]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slab.c
PCI Hotplug: fix __must_check warnings
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/rtmutex.h>
111
112 #include <asm/uaccess.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115 #include <asm/page.h>
116
117 /*
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128 #ifdef CONFIG_DEBUG_SLAB
129 #define DEBUG 1
130 #define STATS 1
131 #define FORCED_DEBUG 1
132 #else
133 #define DEBUG 0
134 #define STATS 0
135 #define FORCED_DEBUG 0
136 #endif
137
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140
141 #ifndef cache_line_size
142 #define cache_line_size() L1_CACHE_BYTES
143 #endif
144
145 #ifndef ARCH_KMALLOC_MINALIGN
146 /*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154 #define ARCH_KMALLOC_MINALIGN 0
155 #endif
156
157 #ifndef ARCH_SLAB_MINALIGN
158 /*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165 #define ARCH_SLAB_MINALIGN 0
166 #endif
167
168 #ifndef ARCH_KMALLOC_FLAGS
169 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170 #endif
171
172 /* Legal flag mask for kmem_cache_create(). */
173 #if DEBUG
174 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176 SLAB_CACHE_DMA | \
177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
180 #else
181 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
185 #endif
186
187 /*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
206 typedef unsigned int kmem_bufctl_t;
207 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
209 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
211
212 /*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219 struct slab {
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
226 };
227
228 /*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244 struct slab_rcu {
245 struct rcu_head head;
246 struct kmem_cache *cachep;
247 void *addr;
248 };
249
250 /*
251 * struct array_cache
252 *
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262 struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
267 spinlock_t lock;
268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
273 */
274 };
275
276 /*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
279 */
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init {
282 struct array_cache cache;
283 void *entries[BOOT_CPUCACHE_ENTRIES];
284 };
285
286 /*
287 * The slab lists for all objects.
288 */
289 struct kmem_list3 {
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned int free_limit;
295 unsigned int colour_next; /* Per-node cache coloring */
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
301 };
302
303 /*
304 * Need this for bootstrapping a per node allocator.
305 */
306 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308 #define CACHE_CACHE 0
309 #define SIZE_AC 1
310 #define SIZE_L3 (1 + MAX_NUMNODES)
311
312 static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
316 static int enable_cpucache(struct kmem_cache *cachep);
317 static void cache_reap(void *unused);
318
319 /*
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
322 */
323 static __always_inline int index_of(const size_t size)
324 {
325 extern void __bad_size(void);
326
327 if (__builtin_constant_p(size)) {
328 int i = 0;
329
330 #define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
335 #include "linux/kmalloc_sizes.h"
336 #undef CACHE
337 __bad_size();
338 } else
339 __bad_size();
340 return 0;
341 }
342
343 static int slab_early_init = 1;
344
345 #define INDEX_AC index_of(sizeof(struct arraycache_init))
346 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
347
348 static void kmem_list3_init(struct kmem_list3 *parent)
349 {
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
355 parent->colour_next = 0;
356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
359 }
360
361 #define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
365 } while (0)
366
367 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
373
374 /*
375 * struct kmem_cache
376 *
377 * manages a cache.
378 */
379
380 struct kmem_cache {
381 /* 1) per-cpu data, touched during every alloc/free */
382 struct array_cache *array[NR_CPUS];
383 /* 2) Cache tunables. Protected by cache_chain_mutex */
384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
387
388 unsigned int buffer_size;
389 /* 3) touched by every alloc & free from the backend */
390 struct kmem_list3 *nodelists[MAX_NUMNODES];
391
392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
394
395 /* 4) cache_grow/shrink */
396 /* order of pgs per slab (2^n) */
397 unsigned int gfporder;
398
399 /* force GFP flags, e.g. GFP_DMA */
400 gfp_t gfpflags;
401
402 size_t colour; /* cache colouring range */
403 unsigned int colour_off; /* colour offset */
404 struct kmem_cache *slabp_cache;
405 unsigned int slab_size;
406 unsigned int dflags; /* dynamic flags */
407
408 /* constructor func */
409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
410
411 /* de-constructor func */
412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
413
414 /* 5) cache creation/removal */
415 const char *name;
416 struct list_head next;
417
418 /* 6) statistics */
419 #if STATS
420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
423 unsigned long grown;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
429 unsigned long node_overflow;
430 atomic_t allochit;
431 atomic_t allocmiss;
432 atomic_t freehit;
433 atomic_t freemiss;
434 #endif
435 #if DEBUG
436 /*
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
441 */
442 int obj_offset;
443 int obj_size;
444 #endif
445 };
446
447 #define CFLGS_OFF_SLAB (0x80000000UL)
448 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449
450 #define BATCHREFILL_LIMIT 16
451 /*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
454 *
455 * OTOH the cpuarrays can contain lots of objects,
456 * which could lock up otherwise freeable slabs.
457 */
458 #define REAPTIMEOUT_CPUC (2*HZ)
459 #define REAPTIMEOUT_LIST3 (4*HZ)
460
461 #if STATS
462 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
463 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465 #define STATS_INC_GROWN(x) ((x)->grown++)
466 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
467 #define STATS_SET_HIGH(x) \
468 do { \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
471 } while (0)
472 #define STATS_INC_ERR(x) ((x)->errors++)
473 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
474 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
475 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
476 #define STATS_SET_FREEABLE(x, i) \
477 do { \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
480 } while (0)
481 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485 #else
486 #define STATS_INC_ACTIVE(x) do { } while (0)
487 #define STATS_DEC_ACTIVE(x) do { } while (0)
488 #define STATS_INC_ALLOCED(x) do { } while (0)
489 #define STATS_INC_GROWN(x) do { } while (0)
490 #define STATS_ADD_REAPED(x,y) do { } while (0)
491 #define STATS_SET_HIGH(x) do { } while (0)
492 #define STATS_INC_ERR(x) do { } while (0)
493 #define STATS_INC_NODEALLOCS(x) do { } while (0)
494 #define STATS_INC_NODEFREES(x) do { } while (0)
495 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
496 #define STATS_SET_FREEABLE(x, i) do { } while (0)
497 #define STATS_INC_ALLOCHIT(x) do { } while (0)
498 #define STATS_INC_ALLOCMISS(x) do { } while (0)
499 #define STATS_INC_FREEHIT(x) do { } while (0)
500 #define STATS_INC_FREEMISS(x) do { } while (0)
501 #endif
502
503 #if DEBUG
504
505 /*
506 * memory layout of objects:
507 * 0 : objp
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
512 * redzone word.
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
517 */
518 static int obj_offset(struct kmem_cache *cachep)
519 {
520 return cachep->obj_offset;
521 }
522
523 static int obj_size(struct kmem_cache *cachep)
524 {
525 return cachep->obj_size;
526 }
527
528 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
529 {
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
532 }
533
534 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
535 {
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
538 return (unsigned long *)(objp + cachep->buffer_size -
539 2 * BYTES_PER_WORD);
540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
541 }
542
543 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
544 {
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
547 }
548
549 #else
550
551 #define obj_offset(x) 0
552 #define obj_size(cachep) (cachep->buffer_size)
553 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557 #endif
558
559 /*
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
562 */
563 #if defined(CONFIG_LARGE_ALLOCS)
564 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
565 #define MAX_GFP_ORDER 13 /* up to 32Mb */
566 #elif defined(CONFIG_MMU)
567 #define MAX_OBJ_ORDER 5 /* 32 pages */
568 #define MAX_GFP_ORDER 5 /* 32 pages */
569 #else
570 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
571 #define MAX_GFP_ORDER 8 /* up to 1Mb */
572 #endif
573
574 /*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577 #define BREAK_GFP_ORDER_HI 1
578 #define BREAK_GFP_ORDER_LO 0
579 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
581 /*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
585 */
586 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587 {
588 page->lru.next = (struct list_head *)cache;
589 }
590
591 static inline struct kmem_cache *page_get_cache(struct page *page)
592 {
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
595 BUG_ON(!PageSlab(page));
596 return (struct kmem_cache *)page->lru.next;
597 }
598
599 static inline void page_set_slab(struct page *page, struct slab *slab)
600 {
601 page->lru.prev = (struct list_head *)slab;
602 }
603
604 static inline struct slab *page_get_slab(struct page *page)
605 {
606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
608 BUG_ON(!PageSlab(page));
609 return (struct slab *)page->lru.prev;
610 }
611
612 static inline struct kmem_cache *virt_to_cache(const void *obj)
613 {
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616 }
617
618 static inline struct slab *virt_to_slab(const void *obj)
619 {
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622 }
623
624 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626 {
627 return slab->s_mem + cache->buffer_size * idx;
628 }
629
630 static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632 {
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634 }
635
636 /*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
639 struct cache_sizes malloc_sizes[] = {
640 #define CACHE(x) { .cs_size = (x) },
641 #include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643 #undef CACHE
644 };
645 EXPORT_SYMBOL(malloc_sizes);
646
647 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
648 struct cache_names {
649 char *name;
650 char *name_dma;
651 };
652
653 static struct cache_names __initdata cache_names[] = {
654 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655 #include <linux/kmalloc_sizes.h>
656 {NULL,}
657 #undef CACHE
658 };
659
660 static struct arraycache_init initarray_cache __initdata =
661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662 static struct arraycache_init initarray_generic =
663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664
665 /* internal cache of cache description objs */
666 static struct kmem_cache cache_cache = {
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
670 .buffer_size = sizeof(struct kmem_cache),
671 .name = "kmem_cache",
672 #if DEBUG
673 .obj_size = sizeof(struct kmem_cache),
674 #endif
675 };
676
677 #define BAD_ALIEN_MAGIC 0x01020304ul
678
679 #ifdef CONFIG_LOCKDEP
680
681 /*
682 * Slab sometimes uses the kmalloc slabs to store the slab headers
683 * for other slabs "off slab".
684 * The locking for this is tricky in that it nests within the locks
685 * of all other slabs in a few places; to deal with this special
686 * locking we put on-slab caches into a separate lock-class.
687 *
688 * We set lock class for alien array caches which are up during init.
689 * The lock annotation will be lost if all cpus of a node goes down and
690 * then comes back up during hotplug
691 */
692 static struct lock_class_key on_slab_l3_key;
693 static struct lock_class_key on_slab_alc_key;
694
695 static inline void init_lock_keys(void)
696
697 {
698 int q;
699 struct cache_sizes *s = malloc_sizes;
700
701 while (s->cs_size != ULONG_MAX) {
702 for_each_node(q) {
703 struct array_cache **alc;
704 int r;
705 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
706 if (!l3 || OFF_SLAB(s->cs_cachep))
707 continue;
708 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
709 alc = l3->alien;
710 /*
711 * FIXME: This check for BAD_ALIEN_MAGIC
712 * should go away when common slab code is taught to
713 * work even without alien caches.
714 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
715 * for alloc_alien_cache,
716 */
717 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
718 continue;
719 for_each_node(r) {
720 if (alc[r])
721 lockdep_set_class(&alc[r]->lock,
722 &on_slab_alc_key);
723 }
724 }
725 s++;
726 }
727 }
728 #else
729 static inline void init_lock_keys(void)
730 {
731 }
732 #endif
733
734 /* Guard access to the cache-chain. */
735 static DEFINE_MUTEX(cache_chain_mutex);
736 static struct list_head cache_chain;
737
738 /*
739 * chicken and egg problem: delay the per-cpu array allocation
740 * until the general caches are up.
741 */
742 static enum {
743 NONE,
744 PARTIAL_AC,
745 PARTIAL_L3,
746 FULL
747 } g_cpucache_up;
748
749 /*
750 * used by boot code to determine if it can use slab based allocator
751 */
752 int slab_is_available(void)
753 {
754 return g_cpucache_up == FULL;
755 }
756
757 static DEFINE_PER_CPU(struct work_struct, reap_work);
758
759 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
760 {
761 return cachep->array[smp_processor_id()];
762 }
763
764 static inline struct kmem_cache *__find_general_cachep(size_t size,
765 gfp_t gfpflags)
766 {
767 struct cache_sizes *csizep = malloc_sizes;
768
769 #if DEBUG
770 /* This happens if someone tries to call
771 * kmem_cache_create(), or __kmalloc(), before
772 * the generic caches are initialized.
773 */
774 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
775 #endif
776 while (size > csizep->cs_size)
777 csizep++;
778
779 /*
780 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
781 * has cs_{dma,}cachep==NULL. Thus no special case
782 * for large kmalloc calls required.
783 */
784 if (unlikely(gfpflags & GFP_DMA))
785 return csizep->cs_dmacachep;
786 return csizep->cs_cachep;
787 }
788
789 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
790 {
791 return __find_general_cachep(size, gfpflags);
792 }
793
794 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
795 {
796 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
797 }
798
799 /*
800 * Calculate the number of objects and left-over bytes for a given buffer size.
801 */
802 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
803 size_t align, int flags, size_t *left_over,
804 unsigned int *num)
805 {
806 int nr_objs;
807 size_t mgmt_size;
808 size_t slab_size = PAGE_SIZE << gfporder;
809
810 /*
811 * The slab management structure can be either off the slab or
812 * on it. For the latter case, the memory allocated for a
813 * slab is used for:
814 *
815 * - The struct slab
816 * - One kmem_bufctl_t for each object
817 * - Padding to respect alignment of @align
818 * - @buffer_size bytes for each object
819 *
820 * If the slab management structure is off the slab, then the
821 * alignment will already be calculated into the size. Because
822 * the slabs are all pages aligned, the objects will be at the
823 * correct alignment when allocated.
824 */
825 if (flags & CFLGS_OFF_SLAB) {
826 mgmt_size = 0;
827 nr_objs = slab_size / buffer_size;
828
829 if (nr_objs > SLAB_LIMIT)
830 nr_objs = SLAB_LIMIT;
831 } else {
832 /*
833 * Ignore padding for the initial guess. The padding
834 * is at most @align-1 bytes, and @buffer_size is at
835 * least @align. In the worst case, this result will
836 * be one greater than the number of objects that fit
837 * into the memory allocation when taking the padding
838 * into account.
839 */
840 nr_objs = (slab_size - sizeof(struct slab)) /
841 (buffer_size + sizeof(kmem_bufctl_t));
842
843 /*
844 * This calculated number will be either the right
845 * amount, or one greater than what we want.
846 */
847 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
848 > slab_size)
849 nr_objs--;
850
851 if (nr_objs > SLAB_LIMIT)
852 nr_objs = SLAB_LIMIT;
853
854 mgmt_size = slab_mgmt_size(nr_objs, align);
855 }
856 *num = nr_objs;
857 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
858 }
859
860 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
861
862 static void __slab_error(const char *function, struct kmem_cache *cachep,
863 char *msg)
864 {
865 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
866 function, cachep->name, msg);
867 dump_stack();
868 }
869
870 #ifdef CONFIG_NUMA
871 /*
872 * Special reaping functions for NUMA systems called from cache_reap().
