]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/slab.c
[PATCH] slab: better fallback allocation behavior
[mirror_ubuntu-hirsute-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
109 #include <linux/rtmutex.h>
110
111 #include <asm/uaccess.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114 #include <asm/page.h>
115
116 /*
117 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
118 * SLAB_RED_ZONE & SLAB_POISON.
119 * 0 for faster, smaller code (especially in the critical paths).
120 *
121 * STATS - 1 to collect stats for /proc/slabinfo.
122 * 0 for faster, smaller code (especially in the critical paths).
123 *
124 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 */
126
127 #ifdef CONFIG_DEBUG_SLAB
128 #define DEBUG 1
129 #define STATS 1
130 #define FORCED_DEBUG 1
131 #else
132 #define DEBUG 0
133 #define STATS 0
134 #define FORCED_DEBUG 0
135 #endif
136
137 /* Shouldn't this be in a header file somewhere? */
138 #define BYTES_PER_WORD sizeof(void *)
139
140 #ifndef cache_line_size
141 #define cache_line_size() L1_CACHE_BYTES
142 #endif
143
144 #ifndef ARCH_KMALLOC_MINALIGN
145 /*
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
151 * Note that this flag disables some debug features.
152 */
153 #define ARCH_KMALLOC_MINALIGN 0
154 #endif
155
156 #ifndef ARCH_SLAB_MINALIGN
157 /*
158 * Enforce a minimum alignment for all caches.
159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162 * some debug features.
163 */
164 #define ARCH_SLAB_MINALIGN 0
165 #endif
166
167 #ifndef ARCH_KMALLOC_FLAGS
168 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
169 #endif
170
171 /* Legal flag mask for kmem_cache_create(). */
172 #if DEBUG
173 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175 SLAB_CACHE_DMA | \
176 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
179 #else
180 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
181 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
182 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
183 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
184 #endif
185
186 /*
187 * kmem_bufctl_t:
188 *
189 * Bufctl's are used for linking objs within a slab
190 * linked offsets.
191 *
192 * This implementation relies on "struct page" for locating the cache &
193 * slab an object belongs to.
194 * This allows the bufctl structure to be small (one int), but limits
195 * the number of objects a slab (not a cache) can contain when off-slab
196 * bufctls are used. The limit is the size of the largest general cache
197 * that does not use off-slab slabs.
198 * For 32bit archs with 4 kB pages, is this 56.
199 * This is not serious, as it is only for large objects, when it is unwise
200 * to have too many per slab.
201 * Note: This limit can be raised by introducing a general cache whose size
202 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 */
204
205 typedef unsigned int kmem_bufctl_t;
206 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
207 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
208 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
209 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
210
211 /*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218 struct slab {
219 struct list_head list;
220 unsigned long colouroff;
221 void *s_mem; /* including colour offset */
222 unsigned int inuse; /* num of objs active in slab */
223 kmem_bufctl_t free;
224 unsigned short nodeid;
225 };
226
227 /*
228 * struct slab_rcu
229 *
230 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
231 * arrange for kmem_freepages to be called via RCU. This is useful if
232 * we need to approach a kernel structure obliquely, from its address
233 * obtained without the usual locking. We can lock the structure to
234 * stabilize it and check it's still at the given address, only if we
235 * can be sure that the memory has not been meanwhile reused for some
236 * other kind of object (which our subsystem's lock might corrupt).
237 *
238 * rcu_read_lock before reading the address, then rcu_read_unlock after
239 * taking the spinlock within the structure expected at that address.
240 *
241 * We assume struct slab_rcu can overlay struct slab when destroying.
242 */
243 struct slab_rcu {
244 struct rcu_head head;
245 struct kmem_cache *cachep;
246 void *addr;
247 };
248
249 /*
250 * struct array_cache
251 *
252 * Purpose:
253 * - LIFO ordering, to hand out cache-warm objects from _alloc
254 * - reduce the number of linked list operations
255 * - reduce spinlock operations
256 *
257 * The limit is stored in the per-cpu structure to reduce the data cache
258 * footprint.
259 *
260 */
261 struct array_cache {
262 unsigned int avail;
263 unsigned int limit;
264 unsigned int batchcount;
265 unsigned int touched;
266 spinlock_t lock;
267 void *entry[0]; /*
268 * Must have this definition in here for the proper
269 * alignment of array_cache. Also simplifies accessing
270 * the entries.
271 * [0] is for gcc 2.95. It should really be [].
272 */
273 };
274
275 /*
276 * bootstrap: The caches do not work without cpuarrays anymore, but the
277 * cpuarrays are allocated from the generic caches...
278 */
279 #define BOOT_CPUCACHE_ENTRIES 1
280 struct arraycache_init {
281 struct array_cache cache;
282 void *entries[BOOT_CPUCACHE_ENTRIES];
283 };
284
285 /*
286 * The slab lists for all objects.
287 */
288 struct kmem_list3 {
289 struct list_head slabs_partial; /* partial list first, better asm code */
290 struct list_head slabs_full;
291 struct list_head slabs_free;
292 unsigned long free_objects;
293 unsigned int free_limit;
294 unsigned int colour_next; /* Per-node cache coloring */
295 spinlock_t list_lock;
296 struct array_cache *shared; /* shared per node */
297 struct array_cache **alien; /* on other nodes */
298 unsigned long next_reap; /* updated without locking */
299 int free_touched; /* updated without locking */
300 };
301
302 /*
303 * Need this for bootstrapping a per node allocator.
304 */
305 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307 #define CACHE_CACHE 0
308 #define SIZE_AC 1
309 #define SIZE_L3 (1 + MAX_NUMNODES)
310
311 static int drain_freelist(struct kmem_cache *cache,
312 struct kmem_list3 *l3, int tofree);
313 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
314 int node);
315 static int enable_cpucache(struct kmem_cache *cachep);
316 static void cache_reap(struct work_struct *unused);
317
318 /*
319 * This function must be completely optimized away if a constant is passed to
320 * it. Mostly the same as what is in linux/slab.h except it returns an index.
321 */
322 static __always_inline int index_of(const size_t size)
323 {
324 extern void __bad_size(void);
325
326 if (__builtin_constant_p(size)) {
327 int i = 0;
328
329 #define CACHE(x) \
330 if (size <=x) \
331 return i; \
332 else \
333 i++;
334 #include "linux/kmalloc_sizes.h"
335 #undef CACHE
336 __bad_size();
337 } else
338 __bad_size();
339 return 0;
340 }
341
342 static int slab_early_init = 1;
343
344 #define INDEX_AC index_of(sizeof(struct arraycache_init))
345 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
346
347 static void kmem_list3_init(struct kmem_list3 *parent)
348 {
349 INIT_LIST_HEAD(&parent->slabs_full);
350 INIT_LIST_HEAD(&parent->slabs_partial);
351 INIT_LIST_HEAD(&parent->slabs_free);
352 parent->shared = NULL;
353 parent->alien = NULL;
354 parent->colour_next = 0;
355 spin_lock_init(&parent->list_lock);
356 parent->free_objects = 0;
357 parent->free_touched = 0;
358 }
359
360 #define MAKE_LIST(cachep, listp, slab, nodeid) \
361 do { \
362 INIT_LIST_HEAD(listp); \
363 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
364 } while (0)
365
366 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
367 do { \
368 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
369 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
371 } while (0)
372
373 /*
374 * struct kmem_cache
375 *
376 * manages a cache.
