]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - mm/slab.c
slab, slub, slob: convert slab_flags_t to 32-bit
[mirror_ubuntu-eoan-kernel.git] / mm / slab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
120 #include <linux/sched/task_stack.h>
121
122 #include <net/sock.h>
123
124 #include <asm/cacheflush.h>
125 #include <asm/tlbflush.h>
126 #include <asm/page.h>
127
128 #include <trace/events/kmem.h>
129
130 #include "internal.h"
131
132 #include "slab.h"
133
134 /*
135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * STATS - 1 to collect stats for /proc/slabinfo.
139 * 0 for faster, smaller code (especially in the critical paths).
140 *
141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 */
143
144 #ifdef CONFIG_DEBUG_SLAB
145 #define DEBUG 1
146 #define STATS 1
147 #define FORCED_DEBUG 1
148 #else
149 #define DEBUG 0
150 #define STATS 0
151 #define FORCED_DEBUG 0
152 #endif
153
154 /* Shouldn't this be in a header file somewhere? */
155 #define BYTES_PER_WORD sizeof(void *)
156 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
157
158 #ifndef ARCH_KMALLOC_FLAGS
159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #endif
161
162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164
165 #if FREELIST_BYTE_INDEX
166 typedef unsigned char freelist_idx_t;
167 #else
168 typedef unsigned short freelist_idx_t;
169 #endif
170
171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172
173 /*
174 * struct array_cache
175 *
176 * Purpose:
177 * - LIFO ordering, to hand out cache-warm objects from _alloc
178 * - reduce the number of linked list operations
179 * - reduce spinlock operations
180 *
181 * The limit is stored in the per-cpu structure to reduce the data cache
182 * footprint.
183 *
184 */
185 struct array_cache {
186 unsigned int avail;
187 unsigned int limit;
188 unsigned int batchcount;
189 unsigned int touched;
190 void *entry[]; /*
191 * Must have this definition in here for the proper
192 * alignment of array_cache. Also simplifies accessing
193 * the entries.
194 */
195 };
196
197 struct alien_cache {
198 spinlock_t lock;
199 struct array_cache ac;
200 };
201
202 /*
203 * Need this for bootstrapping a per node allocator.
204 */
205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
207 #define CACHE_CACHE 0
208 #define SIZE_NODE (MAX_NUMNODES)
209
210 static int drain_freelist(struct kmem_cache *cache,
211 struct kmem_cache_node *n, int tofree);
212 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
213 int node, struct list_head *list);
214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
216 static void cache_reap(struct work_struct *unused);
217
218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
219 void **list);
220 static inline void fixup_slab_list(struct kmem_cache *cachep,
221 struct kmem_cache_node *n, struct page *page,
222 void **list);
223 static int slab_early_init = 1;
224
225 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
226
227 static void kmem_cache_node_init(struct kmem_cache_node *parent)
228 {
229 INIT_LIST_HEAD(&parent->slabs_full);
230 INIT_LIST_HEAD(&parent->slabs_partial);
231 INIT_LIST_HEAD(&parent->slabs_free);
232 parent->total_slabs = 0;
233 parent->free_slabs = 0;
234 parent->shared = NULL;
235 parent->alien = NULL;
236 parent->colour_next = 0;
237 spin_lock_init(&parent->list_lock);
238 parent->free_objects = 0;
239 parent->free_touched = 0;
240 }
241
242 #define MAKE_LIST(cachep, listp, slab, nodeid) \
243 do { \
244 INIT_LIST_HEAD(listp); \
245 list_splice(&get_node(cachep, nodeid)->slab, listp); \
246 } while (0)
247
248 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
249 do { \
250 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
252 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
253 } while (0)
254
255 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
256 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
257 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
258 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
259
260 #define BATCHREFILL_LIMIT 16
261 /*
262 * Optimization question: fewer reaps means less probability for unnessary
263 * cpucache drain/refill cycles.
264 *
265 * OTOH the cpuarrays can contain lots of objects,
266 * which could lock up otherwise freeable slabs.
267 */
268 #define REAPTIMEOUT_AC (2*HZ)
269 #define REAPTIMEOUT_NODE (4*HZ)
270
271 #if STATS
272 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
273 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
274 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
275 #define STATS_INC_GROWN(x) ((x)->grown++)
276 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
277 #define STATS_SET_HIGH(x) \
278 do { \
279 if ((x)->num_active > (x)->high_mark) \
280 (x)->high_mark = (x)->num_active; \
281 } while (0)
282 #define STATS_INC_ERR(x) ((x)->errors++)
283 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
284 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
285 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
286 #define STATS_SET_FREEABLE(x, i) \
287 do { \
288 if ((x)->max_freeable < i) \
289 (x)->max_freeable = i; \
290 } while (0)
291 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
292 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
293 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
294 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
295 #else
296 #define STATS_INC_ACTIVE(x) do { } while (0)
297 #define STATS_DEC_ACTIVE(x) do { } while (0)
298 #define STATS_INC_ALLOCED(x) do { } while (0)
299 #define STATS_INC_GROWN(x) do { } while (0)
300 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
301 #define STATS_SET_HIGH(x) do { } while (0)
302 #define STATS_INC_ERR(x) do { } while (0)
303 #define STATS_INC_NODEALLOCS(x) do { } while (0)
304 #define STATS_INC_NODEFREES(x) do { } while (0)
305 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
306 #define STATS_SET_FREEABLE(x, i) do { } while (0)
307 #define STATS_INC_ALLOCHIT(x) do { } while (0)
308 #define STATS_INC_ALLOCMISS(x) do { } while (0)
309 #define STATS_INC_FREEHIT(x) do { } while (0)
310 #define STATS_INC_FREEMISS(x) do { } while (0)
311 #endif
312
313 #if DEBUG
314
315 /*
316 * memory layout of objects:
317 * 0 : objp
318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
319 * the end of an object is aligned with the end of the real
320 * allocation. Catches writes behind the end of the allocation.
321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
322 * redzone word.
323 * cachep->obj_offset: The real object.
324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
325 * cachep->size - 1* BYTES_PER_WORD: last caller address
326 * [BYTES_PER_WORD long]
327 */
328 static int obj_offset(struct kmem_cache *cachep)
329 {
330 return cachep->obj_offset;
331 }
332
333 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
334 {
335 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
336 return (unsigned long long*) (objp + obj_offset(cachep) -
337 sizeof(unsigned long long));
338 }
339
340 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
341 {
342 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
343 if (cachep->flags & SLAB_STORE_USER)
344 return (unsigned long long *)(objp + cachep->size -
345 sizeof(unsigned long long) -
346 REDZONE_ALIGN);
347 return (unsigned long long *) (objp + cachep->size -
348 sizeof(unsigned long long));
349 }
350
351 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
352 {
353 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
354 return (void **)(objp + cachep->size - BYTES_PER_WORD);
355 }
356
357 #else
358
359 #define obj_offset(x) 0
360 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
362 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
363
364 #endif
365
366 #ifdef CONFIG_DEBUG_SLAB_LEAK
367
368 static inline bool is_store_user_clean(struct kmem_cache *cachep)
369 {
370 return atomic_read(&cachep->store_user_clean) == 1;
371 }
372
373 static inline void set_store_user_clean(struct kmem_cache *cachep)
374 {
375 atomic_set(&cachep->store_user_clean, 1);
376 }
377
378 static inline void set_store_user_dirty(struct kmem_cache *cachep)
379 {
380 if (is_store_user_clean(cachep))
381 atomic_set(&cachep->store_user_clean, 0);
382 }
383
384 #else
385 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
386
387 #endif
388
389 /*
390 * Do not go above this order unless 0 objects fit into the slab or
391 * overridden on the command line.
392 */
393 #define SLAB_MAX_ORDER_HI 1
394 #define SLAB_MAX_ORDER_LO 0
395 static int slab_max_order = SLAB_MAX_ORDER_LO;
396 static bool slab_max_order_set __initdata;
397
398 static inline struct kmem_cache *virt_to_cache(const void *obj)
399 {
400 struct page *page = virt_to_head_page(obj);
401 return page->slab_cache;
402 }
403
404 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
405 unsigned int idx)
406 {
407 return page->s_mem + cache->size * idx;
408 }
409
410 /*
411 * We want to avoid an expensive divide : (offset / cache->size)
412 * Using the fact that size is a constant for a particular cache,
413 * we can replace (offset / cache->size) by
414 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
415 */
416 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
417 const struct page *page, void *obj)
418 {
419 u32 offset = (obj - page->s_mem);
420 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
421 }
422
423 #define BOOT_CPUCACHE_ENTRIES 1
424 /* internal cache of cache description objs */
425 static struct kmem_cache kmem_cache_boot = {
426 .batchcount = 1,
427 .limit = BOOT_CPUCACHE_ENTRIES,
428 .shared = 1,
429 .size = sizeof(struct kmem_cache),
430 .name = "kmem_cache",
431 };
432
433 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
434
435 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
436 {
437 return this_cpu_ptr(cachep->cpu_cache);
438 }
439
440 /*
441 * Calculate the number of objects and left-over bytes for a given buffer size.
442 */
443 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
444 slab_flags_t flags, size_t *left_over)
445 {
446 unsigned int num;
447 size_t slab_size = PAGE_SIZE << gfporder;
448
449 /*
450 * The slab management structure can be either off the slab or
451 * on it. For the latter case, the memory allocated for a
452 * slab is used for:
453 *
454 * - @buffer_size bytes for each object
455 * - One freelist_idx_t for each object
456 *
457 * We don't need to consider alignment of freelist because
458 * freelist will be at the end of slab page. The objects will be
459 * at the correct alignment.
460 *
461 * If the slab management structure is off the slab, then the
462 * alignment will already be calculated into the size. Because
463 * the slabs are all pages aligned, the objects will be at the
464 * correct alignment when allocated.
465 */
466 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
467 num = slab_size / buffer_size;
468 *left_over = slab_size % buffer_size;
469 } else {
470 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
471 *left_over = slab_size %
472 (buffer_size + sizeof(freelist_idx_t));
473 }
474
475 return num;
476 }
477
478 #if DEBUG
479 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
480
481 static void __slab_error(const char *function, struct kmem_cache *cachep,
482 char *msg)
483 {
484 pr_err("slab error in %s(): cache `%s': %s\n",
485 function, cachep->name, msg);
486 dump_stack();
487 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
488 }
489 #endif
490
491 /*
492 * By default on NUMA we use alien caches to stage the freeing of
493 * objects allocated from other nodes. This causes massive memory
494 * inefficiencies when using fake NUMA setup to split memory into a
495 * large number of small nodes, so it can be disabled on the command
496 * line
497 */
498
499 static int use_alien_caches __read_mostly = 1;
500 static int __init noaliencache_setup(char *s)
501 {
502 use_alien_caches = 0;
503 return 1;
504 }
505 __setup("noaliencache", noaliencache_setup);
506
507 static int __init slab_max_order_setup(char *str)
508 {
509 get_option(&str, &slab_max_order);
510 slab_max_order = slab_max_order < 0 ? 0 :
511 min(slab_max_order, MAX_ORDER - 1);
512 slab_max_order_set = true;
513
514 return 1;
515 }
516 __setup("slab_max_order=", slab_max_order_setup);
517
518 #ifdef CONFIG_NUMA
519 /*
520 * Special reaping functions for NUMA systems called from cache_reap().
521 * These take care of doing round robin flushing of alien caches (containing
522 * objects freed on different nodes from which they were allocated) and the
523 * flushing of remote pcps by calling drain_node_pages.
524 */
525 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
526
527 static void init_reap_node(int cpu)
528 {
529 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
530 node_online_map);
531 }
532
533 static void next_reap_node(void)
534 {
535 int node = __this_cpu_read(slab_reap_node);
536
537 node = next_node_in(node, node_online_map);
538 __this_cpu_write(slab_reap_node, node);
539 }
540
541 #else
542 #define init_reap_node(cpu) do { } while (0)
543 #define next_reap_node(void) do { } while (0)
544 #endif
545
546 /*
547 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
548 * via the workqueue/eventd.
549 * Add the CPU number into the expiration time to minimize the possibility of
550 * the CPUs getting into lockstep and contending for the global cache chain
551 * lock.
552 */
553 static void start_cpu_timer(int cpu)
554 {
555 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
556
557 if (reap_work->work.func == NULL) {
558 init_reap_node(cpu);
559 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
560 schedule_delayed_work_on(cpu, reap_work,
561 __round_jiffies_relative(HZ, cpu));
562 }
563 }
564
565 static void init_arraycache(struct array_cache *ac, int limit, int batch)
566 {
567 /*
568 * The array_cache structures contain pointers to free object.
569 * However, when such objects are allocated or transferred to another
570 * cache the pointers are not cleared and they could be counted as
571 * valid references during a kmemleak scan. Therefore, kmemleak must
572 * not scan such objects.
573 */
574 kmemleak_no_scan(ac);
575 if (ac) {
576 ac->avail = 0;
577 ac->limit = limit;
578 ac->batchcount = batch;
579 ac->touched = 0;
580 }
581 }
582
583 static struct array_cache *alloc_arraycache(int node, int entries,
584 int batchcount, gfp_t gfp)
585 {
586 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
587 struct array_cache *ac = NULL;
588
589 ac = kmalloc_node(memsize, gfp, node);
590 init_arraycache(ac, entries, batchcount);
591 return ac;
592 }
593
594 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
595 struct page *page, void *objp)
596 {
597 struct kmem_cache_node *n;
598 int page_node;
599 LIST_HEAD(list);
600
601 page_node = page_to_nid(page);
602 n = get_node(cachep, page_node);
603
604 spin_lock(&n->list_lock);
605 free_block(cachep, &objp, 1, page_node, &list);
606 spin_unlock(&n->list_lock);
607
608 slabs_destroy(cachep, &list);
609 }
610
611 /*
612 * Transfer objects in one arraycache to another.
613 * Locking must be handled by the caller.
614 *
615 * Return the number of entries transferred.
616 */
617 static int transfer_objects(struct array_cache *to,
618 struct array_cache *from, unsigned int max)
619 {
620 /* Figure out how many entries to transfer */
621 int nr = min3(from->avail, max, to->limit - to->avail);
622
623 if (!nr)
624 return 0;
625
626 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
627 sizeof(void *) *nr);
628
629 from->avail -= nr;
630 to->avail += nr;
631 return nr;
632 }
633
634 #ifndef CONFIG_NUMA
635
636 #define drain_alien_cache(cachep, alien) do { } while (0)
637 #define reap_alien(cachep, n) do { } while (0)
638
639 static inline struct alien_cache **alloc_alien_cache(int node,
640 int limit, gfp_t gfp)
641 {
642 return NULL;
643 }
644
645 static inline void free_alien_cache(struct alien_cache **ac_ptr)
646 {
647 }
648
649 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
650 {
651 return 0;
652 }
653
654 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
655 gfp_t flags)
656 {
657 return NULL;
658 }
659
660 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
661 gfp_t flags, int nodeid)
662 {
663 return NULL;
664 }
665
666 static inline gfp_t gfp_exact_node(gfp_t flags)
667 {
668 return flags & ~__GFP_NOFAIL;
669 }
670
671 #else /* CONFIG_NUMA */
672
673 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
674 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
675
676 static struct alien_cache *__alloc_alien_cache(int node, int entries,
677 int batch, gfp_t gfp)
678 {
679 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
680 struct alien_cache *alc = NULL;
681
682 alc = kmalloc_node(memsize, gfp, node);
683 init_arraycache(&alc->ac, entries, batch);
684 spin_lock_init(&alc->lock);
685 return alc;
686 }
687
688 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
689 {
690 struct alien_cache **alc_ptr;
691 size_t memsize = sizeof(void *) * nr_node_ids;
692 int i;
693
694 if (limit > 1)
695 limit = 12;
696 alc_ptr = kzalloc_node(memsize, gfp, node);
697 if (!alc_ptr)
698 return NULL;
699
700 for_each_node(i) {
701 if (i == node || !node_online(i))
702 continue;
703 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
704 if (!alc_ptr[i]) {
705 for (i--; i >= 0; i--)
706 kfree(alc_ptr[i]);
707 kfree(alc_ptr);
708 return NULL;
709 }
710 }
711 return alc_ptr;
712 }
713
714 static void free_alien_cache(struct alien_cache **alc_ptr)
715 {
716 int i;
717
718 if (!alc_ptr)
719 return;
720 for_each_node(i)
721 kfree(alc_ptr[i]);
722 kfree(alc_ptr);
723 }
724
725 static void __drain_alien_cache(struct kmem_cache *cachep,
726 struct array_cache *ac, int node,
727 struct list_head *list)
728 {
729 struct kmem_cache_node *n = get_node(cachep, node);
730
731 if (ac->avail) {
732 spin_lock(&n->list_lock);
733 /*
734 * Stuff objects into the remote nodes shared array first.
