]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slab.c
net: ethernet: renesas: sh_eth: don't open code of_device_get_match_data()
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175 static bool pfmemalloc_active __read_mostly;
176
177 /*
178 * struct array_cache
179 *
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189 struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 void *entry[]; /*
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 */
203 };
204
205 struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208 };
209
210 #define SLAB_OBJ_PFMEMALLOC 1
211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215
216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220 }
221
222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226
227 /*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
230 */
231 #define BOOT_CPUCACHE_ENTRIES 1
232 struct arraycache_init {
233 struct array_cache cache;
234 void *entries[BOOT_CPUCACHE_ENTRIES];
235 };
236
237 /*
238 * Need this for bootstrapping a per node allocator.
239 */
240 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define CACHE_CACHE 0
243 #define SIZE_NODE (MAX_NUMNODES)
244
245 static int drain_freelist(struct kmem_cache *cache,
246 struct kmem_cache_node *n, int tofree);
247 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 int node, struct list_head *list);
249 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251 static void cache_reap(struct work_struct *unused);
252
253 static int slab_early_init = 1;
254
255 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
256
257 static void kmem_cache_node_init(struct kmem_cache_node *parent)
258 {
259 INIT_LIST_HEAD(&parent->slabs_full);
260 INIT_LIST_HEAD(&parent->slabs_partial);
261 INIT_LIST_HEAD(&parent->slabs_free);
262 parent->shared = NULL;
263 parent->alien = NULL;
264 parent->colour_next = 0;
265 spin_lock_init(&parent->list_lock);
266 parent->free_objects = 0;
267 parent->free_touched = 0;
268 }
269
270 #define MAKE_LIST(cachep, listp, slab, nodeid) \
271 do { \
272 INIT_LIST_HEAD(listp); \
273 list_splice(&get_node(cachep, nodeid)->slab, listp); \
274 } while (0)
275
276 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
277 do { \
278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
281 } while (0)
282
283 #define CFLGS_OFF_SLAB (0x80000000UL)
284 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
285 #define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
286
287 #define BATCHREFILL_LIMIT 16
288 /*
289 * Optimization question: fewer reaps means less probability for unnessary
290 * cpucache drain/refill cycles.
291 *
292 * OTOH the cpuarrays can contain lots of objects,
293 * which could lock up otherwise freeable slabs.
294 */
295 #define REAPTIMEOUT_AC (2*HZ)
296 #define REAPTIMEOUT_NODE (4*HZ)
297
298 #if STATS
299 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
300 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
301 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
302 #define STATS_INC_GROWN(x) ((x)->grown++)
303 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
304 #define STATS_SET_HIGH(x) \
305 do { \
306 if ((x)->num_active > (x)->high_mark) \
307 (x)->high_mark = (x)->num_active; \
308 } while (0)
309 #define STATS_INC_ERR(x) ((x)->errors++)
310 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
311 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
312 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
313 #define STATS_SET_FREEABLE(x, i) \
314 do { \
315 if ((x)->max_freeable < i) \
316 (x)->max_freeable = i; \
317 } while (0)
318 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
319 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
320 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
321 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
322 #else
323 #define STATS_INC_ACTIVE(x) do { } while (0)
324 #define STATS_DEC_ACTIVE(x) do { } while (0)
325 #define STATS_INC_ALLOCED(x) do { } while (0)
326 #define STATS_INC_GROWN(x) do { } while (0)
327 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
328 #define STATS_SET_HIGH(x) do { } while (0)
329 #define STATS_INC_ERR(x) do { } while (0)
330 #define STATS_INC_NODEALLOCS(x) do { } while (0)
331 #define STATS_INC_NODEFREES(x) do { } while (0)
332 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
333 #define STATS_SET_FREEABLE(x, i) do { } while (0)
334 #define STATS_INC_ALLOCHIT(x) do { } while (0)
335 #define STATS_INC_ALLOCMISS(x) do { } while (0)
336 #define STATS_INC_FREEHIT(x) do { } while (0)
337 #define STATS_INC_FREEMISS(x) do { } while (0)
338 #endif
339
340 #if DEBUG
341
342 /*
343 * memory layout of objects:
344 * 0 : objp
345 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
346 * the end of an object is aligned with the end of the real
347 * allocation. Catches writes behind the end of the allocation.
348 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
349 * redzone word.
350 * cachep->obj_offset: The real object.
351 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
352 * cachep->size - 1* BYTES_PER_WORD: last caller address
353 * [BYTES_PER_WORD long]
354 */
355 static int obj_offset(struct kmem_cache *cachep)
356 {
357 return cachep->obj_offset;
358 }
359
360 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
361 {
362 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
363 return (unsigned long long*) (objp + obj_offset(cachep) -
364 sizeof(unsigned long long));
365 }
366
367 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
368 {
369 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
370 if (cachep->flags & SLAB_STORE_USER)
371 return (unsigned long long *)(objp + cachep->size -
372 sizeof(unsigned long long) -
373 REDZONE_ALIGN);
374 return (unsigned long long *) (objp + cachep->size -
375 sizeof(unsigned long long));
376 }
377
378 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
379 {
380 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
381 return (void **)(objp + cachep->size - BYTES_PER_WORD);
382 }
383
384 #else
385
386 #define obj_offset(x) 0
387 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
388 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
389 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
390
391 #endif
392
393 #define OBJECT_FREE (0)
394 #define OBJECT_ACTIVE (1)
395
396 #ifdef CONFIG_DEBUG_SLAB_LEAK
397
398 static void set_obj_status(struct page *page, int idx, int val)
399 {
400 int freelist_size;
401 char *status;
402 struct kmem_cache *cachep = page->slab_cache;
403
404 freelist_size = cachep->num * sizeof(freelist_idx_t);
405 status = (char *)page->freelist + freelist_size;
406 status[idx] = val;
407 }
408
409 static inline unsigned int get_obj_status(struct page *page, int idx)
410 {
411 int freelist_size;
412 char *status;
413 struct kmem_cache *cachep = page->slab_cache;
414
415 freelist_size = cachep->num * sizeof(freelist_idx_t);
416 status = (char *)page->freelist + freelist_size;
417
418 return status[idx];
419 }
420
421 #else
422 static inline void set_obj_status(struct page *page, int idx, int val) {}
423
424 #endif
425
426 /*
427 * Do not go above this order unless 0 objects fit into the slab or
428 * overridden on the command line.
429 */
430 #define SLAB_MAX_ORDER_HI 1
431 #define SLAB_MAX_ORDER_LO 0
432 static int slab_max_order = SLAB_MAX_ORDER_LO;
433 static bool slab_max_order_set __initdata;
434
435 static inline struct kmem_cache *virt_to_cache(const void *obj)
436 {
437 struct page *page = virt_to_head_page(obj);
438 return page->slab_cache;
439 }
440
441 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
442 unsigned int idx)
443 {
444 return page->s_mem + cache->size * idx;
445 }
446
447 /*
448 * We want to avoid an expensive divide : (offset / cache->size)
449 * Using the fact that size is a constant for a particular cache,
450 * we can replace (offset / cache->size) by
451 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
452 */
453 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
454 const struct page *page, void *obj)
455 {
456 u32 offset = (obj - page->s_mem);
457 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
458 }
459
460 /* internal cache of cache description objs */
461 static struct kmem_cache kmem_cache_boot = {
462 .batchcount = 1,
463 .limit = BOOT_CPUCACHE_ENTRIES,
464 .shared = 1,
465 .size = sizeof(struct kmem_cache),
466 .name = "kmem_cache",
467 };
468
469 #define BAD_ALIEN_MAGIC 0x01020304ul
470
471 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
472
473 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
474 {
475 return this_cpu_ptr(cachep->cpu_cache);
476 }
477
478 static size_t calculate_freelist_size(int nr_objs, size_t align)
479 {
480 size_t freelist_size;
481
482 freelist_size = nr_objs * sizeof(freelist_idx_t);
483 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
484 freelist_size += nr_objs * sizeof(char);
485
486 if (align)
487 freelist_size = ALIGN(freelist_size, align);
488
489 return freelist_size;
490 }
491
492 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
493 size_t idx_size, size_t align)
494 {
495 int nr_objs;
496 size_t remained_size;
497 size_t freelist_size;
498 int extra_space = 0;
499
500 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
501 extra_space = sizeof(char);
502 /*
503 * Ignore padding for the initial guess. The padding
504 * is at most @align-1 bytes, and @buffer_size is at
505 * least @align. In the worst case, this result will
506 * be one greater than the number of objects that fit
507 * into the memory allocation when taking the padding
508 * into account.
509 */
510 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
511
512 /*
513 * This calculated number will be either the right
514 * amount, or one greater than what we want.
515 */
516 remained_size = slab_size - nr_objs * buffer_size;
517 freelist_size = calculate_freelist_size(nr_objs, align);
518 if (remained_size < freelist_size)
519 nr_objs--;
520
521 return nr_objs;
522 }
523
524 /*
525 * Calculate the number of objects and left-over bytes for a given buffer size.
526 */
527 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
528 size_t align, int flags, size_t *left_over,
529 unsigned int *num)
530 {
531 int nr_objs;
532 size_t mgmt_size;
533 size_t slab_size = PAGE_SIZE << gfporder;
534
535 /*
536 * The slab management structure can be either off the slab or
537 * on it. For the latter case, the memory allocated for a
538 * slab is used for:
539 *
540 * - One unsigned int for each object
541 * - Padding to respect alignment of @align
542 * - @buffer_size bytes for each object
543 *
544 * If the slab management structure is off the slab, then the
545 * alignment will already be calculated into the size. Because
546 * the slabs are all pages aligned, the objects will be at the
547 * correct alignment when allocated.
548 */
549 if (flags & CFLGS_OFF_SLAB) {
550 mgmt_size = 0;
551 nr_objs = slab_size / buffer_size;
552
553 } else {
554 nr_objs = calculate_nr_objs(slab_size, buffer_size,
555 sizeof(freelist_idx_t), align);
556 mgmt_size = calculate_freelist_size(nr_objs, align);
557 }
558 *num = nr_objs;
559 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
560 }
561
562 #if DEBUG
563 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
564
565 static void __slab_error(const char *function, struct kmem_cache *cachep,
566 char *msg)
567 {
568 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
569 function, cachep->name, msg);
570 dump_stack();
571 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
572 }
573 #endif
574
575 /*
576 * By default on NUMA we use alien caches to stage the freeing of
577 * objects allocated from other nodes. This causes massive memory
578 * inefficiencies when using fake NUMA setup to split memory into a
579 * large number of small nodes, so it can be disabled on the command
580 * line
581 */
582
583 static int use_alien_caches __read_mostly = 1;
584 static int __init noaliencache_setup(char *s)
585 {
586 use_alien_caches = 0;
587 return 1;
588 }
589 __setup("noaliencache", noaliencache_setup);
590
591 static int __init slab_max_order_setup(char *str)
592 {
593 get_option(&str, &slab_max_order);
594 slab_max_order = slab_max_order < 0 ? 0 :
595 min(slab_max_order, MAX_ORDER - 1);
596 slab_max_order_set = true;
597
598 return 1;
599 }
600 __setup("slab_max_order=", slab_max_order_setup);
601
602 #ifdef CONFIG_NUMA
603 /*
604 * Special reaping functions for NUMA systems called from cache_reap().
605 * These take care of doing round robin flushing of alien caches (containing
606 * objects freed on different nodes from which they were allocated) and the
607 * flushing of remote pcps by calling drain_node_pages.
608 */
609 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
610
611 static void init_reap_node(int cpu)
612 {
613 int node;
614
615 node = next_node(cpu_to_mem(cpu), node_online_map);
616 if (node == MAX_NUMNODES)
617 node = first_node(node_online_map);
618
619 per_cpu(slab_reap_node, cpu) = node;
620 }
621
622 static void next_reap_node(void)
623 {
624 int node = __this_cpu_read(slab_reap_node);
625
626 node = next_node(node, node_online_map);
627 if (unlikely(node >= MAX_NUMNODES))
628 node = first_node(node_online_map);
629 __this_cpu_write(slab_reap_node, node);
630 }
631
632 #else
633 #define init_reap_node(cpu) do { } while (0)
634 #define next_reap_node(void) do { } while (0)
635 #endif
636
637 /*
638 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
639 * via the workqueue/eventd.
640 * Add the CPU number into the expiration time to minimize the possibility of
641 * the CPUs getting into lockstep and contending for the global cache chain
642 * lock.
643 */
644 static void start_cpu_timer(int cpu)
645 {
646 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
647
648 /*
649 * When this gets called from do_initcalls via cpucache_init(),
650 * init_workqueues() has already run, so keventd will be setup
651 * at that time.
652 */
653 if (keventd_up() && reap_work->work.func == NULL) {
654 init_reap_node(cpu);
655 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
656 schedule_delayed_work_on(cpu, reap_work,
657 __round_jiffies_relative(HZ, cpu));
658 }
659 }
660
661 static void init_arraycache(struct array_cache *ac, int limit, int batch)
662 {
663 /*
664 * The array_cache structures contain pointers to free object.
665 * However, when such objects are allocated or transferred to another
666 * cache the pointers are not cleared and they could be counted as
667 * valid references during a kmemleak scan. Therefore, kmemleak must
668 * not scan such objects.
669 */
670 kmemleak_no_scan(ac);
671 if (ac) {
672 ac->avail = 0;
673 ac->limit = limit;
674 ac->batchcount = batch;
675 ac->touched = 0;
676 }
677 }
678
679 static struct array_cache *alloc_arraycache(int node, int entries,
680 int batchcount, gfp_t gfp)
681 {
682 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
683 struct array_cache *ac = NULL;
684
685 ac = kmalloc_node(memsize, gfp, node);
686 init_arraycache(ac, entries, batchcount);
687 return ac;
688 }
689
690 static inline bool is_slab_pfmemalloc(struct page *page)
691 {
692 return PageSlabPfmemalloc(page);
693 }
694
695 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
696 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
697 struct array_cache *ac)
698 {
699 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
700 struct page *page;
701 unsigned long flags;
702
703 if (!pfmemalloc_active)
704 return;
705
706 spin_lock_irqsave(&n->list_lock, flags);
707 list_for_each_entry(page, &n->slabs_full, lru)
708 if (is_slab_pfmemalloc(page))
709 goto out;
710
711 list_for_each_entry(page, &n->slabs_partial, lru)
712 if (is_slab_pfmemalloc(page))
713 goto out;
714
715 list_for_each_entry(page, &n->slabs_free, lru)
716 if (is_slab_pfmemalloc(page))
717 goto out;
718
719 pfmemalloc_active = false;
720 out:
721 spin_unlock_irqrestore(&n->list_lock, flags);
722 }
723
724 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
725 gfp_t flags, bool force_refill)
726 {
727 int i;
728 void *objp = ac->entry[--ac->avail];
729
730 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
731 if (unlikely(is_obj_pfmemalloc(objp))) {
732 struct kmem_cache_node *n;
733
734 if (gfp_pfmemalloc_allowed(flags)) {
735 clear_obj_pfmemalloc(&objp);
736 return objp;
737 }
738
739 /* The caller cannot use PFMEMALLOC objects, find another one */
740 for (i = 0; i < ac->avail; i++) {
741 /* If a !PFMEMALLOC object is found, swap them */
742 if (!is_obj_pfmemalloc(ac->entry[i])) {
743 objp = ac->entry[i];
744 ac->entry[i] = ac->entry[ac->avail];
745 ac->entry[ac->avail] = objp;
746 return objp;
747 }
748 }
749
750 /*
751 * If there are empty slabs on the slabs_free list and we are
752 * being forced to refill the cache, mark this one !pfmemalloc.