377 */
378
379 struct kmem_cache {
380 /* 1) per-cpu data, touched during every alloc/free */
381 struct array_cache *array[NR_CPUS];
382 /* 2) Cache tunables. Protected by cache_chain_mutex */
383 unsigned int batchcount;
384 unsigned int limit;
385 unsigned int shared;
386
387 unsigned int buffer_size;
388 /* 3) touched by every alloc & free from the backend */
389 struct kmem_list3 *nodelists[MAX_NUMNODES];
390
391 unsigned int flags; /* constant flags */
392 unsigned int num; /* # of objs per slab */
393
394 /* 4) cache_grow/shrink */
395 /* order of pgs per slab (2^n) */
396 unsigned int gfporder;
397
398 /* force GFP flags, e.g. GFP_DMA */
399 gfp_t gfpflags;
400
401 size_t colour; /* cache colouring range */
402 unsigned int colour_off; /* colour offset */
403 struct kmem_cache *slabp_cache;
404 unsigned int slab_size;
405 unsigned int dflags; /* dynamic flags */
406
407 /* constructor func */
408 void (*ctor) (void *, struct kmem_cache *, unsigned long);
409
410 /* de-constructor func */
411 void (*dtor) (void *, struct kmem_cache *, unsigned long);
412
413 /* 5) cache creation/removal */
414 const char *name;
415 struct list_head next;
416
417 /* 6) statistics */
418 #if STATS
419 unsigned long num_active;
420 unsigned long num_allocations;
421 unsigned long high_mark;
422 unsigned long grown;
423 unsigned long reaped;
424 unsigned long errors;
425 unsigned long max_freeable;
426 unsigned long node_allocs;
427 unsigned long node_frees;
428 unsigned long node_overflow;
429 atomic_t allochit;
430 atomic_t allocmiss;
431 atomic_t freehit;
432 atomic_t freemiss;
433 #endif
434 #if DEBUG
435 /*
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
440 */
441 int obj_offset;
442 int obj_size;
443 #endif
444 };
445
446 #define CFLGS_OFF_SLAB (0x80000000UL)
447 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
448
449 #define BATCHREFILL_LIMIT 16
450 /*
451 * Optimization question: fewer reaps means less probability for unnessary
452 * cpucache drain/refill cycles.
453 *
454 * OTOH the cpuarrays can contain lots of objects,
455 * which could lock up otherwise freeable slabs.
456 */
457 #define REAPTIMEOUT_CPUC (2*HZ)
458 #define REAPTIMEOUT_LIST3 (4*HZ)
459
460 #if STATS
461 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
462 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
463 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
464 #define STATS_INC_GROWN(x) ((x)->grown++)
465 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
466 #define STATS_SET_HIGH(x) \
467 do { \
468 if ((x)->num_active > (x)->high_mark) \
469 (x)->high_mark = (x)->num_active; \
470 } while (0)
471 #define STATS_INC_ERR(x) ((x)->errors++)
472 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
473 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
474 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
475 #define STATS_SET_FREEABLE(x, i) \
476 do { \
477 if ((x)->max_freeable < i) \
478 (x)->max_freeable = i; \
479 } while (0)
480 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
481 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
482 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
483 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
484 #else
485 #define STATS_INC_ACTIVE(x) do { } while (0)
486 #define STATS_DEC_ACTIVE(x) do { } while (0)
487 #define STATS_INC_ALLOCED(x) do { } while (0)
488 #define STATS_INC_GROWN(x) do { } while (0)
489 #define STATS_ADD_REAPED(x,y) do { } while (0)
490 #define STATS_SET_HIGH(x) do { } while (0)
491 #define STATS_INC_ERR(x) do { } while (0)
492 #define STATS_INC_NODEALLOCS(x) do { } while (0)
493 #define STATS_INC_NODEFREES(x) do { } while (0)
494 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
495 #define STATS_SET_FREEABLE(x, i) do { } while (0)
496 #define STATS_INC_ALLOCHIT(x) do { } while (0)
497 #define STATS_INC_ALLOCMISS(x) do { } while (0)
498 #define STATS_INC_FREEHIT(x) do { } while (0)
499 #define STATS_INC_FREEMISS(x) do { } while (0)
500 #endif
501
502 #if DEBUG
503
504 /*
505 * memory layout of objects:
506 * 0 : objp
507 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
508 * the end of an object is aligned with the end of the real
509 * allocation. Catches writes behind the end of the allocation.
510 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
511 * redzone word.
512 * cachep->obj_offset: The real object.
513 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
514 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
515 * [BYTES_PER_WORD long]
516 */
517 static int obj_offset(struct kmem_cache *cachep)
518 {
519 return cachep->obj_offset;
520 }
521
522 static int obj_size(struct kmem_cache *cachep)
523 {
524 return cachep->obj_size;
525 }
526
527 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
528 {
529 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
530 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
531 }
532
533 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
534 {
535 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
536 if (cachep->flags & SLAB_STORE_USER)
537 return (unsigned long *)(objp + cachep->buffer_size -
538 2 * BYTES_PER_WORD);
539 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
540 }
541
542 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
543 {
544 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
545 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
546 }
547
548 #else
549
550 #define obj_offset(x) 0
551 #define obj_size(cachep) (cachep->buffer_size)
552 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
553 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
555
556 #endif
557
558 /*
559 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
560 * order.
561 */
562 #if defined(CONFIG_LARGE_ALLOCS)
563 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
564 #define MAX_GFP_ORDER 13 /* up to 32Mb */
565 #elif defined(CONFIG_MMU)
566 #define MAX_OBJ_ORDER 5 /* 32 pages */
567 #define MAX_GFP_ORDER 5 /* 32 pages */
568 #else
569 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
570 #define MAX_GFP_ORDER 8 /* up to 1Mb */
571 #endif
572
573 /*
574 * Do not go above this order unless 0 objects fit into the slab.
575 */
576 #define BREAK_GFP_ORDER_HI 1
577 #define BREAK_GFP_ORDER_LO 0
578 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
579
580 /*
581 * Functions for storing/retrieving the cachep and or slab from the page
582 * allocator. These are used to find the slab an obj belongs to. With kfree(),
583 * these are used to find the cache which an obj belongs to.