735 * That way we could avoid the overhead of putting the objects
736 * into the free lists and getting them back later.
737 */
738 if (n->shared)
739 transfer_objects(n->shared, ac, ac->limit);
740
741 free_block(cachep, ac->entry, ac->avail, node, list);
742 ac->avail = 0;
743 spin_unlock(&n->list_lock);
744 }
745 }
746
747 /*
748 * Called from cache_reap() to regularly drain alien caches round robin.
749 */
750 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
751 {
752 int node = __this_cpu_read(slab_reap_node);
753
754 if (n->alien) {
755 struct alien_cache *alc = n->alien[node];
756 struct array_cache *ac;
757
758 if (alc) {
759 ac = &alc->ac;
760 if (ac->avail && spin_trylock_irq(&alc->lock)) {
761 LIST_HEAD(list);
762
763 __drain_alien_cache(cachep, ac, node, &list);
764 spin_unlock_irq(&alc->lock);
765 slabs_destroy(cachep, &list);
766 }
767 }
768 }
769 }
770
771 static void drain_alien_cache(struct kmem_cache *cachep,
772 struct alien_cache **alien)
773 {
774 int i = 0;
775 struct alien_cache *alc;
776 struct array_cache *ac;
777 unsigned long flags;
778
779 for_each_online_node(i) {
780 alc = alien[i];
781 if (alc) {
782 LIST_HEAD(list);
783
784 ac = &alc->ac;
785 spin_lock_irqsave(&alc->lock, flags);
786 __drain_alien_cache(cachep, ac, i, &list);
787 spin_unlock_irqrestore(&alc->lock, flags);
788 slabs_destroy(cachep, &list);
789 }
790 }
791 }
792
793 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
794 int node, int page_node)
795 {
796 struct kmem_cache_node *n;
797 struct alien_cache *alien = NULL;
798 struct array_cache *ac;
799 LIST_HEAD(list);
800
801 n = get_node(cachep, node);
802 STATS_INC_NODEFREES(cachep);
803 if (n->alien && n->alien[page_node]) {
804 alien = n->alien[page_node];
805 ac = &alien->ac;
806 spin_lock(&alien->lock);
807 if (unlikely(ac->avail == ac->limit)) {
808 STATS_INC_ACOVERFLOW(cachep);
809 __drain_alien_cache(cachep, ac, page_node, &list);
810 }
811 ac->entry[ac->avail++] = objp;
812 spin_unlock(&alien->lock);
813 slabs_destroy(cachep, &list);
814 } else {
815 n = get_node(cachep, page_node);
816 spin_lock(&n->list_lock);
817 free_block(cachep, &objp, 1, page_node, &list);
818 spin_unlock(&n->list_lock);
819 slabs_destroy(cachep, &list);
820 }
821 return 1;
822 }
823
824 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
825 {
826 int page_node = page_to_nid(virt_to_page(objp));
827 int node = numa_mem_id();
828 /*
829 * Make sure we are not freeing a object from another node to the array
830 * cache on this cpu.
831 */
832 if (likely(node == page_node))
833 return 0;
834
835 return __cache_free_alien(cachep, objp, node, page_node);
836 }
837
838 /*
839 * Construct gfp mask to allocate from a specific node but do not reclaim or
840 * warn about failures.
841 */
842 static inline gfp_t gfp_exact_node(gfp_t flags)
843 {
844 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
845 }
846 #endif
847
848 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
849 {
850 struct kmem_cache_node *n;
851
852 /*
853 * Set up the kmem_cache_node for cpu before we can
854 * begin anything. Make sure some other cpu on this
855 * node has not already allocated this
856 */
857 n = get_node(cachep, node);
858 if (n) {
859 spin_lock_irq(&n->list_lock);
860 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
861 cachep->num;
862 spin_unlock_irq(&n->list_lock);
863
864 return 0;
865 }
866
867 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
868 if (!n)
869 return -ENOMEM;
870
871 kmem_cache_node_init(n);
872 n->next_reap = jiffies + REAPTIMEOUT_NODE +
873 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
874
875 n->free_limit =
876 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
877
878 /*
879 * The kmem_cache_nodes don't come and go as CPUs
880 * come and go. slab_mutex is sufficient
881 * protection here.
882 */
883 cachep->node[node] = n;
884
885 return 0;
886 }
887
888 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
889 /*
890 * Allocates and initializes node for a node on each slab cache, used for
891 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
892 * will be allocated off-node since memory is not yet online for the new node.
893 * When hotplugging memory or a cpu, existing node are not replaced if
894 * already in use.
895 *
896 * Must hold slab_mutex.
897 */
898 static int init_cache_node_node(int node)
899 {
900 int ret;
901 struct kmem_cache *cachep;
902
903 list_for_each_entry(cachep, &slab_caches, list) {
904 ret = init_cache_node(cachep, node, GFP_KERNEL);
905 if (ret)
906 return ret;
907 }
908
909 return 0;
910 }
911 #endif
912
913 static int setup_kmem_cache_node(struct kmem_cache *cachep,
914 int node, gfp_t gfp, bool force_change)
915 {
916 int ret = -ENOMEM;
917 struct kmem_cache_node *n;
918 struct array_cache *old_shared = NULL;
919 struct array_cache *new_shared = NULL;
920 struct alien_cache **new_alien = NULL;
921 LIST_HEAD(list);
922
923 if (use_alien_caches) {
924 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
925 if (!new_alien)
926 goto fail;
927 }
928
929 if (cachep->shared) {
930 new_shared = alloc_arraycache(node,
931 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
932 if (!new_shared)
933 goto fail;
934 }
935
936 ret = init_cache_node(cachep, node, gfp);
937 if (ret)
938 goto fail;
939
940 n = get_node(cachep, node);
941 spin_lock_irq(&n->list_lock);
942 if (n->shared && force_change) {
943 free_block(cachep, n->shared->entry,
944 n->shared->avail, node, &list);
945 n->shared->avail = 0;
946 }
947
948 if (!n->shared || force_change) {
949 old_shared = n->shared;
950 n->shared = new_shared;
951 new_shared = NULL;
952 }
953
954 if (!n->alien) {
955 n->alien = new_alien;
956 new_alien = NULL;
957 }
958
959 spin_unlock_irq(&n->list_lock);
960 slabs_destroy(cachep, &list);
961
962 /*
963 * To protect lockless access to n->shared during irq disabled context.
964 * If n->shared isn't NULL in irq disabled context, accessing to it is
965 * guaranteed to be valid until irq is re-enabled, because it will be
966 * freed after synchronize_sched().
967 */
968 if (old_shared && force_change)
969 synchronize_sched();
970
971 fail:
972 kfree(old_shared);
973 kfree(new_shared);
974 free_alien_cache(new_alien);
975
976 return ret;
977 }
978
979 #ifdef CONFIG_SMP
980
981 static void cpuup_canceled(long cpu)
982 {
983 struct kmem_cache *cachep;
984 struct kmem_cache_node *n = NULL;
985 int node = cpu_to_mem(cpu);
986 const struct cpumask *mask = cpumask_of_node(node);
987
988 list_for_each_entry(cachep, &slab_caches, list) {
989 struct array_cache *nc;
990 struct array_cache *shared;
991 struct alien_cache **alien;
992 LIST_HEAD(list);
993
994 n = get_node(cachep, node);
995 if (!n)
996 continue;
997
998 spin_lock_irq(&n->list_lock);
999
1000 /* Free limit for this kmem_cache_node */
1001 n->free_limit -= cachep->batchcount;
1002
1003 /* cpu is dead; no one can alloc from it. */
1004 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1005 if (nc) {
1006 free_block(cachep, nc->entry, nc->avail, node, &list);
1007 nc->avail = 0;
1008 }
1009
1010 if (!cpumask_empty(mask)) {
1011 spin_unlock_irq(&n->list_lock);
1012 goto free_slab;
1013 }
1014
1015 shared = n->shared;
1016 if (shared) {
1017 free_block(cachep, shared->entry,
1018 shared->avail, node, &list);
1019 n->shared = NULL;
1020 }
1021
1022 alien = n->alien;
1023 n->alien = NULL;
1024
1025 spin_unlock_irq(&n->list_lock);
1026
1027 kfree(shared);
1028 if (alien) {
1029 drain_alien_cache(cachep, alien);
1030 free_alien_cache(alien);
1031 }
1032
1033 free_slab:
1034 slabs_destroy(cachep, &list);
1035 }
1036 /*
1037 * In the previous loop, all the objects were freed to
1038 * the respective cache's slabs, now we can go ahead and
1039 * shrink each nodelist to its limit.
1040 */
1041 list_for_each_entry(cachep, &slab_caches, list) {
1042 n = get_node(cachep, node);
1043 if (!n)
1044 continue;
1045 drain_freelist(cachep, n, INT_MAX);
1046 }
1047 }
1048
1049 static int cpuup_prepare(long cpu)
1050 {
1051 struct kmem_cache *cachep;
1052 int node = cpu_to_mem(cpu);
1053 int err;
1054
1055 /*
1056 * We need to do this right in the beginning since
1057 * alloc_arraycache's are going to use this list.
1058 * kmalloc_node allows us to add the slab to the right
1059 * kmem_cache_node and not this cpu's kmem_cache_node
1060 */
1061 err = init_cache_node_node(node);
1062 if (err < 0)
1063 goto bad;
1064
1065 /*
1066 * Now we can go ahead with allocating the shared arrays and
1067 * array caches
1068 */
1069 list_for_each_entry(cachep, &slab_caches, list) {
1070 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1071 if (err)
1072 goto bad;
1073 }
1074
1075 return 0;
1076 bad:
1077 cpuup_canceled(cpu);
1078 return -ENOMEM;
1079 }
1080
1081 int slab_prepare_cpu(unsigned int cpu)
1082 {
1083 int err;
1084
1085 mutex_lock(&slab_mutex);
1086 err = cpuup_prepare(cpu);
1087 mutex_unlock(&slab_mutex);
1088 return err;
1089 }
1090
1091 /*
1092 * This is called for a failed online attempt and for a successful
1093 * offline.
1094 *
1095 * Even if all the cpus of a node are down, we don't free the
1096 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1097 * a kmalloc allocation from another cpu for memory from the node of
1098 * the cpu going down. The list3 structure is usually allocated from
1099 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1100 */
1101 int slab_dead_cpu(unsigned int cpu)
1102 {
1103 mutex_lock(&slab_mutex);
1104 cpuup_canceled(cpu);
1105 mutex_unlock(&slab_mutex);
1106 return 0;
1107 }
1108 #endif
1109
1110 static int slab_online_cpu(unsigned int cpu)
1111 {
1112 start_cpu_timer(cpu);
1113 return 0;
1114 }
1115
1116 static int slab_offline_cpu(unsigned int cpu)
1117 {
1118 /*
1119 * Shutdown cache reaper. Note that the slab_mutex is held so
1120 * that if cache_reap() is invoked it cannot do anything
1121 * expensive but will only modify reap_work and reschedule the
1122 * timer.
1123 */
1124 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1125 /* Now the cache_reaper is guaranteed to be not running. */
1126 per_cpu(slab_reap_work, cpu).work.func = NULL;
1127 return 0;
1128 }
1129
1130 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1131 /*
1132 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1133 * Returns -EBUSY if all objects cannot be drained so that the node is not
1134 * removed.
1135 *
1136 * Must hold slab_mutex.
1137 */
1138 static int __meminit drain_cache_node_node(int node)
1139 {
1140 struct kmem_cache *cachep;
1141 int ret = 0;
1142
1143 list_for_each_entry(cachep, &slab_caches, list) {
1144 struct kmem_cache_node *n;
1145
1146 n = get_node(cachep, node);
1147 if (!n)
1148 continue;
1149
1150 drain_freelist(cachep, n, INT_MAX);
1151
1152 if (!list_empty(&n->slabs_full) ||
1153 !list_empty(&n->slabs_partial)) {
1154 ret = -EBUSY;
1155 break;
1156 }
1157 }
1158 return ret;
1159 }
1160
1161 static int __meminit slab_memory_callback(struct notifier_block *self,
1162 unsigned long action, void *arg)
1163 {
1164 struct memory_notify *mnb = arg;
1165 int ret = 0;
1166 int nid;
1167
1168 nid = mnb->status_change_nid;
1169 if (nid < 0)
1170 goto out;
1171
1172 switch (action) {
1173 case MEM_GOING_ONLINE:
1174 mutex_lock(&slab_mutex);
1175 ret = init_cache_node_node(nid);
1176 mutex_unlock(&slab_mutex);
1177 break;
1178 case MEM_GOING_OFFLINE:
1179 mutex_lock(&slab_mutex);
1180 ret = drain_cache_node_node(nid);
1181 mutex_unlock(&slab_mutex);
1182 break;
1183 case MEM_ONLINE:
1184 case MEM_OFFLINE:
1185 case MEM_CANCEL_ONLINE:
1186 case MEM_CANCEL_OFFLINE:
1187 break;
1188 }
1189 out:
1190 return notifier_from_errno(ret);
1191 }
1192 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1193
1194 /*
1195 * swap the static kmem_cache_node with kmalloced memory
1196 */
1197 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1198 int nodeid)
1199 {
1200 struct kmem_cache_node *ptr;
1201
1202 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1203 BUG_ON(!ptr);
1204
1205 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1206 /*
1207 * Do not assume that spinlocks can be initialized via memcpy:
1208 */
1209 spin_lock_init(&ptr->list_lock);
1210
1211 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1212 cachep->node[nodeid] = ptr;
1213 }
1214
1215 /*
1216 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1217 * size of kmem_cache_node.
1218 */
1219 static void __init set_up_node(struct kmem_cache *cachep, int index)
1220 {
1221 int node;
1222
1223 for_each_online_node(node) {
1224 cachep->node[node] = &init_kmem_cache_node[index + node];
1225 cachep->node[node]->next_reap = jiffies +
1226 REAPTIMEOUT_NODE +
1227 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1228 }
1229 }
1230
1231 /*
1232 * Initialisation. Called after the page allocator have been initialised and
1233 * before smp_init().
1234 */
1235 void __init kmem_cache_init(void)
1236 {
1237 int i;
1238
1239 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1240 sizeof(struct rcu_head));
1241 kmem_cache = &kmem_cache_boot;
1242
1243 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1244 use_alien_caches = 0;
1245
1246 for (i = 0; i < NUM_INIT_LISTS; i++)
1247 kmem_cache_node_init(&init_kmem_cache_node[i]);
1248
1249 /*
1250 * Fragmentation resistance on low memory - only use bigger
1251 * page orders on machines with more than 32MB of memory if
1252 * not overridden on the command line.