873 * These take care of doing round robin flushing of alien caches (containing
874 * objects freed on different nodes from which they were allocated) and the
875 * flushing of remote pcps by calling drain_node_pages.
876 */
877 static DEFINE_PER_CPU(unsigned long, reap_node);
878
879 static void init_reap_node(int cpu)
880 {
881 int node;
882
883 node = next_node(cpu_to_node(cpu), node_online_map);
884 if (node == MAX_NUMNODES)
885 node = first_node(node_online_map);
886
887 __get_cpu_var(reap_node) = node;
888 }
889
890 static void next_reap_node(void)
891 {
892 int node = __get_cpu_var(reap_node);
893
894 /*
895 * Also drain per cpu pages on remote zones
896 */
897 if (node != numa_node_id())
898 drain_node_pages(node);
899
900 node = next_node(node, node_online_map);
901 if (unlikely(node >= MAX_NUMNODES))
902 node = first_node(node_online_map);
903 __get_cpu_var(reap_node) = node;
904 }
905
906 #else
907 #define init_reap_node(cpu) do { } while (0)
908 #define next_reap_node(void) do { } while (0)
909 #endif
910
911 /*
912 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
913 * via the workqueue/eventd.
914 * Add the CPU number into the expiration time to minimize the possibility of
915 * the CPUs getting into lockstep and contending for the global cache chain
916 * lock.
917 */
918 static void __devinit start_cpu_timer(int cpu)
919 {
920 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
921
922 /*
923 * When this gets called from do_initcalls via cpucache_init(),
924 * init_workqueues() has already run, so keventd will be setup
925 * at that time.
926 */
927 if (keventd_up() && reap_work->func == NULL) {
928 init_reap_node(cpu);
929 INIT_WORK(reap_work, cache_reap, NULL);
930 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
931 }
932 }
933
934 static struct array_cache *alloc_arraycache(int node, int entries,
935 int batchcount)
936 {
937 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
938 struct array_cache *nc = NULL;
939
940 nc = kmalloc_node(memsize, GFP_KERNEL, node);
941 if (nc) {
942 nc->avail = 0;
943 nc->limit = entries;
944 nc->batchcount = batchcount;
945 nc->touched = 0;
946 spin_lock_init(&nc->lock);
947 }
948 return nc;
949 }
950
951 /*
952 * Transfer objects in one arraycache to another.
953 * Locking must be handled by the caller.
954 *
955 * Return the number of entries transferred.
956 */
957 static int transfer_objects(struct array_cache *to,
958 struct array_cache *from, unsigned int max)
959 {
960 /* Figure out how many entries to transfer */
961 int nr = min(min(from->avail, max), to->limit - to->avail);
962
963 if (!nr)
964 return 0;
965
966 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
967 sizeof(void *) *nr);
968
969 from->avail -= nr;
970 to->avail += nr;
971 to->touched = 1;
972 return nr;
973 }
974
975 #ifdef CONFIG_NUMA
976 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
977 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
978
979 static struct array_cache **alloc_alien_cache(int node, int limit)
980 {
981 struct array_cache **ac_ptr;
982 int memsize = sizeof(void *) * MAX_NUMNODES;
983 int i;
984
985 if (limit > 1)
986 limit = 12;
987 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
988 if (ac_ptr) {
989 for_each_node(i) {
990 if (i == node || !node_online(i)) {
991 ac_ptr[i] = NULL;
992 continue;
993 }
994 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
995 if (!ac_ptr[i]) {
996 for (i--; i <= 0; i--)
997 kfree(ac_ptr[i]);
998 kfree(ac_ptr);
999 return NULL;
1000 }
1001 }
1002 }
1003 return ac_ptr;
1004 }
1005
1006 static void free_alien_cache(struct array_cache **ac_ptr)
1007 {
1008 int i;
1009
1010 if (!ac_ptr)
1011 return;
1012 for_each_node(i)
1013 kfree(ac_ptr[i]);
1014 kfree(ac_ptr);
1015 }
1016
1017 static void __drain_alien_cache(struct kmem_cache *cachep,
1018 struct array_cache *ac, int node)
1019 {
1020 struct kmem_list3 *rl3 = cachep->nodelists[node];
1021
1022 if (ac->avail) {
1023 spin_lock(&rl3->list_lock);
1024 /*
1025 * Stuff objects into the remote nodes shared array first.
1026 * That way we could avoid the overhead of putting the objects
1027 * into the free lists and getting them back later.
1028 */
1029 if (rl3->shared)
1030 transfer_objects(rl3->shared, ac, ac->limit);
1031
1032 free_block(cachep, ac->entry, ac->avail, node);
1033 ac->avail = 0;
1034 spin_unlock(&rl3->list_lock);
1035 }
1036 }
1037
1038 /*
1039 * Called from cache_reap() to regularly drain alien caches round robin.
1040 */
1041 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1042 {
1043 int node = __get_cpu_var(reap_node);
1044
1045 if (l3->alien) {
1046 struct array_cache *ac = l3->alien[node];
1047
1048 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1049 __drain_alien_cache(cachep, ac, node);
1050 spin_unlock_irq(&ac->lock);
1051 }
1052 }
1053 }
1054
1055 static void drain_alien_cache(struct kmem_cache *cachep,
1056 struct array_cache **alien)
1057 {
1058 int i = 0;
1059 struct array_cache *ac;
1060 unsigned long flags;
1061
1062 for_each_online_node(i) {
1063 ac = alien[i];
1064 if (ac) {
1065 spin_lock_irqsave(&ac->lock, flags);
1066 __drain_alien_cache(cachep, ac, i);
1067 spin_unlock_irqrestore(&ac->lock, flags);
1068 }
1069 }
1070 }
1071
1072 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1073 {
1074 struct slab *slabp = virt_to_slab(objp);
1075 int nodeid = slabp->nodeid;
1076 struct kmem_list3 *l3;
1077 struct array_cache *alien = NULL;
1078
1079 /*
1080 * Make sure we are not freeing a object from another node to the array
1081 * cache on this cpu.
1082 */
1083 if (likely(slabp->nodeid == numa_node_id()))
1084 return 0;
1085
1086 l3 = cachep->nodelists[numa_node_id()];
1087 STATS_INC_NODEFREES(cachep);
1088 if (l3->alien && l3->alien[nodeid]) {
1089 alien = l3->alien[nodeid];
1090 spin_lock(&alien->lock);
1091 if (unlikely(alien->avail == alien->limit)) {
1092 STATS_INC_ACOVERFLOW(cachep);
1093 __drain_alien_cache(cachep, alien, nodeid);
1094 }
1095 alien->entry[alien->avail++] = objp;
1096 spin_unlock(&alien->lock);
1097 } else {
1098 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1099 free_block(cachep, &objp, 1, nodeid);
1100 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1101 }
1102 return 1;
1103 }
1104
1105 #else
1106
1107 #define drain_alien_cache(cachep, alien) do { } while (0)
1108 #define reap_alien(cachep, l3) do { } while (0)
1109
1110 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1111 {
1112 return (struct array_cache **)BAD_ALIEN_MAGIC;
1113 }
1114
1115 static inline void free_alien_cache(struct array_cache **ac_ptr)
1116 {
1117 }
1118
1119 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1120 {
1121 return 0;
1122 }
1123
1124 #endif
1125
1126 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1127 unsigned long action, void *hcpu)
1128 {
1129 long cpu = (long)hcpu;
1130 struct kmem_cache *cachep;
1131 struct kmem_list3 *l3 = NULL;
1132 int node = cpu_to_node(cpu);
1133 int memsize = sizeof(struct kmem_list3);
1134
1135 switch (action) {
1136 case CPU_UP_PREPARE:
1137 mutex_lock(&cache_chain_mutex);
1138 /*
1139 * We need to do this right in the beginning since
1140 * alloc_arraycache's are going to use this list.
1141 * kmalloc_node allows us to add the slab to the right
1142 * kmem_list3 and not this cpu's kmem_list3
1143 */
1144
1145 list_for_each_entry(cachep, &cache_chain, next) {
1146 /*
1147 * Set up the size64 kmemlist for cpu before we can
1148 * begin anything. Make sure some other cpu on this
1149 * node has not already allocated this
1150 */
1151 if (!cachep->nodelists[node]) {
1152 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1153 if (!l3)
1154 goto bad;
1155 kmem_list3_init(l3);
1156 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1157 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1158
1159 /*
1160 * The l3s don't come and go as CPUs come and
1161 * go. cache_chain_mutex is sufficient
1162 * protection here.
1163 */
1164 cachep->nodelists[node] = l3;
1165 }
1166
1167 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1168 cachep->nodelists[node]->free_limit =
1169 (1 + nr_cpus_node(node)) *
1170 cachep->batchcount + cachep->num;
1171 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1172 }
1173
1174 /*
1175 * Now we can go ahead with allocating the shared arrays and
1176 * array caches
1177 */
1178 list_for_each_entry(cachep, &cache_chain, next) {
1179 struct array_cache *nc;
1180 struct array_cache *shared;
1181 struct array_cache **alien;
1182
1183 nc = alloc_arraycache(node, cachep->limit,
1184 cachep->batchcount);
1185 if (!nc)
1186 goto bad;
1187 shared = alloc_arraycache(node,
1188 cachep->shared * cachep->batchcount,
1189 0xbaadf00d);
1190 if (!shared)
1191 goto bad;
1192
1193 alien = alloc_alien_cache(node, cachep->limit);
1194 if (!alien)
1195 goto bad;
1196 cachep->array[cpu] = nc;
1197 l3 = cachep->nodelists[node];
1198 BUG_ON(!l3);
1199
1200 spin_lock_irq(&l3->list_lock);
1201 if (!l3->shared) {
1202 /*
1203 * We are serialised from CPU_DEAD or
1204 * CPU_UP_CANCELLED by the cpucontrol lock
1205 */
1206 l3->shared = shared;
1207 shared = NULL;
1208 }
1209 #ifdef CONFIG_NUMA
1210 if (!l3->alien) {
1211 l3->alien = alien;
1212 alien = NULL;
1213 }
1214 #endif
1215 spin_unlock_irq(&l3->list_lock);
1216 kfree(shared);
1217 free_alien_cache(alien);
1218 }
1219 mutex_unlock(&cache_chain_mutex);
1220 break;
1221 case CPU_ONLINE:
1222 start_cpu_timer(cpu);
1223 break;
1224 #ifdef CONFIG_HOTPLUG_CPU
1225 case CPU_DEAD:
1226 /*
1227 * Even if all the cpus of a node are down, we don't free the
1228 * kmem_list3 of any cache. This to avoid a race between
1229 * cpu_down, and a kmalloc allocation from another cpu for
1230 * memory from the node of the cpu going down. The list3
1231 * structure is usually allocated from kmem_cache_create() and
1232 * gets destroyed at kmem_cache_destroy().
1233 */
1234 /* fall thru */
1235 case CPU_UP_CANCELED:
1236 mutex_lock(&cache_chain_mutex);
1237 list_for_each_entry(cachep, &cache_chain, next) {
1238 struct array_cache *nc;
1239 struct array_cache *shared;
1240 struct array_cache **alien;
1241 cpumask_t mask;
1242
1243 mask = node_to_cpumask(node);
1244 /* cpu is dead; no one can alloc from it. */
1245 nc = cachep->array[cpu];
1246 cachep->array[cpu] = NULL;
1247 l3 = cachep->nodelists[node];
1248
1249 if (!l3)
1250 goto free_array_cache;
1251
1252 spin_lock_irq(&l3->list_lock);
1253
1254 /* Free limit for this kmem_list3 */
1255 l3->free_limit -= cachep->batchcount;
1256 if (nc)
1257 free_block(cachep, nc->entry, nc->avail, node);
1258
1259 if (!cpus_empty(mask)) {
1260 spin_unlock_irq(&l3->list_lock);
1261 goto free_array_cache;
1262 }
1263
1264 shared = l3->shared;
1265 if (shared) {
1266 free_block(cachep, l3->shared->entry,
1267 l3->shared->avail, node);
1268 l3->shared = NULL;
1269 }
1270
1271 alien = l3->alien;
1272 l3->alien = NULL;
1273
1274 spin_unlock_irq(&l3->list_lock);
1275
1276 kfree(shared);
1277 if (alien) {
1278 drain_alien_cache(cachep, alien);
1279 free_alien_cache(alien);
1280 }
1281 free_array_cache:
1282 kfree(nc);
1283 }
1284 /*
1285 * In the previous loop, all the objects were freed to
1286 * the respective cache's slabs, now we can go ahead and
1287 * shrink each nodelist to its limit.
1288 */
1289 list_for_each_entry(cachep, &cache_chain, next) {
1290 l3 = cachep->nodelists[node];
1291 if (!l3)
1292 continue;
1293 drain_freelist(cachep, l3, l3->free_objects);
1294 }
1295 mutex_unlock(&cache_chain_mutex);
1296 break;
1297 #endif
1298 }
1299 return NOTIFY_OK;
1300 bad:
1301 mutex_unlock(&cache_chain_mutex);
1302 return NOTIFY_BAD;
1303 }
1304
1305 static struct notifier_block __cpuinitdata cpucache_notifier = {
1306 &cpuup_callback, NULL, 0
1307 };
1308
1309 /*
1310 * swap the static kmem_list3 with kmalloced memory
1311 */
1312 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1313 int nodeid)
1314 {
1315 struct kmem_list3 *ptr;
1316
1317 BUG_ON(cachep->nodelists[nodeid] != list);
1318 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1319 BUG_ON(!ptr);
1320
1321 local_irq_disable();
1322 memcpy(ptr, list, sizeof(struct kmem_list3));
1323 /*
1324 * Do not assume that spinlocks can be initialized via memcpy:
1325 */
1326 spin_lock_init(&ptr->list_lock);
1327
1328 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1329 cachep->nodelists[nodeid] = ptr;
1330 local_irq_enable();
1331 }
1332
1333 /*
1334 * Initialisation. Called after the page allocator have been initialised and
1335 * before smp_init().
1336 */
1337 void __init kmem_cache_init(void)
1338 {
1339 size_t left_over;
1340 struct cache_sizes *sizes;
1341 struct cache_names *names;
1342 int i;
1343 int order;
1344
1345 for (i = 0; i < NUM_INIT_LISTS; i++) {
1346 kmem_list3_init(&initkmem_list3[i]);
1347 if (i < MAX_NUMNODES)
1348 cache_cache.nodelists[i] = NULL;
1349 }
1350
1351 /*
1352 * Fragmentation resistance on low memory - only use bigger
1353 * page orders on machines with more than 32MB of memory.