753 */
754 n = get_node(cachep, numa_mem_id());
755 if (!list_empty(&n->slabs_free) && force_refill) {
756 struct page *page = virt_to_head_page(objp);
757 ClearPageSlabPfmemalloc(page);
758 clear_obj_pfmemalloc(&objp);
759 recheck_pfmemalloc_active(cachep, ac);
760 return objp;
761 }
762
763 /* No !PFMEMALLOC objects available */
764 ac->avail++;
765 objp = NULL;
766 }
767
768 return objp;
769 }
770
771 static inline void *ac_get_obj(struct kmem_cache *cachep,
772 struct array_cache *ac, gfp_t flags, bool force_refill)
773 {
774 void *objp;
775
776 if (unlikely(sk_memalloc_socks()))
777 objp = __ac_get_obj(cachep, ac, flags, force_refill);
778 else
779 objp = ac->entry[--ac->avail];
780
781 return objp;
782 }
783
784 static noinline void *__ac_put_obj(struct kmem_cache *cachep,
785 struct array_cache *ac, void *objp)
786 {
787 if (unlikely(pfmemalloc_active)) {
788 /* Some pfmemalloc slabs exist, check if this is one */
789 struct page *page = virt_to_head_page(objp);
790 if (PageSlabPfmemalloc(page))
791 set_obj_pfmemalloc(&objp);
792 }
793
794 return objp;
795 }
796
797 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
798 void *objp)
799 {
800 if (unlikely(sk_memalloc_socks()))
801 objp = __ac_put_obj(cachep, ac, objp);
802
803 ac->entry[ac->avail++] = objp;
804 }
805
806 /*
807 * Transfer objects in one arraycache to another.
808 * Locking must be handled by the caller.
809 *
810 * Return the number of entries transferred.
811 */
812 static int transfer_objects(struct array_cache *to,
813 struct array_cache *from, unsigned int max)
814 {
815 /* Figure out how many entries to transfer */
816 int nr = min3(from->avail, max, to->limit - to->avail);
817
818 if (!nr)
819 return 0;
820
821 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
822 sizeof(void *) *nr);
823
824 from->avail -= nr;
825 to->avail += nr;
826 return nr;
827 }
828
829 #ifndef CONFIG_NUMA
830
831 #define drain_alien_cache(cachep, alien) do { } while (0)
832 #define reap_alien(cachep, n) do { } while (0)
833
834 static inline struct alien_cache **alloc_alien_cache(int node,
835 int limit, gfp_t gfp)
836 {
837 return (struct alien_cache **)BAD_ALIEN_MAGIC;
838 }
839
840 static inline void free_alien_cache(struct alien_cache **ac_ptr)
841 {
842 }
843
844 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
845 {
846 return 0;
847 }
848
849 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
850 gfp_t flags)
851 {
852 return NULL;
853 }
854
855 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
856 gfp_t flags, int nodeid)
857 {
858 return NULL;
859 }
860
861 static inline gfp_t gfp_exact_node(gfp_t flags)
862 {
863 return flags;
864 }
865
866 #else /* CONFIG_NUMA */
867
868 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
869 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
870
871 static struct alien_cache *__alloc_alien_cache(int node, int entries,
872 int batch, gfp_t gfp)
873 {
874 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
875 struct alien_cache *alc = NULL;
876
877 alc = kmalloc_node(memsize, gfp, node);
878 init_arraycache(&alc->ac, entries, batch);
879 spin_lock_init(&alc->lock);
880 return alc;
881 }
882
883 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
884 {
885 struct alien_cache **alc_ptr;
886 size_t memsize = sizeof(void *) * nr_node_ids;
887 int i;
888
889 if (limit > 1)
890 limit = 12;
891 alc_ptr = kzalloc_node(memsize, gfp, node);
892 if (!alc_ptr)
893 return NULL;
894
895 for_each_node(i) {
896 if (i == node || !node_online(i))
897 continue;
898 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
899 if (!alc_ptr[i]) {
900 for (i--; i >= 0; i--)
901 kfree(alc_ptr[i]);
902 kfree(alc_ptr);
903 return NULL;
904 }
905 }
906 return alc_ptr;
907 }
908
909 static void free_alien_cache(struct alien_cache **alc_ptr)
910 {
911 int i;
912
913 if (!alc_ptr)
914 return;
915 for_each_node(i)
916 kfree(alc_ptr[i]);
917 kfree(alc_ptr);
918 }
919
920 static void __drain_alien_cache(struct kmem_cache *cachep,
921 struct array_cache *ac, int node,
922 struct list_head *list)
923 {
924 struct kmem_cache_node *n = get_node(cachep, node);
925
926 if (ac->avail) {
927 spin_lock(&n->list_lock);
928 /*
929 * Stuff objects into the remote nodes shared array first.
930 * That way we could avoid the overhead of putting the objects
931 * into the free lists and getting them back later.
932 */
933 if (n->shared)
934 transfer_objects(n->shared, ac, ac->limit);
935
936 free_block(cachep, ac->entry, ac->avail, node, list);
937 ac->avail = 0;
938 spin_unlock(&n->list_lock);
939 }
940 }
941
942 /*
943 * Called from cache_reap() to regularly drain alien caches round robin.
944 */
945 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
946 {
947 int node = __this_cpu_read(slab_reap_node);
948
949 if (n->alien) {
950 struct alien_cache *alc = n->alien[node];
951 struct array_cache *ac;
952
953 if (alc) {
954 ac = &alc->ac;
955 if (ac->avail && spin_trylock_irq(&alc->lock)) {
956 LIST_HEAD(list);
957
958 __drain_alien_cache(cachep, ac, node, &list);
959 spin_unlock_irq(&alc->lock);
960 slabs_destroy(cachep, &list);
961 }
962 }
963 }
964 }
965
966 static void drain_alien_cache(struct kmem_cache *cachep,
967 struct alien_cache **alien)
968 {
969 int i = 0;
970 struct alien_cache *alc;
971 struct array_cache *ac;
972 unsigned long flags;
973
974 for_each_online_node(i) {
975 alc = alien[i];
976 if (alc) {
977 LIST_HEAD(list);
978
979 ac = &alc->ac;
980 spin_lock_irqsave(&alc->lock, flags);
981 __drain_alien_cache(cachep, ac, i, &list);
982 spin_unlock_irqrestore(&alc->lock, flags);
983 slabs_destroy(cachep, &list);
984 }
985 }
986 }
987
988 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
989 int node, int page_node)
990 {
991 struct kmem_cache_node *n;
992 struct alien_cache *alien = NULL;
993 struct array_cache *ac;
994 LIST_HEAD(list);
995
996 n = get_node(cachep, node);
997 STATS_INC_NODEFREES(cachep);
998 if (n->alien && n->alien[page_node]) {
999 alien = n->alien[page_node];
1000 ac = &alien->ac;
1001 spin_lock(&alien->lock);
1002 if (unlikely(ac->avail == ac->limit)) {
1003 STATS_INC_ACOVERFLOW(cachep);
1004 __drain_alien_cache(cachep, ac, page_node, &list);
1005 }
1006 ac_put_obj(cachep, ac, objp);
1007 spin_unlock(&alien->lock);
1008 slabs_destroy(cachep, &list);
1009 } else {
1010 n = get_node(cachep, page_node);
1011 spin_lock(&n->list_lock);
1012 free_block(cachep, &objp, 1, page_node, &list);
1013 spin_unlock(&n->list_lock);
1014 slabs_destroy(cachep, &list);
1015 }
1016 return 1;
1017 }
1018
1019 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1020 {
1021 int page_node = page_to_nid(virt_to_page(objp));
1022 int node = numa_mem_id();
1023 /*
1024 * Make sure we are not freeing a object from another node to the array
1025 * cache on this cpu.
1026 */
1027 if (likely(node == page_node))
1028 return 0;
1029
1030 return __cache_free_alien(cachep, objp, node, page_node);
1031 }
1032
1033 /*
1034 * Construct gfp mask to allocate from a specific node but do not direct reclaim
1035 * or warn about failures. kswapd may still wake to reclaim in the background.
1036 */
1037 static inline gfp_t gfp_exact_node(gfp_t flags)
1038 {
1039 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
1040 }
1041 #endif
1042
1043 /*
1044 * Allocates and initializes node for a node on each slab cache, used for
1045 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1046 * will be allocated off-node since memory is not yet online for the new node.
1047 * When hotplugging memory or a cpu, existing node are not replaced if
1048 * already in use.
1049 *
1050 * Must hold slab_mutex.
1051 */
1052 static int init_cache_node_node(int node)
1053 {
1054 struct kmem_cache *cachep;
1055 struct kmem_cache_node *n;
1056 const size_t memsize = sizeof(struct kmem_cache_node);
1057
1058 list_for_each_entry(cachep, &slab_caches, list) {
1059 /*
1060 * Set up the kmem_cache_node for cpu before we can
1061 * begin anything. Make sure some other cpu on this
1062 * node has not already allocated this
1063 */
1064 n = get_node(cachep, node);
1065 if (!n) {
1066 n = kmalloc_node(memsize, GFP_KERNEL, node);
1067 if (!n)
1068 return -ENOMEM;
1069 kmem_cache_node_init(n);
1070 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1071 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1072
1073 /*
1074 * The kmem_cache_nodes don't come and go as CPUs
1075 * come and go. slab_mutex is sufficient
1076 * protection here.
1077 */
1078 cachep->node[node] = n;
1079 }
1080
1081 spin_lock_irq(&n->list_lock);
1082 n->free_limit =
1083 (1 + nr_cpus_node(node)) *
1084 cachep->batchcount + cachep->num;
1085 spin_unlock_irq(&n->list_lock);
1086 }
1087 return 0;
1088 }
1089
1090 static inline int slabs_tofree(struct kmem_cache *cachep,
1091 struct kmem_cache_node *n)
1092 {
1093 return (n->free_objects + cachep->num - 1) / cachep->num;
1094 }
1095
1096 static void cpuup_canceled(long cpu)
1097 {
1098 struct kmem_cache *cachep;
1099 struct kmem_cache_node *n = NULL;
1100 int node = cpu_to_mem(cpu);
1101 const struct cpumask *mask = cpumask_of_node(node);
1102
1103 list_for_each_entry(cachep, &slab_caches, list) {
1104 struct array_cache *nc;
1105 struct array_cache *shared;
1106 struct alien_cache **alien;
1107 LIST_HEAD(list);
1108
1109 n = get_node(cachep, node);
1110 if (!n)
1111 continue;
1112
1113 spin_lock_irq(&n->list_lock);
1114
1115 /* Free limit for this kmem_cache_node */
1116 n->free_limit -= cachep->batchcount;
1117
1118 /* cpu is dead; no one can alloc from it. */
1119 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1120 if (nc) {
1121 free_block(cachep, nc->entry, nc->avail, node, &list);
1122 nc->avail = 0;
1123 }
1124
1125 if (!cpumask_empty(mask)) {
1126 spin_unlock_irq(&n->list_lock);
1127 goto free_slab;
1128 }
1129
1130 shared = n->shared;
1131 if (shared) {
1132 free_block(cachep, shared->entry,
1133 shared->avail, node, &list);
1134 n->shared = NULL;
1135 }
1136
1137 alien = n->alien;
1138 n->alien = NULL;
1139
1140 spin_unlock_irq(&n->list_lock);
1141
1142 kfree(shared);
1143 if (alien) {
1144 drain_alien_cache(cachep, alien);
1145 free_alien_cache(alien);
1146 }
1147
1148 free_slab:
1149 slabs_destroy(cachep, &list);
1150 }
1151 /*
1152 * In the previous loop, all the objects were freed to
1153 * the respective cache's slabs, now we can go ahead and
1154 * shrink each nodelist to its limit.
1155 */
1156 list_for_each_entry(cachep, &slab_caches, list) {
1157 n = get_node(cachep, node);
1158 if (!n)
1159 continue;
1160 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1161 }
1162 }
1163
1164 static int cpuup_prepare(long cpu)
1165 {
1166 struct kmem_cache *cachep;
1167 struct kmem_cache_node *n = NULL;
1168 int node = cpu_to_mem(cpu);
1169 int err;
1170
1171 /*
1172 * We need to do this right in the beginning since
1173 * alloc_arraycache's are going to use this list.
1174 * kmalloc_node allows us to add the slab to the right
1175 * kmem_cache_node and not this cpu's kmem_cache_node
1176 */
1177 err = init_cache_node_node(node);
1178 if (err < 0)
1179 goto bad;
1180
1181 /*
1182 * Now we can go ahead with allocating the shared arrays and
1183 * array caches
1184 */
1185 list_for_each_entry(cachep, &slab_caches, list) {
1186 struct array_cache *shared = NULL;
1187 struct alien_cache **alien = NULL;
1188
1189 if (cachep->shared) {
1190 shared = alloc_arraycache(node,
1191 cachep->shared * cachep->batchcount,
1192 0xbaadf00d, GFP_KERNEL);
1193 if (!shared)
1194 goto bad;
1195 }
1196 if (use_alien_caches) {
1197 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1198 if (!alien) {
1199 kfree(shared);
1200 goto bad;
1201 }
1202 }
1203 n = get_node(cachep, node);
1204 BUG_ON(!n);
1205
1206 spin_lock_irq(&n->list_lock);
1207 if (!n->shared) {
1208 /*
1209 * We are serialised from CPU_DEAD or
1210 * CPU_UP_CANCELLED by the cpucontrol lock
1211 */
1212 n->shared = shared;
1213 shared = NULL;
1214 }
1215 #ifdef CONFIG_NUMA
1216 if (!n->alien) {
1217 n->alien = alien;
1218 alien = NULL;
1219 }
1220 #endif
1221 spin_unlock_irq(&n->list_lock);
1222 kfree(shared);
1223 free_alien_cache(alien);
1224 }
1225
1226 return 0;
1227 bad:
1228 cpuup_canceled(cpu);
1229 return -ENOMEM;
1230 }
1231
1232 static int cpuup_callback(struct notifier_block *nfb,
1233 unsigned long action, void *hcpu)
1234 {
1235 long cpu = (long)hcpu;
1236 int err = 0;
1237
1238 switch (action) {
1239 case CPU_UP_PREPARE:
1240 case CPU_UP_PREPARE_FROZEN:
1241 mutex_lock(&slab_mutex);
1242 err = cpuup_prepare(cpu);
1243 mutex_unlock(&slab_mutex);
1244 break;
1245 case CPU_ONLINE:
1246 case CPU_ONLINE_FROZEN:
1247 start_cpu_timer(cpu);
1248 break;
1249 #ifdef CONFIG_HOTPLUG_CPU
1250 case CPU_DOWN_PREPARE:
1251 case CPU_DOWN_PREPARE_FROZEN:
1252 /*
1253 * Shutdown cache reaper. Note that the slab_mutex is
1254 * held so that if cache_reap() is invoked it cannot do
1255 * anything expensive but will only modify reap_work
1256 * and reschedule the timer.