1253 */
1254 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1255 slab_max_order = SLAB_MAX_ORDER_HI;
1256
1257 /* Bootstrap is tricky, because several objects are allocated
1258 * from caches that do not exist yet:
1259 * 1) initialize the kmem_cache cache: it contains the struct
1260 * kmem_cache structures of all caches, except kmem_cache itself:
1261 * kmem_cache is statically allocated.
1262 * Initially an __init data area is used for the head array and the
1263 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1264 * array at the end of the bootstrap.
1265 * 2) Create the first kmalloc cache.
1266 * The struct kmem_cache for the new cache is allocated normally.
1267 * An __init data area is used for the head array.
1268 * 3) Create the remaining kmalloc caches, with minimally sized
1269 * head arrays.
1270 * 4) Replace the __init data head arrays for kmem_cache and the first
1271 * kmalloc cache with kmalloc allocated arrays.
1272 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1273 * the other cache's with kmalloc allocated memory.
1274 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1275 */
1276
1277 /* 1) create the kmem_cache */
1278
1279 /*
1280 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1281 */
1282 create_boot_cache(kmem_cache, "kmem_cache",
1283 offsetof(struct kmem_cache, node) +
1284 nr_node_ids * sizeof(struct kmem_cache_node *),
1285 SLAB_HWCACHE_ALIGN);
1286 list_add(&kmem_cache->list, &slab_caches);
1287 slab_state = PARTIAL;
1288
1289 /*
1290 * Initialize the caches that provide memory for the kmem_cache_node
1291 * structures first. Without this, further allocations will bug.
1292 */
1293 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1294 kmalloc_info[INDEX_NODE].name,
1295 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1296 slab_state = PARTIAL_NODE;
1297 setup_kmalloc_cache_index_table();
1298
1299 slab_early_init = 0;
1300
1301 /* 5) Replace the bootstrap kmem_cache_node */
1302 {
1303 int nid;
1304
1305 for_each_online_node(nid) {
1306 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1307
1308 init_list(kmalloc_caches[INDEX_NODE],
1309 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1310 }
1311 }
1312
1313 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1314 }
1315
1316 void __init kmem_cache_init_late(void)
1317 {
1318 struct kmem_cache *cachep;
1319
1320 slab_state = UP;
1321
1322 /* 6) resize the head arrays to their final sizes */
1323 mutex_lock(&slab_mutex);
1324 list_for_each_entry(cachep, &slab_caches, list)
1325 if (enable_cpucache(cachep, GFP_NOWAIT))
1326 BUG();
1327 mutex_unlock(&slab_mutex);
1328
1329 /* Done! */
1330 slab_state = FULL;
1331
1332 #ifdef CONFIG_NUMA
1333 /*
1334 * Register a memory hotplug callback that initializes and frees
1335 * node.
1336 */
1337 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1338 #endif
1339
1340 /*
1341 * The reap timers are started later, with a module init call: That part
1342 * of the kernel is not yet operational.
1343 */
1344 }
1345
1346 static int __init cpucache_init(void)
1347 {
1348 int ret;
1349
1350 /*
1351 * Register the timers that return unneeded pages to the page allocator
1352 */
1353 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1354 slab_online_cpu, slab_offline_cpu);
1355 WARN_ON(ret < 0);
1356
1357 /* Done! */
1358 slab_state = FULL;
1359 return 0;
1360 }
1361 __initcall(cpucache_init);
1362
1363 static noinline void
1364 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1365 {
1366 #if DEBUG
1367 struct kmem_cache_node *n;
1368 unsigned long flags;
1369 int node;
1370 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1371 DEFAULT_RATELIMIT_BURST);
1372
1373 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1374 return;
1375
1376 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1377 nodeid, gfpflags, &gfpflags);
1378 pr_warn(" cache: %s, object size: %d, order: %d\n",
1379 cachep->name, cachep->size, cachep->gfporder);
1380
1381 for_each_kmem_cache_node(cachep, node, n) {
1382 unsigned long total_slabs, free_slabs, free_objs;
1383
1384 spin_lock_irqsave(&n->list_lock, flags);
1385 total_slabs = n->total_slabs;
1386 free_slabs = n->free_slabs;
1387 free_objs = n->free_objects;
1388 spin_unlock_irqrestore(&n->list_lock, flags);
1389
1390 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1391 node, total_slabs - free_slabs, total_slabs,
1392 (total_slabs * cachep->num) - free_objs,
1393 total_slabs * cachep->num);
1394 }
1395 #endif
1396 }
1397
1398 /*
1399 * Interface to system's page allocator. No need to hold the
1400 * kmem_cache_node ->list_lock.
1401 *
1402 * If we requested dmaable memory, we will get it. Even if we
1403 * did not request dmaable memory, we might get it, but that
1404 * would be relatively rare and ignorable.
1405 */
1406 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1407 int nodeid)
1408 {
1409 struct page *page;
1410 int nr_pages;
1411
1412 flags |= cachep->allocflags;
1413
1414 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1415 if (!page) {
1416 slab_out_of_memory(cachep, flags, nodeid);
1417 return NULL;
1418 }
1419
1420 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1421 __free_pages(page, cachep->gfporder);
1422 return NULL;
1423 }
1424
1425 nr_pages = (1 << cachep->gfporder);
1426 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1427 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1428 else
1429 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1430
1431 __SetPageSlab(page);
1432 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1433 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1434 SetPageSlabPfmemalloc(page);
1435
1436 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1437 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1438
1439 if (cachep->ctor)
1440 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1441 else
1442 kmemcheck_mark_unallocated_pages(page, nr_pages);
1443 }
1444
1445 return page;
1446 }
1447
1448 /*
1449 * Interface to system's page release.
1450 */
1451 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1452 {
1453 int order = cachep->gfporder;
1454 unsigned long nr_freed = (1 << order);
1455
1456 kmemcheck_free_shadow(page, order);
1457
1458 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1459 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1460 else
1461 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1462
1463 BUG_ON(!PageSlab(page));
1464 __ClearPageSlabPfmemalloc(page);
1465 __ClearPageSlab(page);
1466 page_mapcount_reset(page);
1467 page->mapping = NULL;
1468
1469 if (current->reclaim_state)
1470 current->reclaim_state->reclaimed_slab += nr_freed;
1471 memcg_uncharge_slab(page, order, cachep);
1472 __free_pages(page, order);
1473 }
1474
1475 static void kmem_rcu_free(struct rcu_head *head)
1476 {
1477 struct kmem_cache *cachep;
1478 struct page *page;
1479
1480 page = container_of(head, struct page, rcu_head);
1481 cachep = page->slab_cache;
1482
1483 kmem_freepages(cachep, page);
1484 }
1485
1486 #if DEBUG
1487 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1488 {
1489 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1490 (cachep->size % PAGE_SIZE) == 0)
1491 return true;
1492
1493 return false;
1494 }
1495
1496 #ifdef CONFIG_DEBUG_PAGEALLOC
1497 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1498 unsigned long caller)
1499 {
1500 int size = cachep->object_size;
1501
1502 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1503
1504 if (size < 5 * sizeof(unsigned long))
1505 return;
1506
1507 *addr++ = 0x12345678;
1508 *addr++ = caller;
1509 *addr++ = smp_processor_id();
1510 size -= 3 * sizeof(unsigned long);
1511 {
1512 unsigned long *sptr = &caller;
1513 unsigned long svalue;
1514
1515 while (!kstack_end(sptr)) {
1516 svalue = *sptr++;
1517 if (kernel_text_address(svalue)) {
1518 *addr++ = svalue;
1519 size -= sizeof(unsigned long);
1520 if (size <= sizeof(unsigned long))
1521 break;
1522 }
1523 }
1524
1525 }
1526 *addr++ = 0x87654321;
1527 }
1528
1529 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1530 int map, unsigned long caller)
1531 {
1532 if (!is_debug_pagealloc_cache(cachep))
1533 return;
1534
1535 if (caller)
1536 store_stackinfo(cachep, objp, caller);
1537
1538 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1539 }
1540
1541 #else
1542 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1543 int map, unsigned long caller) {}
1544
1545 #endif
1546
1547 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1548 {
1549 int size = cachep->object_size;
1550 addr = &((char *)addr)[obj_offset(cachep)];
1551
1552 memset(addr, val, size);
1553 *(unsigned char *)(addr + size - 1) = POISON_END;
1554 }
1555
1556 static void dump_line(char *data, int offset, int limit)
1557 {
1558 int i;
1559 unsigned char error = 0;
1560 int bad_count = 0;
1561
1562 pr_err("%03x: ", offset);
1563 for (i = 0; i < limit; i++) {
1564 if (data[offset + i] != POISON_FREE) {
1565 error = data[offset + i];
1566 bad_count++;
1567 }
1568 }
1569 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1570 &data[offset], limit, 1);
1571
1572 if (bad_count == 1) {
1573 error ^= POISON_FREE;
1574 if (!(error & (error - 1))) {
1575 pr_err("Single bit error detected. Probably bad RAM.\n");
1576 #ifdef CONFIG_X86
1577 pr_err("Run memtest86+ or a similar memory test tool.\n");
1578 #else
1579 pr_err("Run a memory test tool.\n");
1580 #endif
1581 }
1582 }
1583 }
1584 #endif
1585
1586 #if DEBUG
1587
1588 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1589 {
1590 int i, size;
1591 char *realobj;
1592
1593 if (cachep->flags & SLAB_RED_ZONE) {
1594 pr_err("Redzone: 0x%llx/0x%llx\n",
1595 *dbg_redzone1(cachep, objp),
1596 *dbg_redzone2(cachep, objp));
1597 }
1598
1599 if (cachep->flags & SLAB_STORE_USER) {
1600 pr_err("Last user: [<%p>](%pSR)\n",
1601 *dbg_userword(cachep, objp),
1602 *dbg_userword(cachep, objp));
1603 }
1604 realobj = (char *)objp + obj_offset(cachep);
1605 size = cachep->object_size;
1606 for (i = 0; i < size && lines; i += 16, lines--) {
1607 int limit;
1608 limit = 16;
1609 if (i + limit > size)
1610 limit = size - i;
1611 dump_line(realobj, i, limit);
1612 }
1613 }
1614
1615 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1616 {
1617 char *realobj;
1618 int size, i;
1619 int lines = 0;
1620
1621 if (is_debug_pagealloc_cache(cachep))
1622 return;
1623
1624 realobj = (char *)objp + obj_offset(cachep);
1625 size = cachep->object_size;
1626
1627 for (i = 0; i < size; i++) {
1628 char exp = POISON_FREE;
1629 if (i == size - 1)
1630 exp = POISON_END;
1631 if (realobj[i] != exp) {
1632 int limit;
1633 /* Mismatch ! */
1634 /* Print header */
1635 if (lines == 0) {
1636 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1637 print_tainted(), cachep->name,
1638 realobj, size);
1639 print_objinfo(cachep, objp, 0);
1640 }
1641 /* Hexdump the affected line */
1642 i = (i / 16) * 16;
1643 limit = 16;
1644 if (i + limit > size)
1645 limit = size - i;
1646 dump_line(realobj, i, limit);
1647 i += 16;
1648 lines++;
1649 /* Limit to 5 lines */
1650 if (lines > 5)
1651 break;
1652 }
1653 }
1654 if (lines != 0) {
1655 /* Print some data about the neighboring objects, if they
1656 * exist:
1657 */
1658 struct page *page = virt_to_head_page(objp);
1659 unsigned int objnr;
1660
1661 objnr = obj_to_index(cachep, page, objp);
1662 if (objnr) {
1663 objp = index_to_obj(cachep, page, objnr - 1);
1664 realobj = (char *)objp + obj_offset(cachep);
1665 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1666 print_objinfo(cachep, objp, 2);
1667 }
1668 if (objnr + 1 < cachep->num) {
1669 objp = index_to_obj(cachep, page, objnr + 1);
1670 realobj = (char *)objp + obj_offset(cachep);
1671 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1672 print_objinfo(cachep, objp, 2);
1673 }
1674 }
1675 }
1676 #endif
1677
1678 #if DEBUG
1679 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1680 struct page *page)
1681 {
1682 int i;
1683
1684 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1685 poison_obj(cachep, page->freelist - obj_offset(cachep),
1686 POISON_FREE);
1687 }
1688
1689 for (i = 0; i < cachep->num; i++) {
1690 void *objp = index_to_obj(cachep, page, i);
1691
1692 if (cachep->flags & SLAB_POISON) {
1693 check_poison_obj(cachep, objp);
1694 slab_kernel_map(cachep, objp, 1, 0);
1695 }
1696 if (cachep->flags & SLAB_RED_ZONE) {
1697 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1698 slab_error(cachep, "start of a freed object was overwritten");
1699 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1700 slab_error(cachep, "end of a freed object was overwritten");
1701 }
1702 }
1703 }
1704 #else
1705 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1706 struct page *page)
1707 {
1708 }
1709 #endif
1710
1711 /**
1712 * slab_destroy - destroy and release all objects in a slab
1713 * @cachep: cache pointer being destroyed
1714 * @page: page pointer being destroyed
1715 *
1716 * Destroy all the objs in a slab page, and release the mem back to the system.
1717 * Before calling the slab page must have been unlinked from the cache. The
1718 * kmem_cache_node ->list_lock is not held/needed.
1719 */
1720 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1721 {
1722 void *freelist;
1723
1724 freelist = page->freelist;
1725 slab_destroy_debugcheck(cachep, page);
1726 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1727 call_rcu(&page->rcu_head, kmem_rcu_free);
1728 else
1729 kmem_freepages(cachep, page);
1730
1731 /*
1732 * From now on, we don't use freelist
1733 * although actual page can be freed in rcu context
1734 */
1735 if (OFF_SLAB(cachep))
1736 kmem_cache_free(cachep->freelist_cache, freelist);
1737 }
1738
1739 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1740 {
1741 struct page *page, *n;
1742
1743 list_for_each_entry_safe(page, n, list, lru) {
1744 list_del(&page->lru);
1745 slab_destroy(cachep, page);
1746 }
1747 }
1748
1749 /**
1750 * calculate_slab_order - calculate size (page order) of slabs
1751 * @cachep: pointer to the cache that is being created
1752 * @size: size of objects to be created in this cache.
1753 * @flags: slab allocation flags
1754 *
1755 * Also calculates the number of objects per slab.
1756 *
1757 * This could be made much more intelligent. For now, try to avoid using
1758 * high order pages for slabs. When the gfp() functions are more friendly
1759 * towards high-order requests, this should be changed.
1760 */
1761 static size_t calculate_slab_order(struct kmem_cache *cachep,
1762 size_t size, slab_flags_t flags)
1763 {
1764 size_t left_over = 0;
1765 int gfporder;
1766
1767 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1768 unsigned int num;
1769 size_t remainder;
1770
1771 num = cache_estimate(gfporder, size, flags, &remainder);
1772 if (!num)
1773 continue;
1774
1775 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1776 if (num > SLAB_OBJ_MAX_NUM)
1777 break;
1778
1779 if (flags & CFLGS_OFF_SLAB) {
1780 struct kmem_cache *freelist_cache;
1781 size_t freelist_size;
1782
1783 freelist_size = num * sizeof(freelist_idx_t);
1784 freelist_cache = kmalloc_slab(freelist_size, 0u);
1785 if (!freelist_cache)
1786 continue;
1787
1788 /*
1789 * Needed to avoid possible looping condition
1790 * in cache_grow_begin()
1791 */
1792 if (OFF_SLAB(freelist_cache))
1793 continue;
1794
1795 /* check if off slab has enough benefit */
1796 if (freelist_cache->size > cachep->size / 2)
1797 continue;
1798 }
1799
1800 /* Found something acceptable - save it away */
1801 cachep->num = num;
1802 cachep->gfporder = gfporder;
1803 left_over = remainder;
1804
1805 /*
1806 * A VFS-reclaimable slab tends to have most allocations
1807 * as GFP_NOFS and we really don't want to have to be allocating
1808 * higher-order pages when we are unable to shrink dcache.
