]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slab.c
WorkStruct: Pass the work_struct pointer instead of context data
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
109 #include <linux/rtmutex.h>
110
111 #include <asm/uaccess.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114 #include <asm/page.h>
115
116 /*
117 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
118 * SLAB_RED_ZONE & SLAB_POISON.
119 * 0 for faster, smaller code (especially in the critical paths).
120 *
121 * STATS - 1 to collect stats for /proc/slabinfo.
122 * 0 for faster, smaller code (especially in the critical paths).
123 *
124 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 */
126
127 #ifdef CONFIG_DEBUG_SLAB
128 #define DEBUG 1
129 #define STATS 1
130 #define FORCED_DEBUG 1
131 #else
132 #define DEBUG 0
133 #define STATS 0
134 #define FORCED_DEBUG 0
135 #endif
136
137 /* Shouldn't this be in a header file somewhere? */
138 #define BYTES_PER_WORD sizeof(void *)
139
140 #ifndef cache_line_size
141 #define cache_line_size() L1_CACHE_BYTES
142 #endif
143
144 #ifndef ARCH_KMALLOC_MINALIGN
145 /*
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
151 * Note that this flag disables some debug features.
152 */
153 #define ARCH_KMALLOC_MINALIGN 0
154 #endif
155
156 #ifndef ARCH_SLAB_MINALIGN
157 /*
158 * Enforce a minimum alignment for all caches.
159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162 * some debug features.
163 */
164 #define ARCH_SLAB_MINALIGN 0
165 #endif
166
167 #ifndef ARCH_KMALLOC_FLAGS
168 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
169 #endif
170
171 /* Legal flag mask for kmem_cache_create(). */
172 #if DEBUG
173 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175 SLAB_CACHE_DMA | \
176 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
179 #else
180 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
181 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
182 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
183 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
184 #endif
185
186 /*
187 * kmem_bufctl_t:
188 *
189 * Bufctl's are used for linking objs within a slab
190 * linked offsets.
191 *
192 * This implementation relies on "struct page" for locating the cache &
193 * slab an object belongs to.
194 * This allows the bufctl structure to be small (one int), but limits
195 * the number of objects a slab (not a cache) can contain when off-slab
196 * bufctls are used. The limit is the size of the largest general cache
197 * that does not use off-slab slabs.
198 * For 32bit archs with 4 kB pages, is this 56.
199 * This is not serious, as it is only for large objects, when it is unwise
200 * to have too many per slab.
201 * Note: This limit can be raised by introducing a general cache whose size
202 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 */
204
205 typedef unsigned int kmem_bufctl_t;
206 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
207 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
208 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
209 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
210
211 /*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218 struct slab {
219 struct list_head list;
220 unsigned long colouroff;
221 void *s_mem; /* including colour offset */
222 unsigned int inuse; /* num of objs active in slab */
223 kmem_bufctl_t free;
224 unsigned short nodeid;
225 };
226
227 /*
228 * struct slab_rcu
229 *
230 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
231 * arrange for kmem_freepages to be called via RCU. This is useful if
232 * we need to approach a kernel structure obliquely, from its address
233 * obtained without the usual locking. We can lock the structure to
234 * stabilize it and check it's still at the given address, only if we
235 * can be sure that the memory has not been meanwhile reused for some
236 * other kind of object (which our subsystem's lock might corrupt).
237 *
238 * rcu_read_lock before reading the address, then rcu_read_unlock after
239 * taking the spinlock within the structure expected at that address.
240 *
241 * We assume struct slab_rcu can overlay struct slab when destroying.
242 */
243 struct slab_rcu {
244 struct rcu_head head;
245 struct kmem_cache *cachep;
246 void *addr;
247 };
248
249 /*
250 * struct array_cache
251 *
252 * Purpose:
253 * - LIFO ordering, to hand out cache-warm objects from _alloc
254 * - reduce the number of linked list operations
255 * - reduce spinlock operations
256 *
257 * The limit is stored in the per-cpu structure to reduce the data cache
258 * footprint.
259 *
260 */
261 struct array_cache {
262 unsigned int avail;
263 unsigned int limit;
264 unsigned int batchcount;
265 unsigned int touched;
266 spinlock_t lock;
267 void *entry[0]; /*
268 * Must have this definition in here for the proper
269 * alignment of array_cache. Also simplifies accessing
270 * the entries.
271 * [0] is for gcc 2.95. It should really be [].
272 */
273 };
274
275 /*
276 * bootstrap: The caches do not work without cpuarrays anymore, but the
277 * cpuarrays are allocated from the generic caches...
278 */
279 #define BOOT_CPUCACHE_ENTRIES 1
280 struct arraycache_init {
281 struct array_cache cache;
282 void *entries[BOOT_CPUCACHE_ENTRIES];
283 };
284
285 /*
286 * The slab lists for all objects.
287 */
288 struct kmem_list3 {
289 struct list_head slabs_partial; /* partial list first, better asm code */
290 struct list_head slabs_full;
291 struct list_head slabs_free;
292 unsigned long free_objects;
293 unsigned int free_limit;
294 unsigned int colour_next; /* Per-node cache coloring */
295 spinlock_t list_lock;
296 struct array_cache *shared; /* shared per node */
297 struct array_cache **alien; /* on other nodes */
298 unsigned long next_reap; /* updated without locking */
299 int free_touched; /* updated without locking */
300 };
301
302 /*
303 * Need this for bootstrapping a per node allocator.
304 */
305 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307 #define CACHE_CACHE 0
308 #define SIZE_AC 1
309 #define SIZE_L3 (1 + MAX_NUMNODES)
310
311 static int drain_freelist(struct kmem_cache *cache,
312 struct kmem_list3 *l3, int tofree);
313 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
314 int node);
315 static int enable_cpucache(struct kmem_cache *cachep);
316 static void cache_reap(struct work_struct *unused);
317
318 /*
319 * This function must be completely optimized away if a constant is passed to
320 * it. Mostly the same as what is in linux/slab.h except it returns an index.
321 */
322 static __always_inline int index_of(const size_t size)
323 {
324 extern void __bad_size(void);
325
326 if (__builtin_constant_p(size)) {
327 int i = 0;
328
329 #define CACHE(x) \
330 if (size <=x) \
331 return i; \
332 else \
333 i++;
334 #include "linux/kmalloc_sizes.h"
335 #undef CACHE
336 __bad_size();
337 } else
338 __bad_size();
339 return 0;
340 }
341
342 static int slab_early_init = 1;
343
344 #define INDEX_AC index_of(sizeof(struct arraycache_init))
345 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
346
347 static void kmem_list3_init(struct kmem_list3 *parent)
348 {
349 INIT_LIST_HEAD(&parent->slabs_full);
350 INIT_LIST_HEAD(&parent->slabs_partial);
351 INIT_LIST_HEAD(&parent->slabs_free);
352 parent->shared = NULL;
353 parent->alien = NULL;
354 parent->colour_next = 0;
355 spin_lock_init(&parent->list_lock);
356 parent->free_objects = 0;
357 parent->free_touched = 0;
358 }
359
360 #define MAKE_LIST(cachep, listp, slab, nodeid) \
361 do { \
362 INIT_LIST_HEAD(listp); \
363 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
364 } while (0)
365
366 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
367 do { \
368 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
369 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
371 } while (0)
372
373 /*
374 * struct kmem_cache
375 *
376 * manages a cache.
377 */
378
379 struct kmem_cache {
380 /* 1) per-cpu data, touched during every alloc/free */
381 struct array_cache *array[NR_CPUS];
382 /* 2) Cache tunables. Protected by cache_chain_mutex */
383 unsigned int batchcount;
384 unsigned int limit;
385 unsigned int shared;
386
387 unsigned int buffer_size;
388 /* 3) touched by every alloc & free from the backend */
389 struct kmem_list3 *nodelists[MAX_NUMNODES];
390
391 unsigned int flags; /* constant flags */
392 unsigned int num; /* # of objs per slab */
393
394 /* 4) cache_grow/shrink */
395 /* order of pgs per slab (2^n) */
396 unsigned int gfporder;
397
398 /* force GFP flags, e.g. GFP_DMA */
399 gfp_t gfpflags;
400
401 size_t colour; /* cache colouring range */
402 unsigned int colour_off; /* colour offset */
403 struct kmem_cache *slabp_cache;
404 unsigned int slab_size;
405 unsigned int dflags; /* dynamic flags */
406
407 /* constructor func */
408 void (*ctor) (void *, struct kmem_cache *, unsigned long);
409
410 /* de-constructor func */
411 void (*dtor) (void *, struct kmem_cache *, unsigned long);
412
413 /* 5) cache creation/removal */
414 const char *name;
415 struct list_head next;
416
417 /* 6) statistics */
418 #if STATS
419 unsigned long num_active;
420 unsigned long num_allocations;
421 unsigned long high_mark;
422 unsigned long grown;
423 unsigned long reaped;
424 unsigned long errors;
425 unsigned long max_freeable;
426 unsigned long node_allocs;
427 unsigned long node_frees;
428 unsigned long node_overflow;
429 atomic_t allochit;
430 atomic_t allocmiss;
431 atomic_t freehit;
432 atomic_t freemiss;
433 #endif
434 #if DEBUG
435 /*
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
440 */
441 int obj_offset;
442 int obj_size;
443 #endif
444 };
445
446 #define CFLGS_OFF_SLAB (0x80000000UL)
447 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
448
449 #define BATCHREFILL_LIMIT 16
450 /*
451 * Optimization question: fewer reaps means less probability for unnessary
452 * cpucache drain/refill cycles.
453 *
454 * OTOH the cpuarrays can contain lots of objects,
455 * which could lock up otherwise freeable slabs.
456 */
457 #define REAPTIMEOUT_CPUC (2*HZ)
458 #define REAPTIMEOUT_LIST3 (4*HZ)
459
460 #if STATS
461 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
462 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
463 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
464 #define STATS_INC_GROWN(x) ((x)->grown++)
465 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
466 #define STATS_SET_HIGH(x) \
467 do { \
468 if ((x)->num_active > (x)->high_mark) \
469 (x)->high_mark = (x)->num_active; \
470 } while (0)
471 #define STATS_INC_ERR(x) ((x)->errors++)
472 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
473 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
474 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
475 #define STATS_SET_FREEABLE(x, i) \
476 do { \
477 if ((x)->max_freeable < i) \
478 (x)->max_freeable = i; \
479 } while (0)
480 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
481 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
482 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
483 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
484 #else
485 #define STATS_INC_ACTIVE(x) do { } while (0)
486 #define STATS_DEC_ACTIVE(x) do { } while (0)
487 #define STATS_INC_ALLOCED(x) do { } while (0)
488 #define STATS_INC_GROWN(x) do { } while (0)
489 #define STATS_ADD_REAPED(x,y) do { } while (0)
490 #define STATS_SET_HIGH(x) do { } while (0)
491 #define STATS_INC_ERR(x) do { } while (0)
492 #define STATS_INC_NODEALLOCS(x) do { } while (0)
493 #define STATS_INC_NODEFREES(x) do { } while (0)
494 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
495 #define STATS_SET_FREEABLE(x, i) do { } while (0)
496 #define STATS_INC_ALLOCHIT(x) do { } while (0)
497 #define STATS_INC_ALLOCMISS(x) do { } while (0)
498 #define STATS_INC_FREEHIT(x) do { } while (0)
499 #define STATS_INC_FREEMISS(x) do { } while (0)
500 #endif
501
502 #if DEBUG
503
504 /*
505 * memory layout of objects:
506 * 0 : objp
507 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
508 * the end of an object is aligned with the end of the real
509 * allocation. Catches writes behind the end of the allocation.
510 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
511 * redzone word.
512 * cachep->obj_offset: The real object.
513 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
514 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
515 * [BYTES_PER_WORD long]
516 */
517 static int obj_offset(struct kmem_cache *cachep)
518 {
519 return cachep->obj_offset;
520 }
521
522 static int obj_size(struct kmem_cache *cachep)
523 {
524 return cachep->obj_size;
525 }
526
527 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
528 {
529 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
530 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
531 }
532
533 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
534 {
535 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
536 if (cachep->flags & SLAB_STORE_USER)
537 return (unsigned long *)(objp + cachep->buffer_size -
538 2 * BYTES_PER_WORD);
539 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
540 }
541
542 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
543 {
544 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
545 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
546 }
547
548 #else
549
550 #define obj_offset(x) 0
551 #define obj_size(cachep) (cachep->buffer_size)
552 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
553 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
555
556 #endif
557
558 /*
559 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
560 * order.
561 */
562 #if defined(CONFIG_LARGE_ALLOCS)
563 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
564 #define MAX_GFP_ORDER 13 /* up to 32Mb */
565 #elif defined(CONFIG_MMU)
566 #define MAX_OBJ_ORDER 5 /* 32 pages */
567 #define MAX_GFP_ORDER 5 /* 32 pages */
568 #else
569 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
570 #define MAX_GFP_ORDER 8 /* up to 1Mb */
571 #endif
572
573 /*
574 * Do not go above this order unless 0 objects fit into the slab.
575 */
576 #define BREAK_GFP_ORDER_HI 1
577 #define BREAK_GFP_ORDER_LO 0
578 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
579
580 /*
581 * Functions for storing/retrieving the cachep and or slab from the page
582 * allocator. These are used to find the slab an obj belongs to. With kfree(),
583 * these are used to find the cache which an obj belongs to.
584 */
585 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
586 {
587 page->lru.next = (struct list_head *)cache;
588 }
589
590 static inline struct kmem_cache *page_get_cache(struct page *page)
591 {
592 if (unlikely(PageCompound(page)))
593 page = (struct page *)page_private(page);
594 BUG_ON(!PageSlab(page));
595 return (struct kmem_cache *)page->lru.next;
596 }
597
598 static inline void page_set_slab(struct page *page, struct slab *slab)
599 {
600 page->lru.prev = (struct list_head *)slab;
601 }
602
603 static inline struct slab *page_get_slab(struct page *page)
604 {
605 if (unlikely(PageCompound(page)))
606 page = (struct page *)page_private(page);
607 BUG_ON(!PageSlab(page));
608 return (struct slab *)page->lru.prev;
609 }
610
611 static inline struct kmem_cache *virt_to_cache(const void *obj)
612 {
613 struct page *page = virt_to_page(obj);
614 return page_get_cache(page);
615 }
616
617 static inline struct slab *virt_to_slab(const void *obj)
618 {
619 struct page *page = virt_to_page(obj);
620 return page_get_slab(page);
621 }
622
623 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
624 unsigned int idx)
625 {
626 return slab->s_mem + cache->buffer_size * idx;
627 }
628
629 static inline unsigned int obj_to_index(struct kmem_cache *cache,
630 struct slab *slab, void *obj)
631 {
632 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
633 }
634
635 /*
636 * These are the default caches for kmalloc. Custom caches can have other sizes.