1354 */
1355 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1356 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1357
1358 /* Bootstrap is tricky, because several objects are allocated
1359 * from caches that do not exist yet:
1360 * 1) initialize the cache_cache cache: it contains the struct
1361 * kmem_cache structures of all caches, except cache_cache itself:
1362 * cache_cache is statically allocated.
1363 * Initially an __init data area is used for the head array and the
1364 * kmem_list3 structures, it's replaced with a kmalloc allocated
1365 * array at the end of the bootstrap.
1366 * 2) Create the first kmalloc cache.
1367 * The struct kmem_cache for the new cache is allocated normally.
1368 * An __init data area is used for the head array.
1369 * 3) Create the remaining kmalloc caches, with minimally sized
1370 * head arrays.
1371 * 4) Replace the __init data head arrays for cache_cache and the first
1372 * kmalloc cache with kmalloc allocated arrays.
1373 * 5) Replace the __init data for kmem_list3 for cache_cache and
1374 * the other cache's with kmalloc allocated memory.
1375 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1376 */
1377
1378 /* 1) create the cache_cache */
1379 INIT_LIST_HEAD(&cache_chain);
1380 list_add(&cache_cache.next, &cache_chain);
1381 cache_cache.colour_off = cache_line_size();
1382 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1383 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1384
1385 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1386 cache_line_size());
1387
1388 for (order = 0; order < MAX_ORDER; order++) {
1389 cache_estimate(order, cache_cache.buffer_size,
1390 cache_line_size(), 0, &left_over, &cache_cache.num);
1391 if (cache_cache.num)
1392 break;
1393 }
1394 BUG_ON(!cache_cache.num);
1395 cache_cache.gfporder = order;
1396 cache_cache.colour = left_over / cache_cache.colour_off;
1397 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1398 sizeof(struct slab), cache_line_size());
1399
1400 /* 2+3) create the kmalloc caches */
1401 sizes = malloc_sizes;
1402 names = cache_names;
1403
1404 /*
1405 * Initialize the caches that provide memory for the array cache and the
1406 * kmem_list3 structures first. Without this, further allocations will
1407 * bug.
1408 */
1409
1410 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1411 sizes[INDEX_AC].cs_size,
1412 ARCH_KMALLOC_MINALIGN,
1413 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1414 NULL, NULL);
1415
1416 if (INDEX_AC != INDEX_L3) {
1417 sizes[INDEX_L3].cs_cachep =
1418 kmem_cache_create(names[INDEX_L3].name,
1419 sizes[INDEX_L3].cs_size,
1420 ARCH_KMALLOC_MINALIGN,
1421 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1422 NULL, NULL);
1423 }
1424
1425 slab_early_init = 0;
1426
1427 while (sizes->cs_size != ULONG_MAX) {
1428 /*
1429 * For performance, all the general caches are L1 aligned.
1430 * This should be particularly beneficial on SMP boxes, as it
1431 * eliminates "false sharing".
1432 * Note for systems short on memory removing the alignment will
1433 * allow tighter packing of the smaller caches.
1434 */
1435 if (!sizes->cs_cachep) {
1436 sizes->cs_cachep = kmem_cache_create(names->name,
1437 sizes->cs_size,
1438 ARCH_KMALLOC_MINALIGN,
1439 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1440 NULL, NULL);
1441 }
1442
1443 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1444 sizes->cs_size,
1445 ARCH_KMALLOC_MINALIGN,
1446 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1447 SLAB_PANIC,
1448 NULL, NULL);
1449 sizes++;
1450 names++;
1451 }
1452 /* 4) Replace the bootstrap head arrays */
1453 {
1454 struct array_cache *ptr;
1455
1456 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1457
1458 local_irq_disable();
1459 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1460 memcpy(ptr, cpu_cache_get(&cache_cache),
1461 sizeof(struct arraycache_init));
1462 /*
1463 * Do not assume that spinlocks can be initialized via memcpy:
1464 */
1465 spin_lock_init(&ptr->lock);
1466
1467 cache_cache.array[smp_processor_id()] = ptr;
1468 local_irq_enable();
1469
1470 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1471
1472 local_irq_disable();
1473 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1474 != &initarray_generic.cache);
1475 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1476 sizeof(struct arraycache_init));
1477 /*
1478 * Do not assume that spinlocks can be initialized via memcpy:
1479 */
1480 spin_lock_init(&ptr->lock);
1481
1482 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1483 ptr;
1484 local_irq_enable();
1485 }
1486 /* 5) Replace the bootstrap kmem_list3's */
1487 {
1488 int node;
1489 /* Replace the static kmem_list3 structures for the boot cpu */
1490 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1491 numa_node_id());
1492
1493 for_each_online_node(node) {
1494 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1495 &initkmem_list3[SIZE_AC + node], node);
1496
1497 if (INDEX_AC != INDEX_L3) {
1498 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1499 &initkmem_list3[SIZE_L3 + node],
1500 node);
1501 }
1502 }
1503 }
1504
1505 /* 6) resize the head arrays to their final sizes */
1506 {
1507 struct kmem_cache *cachep;
1508 mutex_lock(&cache_chain_mutex);
1509 list_for_each_entry(cachep, &cache_chain, next)
1510 if (enable_cpucache(cachep))
1511 BUG();
1512 mutex_unlock(&cache_chain_mutex);
1513 }
1514
1515 /* Annotate slab for lockdep -- annotate the malloc caches */
1516 init_lock_keys();
1517
1518
1519 /* Done! */
1520 g_cpucache_up = FULL;
1521
1522 /*
1523 * Register a cpu startup notifier callback that initializes
1524 * cpu_cache_get for all new cpus
1525 */
1526 register_cpu_notifier(&cpucache_notifier);
1527
1528 /*
1529 * The reap timers are started later, with a module init call: That part
1530 * of the kernel is not yet operational.
1531 */
1532 }
1533
1534 static int __init cpucache_init(void)
1535 {
1536 int cpu;
1537
1538 /*
1539 * Register the timers that return unneeded pages to the page allocator
1540 */
1541 for_each_online_cpu(cpu)
1542 start_cpu_timer(cpu);
1543 return 0;
1544 }
1545 __initcall(cpucache_init);
1546
1547 /*
1548 * Interface to system's page allocator. No need to hold the cache-lock.
1549 *
1550 * If we requested dmaable memory, we will get it. Even if we
1551 * did not request dmaable memory, we might get it, but that
1552 * would be relatively rare and ignorable.
1553 */
1554 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1555 {
1556 struct page *page;
1557 int nr_pages;
1558 int i;
1559
1560 #ifndef CONFIG_MMU
1561 /*
1562 * Nommu uses slab's for process anonymous memory allocations, and thus
1563 * requires __GFP_COMP to properly refcount higher order allocations
1564 */
1565 flags |= __GFP_COMP;
1566 #endif
1567 flags |= cachep->gfpflags;
1568
1569 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1570 if (!page)
1571 return NULL;
1572
1573 nr_pages = (1 << cachep->gfporder);
1574 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1575 add_zone_page_state(page_zone(page),
1576 NR_SLAB_RECLAIMABLE, nr_pages);
1577 else
1578 add_zone_page_state(page_zone(page),
1579 NR_SLAB_UNRECLAIMABLE, nr_pages);
1580 for (i = 0; i < nr_pages; i++)
1581 __SetPageSlab(page + i);
1582 return page_address(page);
1583 }
1584
1585 /*
1586 * Interface to system's page release.
1587 */
1588 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1589 {
1590 unsigned long i = (1 << cachep->gfporder);
1591 struct page *page = virt_to_page(addr);
1592 const unsigned long nr_freed = i;
1593
1594 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1595 sub_zone_page_state(page_zone(page),
1596 NR_SLAB_RECLAIMABLE, nr_freed);
1597 else
1598 sub_zone_page_state(page_zone(page),
1599 NR_SLAB_UNRECLAIMABLE, nr_freed);
1600 while (i--) {
1601 BUG_ON(!PageSlab(page));
1602 __ClearPageSlab(page);
1603 page++;
1604 }
1605 if (current->reclaim_state)
1606 current->reclaim_state->reclaimed_slab += nr_freed;
1607 free_pages((unsigned long)addr, cachep->gfporder);
1608 }
1609
1610 static void kmem_rcu_free(struct rcu_head *head)
1611 {
1612 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1613 struct kmem_cache *cachep = slab_rcu->cachep;
1614
1615 kmem_freepages(cachep, slab_rcu->addr);
1616 if (OFF_SLAB(cachep))
1617 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1618 }
1619
1620 #if DEBUG
1621
1622 #ifdef CONFIG_DEBUG_PAGEALLOC
1623 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1624 unsigned long caller)
1625 {
1626 int size = obj_size(cachep);
1627
1628 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1629
1630 if (size < 5 * sizeof(unsigned long))
1631 return;
1632
1633 *addr++ = 0x12345678;
1634 *addr++ = caller;
1635 *addr++ = smp_processor_id();
1636 size -= 3 * sizeof(unsigned long);
1637 {
1638 unsigned long *sptr = &caller;
1639 unsigned long svalue;
1640
1641 while (!kstack_end(sptr)) {
1642 svalue = *sptr++;
1643 if (kernel_text_address(svalue)) {
1644 *addr++ = svalue;
1645 size -= sizeof(unsigned long);
1646 if (size <= sizeof(unsigned long))
1647 break;
1648 }
1649 }
1650
1651 }
1652 *addr++ = 0x87654321;
1653 }
1654 #endif
1655
1656 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1657 {
1658 int size = obj_size(cachep);
1659 addr = &((char *)addr)[obj_offset(cachep)];
1660
1661 memset(addr, val, size);
1662 *(unsigned char *)(addr + size - 1) = POISON_END;
1663 }
1664
1665 static void dump_line(char *data, int offset, int limit)
1666 {
1667 int i;
1668 printk(KERN_ERR "%03x:", offset);
1669 for (i = 0; i < limit; i++)
1670 printk(" %02x", (unsigned char)data[offset + i]);
1671 printk("\n");
1672 }
1673 #endif
1674
1675 #if DEBUG
1676
1677 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1678 {
1679 int i, size;
1680 char *realobj;
1681
1682 if (cachep->flags & SLAB_RED_ZONE) {
1683 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1684 *dbg_redzone1(cachep, objp),
1685 *dbg_redzone2(cachep, objp));
1686 }
1687
1688 if (cachep->flags & SLAB_STORE_USER) {
1689 printk(KERN_ERR "Last user: [<%p>]",
1690 *dbg_userword(cachep, objp));
1691 print_symbol("(%s)",
1692 (unsigned long)*dbg_userword(cachep, objp));
1693 printk("\n");
1694 }
1695 realobj = (char *)objp + obj_offset(cachep);
1696 size = obj_size(cachep);
1697 for (i = 0; i < size && lines; i += 16, lines--) {
1698 int limit;
1699 limit = 16;
1700 if (i + limit > size)
1701 limit = size - i;
1702 dump_line(realobj, i, limit);
1703 }
1704 }
1705
1706 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1707 {
1708 char *realobj;
1709 int size, i;
1710 int lines = 0;
1711
1712 realobj = (char *)objp + obj_offset(cachep);
1713 size = obj_size(cachep);
1714
1715 for (i = 0; i < size; i++) {
1716 char exp = POISON_FREE;
1717 if (i == size - 1)
1718 exp = POISON_END;
1719 if (realobj[i] != exp) {
1720 int limit;
1721 /* Mismatch ! */
1722 /* Print header */
1723 if (lines == 0) {
1724 printk(KERN_ERR
1725 "Slab corruption: start=%p, len=%d\n",
1726 realobj, size);
1727 print_objinfo(cachep, objp, 0);
1728 }
1729 /* Hexdump the affected line */
1730 i = (i / 16) * 16;
1731 limit = 16;
1732 if (i + limit > size)
1733 limit = size - i;
1734 dump_line(realobj, i, limit);
1735 i += 16;
1736 lines++;
1737 /* Limit to 5 lines */
1738 if (lines > 5)
1739 break;
1740 }
1741 }
1742 if (lines != 0) {
1743 /* Print some data about the neighboring objects, if they
1744 * exist:
1745 */
1746 struct slab *slabp = virt_to_slab(objp);
1747 unsigned int objnr;
1748
1749 objnr = obj_to_index(cachep, slabp, objp);
1750 if (objnr) {
1751 objp = index_to_obj(cachep, slabp, objnr - 1);
1752 realobj = (char *)objp + obj_offset(cachep);
1753 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1754 realobj, size);
1755 print_objinfo(cachep, objp, 2);
1756 }
1757 if (objnr + 1 < cachep->num) {
1758 objp = index_to_obj(cachep, slabp, objnr + 1);
1759 realobj = (char *)objp + obj_offset(cachep);
1760 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1761 realobj, size);
1762 print_objinfo(cachep, objp, 2);
1763 }
1764 }
1765 }
1766 #endif
1767
1768 #if DEBUG
1769 /**
1770 * slab_destroy_objs - destroy a slab and its objects
1771 * @cachep: cache pointer being destroyed
1772 * @slabp: slab pointer being destroyed
1773 *
1774 * Call the registered destructor for each object in a slab that is being
1775 * destroyed.
1776 */
1777 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1778 {
1779 int i;
1780 for (i = 0; i < cachep->num; i++) {
1781 void *objp = index_to_obj(cachep, slabp, i);
1782
1783 if (cachep->flags & SLAB_POISON) {
1784 #ifdef CONFIG_DEBUG_PAGEALLOC
1785 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1786 OFF_SLAB(cachep))
1787 kernel_map_pages(virt_to_page(objp),
1788 cachep->buffer_size / PAGE_SIZE, 1);
1789 else
1790 check_poison_obj(cachep, objp);
1791 #else
1792 check_poison_obj(cachep, objp);
1793 #endif
1794 }
1795 if (cachep->flags & SLAB_RED_ZONE) {
1796 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1797 slab_error(cachep, "start of a freed object "
1798 "was overwritten");
1799 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1800 slab_error(cachep, "end of a freed object "
1801 "was overwritten");
1802 }
1803 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1804 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1805 }
1806 }
1807 #else
1808 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1809 {
1810 if (cachep->dtor) {
1811 int i;
1812 for (i = 0; i < cachep->num; i++) {
1813 void *objp = index_to_obj(cachep, slabp, i);
1814 (cachep->dtor) (objp, cachep, 0);
1815 }
1816 }
1817 }
1818 #endif
1819
1820 /**
1821 * slab_destroy - destroy and release all objects in a slab
1822 * @cachep: cache pointer being destroyed
1823 * @slabp: slab pointer being destroyed
1824 *
1825 * Destroy all the objs in a slab, and release the mem back to the system.