1809 */
1810 if (flags & SLAB_RECLAIM_ACCOUNT)
1811 break;
1812
1813 /*
1814 * Large number of objects is good, but very large slabs are
1815 * currently bad for the gfp()s.
1816 */
1817 if (gfporder >= slab_max_order)
1818 break;
1819
1820 /*
1821 * Acceptable internal fragmentation?
1822 */
1823 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1824 break;
1825 }
1826 return left_over;
1827 }
1828
1829 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1830 struct kmem_cache *cachep, int entries, int batchcount)
1831 {
1832 int cpu;
1833 size_t size;
1834 struct array_cache __percpu *cpu_cache;
1835
1836 size = sizeof(void *) * entries + sizeof(struct array_cache);
1837 cpu_cache = __alloc_percpu(size, sizeof(void *));
1838
1839 if (!cpu_cache)
1840 return NULL;
1841
1842 for_each_possible_cpu(cpu) {
1843 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1844 entries, batchcount);
1845 }
1846
1847 return cpu_cache;
1848 }
1849
1850 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1851 {
1852 if (slab_state >= FULL)
1853 return enable_cpucache(cachep, gfp);
1854
1855 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1856 if (!cachep->cpu_cache)
1857 return 1;
1858
1859 if (slab_state == DOWN) {
1860 /* Creation of first cache (kmem_cache). */
1861 set_up_node(kmem_cache, CACHE_CACHE);
1862 } else if (slab_state == PARTIAL) {
1863 /* For kmem_cache_node */
1864 set_up_node(cachep, SIZE_NODE);
1865 } else {
1866 int node;
1867
1868 for_each_online_node(node) {
1869 cachep->node[node] = kmalloc_node(
1870 sizeof(struct kmem_cache_node), gfp, node);
1871 BUG_ON(!cachep->node[node]);
1872 kmem_cache_node_init(cachep->node[node]);
1873 }
1874 }
1875
1876 cachep->node[numa_mem_id()]->next_reap =
1877 jiffies + REAPTIMEOUT_NODE +
1878 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1879
1880 cpu_cache_get(cachep)->avail = 0;
1881 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1882 cpu_cache_get(cachep)->batchcount = 1;
1883 cpu_cache_get(cachep)->touched = 0;
1884 cachep->batchcount = 1;
1885 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1886 return 0;
1887 }
1888
1889 slab_flags_t kmem_cache_flags(unsigned long object_size,
1890 slab_flags_t flags, const char *name,
1891 void (*ctor)(void *))
1892 {
1893 return flags;
1894 }
1895
1896 struct kmem_cache *
1897 __kmem_cache_alias(const char *name, size_t size, size_t align,
1898 slab_flags_t flags, void (*ctor)(void *))
1899 {
1900 struct kmem_cache *cachep;
1901
1902 cachep = find_mergeable(size, align, flags, name, ctor);
1903 if (cachep) {
1904 cachep->refcount++;
1905
1906 /*
1907 * Adjust the object sizes so that we clear
1908 * the complete object on kzalloc.
1909 */
1910 cachep->object_size = max_t(int, cachep->object_size, size);
1911 }
1912 return cachep;
1913 }
1914
1915 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1916 size_t size, slab_flags_t flags)
1917 {
1918 size_t left;
1919
1920 cachep->num = 0;
1921
1922 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1923 return false;
1924
1925 left = calculate_slab_order(cachep, size,
1926 flags | CFLGS_OBJFREELIST_SLAB);
1927 if (!cachep->num)
1928 return false;
1929
1930 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1931 return false;
1932
1933 cachep->colour = left / cachep->colour_off;
1934
1935 return true;
1936 }
1937
1938 static bool set_off_slab_cache(struct kmem_cache *cachep,
1939 size_t size, slab_flags_t flags)
1940 {
1941 size_t left;
1942
1943 cachep->num = 0;
1944
1945 /*
1946 * Always use on-slab management when SLAB_NOLEAKTRACE
1947 * to avoid recursive calls into kmemleak.
1948 */
1949 if (flags & SLAB_NOLEAKTRACE)
1950 return false;
1951
1952 /*
1953 * Size is large, assume best to place the slab management obj
1954 * off-slab (should allow better packing of objs).
1955 */
1956 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1957 if (!cachep->num)
1958 return false;
1959
1960 /*
1961 * If the slab has been placed off-slab, and we have enough space then
1962 * move it on-slab. This is at the expense of any extra colouring.
1963 */
1964 if (left >= cachep->num * sizeof(freelist_idx_t))
1965 return false;
1966
1967 cachep->colour = left / cachep->colour_off;
1968
1969 return true;
1970 }
1971
1972 static bool set_on_slab_cache(struct kmem_cache *cachep,
1973 size_t size, slab_flags_t flags)
1974 {
1975 size_t left;
1976
1977 cachep->num = 0;
1978
1979 left = calculate_slab_order(cachep, size, flags);
1980 if (!cachep->num)
1981 return false;
1982
1983 cachep->colour = left / cachep->colour_off;
1984
1985 return true;
1986 }
1987
1988 /**
1989 * __kmem_cache_create - Create a cache.
1990 * @cachep: cache management descriptor
1991 * @flags: SLAB flags
1992 *
1993 * Returns a ptr to the cache on success, NULL on failure.
1994 * Cannot be called within a int, but can be interrupted.
1995 * The @ctor is run when new pages are allocated by the cache.
1996 *
1997 * The flags are
1998 *
1999 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2000 * to catch references to uninitialised memory.
2001 *
2002 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2003 * for buffer overruns.
2004 *
2005 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2006 * cacheline. This can be beneficial if you're counting cycles as closely
2007 * as davem.
2008 */
2009 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
2010 {
2011 size_t ralign = BYTES_PER_WORD;
2012 gfp_t gfp;
2013 int err;
2014 size_t size = cachep->size;
2015
2016 #if DEBUG
2017 #if FORCED_DEBUG
2018 /*
2019 * Enable redzoning and last user accounting, except for caches with
2020 * large objects, if the increased size would increase the object size
2021 * above the next power of two: caches with object sizes just above a
2022 * power of two have a significant amount of internal fragmentation.
2023 */
2024 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2025 2 * sizeof(unsigned long long)))
2026 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2027 if (!(flags & SLAB_TYPESAFE_BY_RCU))
2028 flags |= SLAB_POISON;
2029 #endif
2030 #endif
2031
2032 /*
2033 * Check that size is in terms of words. This is needed to avoid
2034 * unaligned accesses for some archs when redzoning is used, and makes
2035 * sure any on-slab bufctl's are also correctly aligned.
2036 */
2037 size = ALIGN(size, BYTES_PER_WORD);
2038
2039 if (flags & SLAB_RED_ZONE) {
2040 ralign = REDZONE_ALIGN;
2041 /* If redzoning, ensure that the second redzone is suitably
2042 * aligned, by adjusting the object size accordingly. */
2043 size = ALIGN(size, REDZONE_ALIGN);
2044 }
2045
2046 /* 3) caller mandated alignment */
2047 if (ralign < cachep->align) {
2048 ralign = cachep->align;
2049 }
2050 /* disable debug if necessary */
2051 if (ralign > __alignof__(unsigned long long))
2052 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2053 /*
2054 * 4) Store it.
2055 */
2056 cachep->align = ralign;
2057 cachep->colour_off = cache_line_size();
2058 /* Offset must be a multiple of the alignment. */
2059 if (cachep->colour_off < cachep->align)
2060 cachep->colour_off = cachep->align;
2061
2062 if (slab_is_available())
2063 gfp = GFP_KERNEL;
2064 else
2065 gfp = GFP_NOWAIT;
2066
2067 #if DEBUG
2068
2069 /*
2070 * Both debugging options require word-alignment which is calculated
2071 * into align above.
2072 */
2073 if (flags & SLAB_RED_ZONE) {
2074 /* add space for red zone words */
2075 cachep->obj_offset += sizeof(unsigned long long);
2076 size += 2 * sizeof(unsigned long long);
2077 }
2078 if (flags & SLAB_STORE_USER) {
2079 /* user store requires one word storage behind the end of
2080 * the real object. But if the second red zone needs to be
2081 * aligned to 64 bits, we must allow that much space.
2082 */
2083 if (flags & SLAB_RED_ZONE)
2084 size += REDZONE_ALIGN;
2085 else
2086 size += BYTES_PER_WORD;
2087 }
2088 #endif
2089
2090 kasan_cache_create(cachep, &size, &flags);
2091
2092 size = ALIGN(size, cachep->align);
2093 /*
2094 * We should restrict the number of objects in a slab to implement
2095 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2096 */
2097 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2098 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2099
2100 #if DEBUG
2101 /*
2102 * To activate debug pagealloc, off-slab management is necessary
2103 * requirement. In early phase of initialization, small sized slab
2104 * doesn't get initialized so it would not be possible. So, we need
2105 * to check size >= 256. It guarantees that all necessary small
2106 * sized slab is initialized in current slab initialization sequence.
2107 */
2108 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2109 size >= 256 && cachep->object_size > cache_line_size()) {
2110 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2111 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2112
2113 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2114 flags |= CFLGS_OFF_SLAB;
2115 cachep->obj_offset += tmp_size - size;
2116 size = tmp_size;
2117 goto done;
2118 }
2119 }
2120 }
2121 #endif
2122
2123 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2124 flags |= CFLGS_OBJFREELIST_SLAB;
2125 goto done;
2126 }
2127
2128 if (set_off_slab_cache(cachep, size, flags)) {
2129 flags |= CFLGS_OFF_SLAB;
2130 goto done;
2131 }
2132
2133 if (set_on_slab_cache(cachep, size, flags))
2134 goto done;
2135
2136 return -E2BIG;
2137
2138 done:
2139 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2140 cachep->flags = flags;
2141 cachep->allocflags = __GFP_COMP;
2142 if (flags & SLAB_CACHE_DMA)
2143 cachep->allocflags |= GFP_DMA;
2144 if (flags & SLAB_RECLAIM_ACCOUNT)
2145 cachep->allocflags |= __GFP_RECLAIMABLE;
2146 cachep->size = size;
2147 cachep->reciprocal_buffer_size = reciprocal_value(size);
2148
2149 #if DEBUG
2150 /*
2151 * If we're going to use the generic kernel_map_pages()
2152 * poisoning, then it's going to smash the contents of
2153 * the redzone and userword anyhow, so switch them off.
2154 */
2155 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2156 (cachep->flags & SLAB_POISON) &&
2157 is_debug_pagealloc_cache(cachep))
2158 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2159 #endif
2160
2161 if (OFF_SLAB(cachep)) {
2162 cachep->freelist_cache =
2163 kmalloc_slab(cachep->freelist_size, 0u);
2164 }
2165
2166 err = setup_cpu_cache(cachep, gfp);
2167 if (err) {
2168 __kmem_cache_release(cachep);
2169 return err;
2170 }
2171
2172 return 0;
2173 }
2174
2175 #if DEBUG
2176 static void check_irq_off(void)
2177 {
2178 BUG_ON(!irqs_disabled());
2179 }
2180
2181 static void check_irq_on(void)
2182 {
2183 BUG_ON(irqs_disabled());
2184 }
2185
2186 static void check_mutex_acquired(void)
2187 {
2188 BUG_ON(!mutex_is_locked(&slab_mutex));
2189 }
2190
2191 static void check_spinlock_acquired(struct kmem_cache *cachep)
2192 {
2193 #ifdef CONFIG_SMP
2194 check_irq_off();
2195 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2196 #endif
2197 }
2198
2199 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2200 {
2201 #ifdef CONFIG_SMP
2202 check_irq_off();
2203 assert_spin_locked(&get_node(cachep, node)->list_lock);
2204 #endif
2205 }
2206
2207 #else
2208 #define check_irq_off() do { } while(0)
2209 #define check_irq_on() do { } while(0)
2210 #define check_mutex_acquired() do { } while(0)
2211 #define check_spinlock_acquired(x) do { } while(0)
2212 #define check_spinlock_acquired_node(x, y) do { } while(0)
2213 #endif
2214
2215 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2216 int node, bool free_all, struct list_head *list)
2217 {
2218 int tofree;
2219
2220 if (!ac || !ac->avail)
2221 return;
2222
2223 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2224 if (tofree > ac->avail)
2225 tofree = (ac->avail + 1) / 2;
2226
2227 free_block(cachep, ac->entry, tofree, node, list);
2228 ac->avail -= tofree;
2229 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2230 }
2231
2232 static void do_drain(void *arg)
2233 {
2234 struct kmem_cache *cachep = arg;
2235 struct array_cache *ac;
2236 int node = numa_mem_id();
2237 struct kmem_cache_node *n;
2238 LIST_HEAD(list);
2239
2240 check_irq_off();
2241 ac = cpu_cache_get(cachep);
2242 n = get_node(cachep, node);
2243 spin_lock(&n->list_lock);
2244 free_block(cachep, ac->entry, ac->avail, node, &list);
2245 spin_unlock(&n->list_lock);
2246 slabs_destroy(cachep, &list);
2247 ac->avail = 0;
2248 }
2249
2250 static void drain_cpu_caches(struct kmem_cache *cachep)
2251 {
2252 struct kmem_cache_node *n;
2253 int node;
2254 LIST_HEAD(list);
2255
2256 on_each_cpu(do_drain, cachep, 1);
2257 check_irq_on();
2258 for_each_kmem_cache_node(cachep, node, n)
2259 if (n->alien)
2260 drain_alien_cache(cachep, n->alien);
2261
2262 for_each_kmem_cache_node(cachep, node, n) {
2263 spin_lock_irq(&n->list_lock);
2264 drain_array_locked(cachep, n->shared, node, true, &list);
2265 spin_unlock_irq(&n->list_lock);
2266
2267 slabs_destroy(cachep, &list);
2268 }
2269 }
2270
2271 /*
2272 * Remove slabs from the list of free slabs.
2273 * Specify the number of slabs to drain in tofree.
2274 *
2275 * Returns the actual number of slabs released.
2276 */
2277 static int drain_freelist(struct kmem_cache *cache,
2278 struct kmem_cache_node *n, int tofree)
2279 {
2280 struct list_head *p;
2281 int nr_freed;
2282 struct page *page;
2283
2284 nr_freed = 0;
2285 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2286
2287 spin_lock_irq(&n->list_lock);
2288 p = n->slabs_free.prev;
2289 if (p == &n->slabs_free) {
2290 spin_unlock_irq(&n->list_lock);
2291 goto out;
2292 }
2293
2294 page = list_entry(p, struct page, lru);
2295 list_del(&page->lru);
2296 n->free_slabs--;
2297 n->total_slabs--;
2298 /*
2299 * Safe to drop the lock. The slab is no longer linked
2300 * to the cache.