637 */
638 struct cache_sizes malloc_sizes[] = {
639 #define CACHE(x) { .cs_size = (x) },
640 #include <linux/kmalloc_sizes.h>
641 CACHE(ULONG_MAX)
642 #undef CACHE
643 };
644 EXPORT_SYMBOL(malloc_sizes);
645
646 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
647 struct cache_names {
648 char *name;
649 char *name_dma;
650 };
651
652 static struct cache_names __initdata cache_names[] = {
653 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
654 #include <linux/kmalloc_sizes.h>
655 {NULL,}
656 #undef CACHE
657 };
658
659 static struct arraycache_init initarray_cache __initdata =
660 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
661 static struct arraycache_init initarray_generic =
662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
663
664 /* internal cache of cache description objs */
665 static struct kmem_cache cache_cache = {
666 .batchcount = 1,
667 .limit = BOOT_CPUCACHE_ENTRIES,
668 .shared = 1,
669 .buffer_size = sizeof(struct kmem_cache),
670 .name = "kmem_cache",
671 #if DEBUG
672 .obj_size = sizeof(struct kmem_cache),
673 #endif
674 };
675
676 #define BAD_ALIEN_MAGIC 0x01020304ul
677
678 #ifdef CONFIG_LOCKDEP
679
680 /*
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
686 *
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
690 */
691 static struct lock_class_key on_slab_l3_key;
692 static struct lock_class_key on_slab_alc_key;
693
694 static inline void init_lock_keys(void)
695
696 {
697 int q;
698 struct cache_sizes *s = malloc_sizes;
699
700 while (s->cs_size != ULONG_MAX) {
701 for_each_node(q) {
702 struct array_cache **alc;
703 int r;
704 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705 if (!l3 || OFF_SLAB(s->cs_cachep))
706 continue;
707 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708 alc = l3->alien;
709 /*
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
715 */
716 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717 continue;
718 for_each_node(r) {
719 if (alc[r])
720 lockdep_set_class(&alc[r]->lock,
721 &on_slab_alc_key);
722 }
723 }
724 s++;
725 }
726 }
727 #else
728 static inline void init_lock_keys(void)
729 {
730 }
731 #endif
732
733 /* Guard access to the cache-chain. */
734 static DEFINE_MUTEX(cache_chain_mutex);
735 static struct list_head cache_chain;
736
737 /*
738 * chicken and egg problem: delay the per-cpu array allocation
739 * until the general caches are up.
740 */
741 static enum {
742 NONE,
743 PARTIAL_AC,
744 PARTIAL_L3,
745 FULL
746 } g_cpucache_up;
747
748 /*
749 * used by boot code to determine if it can use slab based allocator
750 */
751 int slab_is_available(void)
752 {
753 return g_cpucache_up == FULL;
754 }
755
756 static DEFINE_PER_CPU(struct delayed_work, reap_work);
757
758 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
759 {
760 return cachep->array[smp_processor_id()];
761 }
762
763 static inline struct kmem_cache *__find_general_cachep(size_t size,
764 gfp_t gfpflags)
765 {
766 struct cache_sizes *csizep = malloc_sizes;
767
768 #if DEBUG
769 /* This happens if someone tries to call
770 * kmem_cache_create(), or __kmalloc(), before
771 * the generic caches are initialized.
772 */
773 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
774 #endif
775 while (size > csizep->cs_size)
776 csizep++;
777
778 /*
779 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
780 * has cs_{dma,}cachep==NULL. Thus no special case
781 * for large kmalloc calls required.
782 */
783 if (unlikely(gfpflags & GFP_DMA))
784 return csizep->cs_dmacachep;
785 return csizep->cs_cachep;
786 }
787
788 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
789 {
790 return __find_general_cachep(size, gfpflags);
791 }
792
793 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
794 {
795 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
796 }
797
798 /*
799 * Calculate the number of objects and left-over bytes for a given buffer size.
800 */
801 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
802 size_t align, int flags, size_t *left_over,
803 unsigned int *num)
804 {
805 int nr_objs;
806 size_t mgmt_size;
807 size_t slab_size = PAGE_SIZE << gfporder;
808
809 /*
810 * The slab management structure can be either off the slab or
811 * on it. For the latter case, the memory allocated for a
812 * slab is used for:
813 *
814 * - The struct slab
815 * - One kmem_bufctl_t for each object
816 * - Padding to respect alignment of @align
817 * - @buffer_size bytes for each object
818 *
819 * If the slab management structure is off the slab, then the
820 * alignment will already be calculated into the size. Because
821 * the slabs are all pages aligned, the objects will be at the
822 * correct alignment when allocated.
823 */
824 if (flags & CFLGS_OFF_SLAB) {
825 mgmt_size = 0;
826 nr_objs = slab_size / buffer_size;
827
828 if (nr_objs > SLAB_LIMIT)
829 nr_objs = SLAB_LIMIT;
830 } else {
831 /*
832 * Ignore padding for the initial guess. The padding
833 * is at most @align-1 bytes, and @buffer_size is at
834 * least @align. In the worst case, this result will
835 * be one greater than the number of objects that fit
836 * into the memory allocation when taking the padding
837 * into account.
838 */
839 nr_objs = (slab_size - sizeof(struct slab)) /
840 (buffer_size + sizeof(kmem_bufctl_t));
841
842 /*
843 * This calculated number will be either the right
844 * amount, or one greater than what we want.
845 */
846 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
847 > slab_size)
848 nr_objs--;
849
850 if (nr_objs > SLAB_LIMIT)
851 nr_objs = SLAB_LIMIT;
852
853 mgmt_size = slab_mgmt_size(nr_objs, align);
854 }
855 *num = nr_objs;
856 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
857 }
858
859 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
860
861 static void __slab_error(const char *function, struct kmem_cache *cachep,
862 char *msg)
863 {
864 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
865 function, cachep->name, msg);
866 dump_stack();
867 }
868
869 #ifdef CONFIG_NUMA
870 /*
871 * Special reaping functions for NUMA systems called from cache_reap().
872 * These take care of doing round robin flushing of alien caches (containing
873 * objects freed on different nodes from which they were allocated) and the
874 * flushing of remote pcps by calling drain_node_pages.
875 */
876 static DEFINE_PER_CPU(unsigned long, reap_node);
877
878 static void init_reap_node(int cpu)
879 {
880 int node;
881
882 node = next_node(cpu_to_node(cpu), node_online_map);
883 if (node == MAX_NUMNODES)
884 node = first_node(node_online_map);
885
886 per_cpu(reap_node, cpu) = node;
887 }
888
889 static void next_reap_node(void)
890 {
891 int node = __get_cpu_var(reap_node);
892
893 /*
894 * Also drain per cpu pages on remote zones
895 */
896 if (node != numa_node_id())
897 drain_node_pages(node);
898
899 node = next_node(node, node_online_map);
900 if (unlikely(node >= MAX_NUMNODES))
901 node = first_node(node_online_map);
902 __get_cpu_var(reap_node) = node;
903 }
904
905 #else
906 #define init_reap_node(cpu) do { } while (0)
907 #define next_reap_node(void) do { } while (0)
908 #endif
909
910 /*
911 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
912 * via the workqueue/eventd.
913 * Add the CPU number into the expiration time to minimize the possibility of
914 * the CPUs getting into lockstep and contending for the global cache chain
915 * lock.
916 */
917 static void __devinit start_cpu_timer(int cpu)
918 {
919 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
920
921 /*
922 * When this gets called from do_initcalls via cpucache_init(),
923 * init_workqueues() has already run, so keventd will be setup
924 * at that time.
925 */
926 if (keventd_up() && reap_work->work.func == NULL) {
927 init_reap_node(cpu);
928 INIT_DELAYED_WORK(reap_work, cache_reap);
929 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
930 }
931 }
932
933 static struct array_cache *alloc_arraycache(int node, int entries,
934 int batchcount)
935 {
936 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
937 struct array_cache *nc = NULL;
938
939 nc = kmalloc_node(memsize, GFP_KERNEL, node);
940 if (nc) {
941 nc->avail = 0;
942 nc->limit = entries;
943 nc->batchcount = batchcount;
944 nc->touched = 0;
945 spin_lock_init(&nc->lock);
946 }
947 return nc;
948 }
949
950 /*
951 * Transfer objects in one arraycache to another.
952 * Locking must be handled by the caller.
953 *
954 * Return the number of entries transferred.
955 */
956 static int transfer_objects(struct array_cache *to,
957 struct array_cache *from, unsigned int max)
958 {
959 /* Figure out how many entries to transfer */
960 int nr = min(min(from->avail, max), to->limit - to->avail);
961
962 if (!nr)
963 return 0;
964
965 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
966 sizeof(void *) *nr);
967
968 from->avail -= nr;
969 to->avail += nr;
970 to->touched = 1;
971 return nr;
972 }
973
974 #ifndef CONFIG_NUMA
975
976 #define drain_alien_cache(cachep, alien) do { } while (0)
977 #define reap_alien(cachep, l3) do { } while (0)
978
979 static inline struct array_cache **alloc_alien_cache(int node, int limit)
980 {
981 return (struct array_cache **)BAD_ALIEN_MAGIC;
982 }
983
984 static inline void free_alien_cache(struct array_cache **ac_ptr)
985 {
986 }
987
988 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
989 {
990 return 0;
991 }
992
993 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
994 gfp_t flags)
995 {
996 return NULL;
997 }
998
999 static inline void *__cache_alloc_node(struct kmem_cache *cachep,
1000 gfp_t flags, int nodeid)
1001 {
1002 return NULL;
1003 }
1004
1005 #else /* CONFIG_NUMA */
1006
1007 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
1008 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1009
1010 static struct array_cache **alloc_alien_cache(int node, int limit)
1011 {
1012 struct array_cache **ac_ptr;
1013 int memsize = sizeof(void *) * MAX_NUMNODES;
1014 int i;
1015
1016 if (limit > 1)
1017 limit = 12;
1018 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1019 if (ac_ptr) {
1020 for_each_node(i) {
1021 if (i == node || !node_online(i)) {
1022 ac_ptr[i] = NULL;
1023 continue;
1024 }
1025 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1026 if (!ac_ptr[i]) {
1027 for (i--; i <= 0; i--)
1028 kfree(ac_ptr[i]);
1029 kfree(ac_ptr);
1030 return NULL;
1031 }
1032 }
1033 }
1034 return ac_ptr;
1035 }
1036
1037 static void free_alien_cache(struct array_cache **ac_ptr)
1038 {
1039 int i;
1040
1041 if (!ac_ptr)
1042 return;
1043 for_each_node(i)
1044 kfree(ac_ptr[i]);
1045 kfree(ac_ptr);
1046 }
1047
1048 static void __drain_alien_cache(struct kmem_cache *cachep,
1049 struct array_cache *ac, int node)
1050 {
1051 struct kmem_list3 *rl3 = cachep->nodelists[node];
1052
1053 if (ac->avail) {
1054 spin_lock(&rl3->list_lock);
1055 /*
1056 * Stuff objects into the remote nodes shared array first.
1057 * That way we could avoid the overhead of putting the objects
1058 * into the free lists and getting them back later.
1059 */
1060 if (rl3->shared)
1061 transfer_objects(rl3->shared, ac, ac->limit);
1062
1063 free_block(cachep, ac->entry, ac->avail, node);
1064 ac->avail = 0;
1065 spin_unlock(&rl3->list_lock);
1066 }
1067 }
1068
1069 /*
1070 * Called from cache_reap() to regularly drain alien caches round robin.
1071 */
1072 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1073 {
1074 int node = __get_cpu_var(reap_node);
1075
1076 if (l3->alien) {
1077 struct array_cache *ac = l3->alien[node];
1078
1079 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1080 __drain_alien_cache(cachep, ac, node);
1081 spin_unlock_irq(&ac->lock);
1082 }
1083 }
1084 }
1085
1086 static void drain_alien_cache(struct kmem_cache *cachep,
1087 struct array_cache **alien)
1088 {
1089 int i = 0;
1090 struct array_cache *ac;
1091 unsigned long flags;
1092
1093 for_each_online_node(i) {
1094 ac = alien[i];
1095 if (ac) {
1096 spin_lock_irqsave(&ac->lock, flags);
1097 __drain_alien_cache(cachep, ac, i);
1098 spin_unlock_irqrestore(&ac->lock, flags);
1099 }
1100 }
1101 }
1102
1103 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1104 {
1105 struct slab *slabp = virt_to_slab(objp);
1106 int nodeid = slabp->nodeid;
1107 struct kmem_list3 *l3;
1108 struct array_cache *alien = NULL;
1109 int node;
1110
1111 node = numa_node_id();
1112
1113 /*
1114 * Make sure we are not freeing a object from another node to the array
1115 * cache on this cpu.
1116 */
1117 if (likely(slabp->nodeid == node))
1118 return 0;
1119
1120 l3 = cachep->nodelists[node];
1121 STATS_INC_NODEFREES(cachep);
1122 if (l3->alien && l3->alien[nodeid]) {
1123 alien = l3->alien[nodeid];
1124 spin_lock(&alien->lock);
1125 if (unlikely(alien->avail == alien->limit)) {
1126 STATS_INC_ACOVERFLOW(cachep);
1127 __drain_alien_cache(cachep, alien, nodeid);
1128 }
1129 alien->entry[alien->avail++] = objp;
1130 spin_unlock(&alien->lock);
1131 } else {
1132 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1133 free_block(cachep, &objp, 1, nodeid);
1134 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1135 }
1136 return 1;
1137 }
1138 #endif
1139
1140 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1141 unsigned long action, void *hcpu)
1142 {
1143 long cpu = (long)hcpu;
1144 struct kmem_cache *cachep;
1145 struct kmem_list3 *l3 = NULL;
1146 int node = cpu_to_node(cpu);
1147 int memsize = sizeof(struct kmem_list3);
1148
1149 switch (action) {
1150 case CPU_UP_PREPARE:
1151 mutex_lock(&cache_chain_mutex);
1152 /*
1153 * We need to do this right in the beginning since
1154 * alloc_arraycache's are going to use this list.
1155 * kmalloc_node allows us to add the slab to the right
1156 * kmem_list3 and not this cpu's kmem_list3
1157 */
1158
1159 list_for_each_entry(cachep, &cache_chain, next) {
1160 /*
1161 * Set up the size64 kmemlist for cpu before we can
1162 * begin anything. Make sure some other cpu on this
1163 * node has not already allocated this
1164 */
1165 if (!cachep->nodelists[node]) {
1166 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1167 if (!l3)
1168 goto bad;
1169 kmem_list3_init(l3);
1170 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1171 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1172
1173 /*
1174 * The l3s don't come and go as CPUs come and
1175 * go. cache_chain_mutex is sufficient
1176 * protection here.
1177 */
1178 cachep->nodelists[node] = l3;
1179 }
1180
1181 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1182 cachep->nodelists[node]->free_limit =
1183 (1 + nr_cpus_node(node)) *
1184 cachep->batchcount + cachep->num;
1185 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1186 }
1187
1188 /*
1189 * Now we can go ahead with allocating the shared arrays and
1190 * array caches
1191 */
1192 list_for_each_entry(cachep, &cache_chain, next) {
1193 struct array_cache *nc;
1194 struct array_cache *shared;
1195 struct array_cache **alien;
1196
1197 nc = alloc_arraycache(node, cachep->limit,
1198 cachep->batchcount);
1199 if (!nc)
1200 goto bad;
1201 shared = alloc_arraycache(node,
1202 cachep->shared * cachep->batchcount,
1203 0xbaadf00d);
1204 if (!shared)
1205 goto bad;
1206
1207 alien = alloc_alien_cache(node, cachep->limit);
1208 if (!alien)
1209 goto bad;
1210 cachep->array[cpu] = nc;
1211 l3 = cachep->nodelists[node];
1212 BUG_ON(!l3);
1213
1214 spin_lock_irq(&l3->list_lock);
1215 if (!l3->shared) {
1216 /*
1217 * We are serialised from CPU_DEAD or
1218 * CPU_UP_CANCELLED by the cpucontrol lock
1219 */
1220 l3->shared = shared;
1221 shared = NULL;
1222 }
1223 #ifdef CONFIG_NUMA
1224 if (!l3->alien) {
1225 l3->alien = alien;
1226 alien = NULL;
1227 }
1228 #endif
1229 spin_unlock_irq(&l3->list_lock);
1230 kfree(shared);
1231 free_alien_cache(alien);
1232 }
1233 mutex_unlock(&cache_chain_mutex);
1234 break;
1235 case CPU_ONLINE:
1236 start_cpu_timer(cpu);
1237 break;
1238 #ifdef CONFIG_HOTPLUG_CPU
1239 case CPU_DEAD:
1240 /*
1241 * Even if all the cpus of a node are down, we don't free the
1242 * kmem_list3 of any cache. This to avoid a race between
1243 * cpu_down, and a kmalloc allocation from another cpu for
1244 * memory from the node of the cpu going down. The list3
1245 * structure is usually allocated from kmem_cache_create() and
1246 * gets destroyed at kmem_cache_destroy().