1826 * Before calling the slab must have been unlinked from the cache. The
1827 * cache-lock is not held/needed.
1828 */
1829 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1830 {
1831 void *addr = slabp->s_mem - slabp->colouroff;
1832
1833 slab_destroy_objs(cachep, slabp);
1834 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1835 struct slab_rcu *slab_rcu;
1836
1837 slab_rcu = (struct slab_rcu *)slabp;
1838 slab_rcu->cachep = cachep;
1839 slab_rcu->addr = addr;
1840 call_rcu(&slab_rcu->head, kmem_rcu_free);
1841 } else {
1842 kmem_freepages(cachep, addr);
1843 if (OFF_SLAB(cachep))
1844 kmem_cache_free(cachep->slabp_cache, slabp);
1845 }
1846 }
1847
1848 /*
1849 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1850 * size of kmem_list3.
1851 */
1852 static void set_up_list3s(struct kmem_cache *cachep, int index)
1853 {
1854 int node;
1855
1856 for_each_online_node(node) {
1857 cachep->nodelists[node] = &initkmem_list3[index + node];
1858 cachep->nodelists[node]->next_reap = jiffies +
1859 REAPTIMEOUT_LIST3 +
1860 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1861 }
1862 }
1863
1864 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1865 {
1866 int i;
1867 struct kmem_list3 *l3;
1868
1869 for_each_online_cpu(i)
1870 kfree(cachep->array[i]);
1871
1872 /* NUMA: free the list3 structures */
1873 for_each_online_node(i) {
1874 l3 = cachep->nodelists[i];
1875 if (l3) {
1876 kfree(l3->shared);
1877 free_alien_cache(l3->alien);
1878 kfree(l3);
1879 }
1880 }
1881 kmem_cache_free(&cache_cache, cachep);
1882 }
1883
1884
1885 /**
1886 * calculate_slab_order - calculate size (page order) of slabs
1887 * @cachep: pointer to the cache that is being created
1888 * @size: size of objects to be created in this cache.
1889 * @align: required alignment for the objects.
1890 * @flags: slab allocation flags
1891 *
1892 * Also calculates the number of objects per slab.
1893 *
1894 * This could be made much more intelligent. For now, try to avoid using
1895 * high order pages for slabs. When the gfp() functions are more friendly
1896 * towards high-order requests, this should be changed.
1897 */
1898 static size_t calculate_slab_order(struct kmem_cache *cachep,
1899 size_t size, size_t align, unsigned long flags)
1900 {
1901 unsigned long offslab_limit;
1902 size_t left_over = 0;
1903 int gfporder;
1904
1905 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1906 unsigned int num;
1907 size_t remainder;
1908
1909 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1910 if (!num)
1911 continue;
1912
1913 if (flags & CFLGS_OFF_SLAB) {
1914 /*
1915 * Max number of objs-per-slab for caches which
1916 * use off-slab slabs. Needed to avoid a possible
1917 * looping condition in cache_grow().
1918 */
1919 offslab_limit = size - sizeof(struct slab);
1920 offslab_limit /= sizeof(kmem_bufctl_t);
1921
1922 if (num > offslab_limit)
1923 break;
1924 }
1925
1926 /* Found something acceptable - save it away */
1927 cachep->num = num;
1928 cachep->gfporder = gfporder;
1929 left_over = remainder;
1930
1931 /*
1932 * A VFS-reclaimable slab tends to have most allocations
1933 * as GFP_NOFS and we really don't want to have to be allocating
1934 * higher-order pages when we are unable to shrink dcache.
1935 */
1936 if (flags & SLAB_RECLAIM_ACCOUNT)
1937 break;
1938
1939 /*
1940 * Large number of objects is good, but very large slabs are
1941 * currently bad for the gfp()s.
1942 */
1943 if (gfporder >= slab_break_gfp_order)
1944 break;
1945
1946 /*
1947 * Acceptable internal fragmentation?
1948 */
1949 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1950 break;
1951 }
1952 return left_over;
1953 }
1954
1955 static int setup_cpu_cache(struct kmem_cache *cachep)
1956 {
1957 if (g_cpucache_up == FULL)
1958 return enable_cpucache(cachep);
1959
1960 if (g_cpucache_up == NONE) {
1961 /*
1962 * Note: the first kmem_cache_create must create the cache
1963 * that's used by kmalloc(24), otherwise the creation of
1964 * further caches will BUG().
1965 */
1966 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1967
1968 /*
1969 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1970 * the first cache, then we need to set up all its list3s,
1971 * otherwise the creation of further caches will BUG().
1972 */
1973 set_up_list3s(cachep, SIZE_AC);
1974 if (INDEX_AC == INDEX_L3)
1975 g_cpucache_up = PARTIAL_L3;
1976 else
1977 g_cpucache_up = PARTIAL_AC;
1978 } else {
1979 cachep->array[smp_processor_id()] =
1980 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1981
1982 if (g_cpucache_up == PARTIAL_AC) {
1983 set_up_list3s(cachep, SIZE_L3);
1984 g_cpucache_up = PARTIAL_L3;
1985 } else {
1986 int node;
1987 for_each_online_node(node) {
1988 cachep->nodelists[node] =
1989 kmalloc_node(sizeof(struct kmem_list3),
1990 GFP_KERNEL, node);
1991 BUG_ON(!cachep->nodelists[node]);
1992 kmem_list3_init(cachep->nodelists[node]);
1993 }
1994 }
1995 }
1996 cachep->nodelists[numa_node_id()]->next_reap =
1997 jiffies + REAPTIMEOUT_LIST3 +
1998 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1999
2000 cpu_cache_get(cachep)->avail = 0;
2001 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2002 cpu_cache_get(cachep)->batchcount = 1;
2003 cpu_cache_get(cachep)->touched = 0;
2004 cachep->batchcount = 1;
2005 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2006 return 0;
2007 }
2008
2009 /**
2010 * kmem_cache_create - Create a cache.
2011 * @name: A string which is used in /proc/slabinfo to identify this cache.
2012 * @size: The size of objects to be created in this cache.
2013 * @align: The required alignment for the objects.
2014 * @flags: SLAB flags
2015 * @ctor: A constructor for the objects.
2016 * @dtor: A destructor for the objects.
2017 *
2018 * Returns a ptr to the cache on success, NULL on failure.
2019 * Cannot be called within a int, but can be interrupted.
2020 * The @ctor is run when new pages are allocated by the cache
2021 * and the @dtor is run before the pages are handed back.
2022 *
2023 * @name must be valid until the cache is destroyed. This implies that
2024 * the module calling this has to destroy the cache before getting unloaded.
2025 *
2026 * The flags are
2027 *
2028 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2029 * to catch references to uninitialised memory.
2030 *
2031 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2032 * for buffer overruns.
2033 *
2034 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2035 * cacheline. This can be beneficial if you're counting cycles as closely
2036 * as davem.
2037 */
2038 struct kmem_cache *
2039 kmem_cache_create (const char *name, size_t size, size_t align,
2040 unsigned long flags,
2041 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2042 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2043 {
2044 size_t left_over, slab_size, ralign;
2045 struct kmem_cache *cachep = NULL, *pc;
2046
2047 /*
2048 * Sanity checks... these are all serious usage bugs.
2049 */
2050 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2051 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2052 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2053 name);
2054 BUG();
2055 }
2056
2057 /*
2058 * Prevent CPUs from coming and going.
2059 * lock_cpu_hotplug() nests outside cache_chain_mutex
2060 */
2061 lock_cpu_hotplug();
2062
2063 mutex_lock(&cache_chain_mutex);
2064
2065 list_for_each_entry(pc, &cache_chain, next) {
2066 mm_segment_t old_fs = get_fs();
2067 char tmp;
2068 int res;
2069
2070 /*
2071 * This happens when the module gets unloaded and doesn't
2072 * destroy its slab cache and no-one else reuses the vmalloc
2073 * area of the module. Print a warning.
2074 */
2075 set_fs(KERNEL_DS);
2076 res = __get_user(tmp, pc->name);
2077 set_fs(old_fs);
2078 if (res) {
2079 printk("SLAB: cache with size %d has lost its name\n",
2080 pc->buffer_size);
2081 continue;
2082 }
2083
2084 if (!strcmp(pc->name, name)) {
2085 printk("kmem_cache_create: duplicate cache %s\n", name);
2086 dump_stack();
2087 goto oops;
2088 }
2089 }
2090
2091 #if DEBUG
2092 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2093 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2094 /* No constructor, but inital state check requested */
2095 printk(KERN_ERR "%s: No con, but init state check "
2096 "requested - %s\n", __FUNCTION__, name);
2097 flags &= ~SLAB_DEBUG_INITIAL;
2098 }
2099 #if FORCED_DEBUG
2100 /*
2101 * Enable redzoning and last user accounting, except for caches with
2102 * large objects, if the increased size would increase the object size
2103 * above the next power of two: caches with object sizes just above a
2104 * power of two have a significant amount of internal fragmentation.
2105 */
2106 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2107 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2108 if (!(flags & SLAB_DESTROY_BY_RCU))
2109 flags |= SLAB_POISON;
2110 #endif
2111 if (flags & SLAB_DESTROY_BY_RCU)
2112 BUG_ON(flags & SLAB_POISON);
2113 #endif
2114 if (flags & SLAB_DESTROY_BY_RCU)
2115 BUG_ON(dtor);
2116
2117 /*
2118 * Always checks flags, a caller might be expecting debug support which
2119 * isn't available.
2120 */
2121 BUG_ON(flags & ~CREATE_MASK);
2122
2123 /*
2124 * Check that size is in terms of words. This is needed to avoid
2125 * unaligned accesses for some archs when redzoning is used, and makes
2126 * sure any on-slab bufctl's are also correctly aligned.
2127 */
2128 if (size & (BYTES_PER_WORD - 1)) {
2129 size += (BYTES_PER_WORD - 1);
2130 size &= ~(BYTES_PER_WORD - 1);
2131 }
2132
2133 /* calculate the final buffer alignment: */
2134
2135 /* 1) arch recommendation: can be overridden for debug */
2136 if (flags & SLAB_HWCACHE_ALIGN) {
2137 /*
2138 * Default alignment: as specified by the arch code. Except if
2139 * an object is really small, then squeeze multiple objects into
2140 * one cacheline.
2141 */
2142 ralign = cache_line_size();
2143 while (size <= ralign / 2)
2144 ralign /= 2;
2145 } else {
2146 ralign = BYTES_PER_WORD;
2147 }
2148
2149 /*
2150 * Redzoning and user store require word alignment. Note this will be
2151 * overridden by architecture or caller mandated alignment if either
2152 * is greater than BYTES_PER_WORD.
2153 */
2154 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2155 ralign = BYTES_PER_WORD;
2156
2157 /* 2) arch mandated alignment: disables debug if necessary */
2158 if (ralign < ARCH_SLAB_MINALIGN) {
2159 ralign = ARCH_SLAB_MINALIGN;
2160 if (ralign > BYTES_PER_WORD)
2161 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2162 }
2163 /* 3) caller mandated alignment: disables debug if necessary */
2164 if (ralign < align) {
2165 ralign = align;
2166 if (ralign > BYTES_PER_WORD)
2167 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2168 }
2169 /*
2170 * 4) Store it.
2171 */
2172 align = ralign;
2173
2174 /* Get cache's description obj. */
2175 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2176 if (!cachep)
2177 goto oops;
2178
2179 #if DEBUG
2180 cachep->obj_size = size;
2181
2182 /*
2183 * Both debugging options require word-alignment which is calculated
2184 * into align above.
2185 */
2186 if (flags & SLAB_RED_ZONE) {
2187 /* add space for red zone words */
2188 cachep->obj_offset += BYTES_PER_WORD;
2189 size += 2 * BYTES_PER_WORD;
2190 }
2191 if (flags & SLAB_STORE_USER) {
2192 /* user store requires one word storage behind the end of
2193 * the real object.
2194 */
2195 size += BYTES_PER_WORD;
2196 }
2197 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2198 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2199 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2200 cachep->obj_offset += PAGE_SIZE - size;
2201 size = PAGE_SIZE;
2202 }
2203 #endif
2204 #endif
2205
2206 /*
2207 * Determine if the slab management is 'on' or 'off' slab.
2208 * (bootstrapping cannot cope with offslab caches so don't do
2209 * it too early on.)
2210 */
2211 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2212 /*
2213 * Size is large, assume best to place the slab management obj
2214 * off-slab (should allow better packing of objs).
2215 */
2216 flags |= CFLGS_OFF_SLAB;
2217
2218 size = ALIGN(size, align);
2219
2220 left_over = calculate_slab_order(cachep, size, align, flags);
2221
2222 if (!cachep->num) {
2223 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2224 kmem_cache_free(&cache_cache, cachep);
2225 cachep = NULL;
2226 goto oops;
2227 }
2228 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2229 + sizeof(struct slab), align);
2230
2231 /*
2232 * If the slab has been placed off-slab, and we have enough space then
2233 * move it on-slab. This is at the expense of any extra colouring.
2234 */
2235 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2236 flags &= ~CFLGS_OFF_SLAB;
2237 left_over -= slab_size;
2238 }
2239
2240 if (flags & CFLGS_OFF_SLAB) {
2241 /* really off slab. No need for manual alignment */
2242 slab_size =
2243 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2244 }
2245
2246 cachep->colour_off = cache_line_size();
2247 /* Offset must be a multiple of the alignment. */
2248 if (cachep->colour_off < align)
2249 cachep->colour_off = align;
2250 cachep->colour = left_over / cachep->colour_off;
2251 cachep->slab_size = slab_size;
2252 cachep->flags = flags;
2253 cachep->gfpflags = 0;
2254 if (flags & SLAB_CACHE_DMA)
2255 cachep->gfpflags |= GFP_DMA;
2256 cachep->buffer_size = size;
2257
2258 if (flags & CFLGS_OFF_SLAB) {
2259 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2260 /*
2261 * This is a possibility for one of the malloc_sizes caches.
2262 * But since we go off slab only for object size greater than
2263 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2264 * this should not happen at all.
2265 * But leave a BUG_ON for some lucky dude.