2301 */
2302 n->free_objects -= cache->num;
2303 spin_unlock_irq(&n->list_lock);
2304 slab_destroy(cache, page);
2305 nr_freed++;
2306 }
2307 out:
2308 return nr_freed;
2309 }
2310
2311 int __kmem_cache_shrink(struct kmem_cache *cachep)
2312 {
2313 int ret = 0;
2314 int node;
2315 struct kmem_cache_node *n;
2316
2317 drain_cpu_caches(cachep);
2318
2319 check_irq_on();
2320 for_each_kmem_cache_node(cachep, node, n) {
2321 drain_freelist(cachep, n, INT_MAX);
2322
2323 ret += !list_empty(&n->slabs_full) ||
2324 !list_empty(&n->slabs_partial);
2325 }
2326 return (ret ? 1 : 0);
2327 }
2328
2329 #ifdef CONFIG_MEMCG
2330 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2331 {
2332 __kmem_cache_shrink(cachep);
2333 }
2334 #endif
2335
2336 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2337 {
2338 return __kmem_cache_shrink(cachep);
2339 }
2340
2341 void __kmem_cache_release(struct kmem_cache *cachep)
2342 {
2343 int i;
2344 struct kmem_cache_node *n;
2345
2346 cache_random_seq_destroy(cachep);
2347
2348 free_percpu(cachep->cpu_cache);
2349
2350 /* NUMA: free the node structures */
2351 for_each_kmem_cache_node(cachep, i, n) {
2352 kfree(n->shared);
2353 free_alien_cache(n->alien);
2354 kfree(n);
2355 cachep->node[i] = NULL;
2356 }
2357 }
2358
2359 /*
2360 * Get the memory for a slab management obj.
2361 *
2362 * For a slab cache when the slab descriptor is off-slab, the
2363 * slab descriptor can't come from the same cache which is being created,
2364 * Because if it is the case, that means we defer the creation of
2365 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2366 * And we eventually call down to __kmem_cache_create(), which
2367 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2368 * This is a "chicken-and-egg" problem.
2369 *
2370 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2371 * which are all initialized during kmem_cache_init().
2372 */
2373 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2374 struct page *page, int colour_off,
2375 gfp_t local_flags, int nodeid)
2376 {
2377 void *freelist;
2378 void *addr = page_address(page);
2379
2380 page->s_mem = addr + colour_off;
2381 page->active = 0;
2382
2383 if (OBJFREELIST_SLAB(cachep))
2384 freelist = NULL;
2385 else if (OFF_SLAB(cachep)) {
2386 /* Slab management obj is off-slab. */
2387 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2388 local_flags, nodeid);
2389 if (!freelist)
2390 return NULL;
2391 } else {
2392 /* We will use last bytes at the slab for freelist */
2393 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2394 cachep->freelist_size;
2395 }
2396
2397 return freelist;
2398 }
2399
2400 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2401 {
2402 return ((freelist_idx_t *)page->freelist)[idx];
2403 }
2404
2405 static inline void set_free_obj(struct page *page,
2406 unsigned int idx, freelist_idx_t val)
2407 {
2408 ((freelist_idx_t *)(page->freelist))[idx] = val;
2409 }
2410
2411 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2412 {
2413 #if DEBUG
2414 int i;
2415
2416 for (i = 0; i < cachep->num; i++) {
2417 void *objp = index_to_obj(cachep, page, i);
2418
2419 if (cachep->flags & SLAB_STORE_USER)
2420 *dbg_userword(cachep, objp) = NULL;
2421
2422 if (cachep->flags & SLAB_RED_ZONE) {
2423 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2424 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2425 }
2426 /*
2427 * Constructors are not allowed to allocate memory from the same
2428 * cache which they are a constructor for. Otherwise, deadlock.
2429 * They must also be threaded.
2430 */
2431 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2432 kasan_unpoison_object_data(cachep,
2433 objp + obj_offset(cachep));
2434 cachep->ctor(objp + obj_offset(cachep));
2435 kasan_poison_object_data(
2436 cachep, objp + obj_offset(cachep));
2437 }
2438
2439 if (cachep->flags & SLAB_RED_ZONE) {
2440 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2441 slab_error(cachep, "constructor overwrote the end of an object");
2442 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2443 slab_error(cachep, "constructor overwrote the start of an object");
2444 }
2445 /* need to poison the objs? */
2446 if (cachep->flags & SLAB_POISON) {
2447 poison_obj(cachep, objp, POISON_FREE);
2448 slab_kernel_map(cachep, objp, 0, 0);
2449 }
2450 }
2451 #endif
2452 }
2453
2454 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2455 /* Hold information during a freelist initialization */
2456 union freelist_init_state {
2457 struct {
2458 unsigned int pos;
2459 unsigned int *list;
2460 unsigned int count;
2461 };
2462 struct rnd_state rnd_state;
2463 };
2464
2465 /*
2466 * Initialize the state based on the randomization methode available.
2467 * return true if the pre-computed list is available, false otherwize.
2468 */
2469 static bool freelist_state_initialize(union freelist_init_state *state,
2470 struct kmem_cache *cachep,
2471 unsigned int count)
2472 {
2473 bool ret;
2474 unsigned int rand;
2475
2476 /* Use best entropy available to define a random shift */
2477 rand = get_random_int();
2478
2479 /* Use a random state if the pre-computed list is not available */
2480 if (!cachep->random_seq) {
2481 prandom_seed_state(&state->rnd_state, rand);
2482 ret = false;
2483 } else {
2484 state->list = cachep->random_seq;
2485 state->count = count;
2486 state->pos = rand % count;
2487 ret = true;
2488 }
2489 return ret;
2490 }
2491
2492 /* Get the next entry on the list and randomize it using a random shift */
2493 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2494 {
2495 if (state->pos >= state->count)
2496 state->pos = 0;
2497 return state->list[state->pos++];
2498 }
2499
2500 /* Swap two freelist entries */
2501 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2502 {
2503 swap(((freelist_idx_t *)page->freelist)[a],
2504 ((freelist_idx_t *)page->freelist)[b]);
2505 }
2506
2507 /*
2508 * Shuffle the freelist initialization state based on pre-computed lists.
2509 * return true if the list was successfully shuffled, false otherwise.
2510 */
2511 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2512 {
2513 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2514 union freelist_init_state state;
2515 bool precomputed;
2516
2517 if (count < 2)
2518 return false;
2519
2520 precomputed = freelist_state_initialize(&state, cachep, count);
2521
2522 /* Take a random entry as the objfreelist */
2523 if (OBJFREELIST_SLAB(cachep)) {
2524 if (!precomputed)
2525 objfreelist = count - 1;
2526 else
2527 objfreelist = next_random_slot(&state);
2528 page->freelist = index_to_obj(cachep, page, objfreelist) +
2529 obj_offset(cachep);
2530 count--;
2531 }
2532
2533 /*
2534 * On early boot, generate the list dynamically.
2535 * Later use a pre-computed list for speed.
2536 */
2537 if (!precomputed) {
2538 for (i = 0; i < count; i++)
2539 set_free_obj(page, i, i);
2540
2541 /* Fisher-Yates shuffle */
2542 for (i = count - 1; i > 0; i--) {
2543 rand = prandom_u32_state(&state.rnd_state);
2544 rand %= (i + 1);
2545 swap_free_obj(page, i, rand);
2546 }
2547 } else {
2548 for (i = 0; i < count; i++)
2549 set_free_obj(page, i, next_random_slot(&state));
2550 }
2551
2552 if (OBJFREELIST_SLAB(cachep))
2553 set_free_obj(page, cachep->num - 1, objfreelist);
2554
2555 return true;
2556 }
2557 #else
2558 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2559 struct page *page)
2560 {
2561 return false;
2562 }
2563 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2564
2565 static void cache_init_objs(struct kmem_cache *cachep,
2566 struct page *page)
2567 {
2568 int i;
2569 void *objp;
2570 bool shuffled;
2571
2572 cache_init_objs_debug(cachep, page);
2573
2574 /* Try to randomize the freelist if enabled */
2575 shuffled = shuffle_freelist(cachep, page);
2576
2577 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2578 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2579 obj_offset(cachep);
2580 }
2581
2582 for (i = 0; i < cachep->num; i++) {
2583 objp = index_to_obj(cachep, page, i);
2584 kasan_init_slab_obj(cachep, objp);
2585
2586 /* constructor could break poison info */
2587 if (DEBUG == 0 && cachep->ctor) {
2588 kasan_unpoison_object_data(cachep, objp);
2589 cachep->ctor(objp);
2590 kasan_poison_object_data(cachep, objp);
2591 }
2592
2593 if (!shuffled)
2594 set_free_obj(page, i, i);
2595 }
2596 }
2597
2598 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2599 {
2600 void *objp;
2601
2602 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2603 page->active++;
2604
2605 #if DEBUG
2606 if (cachep->flags & SLAB_STORE_USER)
2607 set_store_user_dirty(cachep);
2608 #endif
2609
2610 return objp;
2611 }
2612
2613 static void slab_put_obj(struct kmem_cache *cachep,
2614 struct page *page, void *objp)
2615 {
2616 unsigned int objnr = obj_to_index(cachep, page, objp);
2617 #if DEBUG
2618 unsigned int i;
2619
2620 /* Verify double free bug */
2621 for (i = page->active; i < cachep->num; i++) {
2622 if (get_free_obj(page, i) == objnr) {
2623 pr_err("slab: double free detected in cache '%s', objp %p\n",
2624 cachep->name, objp);
2625 BUG();
2626 }
2627 }
2628 #endif
2629 page->active--;
2630 if (!page->freelist)
2631 page->freelist = objp + obj_offset(cachep);
2632
2633 set_free_obj(page, page->active, objnr);
2634 }
2635
2636 /*
2637 * Map pages beginning at addr to the given cache and slab. This is required
2638 * for the slab allocator to be able to lookup the cache and slab of a
2639 * virtual address for kfree, ksize, and slab debugging.
2640 */
2641 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2642 void *freelist)
2643 {
2644 page->slab_cache = cache;
2645 page->freelist = freelist;
2646 }
2647
2648 /*
2649 * Grow (by 1) the number of slabs within a cache. This is called by
2650 * kmem_cache_alloc() when there are no active objs left in a cache.
2651 */
2652 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2653 gfp_t flags, int nodeid)
2654 {
2655 void *freelist;
2656 size_t offset;
2657 gfp_t local_flags;
2658 int page_node;
2659 struct kmem_cache_node *n;
2660 struct page *page;
2661
2662 /*
2663 * Be lazy and only check for valid flags here, keeping it out of the
2664 * critical path in kmem_cache_alloc().
2665 */
2666 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2667 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2668 flags &= ~GFP_SLAB_BUG_MASK;
2669 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2670 invalid_mask, &invalid_mask, flags, &flags);
2671 dump_stack();
2672 }
2673 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2674
2675 check_irq_off();
2676 if (gfpflags_allow_blocking(local_flags))
2677 local_irq_enable();
2678
2679 /*
2680 * Get mem for the objs. Attempt to allocate a physical page from
2681 * 'nodeid'.
2682 */
2683 page = kmem_getpages(cachep, local_flags, nodeid);
2684 if (!page)
2685 goto failed;
2686
2687 page_node = page_to_nid(page);
2688 n = get_node(cachep, page_node);
2689
2690 /* Get colour for the slab, and cal the next value. */
2691 n->colour_next++;
2692 if (n->colour_next >= cachep->colour)
2693 n->colour_next = 0;
2694
2695 offset = n->colour_next;
2696 if (offset >= cachep->colour)
2697 offset = 0;
2698
2699 offset *= cachep->colour_off;
2700
2701 /* Get slab management. */
2702 freelist = alloc_slabmgmt(cachep, page, offset,
2703 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2704 if (OFF_SLAB(cachep) && !freelist)
2705 goto opps1;
2706
2707 slab_map_pages(cachep, page, freelist);
2708
2709 kasan_poison_slab(page);
2710 cache_init_objs(cachep, page);
2711
2712 if (gfpflags_allow_blocking(local_flags))
2713 local_irq_disable();
2714
2715 return page;
2716
2717 opps1:
2718 kmem_freepages(cachep, page);
2719 failed:
2720 if (gfpflags_allow_blocking(local_flags))
2721 local_irq_disable();
2722 return NULL;
2723 }
2724
2725 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2726 {
2727 struct kmem_cache_node *n;
2728 void *list = NULL;
2729
2730 check_irq_off();
2731
2732 if (!page)
2733 return;
2734
2735 INIT_LIST_HEAD(&page->lru);
2736 n = get_node(cachep, page_to_nid(page));
2737
2738 spin_lock(&n->list_lock);
2739 n->total_slabs++;
2740 if (!page->active) {
2741 list_add_tail(&page->lru, &(n->slabs_free));
2742 n->free_slabs++;
2743 } else
2744 fixup_slab_list(cachep, n, page, &list);
2745
2746 STATS_INC_GROWN(cachep);
2747 n->free_objects += cachep->num - page->active;
2748 spin_unlock(&n->list_lock);
2749
2750 fixup_objfreelist_debug(cachep, &list);
2751 }
2752
2753 #if DEBUG
2754
2755 /*
2756 * Perform extra freeing checks:
2757 * - detect bad pointers.
2758 * - POISON/RED_ZONE checking
2759 */
2760 static void kfree_debugcheck(const void *objp)
2761 {
2762 if (!virt_addr_valid(objp)) {
2763 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2764 (unsigned long)objp);
2765 BUG();
2766 }
2767 }
2768
2769 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2770 {
2771 unsigned long long redzone1, redzone2;
2772
2773 redzone1 = *dbg_redzone1(cache, obj);
2774 redzone2 = *dbg_redzone2(cache, obj);
2775
2776 /*
2777 * Redzone is ok.