1257 */
1258 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1259 /* Now the cache_reaper is guaranteed to be not running. */
1260 per_cpu(slab_reap_work, cpu).work.func = NULL;
1261 break;
1262 case CPU_DOWN_FAILED:
1263 case CPU_DOWN_FAILED_FROZEN:
1264 start_cpu_timer(cpu);
1265 break;
1266 case CPU_DEAD:
1267 case CPU_DEAD_FROZEN:
1268 /*
1269 * Even if all the cpus of a node are down, we don't free the
1270 * kmem_cache_node of any cache. This to avoid a race between
1271 * cpu_down, and a kmalloc allocation from another cpu for
1272 * memory from the node of the cpu going down. The node
1273 * structure is usually allocated from kmem_cache_create() and
1274 * gets destroyed at kmem_cache_destroy().
1275 */
1276 /* fall through */
1277 #endif
1278 case CPU_UP_CANCELED:
1279 case CPU_UP_CANCELED_FROZEN:
1280 mutex_lock(&slab_mutex);
1281 cpuup_canceled(cpu);
1282 mutex_unlock(&slab_mutex);
1283 break;
1284 }
1285 return notifier_from_errno(err);
1286 }
1287
1288 static struct notifier_block cpucache_notifier = {
1289 &cpuup_callback, NULL, 0
1290 };
1291
1292 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1293 /*
1294 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1295 * Returns -EBUSY if all objects cannot be drained so that the node is not
1296 * removed.
1297 *
1298 * Must hold slab_mutex.
1299 */
1300 static int __meminit drain_cache_node_node(int node)
1301 {
1302 struct kmem_cache *cachep;
1303 int ret = 0;
1304
1305 list_for_each_entry(cachep, &slab_caches, list) {
1306 struct kmem_cache_node *n;
1307
1308 n = get_node(cachep, node);
1309 if (!n)
1310 continue;
1311
1312 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1313
1314 if (!list_empty(&n->slabs_full) ||
1315 !list_empty(&n->slabs_partial)) {
1316 ret = -EBUSY;
1317 break;
1318 }
1319 }
1320 return ret;
1321 }
1322
1323 static int __meminit slab_memory_callback(struct notifier_block *self,
1324 unsigned long action, void *arg)
1325 {
1326 struct memory_notify *mnb = arg;
1327 int ret = 0;
1328 int nid;
1329
1330 nid = mnb->status_change_nid;
1331 if (nid < 0)
1332 goto out;
1333
1334 switch (action) {
1335 case MEM_GOING_ONLINE:
1336 mutex_lock(&slab_mutex);
1337 ret = init_cache_node_node(nid);
1338 mutex_unlock(&slab_mutex);
1339 break;
1340 case MEM_GOING_OFFLINE:
1341 mutex_lock(&slab_mutex);
1342 ret = drain_cache_node_node(nid);
1343 mutex_unlock(&slab_mutex);
1344 break;
1345 case MEM_ONLINE:
1346 case MEM_OFFLINE:
1347 case MEM_CANCEL_ONLINE:
1348 case MEM_CANCEL_OFFLINE:
1349 break;
1350 }
1351 out:
1352 return notifier_from_errno(ret);
1353 }
1354 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1355
1356 /*
1357 * swap the static kmem_cache_node with kmalloced memory
1358 */
1359 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1360 int nodeid)
1361 {
1362 struct kmem_cache_node *ptr;
1363
1364 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1365 BUG_ON(!ptr);
1366
1367 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1368 /*
1369 * Do not assume that spinlocks can be initialized via memcpy:
1370 */
1371 spin_lock_init(&ptr->list_lock);
1372
1373 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1374 cachep->node[nodeid] = ptr;
1375 }
1376
1377 /*
1378 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1379 * size of kmem_cache_node.
1380 */
1381 static void __init set_up_node(struct kmem_cache *cachep, int index)
1382 {
1383 int node;
1384
1385 for_each_online_node(node) {
1386 cachep->node[node] = &init_kmem_cache_node[index + node];
1387 cachep->node[node]->next_reap = jiffies +
1388 REAPTIMEOUT_NODE +
1389 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1390 }
1391 }
1392
1393 /*
1394 * Initialisation. Called after the page allocator have been initialised and
1395 * before smp_init().
1396 */
1397 void __init kmem_cache_init(void)
1398 {
1399 int i;
1400
1401 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1402 sizeof(struct rcu_head));
1403 kmem_cache = &kmem_cache_boot;
1404
1405 if (num_possible_nodes() == 1)
1406 use_alien_caches = 0;
1407
1408 for (i = 0; i < NUM_INIT_LISTS; i++)
1409 kmem_cache_node_init(&init_kmem_cache_node[i]);
1410
1411 /*
1412 * Fragmentation resistance on low memory - only use bigger
1413 * page orders on machines with more than 32MB of memory if
1414 * not overridden on the command line.
1415 */
1416 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1417 slab_max_order = SLAB_MAX_ORDER_HI;
1418
1419 /* Bootstrap is tricky, because several objects are allocated
1420 * from caches that do not exist yet:
1421 * 1) initialize the kmem_cache cache: it contains the struct
1422 * kmem_cache structures of all caches, except kmem_cache itself:
1423 * kmem_cache is statically allocated.
1424 * Initially an __init data area is used for the head array and the
1425 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1426 * array at the end of the bootstrap.
1427 * 2) Create the first kmalloc cache.
1428 * The struct kmem_cache for the new cache is allocated normally.
1429 * An __init data area is used for the head array.
1430 * 3) Create the remaining kmalloc caches, with minimally sized
1431 * head arrays.
1432 * 4) Replace the __init data head arrays for kmem_cache and the first
1433 * kmalloc cache with kmalloc allocated arrays.
1434 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1435 * the other cache's with kmalloc allocated memory.
1436 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1437 */
1438
1439 /* 1) create the kmem_cache */
1440
1441 /*
1442 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1443 */
1444 create_boot_cache(kmem_cache, "kmem_cache",
1445 offsetof(struct kmem_cache, node) +
1446 nr_node_ids * sizeof(struct kmem_cache_node *),
1447 SLAB_HWCACHE_ALIGN);
1448 list_add(&kmem_cache->list, &slab_caches);
1449 slab_state = PARTIAL;
1450
1451 /*
1452 * Initialize the caches that provide memory for the kmem_cache_node
1453 * structures first. Without this, further allocations will bug.
1454 */
1455 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1456 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1457 slab_state = PARTIAL_NODE;
1458 setup_kmalloc_cache_index_table();
1459
1460 slab_early_init = 0;
1461
1462 /* 5) Replace the bootstrap kmem_cache_node */
1463 {
1464 int nid;
1465
1466 for_each_online_node(nid) {
1467 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1468
1469 init_list(kmalloc_caches[INDEX_NODE],
1470 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1471 }
1472 }
1473
1474 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1475 }
1476
1477 void __init kmem_cache_init_late(void)
1478 {
1479 struct kmem_cache *cachep;
1480
1481 slab_state = UP;
1482
1483 /* 6) resize the head arrays to their final sizes */
1484 mutex_lock(&slab_mutex);
1485 list_for_each_entry(cachep, &slab_caches, list)
1486 if (enable_cpucache(cachep, GFP_NOWAIT))
1487 BUG();
1488 mutex_unlock(&slab_mutex);
1489
1490 /* Done! */
1491 slab_state = FULL;
1492
1493 /*
1494 * Register a cpu startup notifier callback that initializes
1495 * cpu_cache_get for all new cpus
1496 */
1497 register_cpu_notifier(&cpucache_notifier);
1498
1499 #ifdef CONFIG_NUMA
1500 /*
1501 * Register a memory hotplug callback that initializes and frees
1502 * node.
1503 */
1504 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1505 #endif
1506
1507 /*
1508 * The reap timers are started later, with a module init call: That part
1509 * of the kernel is not yet operational.
1510 */
1511 }
1512
1513 static int __init cpucache_init(void)
1514 {
1515 int cpu;
1516
1517 /*
1518 * Register the timers that return unneeded pages to the page allocator
1519 */
1520 for_each_online_cpu(cpu)
1521 start_cpu_timer(cpu);
1522
1523 /* Done! */
1524 slab_state = FULL;
1525 return 0;
1526 }
1527 __initcall(cpucache_init);
1528
1529 static noinline void
1530 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1531 {
1532 #if DEBUG
1533 struct kmem_cache_node *n;
1534 struct page *page;
1535 unsigned long flags;
1536 int node;
1537 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1538 DEFAULT_RATELIMIT_BURST);
1539
1540 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1541 return;
1542
1543 printk(KERN_WARNING
1544 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1545 nodeid, gfpflags);
1546 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1547 cachep->name, cachep->size, cachep->gfporder);
1548
1549 for_each_kmem_cache_node(cachep, node, n) {
1550 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1551 unsigned long active_slabs = 0, num_slabs = 0;
1552
1553 spin_lock_irqsave(&n->list_lock, flags);
1554 list_for_each_entry(page, &n->slabs_full, lru) {
1555 active_objs += cachep->num;
1556 active_slabs++;
1557 }
1558 list_for_each_entry(page, &n->slabs_partial, lru) {
1559 active_objs += page->active;
1560 active_slabs++;
1561 }
1562 list_for_each_entry(page, &n->slabs_free, lru)
1563 num_slabs++;
1564
1565 free_objects += n->free_objects;
1566 spin_unlock_irqrestore(&n->list_lock, flags);
1567
1568 num_slabs += active_slabs;
1569 num_objs = num_slabs * cachep->num;
1570 printk(KERN_WARNING
1571 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1572 node, active_slabs, num_slabs, active_objs, num_objs,
1573 free_objects);
1574 }
1575 #endif
1576 }
1577
1578 /*
1579 * Interface to system's page allocator. No need to hold the
1580 * kmem_cache_node ->list_lock.
1581 *
1582 * If we requested dmaable memory, we will get it. Even if we
1583 * did not request dmaable memory, we might get it, but that
1584 * would be relatively rare and ignorable.
1585 */
1586 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1587 int nodeid)
1588 {
1589 struct page *page;
1590 int nr_pages;
1591
1592 flags |= cachep->allocflags;
1593 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1594 flags |= __GFP_RECLAIMABLE;
1595
1596 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1597 if (!page) {
1598 slab_out_of_memory(cachep, flags, nodeid);
1599 return NULL;
1600 }
1601
1602 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1603 __free_pages(page, cachep->gfporder);
1604 return NULL;
1605 }
1606
1607 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1608 if (page_is_pfmemalloc(page))
1609 pfmemalloc_active = true;
1610
1611 nr_pages = (1 << cachep->gfporder);
1612 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1613 add_zone_page_state(page_zone(page),
1614 NR_SLAB_RECLAIMABLE, nr_pages);
1615 else
1616 add_zone_page_state(page_zone(page),
1617 NR_SLAB_UNRECLAIMABLE, nr_pages);
1618 __SetPageSlab(page);
1619 if (page_is_pfmemalloc(page))
1620 SetPageSlabPfmemalloc(page);
1621
1622 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1623 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1624
1625 if (cachep->ctor)
1626 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1627 else
1628 kmemcheck_mark_unallocated_pages(page, nr_pages);
1629 }
1630
1631 return page;
1632 }
1633
1634 /*
1635 * Interface to system's page release.
