]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/slab.c
pinctrl: sh-pfc: r8a77965: Add DRIF pins, groups and functions
[mirror_ubuntu-focal-kernel.git] / mm / slab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 #include "slab.h"
132
133 /*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143 #ifdef CONFIG_DEBUG_SLAB
144 #define DEBUG 1
145 #define STATS 1
146 #define FORCED_DEBUG 1
147 #else
148 #define DEBUG 0
149 #define STATS 0
150 #define FORCED_DEBUG 0
151 #endif
152
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172 /*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184 struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194 };
195
196 struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199 };
200
201 /*
202 * Need this for bootstrapping a per node allocator.
203 */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
208
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222 static int slab_early_init = 1;
223
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239 }
240
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259 #define BATCHREFILL_LIMIT 16
260 /*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
269
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
311
312 #if DEBUG
313
314 /*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 return cachep->obj_offset;
330 }
331
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337 }
338
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348 }
349
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355
356 #else
357
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363 #endif
364
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 return atomic_read(&cachep->store_user_clean) == 1;
370 }
371
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 atomic_set(&cachep->store_user_clean, 1);
375 }
376
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
381 }
382
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385
386 #endif
387
388 /*
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
391 */
392 #define SLAB_MAX_ORDER_HI 1
393 #define SLAB_MAX_ORDER_LO 0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
401 }
402
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 unsigned int idx)
405 {
406 return page->s_mem + cache->size * idx;
407 }
408
409 #define BOOT_CPUCACHE_ENTRIES 1
410 /* internal cache of cache description objs */
411 static struct kmem_cache kmem_cache_boot = {
412 .batchcount = 1,
413 .limit = BOOT_CPUCACHE_ENTRIES,
414 .shared = 1,
415 .size = sizeof(struct kmem_cache),
416 .name = "kmem_cache",
417 };
418
419 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
420
421 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
422 {
423 return this_cpu_ptr(cachep->cpu_cache);
424 }
425
426 /*
427 * Calculate the number of objects and left-over bytes for a given buffer size.
428 */
429 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
430 slab_flags_t flags, size_t *left_over)
431 {
432 unsigned int num;
433 size_t slab_size = PAGE_SIZE << gfporder;
434
435 /*
436 * The slab management structure can be either off the slab or
437 * on it. For the latter case, the memory allocated for a
438 * slab is used for:
439 *
440 * - @buffer_size bytes for each object
441 * - One freelist_idx_t for each object
442 *
443 * We don't need to consider alignment of freelist because
444 * freelist will be at the end of slab page. The objects will be
445 * at the correct alignment.
446 *
447 * If the slab management structure is off the slab, then the
448 * alignment will already be calculated into the size. Because
449 * the slabs are all pages aligned, the objects will be at the
450 * correct alignment when allocated.
451 */
452 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
453 num = slab_size / buffer_size;
454 *left_over = slab_size % buffer_size;
455 } else {
456 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
457 *left_over = slab_size %
458 (buffer_size + sizeof(freelist_idx_t));
459 }
460
461 return num;
462 }
463
464 #if DEBUG
465 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
466
467 static void __slab_error(const char *function, struct kmem_cache *cachep,
468 char *msg)
469 {
470 pr_err("slab error in %s(): cache `%s': %s\n",
471 function, cachep->name, msg);
472 dump_stack();
473 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
474 }
475 #endif
476
477 /*
478 * By default on NUMA we use alien caches to stage the freeing of
479 * objects allocated from other nodes. This causes massive memory
480 * inefficiencies when using fake NUMA setup to split memory into a
481 * large number of small nodes, so it can be disabled on the command
482 * line
483 */
484
485 static int use_alien_caches __read_mostly = 1;
486 static int __init noaliencache_setup(char *s)
487 {
488 use_alien_caches = 0;
489 return 1;
490 }
491 __setup("noaliencache", noaliencache_setup);
492
493 static int __init slab_max_order_setup(char *str)
494 {
495 get_option(&str, &slab_max_order);
496 slab_max_order = slab_max_order < 0 ? 0 :
497 min(slab_max_order, MAX_ORDER - 1);
498 slab_max_order_set = true;
499
500 return 1;
501 }
502 __setup("slab_max_order=", slab_max_order_setup);
503
504 #ifdef CONFIG_NUMA
505 /*
506 * Special reaping functions for NUMA systems called from cache_reap().
507 * These take care of doing round robin flushing of alien caches (containing
508 * objects freed on different nodes from which they were allocated) and the
509 * flushing of remote pcps by calling drain_node_pages.
510 */
511 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
512
513 static void init_reap_node(int cpu)
514 {
515 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
516 node_online_map);
517 }
518
519 static void next_reap_node(void)
520 {
521 int node = __this_cpu_read(slab_reap_node);
522
523 node = next_node_in(node, node_online_map);
524 __this_cpu_write(slab_reap_node, node);
525 }
526
527 #else
528 #define init_reap_node(cpu) do { } while (0)
529 #define next_reap_node(void) do { } while (0)
530 #endif
531
532 /*
533 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
534 * via the workqueue/eventd.
535 * Add the CPU number into the expiration time to minimize the possibility of
536 * the CPUs getting into lockstep and contending for the global cache chain
537 * lock.
538 */
539 static void start_cpu_timer(int cpu)
540 {
541 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
542
543 if (reap_work->work.func == NULL) {
544 init_reap_node(cpu);
545 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
546 schedule_delayed_work_on(cpu, reap_work,
547 __round_jiffies_relative(HZ, cpu));
548 }
549 }
550
551 static void init_arraycache(struct array_cache *ac, int limit, int batch)
552 {
553 /*
554 * The array_cache structures contain pointers to free object.
555 * However, when such objects are allocated or transferred to another
556 * cache the pointers are not cleared and they could be counted as
557 * valid references during a kmemleak scan. Therefore, kmemleak must
558 * not scan such objects.
559 */
560 kmemleak_no_scan(ac);
561 if (ac) {
562 ac->avail = 0;
563 ac->limit = limit;
564 ac->batchcount = batch;
565 ac->touched = 0;
566 }
567 }
568
569 static struct array_cache *alloc_arraycache(int node, int entries,
570 int batchcount, gfp_t gfp)
571 {
572 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
573 struct array_cache *ac = NULL;
574
575 ac = kmalloc_node(memsize, gfp, node);
576 init_arraycache(ac, entries, batchcount);
577 return ac;
578 }
579
580 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
581 struct page *page, void *objp)
582 {
583 struct kmem_cache_node *n;
584 int page_node;
585 LIST_HEAD(list);
586
587 page_node = page_to_nid(page);
588 n = get_node(cachep, page_node);
589
590 spin_lock(&n->list_lock);
591 free_block(cachep, &objp, 1, page_node, &list);
592 spin_unlock(&n->list_lock);
593
594 slabs_destroy(cachep, &list);
595 }
596
597 /*
598 * Transfer objects in one arraycache to another.
599 * Locking must be handled by the caller.
600 *
601 * Return the number of entries transferred.
602 */
603 static int transfer_objects(struct array_cache *to,
604 struct array_cache *from, unsigned int max)
605 {
606 /* Figure out how many entries to transfer */
607 int nr = min3(from->avail, max, to->limit - to->avail);
608
609 if (!nr)
610 return 0;
611
612 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
613 sizeof(void *) *nr);
614
615 from->avail -= nr;
616 to->avail += nr;
617 return nr;
618 }
619
620 #ifndef CONFIG_NUMA
621
622 #define drain_alien_cache(cachep, alien) do { } while (0)
623 #define reap_alien(cachep, n) do { } while (0)
624
625 static inline struct alien_cache **alloc_alien_cache(int node,
626 int limit, gfp_t gfp)
627 {
628 return NULL;
629 }
630
631 static inline void free_alien_cache(struct alien_cache **ac_ptr)
632 {
633 }
634
635 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
636 {
637 return 0;
638 }
639
640 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
641 gfp_t flags)
642 {
643 return NULL;
644 }
645
646 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
647 gfp_t flags, int nodeid)
648 {
649 return NULL;
650 }
651
652 static inline gfp_t gfp_exact_node(gfp_t flags)
653 {
654 return flags & ~__GFP_NOFAIL;
655 }
656
657 #else /* CONFIG_NUMA */
658
659 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
660 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
661
662 static struct alien_cache *__alloc_alien_cache(int node, int entries,
663 int batch, gfp_t gfp)
664 {
665 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
666 struct alien_cache *alc = NULL;
667
668 alc = kmalloc_node(memsize, gfp, node);
669 init_arraycache(&alc->ac, entries, batch);
670 spin_lock_init(&alc->lock);
671 return alc;
672 }
673
674 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
675 {
676 struct alien_cache **alc_ptr;
677 size_t memsize = sizeof(void *) * nr_node_ids;
678 int i;
679
680 if (limit > 1)
681 limit = 12;
682 alc_ptr = kzalloc_node(memsize, gfp, node);
683 if (!alc_ptr)
684 return NULL;
685
686 for_each_node(i) {
687 if (i == node || !node_online(i))
688 continue;
689 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
690 if (!alc_ptr[i]) {
691 for (i--; i >= 0; i--)
692 kfree(alc_ptr[i]);
693 kfree(alc_ptr);
694 return NULL;
695 }
696 }
697 return alc_ptr;
698 }
699
700 static void free_alien_cache(struct alien_cache **alc_ptr)
701 {
702 int i;
703
704 if (!alc_ptr)
705 return;
706 for_each_node(i)
707 kfree(alc_ptr[i]);
708 kfree(alc_ptr);
709 }
710
711 static void __drain_alien_cache(struct kmem_cache *cachep,
712 struct array_cache *ac, int node,
713 struct list_head *list)
714 {
715 struct kmem_cache_node *n = get_node(cachep, node);
716
717 if (ac->avail) {
718 spin_lock(&n->list_lock);
719 /*
720 * Stuff objects into the remote nodes shared array first.
721 * That way we could avoid the overhead of putting the objects
722 * into the free lists and getting them back later.
723 */
724 if (n->shared)
725 transfer_objects(n->shared, ac, ac->limit);
726
727 free_block(cachep, ac->entry, ac->avail, node, list);
728 ac->avail = 0;
729 spin_unlock(&n->list_lock);
730 }
731 }
732
733 /*
734 * Called from cache_reap() to regularly drain alien caches round robin.
735 */
736 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
737 {
738 int node = __this_cpu_read(slab_reap_node);
739
740 if (n->alien) {
741 struct alien_cache *alc = n->alien[node];
742 struct array_cache *ac;
743
744 if (alc) {
745 ac = &alc->ac;
746 if (ac->avail && spin_trylock_irq(&alc->lock)) {
747 LIST_HEAD(list);
748
749 __drain_alien_cache(cachep, ac, node, &list);
750 spin_unlock_irq(&alc->lock);
751 slabs_destroy(cachep, &list);
752 }
753 }
754 }
755 }
756
757 static void drain_alien_cache(struct kmem_cache *cachep,
758 struct alien_cache **alien)
759 {
760 int i = 0;
761 struct alien_cache *alc;
762 struct array_cache *ac;
763 unsigned long flags;
764
765 for_each_online_node(i) {
766 alc = alien[i];
767 if (alc) {
768 LIST_HEAD(list);
769
770 ac = &alc->ac;
771 spin_lock_irqsave(&alc->lock, flags);
772 __drain_alien_cache(cachep, ac, i, &list);
773 spin_unlock_irqrestore(&alc->lock, flags);
774 slabs_destroy(cachep, &list);
775 }
776 }
777 }
778
779 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
780 int node, int page_node)
781 {
782 struct kmem_cache_node *n;
783 struct alien_cache *alien = NULL;
784 struct array_cache *ac;
785 LIST_HEAD(list);
786
787 n = get_node(cachep, node);
788 STATS_INC_NODEFREES(cachep);
789 if (n->alien && n->alien[page_node]) {
790 alien = n->alien[page_node];
791 ac = &alien->ac;
792 spin_lock(&alien->lock);
793 if (unlikely(ac->avail == ac->limit)) {
794 STATS_INC_ACOVERFLOW(cachep);
795 __drain_alien_cache(cachep, ac, page_node, &list);
796 }
797 ac->entry[ac->avail++] = objp;
798 spin_unlock(&alien->lock);
799 slabs_destroy(cachep, &list);
800 } else {
801 n = get_node(cachep, page_node);
802 spin_lock(&n->list_lock);
803 free_block(cachep, &objp, 1, page_node, &list);
804 spin_unlock(&n->list_lock);
805 slabs_destroy(cachep, &list);
806 }
807 return 1;
808 }
809
810 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
811 {
812 int page_node = page_to_nid(virt_to_page(objp));
813 int node = numa_mem_id();
814 /*
815 * Make sure we are not freeing a object from another node to the array
816 * cache on this cpu.
817 */
818 if (likely(node == page_node))
819 return 0;
820
821 return __cache_free_alien(cachep, objp, node, page_node);
822 }
823
824 /*
825 * Construct gfp mask to allocate from a specific node but do not reclaim or
826 * warn about failures.
827 */
828 static inline gfp_t gfp_exact_node(gfp_t flags)
829 {
830 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
831 }
832 #endif
833
834 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
835 {
836 struct kmem_cache_node *n;
837
838 /*
839 * Set up the kmem_cache_node for cpu before we can
840 * begin anything. Make sure some other cpu on this
841 * node has not already allocated this
842 */
843 n = get_node(cachep, node);
844 if (n) {
845 spin_lock_irq(&n->list_lock);
846 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
847 cachep->num;
848 spin_unlock_irq(&n->list_lock);
849
850 return 0;
851 }
852
853 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
854 if (!n)
855 return -ENOMEM;
856
857 kmem_cache_node_init(n);
858 n->next_reap = jiffies + REAPTIMEOUT_NODE +
859 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
860
861 n->free_limit =
862 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
863
864 /*
865 * The kmem_cache_nodes don't come and go as CPUs
866 * come and go. slab_mutex is sufficient
867 * protection here.
868 */
869 cachep->node[node] = n;
870
871 return 0;
872 }
873
874 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
875 /*
876 * Allocates and initializes node for a node on each slab cache, used for
877 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
878 * will be allocated off-node since memory is not yet online for the new node.
879 * When hotplugging memory or a cpu, existing node are not replaced if
880 * already in use.
881 *
882 * Must hold slab_mutex.