584 */
585 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
586 {
587 page->lru.next = (struct list_head *)cache;
588 }
589
590 static inline struct kmem_cache *page_get_cache(struct page *page)
591 {
592 if (unlikely(PageCompound(page)))
593 page = (struct page *)page_private(page);
594 BUG_ON(!PageSlab(page));
595 return (struct kmem_cache *)page->lru.next;
596 }
597
598 static inline void page_set_slab(struct page *page, struct slab *slab)
599 {
600 page->lru.prev = (struct list_head *)slab;
601 }
602
603 static inline struct slab *page_get_slab(struct page *page)
604 {
605 if (unlikely(PageCompound(page)))
606 page = (struct page *)page_private(page);
607 BUG_ON(!PageSlab(page));
608 return (struct slab *)page->lru.prev;
609 }
610
611 static inline struct kmem_cache *virt_to_cache(const void *obj)
612 {
613 struct page *page = virt_to_page(obj);
614 return page_get_cache(page);
615 }
616
617 static inline struct slab *virt_to_slab(const void *obj)
618 {
619 struct page *page = virt_to_page(obj);
620 return page_get_slab(page);
621 }
622
623 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
624 unsigned int idx)
625 {
626 return slab->s_mem + cache->buffer_size * idx;
627 }
628
629 static inline unsigned int obj_to_index(struct kmem_cache *cache,
630 struct slab *slab, void *obj)
631 {
632 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
633 }
634
635 /*
636 * These are the default caches for kmalloc. Custom caches can have other sizes.
637 */
638 struct cache_sizes malloc_sizes[] = {
639 #define CACHE(x) { .cs_size = (x) },
640 #include <linux/kmalloc_sizes.h>
641 CACHE(ULONG_MAX)
642 #undef CACHE
643 };
644 EXPORT_SYMBOL(malloc_sizes);
645
646 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
647 struct cache_names {
648 char *name;
649 char *name_dma;
650 };
651
652 static struct cache_names __initdata cache_names[] = {
653 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
654 #include <linux/kmalloc_sizes.h>
655 {NULL,}
656 #undef CACHE
657 };
658
659 static struct arraycache_init initarray_cache __initdata =
660 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
661 static struct arraycache_init initarray_generic =
662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
663
664 /* internal cache of cache description objs */
665 static struct kmem_cache cache_cache = {
666 .batchcount = 1,
667 .limit = BOOT_CPUCACHE_ENTRIES,
668 .shared = 1,
669 .buffer_size = sizeof(struct kmem_cache),
670 .name = "kmem_cache",
671 #if DEBUG
672 .obj_size = sizeof(struct kmem_cache),
673 #endif
674 };
675
676 #define BAD_ALIEN_MAGIC 0x01020304ul
677
678 #ifdef CONFIG_LOCKDEP
679
680 /*
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
686 *
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
690 */
691 static struct lock_class_key on_slab_l3_key;
692 static struct lock_class_key on_slab_alc_key;
693
694 static inline void init_lock_keys(void)
695
696 {
697 int q;
698 struct cache_sizes *s = malloc_sizes;
699
700 while (s->cs_size != ULONG_MAX) {
701 for_each_node(q) {
702 struct array_cache **alc;
703 int r;
704 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705 if (!l3 || OFF_SLAB(s->cs_cachep))
706 continue;
707 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708 alc = l3->alien;
709 /*
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
715 */
716 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717 continue;
718 for_each_node(r) {
719 if (alc[r])
720 lockdep_set_class(&alc[r]->lock,
721 &on_slab_alc_key);
722 }
723 }
724 s++;
725 }
726 }
727 #else
728 static inline void init_lock_keys(void)
729 {
730 }
731 #endif
732
733 /*
734 * 1. Guard access to the cache-chain.
735 * 2. Protect sanity of cpu_online_map against cpu hotplug events
736 */
737 static DEFINE_MUTEX(cache_chain_mutex);
738 static struct list_head cache_chain;
739
740 /*
741 * chicken and egg problem: delay the per-cpu array allocation
742 * until the general caches are up.
743 */
744 static enum {
745 NONE,
746 PARTIAL_AC,
747 PARTIAL_L3,
748 FULL
749 } g_cpucache_up;
750
751 /*
752 * used by boot code to determine if it can use slab based allocator
753 */
754 int slab_is_available(void)
755 {
756 return g_cpucache_up == FULL;
757 }
758
759 static DEFINE_PER_CPU(struct delayed_work, reap_work);
760
761 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
762 {
763 return cachep->array[smp_processor_id()];
764 }
765
766 static inline struct kmem_cache *__find_general_cachep(size_t size,
767 gfp_t gfpflags)
768 {
769 struct cache_sizes *csizep = malloc_sizes;
770
771 #if DEBUG
772 /* This happens if someone tries to call
773 * kmem_cache_create(), or __kmalloc(), before
774 * the generic caches are initialized.
775 */
776 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
777 #endif
778 while (size > csizep->cs_size)
779 csizep++;
780
781 /*
782 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
783 * has cs_{dma,}cachep==NULL. Thus no special case
784 * for large kmalloc calls required.
785 */
786 if (unlikely(gfpflags & GFP_DMA))
787 return csizep->cs_dmacachep;
788 return csizep->cs_cachep;
789 }
790
791 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
792 {
793 return __find_general_cachep(size, gfpflags);
794 }
795
796 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
797 {
798 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
799 }
800
801 /*
802 * Calculate the number of objects and left-over bytes for a given buffer size.
803 */
804 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
805 size_t align, int flags, size_t *left_over,
806 unsigned int *num)
807 {
808 int nr_objs;
809 size_t mgmt_size;
810 size_t slab_size = PAGE_SIZE << gfporder;
811
812 /*
813 * The slab management structure can be either off the slab or
814 * on it. For the latter case, the memory allocated for a
815 * slab is used for:
816 *
817 * - The struct slab
818 * - One kmem_bufctl_t for each object
819 * - Padding to respect alignment of @align
820 * - @buffer_size bytes for each object
821 *
822 * If the slab management structure is off the slab, then the
823 * alignment will already be calculated into the size. Because
824 * the slabs are all pages aligned, the objects will be at the
825 * correct alignment when allocated.
826 */
827 if (flags & CFLGS_OFF_SLAB) {
828 mgmt_size = 0;
829 nr_objs = slab_size / buffer_size;
830
831 if (nr_objs > SLAB_LIMIT)
832 nr_objs = SLAB_LIMIT;
833 } else {
834 /*
835 * Ignore padding for the initial guess. The padding
836 * is at most @align-1 bytes, and @buffer_size is at
837 * least @align. In the worst case, this result will
838 * be one greater than the number of objects that fit
839 * into the memory allocation when taking the padding
840 * into account.
841 */
842 nr_objs = (slab_size - sizeof(struct slab)) /
843 (buffer_size + sizeof(kmem_bufctl_t));
844
845 /*
846 * This calculated number will be either the right
847 * amount, or one greater than what we want.