1636 */
1637 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1638 {
1639 const unsigned long nr_freed = (1 << cachep->gfporder);
1640
1641 kmemcheck_free_shadow(page, cachep->gfporder);
1642
1643 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1644 sub_zone_page_state(page_zone(page),
1645 NR_SLAB_RECLAIMABLE, nr_freed);
1646 else
1647 sub_zone_page_state(page_zone(page),
1648 NR_SLAB_UNRECLAIMABLE, nr_freed);
1649
1650 BUG_ON(!PageSlab(page));
1651 __ClearPageSlabPfmemalloc(page);
1652 __ClearPageSlab(page);
1653 page_mapcount_reset(page);
1654 page->mapping = NULL;
1655
1656 if (current->reclaim_state)
1657 current->reclaim_state->reclaimed_slab += nr_freed;
1658 __free_kmem_pages(page, cachep->gfporder);
1659 }
1660
1661 static void kmem_rcu_free(struct rcu_head *head)
1662 {
1663 struct kmem_cache *cachep;
1664 struct page *page;
1665
1666 page = container_of(head, struct page, rcu_head);
1667 cachep = page->slab_cache;
1668
1669 kmem_freepages(cachep, page);
1670 }
1671
1672 #if DEBUG
1673
1674 #ifdef CONFIG_DEBUG_PAGEALLOC
1675 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1676 unsigned long caller)
1677 {
1678 int size = cachep->object_size;
1679
1680 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1681
1682 if (size < 5 * sizeof(unsigned long))
1683 return;
1684
1685 *addr++ = 0x12345678;
1686 *addr++ = caller;
1687 *addr++ = smp_processor_id();
1688 size -= 3 * sizeof(unsigned long);
1689 {
1690 unsigned long *sptr = &caller;
1691 unsigned long svalue;
1692
1693 while (!kstack_end(sptr)) {
1694 svalue = *sptr++;
1695 if (kernel_text_address(svalue)) {
1696 *addr++ = svalue;
1697 size -= sizeof(unsigned long);
1698 if (size <= sizeof(unsigned long))
1699 break;
1700 }
1701 }
1702
1703 }
1704 *addr++ = 0x87654321;
1705 }
1706 #endif
1707
1708 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1709 {
1710 int size = cachep->object_size;
1711 addr = &((char *)addr)[obj_offset(cachep)];
1712
1713 memset(addr, val, size);
1714 *(unsigned char *)(addr + size - 1) = POISON_END;
1715 }
1716
1717 static void dump_line(char *data, int offset, int limit)
1718 {
1719 int i;
1720 unsigned char error = 0;
1721 int bad_count = 0;
1722
1723 printk(KERN_ERR "%03x: ", offset);
1724 for (i = 0; i < limit; i++) {
1725 if (data[offset + i] != POISON_FREE) {
1726 error = data[offset + i];
1727 bad_count++;
1728 }
1729 }
1730 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1731 &data[offset], limit, 1);
1732
1733 if (bad_count == 1) {
1734 error ^= POISON_FREE;
1735 if (!(error & (error - 1))) {
1736 printk(KERN_ERR "Single bit error detected. Probably "
1737 "bad RAM.\n");
1738 #ifdef CONFIG_X86
1739 printk(KERN_ERR "Run memtest86+ or a similar memory "
1740 "test tool.\n");
1741 #else
1742 printk(KERN_ERR "Run a memory test tool.\n");
1743 #endif
1744 }
1745 }
1746 }
1747 #endif
1748
1749 #if DEBUG
1750
1751 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1752 {
1753 int i, size;
1754 char *realobj;
1755
1756 if (cachep->flags & SLAB_RED_ZONE) {
1757 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1758 *dbg_redzone1(cachep, objp),
1759 *dbg_redzone2(cachep, objp));
1760 }
1761
1762 if (cachep->flags & SLAB_STORE_USER) {
1763 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1764 *dbg_userword(cachep, objp),
1765 *dbg_userword(cachep, objp));
1766 }
1767 realobj = (char *)objp + obj_offset(cachep);
1768 size = cachep->object_size;
1769 for (i = 0; i < size && lines; i += 16, lines--) {
1770 int limit;
1771 limit = 16;
1772 if (i + limit > size)
1773 limit = size - i;
1774 dump_line(realobj, i, limit);
1775 }
1776 }
1777
1778 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1779 {
1780 char *realobj;
1781 int size, i;
1782 int lines = 0;
1783
1784 realobj = (char *)objp + obj_offset(cachep);
1785 size = cachep->object_size;
1786
1787 for (i = 0; i < size; i++) {
1788 char exp = POISON_FREE;
1789 if (i == size - 1)
1790 exp = POISON_END;
1791 if (realobj[i] != exp) {
1792 int limit;
1793 /* Mismatch ! */
1794 /* Print header */
1795 if (lines == 0) {
1796 printk(KERN_ERR
1797 "Slab corruption (%s): %s start=%p, len=%d\n",
1798 print_tainted(), cachep->name, realobj, size);
1799 print_objinfo(cachep, objp, 0);
1800 }
1801 /* Hexdump the affected line */
1802 i = (i / 16) * 16;
1803 limit = 16;
1804 if (i + limit > size)
1805 limit = size - i;
1806 dump_line(realobj, i, limit);
1807 i += 16;
1808 lines++;
1809 /* Limit to 5 lines */
1810 if (lines > 5)
1811 break;
1812 }
1813 }
1814 if (lines != 0) {
1815 /* Print some data about the neighboring objects, if they
1816 * exist:
1817 */
1818 struct page *page = virt_to_head_page(objp);
1819 unsigned int objnr;
1820
1821 objnr = obj_to_index(cachep, page, objp);
1822 if (objnr) {
1823 objp = index_to_obj(cachep, page, objnr - 1);
1824 realobj = (char *)objp + obj_offset(cachep);
1825 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1826 realobj, size);
1827 print_objinfo(cachep, objp, 2);
1828 }
1829 if (objnr + 1 < cachep->num) {
1830 objp = index_to_obj(cachep, page, objnr + 1);
1831 realobj = (char *)objp + obj_offset(cachep);
1832 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1833 realobj, size);
1834 print_objinfo(cachep, objp, 2);
1835 }
1836 }
1837 }
1838 #endif
1839
1840 #if DEBUG
1841 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1842 struct page *page)
1843 {
1844 int i;
1845 for (i = 0; i < cachep->num; i++) {
1846 void *objp = index_to_obj(cachep, page, i);
1847
1848 if (cachep->flags & SLAB_POISON) {
1849 #ifdef CONFIG_DEBUG_PAGEALLOC
1850 if (cachep->size % PAGE_SIZE == 0 &&
1851 OFF_SLAB(cachep))
1852 kernel_map_pages(virt_to_page(objp),
1853 cachep->size / PAGE_SIZE, 1);
1854 else
1855 check_poison_obj(cachep, objp);
1856 #else
1857 check_poison_obj(cachep, objp);
1858 #endif
1859 }
1860 if (cachep->flags & SLAB_RED_ZONE) {
1861 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1862 slab_error(cachep, "start of a freed object "
1863 "was overwritten");
1864 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1865 slab_error(cachep, "end of a freed object "
1866 "was overwritten");
1867 }
1868 }
1869 }
1870 #else
1871 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1872 struct page *page)
1873 {
1874 }
1875 #endif
1876
1877 /**
1878 * slab_destroy - destroy and release all objects in a slab
1879 * @cachep: cache pointer being destroyed
1880 * @page: page pointer being destroyed
1881 *
1882 * Destroy all the objs in a slab page, and release the mem back to the system.
1883 * Before calling the slab page must have been unlinked from the cache. The
1884 * kmem_cache_node ->list_lock is not held/needed.
1885 */
1886 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1887 {
1888 void *freelist;
1889
1890 freelist = page->freelist;
1891 slab_destroy_debugcheck(cachep, page);
1892 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1893 call_rcu(&page->rcu_head, kmem_rcu_free);
1894 else
1895 kmem_freepages(cachep, page);
1896
1897 /*
1898 * From now on, we don't use freelist
1899 * although actual page can be freed in rcu context
1900 */
1901 if (OFF_SLAB(cachep))
1902 kmem_cache_free(cachep->freelist_cache, freelist);
1903 }
1904
1905 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1906 {
1907 struct page *page, *n;
1908
1909 list_for_each_entry_safe(page, n, list, lru) {
1910 list_del(&page->lru);
1911 slab_destroy(cachep, page);
1912 }
1913 }
1914
1915 /**
1916 * calculate_slab_order - calculate size (page order) of slabs
1917 * @cachep: pointer to the cache that is being created
1918 * @size: size of objects to be created in this cache.
1919 * @align: required alignment for the objects.
1920 * @flags: slab allocation flags
1921 *
1922 * Also calculates the number of objects per slab.
1923 *
1924 * This could be made much more intelligent. For now, try to avoid using
1925 * high order pages for slabs. When the gfp() functions are more friendly
1926 * towards high-order requests, this should be changed.
1927 */
1928 static size_t calculate_slab_order(struct kmem_cache *cachep,
1929 size_t size, size_t align, unsigned long flags)
1930 {
1931 unsigned long offslab_limit;
1932 size_t left_over = 0;
1933 int gfporder;
1934
1935 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1936 unsigned int num;
1937 size_t remainder;
1938
1939 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1940 if (!num)
1941 continue;
1942
1943 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1944 if (num > SLAB_OBJ_MAX_NUM)
1945 break;
1946
1947 if (flags & CFLGS_OFF_SLAB) {
1948 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1949 /*
1950 * Max number of objs-per-slab for caches which
1951 * use off-slab slabs. Needed to avoid a possible
1952 * looping condition in cache_grow().
1953 */
1954 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1955 freelist_size_per_obj += sizeof(char);
1956 offslab_limit = size;
1957 offslab_limit /= freelist_size_per_obj;
1958
1959 if (num > offslab_limit)
1960 break;
1961 }
1962
1963 /* Found something acceptable - save it away */
1964 cachep->num = num;
1965 cachep->gfporder = gfporder;
1966 left_over = remainder;
1967
1968 /*
1969 * A VFS-reclaimable slab tends to have most allocations
1970 * as GFP_NOFS and we really don't want to have to be allocating
1971 * higher-order pages when we are unable to shrink dcache.
1972 */
1973 if (flags & SLAB_RECLAIM_ACCOUNT)
1974 break;
1975
1976 /*
1977 * Large number of objects is good, but very large slabs are
1978 * currently bad for the gfp()s.
1979 */
1980 if (gfporder >= slab_max_order)
1981 break;
1982
1983 /*
1984 * Acceptable internal fragmentation?
1985 */
1986 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1987 break;
1988 }
1989 return left_over;
1990 }
1991
1992 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1993 struct kmem_cache *cachep, int entries, int batchcount)
1994 {
1995 int cpu;
1996 size_t size;
1997 struct array_cache __percpu *cpu_cache;
1998
1999 size = sizeof(void *) * entries + sizeof(struct array_cache);
2000 cpu_cache = __alloc_percpu(size, sizeof(void *));
2001
2002 if (!cpu_cache)
2003 return NULL;
2004
2005 for_each_possible_cpu(cpu) {
2006 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2007 entries, batchcount);
2008 }
2009
2010 return cpu_cache;
2011 }
2012
2013 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2014 {
2015 if (slab_state >= FULL)
2016 return enable_cpucache(cachep, gfp);
2017
2018 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2019 if (!cachep->cpu_cache)
2020 return 1;
2021
2022 if (slab_state == DOWN) {
2023 /* Creation of first cache (kmem_cache). */
2024 set_up_node(kmem_cache, CACHE_CACHE);
2025 } else if (slab_state == PARTIAL) {
2026 /* For kmem_cache_node */
2027 set_up_node(cachep, SIZE_NODE);
2028 } else {
2029 int node;
2030
2031 for_each_online_node(node) {
2032 cachep->node[node] = kmalloc_node(
2033 sizeof(struct kmem_cache_node), gfp, node);
2034 BUG_ON(!cachep->node[node]);
2035 kmem_cache_node_init(cachep->node[node]);
2036 }
2037 }
2038
2039 cachep->node[numa_mem_id()]->next_reap =
2040 jiffies + REAPTIMEOUT_NODE +
2041 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2042
2043 cpu_cache_get(cachep)->avail = 0;
2044 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2045 cpu_cache_get(cachep)->batchcount = 1;
2046 cpu_cache_get(cachep)->touched = 0;
2047 cachep->batchcount = 1;
2048 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2049 return 0;
2050 }
2051
2052 unsigned long kmem_cache_flags(unsigned long object_size,
2053 unsigned long flags, const char *name,
2054 void (*ctor)(void *))
2055 {
2056 return flags;
2057 }
2058
2059 struct kmem_cache *
2060 __kmem_cache_alias(const char *name, size_t size, size_t align,
2061 unsigned long flags, void (*ctor)(void *))
2062 {
2063 struct kmem_cache *cachep;
2064
2065 cachep = find_mergeable(size, align, flags, name, ctor);
2066 if (cachep) {
2067 cachep->refcount++;
2068
2069 /*
2070 * Adjust the object sizes so that we clear
2071 * the complete object on kzalloc.
2072 */
2073 cachep->object_size = max_t(int, cachep->object_size, size);
2074 }
2075 return cachep;
2076 }
2077
2078 /**
2079 * __kmem_cache_create - Create a cache.
2080 * @cachep: cache management descriptor
2081 * @flags: SLAB flags
2082 *
2083 * Returns a ptr to the cache on success, NULL on failure.
2084 * Cannot be called within a int, but can be interrupted.
2085 * The @ctor is run when new pages are allocated by the cache.
2086 *
2087 * The flags are
2088 *
2089 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2090 * to catch references to uninitialised memory.
2091 *
2092 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2093 * for buffer overruns.
2094 *
2095 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2096 * cacheline. This can be beneficial if you're counting cycles as closely
2097 * as davem.
2098 */
2099 int
2100 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2101 {
2102 size_t left_over, freelist_size;
2103 size_t ralign = BYTES_PER_WORD;
2104 gfp_t gfp;
2105 int err;
2106 size_t size = cachep->size;
2107
2108 #if DEBUG
2109 #if FORCED_DEBUG
2110 /*
2111 * Enable redzoning and last user accounting, except for caches with
2112 * large objects, if the increased size would increase the object size
2113 * above the next power of two: caches with object sizes just above a
2114 * power of two have a significant amount of internal fragmentation.
2115 */
2116 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2117 2 * sizeof(unsigned long long)))
2118 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2119 if (!(flags & SLAB_DESTROY_BY_RCU))
2120 flags |= SLAB_POISON;
2121 #endif
2122 if (flags & SLAB_DESTROY_BY_RCU)
2123 BUG_ON(flags & SLAB_POISON);
2124 #endif
2125
2126 /*
2127 * Check that size is in terms of words. This is needed to avoid
2128 * unaligned accesses for some archs when redzoning is used, and makes
2129 * sure any on-slab bufctl's are also correctly aligned.
2130 */
2131 if (size & (BYTES_PER_WORD - 1)) {
2132 size += (BYTES_PER_WORD - 1);
2133 size &= ~(BYTES_PER_WORD - 1);
2134 }
2135
2136 if (flags & SLAB_RED_ZONE) {
2137 ralign = REDZONE_ALIGN;
2138 /* If redzoning, ensure that the second redzone is suitably
2139 * aligned, by adjusting the object size accordingly. */
2140 size += REDZONE_ALIGN - 1;
2141 size &= ~(REDZONE_ALIGN - 1);
2142 }
2143
2144 /* 3) caller mandated alignment */
2145 if (ralign < cachep->align) {
2146 ralign = cachep->align;
2147 }
2148 /* disable debug if necessary */
2149 if (ralign > __alignof__(unsigned long long))
2150 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2151 /*
2152 * 4) Store it.
2153 */
2154 cachep->align = ralign;
2155
2156 if (slab_is_available())
2157 gfp = GFP_KERNEL;
2158 else
2159 gfp = GFP_NOWAIT;
2160
2161 #if DEBUG
2162
2163 /*
2164 * Both debugging options require word-alignment which is calculated
2165 * into align above.
2166 */
2167 if (flags & SLAB_RED_ZONE) {
2168 /* add space for red zone words */
2169 cachep->obj_offset += sizeof(unsigned long long);
2170 size += 2 * sizeof(unsigned long long);
2171 }
2172 if (flags & SLAB_STORE_USER) {
2173 /* user store requires one word storage behind the end of
2174 * the real object. But if the second red zone needs to be
2175 * aligned to 64 bits, we must allow that much space.
2176 */
2177 if (flags & SLAB_RED_ZONE)
2178 size += REDZONE_ALIGN;
2179 else
2180 size += BYTES_PER_WORD;
2181 }
2182 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2183 /*
2184 * To activate debug pagealloc, off-slab management is necessary
2185 * requirement. In early phase of initialization, small sized slab
2186 * doesn't get initialized so it would not be possible. So, we need
2187 * to check size >= 256. It guarantees that all necessary small
2188 * sized slab is initialized in current slab initialization sequence.
2189 */
2190 if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2191 size >= 256 && cachep->object_size > cache_line_size() &&
2192 ALIGN(size, cachep->align) < PAGE_SIZE) {
2193 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2194 size = PAGE_SIZE;
2195 }
2196 #endif
2197 #endif
2198
2199 /*
2200 * Determine if the slab management is 'on' or 'off' slab.
2201 * (bootstrapping cannot cope with offslab caches so don't do
2202 * it too early on. Always use on-slab management when
2203 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2204 */
2205 if (size >= OFF_SLAB_MIN_SIZE && !slab_early_init &&
2206 !(flags & SLAB_NOLEAKTRACE))
2207 /*
2208 * Size is large, assume best to place the slab management obj
2209 * off-slab (should allow better packing of objs).