883 */
884 static int init_cache_node_node(int node)
885 {
886 int ret;
887 struct kmem_cache *cachep;
888
889 list_for_each_entry(cachep, &slab_caches, list) {
890 ret = init_cache_node(cachep, node, GFP_KERNEL);
891 if (ret)
892 return ret;
893 }
894
895 return 0;
896 }
897 #endif
898
899 static int setup_kmem_cache_node(struct kmem_cache *cachep,
900 int node, gfp_t gfp, bool force_change)
901 {
902 int ret = -ENOMEM;
903 struct kmem_cache_node *n;
904 struct array_cache *old_shared = NULL;
905 struct array_cache *new_shared = NULL;
906 struct alien_cache **new_alien = NULL;
907 LIST_HEAD(list);
908
909 if (use_alien_caches) {
910 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
911 if (!new_alien)
912 goto fail;
913 }
914
915 if (cachep->shared) {
916 new_shared = alloc_arraycache(node,
917 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
918 if (!new_shared)
919 goto fail;
920 }
921
922 ret = init_cache_node(cachep, node, gfp);
923 if (ret)
924 goto fail;
925
926 n = get_node(cachep, node);
927 spin_lock_irq(&n->list_lock);
928 if (n->shared && force_change) {
929 free_block(cachep, n->shared->entry,
930 n->shared->avail, node, &list);
931 n->shared->avail = 0;
932 }
933
934 if (!n->shared || force_change) {
935 old_shared = n->shared;
936 n->shared = new_shared;
937 new_shared = NULL;
938 }
939
940 if (!n->alien) {
941 n->alien = new_alien;
942 new_alien = NULL;
943 }
944
945 spin_unlock_irq(&n->list_lock);
946 slabs_destroy(cachep, &list);
947
948 /*
949 * To protect lockless access to n->shared during irq disabled context.
950 * If n->shared isn't NULL in irq disabled context, accessing to it is
951 * guaranteed to be valid until irq is re-enabled, because it will be
952 * freed after synchronize_rcu().
953 */
954 if (old_shared && force_change)
955 synchronize_rcu();
956
957 fail:
958 kfree(old_shared);
959 kfree(new_shared);
960 free_alien_cache(new_alien);
961
962 return ret;
963 }
964
965 #ifdef CONFIG_SMP
966
967 static void cpuup_canceled(long cpu)
968 {
969 struct kmem_cache *cachep;
970 struct kmem_cache_node *n = NULL;
971 int node = cpu_to_mem(cpu);
972 const struct cpumask *mask = cpumask_of_node(node);
973
974 list_for_each_entry(cachep, &slab_caches, list) {
975 struct array_cache *nc;
976 struct array_cache *shared;
977 struct alien_cache **alien;
978 LIST_HEAD(list);
979
980 n = get_node(cachep, node);
981 if (!n)
982 continue;
983
984 spin_lock_irq(&n->list_lock);
985
986 /* Free limit for this kmem_cache_node */
987 n->free_limit -= cachep->batchcount;
988
989 /* cpu is dead; no one can alloc from it. */
990 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
991 if (nc) {
992 free_block(cachep, nc->entry, nc->avail, node, &list);
993 nc->avail = 0;
994 }
995
996 if (!cpumask_empty(mask)) {
997 spin_unlock_irq(&n->list_lock);
998 goto free_slab;
999 }
1000
1001 shared = n->shared;
1002 if (shared) {
1003 free_block(cachep, shared->entry,
1004 shared->avail, node, &list);
1005 n->shared = NULL;
1006 }
1007
1008 alien = n->alien;
1009 n->alien = NULL;
1010
1011 spin_unlock_irq(&n->list_lock);
1012
1013 kfree(shared);
1014 if (alien) {
1015 drain_alien_cache(cachep, alien);
1016 free_alien_cache(alien);
1017 }
1018
1019 free_slab:
1020 slabs_destroy(cachep, &list);
1021 }
1022 /*
1023 * In the previous loop, all the objects were freed to
1024 * the respective cache's slabs, now we can go ahead and
1025 * shrink each nodelist to its limit.
1026 */
1027 list_for_each_entry(cachep, &slab_caches, list) {
1028 n = get_node(cachep, node);
1029 if (!n)
1030 continue;
1031 drain_freelist(cachep, n, INT_MAX);
1032 }
1033 }
1034
1035 static int cpuup_prepare(long cpu)
1036 {
1037 struct kmem_cache *cachep;
1038 int node = cpu_to_mem(cpu);
1039 int err;
1040
1041 /*
1042 * We need to do this right in the beginning since
1043 * alloc_arraycache's are going to use this list.
1044 * kmalloc_node allows us to add the slab to the right
1045 * kmem_cache_node and not this cpu's kmem_cache_node
1046 */
1047 err = init_cache_node_node(node);
1048 if (err < 0)
1049 goto bad;
1050
1051 /*
1052 * Now we can go ahead with allocating the shared arrays and
1053 * array caches
1054 */
1055 list_for_each_entry(cachep, &slab_caches, list) {
1056 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1057 if (err)
1058 goto bad;
1059 }
1060
1061 return 0;
1062 bad:
1063 cpuup_canceled(cpu);
1064 return -ENOMEM;
1065 }
1066
1067 int slab_prepare_cpu(unsigned int cpu)
1068 {
1069 int err;
1070
1071 mutex_lock(&slab_mutex);
1072 err = cpuup_prepare(cpu);
1073 mutex_unlock(&slab_mutex);
1074 return err;
1075 }
1076
1077 /*
1078 * This is called for a failed online attempt and for a successful
1079 * offline.
1080 *
1081 * Even if all the cpus of a node are down, we don't free the
1082 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1083 * a kmalloc allocation from another cpu for memory from the node of
1084 * the cpu going down. The list3 structure is usually allocated from
1085 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1086 */
1087 int slab_dead_cpu(unsigned int cpu)
1088 {
1089 mutex_lock(&slab_mutex);
1090 cpuup_canceled(cpu);
1091 mutex_unlock(&slab_mutex);
1092 return 0;
1093 }
1094 #endif
1095
1096 static int slab_online_cpu(unsigned int cpu)
1097 {
1098 start_cpu_timer(cpu);
1099 return 0;
1100 }
1101
1102 static int slab_offline_cpu(unsigned int cpu)
1103 {
1104 /*
1105 * Shutdown cache reaper. Note that the slab_mutex is held so
1106 * that if cache_reap() is invoked it cannot do anything
1107 * expensive but will only modify reap_work and reschedule the
1108 * timer.
1109 */
1110 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1111 /* Now the cache_reaper is guaranteed to be not running. */
1112 per_cpu(slab_reap_work, cpu).work.func = NULL;
1113 return 0;
1114 }
1115
1116 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1117 /*
1118 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1119 * Returns -EBUSY if all objects cannot be drained so that the node is not
1120 * removed.
1121 *
1122 * Must hold slab_mutex.
1123 */
1124 static int __meminit drain_cache_node_node(int node)
1125 {
1126 struct kmem_cache *cachep;
1127 int ret = 0;
1128
1129 list_for_each_entry(cachep, &slab_caches, list) {
1130 struct kmem_cache_node *n;
1131
1132 n = get_node(cachep, node);
1133 if (!n)
1134 continue;
1135
1136 drain_freelist(cachep, n, INT_MAX);
1137
1138 if (!list_empty(&n->slabs_full) ||
1139 !list_empty(&n->slabs_partial)) {
1140 ret = -EBUSY;
1141 break;
1142 }
1143 }
1144 return ret;
1145 }
1146
1147 static int __meminit slab_memory_callback(struct notifier_block *self,
1148 unsigned long action, void *arg)
1149 {
1150 struct memory_notify *mnb = arg;
1151 int ret = 0;
1152 int nid;
1153
1154 nid = mnb->status_change_nid;
1155 if (nid < 0)
1156 goto out;
1157
1158 switch (action) {
1159 case MEM_GOING_ONLINE:
1160 mutex_lock(&slab_mutex);
1161 ret = init_cache_node_node(nid);
1162 mutex_unlock(&slab_mutex);
1163 break;
1164 case MEM_GOING_OFFLINE:
1165 mutex_lock(&slab_mutex);
1166 ret = drain_cache_node_node(nid);
1167 mutex_unlock(&slab_mutex);
1168 break;
1169 case MEM_ONLINE:
1170 case MEM_OFFLINE:
1171 case MEM_CANCEL_ONLINE:
1172 case MEM_CANCEL_OFFLINE:
1173 break;
1174 }
1175 out:
1176 return notifier_from_errno(ret);
1177 }
1178 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1179
1180 /*
1181 * swap the static kmem_cache_node with kmalloced memory
1182 */
1183 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1184 int nodeid)
1185 {
1186 struct kmem_cache_node *ptr;
1187
1188 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1189 BUG_ON(!ptr);
1190
1191 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1192 /*
1193 * Do not assume that spinlocks can be initialized via memcpy:
1194 */
1195 spin_lock_init(&ptr->list_lock);
1196
1197 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1198 cachep->node[nodeid] = ptr;
1199 }
1200
1201 /*
1202 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1203 * size of kmem_cache_node.
1204 */
1205 static void __init set_up_node(struct kmem_cache *cachep, int index)
1206 {
1207 int node;
1208
1209 for_each_online_node(node) {
1210 cachep->node[node] = &init_kmem_cache_node[index + node];
1211 cachep->node[node]->next_reap = jiffies +
1212 REAPTIMEOUT_NODE +
1213 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1214 }
1215 }
1216
1217 /*
1218 * Initialisation. Called after the page allocator have been initialised and
1219 * before smp_init().
1220 */
1221 void __init kmem_cache_init(void)
1222 {
1223 int i;
1224
1225 kmem_cache = &kmem_cache_boot;
1226
1227 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1228 use_alien_caches = 0;
1229
1230 for (i = 0; i < NUM_INIT_LISTS; i++)
1231 kmem_cache_node_init(&init_kmem_cache_node[i]);
1232
1233 /*
1234 * Fragmentation resistance on low memory - only use bigger
1235 * page orders on machines with more than 32MB of memory if
1236 * not overridden on the command line.
1237 */
1238 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1239 slab_max_order = SLAB_MAX_ORDER_HI;
1240
1241 /* Bootstrap is tricky, because several objects are allocated
1242 * from caches that do not exist yet:
1243 * 1) initialize the kmem_cache cache: it contains the struct
1244 * kmem_cache structures of all caches, except kmem_cache itself:
1245 * kmem_cache is statically allocated.
1246 * Initially an __init data area is used for the head array and the
1247 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1248 * array at the end of the bootstrap.
1249 * 2) Create the first kmalloc cache.
1250 * The struct kmem_cache for the new cache is allocated normally.
1251 * An __init data area is used for the head array.
1252 * 3) Create the remaining kmalloc caches, with minimally sized
1253 * head arrays.
1254 * 4) Replace the __init data head arrays for kmem_cache and the first
1255 * kmalloc cache with kmalloc allocated arrays.
1256 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1257 * the other cache's with kmalloc allocated memory.
1258 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1259 */
1260
1261 /* 1) create the kmem_cache */
1262
1263 /*
1264 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1265 */
1266 create_boot_cache(kmem_cache, "kmem_cache",
1267 offsetof(struct kmem_cache, node) +
1268 nr_node_ids * sizeof(struct kmem_cache_node *),
1269 SLAB_HWCACHE_ALIGN, 0, 0);
1270 list_add(&kmem_cache->list, &slab_caches);
1271 memcg_link_cache(kmem_cache);
1272 slab_state = PARTIAL;
1273
1274 /*
1275 * Initialize the caches that provide memory for the kmem_cache_node
1276 * structures first. Without this, further allocations will bug.
1277 */
1278 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1279 kmalloc_info[INDEX_NODE].name,
1280 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1281 0, kmalloc_size(INDEX_NODE));
1282 slab_state = PARTIAL_NODE;
1283 setup_kmalloc_cache_index_table();
1284
1285 slab_early_init = 0;
1286
1287 /* 5) Replace the bootstrap kmem_cache_node */
1288 {
1289 int nid;
1290
1291 for_each_online_node(nid) {
1292 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1293
1294 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1295 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1296 }
1297 }
1298
1299 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1300 }
1301
1302 void __init kmem_cache_init_late(void)
1303 {
1304 struct kmem_cache *cachep;
1305
1306 /* 6) resize the head arrays to their final sizes */
1307 mutex_lock(&slab_mutex);
1308 list_for_each_entry(cachep, &slab_caches, list)
1309 if (enable_cpucache(cachep, GFP_NOWAIT))
1310 BUG();
1311 mutex_unlock(&slab_mutex);
1312
1313 /* Done! */
1314 slab_state = FULL;
1315
1316 #ifdef CONFIG_NUMA
1317 /*
1318 * Register a memory hotplug callback that initializes and frees
1319 * node.
1320 */
1321 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1322 #endif
1323
1324 /*
1325 * The reap timers are started later, with a module init call: That part
1326 * of the kernel is not yet operational.
1327 */
1328 }
1329
1330 static int __init cpucache_init(void)
1331 {
1332 int ret;
1333
1334 /*
1335 * Register the timers that return unneeded pages to the page allocator
1336 */
1337 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1338 slab_online_cpu, slab_offline_cpu);
1339 WARN_ON(ret < 0);
1340
1341 return 0;
1342 }
1343 __initcall(cpucache_init);
1344
1345 static noinline void
1346 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1347 {
1348 #if DEBUG
1349 struct kmem_cache_node *n;
1350 unsigned long flags;
1351 int node;
1352 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1353 DEFAULT_RATELIMIT_BURST);
1354
1355 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1356 return;
1357
1358 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1359 nodeid, gfpflags, &gfpflags);
1360 pr_warn(" cache: %s, object size: %d, order: %d\n",
1361 cachep->name, cachep->size, cachep->gfporder);
1362
1363 for_each_kmem_cache_node(cachep, node, n) {
1364 unsigned long total_slabs, free_slabs, free_objs;
1365
1366 spin_lock_irqsave(&n->list_lock, flags);
1367 total_slabs = n->total_slabs;
1368 free_slabs = n->free_slabs;
1369 free_objs = n->free_objects;
1370 spin_unlock_irqrestore(&n->list_lock, flags);
1371
1372 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1373 node, total_slabs - free_slabs, total_slabs,
1374 (total_slabs * cachep->num) - free_objs,
1375 total_slabs * cachep->num);
1376 }
1377 #endif
1378 }
1379
1380 /*
1381 * Interface to system's page allocator. No need to hold the
1382 * kmem_cache_node ->list_lock.
1383 *
1384 * If we requested dmaable memory, we will get it. Even if we
1385 * did not request dmaable memory, we might get it, but that
1386 * would be relatively rare and ignorable.
1387 */
1388 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1389 int nodeid)
1390 {
1391 struct page *page;
1392 int nr_pages;
1393
1394 flags |= cachep->allocflags;
1395
1396 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1397 if (!page) {
1398 slab_out_of_memory(cachep, flags, nodeid);
1399 return NULL;
1400 }
1401
1402 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1403 __free_pages(page, cachep->gfporder);
1404 return NULL;
1405 }
1406
1407 nr_pages = (1 << cachep->gfporder);
1408 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1409 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1410 else
1411 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1412
1413 __SetPageSlab(page);
1414 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1415 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1416 SetPageSlabPfmemalloc(page);
1417
1418 return page;
1419 }
1420
1421 /*
1422 * Interface to system's page release.