848 */
849 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
850 > slab_size)
851 nr_objs--;
852
853 if (nr_objs > SLAB_LIMIT)
854 nr_objs = SLAB_LIMIT;
855
856 mgmt_size = slab_mgmt_size(nr_objs, align);
857 }
858 *num = nr_objs;
859 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
860 }
861
862 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
863
864 static void __slab_error(const char *function, struct kmem_cache *cachep,
865 char *msg)
866 {
867 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
868 function, cachep->name, msg);
869 dump_stack();
870 }
871
872 /*
873 * By default on NUMA we use alien caches to stage the freeing of
874 * objects allocated from other nodes. This causes massive memory
875 * inefficiencies when using fake NUMA setup to split memory into a
876 * large number of small nodes, so it can be disabled on the command
877 * line
878 */
879
880 static int use_alien_caches __read_mostly = 1;
881 static int __init noaliencache_setup(char *s)
882 {
883 use_alien_caches = 0;
884 return 1;
885 }
886 __setup("noaliencache", noaliencache_setup);
887
888 #ifdef CONFIG_NUMA
889 /*
890 * Special reaping functions for NUMA systems called from cache_reap().
891 * These take care of doing round robin flushing of alien caches (containing
892 * objects freed on different nodes from which they were allocated) and the
893 * flushing of remote pcps by calling drain_node_pages.
894 */
895 static DEFINE_PER_CPU(unsigned long, reap_node);
896
897 static void init_reap_node(int cpu)
898 {
899 int node;
900
901 node = next_node(cpu_to_node(cpu), node_online_map);
902 if (node == MAX_NUMNODES)
903 node = first_node(node_online_map);
904
905 per_cpu(reap_node, cpu) = node;
906 }
907
908 static void next_reap_node(void)
909 {
910 int node = __get_cpu_var(reap_node);
911
912 /*
913 * Also drain per cpu pages on remote zones
914 */
915 if (node != numa_node_id())
916 drain_node_pages(node);
917
918 node = next_node(node, node_online_map);
919 if (unlikely(node >= MAX_NUMNODES))
920 node = first_node(node_online_map);
921 __get_cpu_var(reap_node) = node;
922 }
923
924 #else
925 #define init_reap_node(cpu) do { } while (0)
926 #define next_reap_node(void) do { } while (0)
927 #endif
928
929 /*
930 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
931 * via the workqueue/eventd.
932 * Add the CPU number into the expiration time to minimize the possibility of
933 * the CPUs getting into lockstep and contending for the global cache chain
934 * lock.
935 */
936 static void __devinit start_cpu_timer(int cpu)
937 {
938 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
939
940 /*
941 * When this gets called from do_initcalls via cpucache_init(),
942 * init_workqueues() has already run, so keventd will be setup
943 * at that time.
944 */
945 if (keventd_up() && reap_work->work.func == NULL) {
946 init_reap_node(cpu);
947 INIT_DELAYED_WORK(reap_work, cache_reap);
948 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
949 }
950 }
951
952 static struct array_cache *alloc_arraycache(int node, int entries,
953 int batchcount)
954 {
955 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
956 struct array_cache *nc = NULL;
957
958 nc = kmalloc_node(memsize, GFP_KERNEL, node);
959 if (nc) {
960 nc->avail = 0;
961 nc->limit = entries;
962 nc->batchcount = batchcount;
963 nc->touched = 0;
964 spin_lock_init(&nc->lock);
965 }
966 return nc;
967 }
968
969 /*
970 * Transfer objects in one arraycache to another.
971 * Locking must be handled by the caller.
972 *
973 * Return the number of entries transferred.
974 */
975 static int transfer_objects(struct array_cache *to,
976 struct array_cache *from, unsigned int max)
977 {
978 /* Figure out how many entries to transfer */
979 int nr = min(min(from->avail, max), to->limit - to->avail);
980
981 if (!nr)
982 return 0;
983
984 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
985 sizeof(void *) *nr);
986
987 from->avail -= nr;
988 to->avail += nr;
989 to->touched = 1;
990 return nr;
991 }
992
993 #ifndef CONFIG_NUMA
994
995 #define drain_alien_cache(cachep, alien) do { } while (0)
996 #define reap_alien(cachep, l3) do { } while (0)
997
998 static inline struct array_cache **alloc_alien_cache(int node, int limit)
999 {
1000 return (struct array_cache **)BAD_ALIEN_MAGIC;
1001 }
1002
1003 static inline void free_alien_cache(struct array_cache **ac_ptr)
1004 {
1005 }
1006
1007 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1008 {
1009 return 0;
1010 }
1011
1012 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1013 gfp_t flags)
1014 {
1015 return NULL;
1016 }
1017
1018 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1019 gfp_t flags, int nodeid)
1020 {
1021 return NULL;
1022 }
1023
1024 #else /* CONFIG_NUMA */
1025
1026 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1027 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1028
1029 static struct array_cache **alloc_alien_cache(int node, int limit)
1030 {
1031 struct array_cache **ac_ptr;
1032 int memsize = sizeof(void *) * MAX_NUMNODES;
1033 int i;
1034
1035 if (limit > 1)
1036 limit = 12;
1037 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1038 if (ac_ptr) {
1039 for_each_node(i) {
1040 if (i == node || !node_online(i)) {
1041 ac_ptr[i] = NULL;
1042 continue;
1043 }
1044 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1045 if (!ac_ptr[i]) {
1046 for (i--; i <= 0; i--)
1047 kfree(ac_ptr[i]);
1048 kfree(ac_ptr);
1049 return NULL;
1050 }
1051 }
1052 }
1053 return ac_ptr;
1054 }
1055
1056 static void free_alien_cache(struct array_cache **ac_ptr)
1057 {
1058 int i;
1059
1060 if (!ac_ptr)
1061 return;
1062 for_each_node(i)
1063 kfree(ac_ptr[i]);
1064 kfree(ac_ptr);
1065 }
1066
1067 static void __drain_alien_cache(struct kmem_cache *cachep,
1068 struct array_cache *ac, int node)
1069 {
1070 struct kmem_list3 *rl3 = cachep->nodelists[node];
1071
1072 if (ac->avail) {
1073 spin_lock(&rl3->list_lock);
1074 /*
1075 * Stuff objects into the remote nodes shared array first.
1076 * That way we could avoid the overhead of putting the objects
1077 * into the free lists and getting them back later.
1078 */
1079 if (rl3->shared)
1080 transfer_objects(rl3->shared, ac, ac->limit);
1081
1082 free_block(cachep, ac->entry, ac->avail, node);
1083 ac->avail = 0;
1084 spin_unlock(&rl3->list_lock);
1085 }
1086 }
1087
1088 /*
1089 * Called from cache_reap() to regularly drain alien caches round robin.