2266 */
2267 BUG_ON(!cachep->slabp_cache);
2268 }
2269 cachep->ctor = ctor;
2270 cachep->dtor = dtor;
2271 cachep->name = name;
2272
2273 if (setup_cpu_cache(cachep)) {
2274 __kmem_cache_destroy(cachep);
2275 cachep = NULL;
2276 goto oops;
2277 }
2278
2279 /* cache setup completed, link it into the list */
2280 list_add(&cachep->next, &cache_chain);
2281 oops:
2282 if (!cachep && (flags & SLAB_PANIC))
2283 panic("kmem_cache_create(): failed to create slab `%s'\n",
2284 name);
2285 mutex_unlock(&cache_chain_mutex);
2286 unlock_cpu_hotplug();
2287 return cachep;
2288 }
2289 EXPORT_SYMBOL(kmem_cache_create);
2290
2291 #if DEBUG
2292 static void check_irq_off(void)
2293 {
2294 BUG_ON(!irqs_disabled());
2295 }
2296
2297 static void check_irq_on(void)
2298 {
2299 BUG_ON(irqs_disabled());
2300 }
2301
2302 static void check_spinlock_acquired(struct kmem_cache *cachep)
2303 {
2304 #ifdef CONFIG_SMP
2305 check_irq_off();
2306 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2307 #endif
2308 }
2309
2310 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2311 {
2312 #ifdef CONFIG_SMP
2313 check_irq_off();
2314 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2315 #endif
2316 }
2317
2318 #else
2319 #define check_irq_off() do { } while(0)
2320 #define check_irq_on() do { } while(0)
2321 #define check_spinlock_acquired(x) do { } while(0)
2322 #define check_spinlock_acquired_node(x, y) do { } while(0)
2323 #endif
2324
2325 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2326 struct array_cache *ac,
2327 int force, int node);
2328
2329 static void do_drain(void *arg)
2330 {
2331 struct kmem_cache *cachep = arg;
2332 struct array_cache *ac;
2333 int node = numa_node_id();
2334
2335 check_irq_off();
2336 ac = cpu_cache_get(cachep);
2337 spin_lock(&cachep->nodelists[node]->list_lock);
2338 free_block(cachep, ac->entry, ac->avail, node);
2339 spin_unlock(&cachep->nodelists[node]->list_lock);
2340 ac->avail = 0;
2341 }
2342
2343 static void drain_cpu_caches(struct kmem_cache *cachep)
2344 {
2345 struct kmem_list3 *l3;
2346 int node;
2347
2348 on_each_cpu(do_drain, cachep, 1, 1);
2349 check_irq_on();
2350 for_each_online_node(node) {
2351 l3 = cachep->nodelists[node];
2352 if (l3 && l3->alien)
2353 drain_alien_cache(cachep, l3->alien);
2354 }
2355
2356 for_each_online_node(node) {
2357 l3 = cachep->nodelists[node];
2358 if (l3)
2359 drain_array(cachep, l3, l3->shared, 1, node);
2360 }
2361 }
2362
2363 /*
2364 * Remove slabs from the list of free slabs.
2365 * Specify the number of slabs to drain in tofree.
2366 *
2367 * Returns the actual number of slabs released.
2368 */
2369 static int drain_freelist(struct kmem_cache *cache,
2370 struct kmem_list3 *l3, int tofree)
2371 {
2372 struct list_head *p;
2373 int nr_freed;
2374 struct slab *slabp;
2375
2376 nr_freed = 0;
2377 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2378
2379 spin_lock_irq(&l3->list_lock);
2380 p = l3->slabs_free.prev;
2381 if (p == &l3->slabs_free) {
2382 spin_unlock_irq(&l3->list_lock);
2383 goto out;
2384 }
2385
2386 slabp = list_entry(p, struct slab, list);
2387 #if DEBUG
2388 BUG_ON(slabp->inuse);
2389 #endif
2390 list_del(&slabp->list);
2391 /*
2392 * Safe to drop the lock. The slab is no longer linked
2393 * to the cache.
2394 */
2395 l3->free_objects -= cache->num;
2396 spin_unlock_irq(&l3->list_lock);
2397 slab_destroy(cache, slabp);
2398 nr_freed++;
2399 }
2400 out:
2401 return nr_freed;
2402 }
2403
2404 static int __cache_shrink(struct kmem_cache *cachep)
2405 {
2406 int ret = 0, i = 0;
2407 struct kmem_list3 *l3;
2408
2409 drain_cpu_caches(cachep);
2410
2411 check_irq_on();
2412 for_each_online_node(i) {
2413 l3 = cachep->nodelists[i];
2414 if (!l3)
2415 continue;
2416
2417 drain_freelist(cachep, l3, l3->free_objects);
2418
2419 ret += !list_empty(&l3->slabs_full) ||
2420 !list_empty(&l3->slabs_partial);
2421 }
2422 return (ret ? 1 : 0);
2423 }
2424
2425 /**
2426 * kmem_cache_shrink - Shrink a cache.
2427 * @cachep: The cache to shrink.
2428 *
2429 * Releases as many slabs as possible for a cache.
2430 * To help debugging, a zero exit status indicates all slabs were released.
2431 */
2432 int kmem_cache_shrink(struct kmem_cache *cachep)
2433 {
2434 BUG_ON(!cachep || in_interrupt());
2435
2436 return __cache_shrink(cachep);
2437 }
2438 EXPORT_SYMBOL(kmem_cache_shrink);
2439
2440 /**
2441 * kmem_cache_destroy - delete a cache
2442 * @cachep: the cache to destroy
2443 *
2444 * Remove a struct kmem_cache object from the slab cache.
2445 * Returns 0 on success.
2446 *
2447 * It is expected this function will be called by a module when it is
2448 * unloaded. This will remove the cache completely, and avoid a duplicate
2449 * cache being allocated each time a module is loaded and unloaded, if the
2450 * module doesn't have persistent in-kernel storage across loads and unloads.
2451 *
2452 * The cache must be empty before calling this function.
2453 *
2454 * The caller must guarantee that noone will allocate memory from the cache
2455 * during the kmem_cache_destroy().
2456 */
2457 int kmem_cache_destroy(struct kmem_cache *cachep)
2458 {
2459 BUG_ON(!cachep || in_interrupt());
2460
2461 /* Don't let CPUs to come and go */
2462 lock_cpu_hotplug();
2463
2464 /* Find the cache in the chain of caches. */
2465 mutex_lock(&cache_chain_mutex);
2466 /*
2467 * the chain is never empty, cache_cache is never destroyed
2468 */
2469 list_del(&cachep->next);
2470 mutex_unlock(&cache_chain_mutex);
2471
2472 if (__cache_shrink(cachep)) {
2473 slab_error(cachep, "Can't free all objects");
2474 mutex_lock(&cache_chain_mutex);
2475 list_add(&cachep->next, &cache_chain);
2476 mutex_unlock(&cache_chain_mutex);
2477 unlock_cpu_hotplug();
2478 return 1;
2479 }
2480
2481 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2482 synchronize_rcu();
2483
2484 __kmem_cache_destroy(cachep);
2485 unlock_cpu_hotplug();
2486 return 0;
2487 }
2488 EXPORT_SYMBOL(kmem_cache_destroy);
2489
2490 /*
2491 * Get the memory for a slab management obj.
2492 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2493 * always come from malloc_sizes caches. The slab descriptor cannot
2494 * come from the same cache which is getting created because,
2495 * when we are searching for an appropriate cache for these
2496 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2497 * If we are creating a malloc_sizes cache here it would not be visible to
2498 * kmem_find_general_cachep till the initialization is complete.
2499 * Hence we cannot have slabp_cache same as the original cache.
2500 */
2501 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2502 int colour_off, gfp_t local_flags,
2503 int nodeid)
2504 {
2505 struct slab *slabp;
2506
2507 if (OFF_SLAB(cachep)) {
2508 /* Slab management obj is off-slab. */
2509 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2510 local_flags, nodeid);
2511 if (!slabp)
2512 return NULL;
2513 } else {
2514 slabp = objp + colour_off;
2515 colour_off += cachep->slab_size;
2516 }
2517 slabp->inuse = 0;
2518 slabp->colouroff = colour_off;
2519 slabp->s_mem = objp + colour_off;
2520 slabp->nodeid = nodeid;
2521 return slabp;
2522 }
2523
2524 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2525 {
2526 return (kmem_bufctl_t *) (slabp + 1);
2527 }
2528
2529 static void cache_init_objs(struct kmem_cache *cachep,
2530 struct slab *slabp, unsigned long ctor_flags)
2531 {
2532 int i;
2533
2534 for (i = 0; i < cachep->num; i++) {
2535 void *objp = index_to_obj(cachep, slabp, i);
2536 #if DEBUG
2537 /* need to poison the objs? */
2538 if (cachep->flags & SLAB_POISON)
2539 poison_obj(cachep, objp, POISON_FREE);
2540 if (cachep->flags & SLAB_STORE_USER)
2541 *dbg_userword(cachep, objp) = NULL;
2542
2543 if (cachep->flags & SLAB_RED_ZONE) {
2544 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2545 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2546 }
2547 /*
2548 * Constructors are not allowed to allocate memory from the same
2549 * cache which they are a constructor for. Otherwise, deadlock.
2550 * They must also be threaded.
2551 */
2552 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2553 cachep->ctor(objp + obj_offset(cachep), cachep,
2554 ctor_flags);
2555
2556 if (cachep->flags & SLAB_RED_ZONE) {
2557 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2558 slab_error(cachep, "constructor overwrote the"
2559 " end of an object");
2560 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2561 slab_error(cachep, "constructor overwrote the"
2562 " start of an object");
2563 }
2564 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2565 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2566 kernel_map_pages(virt_to_page(objp),
2567 cachep->buffer_size / PAGE_SIZE, 0);
2568 #else
2569 if (cachep->ctor)
2570 cachep->ctor(objp, cachep, ctor_flags);
2571 #endif
2572 slab_bufctl(slabp)[i] = i + 1;
2573 }
2574 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2575 slabp->free = 0;
2576 }
2577
2578 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2579 {
2580 if (flags & SLAB_DMA)
2581 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2582 else
2583 BUG_ON(cachep->gfpflags & GFP_DMA);
2584 }
2585
2586 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2587 int nodeid)
2588 {
2589 void *objp = index_to_obj(cachep, slabp, slabp->free);
2590 kmem_bufctl_t next;
2591
2592 slabp->inuse++;
2593 next = slab_bufctl(slabp)[slabp->free];
2594 #if DEBUG
2595 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2596 WARN_ON(slabp->nodeid != nodeid);
2597 #endif
2598 slabp->free = next;
2599
2600 return objp;
2601 }
2602
2603 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2604 void *objp, int nodeid)
2605 {
2606 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2607
2608 #if DEBUG
2609 /* Verify that the slab belongs to the intended node */
2610 WARN_ON(slabp->nodeid != nodeid);
2611
2612 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2613 printk(KERN_ERR "slab: double free detected in cache "
2614 "'%s', objp %p\n", cachep->name, objp);
2615 BUG();
2616 }
2617 #endif
2618 slab_bufctl(slabp)[objnr] = slabp->free;
2619 slabp->free = objnr;
2620 slabp->inuse--;
2621 }
2622
2623 /*
2624 * Map pages beginning at addr to the given cache and slab. This is required
2625 * for the slab allocator to be able to lookup the cache and slab of a
2626 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2627 */
2628 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2629 void *addr)
2630 {
2631 int nr_pages;
2632 struct page *page;
2633
2634 page = virt_to_page(addr);
2635
2636 nr_pages = 1;
2637 if (likely(!PageCompound(page)))
2638 nr_pages <<= cache->gfporder;
2639
2640 do {
2641 page_set_cache(page, cache);
2642 page_set_slab(page, slab);
2643 page++;
2644 } while (--nr_pages);
2645 }
2646
2647 /*
2648 * Grow (by 1) the number of slabs within a cache. This is called by
2649 * kmem_cache_alloc() when there are no active objs left in a cache.
2650 */
2651 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2652 {
2653 struct slab *slabp;
2654 void *objp;
2655 size_t offset;
2656 gfp_t local_flags;
2657 unsigned long ctor_flags;
2658 struct kmem_list3 *l3;
2659
2660 /*
2661 * Be lazy and only check for valid flags here, keeping it out of the
2662 * critical path in kmem_cache_alloc().
2663 */
2664 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2665 if (flags & SLAB_NO_GROW)
2666 return 0;
2667
2668 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2669 local_flags = (flags & SLAB_LEVEL_MASK);
2670 if (!(local_flags & __GFP_WAIT))
2671 /*
2672 * Not allowed to sleep. Need to tell a constructor about
2673 * this - it might need to know...
2674 */
2675 ctor_flags |= SLAB_CTOR_ATOMIC;
2676
2677 /* Take the l3 list lock to change the colour_next on this node */
2678 check_irq_off();
2679 l3 = cachep->nodelists[nodeid];
2680 spin_lock(&l3->list_lock);
2681
2682 /* Get colour for the slab, and cal the next value. */
2683 offset = l3->colour_next;
2684 l3->colour_next++;
2685 if (l3->colour_next >= cachep->colour)
2686 l3->colour_next = 0;
2687 spin_unlock(&l3->list_lock);
2688
2689 offset *= cachep->colour_off;
2690
2691 if (local_flags & __GFP_WAIT)
2692 local_irq_enable();
2693
2694 /*
2695 * The test for missing atomic flag is performed here, rather than
2696 * the more obvious place, simply to reduce the critical path length
2697 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2698 * will eventually be caught here (where it matters).
2699 */
2700 kmem_flagcheck(cachep, flags);
2701
2702 /*
2703 * Get mem for the objs. Attempt to allocate a physical page from
2704 * 'nodeid'.
2705 */
2706 objp = kmem_getpages(cachep, flags, nodeid);
2707 if (!objp)
2708 goto failed;
2709
2710 /* Get slab management. */
2711 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2712 if (!slabp)
2713 goto opps1;
2714
2715 slabp->nodeid = nodeid;
2716 slab_map_pages(cachep, slabp, objp);
2717
2718 cache_init_objs(cachep, slabp, ctor_flags);
2719
2720 if (local_flags & __GFP_WAIT)
2721 local_irq_disable();
2722 check_irq_off();
2723 spin_lock(&l3->list_lock);
2724
2725 /* Make slab active. */
2726 list_add_tail(&slabp->list, &(l3->slabs_free));
2727 STATS_INC_GROWN(cachep);
2728 l3->free_objects += cachep->num;
2729 spin_unlock(&l3->list_lock);
2730 return 1;
2731 opps1:
2732 kmem_freepages(cachep, objp);
2733 failed:
2734 if (local_flags & __GFP_WAIT)
2735 local_irq_disable();
2736 return 0;
2737 }
2738
2739 #if DEBUG
2740
2741 /*
2742 * Perform extra freeing checks:
2743 * - detect bad pointers.