1423 */
1424 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1425 {
1426 int order = cachep->gfporder;
1427 unsigned long nr_freed = (1 << order);
1428
1429 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1430 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1431 else
1432 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1433
1434 BUG_ON(!PageSlab(page));
1435 __ClearPageSlabPfmemalloc(page);
1436 __ClearPageSlab(page);
1437 page_mapcount_reset(page);
1438 page->mapping = NULL;
1439
1440 if (current->reclaim_state)
1441 current->reclaim_state->reclaimed_slab += nr_freed;
1442 memcg_uncharge_slab(page, order, cachep);
1443 __free_pages(page, order);
1444 }
1445
1446 static void kmem_rcu_free(struct rcu_head *head)
1447 {
1448 struct kmem_cache *cachep;
1449 struct page *page;
1450
1451 page = container_of(head, struct page, rcu_head);
1452 cachep = page->slab_cache;
1453
1454 kmem_freepages(cachep, page);
1455 }
1456
1457 #if DEBUG
1458 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1459 {
1460 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1461 (cachep->size % PAGE_SIZE) == 0)
1462 return true;
1463
1464 return false;
1465 }
1466
1467 #ifdef CONFIG_DEBUG_PAGEALLOC
1468 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1469 unsigned long caller)
1470 {
1471 int size = cachep->object_size;
1472
1473 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1474
1475 if (size < 5 * sizeof(unsigned long))
1476 return;
1477
1478 *addr++ = 0x12345678;
1479 *addr++ = caller;
1480 *addr++ = smp_processor_id();
1481 size -= 3 * sizeof(unsigned long);
1482 {
1483 unsigned long *sptr = &caller;
1484 unsigned long svalue;
1485
1486 while (!kstack_end(sptr)) {
1487 svalue = *sptr++;
1488 if (kernel_text_address(svalue)) {
1489 *addr++ = svalue;
1490 size -= sizeof(unsigned long);
1491 if (size <= sizeof(unsigned long))
1492 break;
1493 }
1494 }
1495
1496 }
1497 *addr++ = 0x87654321;
1498 }
1499
1500 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1501 int map, unsigned long caller)
1502 {
1503 if (!is_debug_pagealloc_cache(cachep))
1504 return;
1505
1506 if (caller)
1507 store_stackinfo(cachep, objp, caller);
1508
1509 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1510 }
1511
1512 #else
1513 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1514 int map, unsigned long caller) {}
1515
1516 #endif
1517
1518 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1519 {
1520 int size = cachep->object_size;
1521 addr = &((char *)addr)[obj_offset(cachep)];
1522
1523 memset(addr, val, size);
1524 *(unsigned char *)(addr + size - 1) = POISON_END;
1525 }
1526
1527 static void dump_line(char *data, int offset, int limit)
1528 {
1529 int i;
1530 unsigned char error = 0;
1531 int bad_count = 0;
1532
1533 pr_err("%03x: ", offset);
1534 for (i = 0; i < limit; i++) {
1535 if (data[offset + i] != POISON_FREE) {
1536 error = data[offset + i];
1537 bad_count++;
1538 }
1539 }
1540 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1541 &data[offset], limit, 1);
1542
1543 if (bad_count == 1) {
1544 error ^= POISON_FREE;
1545 if (!(error & (error - 1))) {
1546 pr_err("Single bit error detected. Probably bad RAM.\n");
1547 #ifdef CONFIG_X86
1548 pr_err("Run memtest86+ or a similar memory test tool.\n");
1549 #else
1550 pr_err("Run a memory test tool.\n");
1551 #endif
1552 }
1553 }
1554 }
1555 #endif
1556
1557 #if DEBUG
1558
1559 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1560 {
1561 int i, size;
1562 char *realobj;
1563
1564 if (cachep->flags & SLAB_RED_ZONE) {
1565 pr_err("Redzone: 0x%llx/0x%llx\n",
1566 *dbg_redzone1(cachep, objp),
1567 *dbg_redzone2(cachep, objp));
1568 }
1569
1570 if (cachep->flags & SLAB_STORE_USER)
1571 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1572 realobj = (char *)objp + obj_offset(cachep);
1573 size = cachep->object_size;
1574 for (i = 0; i < size && lines; i += 16, lines--) {
1575 int limit;
1576 limit = 16;
1577 if (i + limit > size)
1578 limit = size - i;
1579 dump_line(realobj, i, limit);
1580 }
1581 }
1582
1583 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1584 {
1585 char *realobj;
1586 int size, i;
1587 int lines = 0;
1588
1589 if (is_debug_pagealloc_cache(cachep))
1590 return;
1591
1592 realobj = (char *)objp + obj_offset(cachep);
1593 size = cachep->object_size;
1594
1595 for (i = 0; i < size; i++) {
1596 char exp = POISON_FREE;
1597 if (i == size - 1)
1598 exp = POISON_END;
1599 if (realobj[i] != exp) {
1600 int limit;
1601 /* Mismatch ! */
1602 /* Print header */
1603 if (lines == 0) {
1604 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1605 print_tainted(), cachep->name,
1606 realobj, size);
1607 print_objinfo(cachep, objp, 0);
1608 }
1609 /* Hexdump the affected line */
1610 i = (i / 16) * 16;
1611 limit = 16;
1612 if (i + limit > size)
1613 limit = size - i;
1614 dump_line(realobj, i, limit);
1615 i += 16;
1616 lines++;
1617 /* Limit to 5 lines */
1618 if (lines > 5)
1619 break;
1620 }
1621 }
1622 if (lines != 0) {
1623 /* Print some data about the neighboring objects, if they
1624 * exist:
1625 */
1626 struct page *page = virt_to_head_page(objp);
1627 unsigned int objnr;
1628
1629 objnr = obj_to_index(cachep, page, objp);
1630 if (objnr) {
1631 objp = index_to_obj(cachep, page, objnr - 1);
1632 realobj = (char *)objp + obj_offset(cachep);
1633 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1634 print_objinfo(cachep, objp, 2);
1635 }
1636 if (objnr + 1 < cachep->num) {
1637 objp = index_to_obj(cachep, page, objnr + 1);
1638 realobj = (char *)objp + obj_offset(cachep);
1639 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1640 print_objinfo(cachep, objp, 2);
1641 }
1642 }
1643 }
1644 #endif
1645
1646 #if DEBUG
1647 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1648 struct page *page)
1649 {
1650 int i;
1651
1652 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1653 poison_obj(cachep, page->freelist - obj_offset(cachep),
1654 POISON_FREE);
1655 }
1656
1657 for (i = 0; i < cachep->num; i++) {
1658 void *objp = index_to_obj(cachep, page, i);
1659
1660 if (cachep->flags & SLAB_POISON) {
1661 check_poison_obj(cachep, objp);
1662 slab_kernel_map(cachep, objp, 1, 0);
1663 }
1664 if (cachep->flags & SLAB_RED_ZONE) {
1665 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1666 slab_error(cachep, "start of a freed object was overwritten");
1667 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1668 slab_error(cachep, "end of a freed object was overwritten");
1669 }
1670 }
1671 }
1672 #else
1673 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1674 struct page *page)
1675 {
1676 }
1677 #endif
1678
1679 /**
1680 * slab_destroy - destroy and release all objects in a slab
1681 * @cachep: cache pointer being destroyed
1682 * @page: page pointer being destroyed
1683 *
1684 * Destroy all the objs in a slab page, and release the mem back to the system.
1685 * Before calling the slab page must have been unlinked from the cache. The
1686 * kmem_cache_node ->list_lock is not held/needed.
1687 */
1688 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1689 {
1690 void *freelist;
1691
1692 freelist = page->freelist;
1693 slab_destroy_debugcheck(cachep, page);
1694 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1695 call_rcu(&page->rcu_head, kmem_rcu_free);
1696 else
1697 kmem_freepages(cachep, page);
1698
1699 /*
1700 * From now on, we don't use freelist
1701 * although actual page can be freed in rcu context
1702 */
1703 if (OFF_SLAB(cachep))
1704 kmem_cache_free(cachep->freelist_cache, freelist);
1705 }
1706
1707 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1708 {
1709 struct page *page, *n;
1710
1711 list_for_each_entry_safe(page, n, list, lru) {
1712 list_del(&page->lru);
1713 slab_destroy(cachep, page);
1714 }
1715 }
1716
1717 /**
1718 * calculate_slab_order - calculate size (page order) of slabs
1719 * @cachep: pointer to the cache that is being created
1720 * @size: size of objects to be created in this cache.
1721 * @flags: slab allocation flags
1722 *
1723 * Also calculates the number of objects per slab.
1724 *
1725 * This could be made much more intelligent. For now, try to avoid using
1726 * high order pages for slabs. When the gfp() functions are more friendly
1727 * towards high-order requests, this should be changed.
1728 */
1729 static size_t calculate_slab_order(struct kmem_cache *cachep,
1730 size_t size, slab_flags_t flags)
1731 {
1732 size_t left_over = 0;
1733 int gfporder;
1734
1735 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1736 unsigned int num;
1737 size_t remainder;
1738
1739 num = cache_estimate(gfporder, size, flags, &remainder);
1740 if (!num)
1741 continue;
1742
1743 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1744 if (num > SLAB_OBJ_MAX_NUM)
1745 break;
1746
1747 if (flags & CFLGS_OFF_SLAB) {
1748 struct kmem_cache *freelist_cache;
1749 size_t freelist_size;
1750
1751 freelist_size = num * sizeof(freelist_idx_t);
1752 freelist_cache = kmalloc_slab(freelist_size, 0u);
1753 if (!freelist_cache)
1754 continue;
1755
1756 /*
1757 * Needed to avoid possible looping condition
1758 * in cache_grow_begin()
1759 */
1760 if (OFF_SLAB(freelist_cache))
1761 continue;
1762
1763 /* check if off slab has enough benefit */
1764 if (freelist_cache->size > cachep->size / 2)
1765 continue;
1766 }
1767
1768 /* Found something acceptable - save it away */
1769 cachep->num = num;
1770 cachep->gfporder = gfporder;
1771 left_over = remainder;
1772
1773 /*
1774 * A VFS-reclaimable slab tends to have most allocations
1775 * as GFP_NOFS and we really don't want to have to be allocating
1776 * higher-order pages when we are unable to shrink dcache.
1777 */
1778 if (flags & SLAB_RECLAIM_ACCOUNT)
1779 break;
1780
1781 /*
1782 * Large number of objects is good, but very large slabs are
1783 * currently bad for the gfp()s.
1784 */
1785 if (gfporder >= slab_max_order)
1786 break;
1787
1788 /*
1789 * Acceptable internal fragmentation?
1790 */
1791 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1792 break;
1793 }
1794 return left_over;
1795 }
1796
1797 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1798 struct kmem_cache *cachep, int entries, int batchcount)
1799 {
1800 int cpu;
1801 size_t size;
1802 struct array_cache __percpu *cpu_cache;
1803
1804 size = sizeof(void *) * entries + sizeof(struct array_cache);
1805 cpu_cache = __alloc_percpu(size, sizeof(void *));
1806
1807 if (!cpu_cache)
1808 return NULL;
1809
1810 for_each_possible_cpu(cpu) {
1811 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1812 entries, batchcount);
1813 }
1814
1815 return cpu_cache;
1816 }
1817
1818 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1819 {
1820 if (slab_state >= FULL)
1821 return enable_cpucache(cachep, gfp);
1822
1823 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1824 if (!cachep->cpu_cache)
1825 return 1;
1826
1827 if (slab_state == DOWN) {
1828 /* Creation of first cache (kmem_cache). */
1829 set_up_node(kmem_cache, CACHE_CACHE);
1830 } else if (slab_state == PARTIAL) {
1831 /* For kmem_cache_node */
1832 set_up_node(cachep, SIZE_NODE);
1833 } else {
1834 int node;
1835
1836 for_each_online_node(node) {
1837 cachep->node[node] = kmalloc_node(
1838 sizeof(struct kmem_cache_node), gfp, node);
1839 BUG_ON(!cachep->node[node]);
1840 kmem_cache_node_init(cachep->node[node]);
1841 }
1842 }
1843
1844 cachep->node[numa_mem_id()]->next_reap =
1845 jiffies + REAPTIMEOUT_NODE +
1846 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1847
1848 cpu_cache_get(cachep)->avail = 0;
1849 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1850 cpu_cache_get(cachep)->batchcount = 1;
1851 cpu_cache_get(cachep)->touched = 0;
1852 cachep->batchcount = 1;
1853 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1854 return 0;
1855 }
1856
1857 slab_flags_t kmem_cache_flags(unsigned int object_size,
1858 slab_flags_t flags, const char *name,
1859 void (*ctor)(void *))
1860 {
1861 return flags;
1862 }
1863
1864 struct kmem_cache *
1865 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1866 slab_flags_t flags, void (*ctor)(void *))
1867 {
1868 struct kmem_cache *cachep;
1869
1870 cachep = find_mergeable(size, align, flags, name, ctor);
1871 if (cachep) {
1872 cachep->refcount++;
1873
1874 /*
1875 * Adjust the object sizes so that we clear
1876 * the complete object on kzalloc.
1877 */
1878 cachep->object_size = max_t(int, cachep->object_size, size);
1879 }
1880 return cachep;
1881 }
1882
1883 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1884 size_t size, slab_flags_t flags)
1885 {
1886 size_t left;
1887
1888 cachep->num = 0;
1889
1890 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1891 return false;
1892
1893 left = calculate_slab_order(cachep, size,
1894 flags | CFLGS_OBJFREELIST_SLAB);
1895 if (!cachep->num)
1896 return false;
1897
1898 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1899 return false;
1900
1901 cachep->colour = left / cachep->colour_off;
1902
1903 return true;
1904 }
1905
1906 static bool set_off_slab_cache(struct kmem_cache *cachep,
1907 size_t size, slab_flags_t flags)
1908 {
1909 size_t left;
1910
1911 cachep->num = 0;
1912
1913 /*
1914 * Always use on-slab management when SLAB_NOLEAKTRACE
1915 * to avoid recursive calls into kmemleak.
1916 */
1917 if (flags & SLAB_NOLEAKTRACE)
1918 return false;
1919
1920 /*
1921 * Size is large, assume best to place the slab management obj
1922 * off-slab (should allow better packing of objs).
1923 */
1924 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1925 if (!cachep->num)
1926 return false;
1927
1928 /*
1929 * If the slab has been placed off-slab, and we have enough space then
1930 * move it on-slab. This is at the expense of any extra colouring.
1931 */
1932 if (left >= cachep->num * sizeof(freelist_idx_t))
1933 return false;
1934
1935 cachep->colour = left / cachep->colour_off;
1936
1937 return true;
1938 }
1939
1940 static bool set_on_slab_cache(struct kmem_cache *cachep,
1941 size_t size, slab_flags_t flags)
1942 {
1943 size_t left;
1944
1945 cachep->num = 0;
1946
1947 left = calculate_slab_order(cachep, size, flags);
1948 if (!cachep->num)
1949 return false;
1950
1951 cachep->colour = left / cachep->colour_off;
1952
1953 return true;
1954 }
1955
1956 /**
1957 * __kmem_cache_create - Create a cache.