1090 */
1091 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1092 {
1093 int node = __get_cpu_var(reap_node);
1094
1095 if (l3->alien) {
1096 struct array_cache *ac = l3->alien[node];
1097
1098 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1099 __drain_alien_cache(cachep, ac, node);
1100 spin_unlock_irq(&ac->lock);
1101 }
1102 }
1103 }
1104
1105 static void drain_alien_cache(struct kmem_cache *cachep,
1106 struct array_cache **alien)
1107 {
1108 int i = 0;
1109 struct array_cache *ac;
1110 unsigned long flags;
1111
1112 for_each_online_node(i) {
1113 ac = alien[i];
1114 if (ac) {
1115 spin_lock_irqsave(&ac->lock, flags);
1116 __drain_alien_cache(cachep, ac, i);
1117 spin_unlock_irqrestore(&ac->lock, flags);
1118 }
1119 }
1120 }
1121
1122 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1123 {
1124 struct slab *slabp = virt_to_slab(objp);
1125 int nodeid = slabp->nodeid;
1126 struct kmem_list3 *l3;
1127 struct array_cache *alien = NULL;
1128 int node;
1129
1130 node = numa_node_id();
1131
1132 /*
1133 * Make sure we are not freeing a object from another node to the array
1134 * cache on this cpu.
1135 */
1136 if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches))
1137 return 0;
1138
1139 l3 = cachep->nodelists[node];
1140 STATS_INC_NODEFREES(cachep);
1141 if (l3->alien && l3->alien[nodeid]) {
1142 alien = l3->alien[nodeid];
1143 spin_lock(&alien->lock);
1144 if (unlikely(alien->avail == alien->limit)) {
1145 STATS_INC_ACOVERFLOW(cachep);
1146 __drain_alien_cache(cachep, alien, nodeid);
1147 }
1148 alien->entry[alien->avail++] = objp;
1149 spin_unlock(&alien->lock);
1150 } else {
1151 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1152 free_block(cachep, &objp, 1, nodeid);
1153 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1154 }
1155 return 1;
1156 }
1157 #endif
1158
1159 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1160 unsigned long action, void *hcpu)
1161 {
1162 long cpu = (long)hcpu;
1163 struct kmem_cache *cachep;
1164 struct kmem_list3 *l3 = NULL;
1165 int node = cpu_to_node(cpu);
1166 int memsize = sizeof(struct kmem_list3);
1167
1168 switch (action) {
1169 case CPU_UP_PREPARE:
1170 mutex_lock(&cache_chain_mutex);
1171 /*
1172 * We need to do this right in the beginning since
1173 * alloc_arraycache's are going to use this list.
1174 * kmalloc_node allows us to add the slab to the right
1175 * kmem_list3 and not this cpu's kmem_list3
1176 */
1177
1178 list_for_each_entry(cachep, &cache_chain, next) {
1179 /*
1180 * Set up the size64 kmemlist for cpu before we can
1181 * begin anything. Make sure some other cpu on this
1182 * node has not already allocated this
1183 */
1184 if (!cachep->nodelists[node]) {
1185 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1186 if (!l3)
1187 goto bad;
1188 kmem_list3_init(l3);
1189 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1190 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1191
1192 /*
1193 * The l3s don't come and go as CPUs come and
1194 * go. cache_chain_mutex is sufficient
1195 * protection here.
1196 */
1197 cachep->nodelists[node] = l3;
1198 }
1199
1200 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1201 cachep->nodelists[node]->free_limit =
1202 (1 + nr_cpus_node(node)) *
1203 cachep->batchcount + cachep->num;
1204 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1205 }
1206
1207 /*
1208 * Now we can go ahead with allocating the shared arrays and
1209 * array caches
1210 */
1211 list_for_each_entry(cachep, &cache_chain, next) {
1212 struct array_cache *nc;
1213 struct array_cache *shared;
1214 struct array_cache **alien = NULL;
1215
1216 nc = alloc_arraycache(node, cachep->limit,
1217 cachep->batchcount);
1218 if (!nc)
1219 goto bad;
1220 shared = alloc_arraycache(node,
1221 cachep->shared * cachep->batchcount,
1222 0xbaadf00d);
1223 if (!shared)
1224 goto bad;
1225
1226 if (use_alien_caches) {
1227 alien = alloc_alien_cache(node, cachep->limit);
1228 if (!alien)
1229 goto bad;
1230 }
1231 cachep->array[cpu] = nc;
1232 l3 = cachep->nodelists[node];
1233 BUG_ON(!l3);
1234
1235 spin_lock_irq(&l3->list_lock);
1236 if (!l3->shared) {
1237 /*
1238 * We are serialised from CPU_DEAD or
1239 * CPU_UP_CANCELLED by the cpucontrol lock
1240 */
1241 l3->shared = shared;
1242 shared = NULL;
1243 }
1244 #ifdef CONFIG_NUMA
1245 if (!l3->alien) {
1246 l3->alien = alien;
1247 alien = NULL;
1248 }
1249 #endif
1250 spin_unlock_irq(&l3->list_lock);
1251 kfree(shared);
1252 free_alien_cache(alien);
1253 }
1254 break;
1255 case CPU_ONLINE:
1256 mutex_unlock(&cache_chain_mutex);
1257 start_cpu_timer(cpu);
1258 break;
1259 #ifdef CONFIG_HOTPLUG_CPU
1260 case CPU_DOWN_PREPARE:
1261 mutex_lock(&cache_chain_mutex);
1262 break;
1263 case CPU_DOWN_FAILED:
1264 mutex_unlock(&cache_chain_mutex);
1265 break;
1266 case CPU_DEAD:
1267 /*
1268 * Even if all the cpus of a node are down, we don't free the
1269 * kmem_list3 of any cache. This to avoid a race between
1270 * cpu_down, and a kmalloc allocation from another cpu for
1271 * memory from the node of the cpu going down. The list3
1272 * structure is usually allocated from kmem_cache_create() and
1273 * gets destroyed at kmem_cache_destroy().