2210 */
2211 flags |= CFLGS_OFF_SLAB;
2212
2213 size = ALIGN(size, cachep->align);
2214 /*
2215 * We should restrict the number of objects in a slab to implement
2216 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2217 */
2218 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2219 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2220
2221 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2222
2223 if (!cachep->num)
2224 return -E2BIG;
2225
2226 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2227
2228 /*
2229 * If the slab has been placed off-slab, and we have enough space then
2230 * move it on-slab. This is at the expense of any extra colouring.
2231 */
2232 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2233 flags &= ~CFLGS_OFF_SLAB;
2234 left_over -= freelist_size;
2235 }
2236
2237 if (flags & CFLGS_OFF_SLAB) {
2238 /* really off slab. No need for manual alignment */
2239 freelist_size = calculate_freelist_size(cachep->num, 0);
2240
2241 #ifdef CONFIG_PAGE_POISONING
2242 /* If we're going to use the generic kernel_map_pages()
2243 * poisoning, then it's going to smash the contents of
2244 * the redzone and userword anyhow, so switch them off.
2245 */
2246 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2247 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2248 #endif
2249 }
2250
2251 cachep->colour_off = cache_line_size();
2252 /* Offset must be a multiple of the alignment. */
2253 if (cachep->colour_off < cachep->align)
2254 cachep->colour_off = cachep->align;
2255 cachep->colour = left_over / cachep->colour_off;
2256 cachep->freelist_size = freelist_size;
2257 cachep->flags = flags;
2258 cachep->allocflags = __GFP_COMP;
2259 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2260 cachep->allocflags |= GFP_DMA;
2261 cachep->size = size;
2262 cachep->reciprocal_buffer_size = reciprocal_value(size);
2263
2264 if (flags & CFLGS_OFF_SLAB) {
2265 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2266 /*
2267 * This is a possibility for one of the kmalloc_{dma,}_caches.
2268 * But since we go off slab only for object size greater than
2269 * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
2270 * in ascending order,this should not happen at all.
2271 * But leave a BUG_ON for some lucky dude.
2272 */
2273 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2274 }
2275
2276 err = setup_cpu_cache(cachep, gfp);
2277 if (err) {
2278 __kmem_cache_release(cachep);
2279 return err;
2280 }
2281
2282 return 0;
2283 }
2284
2285 #if DEBUG
2286 static void check_irq_off(void)
2287 {
2288 BUG_ON(!irqs_disabled());
2289 }
2290
2291 static void check_irq_on(void)
2292 {
2293 BUG_ON(irqs_disabled());
2294 }
2295
2296 static void check_spinlock_acquired(struct kmem_cache *cachep)
2297 {
2298 #ifdef CONFIG_SMP
2299 check_irq_off();
2300 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2301 #endif
2302 }
2303
2304 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2305 {
2306 #ifdef CONFIG_SMP
2307 check_irq_off();
2308 assert_spin_locked(&get_node(cachep, node)->list_lock);
2309 #endif
2310 }
2311
2312 #else
2313 #define check_irq_off() do { } while(0)
2314 #define check_irq_on() do { } while(0)
2315 #define check_spinlock_acquired(x) do { } while(0)
2316 #define check_spinlock_acquired_node(x, y) do { } while(0)
2317 #endif
2318
2319 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2320 struct array_cache *ac,
2321 int force, int node);
2322
2323 static void do_drain(void *arg)
2324 {
2325 struct kmem_cache *cachep = arg;
2326 struct array_cache *ac;
2327 int node = numa_mem_id();
2328 struct kmem_cache_node *n;
2329 LIST_HEAD(list);
2330
2331 check_irq_off();
2332 ac = cpu_cache_get(cachep);
2333 n = get_node(cachep, node);
2334 spin_lock(&n->list_lock);
2335 free_block(cachep, ac->entry, ac->avail, node, &list);
2336 spin_unlock(&n->list_lock);
2337 slabs_destroy(cachep, &list);
2338 ac->avail = 0;
2339 }
2340
2341 static void drain_cpu_caches(struct kmem_cache *cachep)
2342 {
2343 struct kmem_cache_node *n;
2344 int node;
2345
2346 on_each_cpu(do_drain, cachep, 1);
2347 check_irq_on();
2348 for_each_kmem_cache_node(cachep, node, n)
2349 if (n->alien)
2350 drain_alien_cache(cachep, n->alien);
2351
2352 for_each_kmem_cache_node(cachep, node, n)
2353 drain_array(cachep, n, n->shared, 1, node);
2354 }
2355
2356 /*
2357 * Remove slabs from the list of free slabs.
2358 * Specify the number of slabs to drain in tofree.
2359 *
2360 * Returns the actual number of slabs released.
2361 */
2362 static int drain_freelist(struct kmem_cache *cache,
2363 struct kmem_cache_node *n, int tofree)
2364 {
2365 struct list_head *p;
2366 int nr_freed;
2367 struct page *page;
2368
2369 nr_freed = 0;
2370 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2371
2372 spin_lock_irq(&n->list_lock);
2373 p = n->slabs_free.prev;
2374 if (p == &n->slabs_free) {
2375 spin_unlock_irq(&n->list_lock);
2376 goto out;
2377 }
2378
2379 page = list_entry(p, struct page, lru);
2380 #if DEBUG
2381 BUG_ON(page->active);
2382 #endif
2383 list_del(&page->lru);
2384 /*
2385 * Safe to drop the lock. The slab is no longer linked
2386 * to the cache.
2387 */
2388 n->free_objects -= cache->num;
2389 spin_unlock_irq(&n->list_lock);
2390 slab_destroy(cache, page);
2391 nr_freed++;
2392 }
2393 out:
2394 return nr_freed;
2395 }
2396
2397 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2398 {
2399 int ret = 0;
2400 int node;
2401 struct kmem_cache_node *n;
2402
2403 drain_cpu_caches(cachep);
2404
2405 check_irq_on();
2406 for_each_kmem_cache_node(cachep, node, n) {
2407 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2408
2409 ret += !list_empty(&n->slabs_full) ||
2410 !list_empty(&n->slabs_partial);
2411 }
2412 return (ret ? 1 : 0);
2413 }
2414
2415 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2416 {
2417 return __kmem_cache_shrink(cachep, false);
2418 }
2419
2420 void __kmem_cache_release(struct kmem_cache *cachep)
2421 {
2422 int i;
2423 struct kmem_cache_node *n;
2424
2425 free_percpu(cachep->cpu_cache);
2426
2427 /* NUMA: free the node structures */
2428 for_each_kmem_cache_node(cachep, i, n) {
2429 kfree(n->shared);
2430 free_alien_cache(n->alien);
2431 kfree(n);
2432 cachep->node[i] = NULL;
2433 }
2434 }
2435
2436 /*
2437 * Get the memory for a slab management obj.
2438 *
2439 * For a slab cache when the slab descriptor is off-slab, the
2440 * slab descriptor can't come from the same cache which is being created,
2441 * Because if it is the case, that means we defer the creation of
2442 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2443 * And we eventually call down to __kmem_cache_create(), which
2444 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2445 * This is a "chicken-and-egg" problem.
2446 *
2447 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2448 * which are all initialized during kmem_cache_init().
2449 */
2450 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2451 struct page *page, int colour_off,
2452 gfp_t local_flags, int nodeid)
2453 {
2454 void *freelist;
2455 void *addr = page_address(page);
2456
2457 if (OFF_SLAB(cachep)) {
2458 /* Slab management obj is off-slab. */
2459 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2460 local_flags, nodeid);
2461 if (!freelist)
2462 return NULL;
2463 } else {
2464 freelist = addr + colour_off;
2465 colour_off += cachep->freelist_size;
2466 }
2467 page->active = 0;
2468 page->s_mem = addr + colour_off;
2469 return freelist;
2470 }
2471
2472 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2473 {
2474 return ((freelist_idx_t *)page->freelist)[idx];
2475 }
2476
2477 static inline void set_free_obj(struct page *page,
2478 unsigned int idx, freelist_idx_t val)
2479 {
2480 ((freelist_idx_t *)(page->freelist))[idx] = val;
2481 }
2482
2483 static void cache_init_objs(struct kmem_cache *cachep,
2484 struct page *page)
2485 {
2486 int i;
2487
2488 for (i = 0; i < cachep->num; i++) {
2489 void *objp = index_to_obj(cachep, page, i);
2490 #if DEBUG
2491 /* need to poison the objs? */
2492 if (cachep->flags & SLAB_POISON)
2493 poison_obj(cachep, objp, POISON_FREE);
2494 if (cachep->flags & SLAB_STORE_USER)
2495 *dbg_userword(cachep, objp) = NULL;
2496
2497 if (cachep->flags & SLAB_RED_ZONE) {
2498 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2499 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2500 }
2501 /*
2502 * Constructors are not allowed to allocate memory from the same
2503 * cache which they are a constructor for. Otherwise, deadlock.
2504 * They must also be threaded.
2505 */
2506 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2507 cachep->ctor(objp + obj_offset(cachep));
2508
2509 if (cachep->flags & SLAB_RED_ZONE) {
2510 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2511 slab_error(cachep, "constructor overwrote the"
2512 " end of an object");
2513 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2514 slab_error(cachep, "constructor overwrote the"
2515 " start of an object");
2516 }
2517 if ((cachep->size % PAGE_SIZE) == 0 &&
2518 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2519 kernel_map_pages(virt_to_page(objp),
2520 cachep->size / PAGE_SIZE, 0);
2521 #else
2522 if (cachep->ctor)
2523 cachep->ctor(objp);
2524 #endif
2525 set_obj_status(page, i, OBJECT_FREE);
2526 set_free_obj(page, i, i);
2527 }
2528 }
2529
2530 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2531 {
2532 if (CONFIG_ZONE_DMA_FLAG) {
2533 if (flags & GFP_DMA)
2534 BUG_ON(!(cachep->allocflags & GFP_DMA));
2535 else
2536 BUG_ON(cachep->allocflags & GFP_DMA);
2537 }
2538 }
2539
2540 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2541 int nodeid)
2542 {
2543 void *objp;
2544
2545 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2546 page->active++;
2547 #if DEBUG
2548 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2549 #endif
2550
2551 return objp;
2552 }
2553
2554 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2555 void *objp, int nodeid)
2556 {
2557 unsigned int objnr = obj_to_index(cachep, page, objp);
2558 #if DEBUG
2559 unsigned int i;
2560
2561 /* Verify that the slab belongs to the intended node */
2562 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2563
2564 /* Verify double free bug */
2565 for (i = page->active; i < cachep->num; i++) {
2566 if (get_free_obj(page, i) == objnr) {
2567 printk(KERN_ERR "slab: double free detected in cache "
2568 "'%s', objp %p\n", cachep->name, objp);
2569 BUG();
2570 }
2571 }
2572 #endif
2573 page->active--;
2574 set_free_obj(page, page->active, objnr);
2575 }
2576
2577 /*
2578 * Map pages beginning at addr to the given cache and slab. This is required
2579 * for the slab allocator to be able to lookup the cache and slab of a
2580 * virtual address for kfree, ksize, and slab debugging.
2581 */
2582 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2583 void *freelist)
2584 {
2585 page->slab_cache = cache;
2586 page->freelist = freelist;
2587 }
2588
2589 /*
2590 * Grow (by 1) the number of slabs within a cache. This is called by
2591 * kmem_cache_alloc() when there are no active objs left in a cache.
2592 */
2593 static int cache_grow(struct kmem_cache *cachep,
2594 gfp_t flags, int nodeid, struct page *page)
2595 {
2596 void *freelist;
2597 size_t offset;
2598 gfp_t local_flags;
2599 struct kmem_cache_node *n;
2600
2601 /*
2602 * Be lazy and only check for valid flags here, keeping it out of the
2603 * critical path in kmem_cache_alloc().
2604 */
2605 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2606 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2607 BUG();
2608 }
2609 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2610
2611 /* Take the node list lock to change the colour_next on this node */
2612 check_irq_off();
2613 n = get_node(cachep, nodeid);
2614 spin_lock(&n->list_lock);
2615
2616 /* Get colour for the slab, and cal the next value. */
2617 offset = n->colour_next;
2618 n->colour_next++;
2619 if (n->colour_next >= cachep->colour)
2620 n->colour_next = 0;
2621 spin_unlock(&n->list_lock);
2622
2623 offset *= cachep->colour_off;
2624
2625 if (gfpflags_allow_blocking(local_flags))
2626 local_irq_enable();
2627
2628 /*
2629 * The test for missing atomic flag is performed here, rather than
2630 * the more obvious place, simply to reduce the critical path length
2631 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2632 * will eventually be caught here (where it matters).
2633 */
2634 kmem_flagcheck(cachep, flags);
2635
2636 /*
2637 * Get mem for the objs. Attempt to allocate a physical page from
2638 * 'nodeid'.
2639 */
2640 if (!page)
2641 page = kmem_getpages(cachep, local_flags, nodeid);
2642 if (!page)
2643 goto failed;
2644
2645 /* Get slab management. */
2646 freelist = alloc_slabmgmt(cachep, page, offset,
2647 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2648 if (!freelist)
2649 goto opps1;
2650
2651 slab_map_pages(cachep, page, freelist);
2652
2653 cache_init_objs(cachep, page);
2654
2655 if (gfpflags_allow_blocking(local_flags))
2656 local_irq_disable();
2657 check_irq_off();
2658 spin_lock(&n->list_lock);
2659
2660 /* Make slab active. */
2661 list_add_tail(&page->lru, &(n->slabs_free));
2662 STATS_INC_GROWN(cachep);
2663 n->free_objects += cachep->num;
2664 spin_unlock(&n->list_lock);
2665 return 1;
2666 opps1:
2667 kmem_freepages(cachep, page);
2668 failed:
2669 if (gfpflags_allow_blocking(local_flags))
2670 local_irq_disable();
2671 return 0;
2672 }
2673
2674 #if DEBUG
2675
2676 /*
2677 * Perform extra freeing checks:
2678 * - detect bad pointers.
2679 * - POISON/RED_ZONE checking
2680 */
2681 static void kfree_debugcheck(const void *objp)
2682 {
2683 if (!virt_addr_valid(objp)) {
2684 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2685 (unsigned long)objp);
2686 BUG();
2687 }
2688 }
2689
2690 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2691 {
2692 unsigned long long redzone1, redzone2;
2693
2694 redzone1 = *dbg_redzone1(cache, obj);
2695 redzone2 = *dbg_redzone2(cache, obj);
2696
2697 /*
2698 * Redzone is ok.