1958 * @cachep: cache management descriptor
1959 * @flags: SLAB flags
1960 *
1961 * Returns a ptr to the cache on success, NULL on failure.
1962 * Cannot be called within a int, but can be interrupted.
1963 * The @ctor is run when new pages are allocated by the cache.
1964 *
1965 * The flags are
1966 *
1967 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1968 * to catch references to uninitialised memory.
1969 *
1970 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1971 * for buffer overruns.
1972 *
1973 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1974 * cacheline. This can be beneficial if you're counting cycles as closely
1975 * as davem.
1976 */
1977 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1978 {
1979 size_t ralign = BYTES_PER_WORD;
1980 gfp_t gfp;
1981 int err;
1982 unsigned int size = cachep->size;
1983
1984 #if DEBUG
1985 #if FORCED_DEBUG
1986 /*
1987 * Enable redzoning and last user accounting, except for caches with
1988 * large objects, if the increased size would increase the object size
1989 * above the next power of two: caches with object sizes just above a
1990 * power of two have a significant amount of internal fragmentation.
1991 */
1992 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1993 2 * sizeof(unsigned long long)))
1994 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1995 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1996 flags |= SLAB_POISON;
1997 #endif
1998 #endif
1999
2000 /*
2001 * Check that size is in terms of words. This is needed to avoid
2002 * unaligned accesses for some archs when redzoning is used, and makes
2003 * sure any on-slab bufctl's are also correctly aligned.
2004 */
2005 size = ALIGN(size, BYTES_PER_WORD);
2006
2007 if (flags & SLAB_RED_ZONE) {
2008 ralign = REDZONE_ALIGN;
2009 /* If redzoning, ensure that the second redzone is suitably
2010 * aligned, by adjusting the object size accordingly. */
2011 size = ALIGN(size, REDZONE_ALIGN);
2012 }
2013
2014 /* 3) caller mandated alignment */
2015 if (ralign < cachep->align) {
2016 ralign = cachep->align;
2017 }
2018 /* disable debug if necessary */
2019 if (ralign > __alignof__(unsigned long long))
2020 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2021 /*
2022 * 4) Store it.
2023 */
2024 cachep->align = ralign;
2025 cachep->colour_off = cache_line_size();
2026 /* Offset must be a multiple of the alignment. */
2027 if (cachep->colour_off < cachep->align)
2028 cachep->colour_off = cachep->align;
2029
2030 if (slab_is_available())
2031 gfp = GFP_KERNEL;
2032 else
2033 gfp = GFP_NOWAIT;
2034
2035 #if DEBUG
2036
2037 /*
2038 * Both debugging options require word-alignment which is calculated
2039 * into align above.
2040 */
2041 if (flags & SLAB_RED_ZONE) {
2042 /* add space for red zone words */
2043 cachep->obj_offset += sizeof(unsigned long long);
2044 size += 2 * sizeof(unsigned long long);
2045 }
2046 if (flags & SLAB_STORE_USER) {
2047 /* user store requires one word storage behind the end of
2048 * the real object. But if the second red zone needs to be
2049 * aligned to 64 bits, we must allow that much space.
2050 */
2051 if (flags & SLAB_RED_ZONE)
2052 size += REDZONE_ALIGN;
2053 else
2054 size += BYTES_PER_WORD;
2055 }
2056 #endif
2057
2058 kasan_cache_create(cachep, &size, &flags);
2059
2060 size = ALIGN(size, cachep->align);
2061 /*
2062 * We should restrict the number of objects in a slab to implement
2063 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2064 */
2065 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2066 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2067
2068 #if DEBUG
2069 /*
2070 * To activate debug pagealloc, off-slab management is necessary
2071 * requirement. In early phase of initialization, small sized slab
2072 * doesn't get initialized so it would not be possible. So, we need
2073 * to check size >= 256. It guarantees that all necessary small
2074 * sized slab is initialized in current slab initialization sequence.
2075 */
2076 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2077 size >= 256 && cachep->object_size > cache_line_size()) {
2078 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2079 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2080
2081 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2082 flags |= CFLGS_OFF_SLAB;
2083 cachep->obj_offset += tmp_size - size;
2084 size = tmp_size;
2085 goto done;
2086 }
2087 }
2088 }
2089 #endif
2090
2091 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2092 flags |= CFLGS_OBJFREELIST_SLAB;
2093 goto done;
2094 }
2095
2096 if (set_off_slab_cache(cachep, size, flags)) {
2097 flags |= CFLGS_OFF_SLAB;
2098 goto done;
2099 }
2100
2101 if (set_on_slab_cache(cachep, size, flags))
2102 goto done;
2103
2104 return -E2BIG;
2105
2106 done:
2107 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2108 cachep->flags = flags;
2109 cachep->allocflags = __GFP_COMP;
2110 if (flags & SLAB_CACHE_DMA)
2111 cachep->allocflags |= GFP_DMA;
2112 if (flags & SLAB_RECLAIM_ACCOUNT)
2113 cachep->allocflags |= __GFP_RECLAIMABLE;
2114 cachep->size = size;
2115 cachep->reciprocal_buffer_size = reciprocal_value(size);
2116
2117 #if DEBUG
2118 /*
2119 * If we're going to use the generic kernel_map_pages()
2120 * poisoning, then it's going to smash the contents of
2121 * the redzone and userword anyhow, so switch them off.
2122 */
2123 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2124 (cachep->flags & SLAB_POISON) &&
2125 is_debug_pagealloc_cache(cachep))
2126 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2127 #endif
2128
2129 if (OFF_SLAB(cachep)) {
2130 cachep->freelist_cache =
2131 kmalloc_slab(cachep->freelist_size, 0u);
2132 }
2133
2134 err = setup_cpu_cache(cachep, gfp);
2135 if (err) {
2136 __kmem_cache_release(cachep);
2137 return err;
2138 }
2139
2140 return 0;
2141 }
2142
2143 #if DEBUG
2144 static void check_irq_off(void)
2145 {
2146 BUG_ON(!irqs_disabled());
2147 }
2148
2149 static void check_irq_on(void)
2150 {
2151 BUG_ON(irqs_disabled());
2152 }
2153
2154 static void check_mutex_acquired(void)
2155 {
2156 BUG_ON(!mutex_is_locked(&slab_mutex));
2157 }
2158
2159 static void check_spinlock_acquired(struct kmem_cache *cachep)
2160 {
2161 #ifdef CONFIG_SMP
2162 check_irq_off();
2163 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2164 #endif
2165 }
2166
2167 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2168 {
2169 #ifdef CONFIG_SMP
2170 check_irq_off();
2171 assert_spin_locked(&get_node(cachep, node)->list_lock);
2172 #endif
2173 }
2174
2175 #else
2176 #define check_irq_off() do { } while(0)
2177 #define check_irq_on() do { } while(0)
2178 #define check_mutex_acquired() do { } while(0)
2179 #define check_spinlock_acquired(x) do { } while(0)
2180 #define check_spinlock_acquired_node(x, y) do { } while(0)
2181 #endif
2182
2183 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2184 int node, bool free_all, struct list_head *list)
2185 {
2186 int tofree;
2187
2188 if (!ac || !ac->avail)
2189 return;
2190
2191 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2192 if (tofree > ac->avail)
2193 tofree = (ac->avail + 1) / 2;
2194
2195 free_block(cachep, ac->entry, tofree, node, list);
2196 ac->avail -= tofree;
2197 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2198 }
2199
2200 static void do_drain(void *arg)
2201 {
2202 struct kmem_cache *cachep = arg;
2203 struct array_cache *ac;
2204 int node = numa_mem_id();
2205 struct kmem_cache_node *n;
2206 LIST_HEAD(list);
2207
2208 check_irq_off();
2209 ac = cpu_cache_get(cachep);
2210 n = get_node(cachep, node);
2211 spin_lock(&n->list_lock);
2212 free_block(cachep, ac->entry, ac->avail, node, &list);
2213 spin_unlock(&n->list_lock);
2214 slabs_destroy(cachep, &list);
2215 ac->avail = 0;
2216 }
2217
2218 static void drain_cpu_caches(struct kmem_cache *cachep)
2219 {
2220 struct kmem_cache_node *n;
2221 int node;
2222 LIST_HEAD(list);
2223
2224 on_each_cpu(do_drain, cachep, 1);
2225 check_irq_on();
2226 for_each_kmem_cache_node(cachep, node, n)
2227 if (n->alien)
2228 drain_alien_cache(cachep, n->alien);
2229
2230 for_each_kmem_cache_node(cachep, node, n) {
2231 spin_lock_irq(&n->list_lock);
2232 drain_array_locked(cachep, n->shared, node, true, &list);
2233 spin_unlock_irq(&n->list_lock);
2234
2235 slabs_destroy(cachep, &list);
2236 }
2237 }
2238
2239 /*
2240 * Remove slabs from the list of free slabs.
2241 * Specify the number of slabs to drain in tofree.
2242 *
2243 * Returns the actual number of slabs released.
2244 */
2245 static int drain_freelist(struct kmem_cache *cache,
2246 struct kmem_cache_node *n, int tofree)
2247 {
2248 struct list_head *p;
2249 int nr_freed;
2250 struct page *page;
2251
2252 nr_freed = 0;
2253 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2254
2255 spin_lock_irq(&n->list_lock);
2256 p = n->slabs_free.prev;
2257 if (p == &n->slabs_free) {
2258 spin_unlock_irq(&n->list_lock);
2259 goto out;
2260 }
2261
2262 page = list_entry(p, struct page, lru);
2263 list_del(&page->lru);
2264 n->free_slabs--;
2265 n->total_slabs--;
2266 /*
2267 * Safe to drop the lock. The slab is no longer linked
2268 * to the cache.
2269 */
2270 n->free_objects -= cache->num;
2271 spin_unlock_irq(&n->list_lock);
2272 slab_destroy(cache, page);
2273 nr_freed++;
2274 }
2275 out:
2276 return nr_freed;
2277 }
2278
2279 bool __kmem_cache_empty(struct kmem_cache *s)
2280 {
2281 int node;
2282 struct kmem_cache_node *n;
2283
2284 for_each_kmem_cache_node(s, node, n)
2285 if (!list_empty(&n->slabs_full) ||
2286 !list_empty(&n->slabs_partial))
2287 return false;
2288 return true;
2289 }
2290
2291 int __kmem_cache_shrink(struct kmem_cache *cachep)
2292 {
2293 int ret = 0;
2294 int node;
2295 struct kmem_cache_node *n;
2296
2297 drain_cpu_caches(cachep);
2298
2299 check_irq_on();
2300 for_each_kmem_cache_node(cachep, node, n) {
2301 drain_freelist(cachep, n, INT_MAX);
2302
2303 ret += !list_empty(&n->slabs_full) ||
2304 !list_empty(&n->slabs_partial);
2305 }
2306 return (ret ? 1 : 0);
2307 }
2308
2309 #ifdef CONFIG_MEMCG
2310 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2311 {
2312 __kmem_cache_shrink(cachep);
2313 }
2314 #endif
2315
2316 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2317 {
2318 return __kmem_cache_shrink(cachep);
2319 }
2320
2321 void __kmem_cache_release(struct kmem_cache *cachep)
2322 {
2323 int i;
2324 struct kmem_cache_node *n;
2325
2326 cache_random_seq_destroy(cachep);
2327
2328 free_percpu(cachep->cpu_cache);
2329
2330 /* NUMA: free the node structures */
2331 for_each_kmem_cache_node(cachep, i, n) {
2332 kfree(n->shared);
2333 free_alien_cache(n->alien);
2334 kfree(n);
2335 cachep->node[i] = NULL;
2336 }
2337 }
2338
2339 /*
2340 * Get the memory for a slab management obj.
2341 *
2342 * For a slab cache when the slab descriptor is off-slab, the
2343 * slab descriptor can't come from the same cache which is being created,
2344 * Because if it is the case, that means we defer the creation of
2345 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2346 * And we eventually call down to __kmem_cache_create(), which
2347 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2348 * This is a "chicken-and-egg" problem.
2349 *
2350 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2351 * which are all initialized during kmem_cache_init().
2352 */
2353 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2354 struct page *page, int colour_off,
2355 gfp_t local_flags, int nodeid)
2356 {
2357 void *freelist;
2358 void *addr = page_address(page);
2359
2360 page->s_mem = kasan_reset_tag(addr) + colour_off;
2361 page->active = 0;
2362
2363 if (OBJFREELIST_SLAB(cachep))
2364 freelist = NULL;
2365 else if (OFF_SLAB(cachep)) {
2366 /* Slab management obj is off-slab. */
2367 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2368 local_flags, nodeid);
2369 if (!freelist)
2370 return NULL;
2371 } else {
2372 /* We will use last bytes at the slab for freelist */
2373 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2374 cachep->freelist_size;
2375 }
2376
2377 return freelist;
2378 }
2379
2380 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2381 {
2382 return ((freelist_idx_t *)page->freelist)[idx];
2383 }
2384
2385 static inline void set_free_obj(struct page *page,
2386 unsigned int idx, freelist_idx_t val)
2387 {
2388 ((freelist_idx_t *)(page->freelist))[idx] = val;
2389 }
2390
2391 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2392 {
2393 #if DEBUG
2394 int i;
2395
2396 for (i = 0; i < cachep->num; i++) {
2397 void *objp = index_to_obj(cachep, page, i);
2398
2399 if (cachep->flags & SLAB_STORE_USER)
2400 *dbg_userword(cachep, objp) = NULL;
2401
2402 if (cachep->flags & SLAB_RED_ZONE) {
2403 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2404 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2405 }
2406 /*
2407 * Constructors are not allowed to allocate memory from the same
2408 * cache which they are a constructor for. Otherwise, deadlock.
2409 * They must also be threaded.
2410 */
2411 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2412 kasan_unpoison_object_data(cachep,
2413 objp + obj_offset(cachep));
2414 cachep->ctor(objp + obj_offset(cachep));
2415 kasan_poison_object_data(
2416 cachep, objp + obj_offset(cachep));
2417 }
2418
2419 if (cachep->flags & SLAB_RED_ZONE) {
2420 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2421 slab_error(cachep, "constructor overwrote the end of an object");
2422 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2423 slab_error(cachep, "constructor overwrote the start of an object");
2424 }
2425 /* need to poison the objs? */
2426 if (cachep->flags & SLAB_POISON) {
2427 poison_obj(cachep, objp, POISON_FREE);
2428 slab_kernel_map(cachep, objp, 0, 0);
2429 }
2430 }
2431 #endif
2432 }
2433
2434 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2435 /* Hold information during a freelist initialization */
2436 union freelist_init_state {
2437 struct {
2438 unsigned int pos;
2439 unsigned int *list;
2440 unsigned int count;
2441 };
2442 struct rnd_state rnd_state;
2443 };
2444
2445 /*
2446 * Initialize the state based on the randomization methode available.