1274 */
1275 /* fall thru */
1276 #endif
1277 case CPU_UP_CANCELED:
1278 list_for_each_entry(cachep, &cache_chain, next) {
1279 struct array_cache *nc;
1280 struct array_cache *shared;
1281 struct array_cache **alien;
1282 cpumask_t mask;
1283
1284 mask = node_to_cpumask(node);
1285 /* cpu is dead; no one can alloc from it. */
1286 nc = cachep->array[cpu];
1287 cachep->array[cpu] = NULL;
1288 l3 = cachep->nodelists[node];
1289
1290 if (!l3)
1291 goto free_array_cache;
1292
1293 spin_lock_irq(&l3->list_lock);
1294
1295 /* Free limit for this kmem_list3 */
1296 l3->free_limit -= cachep->batchcount;
1297 if (nc)
1298 free_block(cachep, nc->entry, nc->avail, node);
1299
1300 if (!cpus_empty(mask)) {
1301 spin_unlock_irq(&l3->list_lock);
1302 goto free_array_cache;
1303 }
1304
1305 shared = l3->shared;
1306 if (shared) {
1307 free_block(cachep, l3->shared->entry,
1308 l3->shared->avail, node);
1309 l3->shared = NULL;
1310 }
1311
1312 alien = l3->alien;
1313 l3->alien = NULL;
1314
1315 spin_unlock_irq(&l3->list_lock);
1316
1317 kfree(shared);
1318 if (alien) {
1319 drain_alien_cache(cachep, alien);
1320 free_alien_cache(alien);
1321 }
1322 free_array_cache:
1323 kfree(nc);
1324 }
1325 /*
1326 * In the previous loop, all the objects were freed to
1327 * the respective cache's slabs, now we can go ahead and
1328 * shrink each nodelist to its limit.
1329 */
1330 list_for_each_entry(cachep, &cache_chain, next) {
1331 l3 = cachep->nodelists[node];
1332 if (!l3)
1333 continue;
1334 drain_freelist(cachep, l3, l3->free_objects);
1335 }
1336 mutex_unlock(&cache_chain_mutex);
1337 break;
1338 }
1339 return NOTIFY_OK;
1340 bad:
1341 return NOTIFY_BAD;
1342 }
1343
1344 static struct notifier_block __cpuinitdata cpucache_notifier = {
1345 &cpuup_callback, NULL, 0
1346 };
1347
1348 /*
1349 * swap the static kmem_list3 with kmalloced memory
1350 */
1351 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1352 int nodeid)
1353 {
1354 struct kmem_list3 *ptr;
1355
1356 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1357 BUG_ON(!ptr);
1358
1359 local_irq_disable();
1360 memcpy(ptr, list, sizeof(struct kmem_list3));
1361 /*
1362 * Do not assume that spinlocks can be initialized via memcpy:
1363 */
1364 spin_lock_init(&ptr->list_lock);
1365
1366 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1367 cachep->nodelists[nodeid] = ptr;
1368 local_irq_enable();
1369 }
1370
1371 /*
1372 * Initialisation. Called after the page allocator have been initialised and
1373 * before smp_init().
1374 */
1375 void __init kmem_cache_init(void)
1376 {
1377 size_t left_over;
1378 struct cache_sizes *sizes;
1379 struct cache_names *names;
1380 int i;
1381 int order;
1382 int node;
1383
1384 for (i = 0; i < NUM_INIT_LISTS; i++) {
1385 kmem_list3_init(&initkmem_list3[i]);
1386 if (i < MAX_NUMNODES)
1387 cache_cache.nodelists[i] = NULL;
1388 }
1389
1390 /*
1391 * Fragmentation resistance on low memory - only use bigger
1392 * page orders on machines with more than 32MB of memory.
1393 */
1394 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1395 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1396
1397 /* Bootstrap is tricky, because several objects are allocated
1398 * from caches that do not exist yet:
1399 * 1) initialize the cache_cache cache: it contains the struct
1400 * kmem_cache structures of all caches, except cache_cache itself:
1401 * cache_cache is statically allocated.
1402 * Initially an __init data area is used for the head array and the
1403 * kmem_list3 structures, it's replaced with a kmalloc allocated
1404 * array at the end of the bootstrap.
1405 * 2) Create the first kmalloc cache.
1406 * The struct kmem_cache for the new cache is allocated normally.
1407 * An __init data area is used for the head array.
1408 * 3) Create the remaining kmalloc caches, with minimally sized
1409 * head arrays.
1410 * 4) Replace the __init data head arrays for cache_cache and the first
1411 * kmalloc cache with kmalloc allocated arrays.
1412 * 5) Replace the __init data for kmem_list3 for cache_cache and
1413 * the other cache's with kmalloc allocated memory.
1414 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1415 */
1416
1417 node = numa_node_id();
1418
1419 /* 1) create the cache_cache */
1420 INIT_LIST_HEAD(&cache_chain);
1421 list_add(&cache_cache.next, &cache_chain);
1422 cache_cache.colour_off = cache_line_size();
1423 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1424 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1425
1426 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1427 cache_line_size());
1428
1429 for (order = 0; order < MAX_ORDER; order++) {
1430 cache_estimate(order, cache_cache.buffer_size,
1431 cache_line_size(), 0, &left_over, &cache_cache.num);
1432 if (cache_cache.num)
1433 break;
1434 }
1435 BUG_ON(!cache_cache.num);
1436 cache_cache.gfporder = order;
1437 cache_cache.colour = left_over / cache_cache.colour_off;
1438 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1439 sizeof(struct slab), cache_line_size());
1440
1441 /* 2+3) create the kmalloc caches */
1442 sizes = malloc_sizes;
1443 names = cache_names;
1444
1445 /*
1446 * Initialize the caches that provide memory for the array cache and the
1447 * kmem_list3 structures first. Without this, further allocations will
1448 * bug.
1449 */
1450
1451 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1452 sizes[INDEX_AC].cs_size,
1453 ARCH_KMALLOC_MINALIGN,
1454 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1455 NULL, NULL);
1456
1457 if (INDEX_AC != INDEX_L3) {
1458 sizes[INDEX_L3].cs_cachep =
1459 kmem_cache_create(names[INDEX_L3].name,
1460 sizes[INDEX_L3].cs_size,
1461 ARCH_KMALLOC_MINALIGN,
1462 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1463 NULL, NULL);
1464 }
1465
1466 slab_early_init = 0;
1467
1468 while (sizes->cs_size != ULONG_MAX) {
1469 /*
1470 * For performance, all the general caches are L1 aligned.
1471 * This should be particularly beneficial on SMP boxes, as it
1472 * eliminates "false sharing".
1473 * Note for systems short on memory removing the alignment will
1474 * allow tighter packing of the smaller caches.