1247 */
1248 /* fall thru */
1249 case CPU_UP_CANCELED:
1250 mutex_lock(&cache_chain_mutex);
1251 list_for_each_entry(cachep, &cache_chain, next) {
1252 struct array_cache *nc;
1253 struct array_cache *shared;
1254 struct array_cache **alien;
1255 cpumask_t mask;
1256
1257 mask = node_to_cpumask(node);
1258 /* cpu is dead; no one can alloc from it. */
1259 nc = cachep->array[cpu];
1260 cachep->array[cpu] = NULL;
1261 l3 = cachep->nodelists[node];
1262
1263 if (!l3)
1264 goto free_array_cache;
1265
1266 spin_lock_irq(&l3->list_lock);
1267
1268 /* Free limit for this kmem_list3 */
1269 l3->free_limit -= cachep->batchcount;
1270 if (nc)
1271 free_block(cachep, nc->entry, nc->avail, node);
1272
1273 if (!cpus_empty(mask)) {
1274 spin_unlock_irq(&l3->list_lock);
1275 goto free_array_cache;
1276 }
1277
1278 shared = l3->shared;
1279 if (shared) {
1280 free_block(cachep, l3->shared->entry,
1281 l3->shared->avail, node);
1282 l3->shared = NULL;
1283 }
1284
1285 alien = l3->alien;
1286 l3->alien = NULL;
1287
1288 spin_unlock_irq(&l3->list_lock);
1289
1290 kfree(shared);
1291 if (alien) {
1292 drain_alien_cache(cachep, alien);
1293 free_alien_cache(alien);
1294 }
1295 free_array_cache:
1296 kfree(nc);
1297 }
1298 /*
1299 * In the previous loop, all the objects were freed to
1300 * the respective cache's slabs, now we can go ahead and
1301 * shrink each nodelist to its limit.
1302 */
1303 list_for_each_entry(cachep, &cache_chain, next) {
1304 l3 = cachep->nodelists[node];
1305 if (!l3)
1306 continue;
1307 drain_freelist(cachep, l3, l3->free_objects);
1308 }
1309 mutex_unlock(&cache_chain_mutex);
1310 break;
1311 #endif
1312 }
1313 return NOTIFY_OK;
1314 bad:
1315 mutex_unlock(&cache_chain_mutex);
1316 return NOTIFY_BAD;
1317 }
1318
1319 static struct notifier_block __cpuinitdata cpucache_notifier = {
1320 &cpuup_callback, NULL, 0
1321 };
1322
1323 /*
1324 * swap the static kmem_list3 with kmalloced memory
1325 */
1326 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1327 int nodeid)
1328 {
1329 struct kmem_list3 *ptr;
1330
1331 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1332 BUG_ON(!ptr);
1333
1334 local_irq_disable();
1335 memcpy(ptr, list, sizeof(struct kmem_list3));
1336 /*
1337 * Do not assume that spinlocks can be initialized via memcpy:
1338 */
1339 spin_lock_init(&ptr->list_lock);
1340
1341 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1342 cachep->nodelists[nodeid] = ptr;
1343 local_irq_enable();
1344 }
1345
1346 /*
1347 * Initialisation. Called after the page allocator have been initialised and
1348 * before smp_init().
1349 */
1350 void __init kmem_cache_init(void)
1351 {
1352 size_t left_over;
1353 struct cache_sizes *sizes;
1354 struct cache_names *names;
1355 int i;
1356 int order;
1357 int node;
1358
1359 for (i = 0; i < NUM_INIT_LISTS; i++) {
1360 kmem_list3_init(&initkmem_list3[i]);
1361 if (i < MAX_NUMNODES)
1362 cache_cache.nodelists[i] = NULL;
1363 }
1364
1365 /*
1366 * Fragmentation resistance on low memory - only use bigger
1367 * page orders on machines with more than 32MB of memory.
1368 */
1369 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1370 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1371
1372 /* Bootstrap is tricky, because several objects are allocated
1373 * from caches that do not exist yet:
1374 * 1) initialize the cache_cache cache: it contains the struct
1375 * kmem_cache structures of all caches, except cache_cache itself:
1376 * cache_cache is statically allocated.
1377 * Initially an __init data area is used for the head array and the
1378 * kmem_list3 structures, it's replaced with a kmalloc allocated
1379 * array at the end of the bootstrap.
1380 * 2) Create the first kmalloc cache.
1381 * The struct kmem_cache for the new cache is allocated normally.
1382 * An __init data area is used for the head array.
1383 * 3) Create the remaining kmalloc caches, with minimally sized
1384 * head arrays.
1385 * 4) Replace the __init data head arrays for cache_cache and the first
1386 * kmalloc cache with kmalloc allocated arrays.
1387 * 5) Replace the __init data for kmem_list3 for cache_cache and
1388 * the other cache's with kmalloc allocated memory.
1389 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1390 */
1391
1392 node = numa_node_id();
1393
1394 /* 1) create the cache_cache */
1395 INIT_LIST_HEAD(&cache_chain);
1396 list_add(&cache_cache.next, &cache_chain);
1397 cache_cache.colour_off = cache_line_size();
1398 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1399 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1400
1401 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1402 cache_line_size());
1403
1404 for (order = 0; order < MAX_ORDER; order++) {
1405 cache_estimate(order, cache_cache.buffer_size,
1406 cache_line_size(), 0, &left_over, &cache_cache.num);
1407 if (cache_cache.num)
1408 break;
1409 }
1410 BUG_ON(!cache_cache.num);
1411 cache_cache.gfporder = order;
1412 cache_cache.colour = left_over / cache_cache.colour_off;
1413 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1414 sizeof(struct slab), cache_line_size());
1415
1416 /* 2+3) create the kmalloc caches */
1417 sizes = malloc_sizes;
1418 names = cache_names;
1419
1420 /*
1421 * Initialize the caches that provide memory for the array cache and the
1422 * kmem_list3 structures first. Without this, further allocations will
1423 * bug.
1424 */
1425
1426 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1427 sizes[INDEX_AC].cs_size,
1428 ARCH_KMALLOC_MINALIGN,
1429 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1430 NULL, NULL);
1431
1432 if (INDEX_AC != INDEX_L3) {
1433 sizes[INDEX_L3].cs_cachep =
1434 kmem_cache_create(names[INDEX_L3].name,
1435 sizes[INDEX_L3].cs_size,
1436 ARCH_KMALLOC_MINALIGN,
1437 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1438 NULL, NULL);
1439 }
1440
1441 slab_early_init = 0;
1442
1443 while (sizes->cs_size != ULONG_MAX) {
1444 /*
1445 * For performance, all the general caches are L1 aligned.
1446 * This should be particularly beneficial on SMP boxes, as it
1447 * eliminates "false sharing".
1448 * Note for systems short on memory removing the alignment will
1449 * allow tighter packing of the smaller caches.
1450 */
1451 if (!sizes->cs_cachep) {
1452 sizes->cs_cachep = kmem_cache_create(names->name,
1453 sizes->cs_size,
1454 ARCH_KMALLOC_MINALIGN,
1455 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1456 NULL, NULL);
1457 }
1458
1459 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1460 sizes->cs_size,
1461 ARCH_KMALLOC_MINALIGN,
1462 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1463 SLAB_PANIC,
1464 NULL, NULL);
1465 sizes++;
1466 names++;
1467 }
1468 /* 4) Replace the bootstrap head arrays */
1469 {
1470 struct array_cache *ptr;
1471
1472 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1473
1474 local_irq_disable();
1475 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1476 memcpy(ptr, cpu_cache_get(&cache_cache),
1477 sizeof(struct arraycache_init));
1478 /*
1479 * Do not assume that spinlocks can be initialized via memcpy:
1480 */
1481 spin_lock_init(&ptr->lock);
1482
1483 cache_cache.array[smp_processor_id()] = ptr;
1484 local_irq_enable();
1485
1486 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1487
1488 local_irq_disable();
1489 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1490 != &initarray_generic.cache);
1491 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1492 sizeof(struct arraycache_init));
1493 /*
1494 * Do not assume that spinlocks can be initialized via memcpy:
1495 */
1496 spin_lock_init(&ptr->lock);
1497
1498 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1499 ptr;
1500 local_irq_enable();
1501 }
1502 /* 5) Replace the bootstrap kmem_list3's */
1503 {
1504 int nid;
1505
1506 /* Replace the static kmem_list3 structures for the boot cpu */
1507 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1508
1509 for_each_online_node(nid) {
1510 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1511 &initkmem_list3[SIZE_AC + nid], nid);
1512
1513 if (INDEX_AC != INDEX_L3) {
1514 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1515 &initkmem_list3[SIZE_L3 + nid], nid);
1516 }
1517 }
1518 }
1519
1520 /* 6) resize the head arrays to their final sizes */
1521 {
1522 struct kmem_cache *cachep;
1523 mutex_lock(&cache_chain_mutex);
1524 list_for_each_entry(cachep, &cache_chain, next)
1525 if (enable_cpucache(cachep))
1526 BUG();
1527 mutex_unlock(&cache_chain_mutex);
1528 }
1529
1530 /* Annotate slab for lockdep -- annotate the malloc caches */
1531 init_lock_keys();
1532
1533
1534 /* Done! */
1535 g_cpucache_up = FULL;
1536
1537 /*
1538 * Register a cpu startup notifier callback that initializes
1539 * cpu_cache_get for all new cpus
1540 */
1541 register_cpu_notifier(&cpucache_notifier);
1542
1543 /*
1544 * The reap timers are started later, with a module init call: That part
1545 * of the kernel is not yet operational.
1546 */
1547 }
1548
1549 static int __init cpucache_init(void)
1550 {
1551 int cpu;
1552
1553 /*
1554 * Register the timers that return unneeded pages to the page allocator
1555 */
1556 for_each_online_cpu(cpu)
1557 start_cpu_timer(cpu);
1558 return 0;
1559 }
1560 __initcall(cpucache_init);
1561
1562 /*
1563 * Interface to system's page allocator. No need to hold the cache-lock.
1564 *
1565 * If we requested dmaable memory, we will get it. Even if we
1566 * did not request dmaable memory, we might get it, but that
1567 * would be relatively rare and ignorable.
1568 */
1569 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1570 {
1571 struct page *page;
1572 int nr_pages;
1573 int i;
1574
1575 #ifndef CONFIG_MMU
1576 /*
1577 * Nommu uses slab's for process anonymous memory allocations, and thus
1578 * requires __GFP_COMP to properly refcount higher order allocations
1579 */
1580 flags |= __GFP_COMP;
1581 #endif
1582
1583 /*
1584 * Under NUMA we want memory on the indicated node. We will handle
1585 * the needed fallback ourselves since we want to serve from our
1586 * per node object lists first for other nodes.
1587 */
1588 flags |= cachep->gfpflags | GFP_THISNODE;
1589
1590 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1591 if (!page)
1592 return NULL;
1593
1594 nr_pages = (1 << cachep->gfporder);
1595 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1596 add_zone_page_state(page_zone(page),
1597 NR_SLAB_RECLAIMABLE, nr_pages);
1598 else
1599 add_zone_page_state(page_zone(page),
1600 NR_SLAB_UNRECLAIMABLE, nr_pages);
1601 for (i = 0; i < nr_pages; i++)
1602 __SetPageSlab(page + i);
1603 return page_address(page);
1604 }
1605
1606 /*
1607 * Interface to system's page release.
1608 */
1609 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1610 {
1611 unsigned long i = (1 << cachep->gfporder);
1612 struct page *page = virt_to_page(addr);
1613 const unsigned long nr_freed = i;
1614
1615 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1616 sub_zone_page_state(page_zone(page),
1617 NR_SLAB_RECLAIMABLE, nr_freed);
1618 else
1619 sub_zone_page_state(page_zone(page),
1620 NR_SLAB_UNRECLAIMABLE, nr_freed);
1621 while (i--) {
1622 BUG_ON(!PageSlab(page));
1623 __ClearPageSlab(page);
1624 page++;
1625 }
1626 if (current->reclaim_state)
1627 current->reclaim_state->reclaimed_slab += nr_freed;
1628 free_pages((unsigned long)addr, cachep->gfporder);
1629 }
1630
1631 static void kmem_rcu_free(struct rcu_head *head)
1632 {
1633 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1634 struct kmem_cache *cachep = slab_rcu->cachep;
1635
1636 kmem_freepages(cachep, slab_rcu->addr);
1637 if (OFF_SLAB(cachep))
1638 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1639 }
1640
1641 #if DEBUG
1642
1643 #ifdef CONFIG_DEBUG_PAGEALLOC
1644 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1645 unsigned long caller)
1646 {
1647 int size = obj_size(cachep);
1648
1649 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1650
1651 if (size < 5 * sizeof(unsigned long))
1652 return;
1653
1654 *addr++ = 0x12345678;
1655 *addr++ = caller;
1656 *addr++ = smp_processor_id();
1657 size -= 3 * sizeof(unsigned long);
1658 {
1659 unsigned long *sptr = &caller;
1660 unsigned long svalue;
1661
1662 while (!kstack_end(sptr)) {
1663 svalue = *sptr++;
1664 if (kernel_text_address(svalue)) {
1665 *addr++ = svalue;
1666 size -= sizeof(unsigned long);
1667 if (size <= sizeof(unsigned long))
1668 break;
1669 }
1670 }
1671
1672 }
1673 *addr++ = 0x87654321;
1674 }
1675 #endif
1676
1677 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1678 {
1679 int size = obj_size(cachep);
1680 addr = &((char *)addr)[obj_offset(cachep)];
1681
1682 memset(addr, val, size);
1683 *(unsigned char *)(addr + size - 1) = POISON_END;
1684 }
1685
1686 static void dump_line(char *data, int offset, int limit)
1687 {
1688 int i;
1689 unsigned char error = 0;
1690 int bad_count = 0;
1691
1692 printk(KERN_ERR "%03x:", offset);
1693 for (i = 0; i < limit; i++) {
1694 if (data[offset + i] != POISON_FREE) {
1695 error = data[offset + i];
1696 bad_count++;
1697 }
1698 printk(" %02x", (unsigned char)data[offset + i]);
1699 }
1700 printk("\n");
1701
1702 if (bad_count == 1) {
1703 error ^= POISON_FREE;
1704 if (!(error & (error - 1))) {
1705 printk(KERN_ERR "Single bit error detected. Probably "
1706 "bad RAM.\n");
1707 #ifdef CONFIG_X86
1708 printk(KERN_ERR "Run memtest86+ or a similar memory "
1709 "test tool.\n");
1710 #else
1711 printk(KERN_ERR "Run a memory test tool.\n");
1712 #endif
1713 }
1714 }
1715 }
1716 #endif
1717
1718 #if DEBUG
1719
1720 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1721 {
1722 int i, size;
1723 char *realobj;
1724
1725 if (cachep->flags & SLAB_RED_ZONE) {
1726 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1727 *dbg_redzone1(cachep, objp),
1728 *dbg_redzone2(cachep, objp));
1729 }
1730
1731 if (cachep->flags & SLAB_STORE_USER) {
1732 printk(KERN_ERR "Last user: [<%p>]",
1733 *dbg_userword(cachep, objp));
1734 print_symbol("(%s)",
1735 (unsigned long)*dbg_userword(cachep, objp));
1736 printk("\n");
1737 }
1738 realobj = (char *)objp + obj_offset(cachep);
1739 size = obj_size(cachep);
1740 for (i = 0; i < size && lines; i += 16, lines--) {
1741 int limit;
1742 limit = 16;
1743 if (i + limit > size)
1744 limit = size - i;
1745 dump_line(realobj, i, limit);
1746 }
1747 }
1748
1749 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1750 {
1751 char *realobj;
1752 int size, i;
1753 int lines = 0;
1754
1755 realobj = (char *)objp + obj_offset(cachep);
1756 size = obj_size(cachep);
1757
1758 for (i = 0; i < size; i++) {
1759 char exp = POISON_FREE;
1760 if (i == size - 1)
1761 exp = POISON_END;
1762 if (realobj[i] != exp) {
1763 int limit;
1764 /* Mismatch ! */
1765 /* Print header */
1766 if (lines == 0) {
1767 printk(KERN_ERR
1768 "Slab corruption: start=%p, len=%d\n",
1769 realobj, size);
1770 print_objinfo(cachep, objp, 0);
1771 }
1772 /* Hexdump the affected line */
1773 i = (i / 16) * 16;
1774 limit = 16;
1775 if (i + limit > size)
1776 limit = size - i;
1777 dump_line(realobj, i, limit);
1778 i += 16;
1779 lines++;
1780 /* Limit to 5 lines */
1781 if (lines > 5)
1782 break;
1783 }
1784 }
1785 if (lines != 0) {
1786 /* Print some data about the neighboring objects, if they
1787 * exist:
1788 */
1789 struct slab *slabp = virt_to_slab(objp);
1790 unsigned int objnr;
1791
1792 objnr = obj_to_index(cachep, slabp, objp);
1793 if (objnr) {
1794 objp = index_to_obj(cachep, slabp, objnr - 1);
1795 realobj = (char *)objp + obj_offset(cachep);
1796 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1797 realobj, size);
1798 print_objinfo(cachep, objp, 2);
1799 }
1800 if (objnr + 1 < cachep->num) {
1801 objp = index_to_obj(cachep, slabp, objnr + 1);
1802 realobj = (char *)objp + obj_offset(cachep);
1803 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1804 realobj, size);
1805 print_objinfo(cachep, objp, 2);
1806 }
1807 }
1808 }
1809 #endif
1810
1811 #if DEBUG
1812 /**
1813 * slab_destroy_objs - destroy a slab and its objects
1814 * @cachep: cache pointer being destroyed
1815 * @slabp: slab pointer being destroyed
1816 *
1817 * Call the registered destructor for each object in a slab that is being
1818 * destroyed.