2447 * return true if the pre-computed list is available, false otherwize.
2448 */
2449 static bool freelist_state_initialize(union freelist_init_state *state,
2450 struct kmem_cache *cachep,
2451 unsigned int count)
2452 {
2453 bool ret;
2454 unsigned int rand;
2455
2456 /* Use best entropy available to define a random shift */
2457 rand = get_random_int();
2458
2459 /* Use a random state if the pre-computed list is not available */
2460 if (!cachep->random_seq) {
2461 prandom_seed_state(&state->rnd_state, rand);
2462 ret = false;
2463 } else {
2464 state->list = cachep->random_seq;
2465 state->count = count;
2466 state->pos = rand % count;
2467 ret = true;
2468 }
2469 return ret;
2470 }
2471
2472 /* Get the next entry on the list and randomize it using a random shift */
2473 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2474 {
2475 if (state->pos >= state->count)
2476 state->pos = 0;
2477 return state->list[state->pos++];
2478 }
2479
2480 /* Swap two freelist entries */
2481 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2482 {
2483 swap(((freelist_idx_t *)page->freelist)[a],
2484 ((freelist_idx_t *)page->freelist)[b]);
2485 }
2486
2487 /*
2488 * Shuffle the freelist initialization state based on pre-computed lists.
2489 * return true if the list was successfully shuffled, false otherwise.
2490 */
2491 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2492 {
2493 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2494 union freelist_init_state state;
2495 bool precomputed;
2496
2497 if (count < 2)
2498 return false;
2499
2500 precomputed = freelist_state_initialize(&state, cachep, count);
2501
2502 /* Take a random entry as the objfreelist */
2503 if (OBJFREELIST_SLAB(cachep)) {
2504 if (!precomputed)
2505 objfreelist = count - 1;
2506 else
2507 objfreelist = next_random_slot(&state);
2508 page->freelist = index_to_obj(cachep, page, objfreelist) +
2509 obj_offset(cachep);
2510 count--;
2511 }
2512
2513 /*
2514 * On early boot, generate the list dynamically.
2515 * Later use a pre-computed list for speed.
2516 */
2517 if (!precomputed) {
2518 for (i = 0; i < count; i++)
2519 set_free_obj(page, i, i);
2520
2521 /* Fisher-Yates shuffle */
2522 for (i = count - 1; i > 0; i--) {
2523 rand = prandom_u32_state(&state.rnd_state);
2524 rand %= (i + 1);
2525 swap_free_obj(page, i, rand);
2526 }
2527 } else {
2528 for (i = 0; i < count; i++)
2529 set_free_obj(page, i, next_random_slot(&state));
2530 }
2531
2532 if (OBJFREELIST_SLAB(cachep))
2533 set_free_obj(page, cachep->num - 1, objfreelist);
2534
2535 return true;
2536 }
2537 #else
2538 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2539 struct page *page)
2540 {
2541 return false;
2542 }
2543 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2544
2545 static void cache_init_objs(struct kmem_cache *cachep,
2546 struct page *page)
2547 {
2548 int i;
2549 void *objp;
2550 bool shuffled;
2551
2552 cache_init_objs_debug(cachep, page);
2553
2554 /* Try to randomize the freelist if enabled */
2555 shuffled = shuffle_freelist(cachep, page);
2556
2557 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2558 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2559 obj_offset(cachep);
2560 }
2561
2562 for (i = 0; i < cachep->num; i++) {
2563 objp = index_to_obj(cachep, page, i);
2564 objp = kasan_init_slab_obj(cachep, objp);
2565
2566 /* constructor could break poison info */
2567 if (DEBUG == 0 && cachep->ctor) {
2568 kasan_unpoison_object_data(cachep, objp);
2569 cachep->ctor(objp);
2570 kasan_poison_object_data(cachep, objp);
2571 }
2572
2573 if (!shuffled)
2574 set_free_obj(page, i, i);
2575 }
2576 }
2577
2578 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2579 {
2580 void *objp;
2581
2582 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2583 page->active++;
2584
2585 #if DEBUG
2586 if (cachep->flags & SLAB_STORE_USER)
2587 set_store_user_dirty(cachep);
2588 #endif
2589
2590 return objp;
2591 }
2592
2593 static void slab_put_obj(struct kmem_cache *cachep,
2594 struct page *page, void *objp)
2595 {
2596 unsigned int objnr = obj_to_index(cachep, page, objp);
2597 #if DEBUG
2598 unsigned int i;
2599
2600 /* Verify double free bug */
2601 for (i = page->active; i < cachep->num; i++) {
2602 if (get_free_obj(page, i) == objnr) {
2603 pr_err("slab: double free detected in cache '%s', objp %px\n",
2604 cachep->name, objp);
2605 BUG();
2606 }
2607 }
2608 #endif
2609 page->active--;
2610 if (!page->freelist)
2611 page->freelist = objp + obj_offset(cachep);
2612
2613 set_free_obj(page, page->active, objnr);
2614 }
2615
2616 /*
2617 * Map pages beginning at addr to the given cache and slab. This is required
2618 * for the slab allocator to be able to lookup the cache and slab of a
2619 * virtual address for kfree, ksize, and slab debugging.
2620 */
2621 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2622 void *freelist)
2623 {
2624 page->slab_cache = cache;
2625 page->freelist = freelist;
2626 }
2627
2628 /*
2629 * Grow (by 1) the number of slabs within a cache. This is called by
2630 * kmem_cache_alloc() when there are no active objs left in a cache.
2631 */
2632 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2633 gfp_t flags, int nodeid)
2634 {
2635 void *freelist;
2636 size_t offset;
2637 gfp_t local_flags;
2638 int page_node;
2639 struct kmem_cache_node *n;
2640 struct page *page;
2641
2642 /*
2643 * Be lazy and only check for valid flags here, keeping it out of the
2644 * critical path in kmem_cache_alloc().
2645 */
2646 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2647 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2648 flags &= ~GFP_SLAB_BUG_MASK;
2649 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2650 invalid_mask, &invalid_mask, flags, &flags);
2651 dump_stack();
2652 }
2653 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2654 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2655
2656 check_irq_off();
2657 if (gfpflags_allow_blocking(local_flags))
2658 local_irq_enable();
2659
2660 /*
2661 * Get mem for the objs. Attempt to allocate a physical page from
2662 * 'nodeid'.
2663 */
2664 page = kmem_getpages(cachep, local_flags, nodeid);
2665 if (!page)
2666 goto failed;
2667
2668 page_node = page_to_nid(page);
2669 n = get_node(cachep, page_node);
2670
2671 /* Get colour for the slab, and cal the next value. */
2672 n->colour_next++;
2673 if (n->colour_next >= cachep->colour)
2674 n->colour_next = 0;
2675
2676 offset = n->colour_next;
2677 if (offset >= cachep->colour)
2678 offset = 0;
2679
2680 offset *= cachep->colour_off;
2681
2682 /* Get slab management. */
2683 freelist = alloc_slabmgmt(cachep, page, offset,
2684 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2685 if (OFF_SLAB(cachep) && !freelist)
2686 goto opps1;
2687
2688 slab_map_pages(cachep, page, freelist);
2689
2690 kasan_poison_slab(page);
2691 cache_init_objs(cachep, page);
2692
2693 if (gfpflags_allow_blocking(local_flags))
2694 local_irq_disable();
2695
2696 return page;
2697
2698 opps1:
2699 kmem_freepages(cachep, page);
2700 failed:
2701 if (gfpflags_allow_blocking(local_flags))
2702 local_irq_disable();
2703 return NULL;
2704 }
2705
2706 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2707 {
2708 struct kmem_cache_node *n;
2709 void *list = NULL;
2710
2711 check_irq_off();
2712
2713 if (!page)
2714 return;
2715
2716 INIT_LIST_HEAD(&page->lru);
2717 n = get_node(cachep, page_to_nid(page));
2718
2719 spin_lock(&n->list_lock);
2720 n->total_slabs++;
2721 if (!page->active) {
2722 list_add_tail(&page->lru, &(n->slabs_free));
2723 n->free_slabs++;
2724 } else
2725 fixup_slab_list(cachep, n, page, &list);
2726
2727 STATS_INC_GROWN(cachep);
2728 n->free_objects += cachep->num - page->active;
2729 spin_unlock(&n->list_lock);
2730
2731 fixup_objfreelist_debug(cachep, &list);
2732 }
2733
2734 #if DEBUG
2735
2736 /*
2737 * Perform extra freeing checks:
2738 * - detect bad pointers.
2739 * - POISON/RED_ZONE checking
2740 */
2741 static void kfree_debugcheck(const void *objp)
2742 {
2743 if (!virt_addr_valid(objp)) {
2744 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2745 (unsigned long)objp);
2746 BUG();
2747 }
2748 }
2749
2750 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2751 {
2752 unsigned long long redzone1, redzone2;
2753
2754 redzone1 = *dbg_redzone1(cache, obj);
2755 redzone2 = *dbg_redzone2(cache, obj);
2756
2757 /*
2758 * Redzone is ok.
2759 */
2760 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2761 return;
2762
2763 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2764 slab_error(cache, "double free detected");
2765 else
2766 slab_error(cache, "memory outside object was overwritten");
2767
2768 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2769 obj, redzone1, redzone2);
2770 }
2771
2772 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2773 unsigned long caller)
2774 {
2775 unsigned int objnr;
2776 struct page *page;
2777
2778 BUG_ON(virt_to_cache(objp) != cachep);
2779
2780 objp -= obj_offset(cachep);
2781 kfree_debugcheck(objp);
2782 page = virt_to_head_page(objp);
2783
2784 if (cachep->flags & SLAB_RED_ZONE) {
2785 verify_redzone_free(cachep, objp);
2786 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2787 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2788 }
2789 if (cachep->flags & SLAB_STORE_USER) {
2790 set_store_user_dirty(cachep);
2791 *dbg_userword(cachep, objp) = (void *)caller;
2792 }
2793
2794 objnr = obj_to_index(cachep, page, objp);
2795
2796 BUG_ON(objnr >= cachep->num);
2797 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2798
2799 if (cachep->flags & SLAB_POISON) {
2800 poison_obj(cachep, objp, POISON_FREE);
2801 slab_kernel_map(cachep, objp, 0, caller);
2802 }
2803 return objp;
2804 }
2805
2806 #else
2807 #define kfree_debugcheck(x) do { } while(0)
2808 #define cache_free_debugcheck(x,objp,z) (objp)
2809 #endif
2810
2811 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2812 void **list)
2813 {
2814 #if DEBUG
2815 void *next = *list;
2816 void *objp;
2817
2818 while (next) {
2819 objp = next - obj_offset(cachep);
2820 next = *(void **)next;
2821 poison_obj(cachep, objp, POISON_FREE);
2822 }
2823 #endif
2824 }
2825
2826 static inline void fixup_slab_list(struct kmem_cache *cachep,
2827 struct kmem_cache_node *n, struct page *page,
2828 void **list)
2829 {
2830 /* move slabp to correct slabp list: */
2831 list_del(&page->lru);
2832 if (page->active == cachep->num) {
2833 list_add(&page->lru, &n->slabs_full);
2834 if (OBJFREELIST_SLAB(cachep)) {
2835 #if DEBUG
2836 /* Poisoning will be done without holding the lock */
2837 if (cachep->flags & SLAB_POISON) {
2838 void **objp = page->freelist;
2839
2840 *objp = *list;
2841 *list = objp;
2842 }
2843 #endif
2844 page->freelist = NULL;
2845 }
2846 } else
2847 list_add(&page->lru, &n->slabs_partial);
2848 }
2849
2850 /* Try to find non-pfmemalloc slab if needed */
2851 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2852 struct page *page, bool pfmemalloc)
2853 {
2854 if (!page)
2855 return NULL;
2856
2857 if (pfmemalloc)
2858 return page;
2859
2860 if (!PageSlabPfmemalloc(page))
2861 return page;
2862
2863 /* No need to keep pfmemalloc slab if we have enough free objects */
2864 if (n->free_objects > n->free_limit) {
2865 ClearPageSlabPfmemalloc(page);
2866 return page;
2867 }
2868
2869 /* Move pfmemalloc slab to the end of list to speed up next search */
2870 list_del(&page->lru);
2871 if (!page->active) {
2872 list_add_tail(&page->lru, &n->slabs_free);
2873 n->free_slabs++;
2874 } else
2875 list_add_tail(&page->lru, &n->slabs_partial);
2876
2877 list_for_each_entry(page, &n->slabs_partial, lru) {
2878 if (!PageSlabPfmemalloc(page))
2879 return page;
2880 }
2881
2882 n->free_touched = 1;
2883 list_for_each_entry(page, &n->slabs_free, lru) {
2884 if (!PageSlabPfmemalloc(page)) {
2885 n->free_slabs--;
2886 return page;
2887 }
2888 }
2889
2890 return NULL;
2891 }
2892
2893 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2894 {
2895 struct page *page;
2896
2897 assert_spin_locked(&n->list_lock);
2898 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2899 if (!page) {
2900 n->free_touched = 1;
2901 page = list_first_entry_or_null(&n->slabs_free, struct page,
2902 lru);
2903 if (page)
2904 n->free_slabs--;
2905 }
2906
2907 if (sk_memalloc_socks())
2908 page = get_valid_first_slab(n, page, pfmemalloc);
2909
2910 return page;
2911 }
2912
2913 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2914 struct kmem_cache_node *n, gfp_t flags)
2915 {
2916 struct page *page;
2917 void *obj;
2918 void *list = NULL;
2919
2920 if (!gfp_pfmemalloc_allowed(flags))
2921 return NULL;
2922
2923 spin_lock(&n->list_lock);
2924 page = get_first_slab(n, true);
2925 if (!page) {
2926 spin_unlock(&n->list_lock);
2927 return NULL;
2928 }
2929
2930 obj = slab_get_obj(cachep, page);
2931 n->free_objects--;
2932
2933 fixup_slab_list(cachep, n, page, &list);
2934
2935 spin_unlock(&n->list_lock);
2936 fixup_objfreelist_debug(cachep, &list);
2937
2938 return obj;
2939 }
2940
2941 /*
2942 * Slab list should be fixed up by fixup_slab_list() for existing slab
2943 * or cache_grow_end() for new slab
2944 */
2945 static __always_inline int alloc_block(struct kmem_cache *cachep,
2946 struct array_cache *ac, struct page *page, int batchcount)
2947 {
2948 /*
2949 * There must be at least one object available for
2950 * allocation.