1475 */
1476 if (!sizes->cs_cachep) {
1477 sizes->cs_cachep = kmem_cache_create(names->name,
1478 sizes->cs_size,
1479 ARCH_KMALLOC_MINALIGN,
1480 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1481 NULL, NULL);
1482 }
1483
1484 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1485 sizes->cs_size,
1486 ARCH_KMALLOC_MINALIGN,
1487 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1488 SLAB_PANIC,
1489 NULL, NULL);
1490 sizes++;
1491 names++;
1492 }
1493 /* 4) Replace the bootstrap head arrays */
1494 {
1495 struct array_cache *ptr;
1496
1497 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1498
1499 local_irq_disable();
1500 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1501 memcpy(ptr, cpu_cache_get(&cache_cache),
1502 sizeof(struct arraycache_init));
1503 /*
1504 * Do not assume that spinlocks can be initialized via memcpy:
1505 */
1506 spin_lock_init(&ptr->lock);
1507
1508 cache_cache.array[smp_processor_id()] = ptr;
1509 local_irq_enable();
1510
1511 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1512
1513 local_irq_disable();
1514 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1515 != &initarray_generic.cache);
1516 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1517 sizeof(struct arraycache_init));
1518 /*
1519 * Do not assume that spinlocks can be initialized via memcpy:
1520 */
1521 spin_lock_init(&ptr->lock);
1522
1523 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1524 ptr;
1525 local_irq_enable();
1526 }
1527 /* 5) Replace the bootstrap kmem_list3's */
1528 {
1529 int nid;
1530
1531 /* Replace the static kmem_list3 structures for the boot cpu */
1532 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1533
1534 for_each_online_node(nid) {
1535 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1536 &initkmem_list3[SIZE_AC + nid], nid);
1537
1538 if (INDEX_AC != INDEX_L3) {
1539 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1540 &initkmem_list3[SIZE_L3 + nid], nid);
1541 }
1542 }
1543 }
1544
1545 /* 6) resize the head arrays to their final sizes */
1546 {
1547 struct kmem_cache *cachep;
1548 mutex_lock(&cache_chain_mutex);
1549 list_for_each_entry(cachep, &cache_chain, next)
1550 if (enable_cpucache(cachep))
1551 BUG();
1552 mutex_unlock(&cache_chain_mutex);
1553 }
1554
1555 /* Annotate slab for lockdep -- annotate the malloc caches */
1556 init_lock_keys();
1557
1558
1559 /* Done! */
1560 g_cpucache_up = FULL;
1561
1562 /*
1563 * Register a cpu startup notifier callback that initializes
1564 * cpu_cache_get for all new cpus
1565 */
1566 register_cpu_notifier(&cpucache_notifier);
1567
1568 /*
1569 * The reap timers are started later, with a module init call: That part
1570 * of the kernel is not yet operational.
1571 */
1572 }
1573
1574 static int __init cpucache_init(void)
1575 {
1576 int cpu;
1577
1578 /*
1579 * Register the timers that return unneeded pages to the page allocator
1580 */
1581 for_each_online_cpu(cpu)
1582 start_cpu_timer(cpu);
1583 return 0;
1584 }
1585 __initcall(cpucache_init);
1586
1587 /*
1588 * Interface to system's page allocator. No need to hold the cache-lock.
1589 *
1590 * If we requested dmaable memory, we will get it. Even if we
1591 * did not request dmaable memory, we might get it, but that
1592 * would be relatively rare and ignorable.
1593 */
1594 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1595 {
1596 struct page *page;
1597 int nr_pages;
1598 int i;
1599
1600 #ifndef CONFIG_MMU
1601 /*
1602 * Nommu uses slab's for process anonymous memory allocations, and thus
1603 * requires __GFP_COMP to properly refcount higher order allocations
1604 */
1605 flags |= __GFP_COMP;
1606 #endif
1607
1608 flags |= cachep->gfpflags;
1609
1610 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1611 if (!page)
1612 return NULL;
1613
1614 nr_pages = (1 << cachep->gfporder);
1615 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1616 add_zone_page_state(page_zone(page),
1617 NR_SLAB_RECLAIMABLE, nr_pages);
1618 else
1619 add_zone_page_state(page_zone(page),
1620 NR_SLAB_UNRECLAIMABLE, nr_pages);
1621 for (i = 0; i < nr_pages; i++)
1622 __SetPageSlab(page + i);
1623 return page_address(page);
1624 }
1625
1626 /*
1627 * Interface to system's page release.
1628 */
1629 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1630 {
1631 unsigned long i = (1 << cachep->gfporder);
1632 struct page *page = virt_to_page(addr);
1633 const unsigned long nr_freed = i;
1634
1635 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1636 sub_zone_page_state(page_zone(page),
1637 NR_SLAB_RECLAIMABLE, nr_freed);
1638 else
1639 sub_zone_page_state(page_zone(page),
1640 NR_SLAB_UNRECLAIMABLE, nr_freed);
1641 while (i--) {
1642 BUG_ON(!PageSlab(page));
1643 __ClearPageSlab(page);
1644 page++;
1645 }
1646 if (current->reclaim_state)
1647 current->reclaim_state->reclaimed_slab += nr_freed;
1648 free_pages((unsigned long)addr, cachep->gfporder);
1649 }
1650
1651 static void kmem_rcu_free(struct rcu_head *head)
1652 {
1653 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1654 struct kmem_cache *cachep = slab_rcu->cachep;
1655
1656 kmem_freepages(cachep, slab_rcu->addr);
1657 if (OFF_SLAB(cachep))
1658 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1659 }
1660
1661 #if DEBUG
1662
1663 #ifdef CONFIG_DEBUG_PAGEALLOC
1664 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1665 unsigned long caller)
1666 {
1667 int size = obj_size(cachep);
1668
1669 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1670
1671 if (size < 5 * sizeof(unsigned long))
1672 return;
1673
1674 *addr++ = 0x12345678;
1675 *addr++ = caller;
1676 *addr++ = smp_processor_id();
1677 size -= 3 * sizeof(unsigned long);
1678 {
1679 unsigned long *sptr = &caller;
1680 unsigned long svalue;
1681
1682 while (!kstack_end(sptr)) {
1683 svalue = *sptr++;
1684 if (kernel_text_address(svalue)) {
1685 *addr++ = svalue;
1686 size -= sizeof(unsigned long);
1687 if (size <= sizeof(unsigned long))
1688 break;
1689 }
1690 }
1691
1692 }
1693 *addr++ = 0x87654321;
1694 }
1695 #endif
1696
1697 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1698 {
1699 int size = obj_size(cachep);
1700 addr = &((char *)addr)[obj_offset(cachep)];
1701
1702 memset(addr, val, size);
1703 *(unsigned char *)(addr + size - 1) = POISON_END;
1704 }
1705
1706 static void dump_line(char *data, int offset, int limit)
1707 {
1708 int i;
1709 unsigned char error = 0;
1710 int bad_count = 0;
1711
1712 printk(KERN_ERR "%03x:", offset);
1713 for (i = 0; i < limit; i++) {
1714 if (data[offset + i] != POISON_FREE) {