1819 */
1820 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1821 {
1822 int i;
1823 for (i = 0; i < cachep->num; i++) {
1824 void *objp = index_to_obj(cachep, slabp, i);
1825
1826 if (cachep->flags & SLAB_POISON) {
1827 #ifdef CONFIG_DEBUG_PAGEALLOC
1828 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1829 OFF_SLAB(cachep))
1830 kernel_map_pages(virt_to_page(objp),
1831 cachep->buffer_size / PAGE_SIZE, 1);
1832 else
1833 check_poison_obj(cachep, objp);
1834 #else
1835 check_poison_obj(cachep, objp);
1836 #endif
1837 }
1838 if (cachep->flags & SLAB_RED_ZONE) {
1839 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1840 slab_error(cachep, "start of a freed object "
1841 "was overwritten");
1842 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1843 slab_error(cachep, "end of a freed object "
1844 "was overwritten");
1845 }
1846 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1847 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1848 }
1849 }
1850 #else
1851 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1852 {
1853 if (cachep->dtor) {
1854 int i;
1855 for (i = 0; i < cachep->num; i++) {
1856 void *objp = index_to_obj(cachep, slabp, i);
1857 (cachep->dtor) (objp, cachep, 0);
1858 }
1859 }
1860 }
1861 #endif
1862
1863 /**
1864 * slab_destroy - destroy and release all objects in a slab
1865 * @cachep: cache pointer being destroyed
1866 * @slabp: slab pointer being destroyed
1867 *
1868 * Destroy all the objs in a slab, and release the mem back to the system.
1869 * Before calling the slab must have been unlinked from the cache. The
1870 * cache-lock is not held/needed.
1871 */
1872 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1873 {
1874 void *addr = slabp->s_mem - slabp->colouroff;
1875
1876 slab_destroy_objs(cachep, slabp);
1877 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1878 struct slab_rcu *slab_rcu;
1879
1880 slab_rcu = (struct slab_rcu *)slabp;
1881 slab_rcu->cachep = cachep;
1882 slab_rcu->addr = addr;
1883 call_rcu(&slab_rcu->head, kmem_rcu_free);
1884 } else {
1885 kmem_freepages(cachep, addr);
1886 if (OFF_SLAB(cachep))
1887 kmem_cache_free(cachep->slabp_cache, slabp);
1888 }
1889 }
1890
1891 /*
1892 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1893 * size of kmem_list3.
1894 */
1895 static void set_up_list3s(struct kmem_cache *cachep, int index)
1896 {
1897 int node;
1898
1899 for_each_online_node(node) {
1900 cachep->nodelists[node] = &initkmem_list3[index + node];
1901 cachep->nodelists[node]->next_reap = jiffies +
1902 REAPTIMEOUT_LIST3 +
1903 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1904 }
1905 }
1906
1907 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1908 {
1909 int i;
1910 struct kmem_list3 *l3;
1911
1912 for_each_online_cpu(i)
1913 kfree(cachep->array[i]);
1914
1915 /* NUMA: free the list3 structures */
1916 for_each_online_node(i) {
1917 l3 = cachep->nodelists[i];
1918 if (l3) {
1919 kfree(l3->shared);
1920 free_alien_cache(l3->alien);
1921 kfree(l3);
1922 }
1923 }
1924 kmem_cache_free(&cache_cache, cachep);
1925 }
1926
1927
1928 /**
1929 * calculate_slab_order - calculate size (page order) of slabs
1930 * @cachep: pointer to the cache that is being created
1931 * @size: size of objects to be created in this cache.
1932 * @align: required alignment for the objects.
1933 * @flags: slab allocation flags
1934 *
1935 * Also calculates the number of objects per slab.
1936 *
1937 * This could be made much more intelligent. For now, try to avoid using
1938 * high order pages for slabs. When the gfp() functions are more friendly
1939 * towards high-order requests, this should be changed.
1940 */
1941 static size_t calculate_slab_order(struct kmem_cache *cachep,
1942 size_t size, size_t align, unsigned long flags)
1943 {
1944 unsigned long offslab_limit;
1945 size_t left_over = 0;
1946 int gfporder;
1947
1948 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1949 unsigned int num;
1950 size_t remainder;
1951
1952 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1953 if (!num)
1954 continue;
1955
1956 if (flags & CFLGS_OFF_SLAB) {
1957 /*
1958 * Max number of objs-per-slab for caches which
1959 * use off-slab slabs. Needed to avoid a possible
1960 * looping condition in cache_grow().
1961 */
1962 offslab_limit = size - sizeof(struct slab);
1963 offslab_limit /= sizeof(kmem_bufctl_t);
1964
1965 if (num > offslab_limit)
1966 break;
1967 }
1968
1969 /* Found something acceptable - save it away */
1970 cachep->num = num;
1971 cachep->gfporder = gfporder;
1972 left_over = remainder;
1973
1974 /*
1975 * A VFS-reclaimable slab tends to have most allocations
1976 * as GFP_NOFS and we really don't want to have to be allocating
1977 * higher-order pages when we are unable to shrink dcache.
1978 */
1979 if (flags & SLAB_RECLAIM_ACCOUNT)
1980 break;
1981
1982 /*
1983 * Large number of objects is good, but very large slabs are
1984 * currently bad for the gfp()s.
1985 */
1986 if (gfporder >= slab_break_gfp_order)
1987 break;
1988
1989 /*
1990 * Acceptable internal fragmentation?
1991 */
1992 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1993 break;
1994 }
1995 return left_over;
1996 }
1997
1998 static int setup_cpu_cache(struct kmem_cache *cachep)
1999 {
2000 if (g_cpucache_up == FULL)
2001 return enable_cpucache(cachep);
2002
2003 if (g_cpucache_up == NONE) {
2004 /*
2005 * Note: the first kmem_cache_create must create the cache
2006 * that's used by kmalloc(24), otherwise the creation of
2007 * further caches will BUG().
2008 */
2009 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2010
2011 /*
2012 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2013 * the first cache, then we need to set up all its list3s,
2014 * otherwise the creation of further caches will BUG().
2015 */
2016 set_up_list3s(cachep, SIZE_AC);
2017 if (INDEX_AC == INDEX_L3)
2018 g_cpucache_up = PARTIAL_L3;
2019 else
2020 g_cpucache_up = PARTIAL_AC;
2021 } else {
2022 cachep->array[smp_processor_id()] =
2023 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2024
2025 if (g_cpucache_up == PARTIAL_AC) {
2026 set_up_list3s(cachep, SIZE_L3);
2027 g_cpucache_up = PARTIAL_L3;
2028 } else {
2029 int node;
2030 for_each_online_node(node) {
2031 cachep->nodelists[node] =
2032 kmalloc_node(sizeof(struct kmem_list3),
2033 GFP_KERNEL, node);
2034 BUG_ON(!cachep->nodelists[node]);
2035 kmem_list3_init(cachep->nodelists[node]);
2036 }
2037 }
2038 }
2039 cachep->nodelists[numa_node_id()]->next_reap =
2040 jiffies + REAPTIMEOUT_LIST3 +
2041 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2042
2043 cpu_cache_get(cachep)->avail = 0;
2044 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2045 cpu_cache_get(cachep)->batchcount = 1;
2046 cpu_cache_get(cachep)->touched = 0;
2047 cachep->batchcount = 1;
2048 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2049 return 0;
2050 }
2051
2052 /**
2053 * kmem_cache_create - Create a cache.
2054 * @name: A string which is used in /proc/slabinfo to identify this cache.
2055 * @size: The size of objects to be created in this cache.
2056 * @align: The required alignment for the objects.
2057 * @flags: SLAB flags
2058 * @ctor: A constructor for the objects.
2059 * @dtor: A destructor for the objects.
2060 *
2061 * Returns a ptr to the cache on success, NULL on failure.
2062 * Cannot be called within a int, but can be interrupted.
2063 * The @ctor is run when new pages are allocated by the cache
2064 * and the @dtor is run before the pages are handed back.
2065 *
2066 * @name must be valid until the cache is destroyed. This implies that
2067 * the module calling this has to destroy the cache before getting unloaded.
2068 *
2069 * The flags are
2070 *
2071 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2072 * to catch references to uninitialised memory.
2073 *
2074 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2075 * for buffer overruns.
2076 *
2077 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2078 * cacheline. This can be beneficial if you're counting cycles as closely
2079 * as davem.
2080 */
2081 struct kmem_cache *
2082 kmem_cache_create (const char *name, size_t size, size_t align,
2083 unsigned long flags,
2084 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2085 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2086 {
2087 size_t left_over, slab_size, ralign;
2088 struct kmem_cache *cachep = NULL, *pc;
2089
2090 /*
2091 * Sanity checks... these are all serious usage bugs.
2092 */
2093 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2094 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2095 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2096 name);
2097 BUG();
2098 }
2099
2100 /*
2101 * Prevent CPUs from coming and going.
2102 * lock_cpu_hotplug() nests outside cache_chain_mutex
2103 */
2104 lock_cpu_hotplug();
2105
2106 mutex_lock(&cache_chain_mutex);
2107
2108 list_for_each_entry(pc, &cache_chain, next) {
2109 mm_segment_t old_fs = get_fs();
2110 char tmp;
2111 int res;
2112
2113 /*
2114 * This happens when the module gets unloaded and doesn't
2115 * destroy its slab cache and no-one else reuses the vmalloc
2116 * area of the module. Print a warning.
2117 */
2118 set_fs(KERNEL_DS);
2119 res = __get_user(tmp, pc->name);
2120 set_fs(old_fs);
2121 if (res) {
2122 printk("SLAB: cache with size %d has lost its name\n",
2123 pc->buffer_size);
2124 continue;
2125 }
2126
2127 if (!strcmp(pc->name, name)) {
2128 printk("kmem_cache_create: duplicate cache %s\n", name);
2129 dump_stack();
2130 goto oops;
2131 }
2132 }
2133
2134 #if DEBUG
2135 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2136 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2137 /* No constructor, but inital state check requested */
2138 printk(KERN_ERR "%s: No con, but init state check "
2139 "requested - %s\n", __FUNCTION__, name);
2140 flags &= ~SLAB_DEBUG_INITIAL;
2141 }
2142 #if FORCED_DEBUG
2143 /*
2144 * Enable redzoning and last user accounting, except for caches with
2145 * large objects, if the increased size would increase the object size
2146 * above the next power of two: caches with object sizes just above a
2147 * power of two have a significant amount of internal fragmentation.
2148 */
2149 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2150 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2151 if (!(flags & SLAB_DESTROY_BY_RCU))
2152 flags |= SLAB_POISON;
2153 #endif
2154 if (flags & SLAB_DESTROY_BY_RCU)
2155 BUG_ON(flags & SLAB_POISON);
2156 #endif
2157 if (flags & SLAB_DESTROY_BY_RCU)
2158 BUG_ON(dtor);
2159
2160 /*
2161 * Always checks flags, a caller might be expecting debug support which
2162 * isn't available.
2163 */
2164 BUG_ON(flags & ~CREATE_MASK);
2165
2166 /*
2167 * Check that size is in terms of words. This is needed to avoid
2168 * unaligned accesses for some archs when redzoning is used, and makes
2169 * sure any on-slab bufctl's are also correctly aligned.
2170 */
2171 if (size & (BYTES_PER_WORD - 1)) {
2172 size += (BYTES_PER_WORD - 1);
2173 size &= ~(BYTES_PER_WORD - 1);
2174 }
2175
2176 /* calculate the final buffer alignment: */
2177
2178 /* 1) arch recommendation: can be overridden for debug */
2179 if (flags & SLAB_HWCACHE_ALIGN) {
2180 /*
2181 * Default alignment: as specified by the arch code. Except if
2182 * an object is really small, then squeeze multiple objects into
2183 * one cacheline.
2184 */
2185 ralign = cache_line_size();
2186 while (size <= ralign / 2)
2187 ralign /= 2;
2188 } else {
2189 ralign = BYTES_PER_WORD;
2190 }
2191
2192 /*
2193 * Redzoning and user store require word alignment. Note this will be
2194 * overridden by architecture or caller mandated alignment if either
2195 * is greater than BYTES_PER_WORD.
2196 */
2197 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2198 ralign = BYTES_PER_WORD;
2199
2200 /* 2) arch mandated alignment: disables debug if necessary */
2201 if (ralign < ARCH_SLAB_MINALIGN) {
2202 ralign = ARCH_SLAB_MINALIGN;
2203 if (ralign > BYTES_PER_WORD)
2204 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2205 }
2206 /* 3) caller mandated alignment: disables debug if necessary */
2207 if (ralign < align) {
2208 ralign = align;
2209 if (ralign > BYTES_PER_WORD)
2210 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2211 }
2212 /*
2213 * 4) Store it.
2214 */
2215 align = ralign;
2216
2217 /* Get cache's description obj. */
2218 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2219 if (!cachep)
2220 goto oops;
2221
2222 #if DEBUG
2223 cachep->obj_size = size;
2224
2225 /*
2226 * Both debugging options require word-alignment which is calculated
2227 * into align above.