2699 */
2700 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2701 return;
2702
2703 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2704 slab_error(cache, "double free detected");
2705 else
2706 slab_error(cache, "memory outside object was overwritten");
2707
2708 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2709 obj, redzone1, redzone2);
2710 }
2711
2712 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2713 unsigned long caller)
2714 {
2715 unsigned int objnr;
2716 struct page *page;
2717
2718 BUG_ON(virt_to_cache(objp) != cachep);
2719
2720 objp -= obj_offset(cachep);
2721 kfree_debugcheck(objp);
2722 page = virt_to_head_page(objp);
2723
2724 if (cachep->flags & SLAB_RED_ZONE) {
2725 verify_redzone_free(cachep, objp);
2726 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2727 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2728 }
2729 if (cachep->flags & SLAB_STORE_USER)
2730 *dbg_userword(cachep, objp) = (void *)caller;
2731
2732 objnr = obj_to_index(cachep, page, objp);
2733
2734 BUG_ON(objnr >= cachep->num);
2735 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2736
2737 set_obj_status(page, objnr, OBJECT_FREE);
2738 if (cachep->flags & SLAB_POISON) {
2739 #ifdef CONFIG_DEBUG_PAGEALLOC
2740 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2741 store_stackinfo(cachep, objp, caller);
2742 kernel_map_pages(virt_to_page(objp),
2743 cachep->size / PAGE_SIZE, 0);
2744 } else {
2745 poison_obj(cachep, objp, POISON_FREE);
2746 }
2747 #else
2748 poison_obj(cachep, objp, POISON_FREE);
2749 #endif
2750 }
2751 return objp;
2752 }
2753
2754 #else
2755 #define kfree_debugcheck(x) do { } while(0)
2756 #define cache_free_debugcheck(x,objp,z) (objp)
2757 #endif
2758
2759 static struct page *get_first_slab(struct kmem_cache_node *n)
2760 {
2761 struct page *page;
2762
2763 page = list_first_entry_or_null(&n->slabs_partial,
2764 struct page, lru);
2765 if (!page) {
2766 n->free_touched = 1;
2767 page = list_first_entry_or_null(&n->slabs_free,
2768 struct page, lru);
2769 }
2770
2771 return page;
2772 }
2773
2774 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2775 bool force_refill)
2776 {
2777 int batchcount;
2778 struct kmem_cache_node *n;
2779 struct array_cache *ac;
2780 int node;
2781
2782 check_irq_off();
2783 node = numa_mem_id();
2784 if (unlikely(force_refill))
2785 goto force_grow;
2786 retry:
2787 ac = cpu_cache_get(cachep);
2788 batchcount = ac->batchcount;
2789 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2790 /*
2791 * If there was little recent activity on this cache, then
2792 * perform only a partial refill. Otherwise we could generate
2793 * refill bouncing.
2794 */
2795 batchcount = BATCHREFILL_LIMIT;
2796 }
2797 n = get_node(cachep, node);
2798
2799 BUG_ON(ac->avail > 0 || !n);
2800 spin_lock(&n->list_lock);
2801
2802 /* See if we can refill from the shared array */
2803 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2804 n->shared->touched = 1;
2805 goto alloc_done;
2806 }
2807
2808 while (batchcount > 0) {
2809 struct page *page;
2810 /* Get slab alloc is to come from. */
2811 page = get_first_slab(n);
2812 if (!page)
2813 goto must_grow;
2814
2815 check_spinlock_acquired(cachep);
2816
2817 /*
2818 * The slab was either on partial or free list so
2819 * there must be at least one object available for
2820 * allocation.
2821 */
2822 BUG_ON(page->active >= cachep->num);
2823
2824 while (page->active < cachep->num && batchcount--) {
2825 STATS_INC_ALLOCED(cachep);
2826 STATS_INC_ACTIVE(cachep);
2827 STATS_SET_HIGH(cachep);
2828
2829 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2830 node));
2831 }
2832
2833 /* move slabp to correct slabp list: */
2834 list_del(&page->lru);
2835 if (page->active == cachep->num)
2836 list_add(&page->lru, &n->slabs_full);
2837 else
2838 list_add(&page->lru, &n->slabs_partial);
2839 }
2840
2841 must_grow:
2842 n->free_objects -= ac->avail;
2843 alloc_done:
2844 spin_unlock(&n->list_lock);
2845
2846 if (unlikely(!ac->avail)) {
2847 int x;
2848 force_grow:
2849 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2850
2851 /* cache_grow can reenable interrupts, then ac could change. */
2852 ac = cpu_cache_get(cachep);
2853 node = numa_mem_id();
2854
2855 /* no objects in sight? abort */
2856 if (!x && (ac->avail == 0 || force_refill))
2857 return NULL;
2858
2859 if (!ac->avail) /* objects refilled by interrupt? */
2860 goto retry;
2861 }
2862 ac->touched = 1;
2863
2864 return ac_get_obj(cachep, ac, flags, force_refill);
2865 }
2866
2867 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2868 gfp_t flags)
2869 {
2870 might_sleep_if(gfpflags_allow_blocking(flags));
2871 #if DEBUG
2872 kmem_flagcheck(cachep, flags);
2873 #endif
2874 }
2875
2876 #if DEBUG
2877 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2878 gfp_t flags, void *objp, unsigned long caller)
2879 {
2880 struct page *page;
2881
2882 if (!objp)
2883 return objp;
2884 if (cachep->flags & SLAB_POISON) {
2885 #ifdef CONFIG_DEBUG_PAGEALLOC
2886 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2887 kernel_map_pages(virt_to_page(objp),
2888 cachep->size / PAGE_SIZE, 1);
2889 else
2890 check_poison_obj(cachep, objp);
2891 #else
2892 check_poison_obj(cachep, objp);
2893 #endif
2894 poison_obj(cachep, objp, POISON_INUSE);
2895 }
2896 if (cachep->flags & SLAB_STORE_USER)
2897 *dbg_userword(cachep, objp) = (void *)caller;
2898
2899 if (cachep->flags & SLAB_RED_ZONE) {
2900 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2901 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2902 slab_error(cachep, "double free, or memory outside"
2903 " object was overwritten");
2904 printk(KERN_ERR
2905 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2906 objp, *dbg_redzone1(cachep, objp),
2907 *dbg_redzone2(cachep, objp));
2908 }
2909 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2910 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2911 }
2912
2913 page = virt_to_head_page(objp);
2914 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2915 objp += obj_offset(cachep);
2916 if (cachep->ctor && cachep->flags & SLAB_POISON)
2917 cachep->ctor(objp);
2918 if (ARCH_SLAB_MINALIGN &&
2919 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2920 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2921 objp, (int)ARCH_SLAB_MINALIGN);
2922 }
2923 return objp;
2924 }
2925 #else
2926 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2927 #endif
2928
2929 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2930 {
2931 if (unlikely(cachep == kmem_cache))
2932 return false;
2933
2934 return should_failslab(cachep->object_size, flags, cachep->flags);
2935 }
2936
2937 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2938 {
2939 void *objp;
2940 struct array_cache *ac;
2941 bool force_refill = false;
2942
2943 check_irq_off();
2944
2945 ac = cpu_cache_get(cachep);
2946 if (likely(ac->avail)) {
2947 ac->touched = 1;
2948 objp = ac_get_obj(cachep, ac, flags, false);
2949
2950 /*
2951 * Allow for the possibility all avail objects are not allowed
2952 * by the current flags
2953 */
2954 if (objp) {
2955 STATS_INC_ALLOCHIT(cachep);
2956 goto out;
2957 }
2958 force_refill = true;
2959 }
2960
2961 STATS_INC_ALLOCMISS(cachep);
2962 objp = cache_alloc_refill(cachep, flags, force_refill);
2963 /*
2964 * the 'ac' may be updated by cache_alloc_refill(),
2965 * and kmemleak_erase() requires its correct value.
2966 */
2967 ac = cpu_cache_get(cachep);
2968
2969 out:
2970 /*
2971 * To avoid a false negative, if an object that is in one of the
2972 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2973 * treat the array pointers as a reference to the object.
2974 */
2975 if (objp)
2976 kmemleak_erase(&ac->entry[ac->avail]);
2977 return objp;
2978 }
2979
2980 #ifdef CONFIG_NUMA
2981 /*
2982 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2983 *
2984 * If we are in_interrupt, then process context, including cpusets and
2985 * mempolicy, may not apply and should not be used for allocation policy.
2986 */
2987 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2988 {
2989 int nid_alloc, nid_here;
2990
2991 if (in_interrupt() || (flags & __GFP_THISNODE))
2992 return NULL;
2993 nid_alloc = nid_here = numa_mem_id();
2994 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2995 nid_alloc = cpuset_slab_spread_node();
2996 else if (current->mempolicy)
2997 nid_alloc = mempolicy_slab_node();
2998 if (nid_alloc != nid_here)
2999 return ____cache_alloc_node(cachep, flags, nid_alloc);
3000 return NULL;
3001 }
3002
3003 /*
3004 * Fallback function if there was no memory available and no objects on a
3005 * certain node and fall back is permitted. First we scan all the
3006 * available node for available objects. If that fails then we
3007 * perform an allocation without specifying a node. This allows the page
3008 * allocator to do its reclaim / fallback magic. We then insert the
3009 * slab into the proper nodelist and then allocate from it.
3010 */
3011 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3012 {
3013 struct zonelist *zonelist;
3014 gfp_t local_flags;
3015 struct zoneref *z;
3016 struct zone *zone;
3017 enum zone_type high_zoneidx = gfp_zone(flags);
3018 void *obj = NULL;
3019 int nid;
3020 unsigned int cpuset_mems_cookie;
3021
3022 if (flags & __GFP_THISNODE)
3023 return NULL;
3024
3025 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3026
3027 retry_cpuset:
3028 cpuset_mems_cookie = read_mems_allowed_begin();
3029 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3030
3031 retry:
3032 /*
3033 * Look through allowed nodes for objects available
3034 * from existing per node queues.
3035 */
3036 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3037 nid = zone_to_nid(zone);
3038
3039 if (cpuset_zone_allowed(zone, flags) &&
3040 get_node(cache, nid) &&
3041 get_node(cache, nid)->free_objects) {
3042 obj = ____cache_alloc_node(cache,
3043 gfp_exact_node(flags), nid);
3044 if (obj)
3045 break;
3046 }
3047 }
3048
3049 if (!obj) {
3050 /*
3051 * This allocation will be performed within the constraints
3052 * of the current cpuset / memory policy requirements.
3053 * We may trigger various forms of reclaim on the allowed
3054 * set and go into memory reserves if necessary.
3055 */
3056 struct page *page;
3057
3058 if (gfpflags_allow_blocking(local_flags))
3059 local_irq_enable();
3060 kmem_flagcheck(cache, flags);
3061 page = kmem_getpages(cache, local_flags, numa_mem_id());
3062 if (gfpflags_allow_blocking(local_flags))
3063 local_irq_disable();
3064 if (page) {
3065 /*
3066 * Insert into the appropriate per node queues
3067 */
3068 nid = page_to_nid(page);
3069 if (cache_grow(cache, flags, nid, page)) {
3070 obj = ____cache_alloc_node(cache,
3071 gfp_exact_node(flags), nid);
3072 if (!obj)
3073 /*
3074 * Another processor may allocate the
3075 * objects in the slab since we are
3076 * not holding any locks.
3077 */
3078 goto retry;
3079 } else {
3080 /* cache_grow already freed obj */
3081 obj = NULL;
3082 }
3083 }
3084 }
3085
3086 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3087 goto retry_cpuset;
3088 return obj;
3089 }
3090
3091 /*
3092 * A interface to enable slab creation on nodeid
3093 */
3094 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3095 int nodeid)
3096 {
3097 struct page *page;
3098 struct kmem_cache_node *n;
3099 void *obj;
3100 int x;
3101
3102 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3103 n = get_node(cachep, nodeid);
3104 BUG_ON(!n);
3105
3106 retry:
3107 check_irq_off();
3108 spin_lock(&n->list_lock);
3109 page = get_first_slab(n);
3110 if (!page)
3111 goto must_grow;
3112
3113 check_spinlock_acquired_node(cachep, nodeid);
3114
3115 STATS_INC_NODEALLOCS(cachep);
3116 STATS_INC_ACTIVE(cachep);
3117 STATS_SET_HIGH(cachep);
3118
3119 BUG_ON(page->active == cachep->num);
3120
3121 obj = slab_get_obj(cachep, page, nodeid);
3122 n->free_objects--;
3123 /* move slabp to correct slabp list: */
3124 list_del(&page->lru);
3125
3126 if (page->active == cachep->num)
3127 list_add(&page->lru, &n->slabs_full);
3128 else
3129 list_add(&page->lru, &n->slabs_partial);
3130
3131 spin_unlock(&n->list_lock);
3132 goto done;
3133
3134 must_grow:
3135 spin_unlock(&n->list_lock);
3136 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3137 if (x)
3138 goto retry;
3139
3140 return fallback_alloc(cachep, flags);
3141
3142 done:
3143 return obj;
3144 }
3145
3146 static __always_inline void *
3147 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3148 unsigned long caller)
3149 {
3150 unsigned long save_flags;
3151 void *ptr;
3152 int slab_node = numa_mem_id();
3153
3154 flags &= gfp_allowed_mask;
3155
3156 lockdep_trace_alloc(flags);
3157
3158 if (slab_should_failslab(cachep, flags))
3159 return NULL;
3160
3161 cachep = memcg_kmem_get_cache(cachep, flags);
3162
3163 cache_alloc_debugcheck_before(cachep, flags);
3164 local_irq_save(save_flags);
3165
3166 if (nodeid == NUMA_NO_NODE)
3167 nodeid = slab_node;
3168
3169 if (unlikely(!get_node(cachep, nodeid))) {
3170 /* Node not bootstrapped yet */
3171 ptr = fallback_alloc(cachep, flags);
3172 goto out;
3173 }
3174
3175 if (nodeid == slab_node) {
3176 /*
3177 * Use the locally cached objects if possible.
3178 * However ____cache_alloc does not allow fallback
3179 * to other nodes. It may fail while we still have
3180 * objects on other nodes available.
3181 */
3182 ptr = ____cache_alloc(cachep, flags);
3183 if (ptr)
3184 goto out;
3185 }
3186 /* ___cache_alloc_node can fall back to other nodes */
3187 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3188 out:
3189 local_irq_restore(save_flags);
3190 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3191 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3192 flags);
3193
3194 if (likely(ptr)) {
3195 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3196 if (unlikely(flags & __GFP_ZERO))
3197 memset(ptr, 0, cachep->object_size);
3198 }
3199
3200 memcg_kmem_put_cache(cachep);
3201 return ptr;
3202 }
3203
3204 static __always_inline void *
3205 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3206 {
3207 void *objp;
3208
3209 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3210 objp = alternate_node_alloc(cache, flags);
3211 if (objp)
3212 goto out;
3213 }
3214 objp = ____cache_alloc(cache, flags);
3215
3216 /*
3217 * We may just have run out of memory on the local node.