2951 */
2952 BUG_ON(page->active >= cachep->num);
2953
2954 while (page->active < cachep->num && batchcount--) {
2955 STATS_INC_ALLOCED(cachep);
2956 STATS_INC_ACTIVE(cachep);
2957 STATS_SET_HIGH(cachep);
2958
2959 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2960 }
2961
2962 return batchcount;
2963 }
2964
2965 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2966 {
2967 int batchcount;
2968 struct kmem_cache_node *n;
2969 struct array_cache *ac, *shared;
2970 int node;
2971 void *list = NULL;
2972 struct page *page;
2973
2974 check_irq_off();
2975 node = numa_mem_id();
2976
2977 ac = cpu_cache_get(cachep);
2978 batchcount = ac->batchcount;
2979 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2980 /*
2981 * If there was little recent activity on this cache, then
2982 * perform only a partial refill. Otherwise we could generate
2983 * refill bouncing.
2984 */
2985 batchcount = BATCHREFILL_LIMIT;
2986 }
2987 n = get_node(cachep, node);
2988
2989 BUG_ON(ac->avail > 0 || !n);
2990 shared = READ_ONCE(n->shared);
2991 if (!n->free_objects && (!shared || !shared->avail))
2992 goto direct_grow;
2993
2994 spin_lock(&n->list_lock);
2995 shared = READ_ONCE(n->shared);
2996
2997 /* See if we can refill from the shared array */
2998 if (shared && transfer_objects(ac, shared, batchcount)) {
2999 shared->touched = 1;
3000 goto alloc_done;
3001 }
3002
3003 while (batchcount > 0) {
3004 /* Get slab alloc is to come from. */
3005 page = get_first_slab(n, false);
3006 if (!page)
3007 goto must_grow;
3008
3009 check_spinlock_acquired(cachep);
3010
3011 batchcount = alloc_block(cachep, ac, page, batchcount);
3012 fixup_slab_list(cachep, n, page, &list);
3013 }
3014
3015 must_grow:
3016 n->free_objects -= ac->avail;
3017 alloc_done:
3018 spin_unlock(&n->list_lock);
3019 fixup_objfreelist_debug(cachep, &list);
3020
3021 direct_grow:
3022 if (unlikely(!ac->avail)) {
3023 /* Check if we can use obj in pfmemalloc slab */
3024 if (sk_memalloc_socks()) {
3025 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3026
3027 if (obj)
3028 return obj;
3029 }
3030
3031 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3032
3033 /*
3034 * cache_grow_begin() can reenable interrupts,
3035 * then ac could change.
3036 */
3037 ac = cpu_cache_get(cachep);
3038 if (!ac->avail && page)
3039 alloc_block(cachep, ac, page, batchcount);
3040 cache_grow_end(cachep, page);
3041
3042 if (!ac->avail)
3043 return NULL;
3044 }
3045 ac->touched = 1;
3046
3047 return ac->entry[--ac->avail];
3048 }
3049
3050 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3051 gfp_t flags)
3052 {
3053 might_sleep_if(gfpflags_allow_blocking(flags));
3054 }
3055
3056 #if DEBUG
3057 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3058 gfp_t flags, void *objp, unsigned long caller)
3059 {
3060 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3061 if (!objp)
3062 return objp;
3063 if (cachep->flags & SLAB_POISON) {
3064 check_poison_obj(cachep, objp);
3065 slab_kernel_map(cachep, objp, 1, 0);
3066 poison_obj(cachep, objp, POISON_INUSE);
3067 }
3068 if (cachep->flags & SLAB_STORE_USER)
3069 *dbg_userword(cachep, objp) = (void *)caller;
3070
3071 if (cachep->flags & SLAB_RED_ZONE) {
3072 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3073 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3074 slab_error(cachep, "double free, or memory outside object was overwritten");
3075 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3076 objp, *dbg_redzone1(cachep, objp),
3077 *dbg_redzone2(cachep, objp));
3078 }
3079 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3080 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3081 }
3082
3083 objp += obj_offset(cachep);
3084 if (cachep->ctor && cachep->flags & SLAB_POISON)
3085 cachep->ctor(objp);
3086 if (ARCH_SLAB_MINALIGN &&
3087 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3088 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3089 objp, (int)ARCH_SLAB_MINALIGN);
3090 }
3091 return objp;
3092 }
3093 #else
3094 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3095 #endif
3096
3097 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3098 {
3099 void *objp;
3100 struct array_cache *ac;
3101
3102 check_irq_off();
3103
3104 ac = cpu_cache_get(cachep);
3105 if (likely(ac->avail)) {
3106 ac->touched = 1;
3107 objp = ac->entry[--ac->avail];
3108
3109 STATS_INC_ALLOCHIT(cachep);
3110 goto out;
3111 }
3112
3113 STATS_INC_ALLOCMISS(cachep);
3114 objp = cache_alloc_refill(cachep, flags);
3115 /*
3116 * the 'ac' may be updated by cache_alloc_refill(),
3117 * and kmemleak_erase() requires its correct value.
3118 */
3119 ac = cpu_cache_get(cachep);
3120
3121 out:
3122 /*
3123 * To avoid a false negative, if an object that is in one of the
3124 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3125 * treat the array pointers as a reference to the object.
3126 */
3127 if (objp)
3128 kmemleak_erase(&ac->entry[ac->avail]);
3129 return objp;
3130 }
3131
3132 #ifdef CONFIG_NUMA
3133 /*
3134 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3135 *
3136 * If we are in_interrupt, then process context, including cpusets and
3137 * mempolicy, may not apply and should not be used for allocation policy.
3138 */
3139 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3140 {
3141 int nid_alloc, nid_here;
3142
3143 if (in_interrupt() || (flags & __GFP_THISNODE))
3144 return NULL;
3145 nid_alloc = nid_here = numa_mem_id();
3146 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3147 nid_alloc = cpuset_slab_spread_node();
3148 else if (current->mempolicy)
3149 nid_alloc = mempolicy_slab_node();
3150 if (nid_alloc != nid_here)
3151 return ____cache_alloc_node(cachep, flags, nid_alloc);
3152 return NULL;
3153 }
3154
3155 /*
3156 * Fallback function if there was no memory available and no objects on a
3157 * certain node and fall back is permitted. First we scan all the
3158 * available node for available objects. If that fails then we
3159 * perform an allocation without specifying a node. This allows the page
3160 * allocator to do its reclaim / fallback magic. We then insert the
3161 * slab into the proper nodelist and then allocate from it.
3162 */
3163 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3164 {
3165 struct zonelist *zonelist;
3166 struct zoneref *z;
3167 struct zone *zone;
3168 enum zone_type high_zoneidx = gfp_zone(flags);
3169 void *obj = NULL;
3170 struct page *page;
3171 int nid;
3172 unsigned int cpuset_mems_cookie;
3173
3174 if (flags & __GFP_THISNODE)
3175 return NULL;
3176
3177 retry_cpuset:
3178 cpuset_mems_cookie = read_mems_allowed_begin();
3179 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3180
3181 retry:
3182 /*
3183 * Look through allowed nodes for objects available
3184 * from existing per node queues.
3185 */
3186 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3187 nid = zone_to_nid(zone);
3188
3189 if (cpuset_zone_allowed(zone, flags) &&
3190 get_node(cache, nid) &&
3191 get_node(cache, nid)->free_objects) {
3192 obj = ____cache_alloc_node(cache,
3193 gfp_exact_node(flags), nid);
3194 if (obj)
3195 break;
3196 }
3197 }
3198
3199 if (!obj) {
3200 /*
3201 * This allocation will be performed within the constraints
3202 * of the current cpuset / memory policy requirements.
3203 * We may trigger various forms of reclaim on the allowed
3204 * set and go into memory reserves if necessary.
3205 */
3206 page = cache_grow_begin(cache, flags, numa_mem_id());
3207 cache_grow_end(cache, page);
3208 if (page) {
3209 nid = page_to_nid(page);
3210 obj = ____cache_alloc_node(cache,
3211 gfp_exact_node(flags), nid);
3212
3213 /*
3214 * Another processor may allocate the objects in
3215 * the slab since we are not holding any locks.
3216 */
3217 if (!obj)
3218 goto retry;
3219 }
3220 }
3221
3222 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3223 goto retry_cpuset;
3224 return obj;
3225 }
3226
3227 /*
3228 * A interface to enable slab creation on nodeid
3229 */
3230 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3231 int nodeid)
3232 {
3233 struct page *page;
3234 struct kmem_cache_node *n;
3235 void *obj = NULL;
3236 void *list = NULL;
3237
3238 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3239 n = get_node(cachep, nodeid);
3240 BUG_ON(!n);
3241
3242 check_irq_off();
3243 spin_lock(&n->list_lock);
3244 page = get_first_slab(n, false);
3245 if (!page)
3246 goto must_grow;
3247
3248 check_spinlock_acquired_node(cachep, nodeid);
3249
3250 STATS_INC_NODEALLOCS(cachep);
3251 STATS_INC_ACTIVE(cachep);
3252 STATS_SET_HIGH(cachep);
3253
3254 BUG_ON(page->active == cachep->num);
3255
3256 obj = slab_get_obj(cachep, page);
3257 n->free_objects--;
3258
3259 fixup_slab_list(cachep, n, page, &list);
3260
3261 spin_unlock(&n->list_lock);
3262 fixup_objfreelist_debug(cachep, &list);
3263 return obj;
3264
3265 must_grow:
3266 spin_unlock(&n->list_lock);
3267 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3268 if (page) {
3269 /* This slab isn't counted yet so don't update free_objects */
3270 obj = slab_get_obj(cachep, page);
3271 }
3272 cache_grow_end(cachep, page);
3273
3274 return obj ? obj : fallback_alloc(cachep, flags);
3275 }
3276
3277 static __always_inline void *
3278 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3279 unsigned long caller)
3280 {
3281 unsigned long save_flags;
3282 void *ptr;
3283 int slab_node = numa_mem_id();
3284
3285 flags &= gfp_allowed_mask;
3286 cachep = slab_pre_alloc_hook(cachep, flags);
3287 if (unlikely(!cachep))
3288 return NULL;
3289
3290 cache_alloc_debugcheck_before(cachep, flags);
3291 local_irq_save(save_flags);
3292
3293 if (nodeid == NUMA_NO_NODE)
3294 nodeid = slab_node;
3295
3296 if (unlikely(!get_node(cachep, nodeid))) {
3297 /* Node not bootstrapped yet */
3298 ptr = fallback_alloc(cachep, flags);
3299 goto out;
3300 }
3301
3302 if (nodeid == slab_node) {
3303 /*
3304 * Use the locally cached objects if possible.
3305 * However ____cache_alloc does not allow fallback
3306 * to other nodes. It may fail while we still have
3307 * objects on other nodes available.
3308 */
3309 ptr = ____cache_alloc(cachep, flags);
3310 if (ptr)
3311 goto out;
3312 }
3313 /* ___cache_alloc_node can fall back to other nodes */
3314 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3315 out:
3316 local_irq_restore(save_flags);
3317 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3318
3319 if (unlikely(flags & __GFP_ZERO) && ptr)
3320 memset(ptr, 0, cachep->object_size);
3321
3322 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3323 return ptr;
3324 }
3325
3326 static __always_inline void *
3327 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3328 {
3329 void *objp;
3330
3331 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3332 objp = alternate_node_alloc(cache, flags);
3333 if (objp)
3334 goto out;
3335 }
3336 objp = ____cache_alloc(cache, flags);
3337
3338 /*
3339 * We may just have run out of memory on the local node.
3340 * ____cache_alloc_node() knows how to locate memory on other nodes
3341 */
3342 if (!objp)
3343 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3344
3345 out:
3346 return objp;
3347 }
3348 #else
3349
3350 static __always_inline void *
3351 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3352 {
3353 return ____cache_alloc(cachep, flags);
3354 }
3355
3356 #endif /* CONFIG_NUMA */
3357
3358 static __always_inline void *
3359 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3360 {
3361 unsigned long save_flags;
3362 void *objp;
3363
3364 flags &= gfp_allowed_mask;
3365 cachep = slab_pre_alloc_hook(cachep, flags);
3366 if (unlikely(!cachep))
3367 return NULL;
3368
3369 cache_alloc_debugcheck_before(cachep, flags);
3370 local_irq_save(save_flags);
3371 objp = __do_cache_alloc(cachep, flags);
3372 local_irq_restore(save_flags);
3373 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3374 prefetchw(objp);
3375
3376 if (unlikely(flags & __GFP_ZERO) && objp)
3377 memset(objp, 0, cachep->object_size);
3378
3379 slab_post_alloc_hook(cachep, flags, 1, &objp);
3380 return objp;
3381 }
3382
3383 /*
3384 * Caller needs to acquire correct kmem_cache_node's list_lock
3385 * @list: List of detached free slabs should be freed by caller
3386 */
3387 static void free_block(struct kmem_cache *cachep, void **objpp,
3388 int nr_objects, int node, struct list_head *list)
3389 {
3390 int i;
3391 struct kmem_cache_node *n = get_node(cachep, node);
3392 struct page *page;
3393
3394 n->free_objects += nr_objects;
3395
3396 for (i = 0; i < nr_objects; i++) {
3397 void *objp;
3398 struct page *page;
3399
3400 objp = objpp[i];
3401
3402 page = virt_to_head_page(objp);
3403 list_del(&page->lru);
3404 check_spinlock_acquired_node(cachep, node);
3405 slab_put_obj(cachep, page, objp);
3406 STATS_DEC_ACTIVE(cachep);
3407
3408 /* fixup slab chains */
3409 if (page->active == 0) {
3410 list_add(&page->lru, &n->slabs_free);
3411 n->free_slabs++;
3412 } else {
3413 /* Unconditionally move a slab to the end of the
3414 * partial list on free - maximum time for the
3415 * other objects to be freed, too.
3416 */
3417 list_add_tail(&page->lru, &n->slabs_partial);
3418 }
3419 }
3420
3421 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3422 n->free_objects -= cachep->num;
3423
3424 page = list_last_entry(&n->slabs_free, struct page, lru);
3425 list_move(&page->lru, list);
3426 n->free_slabs--;
3427 n->total_slabs--;
3428 }
3429 }
3430
3431 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3432 {
3433 int batchcount;
3434 struct kmem_cache_node *n;
3435 int node = numa_mem_id();
3436 LIST_HEAD(list);
3437
3438 batchcount = ac->batchcount;
3439
3440 check_irq_off();
3441 n = get_node(cachep, node);
3442 spin_lock(&n->list_lock);
3443 if (n->shared) {
3444 struct array_cache *shared_array = n->shared;
3445 int max = shared_array->limit - shared_array->avail;
3446 if (max) {
3447 if (batchcount > max)
3448 batchcount = max;
3449 memcpy(&(shared_array->entry[shared_array->avail]),
3450 ac->entry, sizeof(void *) * batchcount);
3451 shared_array->avail += batchcount;
3452 goto free_done;
3453 }
3454 }
3455
3456 free_block(cachep, ac->entry, batchcount, node, &list);
3457 free_done:
3458 #if STATS
3459 {
3460 int i = 0;
3461 struct page *page;
3462
3463 list_for_each_entry(page, &n->slabs_free, lru) {
3464 BUG_ON(page->active);
3465
3466 i++;
3467 }
3468 STATS_SET_FREEABLE(cachep, i);
3469 }
3470 #endif
3471 spin_unlock(&n->list_lock);
3472 slabs_destroy(cachep, &list);
3473 ac->avail -= batchcount;
3474 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3475 }
3476
3477 /*
3478 * Release an obj back to its cache. If the obj has a constructed state, it must
3479 * be in this state _before_ it is released. Called with disabled ints.