2228 */
2229 if (flags & SLAB_RED_ZONE) {
2230 /* add space for red zone words */
2231 cachep->obj_offset += BYTES_PER_WORD;
2232 size += 2 * BYTES_PER_WORD;
2233 }
2234 if (flags & SLAB_STORE_USER) {
2235 /* user store requires one word storage behind the end of
2236 * the real object.
2237 */
2238 size += BYTES_PER_WORD;
2239 }
2240 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2241 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2242 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2243 cachep->obj_offset += PAGE_SIZE - size;
2244 size = PAGE_SIZE;
2245 }
2246 #endif
2247 #endif
2248
2249 /*
2250 * Determine if the slab management is 'on' or 'off' slab.
2251 * (bootstrapping cannot cope with offslab caches so don't do
2252 * it too early on.)
2253 */
2254 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2255 /*
2256 * Size is large, assume best to place the slab management obj
2257 * off-slab (should allow better packing of objs).
2258 */
2259 flags |= CFLGS_OFF_SLAB;
2260
2261 size = ALIGN(size, align);
2262
2263 left_over = calculate_slab_order(cachep, size, align, flags);
2264
2265 if (!cachep->num) {
2266 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2267 kmem_cache_free(&cache_cache, cachep);
2268 cachep = NULL;
2269 goto oops;
2270 }
2271 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2272 + sizeof(struct slab), align);
2273
2274 /*
2275 * If the slab has been placed off-slab, and we have enough space then
2276 * move it on-slab. This is at the expense of any extra colouring.
2277 */
2278 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2279 flags &= ~CFLGS_OFF_SLAB;
2280 left_over -= slab_size;
2281 }
2282
2283 if (flags & CFLGS_OFF_SLAB) {
2284 /* really off slab. No need for manual alignment */
2285 slab_size =
2286 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2287 }
2288
2289 cachep->colour_off = cache_line_size();
2290 /* Offset must be a multiple of the alignment. */
2291 if (cachep->colour_off < align)
2292 cachep->colour_off = align;
2293 cachep->colour = left_over / cachep->colour_off;
2294 cachep->slab_size = slab_size;
2295 cachep->flags = flags;
2296 cachep->gfpflags = 0;
2297 if (flags & SLAB_CACHE_DMA)
2298 cachep->gfpflags |= GFP_DMA;
2299 cachep->buffer_size = size;
2300
2301 if (flags & CFLGS_OFF_SLAB) {
2302 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2303 /*
2304 * This is a possibility for one of the malloc_sizes caches.
2305 * But since we go off slab only for object size greater than
2306 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2307 * this should not happen at all.
2308 * But leave a BUG_ON for some lucky dude.
2309 */
2310 BUG_ON(!cachep->slabp_cache);
2311 }
2312 cachep->ctor = ctor;
2313 cachep->dtor = dtor;
2314 cachep->name = name;
2315
2316 if (setup_cpu_cache(cachep)) {
2317 __kmem_cache_destroy(cachep);
2318 cachep = NULL;
2319 goto oops;
2320 }
2321
2322 /* cache setup completed, link it into the list */
2323 list_add(&cachep->next, &cache_chain);
2324 oops:
2325 if (!cachep && (flags & SLAB_PANIC))
2326 panic("kmem_cache_create(): failed to create slab `%s'\n",
2327 name);
2328 mutex_unlock(&cache_chain_mutex);
2329 unlock_cpu_hotplug();
2330 return cachep;
2331 }
2332 EXPORT_SYMBOL(kmem_cache_create);
2333
2334 #if DEBUG
2335 static void check_irq_off(void)
2336 {
2337 BUG_ON(!irqs_disabled());
2338 }
2339
2340 static void check_irq_on(void)
2341 {
2342 BUG_ON(irqs_disabled());
2343 }
2344
2345 static void check_spinlock_acquired(struct kmem_cache *cachep)
2346 {
2347 #ifdef CONFIG_SMP
2348 check_irq_off();
2349 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2350 #endif
2351 }
2352
2353 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2354 {
2355 #ifdef CONFIG_SMP
2356 check_irq_off();
2357 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2358 #endif
2359 }
2360
2361 #else
2362 #define check_irq_off() do { } while(0)
2363 #define check_irq_on() do { } while(0)
2364 #define check_spinlock_acquired(x) do { } while(0)
2365 #define check_spinlock_acquired_node(x, y) do { } while(0)
2366 #endif
2367
2368 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2369 struct array_cache *ac,
2370 int force, int node);
2371
2372 static void do_drain(void *arg)
2373 {
2374 struct kmem_cache *cachep = arg;
2375 struct array_cache *ac;
2376 int node = numa_node_id();
2377
2378 check_irq_off();
2379 ac = cpu_cache_get(cachep);
2380 spin_lock(&cachep->nodelists[node]->list_lock);
2381 free_block(cachep, ac->entry, ac->avail, node);
2382 spin_unlock(&cachep->nodelists[node]->list_lock);
2383 ac->avail = 0;
2384 }
2385
2386 static void drain_cpu_caches(struct kmem_cache *cachep)
2387 {
2388 struct kmem_list3 *l3;
2389 int node;
2390
2391 on_each_cpu(do_drain, cachep, 1, 1);
2392 check_irq_on();
2393 for_each_online_node(node) {
2394 l3 = cachep->nodelists[node];
2395 if (l3 && l3->alien)
2396 drain_alien_cache(cachep, l3->alien);
2397 }
2398
2399 for_each_online_node(node) {
2400 l3 = cachep->nodelists[node];
2401 if (l3)
2402 drain_array(cachep, l3, l3->shared, 1, node);
2403 }
2404 }
2405
2406 /*
2407 * Remove slabs from the list of free slabs.
2408 * Specify the number of slabs to drain in tofree.
2409 *
2410 * Returns the actual number of slabs released.
2411 */
2412 static int drain_freelist(struct kmem_cache *cache,
2413 struct kmem_list3 *l3, int tofree)
2414 {
2415 struct list_head *p;
2416 int nr_freed;
2417 struct slab *slabp;
2418
2419 nr_freed = 0;
2420 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2421
2422 spin_lock_irq(&l3->list_lock);
2423 p = l3->slabs_free.prev;
2424 if (p == &l3->slabs_free) {
2425 spin_unlock_irq(&l3->list_lock);
2426 goto out;
2427 }
2428
2429 slabp = list_entry(p, struct slab, list);
2430 #if DEBUG
2431 BUG_ON(slabp->inuse);
2432 #endif
2433 list_del(&slabp->list);
2434 /*
2435 * Safe to drop the lock. The slab is no longer linked
2436 * to the cache.
2437 */
2438 l3->free_objects -= cache->num;
2439 spin_unlock_irq(&l3->list_lock);
2440 slab_destroy(cache, slabp);
2441 nr_freed++;
2442 }
2443 out:
2444 return nr_freed;
2445 }
2446
2447 static int __cache_shrink(struct kmem_cache *cachep)
2448 {
2449 int ret = 0, i = 0;
2450 struct kmem_list3 *l3;
2451
2452 drain_cpu_caches(cachep);
2453
2454 check_irq_on();
2455 for_each_online_node(i) {
2456 l3 = cachep->nodelists[i];
2457 if (!l3)
2458 continue;
2459
2460 drain_freelist(cachep, l3, l3->free_objects);
2461
2462 ret += !list_empty(&l3->slabs_full) ||
2463 !list_empty(&l3->slabs_partial);
2464 }
2465 return (ret ? 1 : 0);
2466 }
2467
2468 /**
2469 * kmem_cache_shrink - Shrink a cache.
2470 * @cachep: The cache to shrink.
2471 *
2472 * Releases as many slabs as possible for a cache.
2473 * To help debugging, a zero exit status indicates all slabs were released.
2474 */
2475 int kmem_cache_shrink(struct kmem_cache *cachep)
2476 {
2477 BUG_ON(!cachep || in_interrupt());
2478
2479 return __cache_shrink(cachep);
2480 }
2481 EXPORT_SYMBOL(kmem_cache_shrink);
2482
2483 /**
2484 * kmem_cache_destroy - delete a cache
2485 * @cachep: the cache to destroy
2486 *
2487 * Remove a struct kmem_cache object from the slab cache.
2488 *
2489 * It is expected this function will be called by a module when it is
2490 * unloaded. This will remove the cache completely, and avoid a duplicate
2491 * cache being allocated each time a module is loaded and unloaded, if the
2492 * module doesn't have persistent in-kernel storage across loads and unloads.
2493 *
2494 * The cache must be empty before calling this function.
2495 *
2496 * The caller must guarantee that noone will allocate memory from the cache
2497 * during the kmem_cache_destroy().
2498 */
2499 void kmem_cache_destroy(struct kmem_cache *cachep)
2500 {
2501 BUG_ON(!cachep || in_interrupt());
2502
2503 /* Don't let CPUs to come and go */
2504 lock_cpu_hotplug();
2505
2506 /* Find the cache in the chain of caches. */
2507 mutex_lock(&cache_chain_mutex);
2508 /*
2509 * the chain is never empty, cache_cache is never destroyed
2510 */
2511 list_del(&cachep->next);
2512 mutex_unlock(&cache_chain_mutex);
2513
2514 if (__cache_shrink(cachep)) {
2515 slab_error(cachep, "Can't free all objects");
2516 mutex_lock(&cache_chain_mutex);
2517 list_add(&cachep->next, &cache_chain);
2518 mutex_unlock(&cache_chain_mutex);
2519 unlock_cpu_hotplug();
2520 return;
2521 }
2522
2523 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2524 synchronize_rcu();
2525
2526 __kmem_cache_destroy(cachep);
2527 unlock_cpu_hotplug();
2528 }
2529 EXPORT_SYMBOL(kmem_cache_destroy);
2530
2531 /*
2532 * Get the memory for a slab management obj.
2533 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2534 * always come from malloc_sizes caches. The slab descriptor cannot
2535 * come from the same cache which is getting created because,
2536 * when we are searching for an appropriate cache for these
2537 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2538 * If we are creating a malloc_sizes cache here it would not be visible to
2539 * kmem_find_general_cachep till the initialization is complete.
2540 * Hence we cannot have slabp_cache same as the original cache.
2541 */
2542 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2543 int colour_off, gfp_t local_flags,
2544 int nodeid)
2545 {
2546 struct slab *slabp;
2547
2548 if (OFF_SLAB(cachep)) {
2549 /* Slab management obj is off-slab. */
2550 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2551 local_flags, nodeid);
2552 if (!slabp)
2553 return NULL;
2554 } else {
2555 slabp = objp + colour_off;
2556 colour_off += cachep->slab_size;
2557 }
2558 slabp->inuse = 0;
2559 slabp->colouroff = colour_off;
2560 slabp->s_mem = objp + colour_off;
2561 slabp->nodeid = nodeid;
2562 return slabp;
2563 }
2564
2565 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2566 {
2567 return (kmem_bufctl_t *) (slabp + 1);
2568 }
2569
2570 static void cache_init_objs(struct kmem_cache *cachep,
2571 struct slab *slabp, unsigned long ctor_flags)
2572 {
2573 int i;
2574
2575 for (i = 0; i < cachep->num; i++) {
2576 void *objp = index_to_obj(cachep, slabp, i);
2577 #if DEBUG
2578 /* need to poison the objs? */
2579 if (cachep->flags & SLAB_POISON)
2580 poison_obj(cachep, objp, POISON_FREE);
2581 if (cachep->flags & SLAB_STORE_USER)
2582 *dbg_userword(cachep, objp) = NULL;
2583
2584 if (cachep->flags & SLAB_RED_ZONE) {
2585 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2586 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2587 }
2588 /*
2589 * Constructors are not allowed to allocate memory from the same
2590 * cache which they are a constructor for. Otherwise, deadlock.
2591 * They must also be threaded.
2592 */
2593 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2594 cachep->ctor(objp + obj_offset(cachep), cachep,
2595 ctor_flags);
2596
2597 if (cachep->flags & SLAB_RED_ZONE) {
2598 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2599 slab_error(cachep, "constructor overwrote the"
2600 " end of an object");
2601 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2602 slab_error(cachep, "constructor overwrote the"
2603 " start of an object");
2604 }
2605 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2606 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2607 kernel_map_pages(virt_to_page(objp),
2608 cachep->buffer_size / PAGE_SIZE, 0);
2609 #else
2610 if (cachep->ctor)
2611 cachep->ctor(objp, cachep, ctor_flags);
2612 #endif
2613 slab_bufctl(slabp)[i] = i + 1;
2614 }
2615 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2616 slabp->free = 0;
2617 }
2618
2619 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2620 {
2621 if (flags & SLAB_DMA)
2622 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2623 else
2624 BUG_ON(cachep->gfpflags & GFP_DMA);
2625 }
2626
2627 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2628 int nodeid)
2629 {
2630 void *objp = index_to_obj(cachep, slabp, slabp->free);
2631 kmem_bufctl_t next;
2632
2633 slabp->inuse++;
2634 next = slab_bufctl(slabp)[slabp->free];
2635 #if DEBUG
2636 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2637 WARN_ON(slabp->nodeid != nodeid);
2638 #endif
2639 slabp->free = next;
2640
2641 return objp;
2642 }
2643
2644 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2645 void *objp, int nodeid)
2646 {
2647 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2648
2649 #if DEBUG
2650 /* Verify that the slab belongs to the intended node */
2651 WARN_ON(slabp->nodeid != nodeid);
2652
2653 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2654 printk(KERN_ERR "slab: double free detected in cache "
2655 "'%s', objp %p\n", cachep->name, objp);
2656 BUG();
2657 }
2658 #endif
2659 slab_bufctl(slabp)[objnr] = slabp->free;
2660 slabp->free = objnr;
2661 slabp->inuse--;
2662 }
2663
2664 /*
2665 * Map pages beginning at addr to the given cache and slab. This is required
2666 * for the slab allocator to be able to lookup the cache and slab of a
2667 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2668 */
2669 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2670 void *addr)
2671 {
2672 int nr_pages;
2673 struct page *page;
2674
2675 page = virt_to_page(addr);
2676
2677 nr_pages = 1;
2678 if (likely(!PageCompound(page)))
2679 nr_pages <<= cache->gfporder;
2680
2681 do {
2682 page_set_cache(page, cache);
2683 page_set_slab(page, slab);
2684 page++;
2685 } while (--nr_pages);
2686 }
2687
2688 /*
2689 * Grow (by 1) the number of slabs within a cache. This is called by
2690 * kmem_cache_alloc() when there are no active objs left in a cache.
2691 */
2692 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2693 {
2694 struct slab *slabp;
2695 void *objp;
2696 size_t offset;
2697 gfp_t local_flags;
2698 unsigned long ctor_flags;
2699 struct kmem_list3 *l3;
2700
2701 /*
2702 * Be lazy and only check for valid flags here, keeping it out of the
2703 * critical path in kmem_cache_alloc().
2704 */
2705 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2706 if (flags & SLAB_NO_GROW)
2707 return 0;
2708
2709 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2710 local_flags = (flags & SLAB_LEVEL_MASK);
2711 if (!(local_flags & __GFP_WAIT))
2712 /*
2713 * Not allowed to sleep. Need to tell a constructor about
2714 * this - it might need to know...