3218 * ____cache_alloc_node() knows how to locate memory on other nodes
3219 */
3220 if (!objp)
3221 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3222
3223 out:
3224 return objp;
3225 }
3226 #else
3227
3228 static __always_inline void *
3229 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3230 {
3231 return ____cache_alloc(cachep, flags);
3232 }
3233
3234 #endif /* CONFIG_NUMA */
3235
3236 static __always_inline void *
3237 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3238 {
3239 unsigned long save_flags;
3240 void *objp;
3241
3242 flags &= gfp_allowed_mask;
3243
3244 lockdep_trace_alloc(flags);
3245
3246 if (slab_should_failslab(cachep, flags))
3247 return NULL;
3248
3249 cachep = memcg_kmem_get_cache(cachep, flags);
3250
3251 cache_alloc_debugcheck_before(cachep, flags);
3252 local_irq_save(save_flags);
3253 objp = __do_cache_alloc(cachep, flags);
3254 local_irq_restore(save_flags);
3255 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3256 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3257 flags);
3258 prefetchw(objp);
3259
3260 if (likely(objp)) {
3261 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3262 if (unlikely(flags & __GFP_ZERO))
3263 memset(objp, 0, cachep->object_size);
3264 }
3265
3266 memcg_kmem_put_cache(cachep);
3267 return objp;
3268 }
3269
3270 /*
3271 * Caller needs to acquire correct kmem_cache_node's list_lock
3272 * @list: List of detached free slabs should be freed by caller
3273 */
3274 static void free_block(struct kmem_cache *cachep, void **objpp,
3275 int nr_objects, int node, struct list_head *list)
3276 {
3277 int i;
3278 struct kmem_cache_node *n = get_node(cachep, node);
3279
3280 for (i = 0; i < nr_objects; i++) {
3281 void *objp;
3282 struct page *page;
3283
3284 clear_obj_pfmemalloc(&objpp[i]);
3285 objp = objpp[i];
3286
3287 page = virt_to_head_page(objp);
3288 list_del(&page->lru);
3289 check_spinlock_acquired_node(cachep, node);
3290 slab_put_obj(cachep, page, objp, node);
3291 STATS_DEC_ACTIVE(cachep);
3292 n->free_objects++;
3293
3294 /* fixup slab chains */
3295 if (page->active == 0) {
3296 if (n->free_objects > n->free_limit) {
3297 n->free_objects -= cachep->num;
3298 list_add_tail(&page->lru, list);
3299 } else {
3300 list_add(&page->lru, &n->slabs_free);
3301 }
3302 } else {
3303 /* Unconditionally move a slab to the end of the
3304 * partial list on free - maximum time for the
3305 * other objects to be freed, too.
3306 */
3307 list_add_tail(&page->lru, &n->slabs_partial);
3308 }
3309 }
3310 }
3311
3312 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3313 {
3314 int batchcount;
3315 struct kmem_cache_node *n;
3316 int node = numa_mem_id();
3317 LIST_HEAD(list);
3318
3319 batchcount = ac->batchcount;
3320 #if DEBUG
3321 BUG_ON(!batchcount || batchcount > ac->avail);
3322 #endif
3323 check_irq_off();
3324 n = get_node(cachep, node);
3325 spin_lock(&n->list_lock);
3326 if (n->shared) {
3327 struct array_cache *shared_array = n->shared;
3328 int max = shared_array->limit - shared_array->avail;
3329 if (max) {
3330 if (batchcount > max)
3331 batchcount = max;
3332 memcpy(&(shared_array->entry[shared_array->avail]),
3333 ac->entry, sizeof(void *) * batchcount);
3334 shared_array->avail += batchcount;
3335 goto free_done;
3336 }
3337 }
3338
3339 free_block(cachep, ac->entry, batchcount, node, &list);
3340 free_done:
3341 #if STATS
3342 {
3343 int i = 0;
3344 struct page *page;
3345
3346 list_for_each_entry(page, &n->slabs_free, lru) {
3347 BUG_ON(page->active);
3348
3349 i++;
3350 }
3351 STATS_SET_FREEABLE(cachep, i);
3352 }
3353 #endif
3354 spin_unlock(&n->list_lock);
3355 slabs_destroy(cachep, &list);
3356 ac->avail -= batchcount;
3357 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3358 }
3359
3360 /*
3361 * Release an obj back to its cache. If the obj has a constructed state, it must
3362 * be in this state _before_ it is released. Called with disabled ints.
3363 */
3364 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3365 unsigned long caller)
3366 {
3367 struct array_cache *ac = cpu_cache_get(cachep);
3368
3369 check_irq_off();
3370 kmemleak_free_recursive(objp, cachep->flags);
3371 objp = cache_free_debugcheck(cachep, objp, caller);
3372
3373 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3374
3375 /*
3376 * Skip calling cache_free_alien() when the platform is not numa.
3377 * This will avoid cache misses that happen while accessing slabp (which
3378 * is per page memory reference) to get nodeid. Instead use a global
3379 * variable to skip the call, which is mostly likely to be present in
3380 * the cache.
3381 */
3382 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3383 return;
3384
3385 if (ac->avail < ac->limit) {
3386 STATS_INC_FREEHIT(cachep);
3387 } else {
3388 STATS_INC_FREEMISS(cachep);
3389 cache_flusharray(cachep, ac);
3390 }
3391
3392 ac_put_obj(cachep, ac, objp);
3393 }
3394
3395 /**
3396 * kmem_cache_alloc - Allocate an object
3397 * @cachep: The cache to allocate from.
3398 * @flags: See kmalloc().
3399 *
3400 * Allocate an object from this cache. The flags are only relevant
3401 * if the cache has no available objects.
3402 */
3403 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3404 {
3405 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3406
3407 trace_kmem_cache_alloc(_RET_IP_, ret,
3408 cachep->object_size, cachep->size, flags);
3409
3410 return ret;
3411 }
3412 EXPORT_SYMBOL(kmem_cache_alloc);
3413
3414 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3415 {
3416 __kmem_cache_free_bulk(s, size, p);
3417 }
3418 EXPORT_SYMBOL(kmem_cache_free_bulk);
3419
3420 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3421 void **p)
3422 {
3423 return __kmem_cache_alloc_bulk(s, flags, size, p);
3424 }
3425 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3426
3427 #ifdef CONFIG_TRACING
3428 void *
3429 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3430 {
3431 void *ret;
3432
3433 ret = slab_alloc(cachep, flags, _RET_IP_);
3434
3435 trace_kmalloc(_RET_IP_, ret,
3436 size, cachep->size, flags);
3437 return ret;
3438 }
3439 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3440 #endif
3441
3442 #ifdef CONFIG_NUMA
3443 /**
3444 * kmem_cache_alloc_node - Allocate an object on the specified node
3445 * @cachep: The cache to allocate from.
3446 * @flags: See kmalloc().
3447 * @nodeid: node number of the target node.
3448 *
3449 * Identical to kmem_cache_alloc but it will allocate memory on the given
3450 * node, which can improve the performance for cpu bound structures.
3451 *
3452 * Fallback to other node is possible if __GFP_THISNODE is not set.
3453 */
3454 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3455 {
3456 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3457
3458 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3459 cachep->object_size, cachep->size,
3460 flags, nodeid);
3461
3462 return ret;
3463 }
3464 EXPORT_SYMBOL(kmem_cache_alloc_node);
3465
3466 #ifdef CONFIG_TRACING
3467 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3468 gfp_t flags,
3469 int nodeid,
3470 size_t size)
3471 {
3472 void *ret;
3473
3474 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3475
3476 trace_kmalloc_node(_RET_IP_, ret,
3477 size, cachep->size,
3478 flags, nodeid);
3479 return ret;
3480 }
3481 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3482 #endif
3483
3484 static __always_inline void *
3485 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3486 {
3487 struct kmem_cache *cachep;
3488
3489 cachep = kmalloc_slab(size, flags);
3490 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3491 return cachep;
3492 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3493 }
3494
3495 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3496 {
3497 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3498 }
3499 EXPORT_SYMBOL(__kmalloc_node);
3500
3501 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3502 int node, unsigned long caller)
3503 {
3504 return __do_kmalloc_node(size, flags, node, caller);
3505 }
3506 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3507 #endif /* CONFIG_NUMA */
3508
3509 /**
3510 * __do_kmalloc - allocate memory
3511 * @size: how many bytes of memory are required.
3512 * @flags: the type of memory to allocate (see kmalloc).
3513 * @caller: function caller for debug tracking of the caller
3514 */
3515 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3516 unsigned long caller)
3517 {
3518 struct kmem_cache *cachep;
3519 void *ret;
3520
3521 cachep = kmalloc_slab(size, flags);
3522 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3523 return cachep;
3524 ret = slab_alloc(cachep, flags, caller);
3525
3526 trace_kmalloc(caller, ret,
3527 size, cachep->size, flags);
3528
3529 return ret;
3530 }
3531
3532 void *__kmalloc(size_t size, gfp_t flags)
3533 {
3534 return __do_kmalloc(size, flags, _RET_IP_);
3535 }
3536 EXPORT_SYMBOL(__kmalloc);
3537
3538 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3539 {
3540 return __do_kmalloc(size, flags, caller);
3541 }
3542 EXPORT_SYMBOL(__kmalloc_track_caller);
3543
3544 /**
3545 * kmem_cache_free - Deallocate an object
3546 * @cachep: The cache the allocation was from.
3547 * @objp: The previously allocated object.
3548 *
3549 * Free an object which was previously allocated from this
3550 * cache.
3551 */
3552 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3553 {
3554 unsigned long flags;
3555 cachep = cache_from_obj(cachep, objp);
3556 if (!cachep)
3557 return;
3558
3559 local_irq_save(flags);
3560 debug_check_no_locks_freed(objp, cachep->object_size);
3561 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3562 debug_check_no_obj_freed(objp, cachep->object_size);
3563 __cache_free(cachep, objp, _RET_IP_);
3564 local_irq_restore(flags);
3565
3566 trace_kmem_cache_free(_RET_IP_, objp);
3567 }
3568 EXPORT_SYMBOL(kmem_cache_free);
3569
3570 /**
3571 * kfree - free previously allocated memory
3572 * @objp: pointer returned by kmalloc.
3573 *
3574 * If @objp is NULL, no operation is performed.
3575 *
3576 * Don't free memory not originally allocated by kmalloc()
3577 * or you will run into trouble.
3578 */
3579 void kfree(const void *objp)
3580 {
3581 struct kmem_cache *c;
3582 unsigned long flags;
3583
3584 trace_kfree(_RET_IP_, objp);
3585
3586 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3587 return;
3588 local_irq_save(flags);
3589 kfree_debugcheck(objp);
3590 c = virt_to_cache(objp);
3591 debug_check_no_locks_freed(objp, c->object_size);
3592
3593 debug_check_no_obj_freed(objp, c->object_size);
3594 __cache_free(c, (void *)objp, _RET_IP_);
3595 local_irq_restore(flags);
3596 }
3597 EXPORT_SYMBOL(kfree);
3598
3599 /*
3600 * This initializes kmem_cache_node or resizes various caches for all nodes.
3601 */
3602 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3603 {
3604 int node;
3605 struct kmem_cache_node *n;
3606 struct array_cache *new_shared;
3607 struct alien_cache **new_alien = NULL;
3608
3609 for_each_online_node(node) {
3610
3611 if (use_alien_caches) {
3612 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3613 if (!new_alien)
3614 goto fail;
3615 }
3616
3617 new_shared = NULL;
3618 if (cachep->shared) {
3619 new_shared = alloc_arraycache(node,
3620 cachep->shared*cachep->batchcount,
3621 0xbaadf00d, gfp);
3622 if (!new_shared) {
3623 free_alien_cache(new_alien);
3624 goto fail;
3625 }
3626 }
3627
3628 n = get_node(cachep, node);
3629 if (n) {
3630 struct array_cache *shared = n->shared;
3631 LIST_HEAD(list);
3632
3633 spin_lock_irq(&n->list_lock);
3634
3635 if (shared)
3636 free_block(cachep, shared->entry,
3637 shared->avail, node, &list);
3638
3639 n->shared = new_shared;
3640 if (!n->alien) {
3641 n->alien = new_alien;
3642 new_alien = NULL;
3643 }
3644 n->free_limit = (1 + nr_cpus_node(node)) *
3645 cachep->batchcount + cachep->num;
3646 spin_unlock_irq(&n->list_lock);
3647 slabs_destroy(cachep, &list);
3648 kfree(shared);
3649 free_alien_cache(new_alien);
3650 continue;
3651 }
3652 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3653 if (!n) {
3654 free_alien_cache(new_alien);
3655 kfree(new_shared);
3656 goto fail;
3657 }
3658
3659 kmem_cache_node_init(n);
3660 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3661 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3662 n->shared = new_shared;
3663 n->alien = new_alien;
3664 n->free_limit = (1 + nr_cpus_node(node)) *
3665 cachep->batchcount + cachep->num;
3666 cachep->node[node] = n;
3667 }
3668 return 0;
3669
3670 fail:
3671 if (!cachep->list.next) {
3672 /* Cache is not active yet. Roll back what we did */
3673 node--;
3674 while (node >= 0) {
3675 n = get_node(cachep, node);
3676 if (n) {
3677 kfree(n->shared);
3678 free_alien_cache(n->alien);
3679 kfree(n);
3680 cachep->node[node] = NULL;
3681 }
3682 node--;
3683 }
3684 }
3685 return -ENOMEM;
3686 }
3687
3688 /* Always called with the slab_mutex held */
3689 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3690 int batchcount, int shared, gfp_t gfp)
3691 {
3692 struct array_cache __percpu *cpu_cache, *prev;
3693 int cpu;
3694
3695 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3696 if (!cpu_cache)
3697 return -ENOMEM;
3698
3699 prev = cachep->cpu_cache;
3700 cachep->cpu_cache = cpu_cache;
3701 kick_all_cpus_sync();
3702
3703 check_irq_on();
3704 cachep->batchcount = batchcount;
3705 cachep->limit = limit;
3706 cachep->shared = shared;
3707
3708 if (!prev)
3709 goto alloc_node;
3710
3711 for_each_online_cpu(cpu) {
3712 LIST_HEAD(list);
3713 int node;
3714 struct kmem_cache_node *n;
3715 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3716
3717 node = cpu_to_mem(cpu);
3718 n = get_node(cachep, node);
3719 spin_lock_irq(&n->list_lock);
3720 free_block(cachep, ac->entry, ac->avail, node, &list);
3721 spin_unlock_irq(&n->list_lock);
3722 slabs_destroy(cachep, &list);
3723 }
3724 free_percpu(prev);
3725
3726 alloc_node:
3727 return alloc_kmem_cache_node(cachep, gfp);
3728 }
3729
3730 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3731 int batchcount, int shared, gfp_t gfp)
3732 {
3733 int ret;
3734 struct kmem_cache *c;
3735
3736 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3737
3738 if (slab_state < FULL)
3739 return ret;
3740
3741 if ((ret < 0) || !is_root_cache(cachep))
3742 return ret;
3743
3744 lockdep_assert_held(&slab_mutex);
3745 for_each_memcg_cache(c, cachep) {
3746 /* return value determined by the root cache only */
3747 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3748 }
3749
3750 return ret;
3751 }
3752
3753 /* Called with slab_mutex held always */
3754 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3755 {
3756 int err;
3757 int limit = 0;
3758 int shared = 0;
3759 int batchcount = 0;
3760
3761 if (!is_root_cache(cachep)) {
3762 struct kmem_cache *root = memcg_root_cache(cachep);
3763 limit = root->limit;
3764 shared = root->shared;
3765 batchcount = root->batchcount;
3766 }
3767
3768 if (limit && shared && batchcount)
3769 goto skip_setup;
3770 /*
3771 * The head array serves three purposes:
3772 * - create a LIFO ordering, i.e. return objects that are cache-warm
3773 * - reduce the number of spinlock operations.