2778 */
2779 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2780 return;
2781
2782 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2783 slab_error(cache, "double free detected");
2784 else
2785 slab_error(cache, "memory outside object was overwritten");
2786
2787 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2788 obj, redzone1, redzone2);
2789 }
2790
2791 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2792 unsigned long caller)
2793 {
2794 unsigned int objnr;
2795 struct page *page;
2796
2797 BUG_ON(virt_to_cache(objp) != cachep);
2798
2799 objp -= obj_offset(cachep);
2800 kfree_debugcheck(objp);
2801 page = virt_to_head_page(objp);
2802
2803 if (cachep->flags & SLAB_RED_ZONE) {
2804 verify_redzone_free(cachep, objp);
2805 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2806 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2807 }
2808 if (cachep->flags & SLAB_STORE_USER) {
2809 set_store_user_dirty(cachep);
2810 *dbg_userword(cachep, objp) = (void *)caller;
2811 }
2812
2813 objnr = obj_to_index(cachep, page, objp);
2814
2815 BUG_ON(objnr >= cachep->num);
2816 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2817
2818 if (cachep->flags & SLAB_POISON) {
2819 poison_obj(cachep, objp, POISON_FREE);
2820 slab_kernel_map(cachep, objp, 0, caller);
2821 }
2822 return objp;
2823 }
2824
2825 #else
2826 #define kfree_debugcheck(x) do { } while(0)
2827 #define cache_free_debugcheck(x,objp,z) (objp)
2828 #endif
2829
2830 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2831 void **list)
2832 {
2833 #if DEBUG
2834 void *next = *list;
2835 void *objp;
2836
2837 while (next) {
2838 objp = next - obj_offset(cachep);
2839 next = *(void **)next;
2840 poison_obj(cachep, objp, POISON_FREE);
2841 }
2842 #endif
2843 }
2844
2845 static inline void fixup_slab_list(struct kmem_cache *cachep,
2846 struct kmem_cache_node *n, struct page *page,
2847 void **list)
2848 {
2849 /* move slabp to correct slabp list: */
2850 list_del(&page->lru);
2851 if (page->active == cachep->num) {
2852 list_add(&page->lru, &n->slabs_full);
2853 if (OBJFREELIST_SLAB(cachep)) {
2854 #if DEBUG
2855 /* Poisoning will be done without holding the lock */
2856 if (cachep->flags & SLAB_POISON) {
2857 void **objp = page->freelist;
2858
2859 *objp = *list;
2860 *list = objp;
2861 }
2862 #endif
2863 page->freelist = NULL;
2864 }
2865 } else
2866 list_add(&page->lru, &n->slabs_partial);
2867 }
2868
2869 /* Try to find non-pfmemalloc slab if needed */
2870 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2871 struct page *page, bool pfmemalloc)
2872 {
2873 if (!page)
2874 return NULL;
2875
2876 if (pfmemalloc)
2877 return page;
2878
2879 if (!PageSlabPfmemalloc(page))
2880 return page;
2881
2882 /* No need to keep pfmemalloc slab if we have enough free objects */
2883 if (n->free_objects > n->free_limit) {
2884 ClearPageSlabPfmemalloc(page);
2885 return page;
2886 }
2887
2888 /* Move pfmemalloc slab to the end of list to speed up next search */
2889 list_del(&page->lru);
2890 if (!page->active) {
2891 list_add_tail(&page->lru, &n->slabs_free);
2892 n->free_slabs++;
2893 } else
2894 list_add_tail(&page->lru, &n->slabs_partial);
2895
2896 list_for_each_entry(page, &n->slabs_partial, lru) {
2897 if (!PageSlabPfmemalloc(page))
2898 return page;
2899 }
2900
2901 n->free_touched = 1;
2902 list_for_each_entry(page, &n->slabs_free, lru) {
2903 if (!PageSlabPfmemalloc(page)) {
2904 n->free_slabs--;
2905 return page;
2906 }
2907 }
2908
2909 return NULL;
2910 }
2911
2912 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2913 {
2914 struct page *page;
2915
2916 assert_spin_locked(&n->list_lock);
2917 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2918 if (!page) {
2919 n->free_touched = 1;
2920 page = list_first_entry_or_null(&n->slabs_free, struct page,
2921 lru);
2922 if (page)
2923 n->free_slabs--;
2924 }
2925
2926 if (sk_memalloc_socks())
2927 page = get_valid_first_slab(n, page, pfmemalloc);
2928
2929 return page;
2930 }
2931
2932 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2933 struct kmem_cache_node *n, gfp_t flags)
2934 {
2935 struct page *page;
2936 void *obj;
2937 void *list = NULL;
2938
2939 if (!gfp_pfmemalloc_allowed(flags))
2940 return NULL;
2941
2942 spin_lock(&n->list_lock);
2943 page = get_first_slab(n, true);
2944 if (!page) {
2945 spin_unlock(&n->list_lock);
2946 return NULL;
2947 }
2948
2949 obj = slab_get_obj(cachep, page);
2950 n->free_objects--;
2951
2952 fixup_slab_list(cachep, n, page, &list);
2953
2954 spin_unlock(&n->list_lock);
2955 fixup_objfreelist_debug(cachep, &list);
2956
2957 return obj;
2958 }
2959
2960 /*
2961 * Slab list should be fixed up by fixup_slab_list() for existing slab
2962 * or cache_grow_end() for new slab
2963 */
2964 static __always_inline int alloc_block(struct kmem_cache *cachep,
2965 struct array_cache *ac, struct page *page, int batchcount)
2966 {
2967 /*
2968 * There must be at least one object available for
2969 * allocation.
2970 */
2971 BUG_ON(page->active >= cachep->num);
2972
2973 while (page->active < cachep->num && batchcount--) {
2974 STATS_INC_ALLOCED(cachep);
2975 STATS_INC_ACTIVE(cachep);
2976 STATS_SET_HIGH(cachep);
2977
2978 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2979 }
2980
2981 return batchcount;
2982 }
2983
2984 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2985 {
2986 int batchcount;
2987 struct kmem_cache_node *n;
2988 struct array_cache *ac, *shared;
2989 int node;
2990 void *list = NULL;
2991 struct page *page;
2992
2993 check_irq_off();
2994 node = numa_mem_id();
2995
2996 ac = cpu_cache_get(cachep);
2997 batchcount = ac->batchcount;
2998 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2999 /*
3000 * If there was little recent activity on this cache, then
3001 * perform only a partial refill. Otherwise we could generate
3002 * refill bouncing.
3003 */
3004 batchcount = BATCHREFILL_LIMIT;
3005 }
3006 n = get_node(cachep, node);
3007
3008 BUG_ON(ac->avail > 0 || !n);
3009 shared = READ_ONCE(n->shared);
3010 if (!n->free_objects && (!shared || !shared->avail))
3011 goto direct_grow;
3012
3013 spin_lock(&n->list_lock);
3014 shared = READ_ONCE(n->shared);
3015
3016 /* See if we can refill from the shared array */
3017 if (shared && transfer_objects(ac, shared, batchcount)) {
3018 shared->touched = 1;
3019 goto alloc_done;
3020 }
3021
3022 while (batchcount > 0) {
3023 /* Get slab alloc is to come from. */
3024 page = get_first_slab(n, false);
3025 if (!page)
3026 goto must_grow;
3027
3028 check_spinlock_acquired(cachep);
3029
3030 batchcount = alloc_block(cachep, ac, page, batchcount);
3031 fixup_slab_list(cachep, n, page, &list);
3032 }
3033
3034 must_grow:
3035 n->free_objects -= ac->avail;
3036 alloc_done:
3037 spin_unlock(&n->list_lock);
3038 fixup_objfreelist_debug(cachep, &list);
3039
3040 direct_grow:
3041 if (unlikely(!ac->avail)) {
3042 /* Check if we can use obj in pfmemalloc slab */
3043 if (sk_memalloc_socks()) {
3044 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3045
3046 if (obj)
3047 return obj;
3048 }
3049
3050 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3051
3052 /*
3053 * cache_grow_begin() can reenable interrupts,
3054 * then ac could change.
3055 */
3056 ac = cpu_cache_get(cachep);
3057 if (!ac->avail && page)
3058 alloc_block(cachep, ac, page, batchcount);
3059 cache_grow_end(cachep, page);
3060
3061 if (!ac->avail)
3062 return NULL;
3063 }
3064 ac->touched = 1;
3065
3066 return ac->entry[--ac->avail];
3067 }
3068
3069 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3070 gfp_t flags)
3071 {
3072 might_sleep_if(gfpflags_allow_blocking(flags));
3073 }
3074
3075 #if DEBUG
3076 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3077 gfp_t flags, void *objp, unsigned long caller)
3078 {
3079 if (!objp)
3080 return objp;
3081 if (cachep->flags & SLAB_POISON) {
3082 check_poison_obj(cachep, objp);
3083 slab_kernel_map(cachep, objp, 1, 0);
3084 poison_obj(cachep, objp, POISON_INUSE);
3085 }
3086 if (cachep->flags & SLAB_STORE_USER)
3087 *dbg_userword(cachep, objp) = (void *)caller;
3088
3089 if (cachep->flags & SLAB_RED_ZONE) {
3090 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3091 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3092 slab_error(cachep, "double free, or memory outside object was overwritten");
3093 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3094 objp, *dbg_redzone1(cachep, objp),
3095 *dbg_redzone2(cachep, objp));
3096 }
3097 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3098 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3099 }
3100
3101 objp += obj_offset(cachep);
3102 if (cachep->ctor && cachep->flags & SLAB_POISON)
3103 cachep->ctor(objp);
3104 if (ARCH_SLAB_MINALIGN &&
3105 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3106 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3107 objp, (int)ARCH_SLAB_MINALIGN);
3108 }
3109 return objp;
3110 }
3111 #else
3112 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3113 #endif
3114
3115 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3116 {
3117 void *objp;
3118 struct array_cache *ac;
3119
3120 check_irq_off();
3121
3122 ac = cpu_cache_get(cachep);
3123 if (likely(ac->avail)) {
3124 ac->touched = 1;
3125 objp = ac->entry[--ac->avail];
3126
3127 STATS_INC_ALLOCHIT(cachep);
3128 goto out;
3129 }
3130
3131 STATS_INC_ALLOCMISS(cachep);
3132 objp = cache_alloc_refill(cachep, flags);
3133 /*
3134 * the 'ac' may be updated by cache_alloc_refill(),
3135 * and kmemleak_erase() requires its correct value.
3136 */
3137 ac = cpu_cache_get(cachep);
3138
3139 out:
3140 /*
3141 * To avoid a false negative, if an object that is in one of the
3142 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3143 * treat the array pointers as a reference to the object.
3144 */
3145 if (objp)
3146 kmemleak_erase(&ac->entry[ac->avail]);
3147 return objp;
3148 }
3149
3150 #ifdef CONFIG_NUMA
3151 /*
3152 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3153 *
3154 * If we are in_interrupt, then process context, including cpusets and
3155 * mempolicy, may not apply and should not be used for allocation policy.
3156 */
3157 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3158 {
3159 int nid_alloc, nid_here;
3160
3161 if (in_interrupt() || (flags & __GFP_THISNODE))
3162 return NULL;
3163 nid_alloc = nid_here = numa_mem_id();
3164 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3165 nid_alloc = cpuset_slab_spread_node();
3166 else if (current->mempolicy)
3167 nid_alloc = mempolicy_slab_node();
3168 if (nid_alloc != nid_here)
3169 return ____cache_alloc_node(cachep, flags, nid_alloc);
3170 return NULL;
3171 }
3172
3173 /*
3174 * Fallback function if there was no memory available and no objects on a
3175 * certain node and fall back is permitted. First we scan all the
3176 * available node for available objects. If that fails then we
3177 * perform an allocation without specifying a node. This allows the page
3178 * allocator to do its reclaim / fallback magic. We then insert the
3179 * slab into the proper nodelist and then allocate from it.
3180 */
3181 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3182 {
3183 struct zonelist *zonelist;
3184 struct zoneref *z;
3185 struct zone *zone;
3186 enum zone_type high_zoneidx = gfp_zone(flags);
3187 void *obj = NULL;
3188 struct page *page;
3189 int nid;
3190 unsigned int cpuset_mems_cookie;
3191
3192 if (flags & __GFP_THISNODE)
3193 return NULL;
3194
3195 retry_cpuset:
3196 cpuset_mems_cookie = read_mems_allowed_begin();
3197 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3198
3199 retry:
3200 /*
3201 * Look through allowed nodes for objects available
3202 * from existing per node queues.
3203 */
3204 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3205 nid = zone_to_nid(zone);
3206
3207 if (cpuset_zone_allowed(zone, flags) &&
3208 get_node(cache, nid) &&
3209 get_node(cache, nid)->free_objects) {
3210 obj = ____cache_alloc_node(cache,
3211 gfp_exact_node(flags), nid);
3212 if (obj)
3213 break;
3214 }
3215 }
3216
3217 if (!obj) {
3218 /*
3219 * This allocation will be performed within the constraints
3220 * of the current cpuset / memory policy requirements.
3221 * We may trigger various forms of reclaim on the allowed
3222 * set and go into memory reserves if necessary.
3223 */
3224 page = cache_grow_begin(cache, flags, numa_mem_id());
3225 cache_grow_end(cache, page);
3226 if (page) {
3227 nid = page_to_nid(page);
3228 obj = ____cache_alloc_node(cache,
3229 gfp_exact_node(flags), nid);
3230
3231 /*
3232 * Another processor may allocate the objects in
3233 * the slab since we are not holding any locks.
3234 */
3235 if (!obj)
3236 goto retry;
3237 }
3238 }
3239
3240 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3241 goto retry_cpuset;
3242 return obj;
3243 }
3244
3245 /*
3246 * A interface to enable slab creation on nodeid
3247 */
3248 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3249 int nodeid)
3250 {
3251 struct page *page;
3252 struct kmem_cache_node *n;
3253 void *obj = NULL;
3254 void *list = NULL;
3255
3256 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3257 n = get_node(cachep, nodeid);
3258 BUG_ON(!n);
3259
3260 check_irq_off();
3261 spin_lock(&n->list_lock);
3262 page = get_first_slab(n, false);
3263 if (!page)
3264 goto must_grow;
3265
3266 check_spinlock_acquired_node(cachep, nodeid);
3267
3268 STATS_INC_NODEALLOCS(cachep);
3269 STATS_INC_ACTIVE(cachep);
3270 STATS_SET_HIGH(cachep);
3271
3272 BUG_ON(page->active == cachep->num);
3273
3274 obj = slab_get_obj(cachep, page);
3275 n->free_objects--;
3276
3277 fixup_slab_list(cachep, n, page, &list);
3278
3279 spin_unlock(&n->list_lock);
3280 fixup_objfreelist_debug(cachep, &list);
3281 return obj;
3282
3283 must_grow:
3284 spin_unlock(&n->list_lock);
3285 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3286 if (page) {
3287 /* This slab isn't counted yet so don't update free_objects */
3288 obj = slab_get_obj(cachep, page);
3289 }
3290 cache_grow_end(cachep, page);
3291
3292 return obj ? obj : fallback_alloc(cachep, flags);
3293 }
3294
3295 static __always_inline void *
3296 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3297 unsigned long caller)
3298 {
3299 unsigned long save_flags;
3300 void *ptr;
3301 int slab_node = numa_mem_id();
3302
3303 flags &= gfp_allowed_mask;
3304 cachep = slab_pre_alloc_hook(cachep, flags);
3305 if (unlikely(!cachep))
3306 return NULL;
3307
3308 cache_alloc_debugcheck_before(cachep, flags);
3309 local_irq_save(save_flags);
3310
3311 if (nodeid == NUMA_NO_NODE)
3312 nodeid = slab_node;
3313
3314 if (unlikely(!get_node(cachep, nodeid))) {
3315 /* Node not bootstrapped yet */
3316 ptr = fallback_alloc(cachep, flags);
3317 goto out;
3318 }
3319
3320 if (nodeid == slab_node) {
3321 /*
3322 * Use the locally cached objects if possible.
3323 * However ____cache_alloc does not allow fallback
3324 * to other nodes. It may fail while we still have
3325 * objects on other nodes available.
3326 */
3327 ptr = ____cache_alloc(cachep, flags);
3328 if (ptr)
3329 goto out;
3330 }
3331 /* ___cache_alloc_node can fall back to other nodes */
3332 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3333 out:
3334 local_irq_restore(save_flags);
3335 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3336
3337 if (unlikely(flags & __GFP_ZERO) && ptr)
3338 memset(ptr, 0, cachep->object_size);
3339
3340 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3341 return ptr;
3342 }
3343
3344 static __always_inline void *
3345 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3346 {
3347 void *objp;
3348
3349 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3350 objp = alternate_node_alloc(cache, flags);
3351 if (objp)
3352 goto out;
3353 }
3354 objp = ____cache_alloc(cache, flags);
3355
3356 /*
3357 * We may just have run out of memory on the local node.