2715 */
2716 ctor_flags |= SLAB_CTOR_ATOMIC;
2717
2718 /* Take the l3 list lock to change the colour_next on this node */
2719 check_irq_off();
2720 l3 = cachep->nodelists[nodeid];
2721 spin_lock(&l3->list_lock);
2722
2723 /* Get colour for the slab, and cal the next value. */
2724 offset = l3->colour_next;
2725 l3->colour_next++;
2726 if (l3->colour_next >= cachep->colour)
2727 l3->colour_next = 0;
2728 spin_unlock(&l3->list_lock);
2729
2730 offset *= cachep->colour_off;
2731
2732 if (local_flags & __GFP_WAIT)
2733 local_irq_enable();
2734
2735 /*
2736 * The test for missing atomic flag is performed here, rather than
2737 * the more obvious place, simply to reduce the critical path length
2738 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2739 * will eventually be caught here (where it matters).
2740 */
2741 kmem_flagcheck(cachep, flags);
2742
2743 /*
2744 * Get mem for the objs. Attempt to allocate a physical page from
2745 * 'nodeid'.
2746 */
2747 objp = kmem_getpages(cachep, flags, nodeid);
2748 if (!objp)
2749 goto failed;
2750
2751 /* Get slab management. */
2752 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2753 if (!slabp)
2754 goto opps1;
2755
2756 slabp->nodeid = nodeid;
2757 slab_map_pages(cachep, slabp, objp);
2758
2759 cache_init_objs(cachep, slabp, ctor_flags);
2760
2761 if (local_flags & __GFP_WAIT)
2762 local_irq_disable();
2763 check_irq_off();
2764 spin_lock(&l3->list_lock);
2765
2766 /* Make slab active. */
2767 list_add_tail(&slabp->list, &(l3->slabs_free));
2768 STATS_INC_GROWN(cachep);
2769 l3->free_objects += cachep->num;
2770 spin_unlock(&l3->list_lock);
2771 return 1;
2772 opps1:
2773 kmem_freepages(cachep, objp);
2774 failed:
2775 if (local_flags & __GFP_WAIT)
2776 local_irq_disable();
2777 return 0;
2778 }
2779
2780 #if DEBUG
2781
2782 /*
2783 * Perform extra freeing checks:
2784 * - detect bad pointers.
2785 * - POISON/RED_ZONE checking
2786 * - destructor calls, for caches with POISON+dtor
2787 */
2788 static void kfree_debugcheck(const void *objp)
2789 {
2790 struct page *page;
2791
2792 if (!virt_addr_valid(objp)) {
2793 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2794 (unsigned long)objp);
2795 BUG();
2796 }
2797 page = virt_to_page(objp);
2798 if (!PageSlab(page)) {
2799 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2800 (unsigned long)objp);
2801 BUG();
2802 }
2803 }
2804
2805 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2806 {
2807 unsigned long redzone1, redzone2;
2808
2809 redzone1 = *dbg_redzone1(cache, obj);
2810 redzone2 = *dbg_redzone2(cache, obj);
2811
2812 /*
2813 * Redzone is ok.
2814 */
2815 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2816 return;
2817
2818 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2819 slab_error(cache, "double free detected");
2820 else
2821 slab_error(cache, "memory outside object was overwritten");
2822
2823 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2824 obj, redzone1, redzone2);
2825 }
2826
2827 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2828 void *caller)
2829 {
2830 struct page *page;
2831 unsigned int objnr;
2832 struct slab *slabp;
2833
2834 objp -= obj_offset(cachep);
2835 kfree_debugcheck(objp);
2836 page = virt_to_page(objp);
2837
2838 slabp = page_get_slab(page);
2839
2840 if (cachep->flags & SLAB_RED_ZONE) {
2841 verify_redzone_free(cachep, objp);
2842 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2843 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2844 }
2845 if (cachep->flags & SLAB_STORE_USER)
2846 *dbg_userword(cachep, objp) = caller;
2847
2848 objnr = obj_to_index(cachep, slabp, objp);
2849
2850 BUG_ON(objnr >= cachep->num);
2851 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2852
2853 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2854 /*
2855 * Need to call the slab's constructor so the caller can
2856 * perform a verify of its state (debugging). Called without
2857 * the cache-lock held.
2858 */
2859 cachep->ctor(objp + obj_offset(cachep),
2860 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2861 }
2862 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2863 /* we want to cache poison the object,
2864 * call the destruction callback
2865 */
2866 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2867 }
2868 #ifdef CONFIG_DEBUG_SLAB_LEAK
2869 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2870 #endif
2871 if (cachep->flags & SLAB_POISON) {
2872 #ifdef CONFIG_DEBUG_PAGEALLOC
2873 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2874 store_stackinfo(cachep, objp, (unsigned long)caller);
2875 kernel_map_pages(virt_to_page(objp),
2876 cachep->buffer_size / PAGE_SIZE, 0);
2877 } else {
2878 poison_obj(cachep, objp, POISON_FREE);
2879 }
2880 #else
2881 poison_obj(cachep, objp, POISON_FREE);
2882 #endif
2883 }
2884 return objp;
2885 }
2886
2887 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2888 {
2889 kmem_bufctl_t i;
2890 int entries = 0;
2891
2892 /* Check slab's freelist to see if this obj is there. */
2893 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2894 entries++;
2895 if (entries > cachep->num || i >= cachep->num)
2896 goto bad;
2897 }
2898 if (entries != cachep->num - slabp->inuse) {
2899 bad:
2900 printk(KERN_ERR "slab: Internal list corruption detected in "
2901 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2902 cachep->name, cachep->num, slabp, slabp->inuse);
2903 for (i = 0;
2904 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2905 i++) {
2906 if (i % 16 == 0)
2907 printk("\n%03x:", i);
2908 printk(" %02x", ((unsigned char *)slabp)[i]);
2909 }
2910 printk("\n");
2911 BUG();
2912 }
2913 }
2914 #else
2915 #define kfree_debugcheck(x) do { } while(0)
2916 #define cache_free_debugcheck(x,objp,z) (objp)
2917 #define check_slabp(x,y) do { } while(0)
2918 #endif
2919
2920 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2921 {
2922 int batchcount;
2923 struct kmem_list3 *l3;
2924 struct array_cache *ac;
2925 int node;
2926
2927 node = numa_node_id();
2928
2929 check_irq_off();
2930 ac = cpu_cache_get(cachep);
2931 retry:
2932 batchcount = ac->batchcount;
2933 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2934 /*
2935 * If there was little recent activity on this cache, then
2936 * perform only a partial refill. Otherwise we could generate
2937 * refill bouncing.
2938 */
2939 batchcount = BATCHREFILL_LIMIT;
2940 }
2941 l3 = cachep->nodelists[node];
2942
2943 BUG_ON(ac->avail > 0 || !l3);
2944 spin_lock(&l3->list_lock);
2945
2946 /* See if we can refill from the shared array */
2947 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2948 goto alloc_done;
2949
2950 while (batchcount > 0) {
2951 struct list_head *entry;
2952 struct slab *slabp;
2953 /* Get slab alloc is to come from. */
2954 entry = l3->slabs_partial.next;
2955 if (entry == &l3->slabs_partial) {
2956 l3->free_touched = 1;
2957 entry = l3->slabs_free.next;
2958 if (entry == &l3->slabs_free)
2959 goto must_grow;
2960 }
2961
2962 slabp = list_entry(entry, struct slab, list);
2963 check_slabp(cachep, slabp);
2964 check_spinlock_acquired(cachep);
2965 while (slabp->inuse < cachep->num && batchcount--) {
2966 STATS_INC_ALLOCED(cachep);
2967 STATS_INC_ACTIVE(cachep);
2968 STATS_SET_HIGH(cachep);
2969
2970 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2971 node);
2972 }
2973 check_slabp(cachep, slabp);
2974
2975 /* move slabp to correct slabp list: */
2976 list_del(&slabp->list);
2977 if (slabp->free == BUFCTL_END)
2978 list_add(&slabp->list, &l3->slabs_full);
2979 else
2980 list_add(&slabp->list, &l3->slabs_partial);
2981 }
2982
2983 must_grow:
2984 l3->free_objects -= ac->avail;
2985 alloc_done:
2986 spin_unlock(&l3->list_lock);
2987
2988 if (unlikely(!ac->avail)) {
2989 int x;
2990 x = cache_grow(cachep, flags, node);
2991
2992 /* cache_grow can reenable interrupts, then ac could change. */
2993 ac = cpu_cache_get(cachep);
2994 if (!x && ac->avail == 0) /* no objects in sight? abort */
2995 return NULL;
2996
2997 if (!ac->avail) /* objects refilled by interrupt? */
2998 goto retry;
2999 }
3000 ac->touched = 1;
3001 return ac->entry[--ac->avail];
3002 }
3003
3004 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3005 gfp_t flags)
3006 {
3007 might_sleep_if(flags & __GFP_WAIT);
3008 #if DEBUG
3009 kmem_flagcheck(cachep, flags);
3010 #endif
3011 }
3012
3013 #if DEBUG
3014 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3015 gfp_t flags, void *objp, void *caller)
3016 {
3017 if (!objp)
3018 return objp;
3019 if (cachep->flags & SLAB_POISON) {
3020 #ifdef CONFIG_DEBUG_PAGEALLOC
3021 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3022 kernel_map_pages(virt_to_page(objp),
3023 cachep->buffer_size / PAGE_SIZE, 1);
3024 else
3025 check_poison_obj(cachep, objp);
3026 #else
3027 check_poison_obj(cachep, objp);
3028 #endif
3029 poison_obj(cachep, objp, POISON_INUSE);
3030 }
3031 if (cachep->flags & SLAB_STORE_USER)
3032 *dbg_userword(cachep, objp) = caller;
3033
3034 if (cachep->flags & SLAB_RED_ZONE) {
3035 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3036 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3037 slab_error(cachep, "double free, or memory outside"
3038 " object was overwritten");
3039 printk(KERN_ERR
3040 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3041 objp, *dbg_redzone1(cachep, objp),
3042 *dbg_redzone2(cachep, objp));
3043 }
3044 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3045 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3046 }
3047 #ifdef CONFIG_DEBUG_SLAB_LEAK
3048 {
3049 struct slab *slabp;
3050 unsigned objnr;
3051
3052 slabp = page_get_slab(virt_to_page(objp));
3053 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3054 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3055 }
3056 #endif
3057 objp += obj_offset(cachep);
3058 if (cachep->ctor && cachep->flags & SLAB_POISON) {
3059 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
3060
3061 if (!(flags & __GFP_WAIT))
3062 ctor_flags |= SLAB_CTOR_ATOMIC;
3063
3064 cachep->ctor(objp, cachep, ctor_flags);
3065 }
3066 return objp;
3067 }
3068 #else
3069 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3070 #endif
3071
3072 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3073 {
3074 void *objp;
3075 struct array_cache *ac;
3076
3077 check_irq_off();
3078 ac = cpu_cache_get(cachep);
3079 if (likely(ac->avail)) {
3080 STATS_INC_ALLOCHIT(cachep);
3081 ac->touched = 1;
3082 objp = ac->entry[--ac->avail];
3083 } else {
3084 STATS_INC_ALLOCMISS(cachep);
3085 objp = cache_alloc_refill(cachep, flags);
3086 }
3087 return objp;
3088 }
3089
3090 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3091 gfp_t flags, void *caller)
3092 {
3093 unsigned long save_flags;
3094 void *objp = NULL;
3095
3096 cache_alloc_debugcheck_before(cachep, flags);
3097
3098 local_irq_save(save_flags);
3099
3100 if (unlikely(NUMA_BUILD &&
3101 current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
3102 objp = alternate_node_alloc(cachep, flags);
3103
3104 if (!objp)
3105 objp = ____cache_alloc(cachep, flags);
3106 /*
3107 * We may just have run out of memory on the local node.
3108 * __cache_alloc_node() knows how to locate memory on other nodes
3109 */
3110 if (NUMA_BUILD && !objp)
3111 objp = __cache_alloc_node(cachep, flags, numa_node_id());
3112 local_irq_restore(save_flags);
3113 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3114 caller);
3115 prefetchw(objp);
3116 return objp;
3117 }
3118
3119 #ifdef CONFIG_NUMA
3120 /*
3121 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3122 *
3123 * If we are in_interrupt, then process context, including cpusets and
3124 * mempolicy, may not apply and should not be used for allocation policy.
3125 */
3126 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3127 {
3128 int nid_alloc, nid_here;
3129
3130 if (in_interrupt() || (flags & __GFP_THISNODE))
3131 return NULL;
3132 nid_alloc = nid_here = numa_node_id();
3133 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3134 nid_alloc = cpuset_mem_spread_node();
3135 else if (current->mempolicy)
3136 nid_alloc = slab_node(current->mempolicy);
3137 if (nid_alloc != nid_here)
3138 return __cache_alloc_node(cachep, flags, nid_alloc);
3139 return NULL;
3140 }
3141
3142 /*
3143 * Fallback function if there was no memory available and no objects on a
3144 * certain node and we are allowed to fall back. We mimick the behavior of
3145 * the page allocator. We fall back according to a zonelist determined by
3146 * the policy layer while obeying cpuset constraints.
3147 */
3148 void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3149 {
3150 struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3151 ->node_zonelists[gfp_zone(flags)];
3152 struct zone **z;
3153 void *obj = NULL;
3154
3155 for (z = zonelist->zones; *z && !obj; z++) {
3156 int nid = zone_to_nid(*z);
3157
3158 if (zone_idx(*z) <= ZONE_NORMAL &&
3159 cpuset_zone_allowed(*z, flags) &&
3160 cache->nodelists[nid])
3161 obj = __cache_alloc_node(cache,
3162 flags | __GFP_THISNODE, nid);
3163 }
3164 return obj;
3165 }
3166
3167 /*
3168 * A interface to enable slab creation on nodeid
3169 */
3170 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3171 int nodeid)
3172 {
3173 struct list_head *entry;
3174 struct slab *slabp;
3175 struct kmem_list3 *l3;
3176 void *obj;
3177 int x;
3178
3179 l3 = cachep->nodelists[nodeid];
3180 BUG_ON(!l3);
3181
3182 retry:
3183 check_irq_off();
3184 spin_lock(&l3->list_lock);
3185 entry = l3->slabs_partial.next;
3186 if (entry == &l3->slabs_partial) {
3187 l3->free_touched = 1;
3188 entry = l3->slabs_free.next;
3189 if (entry == &l3->slabs_free)
3190 goto must_grow;
3191 }
3192
3193 slabp = list_entry(entry, struct slab, list);
3194 check_spinlock_acquired_node(cachep, nodeid);
3195 check_slabp(cachep, slabp);
3196
3197 STATS_INC_NODEALLOCS(cachep);
3198 STATS_INC_ACTIVE(cachep);
3199 STATS_SET_HIGH(cachep);
3200
3201 BUG_ON(slabp->inuse == cachep->num);
3202
3203 obj = slab_get_obj(cachep, slabp, nodeid);
3204 check_slabp(cachep, slabp);
3205 l3->free_objects--;
3206 /* move slabp to correct slabp list: */
3207 list_del(&slabp->list);
3208
3209 if (slabp->free == BUFCTL_END)
3210 list_add(&slabp->list, &l3->slabs_full);
3211 else
3212 list_add(&slabp->list, &l3->slabs_partial);
3213
3214 spin_unlock(&l3->list_lock);
3215 goto done;
3216
3217 must_grow:
3218 spin_unlock(&l3->list_lock);
3219 x = cache_grow(cachep, flags, nodeid);
3220 if (x)
3221 goto retry;
3222
3223 if (!(flags & __GFP_THISNODE))
3224 /* Unable to grow the cache. Fall back to other nodes. */
3225 return fallback_alloc(cachep, flags);
3226
3227 return NULL;
3228
3229 done:
3230 return obj;
3231 }
3232 #endif
3233
3234 /*
3235 * Caller needs to acquire correct kmem_list's list_lock
3236 */
3237 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3238 int node)
3239 {
3240 int i;
3241 struct kmem_list3 *l3;
3242
3243 for (i = 0; i < nr_objects; i++) {
3244 void *objp = objpp[i];
3245 struct slab *slabp;
3246
3247 slabp = virt_to_slab(objp);
3248 l3 = cachep->nodelists[node];
3249 list_del(&slabp->list);
3250 check_spinlock_acquired_node(cachep, node);
3251 check_slabp(cachep, slabp);
3252 slab_put_obj(cachep, slabp, objp, node);
3253 STATS_DEC_ACTIVE(cachep);
3254 l3->free_objects++;
3255 check_slabp(cachep, slabp);
3256
3257 /* fixup slab chains */
3258 if (slabp->inuse == 0) {
3259 if (l3->free_objects > l3->free_limit) {
3260 l3->free_objects -= cachep->num;
3261 /* No need to drop any previously held
3262 * lock here, even if we have a off-slab slab
3263 * descriptor it is guaranteed to come from
3264 * a different cache, refer to comments before
3265 * alloc_slabmgmt.