2744 * - POISON/RED_ZONE checking
2745 * - destructor calls, for caches with POISON+dtor
2746 */
2747 static void kfree_debugcheck(const void *objp)
2748 {
2749 struct page *page;
2750
2751 if (!virt_addr_valid(objp)) {
2752 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2753 (unsigned long)objp);
2754 BUG();
2755 }
2756 page = virt_to_page(objp);
2757 if (!PageSlab(page)) {
2758 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2759 (unsigned long)objp);
2760 BUG();
2761 }
2762 }
2763
2764 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2765 {
2766 unsigned long redzone1, redzone2;
2767
2768 redzone1 = *dbg_redzone1(cache, obj);
2769 redzone2 = *dbg_redzone2(cache, obj);
2770
2771 /*
2772 * Redzone is ok.
2773 */
2774 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2775 return;
2776
2777 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2778 slab_error(cache, "double free detected");
2779 else
2780 slab_error(cache, "memory outside object was overwritten");
2781
2782 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2783 obj, redzone1, redzone2);
2784 }
2785
2786 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2787 void *caller)
2788 {
2789 struct page *page;
2790 unsigned int objnr;
2791 struct slab *slabp;
2792
2793 objp -= obj_offset(cachep);
2794 kfree_debugcheck(objp);
2795 page = virt_to_page(objp);
2796
2797 slabp = page_get_slab(page);
2798
2799 if (cachep->flags & SLAB_RED_ZONE) {
2800 verify_redzone_free(cachep, objp);
2801 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2802 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2803 }
2804 if (cachep->flags & SLAB_STORE_USER)
2805 *dbg_userword(cachep, objp) = caller;
2806
2807 objnr = obj_to_index(cachep, slabp, objp);
2808
2809 BUG_ON(objnr >= cachep->num);
2810 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2811
2812 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2813 /*
2814 * Need to call the slab's constructor so the caller can
2815 * perform a verify of its state (debugging). Called without
2816 * the cache-lock held.
2817 */
2818 cachep->ctor(objp + obj_offset(cachep),
2819 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2820 }
2821 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2822 /* we want to cache poison the object,
2823 * call the destruction callback
2824 */
2825 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2826 }
2827 #ifdef CONFIG_DEBUG_SLAB_LEAK
2828 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2829 #endif
2830 if (cachep->flags & SLAB_POISON) {
2831 #ifdef CONFIG_DEBUG_PAGEALLOC
2832 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2833 store_stackinfo(cachep, objp, (unsigned long)caller);
2834 kernel_map_pages(virt_to_page(objp),
2835 cachep->buffer_size / PAGE_SIZE, 0);
2836 } else {
2837 poison_obj(cachep, objp, POISON_FREE);
2838 }
2839 #else
2840 poison_obj(cachep, objp, POISON_FREE);
2841 #endif
2842 }
2843 return objp;
2844 }
2845
2846 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2847 {
2848 kmem_bufctl_t i;
2849 int entries = 0;
2850
2851 /* Check slab's freelist to see if this obj is there. */
2852 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2853 entries++;
2854 if (entries > cachep->num || i >= cachep->num)
2855 goto bad;
2856 }
2857 if (entries != cachep->num - slabp->inuse) {
2858 bad:
2859 printk(KERN_ERR "slab: Internal list corruption detected in "
2860 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2861 cachep->name, cachep->num, slabp, slabp->inuse);
2862 for (i = 0;
2863 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2864 i++) {
2865 if (i % 16 == 0)
2866 printk("\n%03x:", i);
2867 printk(" %02x", ((unsigned char *)slabp)[i]);
2868 }
2869 printk("\n");
2870 BUG();
2871 }
2872 }
2873 #else
2874 #define kfree_debugcheck(x) do { } while(0)
2875 #define cache_free_debugcheck(x,objp,z) (objp)
2876 #define check_slabp(x,y) do { } while(0)
2877 #endif
2878
2879 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2880 {
2881 int batchcount;
2882 struct kmem_list3 *l3;
2883 struct array_cache *ac;
2884
2885 check_irq_off();
2886 ac = cpu_cache_get(cachep);
2887 retry:
2888 batchcount = ac->batchcount;
2889 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2890 /*
2891 * If there was little recent activity on this cache, then
2892 * perform only a partial refill. Otherwise we could generate
2893 * refill bouncing.
2894 */
2895 batchcount = BATCHREFILL_LIMIT;
2896 }
2897 l3 = cachep->nodelists[numa_node_id()];
2898
2899 BUG_ON(ac->avail > 0 || !l3);
2900 spin_lock(&l3->list_lock);
2901
2902 /* See if we can refill from the shared array */
2903 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2904 goto alloc_done;
2905
2906 while (batchcount > 0) {
2907 struct list_head *entry;
2908 struct slab *slabp;
2909 /* Get slab alloc is to come from. */
2910 entry = l3->slabs_partial.next;
2911 if (entry == &l3->slabs_partial) {
2912 l3->free_touched = 1;
2913 entry = l3->slabs_free.next;
2914 if (entry == &l3->slabs_free)
2915 goto must_grow;
2916 }
2917
2918 slabp = list_entry(entry, struct slab, list);
2919 check_slabp(cachep, slabp);
2920 check_spinlock_acquired(cachep);
2921 while (slabp->inuse < cachep->num && batchcount--) {
2922 STATS_INC_ALLOCED(cachep);
2923 STATS_INC_ACTIVE(cachep);
2924 STATS_SET_HIGH(cachep);
2925
2926 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2927 numa_node_id());
2928 }
2929 check_slabp(cachep, slabp);
2930
2931 /* move slabp to correct slabp list: */
2932 list_del(&slabp->list);
2933 if (slabp->free == BUFCTL_END)
2934 list_add(&slabp->list, &l3->slabs_full);
2935 else
2936 list_add(&slabp->list, &l3->slabs_partial);
2937 }
2938
2939 must_grow:
2940 l3->free_objects -= ac->avail;
2941 alloc_done:
2942 spin_unlock(&l3->list_lock);
2943
2944 if (unlikely(!ac->avail)) {
2945 int x;
2946 x = cache_grow(cachep, flags, numa_node_id());
2947
2948 /* cache_grow can reenable interrupts, then ac could change. */
2949 ac = cpu_cache_get(cachep);
2950 if (!x && ac->avail == 0) /* no objects in sight? abort */
2951 return NULL;
2952
2953 if (!ac->avail) /* objects refilled by interrupt? */
2954 goto retry;
2955 }
2956 ac->touched = 1;
2957 return ac->entry[--ac->avail];
2958 }
2959
2960 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2961 gfp_t flags)
2962 {
2963 might_sleep_if(flags & __GFP_WAIT);
2964 #if DEBUG
2965 kmem_flagcheck(cachep, flags);
2966 #endif
2967 }
2968
2969 #if DEBUG
2970 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2971 gfp_t flags, void *objp, void *caller)
2972 {
2973 if (!objp)
2974 return objp;
2975 if (cachep->flags & SLAB_POISON) {
2976 #ifdef CONFIG_DEBUG_PAGEALLOC
2977 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2978 kernel_map_pages(virt_to_page(objp),
2979 cachep->buffer_size / PAGE_SIZE, 1);
2980 else
2981 check_poison_obj(cachep, objp);
2982 #else
2983 check_poison_obj(cachep, objp);
2984 #endif
2985 poison_obj(cachep, objp, POISON_INUSE);
2986 }
2987 if (cachep->flags & SLAB_STORE_USER)
2988 *dbg_userword(cachep, objp) = caller;
2989
2990 if (cachep->flags & SLAB_RED_ZONE) {
2991 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2992 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2993 slab_error(cachep, "double free, or memory outside"
2994 " object was overwritten");
2995 printk(KERN_ERR
2996 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2997 objp, *dbg_redzone1(cachep, objp),
2998 *dbg_redzone2(cachep, objp));
2999 }
3000 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3001 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3002 }
3003 #ifdef CONFIG_DEBUG_SLAB_LEAK
3004 {
3005 struct slab *slabp;
3006 unsigned objnr;
3007
3008 slabp = page_get_slab(virt_to_page(objp));
3009 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3010 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3011 }
3012 #endif
3013 objp += obj_offset(cachep);
3014 if (cachep->ctor && cachep->flags & SLAB_POISON) {
3015 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
3016
3017 if (!(flags & __GFP_WAIT))
3018 ctor_flags |= SLAB_CTOR_ATOMIC;
3019
3020 cachep->ctor(objp, cachep, ctor_flags);
3021 }
3022 return objp;
3023 }
3024 #else
3025 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3026 #endif
3027
3028 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3029 {
3030 void *objp;
3031 struct array_cache *ac;
3032
3033 #ifdef CONFIG_NUMA
3034 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3035 objp = alternate_node_alloc(cachep, flags);
3036 if (objp != NULL)
3037 return objp;
3038 }
3039 #endif
3040
3041 check_irq_off();
3042 ac = cpu_cache_get(cachep);
3043 if (likely(ac->avail)) {
3044 STATS_INC_ALLOCHIT(cachep);
3045 ac->touched = 1;
3046 objp = ac->entry[--ac->avail];
3047 } else {
3048 STATS_INC_ALLOCMISS(cachep);
3049 objp = cache_alloc_refill(cachep, flags);
3050 }
3051 return objp;
3052 }
3053
3054 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3055 gfp_t flags, void *caller)
3056 {
3057 unsigned long save_flags;
3058 void *objp;
3059
3060 cache_alloc_debugcheck_before(cachep, flags);
3061
3062 local_irq_save(save_flags);
3063 objp = ____cache_alloc(cachep, flags);
3064 local_irq_restore(save_flags);
3065 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3066 caller);
3067 prefetchw(objp);
3068 return objp;
3069 }
3070
3071 #ifdef CONFIG_NUMA
3072 /*
3073 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3074 *
3075 * If we are in_interrupt, then process context, including cpusets and
3076 * mempolicy, may not apply and should not be used for allocation policy.
3077 */
3078 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3079 {
3080 int nid_alloc, nid_here;
3081
3082 if (in_interrupt())
3083 return NULL;
3084 nid_alloc = nid_here = numa_node_id();
3085 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3086 nid_alloc = cpuset_mem_spread_node();
3087 else if (current->mempolicy)
3088 nid_alloc = slab_node(current->mempolicy);
3089 if (nid_alloc != nid_here)
3090 return __cache_alloc_node(cachep, flags, nid_alloc);
3091 return NULL;
3092 }
3093
3094 /*
3095 * A interface to enable slab creation on nodeid
3096 */
3097 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3098 int nodeid)
3099 {
3100 struct list_head *entry;
3101 struct slab *slabp;
3102 struct kmem_list3 *l3;
3103 void *obj;
3104 int x;
3105
3106 l3 = cachep->nodelists[nodeid];
3107 BUG_ON(!l3);
3108
3109 retry:
3110 check_irq_off();
3111 spin_lock(&l3->list_lock);
3112 entry = l3->slabs_partial.next;
3113 if (entry == &l3->slabs_partial) {
3114 l3->free_touched = 1;
3115 entry = l3->slabs_free.next;
3116 if (entry == &l3->slabs_free)
3117 goto must_grow;
3118 }
3119
3120 slabp = list_entry(entry, struct slab, list);
3121 check_spinlock_acquired_node(cachep, nodeid);
3122 check_slabp(cachep, slabp);
3123
3124 STATS_INC_NODEALLOCS(cachep);
3125 STATS_INC_ACTIVE(cachep);
3126 STATS_SET_HIGH(cachep);
3127
3128 BUG_ON(slabp->inuse == cachep->num);
3129
3130 obj = slab_get_obj(cachep, slabp, nodeid);
3131 check_slabp(cachep, slabp);
3132 l3->free_objects--;
3133 /* move slabp to correct slabp list: */
3134 list_del(&slabp->list);
3135
3136 if (slabp->free == BUFCTL_END)
3137 list_add(&slabp->list, &l3->slabs_full);
3138 else
3139 list_add(&slabp->list, &l3->slabs_partial);
3140
3141 spin_unlock(&l3->list_lock);
3142 goto done;
3143
3144 must_grow:
3145 spin_unlock(&l3->list_lock);
3146 x = cache_grow(cachep, flags, nodeid);
3147
3148 if (!x)
3149 return NULL;
3150
3151 goto retry;
3152 done:
3153 return obj;
3154 }
3155 #endif
3156
3157 /*
3158 * Caller needs to acquire correct kmem_list's list_lock
3159 */
3160 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3161 int node)
3162 {
3163 int i;
3164 struct kmem_list3 *l3;
3165
3166 for (i = 0; i < nr_objects; i++) {
3167 void *objp = objpp[i];
3168 struct slab *slabp;
3169
3170 slabp = virt_to_slab(objp);
3171 l3 = cachep->nodelists[node];
3172 list_del(&slabp->list);
3173 check_spinlock_acquired_node(cachep, node);
3174 check_slabp(cachep, slabp);
3175 slab_put_obj(cachep, slabp, objp, node);
3176 STATS_DEC_ACTIVE(cachep);
3177 l3->free_objects++;
3178 check_slabp(cachep, slabp);
3179
3180 /* fixup slab chains */
3181 if (slabp->inuse == 0) {
3182 if (l3->free_objects > l3->free_limit) {
3183 l3->free_objects -= cachep->num;
3184 /* No need to drop any previously held
3185 * lock here, even if we have a off-slab slab
3186 * descriptor it is guaranteed to come from
3187 * a different cache, refer to comments before
3188 * alloc_slabmgmt.
3189 */
3190 slab_destroy(cachep, slabp);
3191 } else {
3192 list_add(&slabp->list, &l3->slabs_free);
3193 }
3194 } else {
3195 /* Unconditionally move a slab to the end of the
3196 * partial list on free - maximum time for the
3197 * other objects to be freed, too.