3358 * ____cache_alloc_node() knows how to locate memory on other nodes
3359 */
3360 if (!objp)
3361 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3362
3363 out:
3364 return objp;
3365 }
3366 #else
3367
3368 static __always_inline void *
3369 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3370 {
3371 return ____cache_alloc(cachep, flags);
3372 }
3373
3374 #endif /* CONFIG_NUMA */
3375
3376 static __always_inline void *
3377 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3378 {
3379 unsigned long save_flags;
3380 void *objp;
3381
3382 flags &= gfp_allowed_mask;
3383 cachep = slab_pre_alloc_hook(cachep, flags);
3384 if (unlikely(!cachep))
3385 return NULL;
3386
3387 cache_alloc_debugcheck_before(cachep, flags);
3388 local_irq_save(save_flags);
3389 objp = __do_cache_alloc(cachep, flags);
3390 local_irq_restore(save_flags);
3391 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3392 prefetchw(objp);
3393
3394 if (unlikely(flags & __GFP_ZERO) && objp)
3395 memset(objp, 0, cachep->object_size);
3396
3397 slab_post_alloc_hook(cachep, flags, 1, &objp);
3398 return objp;
3399 }
3400
3401 /*
3402 * Caller needs to acquire correct kmem_cache_node's list_lock
3403 * @list: List of detached free slabs should be freed by caller
3404 */
3405 static void free_block(struct kmem_cache *cachep, void **objpp,
3406 int nr_objects, int node, struct list_head *list)
3407 {
3408 int i;
3409 struct kmem_cache_node *n = get_node(cachep, node);
3410 struct page *page;
3411
3412 n->free_objects += nr_objects;
3413
3414 for (i = 0; i < nr_objects; i++) {
3415 void *objp;
3416 struct page *page;
3417
3418 objp = objpp[i];
3419
3420 page = virt_to_head_page(objp);
3421 list_del(&page->lru);
3422 check_spinlock_acquired_node(cachep, node);
3423 slab_put_obj(cachep, page, objp);
3424 STATS_DEC_ACTIVE(cachep);
3425
3426 /* fixup slab chains */
3427 if (page->active == 0) {
3428 list_add(&page->lru, &n->slabs_free);
3429 n->free_slabs++;
3430 } else {
3431 /* Unconditionally move a slab to the end of the
3432 * partial list on free - maximum time for the
3433 * other objects to be freed, too.
3434 */
3435 list_add_tail(&page->lru, &n->slabs_partial);
3436 }
3437 }
3438
3439 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3440 n->free_objects -= cachep->num;
3441
3442 page = list_last_entry(&n->slabs_free, struct page, lru);
3443 list_move(&page->lru, list);
3444 n->free_slabs--;
3445 n->total_slabs--;
3446 }
3447 }
3448
3449 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3450 {
3451 int batchcount;
3452 struct kmem_cache_node *n;
3453 int node = numa_mem_id();
3454 LIST_HEAD(list);
3455
3456 batchcount = ac->batchcount;
3457
3458 check_irq_off();
3459 n = get_node(cachep, node);
3460 spin_lock(&n->list_lock);
3461 if (n->shared) {
3462 struct array_cache *shared_array = n->shared;
3463 int max = shared_array->limit - shared_array->avail;
3464 if (max) {
3465 if (batchcount > max)
3466 batchcount = max;
3467 memcpy(&(shared_array->entry[shared_array->avail]),
3468 ac->entry, sizeof(void *) * batchcount);
3469 shared_array->avail += batchcount;
3470 goto free_done;
3471 }
3472 }
3473
3474 free_block(cachep, ac->entry, batchcount, node, &list);
3475 free_done:
3476 #if STATS
3477 {
3478 int i = 0;
3479 struct page *page;
3480
3481 list_for_each_entry(page, &n->slabs_free, lru) {
3482 BUG_ON(page->active);
3483
3484 i++;
3485 }
3486 STATS_SET_FREEABLE(cachep, i);
3487 }
3488 #endif
3489 spin_unlock(&n->list_lock);
3490 slabs_destroy(cachep, &list);
3491 ac->avail -= batchcount;
3492 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3493 }
3494
3495 /*
3496 * Release an obj back to its cache. If the obj has a constructed state, it must
3497 * be in this state _before_ it is released. Called with disabled ints.
3498 */
3499 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3500 unsigned long caller)
3501 {
3502 /* Put the object into the quarantine, don't touch it for now. */
3503 if (kasan_slab_free(cachep, objp))
3504 return;
3505
3506 ___cache_free(cachep, objp, caller);
3507 }
3508
3509 void ___cache_free(struct kmem_cache *cachep, void *objp,
3510 unsigned long caller)
3511 {
3512 struct array_cache *ac = cpu_cache_get(cachep);
3513
3514 check_irq_off();
3515 kmemleak_free_recursive(objp, cachep->flags);
3516 objp = cache_free_debugcheck(cachep, objp, caller);
3517
3518 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3519
3520 /*
3521 * Skip calling cache_free_alien() when the platform is not numa.
3522 * This will avoid cache misses that happen while accessing slabp (which
3523 * is per page memory reference) to get nodeid. Instead use a global
3524 * variable to skip the call, which is mostly likely to be present in
3525 * the cache.
3526 */
3527 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3528 return;
3529
3530 if (ac->avail < ac->limit) {
3531 STATS_INC_FREEHIT(cachep);
3532 } else {
3533 STATS_INC_FREEMISS(cachep);
3534 cache_flusharray(cachep, ac);
3535 }
3536
3537 if (sk_memalloc_socks()) {
3538 struct page *page = virt_to_head_page(objp);
3539
3540 if (unlikely(PageSlabPfmemalloc(page))) {
3541 cache_free_pfmemalloc(cachep, page, objp);
3542 return;
3543 }
3544 }
3545
3546 ac->entry[ac->avail++] = objp;
3547 }
3548
3549 /**
3550 * kmem_cache_alloc - Allocate an object
3551 * @cachep: The cache to allocate from.
3552 * @flags: See kmalloc().
3553 *
3554 * Allocate an object from this cache. The flags are only relevant
3555 * if the cache has no available objects.
3556 */
3557 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3558 {
3559 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3560
3561 kasan_slab_alloc(cachep, ret, flags);
3562 trace_kmem_cache_alloc(_RET_IP_, ret,
3563 cachep->object_size, cachep->size, flags);
3564
3565 return ret;
3566 }
3567 EXPORT_SYMBOL(kmem_cache_alloc);
3568
3569 static __always_inline void
3570 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3571 size_t size, void **p, unsigned long caller)
3572 {
3573 size_t i;
3574
3575 for (i = 0; i < size; i++)
3576 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3577 }
3578
3579 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3580 void **p)
3581 {
3582 size_t i;
3583
3584 s = slab_pre_alloc_hook(s, flags);
3585 if (!s)
3586 return 0;
3587
3588 cache_alloc_debugcheck_before(s, flags);
3589
3590 local_irq_disable();
3591 for (i = 0; i < size; i++) {
3592 void *objp = __do_cache_alloc(s, flags);
3593
3594 if (unlikely(!objp))
3595 goto error;
3596 p[i] = objp;
3597 }
3598 local_irq_enable();
3599
3600 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3601
3602 /* Clear memory outside IRQ disabled section */
3603 if (unlikely(flags & __GFP_ZERO))
3604 for (i = 0; i < size; i++)
3605 memset(p[i], 0, s->object_size);
3606
3607 slab_post_alloc_hook(s, flags, size, p);
3608 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3609 return size;
3610 error:
3611 local_irq_enable();
3612 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3613 slab_post_alloc_hook(s, flags, i, p);
3614 __kmem_cache_free_bulk(s, i, p);
3615 return 0;
3616 }
3617 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3618
3619 #ifdef CONFIG_TRACING
3620 void *
3621 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3622 {
3623 void *ret;
3624
3625 ret = slab_alloc(cachep, flags, _RET_IP_);
3626
3627 kasan_kmalloc(cachep, ret, size, flags);
3628 trace_kmalloc(_RET_IP_, ret,
3629 size, cachep->size, flags);
3630 return ret;
3631 }
3632 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3633 #endif
3634
3635 #ifdef CONFIG_NUMA
3636 /**
3637 * kmem_cache_alloc_node - Allocate an object on the specified node
3638 * @cachep: The cache to allocate from.
3639 * @flags: See kmalloc().
3640 * @nodeid: node number of the target node.
3641 *
3642 * Identical to kmem_cache_alloc but it will allocate memory on the given
3643 * node, which can improve the performance for cpu bound structures.
3644 *
3645 * Fallback to other node is possible if __GFP_THISNODE is not set.
3646 */
3647 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3648 {
3649 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3650
3651 kasan_slab_alloc(cachep, ret, flags);
3652 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3653 cachep->object_size, cachep->size,
3654 flags, nodeid);
3655
3656 return ret;
3657 }
3658 EXPORT_SYMBOL(kmem_cache_alloc_node);
3659
3660 #ifdef CONFIG_TRACING
3661 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3662 gfp_t flags,
3663 int nodeid,
3664 size_t size)
3665 {
3666 void *ret;
3667
3668 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3669
3670 kasan_kmalloc(cachep, ret, size, flags);
3671 trace_kmalloc_node(_RET_IP_, ret,
3672 size, cachep->size,
3673 flags, nodeid);
3674 return ret;
3675 }
3676 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3677 #endif
3678
3679 static __always_inline void *
3680 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3681 {
3682 struct kmem_cache *cachep;
3683 void *ret;
3684
3685 cachep = kmalloc_slab(size, flags);
3686 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3687 return cachep;
3688 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3689 kasan_kmalloc(cachep, ret, size, flags);
3690
3691 return ret;
3692 }
3693
3694 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3695 {
3696 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3697 }
3698 EXPORT_SYMBOL(__kmalloc_node);
3699
3700 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3701 int node, unsigned long caller)
3702 {
3703 return __do_kmalloc_node(size, flags, node, caller);
3704 }
3705 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3706 #endif /* CONFIG_NUMA */
3707
3708 /**
3709 * __do_kmalloc - allocate memory
3710 * @size: how many bytes of memory are required.
3711 * @flags: the type of memory to allocate (see kmalloc).
3712 * @caller: function caller for debug tracking of the caller
3713 */
3714 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3715 unsigned long caller)
3716 {
3717 struct kmem_cache *cachep;
3718 void *ret;
3719
3720 cachep = kmalloc_slab(size, flags);
3721 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3722 return cachep;
3723 ret = slab_alloc(cachep, flags, caller);
3724
3725 kasan_kmalloc(cachep, ret, size, flags);
3726 trace_kmalloc(caller, ret,
3727 size, cachep->size, flags);
3728
3729 return ret;
3730 }
3731
3732 void *__kmalloc(size_t size, gfp_t flags)
3733 {
3734 return __do_kmalloc(size, flags, _RET_IP_);
3735 }
3736 EXPORT_SYMBOL(__kmalloc);
3737
3738 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3739 {
3740 return __do_kmalloc(size, flags, caller);
3741 }
3742 EXPORT_SYMBOL(__kmalloc_track_caller);
3743
3744 /**
3745 * kmem_cache_free - Deallocate an object
3746 * @cachep: The cache the allocation was from.
3747 * @objp: The previously allocated object.
3748 *
3749 * Free an object which was previously allocated from this
3750 * cache.
3751 */
3752 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3753 {
3754 unsigned long flags;
3755 cachep = cache_from_obj(cachep, objp);
3756 if (!cachep)
3757 return;
3758
3759 local_irq_save(flags);
3760 debug_check_no_locks_freed(objp, cachep->object_size);
3761 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3762 debug_check_no_obj_freed(objp, cachep->object_size);
3763 __cache_free(cachep, objp, _RET_IP_);
3764 local_irq_restore(flags);
3765
3766 trace_kmem_cache_free(_RET_IP_, objp);
3767 }
3768 EXPORT_SYMBOL(kmem_cache_free);
3769
3770 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3771 {
3772 struct kmem_cache *s;
3773 size_t i;
3774
3775 local_irq_disable();
3776 for (i = 0; i < size; i++) {
3777 void *objp = p[i];
3778
3779 if (!orig_s) /* called via kfree_bulk */
3780 s = virt_to_cache(objp);
3781 else
3782 s = cache_from_obj(orig_s, objp);
3783
3784 debug_check_no_locks_freed(objp, s->object_size);
3785 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3786 debug_check_no_obj_freed(objp, s->object_size);
3787
3788 __cache_free(s, objp, _RET_IP_);
3789 }
3790 local_irq_enable();
3791
3792 /* FIXME: add tracing */
3793 }
3794 EXPORT_SYMBOL(kmem_cache_free_bulk);
3795
3796 /**
3797 * kfree - free previously allocated memory
3798 * @objp: pointer returned by kmalloc.
3799 *
3800 * If @objp is NULL, no operation is performed.
3801 *
3802 * Don't free memory not originally allocated by kmalloc()
3803 * or you will run into trouble.
3804 */
3805 void kfree(const void *objp)
3806 {
3807 struct kmem_cache *c;
3808 unsigned long flags;
3809
3810 trace_kfree(_RET_IP_, objp);
3811
3812 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3813 return;
3814 local_irq_save(flags);
3815 kfree_debugcheck(objp);
3816 c = virt_to_cache(objp);
3817 debug_check_no_locks_freed(objp, c->object_size);
3818
3819 debug_check_no_obj_freed(objp, c->object_size);
3820 __cache_free(c, (void *)objp, _RET_IP_);
3821 local_irq_restore(flags);
3822 }
3823 EXPORT_SYMBOL(kfree);
3824
3825 /*
3826 * This initializes kmem_cache_node or resizes various caches for all nodes.
3827 */
3828 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3829 {
3830 int ret;
3831 int node;
3832 struct kmem_cache_node *n;
3833
3834 for_each_online_node(node) {
3835 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3836 if (ret)
3837 goto fail;
3838
3839 }
3840
3841 return 0;
3842
3843 fail:
3844 if (!cachep->list.next) {
3845 /* Cache is not active yet. Roll back what we did */
3846 node--;
3847 while (node >= 0) {
3848 n = get_node(cachep, node);
3849 if (n) {
3850 kfree(n->shared);
3851 free_alien_cache(n->alien);
3852 kfree(n);
3853 cachep->node[node] = NULL;
3854 }
3855 node--;
3856 }
3857 }
3858 return -ENOMEM;
3859 }
3860
3861 /* Always called with the slab_mutex held */
3862 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3863 int batchcount, int shared, gfp_t gfp)
3864 {
3865 struct array_cache __percpu *cpu_cache, *prev;
3866 int cpu;
3867
3868 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3869 if (!cpu_cache)
3870 return -ENOMEM;
3871
3872 prev = cachep->cpu_cache;
3873 cachep->cpu_cache = cpu_cache;
3874 /*
3875 * Without a previous cpu_cache there's no need to synchronize remote
3876 * cpus, so skip the IPIs.
3877 */
3878 if (prev)
3879 kick_all_cpus_sync();
3880
3881 check_irq_on();
3882 cachep->batchcount = batchcount;
3883 cachep->limit = limit;
3884 cachep->shared = shared;
3885
3886 if (!prev)
3887 goto setup_node;
3888
3889 for_each_online_cpu(cpu) {
3890 LIST_HEAD(list);
3891 int node;
3892 struct kmem_cache_node *n;
3893 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3894
3895 node = cpu_to_mem(cpu);
3896 n = get_node(cachep, node);
3897 spin_lock_irq(&n->list_lock);
3898 free_block(cachep, ac->entry, ac->avail, node, &list);
3899 spin_unlock_irq(&n->list_lock);
3900 slabs_destroy(cachep, &list);
3901 }
3902 free_percpu(prev);
3903
3904 setup_node:
3905 return setup_kmem_cache_nodes(cachep, gfp);
3906 }
3907
3908 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3909 int batchcount, int shared, gfp_t gfp)
3910 {
3911 int ret;
3912 struct kmem_cache *c;
3913
3914 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3915
3916 if (slab_state < FULL)
3917 return ret;
3918
3919 if ((ret < 0) || !is_root_cache(cachep))
3920 return ret;
3921
3922 lockdep_assert_held(&slab_mutex);
3923 for_each_memcg_cache(c, cachep) {
3924 /* return value determined by the root cache only */
3925 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3926 }
3927
3928 return ret;
3929 }
3930
3931 /* Called with slab_mutex held always */
3932 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3933 {
3934 int err;
3935 int limit = 0;
3936 int shared = 0;
3937 int batchcount = 0;
3938
3939 err = cache_random_seq_create(cachep, cachep->num, gfp);
3940 if (err)
3941 goto end;
3942
3943 if (!is_root_cache(cachep)) {
3944 struct kmem_cache *root = memcg_root_cache(cachep);
3945 limit = root->limit;
3946 shared = root->shared;
3947 batchcount = root->batchcount;
3948 }
3949
3950 if (limit && shared && batchcount)
3951 goto skip_setup;
3952 /*
3953 * The head array serves three purposes:
3954 * - create a LIFO ordering, i.e. return objects that are cache-warm
3955 * - reduce the number of spinlock operations.