3266 */
3267 slab_destroy(cachep, slabp);
3268 } else {
3269 list_add(&slabp->list, &l3->slabs_free);
3270 }
3271 } else {
3272 /* Unconditionally move a slab to the end of the
3273 * partial list on free - maximum time for the
3274 * other objects to be freed, too.
3275 */
3276 list_add_tail(&slabp->list, &l3->slabs_partial);
3277 }
3278 }
3279 }
3280
3281 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3282 {
3283 int batchcount;
3284 struct kmem_list3 *l3;
3285 int node = numa_node_id();
3286
3287 batchcount = ac->batchcount;
3288 #if DEBUG
3289 BUG_ON(!batchcount || batchcount > ac->avail);
3290 #endif
3291 check_irq_off();
3292 l3 = cachep->nodelists[node];
3293 spin_lock(&l3->list_lock);
3294 if (l3->shared) {
3295 struct array_cache *shared_array = l3->shared;
3296 int max = shared_array->limit - shared_array->avail;
3297 if (max) {
3298 if (batchcount > max)
3299 batchcount = max;
3300 memcpy(&(shared_array->entry[shared_array->avail]),
3301 ac->entry, sizeof(void *) * batchcount);
3302 shared_array->avail += batchcount;
3303 goto free_done;
3304 }
3305 }
3306
3307 free_block(cachep, ac->entry, batchcount, node);
3308 free_done:
3309 #if STATS
3310 {
3311 int i = 0;
3312 struct list_head *p;
3313
3314 p = l3->slabs_free.next;
3315 while (p != &(l3->slabs_free)) {
3316 struct slab *slabp;
3317
3318 slabp = list_entry(p, struct slab, list);
3319 BUG_ON(slabp->inuse);
3320
3321 i++;
3322 p = p->next;
3323 }
3324 STATS_SET_FREEABLE(cachep, i);
3325 }
3326 #endif
3327 spin_unlock(&l3->list_lock);
3328 ac->avail -= batchcount;
3329 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3330 }
3331
3332 /*
3333 * Release an obj back to its cache. If the obj has a constructed state, it must
3334 * be in this state _before_ it is released. Called with disabled ints.
3335 */
3336 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3337 {
3338 struct array_cache *ac = cpu_cache_get(cachep);
3339
3340 check_irq_off();
3341 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3342
3343 if (cache_free_alien(cachep, objp))
3344 return;
3345
3346 if (likely(ac->avail < ac->limit)) {
3347 STATS_INC_FREEHIT(cachep);
3348 ac->entry[ac->avail++] = objp;
3349 return;
3350 } else {
3351 STATS_INC_FREEMISS(cachep);
3352 cache_flusharray(cachep, ac);
3353 ac->entry[ac->avail++] = objp;
3354 }
3355 }
3356
3357 /**
3358 * kmem_cache_alloc - Allocate an object
3359 * @cachep: The cache to allocate from.
3360 * @flags: See kmalloc().
3361 *
3362 * Allocate an object from this cache. The flags are only relevant
3363 * if the cache has no available objects.
3364 */
3365 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3366 {
3367 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3368 }
3369 EXPORT_SYMBOL(kmem_cache_alloc);
3370
3371 /**
3372 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3373 * @cache: The cache to allocate from.
3374 * @flags: See kmalloc().
3375 *
3376 * Allocate an object from this cache and set the allocated memory to zero.
3377 * The flags are only relevant if the cache has no available objects.
3378 */
3379 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3380 {
3381 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3382 if (ret)
3383 memset(ret, 0, obj_size(cache));
3384 return ret;
3385 }
3386 EXPORT_SYMBOL(kmem_cache_zalloc);
3387
3388 /**
3389 * kmem_ptr_validate - check if an untrusted pointer might
3390 * be a slab entry.
3391 * @cachep: the cache we're checking against
3392 * @ptr: pointer to validate
3393 *
3394 * This verifies that the untrusted pointer looks sane:
3395 * it is _not_ a guarantee that the pointer is actually
3396 * part of the slab cache in question, but it at least
3397 * validates that the pointer can be dereferenced and
3398 * looks half-way sane.
3399 *
3400 * Currently only used for dentry validation.
3401 */
3402 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3403 {
3404 unsigned long addr = (unsigned long)ptr;
3405 unsigned long min_addr = PAGE_OFFSET;
3406 unsigned long align_mask = BYTES_PER_WORD - 1;
3407 unsigned long size = cachep->buffer_size;
3408 struct page *page;
3409
3410 if (unlikely(addr < min_addr))
3411 goto out;
3412 if (unlikely(addr > (unsigned long)high_memory - size))
3413 goto out;
3414 if (unlikely(addr & align_mask))
3415 goto out;
3416 if (unlikely(!kern_addr_valid(addr)))
3417 goto out;
3418 if (unlikely(!kern_addr_valid(addr + size - 1)))
3419 goto out;
3420 page = virt_to_page(ptr);
3421 if (unlikely(!PageSlab(page)))
3422 goto out;
3423 if (unlikely(page_get_cache(page) != cachep))
3424 goto out;
3425 return 1;
3426 out:
3427 return 0;
3428 }
3429
3430 #ifdef CONFIG_NUMA
3431 /**
3432 * kmem_cache_alloc_node - Allocate an object on the specified node
3433 * @cachep: The cache to allocate from.
3434 * @flags: See kmalloc().
3435 * @nodeid: node number of the target node.
3436 *
3437 * Identical to kmem_cache_alloc, except that this function is slow
3438 * and can sleep. And it will allocate memory on the given node, which
3439 * can improve the performance for cpu bound structures.
3440 * New and improved: it will now make sure that the object gets
3441 * put on the correct node list so that there is no false sharing.
3442 */
3443 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3444 {
3445 unsigned long save_flags;
3446 void *ptr;
3447
3448 cache_alloc_debugcheck_before(cachep, flags);
3449 local_irq_save(save_flags);
3450
3451 if (nodeid == -1 || nodeid == numa_node_id() ||
3452 !cachep->nodelists[nodeid])
3453 ptr = ____cache_alloc(cachep, flags);
3454 else
3455 ptr = __cache_alloc_node(cachep, flags, nodeid);
3456 local_irq_restore(save_flags);
3457
3458 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3459 __builtin_return_address(0));
3460
3461 return ptr;
3462 }
3463 EXPORT_SYMBOL(kmem_cache_alloc_node);
3464
3465 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3466 {
3467 struct kmem_cache *cachep;
3468
3469 cachep = kmem_find_general_cachep(size, flags);
3470 if (unlikely(cachep == NULL))
3471 return NULL;
3472 return kmem_cache_alloc_node(cachep, flags, node);
3473 }
3474 EXPORT_SYMBOL(__kmalloc_node);
3475 #endif
3476
3477 /**
3478 * __do_kmalloc - allocate memory
3479 * @size: how many bytes of memory are required.
3480 * @flags: the type of memory to allocate (see kmalloc).
3481 * @caller: function caller for debug tracking of the caller
3482 */
3483 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3484 void *caller)
3485 {
3486 struct kmem_cache *cachep;
3487
3488 /* If you want to save a few bytes .text space: replace
3489 * __ with kmem_.
3490 * Then kmalloc uses the uninlined functions instead of the inline
3491 * functions.
3492 */
3493 cachep = __find_general_cachep(size, flags);
3494 if (unlikely(cachep == NULL))
3495 return NULL;
3496 return __cache_alloc(cachep, flags, caller);
3497 }
3498
3499
3500 #ifdef CONFIG_DEBUG_SLAB
3501 void *__kmalloc(size_t size, gfp_t flags)
3502 {
3503 return __do_kmalloc(size, flags, __builtin_return_address(0));
3504 }
3505 EXPORT_SYMBOL(__kmalloc);
3506
3507 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3508 {
3509 return __do_kmalloc(size, flags, caller);
3510 }
3511 EXPORT_SYMBOL(__kmalloc_track_caller);
3512
3513 #else
3514 void *__kmalloc(size_t size, gfp_t flags)
3515 {
3516 return __do_kmalloc(size, flags, NULL);
3517 }
3518 EXPORT_SYMBOL(__kmalloc);
3519 #endif
3520
3521 /**
3522 * kmem_cache_free - Deallocate an object
3523 * @cachep: The cache the allocation was from.
3524 * @objp: The previously allocated object.
3525 *
3526 * Free an object which was previously allocated from this
3527 * cache.
3528 */
3529 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3530 {
3531 unsigned long flags;
3532
3533 BUG_ON(virt_to_cache(objp) != cachep);
3534
3535 local_irq_save(flags);
3536 __cache_free(cachep, objp);
3537 local_irq_restore(flags);
3538 }
3539 EXPORT_SYMBOL(kmem_cache_free);
3540
3541 /**
3542 * kfree - free previously allocated memory
3543 * @objp: pointer returned by kmalloc.
3544 *
3545 * If @objp is NULL, no operation is performed.
3546 *
3547 * Don't free memory not originally allocated by kmalloc()
3548 * or you will run into trouble.
3549 */
3550 void kfree(const void *objp)
3551 {
3552 struct kmem_cache *c;
3553 unsigned long flags;
3554
3555 if (unlikely(!objp))
3556 return;
3557 local_irq_save(flags);
3558 kfree_debugcheck(objp);
3559 c = virt_to_cache(objp);
3560 debug_check_no_locks_freed(objp, obj_size(c));
3561 __cache_free(c, (void *)objp);
3562 local_irq_restore(flags);
3563 }
3564 EXPORT_SYMBOL(kfree);
3565
3566 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3567 {
3568 return obj_size(cachep);
3569 }
3570 EXPORT_SYMBOL(kmem_cache_size);
3571
3572 const char *kmem_cache_name(struct kmem_cache *cachep)
3573 {
3574 return cachep->name;
3575 }
3576 EXPORT_SYMBOL_GPL(kmem_cache_name);
3577
3578 /*
3579 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3580 */
3581 static int alloc_kmemlist(struct kmem_cache *cachep)
3582 {
3583 int node;
3584 struct kmem_list3 *l3;
3585 struct array_cache *new_shared;
3586 struct array_cache **new_alien;
3587
3588 for_each_online_node(node) {
3589
3590 new_alien = alloc_alien_cache(node, cachep->limit);
3591 if (!new_alien)
3592 goto fail;
3593
3594 new_shared = alloc_arraycache(node,
3595 cachep->shared*cachep->batchcount,
3596 0xbaadf00d);
3597 if (!new_shared) {
3598 free_alien_cache(new_alien);
3599 goto fail;
3600 }
3601
3602 l3 = cachep->nodelists[node];
3603 if (l3) {
3604 struct array_cache *shared = l3->shared;
3605
3606 spin_lock_irq(&l3->list_lock);
3607
3608 if (shared)
3609 free_block(cachep, shared->entry,
3610 shared->avail, node);
3611
3612 l3->shared = new_shared;
3613 if (!l3->alien) {
3614 l3->alien = new_alien;
3615 new_alien = NULL;
3616 }
3617 l3->free_limit = (1 + nr_cpus_node(node)) *
3618 cachep->batchcount + cachep->num;
3619 spin_unlock_irq(&l3->list_lock);
3620 kfree(shared);
3621 free_alien_cache(new_alien);
3622 continue;
3623 }
3624 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3625 if (!l3) {
3626 free_alien_cache(new_alien);
3627 kfree(new_shared);
3628 goto fail;
3629 }
3630
3631 kmem_list3_init(l3);
3632 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3633 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3634 l3->shared = new_shared;
3635 l3->alien = new_alien;
3636 l3->free_limit = (1 + nr_cpus_node(node)) *
3637 cachep->batchcount + cachep->num;
3638 cachep->nodelists[node] = l3;
3639 }
3640 return 0;
3641
3642 fail:
3643 if (!cachep->next.next) {
3644 /* Cache is not active yet. Roll back what we did */
3645 node--;
3646 while (node >= 0) {
3647 if (cachep->nodelists[node]) {
3648 l3 = cachep->nodelists[node];
3649
3650 kfree(l3->shared);
3651 free_alien_cache(l3->alien);
3652 kfree(l3);
3653 cachep->nodelists[node] = NULL;
3654 }
3655 node--;
3656 }
3657 }
3658 return -ENOMEM;
3659 }
3660
3661 struct ccupdate_struct {
3662 struct kmem_cache *cachep;
3663 struct array_cache *new[NR_CPUS];
3664 };
3665
3666 static void do_ccupdate_local(void *info)
3667 {
3668 struct ccupdate_struct *new = info;
3669 struct array_cache *old;
3670
3671 check_irq_off();
3672 old = cpu_cache_get(new->cachep);
3673
3674 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3675 new->new[smp_processor_id()] = old;
3676 }
3677
3678 /* Always called with the cache_chain_mutex held */
3679 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3680 int batchcount, int shared)
3681 {
3682 struct ccupdate_struct *new;
3683 int i;
3684
3685 new = kzalloc(sizeof(*new), GFP_KERNEL);
3686 if (!new)
3687 return -ENOMEM;
3688
3689 for_each_online_cpu(i) {
3690 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3691 batchcount);
3692 if (!new->new[i]) {
3693 for (i--; i >= 0; i--)
3694 kfree(new->new[i]);
3695 kfree(new);
3696 return -ENOMEM;
3697 }
3698 }
3699 new->cachep = cachep;
3700
3701 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3702
3703 check_irq_on();
3704 cachep->batchcount = batchcount;
3705 cachep->limit = limit;
3706 cachep->shared = shared;
3707
3708 for_each_online_cpu(i) {
3709 struct array_cache *ccold = new->new[i];
3710 if (!ccold)
3711 continue;
3712 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3713 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3714 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3715 kfree(ccold);
3716 }
3717 kfree(new);
3718 return alloc_kmemlist(cachep);
3719 }
3720
3721 /* Called with cache_chain_mutex held always */
3722 static int enable_cpucache(struct kmem_cache *cachep)
3723 {
3724 int err;
3725 int limit, shared;
3726
3727 /*
3728 * The head array serves three purposes:
3729 * - create a LIFO ordering, i.e. return objects that are cache-warm
3730 * - reduce the number of spinlock operations.
3731 * - reduce the number of linked list operations on the slab and
3732 * bufctl chains: array operations are cheaper.
3733 * The numbers are guessed, we should auto-tune as described by
3734 * Bonwick.
3735 */
3736 if (cachep->buffer_size > 131072)
3737 limit = 1;
3738 else if (cachep->buffer_size > PAGE_SIZE)
3739 limit = 8;
3740 else if (cachep->buffer_size > 1024)
3741 limit = 24;
3742 else if (cachep->buffer_size > 256)
3743 limit = 54;
3744 else
3745 limit = 120;
3746
3747 /*
3748 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3749 * allocation behaviour: Most allocs on one cpu, most free operations
3750 * on another cpu. For these cases, an efficient object passing between
3751 * cpus is necessary. This is provided by a shared array. The array
3752 * replaces Bonwick's magazine layer.