3480 */
3481 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3482 unsigned long caller)
3483 {
3484 /* Put the object into the quarantine, don't touch it for now. */
3485 if (kasan_slab_free(cachep, objp, _RET_IP_))
3486 return;
3487
3488 ___cache_free(cachep, objp, caller);
3489 }
3490
3491 void ___cache_free(struct kmem_cache *cachep, void *objp,
3492 unsigned long caller)
3493 {
3494 struct array_cache *ac = cpu_cache_get(cachep);
3495
3496 check_irq_off();
3497 kmemleak_free_recursive(objp, cachep->flags);
3498 objp = cache_free_debugcheck(cachep, objp, caller);
3499
3500 /*
3501 * Skip calling cache_free_alien() when the platform is not numa.
3502 * This will avoid cache misses that happen while accessing slabp (which
3503 * is per page memory reference) to get nodeid. Instead use a global
3504 * variable to skip the call, which is mostly likely to be present in
3505 * the cache.
3506 */
3507 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3508 return;
3509
3510 if (ac->avail < ac->limit) {
3511 STATS_INC_FREEHIT(cachep);
3512 } else {
3513 STATS_INC_FREEMISS(cachep);
3514 cache_flusharray(cachep, ac);
3515 }
3516
3517 if (sk_memalloc_socks()) {
3518 struct page *page = virt_to_head_page(objp);
3519
3520 if (unlikely(PageSlabPfmemalloc(page))) {
3521 cache_free_pfmemalloc(cachep, page, objp);
3522 return;
3523 }
3524 }
3525
3526 ac->entry[ac->avail++] = objp;
3527 }
3528
3529 /**
3530 * kmem_cache_alloc - Allocate an object
3531 * @cachep: The cache to allocate from.
3532 * @flags: See kmalloc().
3533 *
3534 * Allocate an object from this cache. The flags are only relevant
3535 * if the cache has no available objects.
3536 */
3537 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3538 {
3539 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3540
3541 ret = kasan_slab_alloc(cachep, ret, flags);
3542 trace_kmem_cache_alloc(_RET_IP_, ret,
3543 cachep->object_size, cachep->size, flags);
3544
3545 return ret;
3546 }
3547 EXPORT_SYMBOL(kmem_cache_alloc);
3548
3549 static __always_inline void
3550 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3551 size_t size, void **p, unsigned long caller)
3552 {
3553 size_t i;
3554
3555 for (i = 0; i < size; i++)
3556 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3557 }
3558
3559 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3560 void **p)
3561 {
3562 size_t i;
3563
3564 s = slab_pre_alloc_hook(s, flags);
3565 if (!s)
3566 return 0;
3567
3568 cache_alloc_debugcheck_before(s, flags);
3569
3570 local_irq_disable();
3571 for (i = 0; i < size; i++) {
3572 void *objp = __do_cache_alloc(s, flags);
3573
3574 if (unlikely(!objp))
3575 goto error;
3576 p[i] = objp;
3577 }
3578 local_irq_enable();
3579
3580 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3581
3582 /* Clear memory outside IRQ disabled section */
3583 if (unlikely(flags & __GFP_ZERO))
3584 for (i = 0; i < size; i++)
3585 memset(p[i], 0, s->object_size);
3586
3587 slab_post_alloc_hook(s, flags, size, p);
3588 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3589 return size;
3590 error:
3591 local_irq_enable();
3592 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3593 slab_post_alloc_hook(s, flags, i, p);
3594 __kmem_cache_free_bulk(s, i, p);
3595 return 0;
3596 }
3597 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3598
3599 #ifdef CONFIG_TRACING
3600 void *
3601 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3602 {
3603 void *ret;
3604
3605 ret = slab_alloc(cachep, flags, _RET_IP_);
3606
3607 ret = kasan_kmalloc(cachep, ret, size, flags);
3608 trace_kmalloc(_RET_IP_, ret,
3609 size, cachep->size, flags);
3610 return ret;
3611 }
3612 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3613 #endif
3614
3615 #ifdef CONFIG_NUMA
3616 /**
3617 * kmem_cache_alloc_node - Allocate an object on the specified node
3618 * @cachep: The cache to allocate from.
3619 * @flags: See kmalloc().
3620 * @nodeid: node number of the target node.
3621 *
3622 * Identical to kmem_cache_alloc but it will allocate memory on the given
3623 * node, which can improve the performance for cpu bound structures.
3624 *
3625 * Fallback to other node is possible if __GFP_THISNODE is not set.
3626 */
3627 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3628 {
3629 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3630
3631 ret = kasan_slab_alloc(cachep, ret, flags);
3632 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3633 cachep->object_size, cachep->size,
3634 flags, nodeid);
3635
3636 return ret;
3637 }
3638 EXPORT_SYMBOL(kmem_cache_alloc_node);
3639
3640 #ifdef CONFIG_TRACING
3641 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3642 gfp_t flags,
3643 int nodeid,
3644 size_t size)
3645 {
3646 void *ret;
3647
3648 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3649
3650 ret = kasan_kmalloc(cachep, ret, size, flags);
3651 trace_kmalloc_node(_RET_IP_, ret,
3652 size, cachep->size,
3653 flags, nodeid);
3654 return ret;
3655 }
3656 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3657 #endif
3658
3659 static __always_inline void *
3660 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3661 {
3662 struct kmem_cache *cachep;
3663 void *ret;
3664
3665 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3666 return NULL;
3667 cachep = kmalloc_slab(size, flags);
3668 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3669 return cachep;
3670 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3671 ret = kasan_kmalloc(cachep, ret, size, flags);
3672
3673 return ret;
3674 }
3675
3676 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3677 {
3678 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3679 }
3680 EXPORT_SYMBOL(__kmalloc_node);
3681
3682 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3683 int node, unsigned long caller)
3684 {
3685 return __do_kmalloc_node(size, flags, node, caller);
3686 }
3687 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3688 #endif /* CONFIG_NUMA */
3689
3690 /**
3691 * __do_kmalloc - allocate memory
3692 * @size: how many bytes of memory are required.
3693 * @flags: the type of memory to allocate (see kmalloc).
3694 * @caller: function caller for debug tracking of the caller
3695 */
3696 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3697 unsigned long caller)
3698 {
3699 struct kmem_cache *cachep;
3700 void *ret;
3701
3702 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3703 return NULL;
3704 cachep = kmalloc_slab(size, flags);
3705 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3706 return cachep;
3707 ret = slab_alloc(cachep, flags, caller);
3708
3709 ret = kasan_kmalloc(cachep, ret, size, flags);
3710 trace_kmalloc(caller, ret,
3711 size, cachep->size, flags);
3712
3713 return ret;
3714 }
3715
3716 void *__kmalloc(size_t size, gfp_t flags)
3717 {
3718 return __do_kmalloc(size, flags, _RET_IP_);
3719 }
3720 EXPORT_SYMBOL(__kmalloc);
3721
3722 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3723 {
3724 return __do_kmalloc(size, flags, caller);
3725 }
3726 EXPORT_SYMBOL(__kmalloc_track_caller);
3727
3728 /**
3729 * kmem_cache_free - Deallocate an object
3730 * @cachep: The cache the allocation was from.
3731 * @objp: The previously allocated object.
3732 *
3733 * Free an object which was previously allocated from this
3734 * cache.
3735 */
3736 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3737 {
3738 unsigned long flags;
3739 cachep = cache_from_obj(cachep, objp);
3740 if (!cachep)
3741 return;
3742
3743 local_irq_save(flags);
3744 debug_check_no_locks_freed(objp, cachep->object_size);
3745 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3746 debug_check_no_obj_freed(objp, cachep->object_size);
3747 __cache_free(cachep, objp, _RET_IP_);
3748 local_irq_restore(flags);
3749
3750 trace_kmem_cache_free(_RET_IP_, objp);
3751 }
3752 EXPORT_SYMBOL(kmem_cache_free);
3753
3754 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3755 {
3756 struct kmem_cache *s;
3757 size_t i;
3758
3759 local_irq_disable();
3760 for (i = 0; i < size; i++) {
3761 void *objp = p[i];
3762
3763 if (!orig_s) /* called via kfree_bulk */
3764 s = virt_to_cache(objp);
3765 else
3766 s = cache_from_obj(orig_s, objp);
3767
3768 debug_check_no_locks_freed(objp, s->object_size);
3769 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3770 debug_check_no_obj_freed(objp, s->object_size);
3771
3772 __cache_free(s, objp, _RET_IP_);
3773 }
3774 local_irq_enable();
3775
3776 /* FIXME: add tracing */
3777 }
3778 EXPORT_SYMBOL(kmem_cache_free_bulk);
3779
3780 /**
3781 * kfree - free previously allocated memory
3782 * @objp: pointer returned by kmalloc.
3783 *
3784 * If @objp is NULL, no operation is performed.
3785 *
3786 * Don't free memory not originally allocated by kmalloc()
3787 * or you will run into trouble.
3788 */
3789 void kfree(const void *objp)
3790 {
3791 struct kmem_cache *c;
3792 unsigned long flags;
3793
3794 trace_kfree(_RET_IP_, objp);
3795
3796 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3797 return;
3798 local_irq_save(flags);
3799 kfree_debugcheck(objp);
3800 c = virt_to_cache(objp);
3801 debug_check_no_locks_freed(objp, c->object_size);
3802
3803 debug_check_no_obj_freed(objp, c->object_size);
3804 __cache_free(c, (void *)objp, _RET_IP_);
3805 local_irq_restore(flags);
3806 }
3807 EXPORT_SYMBOL(kfree);
3808
3809 /*
3810 * This initializes kmem_cache_node or resizes various caches for all nodes.
3811 */
3812 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3813 {
3814 int ret;
3815 int node;
3816 struct kmem_cache_node *n;
3817
3818 for_each_online_node(node) {
3819 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3820 if (ret)
3821 goto fail;
3822
3823 }
3824
3825 return 0;
3826
3827 fail:
3828 if (!cachep->list.next) {
3829 /* Cache is not active yet. Roll back what we did */
3830 node--;
3831 while (node >= 0) {
3832 n = get_node(cachep, node);
3833 if (n) {
3834 kfree(n->shared);
3835 free_alien_cache(n->alien);
3836 kfree(n);
3837 cachep->node[node] = NULL;
3838 }
3839 node--;
3840 }
3841 }
3842 return -ENOMEM;
3843 }
3844
3845 /* Always called with the slab_mutex held */
3846 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3847 int batchcount, int shared, gfp_t gfp)
3848 {
3849 struct array_cache __percpu *cpu_cache, *prev;
3850 int cpu;
3851
3852 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3853 if (!cpu_cache)
3854 return -ENOMEM;
3855
3856 prev = cachep->cpu_cache;
3857 cachep->cpu_cache = cpu_cache;
3858 /*
3859 * Without a previous cpu_cache there's no need to synchronize remote
3860 * cpus, so skip the IPIs.
3861 */
3862 if (prev)
3863 kick_all_cpus_sync();
3864
3865 check_irq_on();
3866 cachep->batchcount = batchcount;
3867 cachep->limit = limit;
3868 cachep->shared = shared;
3869
3870 if (!prev)
3871 goto setup_node;
3872
3873 for_each_online_cpu(cpu) {
3874 LIST_HEAD(list);
3875 int node;
3876 struct kmem_cache_node *n;
3877 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3878
3879 node = cpu_to_mem(cpu);
3880 n = get_node(cachep, node);
3881 spin_lock_irq(&n->list_lock);
3882 free_block(cachep, ac->entry, ac->avail, node, &list);
3883 spin_unlock_irq(&n->list_lock);
3884 slabs_destroy(cachep, &list);
3885 }
3886 free_percpu(prev);
3887
3888 setup_node:
3889 return setup_kmem_cache_nodes(cachep, gfp);
3890 }
3891
3892 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3893 int batchcount, int shared, gfp_t gfp)
3894 {
3895 int ret;
3896 struct kmem_cache *c;
3897
3898 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3899
3900 if (slab_state < FULL)
3901 return ret;
3902
3903 if ((ret < 0) || !is_root_cache(cachep))
3904 return ret;
3905
3906 lockdep_assert_held(&slab_mutex);
3907 for_each_memcg_cache(c, cachep) {
3908 /* return value determined by the root cache only */
3909 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3910 }
3911
3912 return ret;
3913 }
3914
3915 /* Called with slab_mutex held always */
3916 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3917 {
3918 int err;
3919 int limit = 0;
3920 int shared = 0;
3921 int batchcount = 0;
3922
3923 err = cache_random_seq_create(cachep, cachep->num, gfp);
3924 if (err)
3925 goto end;
3926
3927 if (!is_root_cache(cachep)) {
3928 struct kmem_cache *root = memcg_root_cache(cachep);
3929 limit = root->limit;
3930 shared = root->shared;
3931 batchcount = root->batchcount;
3932 }
3933
3934 if (limit && shared && batchcount)
3935 goto skip_setup;
3936 /*
3937 * The head array serves three purposes:
3938 * - create a LIFO ordering, i.e. return objects that are cache-warm
3939 * - reduce the number of spinlock operations.
3940 * - reduce the number of linked list operations on the slab and
3941 * bufctl chains: array operations are cheaper.
3942 * The numbers are guessed, we should auto-tune as described by
3943 * Bonwick.
3944 */
3945 if (cachep->size > 131072)
3946 limit = 1;
3947 else if (cachep->size > PAGE_SIZE)
3948 limit = 8;
3949 else if (cachep->size > 1024)
3950 limit = 24;
3951 else if (cachep->size > 256)
3952 limit = 54;
3953 else
3954 limit = 120;
3955
3956 /*
3957 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3958 * allocation behaviour: Most allocs on one cpu, most free operations
3959 * on another cpu. For these cases, an efficient object passing between
3960 * cpus is necessary. This is provided by a shared array. The array
3961 * replaces Bonwick's magazine layer.
3962 * On uniprocessor, it's functionally equivalent (but less efficient)
3963 * to a larger limit. Thus disabled by default.