3956 * - reduce the number of linked list operations on the slab and
3957 * bufctl chains: array operations are cheaper.
3958 * The numbers are guessed, we should auto-tune as described by
3959 * Bonwick.
3960 */
3961 if (cachep->size > 131072)
3962 limit = 1;
3963 else if (cachep->size > PAGE_SIZE)
3964 limit = 8;
3965 else if (cachep->size > 1024)
3966 limit = 24;
3967 else if (cachep->size > 256)
3968 limit = 54;
3969 else
3970 limit = 120;
3971
3972 /*
3973 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3974 * allocation behaviour: Most allocs on one cpu, most free operations
3975 * on another cpu. For these cases, an efficient object passing between
3976 * cpus is necessary. This is provided by a shared array. The array
3977 * replaces Bonwick's magazine layer.
3978 * On uniprocessor, it's functionally equivalent (but less efficient)
3979 * to a larger limit. Thus disabled by default.
3980 */
3981 shared = 0;
3982 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3983 shared = 8;
3984
3985 #if DEBUG
3986 /*
3987 * With debugging enabled, large batchcount lead to excessively long
3988 * periods with disabled local interrupts. Limit the batchcount
3989 */
3990 if (limit > 32)
3991 limit = 32;
3992 #endif
3993 batchcount = (limit + 1) / 2;
3994 skip_setup:
3995 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3996 end:
3997 if (err)
3998 pr_err("enable_cpucache failed for %s, error %d\n",
3999 cachep->name, -err);
4000 return err;
4001 }
4002
4003 /*
4004 * Drain an array if it contains any elements taking the node lock only if
4005 * necessary. Note that the node listlock also protects the array_cache
4006 * if drain_array() is used on the shared array.
4007 */
4008 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4009 struct array_cache *ac, int node)
4010 {
4011 LIST_HEAD(list);
4012
4013 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4014 check_mutex_acquired();
4015
4016 if (!ac || !ac->avail)
4017 return;
4018
4019 if (ac->touched) {
4020 ac->touched = 0;
4021 return;
4022 }
4023
4024 spin_lock_irq(&n->list_lock);
4025 drain_array_locked(cachep, ac, node, false, &list);
4026 spin_unlock_irq(&n->list_lock);
4027
4028 slabs_destroy(cachep, &list);
4029 }
4030
4031 /**
4032 * cache_reap - Reclaim memory from caches.
4033 * @w: work descriptor
4034 *
4035 * Called from workqueue/eventd every few seconds.
4036 * Purpose:
4037 * - clear the per-cpu caches for this CPU.
4038 * - return freeable pages to the main free memory pool.
4039 *
4040 * If we cannot acquire the cache chain mutex then just give up - we'll try
4041 * again on the next iteration.
4042 */
4043 static void cache_reap(struct work_struct *w)
4044 {
4045 struct kmem_cache *searchp;
4046 struct kmem_cache_node *n;
4047 int node = numa_mem_id();
4048 struct delayed_work *work = to_delayed_work(w);
4049
4050 if (!mutex_trylock(&slab_mutex))
4051 /* Give up. Setup the next iteration. */
4052 goto out;
4053
4054 list_for_each_entry(searchp, &slab_caches, list) {
4055 check_irq_on();
4056
4057 /*
4058 * We only take the node lock if absolutely necessary and we
4059 * have established with reasonable certainty that
4060 * we can do some work if the lock was obtained.
4061 */
4062 n = get_node(searchp, node);
4063
4064 reap_alien(searchp, n);
4065
4066 drain_array(searchp, n, cpu_cache_get(searchp), node);
4067
4068 /*
4069 * These are racy checks but it does not matter
4070 * if we skip one check or scan twice.
4071 */
4072 if (time_after(n->next_reap, jiffies))
4073 goto next;
4074
4075 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4076
4077 drain_array(searchp, n, n->shared, node);
4078
4079 if (n->free_touched)
4080 n->free_touched = 0;
4081 else {
4082 int freed;
4083
4084 freed = drain_freelist(searchp, n, (n->free_limit +
4085 5 * searchp->num - 1) / (5 * searchp->num));
4086 STATS_ADD_REAPED(searchp, freed);
4087 }
4088 next:
4089 cond_resched();
4090 }
4091 check_irq_on();
4092 mutex_unlock(&slab_mutex);
4093 next_reap_node();
4094 out:
4095 /* Set up the next iteration */
4096 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4097 }
4098
4099 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4100 {
4101 unsigned long active_objs, num_objs, active_slabs;
4102 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4103 unsigned long free_slabs = 0;
4104 int node;
4105 struct kmem_cache_node *n;
4106
4107 for_each_kmem_cache_node(cachep, node, n) {
4108 check_irq_on();
4109 spin_lock_irq(&n->list_lock);
4110
4111 total_slabs += n->total_slabs;
4112 free_slabs += n->free_slabs;
4113 free_objs += n->free_objects;
4114
4115 if (n->shared)
4116 shared_avail += n->shared->avail;
4117
4118 spin_unlock_irq(&n->list_lock);
4119 }
4120 num_objs = total_slabs * cachep->num;
4121 active_slabs = total_slabs - free_slabs;
4122 active_objs = num_objs - free_objs;
4123
4124 sinfo->active_objs = active_objs;
4125 sinfo->num_objs = num_objs;
4126 sinfo->active_slabs = active_slabs;
4127 sinfo->num_slabs = total_slabs;
4128 sinfo->shared_avail = shared_avail;
4129 sinfo->limit = cachep->limit;
4130 sinfo->batchcount = cachep->batchcount;
4131 sinfo->shared = cachep->shared;
4132 sinfo->objects_per_slab = cachep->num;
4133 sinfo->cache_order = cachep->gfporder;
4134 }
4135
4136 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4137 {
4138 #if STATS
4139 { /* node stats */
4140 unsigned long high = cachep->high_mark;
4141 unsigned long allocs = cachep->num_allocations;
4142 unsigned long grown = cachep->grown;
4143 unsigned long reaped = cachep->reaped;
4144 unsigned long errors = cachep->errors;
4145 unsigned long max_freeable = cachep->max_freeable;
4146 unsigned long node_allocs = cachep->node_allocs;
4147 unsigned long node_frees = cachep->node_frees;
4148 unsigned long overflows = cachep->node_overflow;
4149
4150 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4151 allocs, high, grown,
4152 reaped, errors, max_freeable, node_allocs,
4153 node_frees, overflows);
4154 }
4155 /* cpu stats */
4156 {
4157 unsigned long allochit = atomic_read(&cachep->allochit);
4158 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4159 unsigned long freehit = atomic_read(&cachep->freehit);
4160 unsigned long freemiss = atomic_read(&cachep->freemiss);
4161
4162 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4163 allochit, allocmiss, freehit, freemiss);
4164 }
4165 #endif
4166 }
4167
4168 #define MAX_SLABINFO_WRITE 128
4169 /**
4170 * slabinfo_write - Tuning for the slab allocator
4171 * @file: unused
4172 * @buffer: user buffer
4173 * @count: data length
4174 * @ppos: unused
4175 */
4176 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4177 size_t count, loff_t *ppos)
4178 {
4179 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4180 int limit, batchcount, shared, res;
4181 struct kmem_cache *cachep;
4182
4183 if (count > MAX_SLABINFO_WRITE)
4184 return -EINVAL;
4185 if (copy_from_user(&kbuf, buffer, count))
4186 return -EFAULT;
4187 kbuf[MAX_SLABINFO_WRITE] = '\0';
4188
4189 tmp = strchr(kbuf, ' ');
4190 if (!tmp)
4191 return -EINVAL;
4192 *tmp = '\0';
4193 tmp++;
4194 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4195 return -EINVAL;
4196
4197 /* Find the cache in the chain of caches. */
4198 mutex_lock(&slab_mutex);
4199 res = -EINVAL;
4200 list_for_each_entry(cachep, &slab_caches, list) {
4201 if (!strcmp(cachep->name, kbuf)) {
4202 if (limit < 1 || batchcount < 1 ||
4203 batchcount > limit || shared < 0) {
4204 res = 0;
4205 } else {
4206 res = do_tune_cpucache(cachep, limit,
4207 batchcount, shared,
4208 GFP_KERNEL);
4209 }
4210 break;
4211 }
4212 }
4213 mutex_unlock(&slab_mutex);
4214 if (res >= 0)
4215 res = count;
4216 return res;
4217 }
4218
4219 #ifdef CONFIG_DEBUG_SLAB_LEAK
4220
4221 static inline int add_caller(unsigned long *n, unsigned long v)
4222 {
4223 unsigned long *p;
4224 int l;
4225 if (!v)
4226 return 1;
4227 l = n[1];
4228 p = n + 2;
4229 while (l) {
4230 int i = l/2;
4231 unsigned long *q = p + 2 * i;
4232 if (*q == v) {
4233 q[1]++;
4234 return 1;
4235 }
4236 if (*q > v) {
4237 l = i;
4238 } else {
4239 p = q + 2;
4240 l -= i + 1;
4241 }
4242 }
4243 if (++n[1] == n[0])
4244 return 0;
4245 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4246 p[0] = v;
4247 p[1] = 1;
4248 return 1;
4249 }
4250
4251 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4252 struct page *page)
4253 {
4254 void *p;
4255 int i, j;
4256 unsigned long v;
4257
4258 if (n[0] == n[1])
4259 return;
4260 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4261 bool active = true;
4262
4263 for (j = page->active; j < c->num; j++) {
4264 if (get_free_obj(page, j) == i) {
4265 active = false;
4266 break;
4267 }
4268 }
4269
4270 if (!active)
4271 continue;
4272
4273 /*
4274 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4275 * mapping is established when actual object allocation and
4276 * we could mistakenly access the unmapped object in the cpu
4277 * cache.
4278 */
4279 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4280 continue;
4281
4282 if (!add_caller(n, v))
4283 return;
4284 }
4285 }
4286
4287 static void show_symbol(struct seq_file *m, unsigned long address)
4288 {
4289 #ifdef CONFIG_KALLSYMS
4290 unsigned long offset, size;
4291 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4292
4293 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4294 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4295 if (modname[0])
4296 seq_printf(m, " [%s]", modname);
4297 return;
4298 }
4299 #endif
4300 seq_printf(m, "%p", (void *)address);
4301 }
4302
4303 static int leaks_show(struct seq_file *m, void *p)
4304 {
4305 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4306 struct page *page;
4307 struct kmem_cache_node *n;
4308 const char *name;
4309 unsigned long *x = m->private;
4310 int node;
4311 int i;
4312
4313 if (!(cachep->flags & SLAB_STORE_USER))
4314 return 0;
4315 if (!(cachep->flags & SLAB_RED_ZONE))
4316 return 0;
4317
4318 /*
4319 * Set store_user_clean and start to grab stored user information
4320 * for all objects on this cache. If some alloc/free requests comes
4321 * during the processing, information would be wrong so restart
4322 * whole processing.
4323 */
4324 do {
4325 set_store_user_clean(cachep);
4326 drain_cpu_caches(cachep);
4327
4328 x[1] = 0;
4329
4330 for_each_kmem_cache_node(cachep, node, n) {
4331
4332 check_irq_on();
4333 spin_lock_irq(&n->list_lock);
4334
4335 list_for_each_entry(page, &n->slabs_full, lru)
4336 handle_slab(x, cachep, page);
4337 list_for_each_entry(page, &n->slabs_partial, lru)
4338 handle_slab(x, cachep, page);
4339 spin_unlock_irq(&n->list_lock);
4340 }
4341 } while (!is_store_user_clean(cachep));
4342
4343 name = cachep->name;
4344 if (x[0] == x[1]) {
4345 /* Increase the buffer size */
4346 mutex_unlock(&slab_mutex);
4347 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4348 if (!m->private) {
4349 /* Too bad, we are really out */
4350 m->private = x;
4351 mutex_lock(&slab_mutex);
4352 return -ENOMEM;
4353 }
4354 *(unsigned long *)m->private = x[0] * 2;
4355 kfree(x);
4356 mutex_lock(&slab_mutex);
4357 /* Now make sure this entry will be retried */
4358 m->count = m->size;
4359 return 0;
4360 }
4361 for (i = 0; i < x[1]; i++) {
4362 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4363 show_symbol(m, x[2*i+2]);
4364 seq_putc(m, '\n');
4365 }
4366
4367 return 0;
4368 }
4369
4370 static const struct seq_operations slabstats_op = {
4371 .start = slab_start,
4372 .next = slab_next,
4373 .stop = slab_stop,
4374 .show = leaks_show,
4375 };
4376
4377 static int slabstats_open(struct inode *inode, struct file *file)
4378 {
4379 unsigned long *n;
4380
4381 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4382 if (!n)
4383 return -ENOMEM;
4384
4385 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4386
4387 return 0;
4388 }
4389
4390 static const struct file_operations proc_slabstats_operations = {
4391 .open = slabstats_open,
4392 .read = seq_read,
4393 .llseek = seq_lseek,
4394 .release = seq_release_private,
4395 };
4396 #endif
4397
4398 static int __init slab_proc_init(void)
4399 {
4400 #ifdef CONFIG_DEBUG_SLAB_LEAK
4401 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4402 #endif
4403 return 0;
4404 }
4405 module_init(slab_proc_init);
4406
4407 #ifdef CONFIG_HARDENED_USERCOPY
4408 /*
4409 * Rejects objects that are incorrectly sized.
4410 *
4411 * Returns NULL if check passes, otherwise const char * to name of cache
4412 * to indicate an error.
4413 */
4414 const char *__check_heap_object(const void *ptr, unsigned long n,
4415 struct page *page)
4416 {
4417 struct kmem_cache *cachep;
4418 unsigned int objnr;
4419 unsigned long offset;
4420
4421 /* Find and validate object. */
4422 cachep = page->slab_cache;
4423 objnr = obj_to_index(cachep, page, (void *)ptr);
4424 BUG_ON(objnr >= cachep->num);
4425
4426 /* Find offset within object. */
4427 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4428
4429 /* Allow address range falling entirely within object size. */
4430 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4431 return NULL;
4432
4433 return cachep->name;
4434 }
4435 #endif /* CONFIG_HARDENED_USERCOPY */
4436
4437 /**
4438 * ksize - get the actual amount of memory allocated for a given object
4439 * @objp: Pointer to the object
4440 *
4441 * kmalloc may internally round up allocations and return more memory
4442 * than requested. ksize() can be used to determine the actual amount of
4443 * memory allocated. The caller may use this additional memory, even though
4444 * a smaller amount of memory was initially specified with the kmalloc call.
4445 * The caller must guarantee that objp points to a valid object previously
4446 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4447 * must not be freed during the duration of the call.
4448 */
4449 size_t ksize(const void *objp)
4450 {
4451 size_t size;
4452
4453 BUG_ON(!objp);
4454 if (unlikely(objp == ZERO_SIZE_PTR))
4455 return 0;
4456
4457 size = virt_to_cache(objp)->object_size;
4458 /* We assume that ksize callers could use the whole allocated area,
4459 * so we need to unpoison this area.
4460 */
4461 kasan_unpoison_shadow(objp, size);
4462
4463 return size;
4464 }
4465 EXPORT_SYMBOL(ksize);