3753 * On uniprocessor, it's functionally equivalent (but less efficient)
3754 * to a larger limit. Thus disabled by default.
3755 */
3756 shared = 0;
3757 #ifdef CONFIG_SMP
3758 if (cachep->buffer_size <= PAGE_SIZE)
3759 shared = 8;
3760 #endif
3761
3762 #if DEBUG
3763 /*
3764 * With debugging enabled, large batchcount lead to excessively long
3765 * periods with disabled local interrupts. Limit the batchcount
3766 */
3767 if (limit > 32)
3768 limit = 32;
3769 #endif
3770 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3771 if (err)
3772 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3773 cachep->name, -err);
3774 return err;
3775 }
3776
3777 /*
3778 * Drain an array if it contains any elements taking the l3 lock only if
3779 * necessary. Note that the l3 listlock also protects the array_cache
3780 * if drain_array() is used on the shared array.
3781 */
3782 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3783 struct array_cache *ac, int force, int node)
3784 {
3785 int tofree;
3786
3787 if (!ac || !ac->avail)
3788 return;
3789 if (ac->touched && !force) {
3790 ac->touched = 0;
3791 } else {
3792 spin_lock_irq(&l3->list_lock);
3793 if (ac->avail) {
3794 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3795 if (tofree > ac->avail)
3796 tofree = (ac->avail + 1) / 2;
3797 free_block(cachep, ac->entry, tofree, node);
3798 ac->avail -= tofree;
3799 memmove(ac->entry, &(ac->entry[tofree]),
3800 sizeof(void *) * ac->avail);
3801 }
3802 spin_unlock_irq(&l3->list_lock);
3803 }
3804 }
3805
3806 /**
3807 * cache_reap - Reclaim memory from caches.
3808 * @unused: unused parameter
3809 *
3810 * Called from workqueue/eventd every few seconds.
3811 * Purpose:
3812 * - clear the per-cpu caches for this CPU.
3813 * - return freeable pages to the main free memory pool.
3814 *
3815 * If we cannot acquire the cache chain mutex then just give up - we'll try
3816 * again on the next iteration.
3817 */
3818 static void cache_reap(struct work_struct *unused)
3819 {
3820 struct kmem_cache *searchp;
3821 struct kmem_list3 *l3;
3822 int node = numa_node_id();
3823
3824 if (!mutex_trylock(&cache_chain_mutex)) {
3825 /* Give up. Setup the next iteration. */
3826 schedule_delayed_work(&__get_cpu_var(reap_work),
3827 REAPTIMEOUT_CPUC);
3828 return;
3829 }
3830
3831 list_for_each_entry(searchp, &cache_chain, next) {
3832 check_irq_on();
3833
3834 /*
3835 * We only take the l3 lock if absolutely necessary and we
3836 * have established with reasonable certainty that
3837 * we can do some work if the lock was obtained.
3838 */
3839 l3 = searchp->nodelists[node];
3840
3841 reap_alien(searchp, l3);
3842
3843 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3844
3845 /*
3846 * These are racy checks but it does not matter
3847 * if we skip one check or scan twice.
3848 */
3849 if (time_after(l3->next_reap, jiffies))
3850 goto next;
3851
3852 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3853
3854 drain_array(searchp, l3, l3->shared, 0, node);
3855
3856 if (l3->free_touched)
3857 l3->free_touched = 0;
3858 else {
3859 int freed;
3860
3861 freed = drain_freelist(searchp, l3, (l3->free_limit +
3862 5 * searchp->num - 1) / (5 * searchp->num));
3863 STATS_ADD_REAPED(searchp, freed);
3864 }
3865 next:
3866 cond_resched();
3867 }
3868 check_irq_on();
3869 mutex_unlock(&cache_chain_mutex);
3870 next_reap_node();
3871 refresh_cpu_vm_stats(smp_processor_id());
3872 /* Set up the next iteration */
3873 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3874 }
3875
3876 #ifdef CONFIG_PROC_FS
3877
3878 static void print_slabinfo_header(struct seq_file *m)
3879 {
3880 /*
3881 * Output format version, so at least we can change it
3882 * without _too_ many complaints.
3883 */
3884 #if STATS
3885 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3886 #else
3887 seq_puts(m, "slabinfo - version: 2.1\n");
3888 #endif
3889 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3890 "<objperslab> <pagesperslab>");
3891 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3892 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3893 #if STATS
3894 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3895 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3896 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3897 #endif
3898 seq_putc(m, '\n');
3899 }
3900
3901 static void *s_start(struct seq_file *m, loff_t *pos)
3902 {
3903 loff_t n = *pos;
3904 struct list_head *p;
3905
3906 mutex_lock(&cache_chain_mutex);
3907 if (!n)
3908 print_slabinfo_header(m);
3909 p = cache_chain.next;
3910 while (n--) {
3911 p = p->next;
3912 if (p == &cache_chain)
3913 return NULL;
3914 }
3915 return list_entry(p, struct kmem_cache, next);
3916 }
3917
3918 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3919 {
3920 struct kmem_cache *cachep = p;
3921 ++*pos;
3922 return cachep->next.next == &cache_chain ?
3923 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3924 }
3925
3926 static void s_stop(struct seq_file *m, void *p)
3927 {
3928 mutex_unlock(&cache_chain_mutex);
3929 }
3930
3931 static int s_show(struct seq_file *m, void *p)
3932 {
3933 struct kmem_cache *cachep = p;
3934 struct slab *slabp;
3935 unsigned long active_objs;
3936 unsigned long num_objs;
3937 unsigned long active_slabs = 0;
3938 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3939 const char *name;
3940 char *error = NULL;
3941 int node;
3942 struct kmem_list3 *l3;
3943
3944 active_objs = 0;
3945 num_slabs = 0;
3946 for_each_online_node(node) {
3947 l3 = cachep->nodelists[node];
3948 if (!l3)
3949 continue;
3950
3951 check_irq_on();
3952 spin_lock_irq(&l3->list_lock);
3953
3954 list_for_each_entry(slabp, &l3->slabs_full, list) {
3955 if (slabp->inuse != cachep->num && !error)
3956 error = "slabs_full accounting error";
3957 active_objs += cachep->num;
3958 active_slabs++;
3959 }
3960 list_for_each_entry(slabp, &l3->slabs_partial, list) {
3961 if (slabp->inuse == cachep->num && !error)
3962 error = "slabs_partial inuse accounting error";
3963 if (!slabp->inuse && !error)
3964 error = "slabs_partial/inuse accounting error";
3965 active_objs += slabp->inuse;
3966 active_slabs++;
3967 }
3968 list_for_each_entry(slabp, &l3->slabs_free, list) {
3969 if (slabp->inuse && !error)
3970 error = "slabs_free/inuse accounting error";
3971 num_slabs++;
3972 }
3973 free_objects += l3->free_objects;
3974 if (l3->shared)
3975 shared_avail += l3->shared->avail;
3976
3977 spin_unlock_irq(&l3->list_lock);
3978 }
3979 num_slabs += active_slabs;
3980 num_objs = num_slabs * cachep->num;
3981 if (num_objs - active_objs != free_objects && !error)
3982 error = "free_objects accounting error";
3983
3984 name = cachep->name;
3985 if (error)
3986 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3987
3988 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3989 name, active_objs, num_objs, cachep->buffer_size,
3990 cachep->num, (1 << cachep->gfporder));
3991 seq_printf(m, " : tunables %4u %4u %4u",
3992 cachep->limit, cachep->batchcount, cachep->shared);
3993 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3994 active_slabs, num_slabs, shared_avail);
3995 #if STATS
3996 { /* list3 stats */
3997 unsigned long high = cachep->high_mark;
3998 unsigned long allocs = cachep->num_allocations;
3999 unsigned long grown = cachep->grown;
4000 unsigned long reaped = cachep->reaped;
4001 unsigned long errors = cachep->errors;
4002 unsigned long max_freeable = cachep->max_freeable;
4003 unsigned long node_allocs = cachep->node_allocs;
4004 unsigned long node_frees = cachep->node_frees;
4005 unsigned long overflows = cachep->node_overflow;
4006
4007 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4008 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4009 reaped, errors, max_freeable, node_allocs,
4010 node_frees, overflows);
4011 }
4012 /* cpu stats */
4013 {
4014 unsigned long allochit = atomic_read(&cachep->allochit);
4015 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4016 unsigned long freehit = atomic_read(&cachep->freehit);
4017 unsigned long freemiss = atomic_read(&cachep->freemiss);
4018
4019 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4020 allochit, allocmiss, freehit, freemiss);
4021 }
4022 #endif
4023 seq_putc(m, '\n');
4024 return 0;
4025 }
4026
4027 /*
4028 * slabinfo_op - iterator that generates /proc/slabinfo
4029 *
4030 * Output layout:
4031 * cache-name
4032 * num-active-objs
4033 * total-objs
4034 * object size
4035 * num-active-slabs
4036 * total-slabs
4037 * num-pages-per-slab
4038 * + further values on SMP and with statistics enabled
4039 */
4040
4041 struct seq_operations slabinfo_op = {
4042 .start = s_start,
4043 .next = s_next,
4044 .stop = s_stop,
4045 .show = s_show,
4046 };
4047
4048 #define MAX_SLABINFO_WRITE 128
4049 /**
4050 * slabinfo_write - Tuning for the slab allocator
4051 * @file: unused
4052 * @buffer: user buffer
4053 * @count: data length
4054 * @ppos: unused
4055 */
4056 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4057 size_t count, loff_t *ppos)
4058 {
4059 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4060 int limit, batchcount, shared, res;
4061 struct kmem_cache *cachep;
4062
4063 if (count > MAX_SLABINFO_WRITE)
4064 return -EINVAL;
4065 if (copy_from_user(&kbuf, buffer, count))
4066 return -EFAULT;
4067 kbuf[MAX_SLABINFO_WRITE] = '\0';
4068
4069 tmp = strchr(kbuf, ' ');
4070 if (!tmp)
4071 return -EINVAL;
4072 *tmp = '\0';
4073 tmp++;
4074 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4075 return -EINVAL;
4076
4077 /* Find the cache in the chain of caches. */
4078 mutex_lock(&cache_chain_mutex);
4079 res = -EINVAL;
4080 list_for_each_entry(cachep, &cache_chain, next) {
4081 if (!strcmp(cachep->name, kbuf)) {
4082 if (limit < 1 || batchcount < 1 ||
4083 batchcount > limit || shared < 0) {
4084 res = 0;
4085 } else {
4086 res = do_tune_cpucache(cachep, limit,
4087 batchcount, shared);
4088 }
4089 break;
4090 }
4091 }
4092 mutex_unlock(&cache_chain_mutex);
4093 if (res >= 0)
4094 res = count;
4095 return res;
4096 }
4097
4098 #ifdef CONFIG_DEBUG_SLAB_LEAK
4099
4100 static void *leaks_start(struct seq_file *m, loff_t *pos)
4101 {
4102 loff_t n = *pos;
4103 struct list_head *p;
4104
4105 mutex_lock(&cache_chain_mutex);
4106 p = cache_chain.next;
4107 while (n--) {
4108 p = p->next;
4109 if (p == &cache_chain)
4110 return NULL;
4111 }
4112 return list_entry(p, struct kmem_cache, next);
4113 }
4114
4115 static inline int add_caller(unsigned long *n, unsigned long v)
4116 {
4117 unsigned long *p;
4118 int l;
4119 if (!v)
4120 return 1;
4121 l = n[1];
4122 p = n + 2;
4123 while (l) {
4124 int i = l/2;
4125 unsigned long *q = p + 2 * i;
4126 if (*q == v) {
4127 q[1]++;
4128 return 1;
4129 }
4130 if (*q > v) {
4131 l = i;
4132 } else {
4133 p = q + 2;
4134 l -= i + 1;
4135 }
4136 }
4137 if (++n[1] == n[0])
4138 return 0;
4139 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4140 p[0] = v;
4141 p[1] = 1;
4142 return 1;
4143 }
4144
4145 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4146 {
4147 void *p;
4148 int i;
4149 if (n[0] == n[1])
4150 return;
4151 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4152 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4153 continue;
4154 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4155 return;
4156 }
4157 }
4158
4159 static void show_symbol(struct seq_file *m, unsigned long address)
4160 {
4161 #ifdef CONFIG_KALLSYMS
4162 char *modname;
4163 const char *name;
4164 unsigned long offset, size;
4165 char namebuf[KSYM_NAME_LEN+1];
4166
4167 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4168
4169 if (name) {
4170 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4171 if (modname)
4172 seq_printf(m, " [%s]", modname);
4173 return;
4174 }
4175 #endif
4176 seq_printf(m, "%p", (void *)address);
4177 }
4178
4179 static int leaks_show(struct seq_file *m, void *p)
4180 {
4181 struct kmem_cache *cachep = p;
4182 struct slab *slabp;
4183 struct kmem_list3 *l3;
4184 const char *name;
4185 unsigned long *n = m->private;
4186 int node;
4187 int i;
4188
4189 if (!(cachep->flags & SLAB_STORE_USER))
4190 return 0;
4191 if (!(cachep->flags & SLAB_RED_ZONE))
4192 return 0;
4193
4194 /* OK, we can do it */
4195
4196 n[1] = 0;
4197
4198 for_each_online_node(node) {
4199 l3 = cachep->nodelists[node];
4200 if (!l3)
4201 continue;
4202
4203 check_irq_on();
4204 spin_lock_irq(&l3->list_lock);
4205
4206 list_for_each_entry(slabp, &l3->slabs_full, list)
4207 handle_slab(n, cachep, slabp);
4208 list_for_each_entry(slabp, &l3->slabs_partial, list)
4209 handle_slab(n, cachep, slabp);
4210 spin_unlock_irq(&l3->list_lock);
4211 }
4212 name = cachep->name;
4213 if (n[0] == n[1]) {
4214 /* Increase the buffer size */
4215 mutex_unlock(&cache_chain_mutex);
4216 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4217 if (!m->private) {
4218 /* Too bad, we are really out */
4219 m->private = n;
4220 mutex_lock(&cache_chain_mutex);
4221 return -ENOMEM;
4222 }
4223 *(unsigned long *)m->private = n[0] * 2;
4224 kfree(n);
4225 mutex_lock(&cache_chain_mutex);
4226 /* Now make sure this entry will be retried */
4227 m->count = m->size;
4228 return 0;
4229 }
4230 for (i = 0; i < n[1]; i++) {
4231 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4232 show_symbol(m, n[2*i+2]);
4233 seq_putc(m, '\n');
4234 }
4235
4236 return 0;
4237 }
4238
4239 struct seq_operations slabstats_op = {
4240 .start = leaks_start,
4241 .next = s_next,
4242 .stop = s_stop,
4243 .show = leaks_show,
4244 };
4245 #endif
4246 #endif
4247
4248 /**
4249 * ksize - get the actual amount of memory allocated for a given object
4250 * @objp: Pointer to the object
4251 *
4252 * kmalloc may internally round up allocations and return more memory
4253 * than requested. ksize() can be used to determine the actual amount of
4254 * memory allocated. The caller may use this additional memory, even though
4255 * a smaller amount of memory was initially specified with the kmalloc call.
4256 * The caller must guarantee that objp points to a valid object previously
4257 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4258 * must not be freed during the duration of the call.
4259 */
4260 unsigned int ksize(const void *objp)
4261 {
4262 if (unlikely(objp == NULL))
4263 return 0;
4264
4265 return obj_size(virt_to_cache(objp));
4266 }