3198 */
3199 list_add_tail(&slabp->list, &l3->slabs_partial);
3200 }
3201 }
3202 }
3203
3204 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3205 {
3206 int batchcount;
3207 struct kmem_list3 *l3;
3208 int node = numa_node_id();
3209
3210 batchcount = ac->batchcount;
3211 #if DEBUG
3212 BUG_ON(!batchcount || batchcount > ac->avail);
3213 #endif
3214 check_irq_off();
3215 l3 = cachep->nodelists[node];
3216 spin_lock(&l3->list_lock);
3217 if (l3->shared) {
3218 struct array_cache *shared_array = l3->shared;
3219 int max = shared_array->limit - shared_array->avail;
3220 if (max) {
3221 if (batchcount > max)
3222 batchcount = max;
3223 memcpy(&(shared_array->entry[shared_array->avail]),
3224 ac->entry, sizeof(void *) * batchcount);
3225 shared_array->avail += batchcount;
3226 goto free_done;
3227 }
3228 }
3229
3230 free_block(cachep, ac->entry, batchcount, node);
3231 free_done:
3232 #if STATS
3233 {
3234 int i = 0;
3235 struct list_head *p;
3236
3237 p = l3->slabs_free.next;
3238 while (p != &(l3->slabs_free)) {
3239 struct slab *slabp;
3240
3241 slabp = list_entry(p, struct slab, list);
3242 BUG_ON(slabp->inuse);
3243
3244 i++;
3245 p = p->next;
3246 }
3247 STATS_SET_FREEABLE(cachep, i);
3248 }
3249 #endif
3250 spin_unlock(&l3->list_lock);
3251 ac->avail -= batchcount;
3252 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3253 }
3254
3255 /*
3256 * Release an obj back to its cache. If the obj has a constructed state, it must
3257 * be in this state _before_ it is released. Called with disabled ints.
3258 */
3259 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3260 {
3261 struct array_cache *ac = cpu_cache_get(cachep);
3262
3263 check_irq_off();
3264 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3265
3266 if (cache_free_alien(cachep, objp))
3267 return;
3268
3269 if (likely(ac->avail < ac->limit)) {
3270 STATS_INC_FREEHIT(cachep);
3271 ac->entry[ac->avail++] = objp;
3272 return;
3273 } else {
3274 STATS_INC_FREEMISS(cachep);
3275 cache_flusharray(cachep, ac);
3276 ac->entry[ac->avail++] = objp;
3277 }
3278 }
3279
3280 /**
3281 * kmem_cache_alloc - Allocate an object
3282 * @cachep: The cache to allocate from.
3283 * @flags: See kmalloc().
3284 *
3285 * Allocate an object from this cache. The flags are only relevant
3286 * if the cache has no available objects.
3287 */
3288 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3289 {
3290 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3291 }
3292 EXPORT_SYMBOL(kmem_cache_alloc);
3293
3294 /**
3295 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3296 * @cache: The cache to allocate from.
3297 * @flags: See kmalloc().
3298 *
3299 * Allocate an object from this cache and set the allocated memory to zero.
3300 * The flags are only relevant if the cache has no available objects.
3301 */
3302 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3303 {
3304 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3305 if (ret)
3306 memset(ret, 0, obj_size(cache));
3307 return ret;
3308 }
3309 EXPORT_SYMBOL(kmem_cache_zalloc);
3310
3311 /**
3312 * kmem_ptr_validate - check if an untrusted pointer might
3313 * be a slab entry.
3314 * @cachep: the cache we're checking against
3315 * @ptr: pointer to validate
3316 *
3317 * This verifies that the untrusted pointer looks sane:
3318 * it is _not_ a guarantee that the pointer is actually
3319 * part of the slab cache in question, but it at least
3320 * validates that the pointer can be dereferenced and
3321 * looks half-way sane.
3322 *
3323 * Currently only used for dentry validation.
3324 */
3325 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3326 {
3327 unsigned long addr = (unsigned long)ptr;
3328 unsigned long min_addr = PAGE_OFFSET;
3329 unsigned long align_mask = BYTES_PER_WORD - 1;
3330 unsigned long size = cachep->buffer_size;
3331 struct page *page;
3332
3333 if (unlikely(addr < min_addr))
3334 goto out;
3335 if (unlikely(addr > (unsigned long)high_memory - size))
3336 goto out;
3337 if (unlikely(addr & align_mask))
3338 goto out;
3339 if (unlikely(!kern_addr_valid(addr)))
3340 goto out;
3341 if (unlikely(!kern_addr_valid(addr + size - 1)))
3342 goto out;
3343 page = virt_to_page(ptr);
3344 if (unlikely(!PageSlab(page)))
3345 goto out;
3346 if (unlikely(page_get_cache(page) != cachep))
3347 goto out;
3348 return 1;
3349 out:
3350 return 0;
3351 }
3352
3353 #ifdef CONFIG_NUMA
3354 /**
3355 * kmem_cache_alloc_node - Allocate an object on the specified node
3356 * @cachep: The cache to allocate from.
3357 * @flags: See kmalloc().
3358 * @nodeid: node number of the target node.
3359 *
3360 * Identical to kmem_cache_alloc, except that this function is slow
3361 * and can sleep. And it will allocate memory on the given node, which
3362 * can improve the performance for cpu bound structures.
3363 * New and improved: it will now make sure that the object gets
3364 * put on the correct node list so that there is no false sharing.
3365 */
3366 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3367 {
3368 unsigned long save_flags;
3369 void *ptr;
3370
3371 cache_alloc_debugcheck_before(cachep, flags);
3372 local_irq_save(save_flags);
3373
3374 if (nodeid == -1 || nodeid == numa_node_id() ||
3375 !cachep->nodelists[nodeid])
3376 ptr = ____cache_alloc(cachep, flags);
3377 else
3378 ptr = __cache_alloc_node(cachep, flags, nodeid);
3379 local_irq_restore(save_flags);
3380
3381 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3382 __builtin_return_address(0));
3383
3384 return ptr;
3385 }
3386 EXPORT_SYMBOL(kmem_cache_alloc_node);
3387
3388 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3389 {
3390 struct kmem_cache *cachep;
3391
3392 cachep = kmem_find_general_cachep(size, flags);
3393 if (unlikely(cachep == NULL))
3394 return NULL;
3395 return kmem_cache_alloc_node(cachep, flags, node);
3396 }
3397 EXPORT_SYMBOL(__kmalloc_node);
3398 #endif
3399
3400 /**
3401 * __do_kmalloc - allocate memory
3402 * @size: how many bytes of memory are required.
3403 * @flags: the type of memory to allocate (see kmalloc).
3404 * @caller: function caller for debug tracking of the caller
3405 */
3406 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3407 void *caller)
3408 {
3409 struct kmem_cache *cachep;
3410
3411 /* If you want to save a few bytes .text space: replace
3412 * __ with kmem_.
3413 * Then kmalloc uses the uninlined functions instead of the inline
3414 * functions.
3415 */
3416 cachep = __find_general_cachep(size, flags);
3417 if (unlikely(cachep == NULL))
3418 return NULL;
3419 return __cache_alloc(cachep, flags, caller);
3420 }
3421
3422
3423 void *__kmalloc(size_t size, gfp_t flags)
3424 {
3425 #ifndef CONFIG_DEBUG_SLAB
3426 return __do_kmalloc(size, flags, NULL);
3427 #else
3428 return __do_kmalloc(size, flags, __builtin_return_address(0));
3429 #endif
3430 }
3431 EXPORT_SYMBOL(__kmalloc);
3432
3433 #ifdef CONFIG_DEBUG_SLAB
3434 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3435 {
3436 return __do_kmalloc(size, flags, caller);
3437 }
3438 EXPORT_SYMBOL(__kmalloc_track_caller);
3439 #endif
3440
3441 /**
3442 * kmem_cache_free - Deallocate an object
3443 * @cachep: The cache the allocation was from.
3444 * @objp: The previously allocated object.
3445 *
3446 * Free an object which was previously allocated from this
3447 * cache.
3448 */
3449 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3450 {
3451 unsigned long flags;
3452
3453 BUG_ON(virt_to_cache(objp) != cachep);
3454
3455 local_irq_save(flags);
3456 __cache_free(cachep, objp);
3457 local_irq_restore(flags);
3458 }
3459 EXPORT_SYMBOL(kmem_cache_free);
3460
3461 /**
3462 * kfree - free previously allocated memory
3463 * @objp: pointer returned by kmalloc.
3464 *
3465 * If @objp is NULL, no operation is performed.
3466 *
3467 * Don't free memory not originally allocated by kmalloc()
3468 * or you will run into trouble.
3469 */
3470 void kfree(const void *objp)
3471 {
3472 struct kmem_cache *c;
3473 unsigned long flags;
3474
3475 if (unlikely(!objp))
3476 return;
3477 local_irq_save(flags);
3478 kfree_debugcheck(objp);
3479 c = virt_to_cache(objp);
3480 debug_check_no_locks_freed(objp, obj_size(c));
3481 __cache_free(c, (void *)objp);
3482 local_irq_restore(flags);
3483 }
3484 EXPORT_SYMBOL(kfree);
3485
3486 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3487 {
3488 return obj_size(cachep);
3489 }
3490 EXPORT_SYMBOL(kmem_cache_size);
3491
3492 const char *kmem_cache_name(struct kmem_cache *cachep)
3493 {
3494 return cachep->name;
3495 }
3496 EXPORT_SYMBOL_GPL(kmem_cache_name);
3497
3498 /*
3499 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3500 */
3501 static int alloc_kmemlist(struct kmem_cache *cachep)
3502 {
3503 int node;
3504 struct kmem_list3 *l3;
3505 struct array_cache *new_shared;
3506 struct array_cache **new_alien;
3507
3508 for_each_online_node(node) {
3509
3510 new_alien = alloc_alien_cache(node, cachep->limit);
3511 if (!new_alien)
3512 goto fail;
3513
3514 new_shared = alloc_arraycache(node,
3515 cachep->shared*cachep->batchcount,
3516 0xbaadf00d);
3517 if (!new_shared) {
3518 free_alien_cache(new_alien);
3519 goto fail;
3520 }
3521
3522 l3 = cachep->nodelists[node];
3523 if (l3) {
3524 struct array_cache *shared = l3->shared;
3525
3526 spin_lock_irq(&l3->list_lock);
3527
3528 if (shared)
3529 free_block(cachep, shared->entry,
3530 shared->avail, node);
3531
3532 l3->shared = new_shared;
3533 if (!l3->alien) {
3534 l3->alien = new_alien;
3535 new_alien = NULL;
3536 }
3537 l3->free_limit = (1 + nr_cpus_node(node)) *
3538 cachep->batchcount + cachep->num;
3539 spin_unlock_irq(&l3->list_lock);
3540 kfree(shared);
3541 free_alien_cache(new_alien);
3542 continue;
3543 }
3544 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3545 if (!l3) {
3546 free_alien_cache(new_alien);
3547 kfree(new_shared);
3548 goto fail;
3549 }
3550
3551 kmem_list3_init(l3);
3552 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3553 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3554 l3->shared = new_shared;
3555 l3->alien = new_alien;
3556 l3->free_limit = (1 + nr_cpus_node(node)) *
3557 cachep->batchcount + cachep->num;
3558 cachep->nodelists[node] = l3;
3559 }
3560 return 0;
3561
3562 fail:
3563 if (!cachep->next.next) {
3564 /* Cache is not active yet. Roll back what we did */
3565 node--;
3566 while (node >= 0) {
3567 if (cachep->nodelists[node]) {
3568 l3 = cachep->nodelists[node];
3569
3570 kfree(l3->shared);
3571 free_alien_cache(l3->alien);
3572 kfree(l3);
3573 cachep->nodelists[node] = NULL;
3574 }
3575 node--;
3576 }
3577 }
3578 return -ENOMEM;
3579 }
3580
3581 struct ccupdate_struct {
3582 struct kmem_cache *cachep;
3583 struct array_cache *new[NR_CPUS];
3584 };
3585
3586 static void do_ccupdate_local(void *info)
3587 {
3588 struct ccupdate_struct *new = info;
3589 struct array_cache *old;
3590
3591 check_irq_off();
3592 old = cpu_cache_get(new->cachep);
3593
3594 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3595 new->new[smp_processor_id()] = old;
3596 }
3597
3598 /* Always called with the cache_chain_mutex held */
3599 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3600 int batchcount, int shared)
3601 {
3602 struct ccupdate_struct *new;
3603 int i;
3604
3605 new = kzalloc(sizeof(*new), GFP_KERNEL);
3606 if (!new)
3607 return -ENOMEM;
3608
3609 for_each_online_cpu(i) {
3610 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3611 batchcount);
3612 if (!new->new[i]) {
3613 for (i--; i >= 0; i--)
3614 kfree(new->new[i]);
3615 kfree(new);
3616 return -ENOMEM;
3617 }
3618 }
3619 new->cachep = cachep;
3620
3621 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3622
3623 check_irq_on();
3624 cachep->batchcount = batchcount;
3625 cachep->limit = limit;
3626 cachep->shared = shared;
3627
3628 for_each_online_cpu(i) {
3629 struct array_cache *ccold = new->new[i];
3630 if (!ccold)
3631 continue;
3632 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3633 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3634 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3635 kfree(ccold);
3636 }
3637 kfree(new);
3638 return alloc_kmemlist(cachep);
3639 }
3640
3641 /* Called with cache_chain_mutex held always */
3642 static int enable_cpucache(struct kmem_cache *cachep)
3643 {
3644 int err;
3645 int limit, shared;
3646
3647 /*
3648 * The head array serves three purposes:
3649 * - create a LIFO ordering, i.e. return objects that are cache-warm
3650 * - reduce the number of spinlock operations.
3651 * - reduce the number of linked list operations on the slab and
3652 * bufctl chains: array operations are cheaper.
3653 * The numbers are guessed, we should auto-tune as described by
3654 * Bonwick.
3655 */
3656 if (cachep->buffer_size > 131072)
3657 limit = 1;
3658 else if (cachep->buffer_size > PAGE_SIZE)
3659 limit = 8;
3660 else if (cachep->buffer_size > 1024)
3661 limit = 24;
3662 else if (cachep->buffer_size > 256)
3663 limit = 54;
3664 else
3665 limit = 120;
3666
3667 /*
3668 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3669 * allocation behaviour: Most allocs on one cpu, most free operations
3670 * on another cpu. For these cases, an efficient object passing between
3671 * cpus is necessary. This is provided by a shared array. The array
3672 * replaces Bonwick's magazine layer.
3673 * On uniprocessor, it's functionally equivalent (but less efficient)
3674 * to a larger limit. Thus disabled by default.
3675 */
3676 shared = 0;
3677 #ifdef CONFIG_SMP
3678 if (cachep->buffer_size <= PAGE_SIZE)
3679 shared = 8;
3680 #endif
3681
3682 #if DEBUG
3683 /*
3684 * With debugging enabled, large batchcount lead to excessively long
3685 * periods with disabled local interrupts. Limit the batchcount
3686 */
3687 if (limit > 32)
3688 limit = 32;
3689 #endif
3690 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3691 if (err)
3692 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3693 cachep->name, -err);
3694 return err;
3695 }
3696
3697 /*
3698 * Drain an array if it contains any elements taking the l3 lock only if
3699 * necessary. Note that the l3 listlock also protects the array_cache
3700 * if drain_array() is used on the shared array.