3774 * - reduce the number of linked list operations on the slab and
3775 * bufctl chains: array operations are cheaper.
3776 * The numbers are guessed, we should auto-tune as described by
3777 * Bonwick.
3778 */
3779 if (cachep->size > 131072)
3780 limit = 1;
3781 else if (cachep->size > PAGE_SIZE)
3782 limit = 8;
3783 else if (cachep->size > 1024)
3784 limit = 24;
3785 else if (cachep->size > 256)
3786 limit = 54;
3787 else
3788 limit = 120;
3789
3790 /*
3791 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3792 * allocation behaviour: Most allocs on one cpu, most free operations
3793 * on another cpu. For these cases, an efficient object passing between
3794 * cpus is necessary. This is provided by a shared array. The array
3795 * replaces Bonwick's magazine layer.
3796 * On uniprocessor, it's functionally equivalent (but less efficient)
3797 * to a larger limit. Thus disabled by default.
3798 */
3799 shared = 0;
3800 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3801 shared = 8;
3802
3803 #if DEBUG
3804 /*
3805 * With debugging enabled, large batchcount lead to excessively long
3806 * periods with disabled local interrupts. Limit the batchcount
3807 */
3808 if (limit > 32)
3809 limit = 32;
3810 #endif
3811 batchcount = (limit + 1) / 2;
3812 skip_setup:
3813 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3814 if (err)
3815 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3816 cachep->name, -err);
3817 return err;
3818 }
3819
3820 /*
3821 * Drain an array if it contains any elements taking the node lock only if
3822 * necessary. Note that the node listlock also protects the array_cache
3823 * if drain_array() is used on the shared array.
3824 */
3825 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3826 struct array_cache *ac, int force, int node)
3827 {
3828 LIST_HEAD(list);
3829 int tofree;
3830
3831 if (!ac || !ac->avail)
3832 return;
3833 if (ac->touched && !force) {
3834 ac->touched = 0;
3835 } else {
3836 spin_lock_irq(&n->list_lock);
3837 if (ac->avail) {
3838 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3839 if (tofree > ac->avail)
3840 tofree = (ac->avail + 1) / 2;
3841 free_block(cachep, ac->entry, tofree, node, &list);
3842 ac->avail -= tofree;
3843 memmove(ac->entry, &(ac->entry[tofree]),
3844 sizeof(void *) * ac->avail);
3845 }
3846 spin_unlock_irq(&n->list_lock);
3847 slabs_destroy(cachep, &list);
3848 }
3849 }
3850
3851 /**
3852 * cache_reap - Reclaim memory from caches.
3853 * @w: work descriptor
3854 *
3855 * Called from workqueue/eventd every few seconds.
3856 * Purpose:
3857 * - clear the per-cpu caches for this CPU.
3858 * - return freeable pages to the main free memory pool.
3859 *
3860 * If we cannot acquire the cache chain mutex then just give up - we'll try
3861 * again on the next iteration.
3862 */
3863 static void cache_reap(struct work_struct *w)
3864 {
3865 struct kmem_cache *searchp;
3866 struct kmem_cache_node *n;
3867 int node = numa_mem_id();
3868 struct delayed_work *work = to_delayed_work(w);
3869
3870 if (!mutex_trylock(&slab_mutex))
3871 /* Give up. Setup the next iteration. */
3872 goto out;
3873
3874 list_for_each_entry(searchp, &slab_caches, list) {
3875 check_irq_on();
3876
3877 /*
3878 * We only take the node lock if absolutely necessary and we
3879 * have established with reasonable certainty that
3880 * we can do some work if the lock was obtained.
3881 */
3882 n = get_node(searchp, node);
3883
3884 reap_alien(searchp, n);
3885
3886 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3887
3888 /*
3889 * These are racy checks but it does not matter
3890 * if we skip one check or scan twice.
3891 */
3892 if (time_after(n->next_reap, jiffies))
3893 goto next;
3894
3895 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3896
3897 drain_array(searchp, n, n->shared, 0, node);
3898
3899 if (n->free_touched)
3900 n->free_touched = 0;
3901 else {
3902 int freed;
3903
3904 freed = drain_freelist(searchp, n, (n->free_limit +
3905 5 * searchp->num - 1) / (5 * searchp->num));
3906 STATS_ADD_REAPED(searchp, freed);
3907 }
3908 next:
3909 cond_resched();
3910 }
3911 check_irq_on();
3912 mutex_unlock(&slab_mutex);
3913 next_reap_node();
3914 out:
3915 /* Set up the next iteration */
3916 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3917 }
3918
3919 #ifdef CONFIG_SLABINFO
3920 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3921 {
3922 struct page *page;
3923 unsigned long active_objs;
3924 unsigned long num_objs;
3925 unsigned long active_slabs = 0;
3926 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3927 const char *name;
3928 char *error = NULL;
3929 int node;
3930 struct kmem_cache_node *n;
3931
3932 active_objs = 0;
3933 num_slabs = 0;
3934 for_each_kmem_cache_node(cachep, node, n) {
3935
3936 check_irq_on();
3937 spin_lock_irq(&n->list_lock);
3938
3939 list_for_each_entry(page, &n->slabs_full, lru) {
3940 if (page->active != cachep->num && !error)
3941 error = "slabs_full accounting error";
3942 active_objs += cachep->num;
3943 active_slabs++;
3944 }
3945 list_for_each_entry(page, &n->slabs_partial, lru) {
3946 if (page->active == cachep->num && !error)
3947 error = "slabs_partial accounting error";
3948 if (!page->active && !error)
3949 error = "slabs_partial accounting error";
3950 active_objs += page->active;
3951 active_slabs++;
3952 }
3953 list_for_each_entry(page, &n->slabs_free, lru) {
3954 if (page->active && !error)
3955 error = "slabs_free accounting error";
3956 num_slabs++;
3957 }
3958 free_objects += n->free_objects;
3959 if (n->shared)
3960 shared_avail += n->shared->avail;
3961
3962 spin_unlock_irq(&n->list_lock);
3963 }
3964 num_slabs += active_slabs;
3965 num_objs = num_slabs * cachep->num;
3966 if (num_objs - active_objs != free_objects && !error)
3967 error = "free_objects accounting error";
3968
3969 name = cachep->name;
3970 if (error)
3971 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3972
3973 sinfo->active_objs = active_objs;
3974 sinfo->num_objs = num_objs;
3975 sinfo->active_slabs = active_slabs;
3976 sinfo->num_slabs = num_slabs;
3977 sinfo->shared_avail = shared_avail;
3978 sinfo->limit = cachep->limit;
3979 sinfo->batchcount = cachep->batchcount;
3980 sinfo->shared = cachep->shared;
3981 sinfo->objects_per_slab = cachep->num;
3982 sinfo->cache_order = cachep->gfporder;
3983 }
3984
3985 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3986 {
3987 #if STATS
3988 { /* node stats */
3989 unsigned long high = cachep->high_mark;
3990 unsigned long allocs = cachep->num_allocations;
3991 unsigned long grown = cachep->grown;
3992 unsigned long reaped = cachep->reaped;
3993 unsigned long errors = cachep->errors;
3994 unsigned long max_freeable = cachep->max_freeable;
3995 unsigned long node_allocs = cachep->node_allocs;
3996 unsigned long node_frees = cachep->node_frees;
3997 unsigned long overflows = cachep->node_overflow;
3998
3999 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4000 "%4lu %4lu %4lu %4lu %4lu",
4001 allocs, high, grown,
4002 reaped, errors, max_freeable, node_allocs,
4003 node_frees, overflows);
4004 }
4005 /* cpu stats */
4006 {
4007 unsigned long allochit = atomic_read(&cachep->allochit);
4008 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4009 unsigned long freehit = atomic_read(&cachep->freehit);
4010 unsigned long freemiss = atomic_read(&cachep->freemiss);
4011
4012 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4013 allochit, allocmiss, freehit, freemiss);
4014 }
4015 #endif
4016 }
4017
4018 #define MAX_SLABINFO_WRITE 128
4019 /**
4020 * slabinfo_write - Tuning for the slab allocator
4021 * @file: unused
4022 * @buffer: user buffer
4023 * @count: data length
4024 * @ppos: unused
4025 */
4026 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4027 size_t count, loff_t *ppos)
4028 {
4029 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4030 int limit, batchcount, shared, res;
4031 struct kmem_cache *cachep;
4032
4033 if (count > MAX_SLABINFO_WRITE)
4034 return -EINVAL;
4035 if (copy_from_user(&kbuf, buffer, count))
4036 return -EFAULT;
4037 kbuf[MAX_SLABINFO_WRITE] = '\0';
4038
4039 tmp = strchr(kbuf, ' ');
4040 if (!tmp)
4041 return -EINVAL;
4042 *tmp = '\0';
4043 tmp++;
4044 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4045 return -EINVAL;
4046
4047 /* Find the cache in the chain of caches. */
4048 mutex_lock(&slab_mutex);
4049 res = -EINVAL;
4050 list_for_each_entry(cachep, &slab_caches, list) {
4051 if (!strcmp(cachep->name, kbuf)) {
4052 if (limit < 1 || batchcount < 1 ||
4053 batchcount > limit || shared < 0) {
4054 res = 0;
4055 } else {
4056 res = do_tune_cpucache(cachep, limit,
4057 batchcount, shared,
4058 GFP_KERNEL);
4059 }
4060 break;
4061 }
4062 }
4063 mutex_unlock(&slab_mutex);
4064 if (res >= 0)
4065 res = count;
4066 return res;
4067 }
4068
4069 #ifdef CONFIG_DEBUG_SLAB_LEAK
4070
4071 static inline int add_caller(unsigned long *n, unsigned long v)
4072 {
4073 unsigned long *p;
4074 int l;
4075 if (!v)
4076 return 1;
4077 l = n[1];
4078 p = n + 2;
4079 while (l) {
4080 int i = l/2;
4081 unsigned long *q = p + 2 * i;
4082 if (*q == v) {
4083 q[1]++;
4084 return 1;
4085 }
4086 if (*q > v) {
4087 l = i;
4088 } else {
4089 p = q + 2;
4090 l -= i + 1;
4091 }
4092 }
4093 if (++n[1] == n[0])
4094 return 0;
4095 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4096 p[0] = v;
4097 p[1] = 1;
4098 return 1;
4099 }
4100
4101 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4102 struct page *page)
4103 {
4104 void *p;
4105 int i;
4106
4107 if (n[0] == n[1])
4108 return;
4109 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4110 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4111 continue;
4112
4113 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4114 return;
4115 }
4116 }
4117
4118 static void show_symbol(struct seq_file *m, unsigned long address)
4119 {
4120 #ifdef CONFIG_KALLSYMS
4121 unsigned long offset, size;
4122 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4123
4124 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4125 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4126 if (modname[0])
4127 seq_printf(m, " [%s]", modname);
4128 return;
4129 }
4130 #endif
4131 seq_printf(m, "%p", (void *)address);
4132 }
4133
4134 static int leaks_show(struct seq_file *m, void *p)
4135 {
4136 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4137 struct page *page;
4138 struct kmem_cache_node *n;
4139 const char *name;
4140 unsigned long *x = m->private;
4141 int node;
4142 int i;
4143
4144 if (!(cachep->flags & SLAB_STORE_USER))
4145 return 0;
4146 if (!(cachep->flags & SLAB_RED_ZONE))
4147 return 0;
4148
4149 /* OK, we can do it */
4150
4151 x[1] = 0;
4152
4153 for_each_kmem_cache_node(cachep, node, n) {
4154
4155 check_irq_on();
4156 spin_lock_irq(&n->list_lock);
4157
4158 list_for_each_entry(page, &n->slabs_full, lru)
4159 handle_slab(x, cachep, page);
4160 list_for_each_entry(page, &n->slabs_partial, lru)
4161 handle_slab(x, cachep, page);
4162 spin_unlock_irq(&n->list_lock);
4163 }
4164 name = cachep->name;
4165 if (x[0] == x[1]) {
4166 /* Increase the buffer size */
4167 mutex_unlock(&slab_mutex);
4168 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4169 if (!m->private) {
4170 /* Too bad, we are really out */
4171 m->private = x;
4172 mutex_lock(&slab_mutex);
4173 return -ENOMEM;
4174 }
4175 *(unsigned long *)m->private = x[0] * 2;
4176 kfree(x);
4177 mutex_lock(&slab_mutex);
4178 /* Now make sure this entry will be retried */
4179 m->count = m->size;
4180 return 0;
4181 }
4182 for (i = 0; i < x[1]; i++) {
4183 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4184 show_symbol(m, x[2*i+2]);
4185 seq_putc(m, '\n');
4186 }
4187
4188 return 0;
4189 }
4190
4191 static const struct seq_operations slabstats_op = {
4192 .start = slab_start,
4193 .next = slab_next,
4194 .stop = slab_stop,
4195 .show = leaks_show,
4196 };
4197
4198 static int slabstats_open(struct inode *inode, struct file *file)
4199 {
4200 unsigned long *n;
4201
4202 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4203 if (!n)
4204 return -ENOMEM;
4205
4206 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4207
4208 return 0;
4209 }
4210
4211 static const struct file_operations proc_slabstats_operations = {
4212 .open = slabstats_open,
4213 .read = seq_read,
4214 .llseek = seq_lseek,
4215 .release = seq_release_private,
4216 };
4217 #endif
4218
4219 static int __init slab_proc_init(void)
4220 {
4221 #ifdef CONFIG_DEBUG_SLAB_LEAK
4222 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4223 #endif
4224 return 0;
4225 }
4226 module_init(slab_proc_init);
4227 #endif
4228
4229 /**
4230 * ksize - get the actual amount of memory allocated for a given object
4231 * @objp: Pointer to the object
4232 *
4233 * kmalloc may internally round up allocations and return more memory
4234 * than requested. ksize() can be used to determine the actual amount of
4235 * memory allocated. The caller may use this additional memory, even though
4236 * a smaller amount of memory was initially specified with the kmalloc call.
4237 * The caller must guarantee that objp points to a valid object previously
4238 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4239 * must not be freed during the duration of the call.
4240 */
4241 size_t ksize(const void *objp)
4242 {
4243 BUG_ON(!objp);
4244 if (unlikely(objp == ZERO_SIZE_PTR))
4245 return 0;
4246
4247 return virt_to_cache(objp)->object_size;
4248 }
4249 EXPORT_SYMBOL(ksize);