if (*q == v) {
4219 q[1]++;
4220 return 1;
4221 }
4222 if (*q > v) {
4223 l = i;
4224 } else {
4225 p = q + 2;
4226 l -= i + 1;
4227 }
4228 }
4229 if (++n[1] == n[0])
4230 return 0;
4231 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4232 p[0] = v;
4233 p[1] = 1;
4234 return 1;
4235 }
4236
4237 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4238 struct page *page)
4239 {
4240 void *p;
4241 int i, j;
4242
4243 if (n[0] == n[1])
4244 return;
4245 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4246 bool active = true;
4247
4248 for (j = page->active; j < c->num; j++) {
4249 /* Skip freed item */
4250 if (get_free_obj(page, j) == i) {
4251 active = false;
4252 break;
4253 }
4254 }
4255 if (!active)
4256 continue;
4257
4258 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4259 return;
4260 }
4261 }
4262
4263 static void show_symbol(struct seq_file *m, unsigned long address)
4264 {
4265 #ifdef CONFIG_KALLSYMS
4266 unsigned long offset, size;
4267 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4268
4269 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4270 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4271 if (modname[0])
4272 seq_printf(m, " [%s]", modname);
4273 return;
4274 }
4275 #endif
4276 seq_printf(m, "%p", (void *)address);
4277 }
4278
4279 static int leaks_show(struct seq_file *m, void *p)
4280 {
4281 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4282 struct page *page;
4283 struct kmem_cache_node *n;
4284 const char *name;
4285 unsigned long *x = m->private;
4286 int node;
4287 int i;
4288
4289 if (!(cachep->flags & SLAB_STORE_USER))
4290 return 0;
4291 if (!(cachep->flags & SLAB_RED_ZONE))
4292 return 0;
4293
4294 /* OK, we can do it */
4295
4296 x[1] = 0;
4297
4298 for_each_online_node(node) {
4299 n = cachep->node[node];
4300 if (!n)
4301 continue;
4302
4303 check_irq_on();
4304 spin_lock_irq(&n->list_lock);
4305
4306 list_for_each_entry(page, &n->slabs_full, lru)
4307 handle_slab(x, cachep, page);
4308 list_for_each_entry(page, &n->slabs_partial, lru)
4309 handle_slab(x, cachep, page);
4310 spin_unlock_irq(&n->list_lock);
4311 }
4312 name = cachep->name;
4313 if (x[0] == x[1]) {
4314 /* Increase the buffer size */
4315 mutex_unlock(&slab_mutex);
4316 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4317 if (!m->private) {
4318 /* Too bad, we are really out */
4319 m->private = x;
4320 mutex_lock(&slab_mutex);
4321 return -ENOMEM;
4322 }
4323 *(unsigned long *)m->private = x[0] * 2;
4324 kfree(x);
4325 mutex_lock(&slab_mutex);
4326 /* Now make sure this entry will be retried */
4327 m->count = m->size;
4328 return 0;
4329 }
4330 for (i = 0; i < x[1]; i++) {
4331 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4332 show_symbol(m, x[2*i+2]);
4333 seq_putc(m, '\n');
4334 }
4335
4336 return 0;
4337 }
4338
4339 static const struct seq_operations slabstats_op = {
4340 .start = leaks_start,
4341 .next = slab_next,
4342 .stop = slab_stop,
4343 .show = leaks_show,
4344 };
4345
4346 static int slabstats_open(struct inode *inode, struct file *file)
4347 {
4348 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4349 int ret = -ENOMEM;
4350 if (n) {
4351 ret = seq_open(file, &slabstats_op);
4352 if (!ret) {
4353 struct seq_file *m = file->private_data;
4354 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4355 m->private = n;
4356 n = NULL;
4357 }
4358 kfree(n);
4359 }
4360 return ret;
4361 }
4362
4363 static const struct file_operations proc_slabstats_operations = {
4364 .open = slabstats_open,
4365 .read = seq_read,
4366 .llseek = seq_lseek,
4367 .release = seq_release_private,
4368 };
4369 #endif
4370
4371 static int __init slab_proc_init(void)
4372 {
4373 #ifdef CONFIG_DEBUG_SLAB_LEAK
4374 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4375 #endif
4376 return 0;
4377 }
4378 module_init(slab_proc_init);
4379 #endif
4380
4381 /**
4382 * ksize - get the actual amount of memory allocated for a given object
4383 * @objp: Pointer to the object
4384 *
4385 * kmalloc may internally round up allocations and return more memory
4386 * than requested. ksize() can be used to determine the actual amount of
4387 * memory allocated. The caller may use this additional memory, even though
4388 * a smaller amount of memory was initially specified with the kmalloc call.
4389 * The caller must guarantee that objp points to a valid object previously
4390 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4391 * must not be freed during the duration of the call.
4392 */
4393 size_t ksize(const void *objp)
4394 {
4395 BUG_ON(!objp);
4396 if (unlikely(objp == ZERO_SIZE_PTR))
4397 return 0;
4398
4399 return virt_to_cache(objp)->object_size;
4400 }
4401 EXPORT_SYMBOL(ksize);