3701 */
3702 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3703 struct array_cache *ac, int force, int node)
3704 {
3705 int tofree;
3706
3707 if (!ac || !ac->avail)
3708 return;
3709 if (ac->touched && !force) {
3710 ac->touched = 0;
3711 } else {
3712 spin_lock_irq(&l3->list_lock);
3713 if (ac->avail) {
3714 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3715 if (tofree > ac->avail)
3716 tofree = (ac->avail + 1) / 2;
3717 free_block(cachep, ac->entry, tofree, node);
3718 ac->avail -= tofree;
3719 memmove(ac->entry, &(ac->entry[tofree]),
3720 sizeof(void *) * ac->avail);
3721 }
3722 spin_unlock_irq(&l3->list_lock);
3723 }
3724 }
3725
3726 /**
3727 * cache_reap - Reclaim memory from caches.
3728 * @unused: unused parameter
3729 *
3730 * Called from workqueue/eventd every few seconds.
3731 * Purpose:
3732 * - clear the per-cpu caches for this CPU.
3733 * - return freeable pages to the main free memory pool.
3734 *
3735 * If we cannot acquire the cache chain mutex then just give up - we'll try
3736 * again on the next iteration.
3737 */
3738 static void cache_reap(void *unused)
3739 {
3740 struct kmem_cache *searchp;
3741 struct kmem_list3 *l3;
3742 int node = numa_node_id();
3743
3744 if (!mutex_trylock(&cache_chain_mutex)) {
3745 /* Give up. Setup the next iteration. */
3746 schedule_delayed_work(&__get_cpu_var(reap_work),
3747 REAPTIMEOUT_CPUC);
3748 return;
3749 }
3750
3751 list_for_each_entry(searchp, &cache_chain, next) {
3752 check_irq_on();
3753
3754 /*
3755 * We only take the l3 lock if absolutely necessary and we
3756 * have established with reasonable certainty that
3757 * we can do some work if the lock was obtained.
3758 */
3759 l3 = searchp->nodelists[node];
3760
3761 reap_alien(searchp, l3);
3762
3763 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3764
3765 /*
3766 * These are racy checks but it does not matter
3767 * if we skip one check or scan twice.
3768 */
3769 if (time_after(l3->next_reap, jiffies))
3770 goto next;
3771
3772 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3773
3774 drain_array(searchp, l3, l3->shared, 0, node);
3775
3776 if (l3->free_touched)
3777 l3->free_touched = 0;
3778 else {
3779 int freed;
3780
3781 freed = drain_freelist(searchp, l3, (l3->free_limit +
3782 5 * searchp->num - 1) / (5 * searchp->num));
3783 STATS_ADD_REAPED(searchp, freed);
3784 }
3785 next:
3786 cond_resched();
3787 }
3788 check_irq_on();
3789 mutex_unlock(&cache_chain_mutex);
3790 next_reap_node();
3791 refresh_cpu_vm_stats(smp_processor_id());
3792 /* Set up the next iteration */
3793 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3794 }
3795
3796 #ifdef CONFIG_PROC_FS
3797
3798 static void print_slabinfo_header(struct seq_file *m)
3799 {
3800 /*
3801 * Output format version, so at least we can change it
3802 * without _too_ many complaints.
3803 */
3804 #if STATS
3805 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3806 #else
3807 seq_puts(m, "slabinfo - version: 2.1\n");
3808 #endif
3809 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3810 "<objperslab> <pagesperslab>");
3811 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3812 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3813 #if STATS
3814 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3815 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3816 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3817 #endif
3818 seq_putc(m, '\n');
3819 }
3820
3821 static void *s_start(struct seq_file *m, loff_t *pos)
3822 {
3823 loff_t n = *pos;
3824 struct list_head *p;
3825
3826 mutex_lock(&cache_chain_mutex);
3827 if (!n)
3828 print_slabinfo_header(m);
3829 p = cache_chain.next;
3830 while (n--) {
3831 p = p->next;
3832 if (p == &cache_chain)
3833 return NULL;
3834 }
3835 return list_entry(p, struct kmem_cache, next);
3836 }
3837
3838 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3839 {
3840 struct kmem_cache *cachep = p;
3841 ++*pos;
3842 return cachep->next.next == &cache_chain ?
3843 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3844 }
3845
3846 static void s_stop(struct seq_file *m, void *p)
3847 {
3848 mutex_unlock(&cache_chain_mutex);
3849 }
3850
3851 static int s_show(struct seq_file *m, void *p)
3852 {
3853 struct kmem_cache *cachep = p;
3854 struct slab *slabp;
3855 unsigned long active_objs;
3856 unsigned long num_objs;
3857 unsigned long active_slabs = 0;
3858 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3859 const char *name;
3860 char *error = NULL;
3861 int node;
3862 struct kmem_list3 *l3;
3863
3864 active_objs = 0;
3865 num_slabs = 0;
3866 for_each_online_node(node) {
3867 l3 = cachep->nodelists[node];
3868 if (!l3)
3869 continue;
3870
3871 check_irq_on();
3872 spin_lock_irq(&l3->list_lock);
3873
3874 list_for_each_entry(slabp, &l3->slabs_full, list) {
3875 if (slabp->inuse != cachep->num && !error)
3876 error = "slabs_full accounting error";
3877 active_objs += cachep->num;
3878 active_slabs++;
3879 }
3880 list_for_each_entry(slabp, &l3->slabs_partial, list) {
3881 if (slabp->inuse == cachep->num && !error)
3882 error = "slabs_partial inuse accounting error";
3883 if (!slabp->inuse && !error)
3884 error = "slabs_partial/inuse accounting error";
3885 active_objs += slabp->inuse;
3886 active_slabs++;
3887 }
3888 list_for_each_entry(slabp, &l3->slabs_free, list) {
3889 if (slabp->inuse && !error)
3890 error = "slabs_free/inuse accounting error";
3891 num_slabs++;
3892 }
3893 free_objects += l3->free_objects;
3894 if (l3->shared)
3895 shared_avail += l3->shared->avail;
3896
3897 spin_unlock_irq(&l3->list_lock);
3898 }
3899 num_slabs += active_slabs;
3900 num_objs = num_slabs * cachep->num;
3901 if (num_objs - active_objs != free_objects && !error)
3902 error = "free_objects accounting error";
3903
3904 name = cachep->name;
3905 if (error)
3906 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3907
3908 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3909 name, active_objs, num_objs, cachep->buffer_size,
3910 cachep->num, (1 << cachep->gfporder));
3911 seq_printf(m, " : tunables %4u %4u %4u",
3912 cachep->limit, cachep->batchcount, cachep->shared);
3913 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3914 active_slabs, num_slabs, shared_avail);
3915 #if STATS
3916 { /* list3 stats */
3917 unsigned long high = cachep->high_mark;
3918 unsigned long allocs = cachep->num_allocations;
3919 unsigned long grown = cachep->grown;
3920 unsigned long reaped = cachep->reaped;
3921 unsigned long errors = cachep->errors;
3922 unsigned long max_freeable = cachep->max_freeable;
3923 unsigned long node_allocs = cachep->node_allocs;
3924 unsigned long node_frees = cachep->node_frees;
3925 unsigned long overflows = cachep->node_overflow;
3926
3927 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3928 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
3929 reaped, errors, max_freeable, node_allocs,
3930 node_frees, overflows);
3931 }
3932 /* cpu stats */
3933 {
3934 unsigned long allochit = atomic_read(&cachep->allochit);
3935 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3936 unsigned long freehit = atomic_read(&cachep->freehit);
3937 unsigned long freemiss = atomic_read(&cachep->freemiss);
3938
3939 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3940 allochit, allocmiss, freehit, freemiss);
3941 }
3942 #endif
3943 seq_putc(m, '\n');
3944 return 0;
3945 }
3946
3947 /*
3948 * slabinfo_op - iterator that generates /proc/slabinfo
3949 *
3950 * Output layout:
3951 * cache-name
3952 * num-active-objs
3953 * total-objs
3954 * object size
3955 * num-active-slabs
3956 * total-slabs
3957 * num-pages-per-slab
3958 * + further values on SMP and with statistics enabled
3959 */
3960
3961 struct seq_operations slabinfo_op = {
3962 .start = s_start,
3963 .next = s_next,
3964 .stop = s_stop,
3965 .show = s_show,
3966 };
3967
3968 #define MAX_SLABINFO_WRITE 128
3969 /**
3970 * slabinfo_write - Tuning for the slab allocator
3971 * @file: unused
3972 * @buffer: user buffer
3973 * @count: data length
3974 * @ppos: unused
3975 */
3976 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3977 size_t count, loff_t *ppos)
3978 {
3979 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3980 int limit, batchcount, shared, res;
3981 struct kmem_cache *cachep;
3982
3983 if (count > MAX_SLABINFO_WRITE)
3984 return -EINVAL;
3985 if (copy_from_user(&kbuf, buffer, count))
3986 return -EFAULT;
3987 kbuf[MAX_SLABINFO_WRITE] = '\0';
3988
3989 tmp = strchr(kbuf, ' ');
3990 if (!tmp)
3991 return -EINVAL;
3992 *tmp = '\0';
3993 tmp++;
3994 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3995 return -EINVAL;
3996
3997 /* Find the cache in the chain of caches. */
3998 mutex_lock(&cache_chain_mutex);
3999 res = -EINVAL;
4000 list_for_each_entry(cachep, &cache_chain, next) {
4001 if (!strcmp(cachep->name, kbuf)) {
4002 if (limit < 1 || batchcount < 1 ||
4003 batchcount > limit || shared < 0) {
4004 res = 0;
4005 } else {
4006 res = do_tune_cpucache(cachep, limit,
4007 batchcount, shared);
4008 }
4009 break;
4010 }
4011 }
4012 mutex_unlock(&cache_chain_mutex);
4013 if (res >= 0)
4014 res = count;
4015 return res;
4016 }
4017
4018 #ifdef CONFIG_DEBUG_SLAB_LEAK
4019
4020 static void *leaks_start(struct seq_file *m, loff_t *pos)
4021 {
4022 loff_t n = *pos;
4023 struct list_head *p;
4024
4025 mutex_lock(&cache_chain_mutex);
4026 p = cache_chain.next;
4027 while (n--) {
4028 p = p->next;
4029 if (p == &cache_chain)
4030 return NULL;
4031 }
4032 return list_entry(p, struct kmem_cache, next);
4033 }
4034
4035 static inline int add_caller(unsigned long *n, unsigned long v)
4036 {
4037 unsigned long *p;
4038 int l;
4039 if (!v)
4040 return 1;
4041 l = n[1];
4042 p = n + 2;
4043 while (l) {
4044 int i = l/2;
4045 unsigned long *q = p + 2 * i;
4046 if (*q == v) {
4047 q[1]++;
4048 return 1;
4049 }
4050 if (*q > v) {
4051 l = i;
4052 } else {
4053 p = q + 2;
4054 l -= i + 1;
4055 }
4056 }
4057 if (++n[1] == n[0])
4058 return 0;
4059 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4060 p[0] = v;
4061 p[1] = 1;
4062 return 1;
4063 }
4064
4065 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4066 {
4067 void *p;
4068 int i;
4069 if (n[0] == n[1])
4070 return;
4071 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4072 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4073 continue;
4074 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4075 return;
4076 }
4077 }
4078
4079 static void show_symbol(struct seq_file *m, unsigned long address)
4080 {
4081 #ifdef CONFIG_KALLSYMS
4082 char *modname;
4083 const char *name;
4084 unsigned long offset, size;
4085 char namebuf[KSYM_NAME_LEN+1];
4086
4087 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4088
4089 if (name) {
4090 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4091 if (modname)
4092 seq_printf(m, " [%s]", modname);
4093 return;
4094 }
4095 #endif
4096 seq_printf(m, "%p", (void *)address);
4097 }
4098
4099 static int leaks_show(struct seq_file *m, void *p)
4100 {
4101 struct kmem_cache *cachep = p;
4102 struct slab *slabp;
4103 struct kmem_list3 *l3;
4104 const char *name;
4105 unsigned long *n = m->private;
4106 int node;
4107 int i;
4108
4109 if (!(cachep->flags & SLAB_STORE_USER))
4110 return 0;
4111 if (!(cachep->flags & SLAB_RED_ZONE))
4112 return 0;
4113
4114 /* OK, we can do it */
4115
4116 n[1] = 0;
4117
4118 for_each_online_node(node) {
4119 l3 = cachep->nodelists[node];
4120 if (!l3)
4121 continue;
4122
4123 check_irq_on();
4124 spin_lock_irq(&l3->list_lock);
4125
4126 list_for_each_entry(slabp, &l3->slabs_full, list)
4127 handle_slab(n, cachep, slabp);
4128 list_for_each_entry(slabp, &l3->slabs_partial, list)
4129 handle_slab(n, cachep, slabp);
4130 spin_unlock_irq(&l3->list_lock);
4131 }
4132 name = cachep->name;
4133 if (n[0] == n[1]) {
4134 /* Increase the buffer size */
4135 mutex_unlock(&cache_chain_mutex);
4136 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4137 if (!m->private) {
4138 /* Too bad, we are really out */
4139 m->private = n;
4140 mutex_lock(&cache_chain_mutex);
4141 return -ENOMEM;
4142 }
4143 *(unsigned long *)m->private = n[0] * 2;
4144 kfree(n);
4145 mutex_lock(&cache_chain_mutex);
4146 /* Now make sure this entry will be retried */
4147 m->count = m->size;
4148 return 0;
4149 }
4150 for (i = 0; i < n[1]; i++) {
4151 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4152 show_symbol(m, n[2*i+2]);
4153 seq_putc(m, '\n');
4154 }
4155
4156 return 0;
4157 }
4158
4159 struct seq_operations slabstats_op = {
4160 .start = leaks_start,
4161 .next = s_next,
4162 .stop = s_stop,
4163 .show = leaks_show,
4164 };
4165 #endif
4166 #endif
4167
4168 /**
4169 * ksize - get the actual amount of memory allocated for a given object
4170 * @objp: Pointer to the object
4171 *
4172 * kmalloc may internally round up allocations and return more memory
4173 * than requested. ksize() can be used to determine the actual amount of
4174 * memory allocated. The caller may use this additional memory, even though
4175 * a smaller amount of memory was initially specified with the kmalloc call.
4176 * The caller must guarantee that objp points to a valid object previously
4177 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4178 * must not be freed during the duration of the call.
4179 */
4180 unsigned int ksize(const void *objp)
4181 {
4182 if (unlikely(objp == NULL))
4183 return 0;
4184
4185 return obj_size(virt_to_cache(objp));
4186 }