3964 */
3965 shared = 0;
3966 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3967 shared = 8;
3968
3969 #if DEBUG
3970 /*
3971 * With debugging enabled, large batchcount lead to excessively long
3972 * periods with disabled local interrupts. Limit the batchcount
3973 */
3974 if (limit > 32)
3975 limit = 32;
3976 #endif
3977 batchcount = (limit + 1) / 2;
3978 skip_setup:
3979 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3980 end:
3981 if (err)
3982 pr_err("enable_cpucache failed for %s, error %d\n",
3983 cachep->name, -err);
3984 return err;
3985 }
3986
3987 /*
3988 * Drain an array if it contains any elements taking the node lock only if
3989 * necessary. Note that the node listlock also protects the array_cache
3990 * if drain_array() is used on the shared array.
3991 */
3992 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3993 struct array_cache *ac, int node)
3994 {
3995 LIST_HEAD(list);
3996
3997 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3998 check_mutex_acquired();
3999
4000 if (!ac || !ac->avail)
4001 return;
4002
4003 if (ac->touched) {
4004 ac->touched = 0;
4005 return;
4006 }
4007
4008 spin_lock_irq(&n->list_lock);
4009 drain_array_locked(cachep, ac, node, false, &list);
4010 spin_unlock_irq(&n->list_lock);
4011
4012 slabs_destroy(cachep, &list);
4013 }
4014
4015 /**
4016 * cache_reap - Reclaim memory from caches.
4017 * @w: work descriptor
4018 *
4019 * Called from workqueue/eventd every few seconds.
4020 * Purpose:
4021 * - clear the per-cpu caches for this CPU.
4022 * - return freeable pages to the main free memory pool.
4023 *
4024 * If we cannot acquire the cache chain mutex then just give up - we'll try
4025 * again on the next iteration.
4026 */
4027 static void cache_reap(struct work_struct *w)
4028 {
4029 struct kmem_cache *searchp;
4030 struct kmem_cache_node *n;
4031 int node = numa_mem_id();
4032 struct delayed_work *work = to_delayed_work(w);
4033
4034 if (!mutex_trylock(&slab_mutex))
4035 /* Give up. Setup the next iteration. */
4036 goto out;
4037
4038 list_for_each_entry(searchp, &slab_caches, list) {
4039 check_irq_on();
4040
4041 /*
4042 * We only take the node lock if absolutely necessary and we
4043 * have established with reasonable certainty that
4044 * we can do some work if the lock was obtained.
4045 */
4046 n = get_node(searchp, node);
4047
4048 reap_alien(searchp, n);
4049
4050 drain_array(searchp, n, cpu_cache_get(searchp), node);
4051
4052 /*
4053 * These are racy checks but it does not matter
4054 * if we skip one check or scan twice.
4055 */
4056 if (time_after(n->next_reap, jiffies))
4057 goto next;
4058
4059 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4060
4061 drain_array(searchp, n, n->shared, node);
4062
4063 if (n->free_touched)
4064 n->free_touched = 0;
4065 else {
4066 int freed;
4067
4068 freed = drain_freelist(searchp, n, (n->free_limit +
4069 5 * searchp->num - 1) / (5 * searchp->num));
4070 STATS_ADD_REAPED(searchp, freed);
4071 }
4072 next:
4073 cond_resched();
4074 }
4075 check_irq_on();
4076 mutex_unlock(&slab_mutex);
4077 next_reap_node();
4078 out:
4079 /* Set up the next iteration */
4080 schedule_delayed_work_on(smp_processor_id(), work,
4081 round_jiffies_relative(REAPTIMEOUT_AC));
4082 }
4083
4084 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4085 {
4086 unsigned long active_objs, num_objs, active_slabs;
4087 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4088 unsigned long free_slabs = 0;
4089 int node;
4090 struct kmem_cache_node *n;
4091
4092 for_each_kmem_cache_node(cachep, node, n) {
4093 check_irq_on();
4094 spin_lock_irq(&n->list_lock);
4095
4096 total_slabs += n->total_slabs;
4097 free_slabs += n->free_slabs;
4098 free_objs += n->free_objects;
4099
4100 if (n->shared)
4101 shared_avail += n->shared->avail;
4102
4103 spin_unlock_irq(&n->list_lock);
4104 }
4105 num_objs = total_slabs * cachep->num;
4106 active_slabs = total_slabs - free_slabs;
4107 active_objs = num_objs - free_objs;
4108
4109 sinfo->active_objs = active_objs;
4110 sinfo->num_objs = num_objs;
4111 sinfo->active_slabs = active_slabs;
4112 sinfo->num_slabs = total_slabs;
4113 sinfo->shared_avail = shared_avail;
4114 sinfo->limit = cachep->limit;
4115 sinfo->batchcount = cachep->batchcount;
4116 sinfo->shared = cachep->shared;
4117 sinfo->objects_per_slab = cachep->num;
4118 sinfo->cache_order = cachep->gfporder;
4119 }
4120
4121 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4122 {
4123 #if STATS
4124 { /* node stats */
4125 unsigned long high = cachep->high_mark;
4126 unsigned long allocs = cachep->num_allocations;
4127 unsigned long grown = cachep->grown;
4128 unsigned long reaped = cachep->reaped;
4129 unsigned long errors = cachep->errors;
4130 unsigned long max_freeable = cachep->max_freeable;
4131 unsigned long node_allocs = cachep->node_allocs;
4132 unsigned long node_frees = cachep->node_frees;
4133 unsigned long overflows = cachep->node_overflow;
4134
4135 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4136 allocs, high, grown,
4137 reaped, errors, max_freeable, node_allocs,
4138 node_frees, overflows);
4139 }
4140 /* cpu stats */
4141 {
4142 unsigned long allochit = atomic_read(&cachep->allochit);
4143 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4144 unsigned long freehit = atomic_read(&cachep->freehit);
4145 unsigned long freemiss = atomic_read(&cachep->freemiss);
4146
4147 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4148 allochit, allocmiss, freehit, freemiss);
4149 }
4150 #endif
4151 }
4152
4153 #define MAX_SLABINFO_WRITE 128
4154 /**
4155 * slabinfo_write - Tuning for the slab allocator
4156 * @file: unused
4157 * @buffer: user buffer
4158 * @count: data length
4159 * @ppos: unused
4160 */
4161 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4162 size_t count, loff_t *ppos)
4163 {
4164 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4165 int limit, batchcount, shared, res;
4166 struct kmem_cache *cachep;
4167
4168 if (count > MAX_SLABINFO_WRITE)
4169 return -EINVAL;
4170 if (copy_from_user(&kbuf, buffer, count))
4171 return -EFAULT;
4172 kbuf[MAX_SLABINFO_WRITE] = '\0';
4173
4174 tmp = strchr(kbuf, ' ');
4175 if (!tmp)
4176 return -EINVAL;
4177 *tmp = '\0';
4178 tmp++;
4179 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4180 return -EINVAL;
4181
4182 /* Find the cache in the chain of caches. */
4183 mutex_lock(&slab_mutex);
4184 res = -EINVAL;
4185 list_for_each_entry(cachep, &slab_caches, list) {
4186 if (!strcmp(cachep->name, kbuf)) {
4187 if (limit < 1 || batchcount < 1 ||
4188 batchcount > limit || shared < 0) {
4189 res = 0;
4190 } else {
4191 res = do_tune_cpucache(cachep, limit,
4192 batchcount, shared,
4193 GFP_KERNEL);
4194 }
4195 break;
4196 }
4197 }
4198 mutex_unlock(&slab_mutex);
4199 if (res >= 0)
4200 res = count;
4201 return res;
4202 }
4203
4204 #ifdef CONFIG_DEBUG_SLAB_LEAK
4205
4206 static inline int add_caller(unsigned long *n, unsigned long v)
4207 {
4208 unsigned long *p;
4209 int l;
4210 if (!v)
4211 return 1;
4212 l = n[1];
4213 p = n + 2;
4214 while (l) {
4215 int i = l/2;
4216 unsigned long *q = p + 2 * i;
4217 if (*q == v) {
4218 q[1]++;
4219 return 1;
4220 }
4221 if (*q > v) {
4222 l = i;
4223 } else {
4224 p = q + 2;
4225 l -= i + 1;
4226 }
4227 }
4228 if (++n[1] == n[0])
4229 return 0;
4230 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4231 p[0] = v;
4232 p[1] = 1;
4233 return 1;
4234 }
4235
4236 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4237 struct page *page)
4238 {
4239 void *p;
4240 int i, j;
4241 unsigned long v;
4242
4243 if (n[0] == n[1])
4244 return;
4245 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4246 bool active = true;
4247
4248 for (j = page->active; j < c->num; j++) {
4249 if (get_free_obj(page, j) == i) {
4250 active = false;
4251 break;
4252 }
4253 }
4254
4255 if (!active)
4256 continue;
4257
4258 /*
4259 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4260 * mapping is established when actual object allocation and
4261 * we could mistakenly access the unmapped object in the cpu
4262 * cache.
4263 */
4264 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4265 continue;
4266
4267 if (!add_caller(n, v))
4268 return;
4269 }
4270 }
4271
4272 static void show_symbol(struct seq_file *m, unsigned long address)
4273 {
4274 #ifdef CONFIG_KALLSYMS
4275 unsigned long offset, size;
4276 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4277
4278 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4279 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4280 if (modname[0])
4281 seq_printf(m, " [%s]", modname);
4282 return;
4283 }
4284 #endif
4285 seq_printf(m, "%px", (void *)address);
4286 }
4287
4288 static int leaks_show(struct seq_file *m, void *p)
4289 {
4290 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4291 struct page *page;
4292 struct kmem_cache_node *n;
4293 const char *name;
4294 unsigned long *x = m->private;
4295 int node;
4296 int i;
4297
4298 if (!(cachep->flags & SLAB_STORE_USER))
4299 return 0;
4300 if (!(cachep->flags & SLAB_RED_ZONE))
4301 return 0;
4302
4303 /*
4304 * Set store_user_clean and start to grab stored user information
4305 * for all objects on this cache. If some alloc/free requests comes
4306 * during the processing, information would be wrong so restart
4307 * whole processing.
4308 */
4309 do {
4310 set_store_user_clean(cachep);
4311 drain_cpu_caches(cachep);
4312
4313 x[1] = 0;
4314
4315 for_each_kmem_cache_node(cachep, node, n) {
4316
4317 check_irq_on();
4318 spin_lock_irq(&n->list_lock);
4319
4320 list_for_each_entry(page, &n->slabs_full, lru)
4321 handle_slab(x, cachep, page);
4322 list_for_each_entry(page, &n->slabs_partial, lru)
4323 handle_slab(x, cachep, page);
4324 spin_unlock_irq(&n->list_lock);
4325 }
4326 } while (!is_store_user_clean(cachep));
4327
4328 name = cachep->name;
4329 if (x[0] == x[1]) {
4330 /* Increase the buffer size */
4331 mutex_unlock(&slab_mutex);
4332 m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
4333 GFP_KERNEL);
4334 if (!m->private) {
4335 /* Too bad, we are really out */
4336 m->private = x;
4337 mutex_lock(&slab_mutex);
4338 return -ENOMEM;
4339 }
4340 *(unsigned long *)m->private = x[0] * 2;
4341 kfree(x);
4342 mutex_lock(&slab_mutex);
4343 /* Now make sure this entry will be retried */
4344 m->count = m->size;
4345 return 0;
4346 }
4347 for (i = 0; i < x[1]; i++) {
4348 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4349 show_symbol(m, x[2*i+2]);
4350 seq_putc(m, '\n');
4351 }
4352
4353 return 0;
4354 }
4355
4356 static const struct seq_operations slabstats_op = {
4357 .start = slab_start,
4358 .next = slab_next,
4359 .stop = slab_stop,
4360 .show = leaks_show,
4361 };
4362
4363 static int slabstats_open(struct inode *inode, struct file *file)
4364 {
4365 unsigned long *n;
4366
4367 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4368 if (!n)
4369 return -ENOMEM;
4370
4371 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4372
4373 return 0;
4374 }
4375
4376 static const struct file_operations proc_slabstats_operations = {
4377 .open = slabstats_open,
4378 .read = seq_read,
4379 .llseek = seq_lseek,
4380 .release = seq_release_private,
4381 };
4382 #endif
4383
4384 static int __init slab_proc_init(void)
4385 {
4386 #ifdef CONFIG_DEBUG_SLAB_LEAK
4387 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4388 #endif
4389 return 0;
4390 }
4391 module_init(slab_proc_init);
4392
4393 #ifdef CONFIG_HARDENED_USERCOPY
4394 /*
4395 * Rejects incorrectly sized objects and objects that are to be copied
4396 * to/from userspace but do not fall entirely within the containing slab
4397 * cache's usercopy region.
4398 *
4399 * Returns NULL if check passes, otherwise const char * to name of cache
4400 * to indicate an error.
4401 */
4402 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4403 bool to_user)
4404 {
4405 struct kmem_cache *cachep;
4406 unsigned int objnr;
4407 unsigned long offset;
4408
4409 /* Find and validate object. */
4410 cachep = page->slab_cache;
4411 objnr = obj_to_index(cachep, page, (void *)ptr);
4412 BUG_ON(objnr >= cachep->num);
4413
4414 /* Find offset within object. */
4415 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4416
4417 /* Allow address range falling entirely within usercopy region. */
4418 if (offset >= cachep->useroffset &&
4419 offset - cachep->useroffset <= cachep->usersize &&
4420 n <= cachep->useroffset - offset + cachep->usersize)
4421 return;
4422
4423 /*
4424 * If the copy is still within the allocated object, produce
4425 * a warning instead of rejecting the copy. This is intended
4426 * to be a temporary method to find any missing usercopy
4427 * whitelists.
4428 */
4429 if (usercopy_fallback &&
4430 offset <= cachep->object_size &&
4431 n <= cachep->object_size - offset) {
4432 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4433 return;
4434 }
4435
4436 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4437 }
4438 #endif /* CONFIG_HARDENED_USERCOPY */
4439
4440 /**
4441 * ksize - get the actual amount of memory allocated for a given object
4442 * @objp: Pointer to the object
4443 *
4444 * kmalloc may internally round up allocations and return more memory
4445 * than requested. ksize() can be used to determine the actual amount of
4446 * memory allocated. The caller may use this additional memory, even though
4447 * a smaller amount of memory was initially specified with the kmalloc call.
4448 * The caller must guarantee that objp points to a valid object previously
4449 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4450 * must not be freed during the duration of the call.
4451 */
4452 size_t ksize(const void *objp)
4453 {
4454 size_t size;
4455
4456 BUG_ON(!objp);
4457 if (unlikely(objp == ZERO_SIZE_PTR))
4458 return 0;
4459
4460 size = virt_to_cache(objp)->object_size;
4461 /* We assume that ksize callers could use the whole allocated area,
4462 * so we need to unpoison this area.
4463 */
4464 kasan_unpoison_shadow(objp, size);
4465
4466 return size;
4467 }
4468 EXPORT_SYMBOL(ksize);