1715 error = data[offset + i];
1716 bad_count++;
1717 }
1718 printk(" %02x", (unsigned char)data[offset + i]);
1719 }
1720 printk("\n");
1721
1722 if (bad_count == 1) {
1723 error ^= POISON_FREE;
1724 if (!(error & (error - 1))) {
1725 printk(KERN_ERR "Single bit error detected. Probably "
1726 "bad RAM.\n");
1727 #ifdef CONFIG_X86
1728 printk(KERN_ERR "Run memtest86+ or a similar memory "
1729 "test tool.\n");
1730 #else
1731 printk(KERN_ERR "Run a memory test tool.\n");
1732 #endif
1733 }
1734 }
1735 }
1736 #endif
1737
1738 #if DEBUG
1739
1740 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1741 {
1742 int i, size;
1743 char *realobj;
1744
1745 if (cachep->flags & SLAB_RED_ZONE) {
1746 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1747 *dbg_redzone1(cachep, objp),
1748 *dbg_redzone2(cachep, objp));
1749 }
1750
1751 if (cachep->flags & SLAB_STORE_USER) {
1752 printk(KERN_ERR "Last user: [<%p>]",
1753 *dbg_userword(cachep, objp));
1754 print_symbol("(%s)",
1755 (unsigned long)*dbg_userword(cachep, objp));
1756 printk("\n");
1757 }
1758 realobj = (char *)objp + obj_offset(cachep);
1759 size = obj_size(cachep);
1760 for (i = 0; i < size && lines; i += 16, lines--) {
1761 int limit;
1762 limit = 16;
1763 if (i + limit > size)
1764 limit = size - i;
1765 dump_line(realobj, i, limit);
1766 }
1767 }
1768
1769 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1770 {
1771 char *realobj;
1772 int size, i;
1773 int lines = 0;
1774
1775 realobj = (char *)objp + obj_offset(cachep);
1776 size = obj_size(cachep);
1777
1778 for (i = 0; i < size; i++) {
1779 char exp = POISON_FREE;
1780 if (i == size - 1)
1781 exp = POISON_END;
1782 if (realobj[i] != exp) {
1783 int limit;
1784 /* Mismatch ! */
1785 /* Print header */
1786 if (lines == 0) {
1787 printk(KERN_ERR
1788 "Slab corruption: start=%p, len=%d\n",
1789 realobj, size);
1790 print_objinfo(cachep, objp, 0);
1791 }
1792 /* Hexdump the affected line */
1793 i = (i / 16) * 16;
1794 limit = 16;
1795 if (i + limit > size)
1796 limit = size - i;
1797 dump_line(realobj, i, limit);
1798 i += 16;
1799 lines++;
1800 /* Limit to 5 lines */
1801 if (lines > 5)
1802 break;
1803 }
1804 }
1805 if (lines != 0) {
1806 /* Print some data about the neighboring objects, if they
1807 * exist:
1808 */
1809 struct slab *slabp = virt_to_slab(objp);
1810 unsigned int objnr;
1811
1812 objnr = obj_to_index(cachep, slabp, objp);
1813 if (objnr) {
1814 objp = index_to_obj(cachep, slabp, objnr - 1);
1815 realobj = (char *)objp + obj_offset(cachep);
1816 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1817 realobj, size);
1818 print_objinfo(cachep, objp, 2);
1819 }
1820 if (objnr + 1 < cachep->num) {
1821 objp = index_to_obj(cachep, slabp, objnr + 1);
1822 realobj = (char *)objp + obj_offset(cachep);
1823 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1824 realobj, size);
1825 print_objinfo(cachep, objp, 2);
1826 }
1827 }
1828 }
1829 #endif
1830
1831 #if DEBUG
1832 /**
1833 * slab_destroy_objs - destroy a slab and its objects
1834 * @cachep: cache pointer being destroyed
1835 * @slabp: slab pointer being destroyed
1836 *
1837 * Call the registered destructor for each object in a slab that is being
1838 * destroyed.
1839 */
1840 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1841 {
1842 int i;
1843 for (i = 0; i < cachep->num; i++) {
1844 void *objp = index_to_obj(cachep, slabp, i);
1845
1846 if (cachep->flags & SLAB_POISON) {
1847 #ifdef CONFIG_DEBUG_PAGEALLOC
1848 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1849 OFF_SLAB(cachep))
1850 kernel_map_pages(virt_to_page(objp),
1851 cachep->buffer_size / PAGE_SIZE, 1);
1852 else
1853 check_poison_obj(cachep, objp);
1854 #else
1855 check_poison_obj(cachep, objp);
1856 #endif
1857 }
1858 if (cachep->flags & SLAB_RED_ZONE) {
1859 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1860 slab_error(cachep, "start of a freed object "
1861 "was overwritten");
1862 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1863 slab_error(cachep, "end of a freed object "
1864 "was overwritten");
1865 }
1866 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1867 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1868 }
1869 }
1870 #else
1871 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1872 {
1873 if (cachep->dtor) {
1874 int i;
1875 for (i = 0; i < cachep->num; i++) {
1876 void *objp = index_to_obj(cachep, slabp, i);
1877 (cachep->dtor) (objp, cachep, 0);
1878 }
1879 }
1880 }
1881 #endif
1882
1883 /**
1884 * slab_destroy - destroy and release all objects in a slab
1885 * @cachep: cache pointer being destroyed
1886 * @slabp: slab pointer being destroyed
1887 *
1888 * Destroy all the objs in a slab, and release the mem back to the system.
1889 * Before calling the slab must have been unlinked from the cache. The
1890 * cache-lock is not held/needed.
1891 */
1892 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1893 {
1894 void *addr = slabp->s_mem - slabp->colouroff;
1895
1896 slab_destroy_objs(cachep, slabp);
1897 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1898 struct slab_rcu *slab_rcu;
1899
1900 slab_rcu = (struct slab_rcu *)slabp;
1901 slab_rcu->cachep = cachep;
1902 slab_rcu->addr = addr;
1903 call_rcu(&slab_rcu->head, kmem_rcu_free);
1904 } else {
1905 kmem_freepages(cachep, addr);
1906 if (OFF_SLAB(cachep))
1907 kmem_cache_free(cachep->slabp_cache, slabp);
1908 }
1909 }
1910
1911 /*
1912 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1913 * size of kmem_list3.
1914 */
1915 static void set_up_list3s(struct kmem_cache *cachep, int index)
1916 {
1917 int node;
1918
1919 for_each_online_node(node) {
1920 cachep->nodelists[node] = &initkmem_list3[index + node];
1921 cachep->nodelists[node]->next_reap = jiffies +
1922 REAPTIMEOUT_LIST3 +
1923 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1924 }
1925 }
1926
1927 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1928 {
1929 int i;
1930 struct kmem_list3 *l3;
1931
1932 for_each_online_cpu(i)
1933 kfree(cachep->array[i]);
1934
1935 /* NUMA: free the list3 structures */
1936 for_each_online_node(i) {
1937 l3 = cachep->nodelists[i];
1938 if (l3) {
1939 kfree(l3->shared);
1940 free_alien_cache(l3->alien);
1941 kfree(l3);
1942 }
1943 }
1944 kmem_cache_free(&cache_cache, cachep);
1945 }
1946
1947
1948 /**
1949 * calculate_slab_order - calculate size (page order) of slabs
1950 * @cachep: pointer to the cache that is being created
1951 * @size: size of objects to be created in this cache.
1952 * @align: required alignment for the objects.
1953 * @flags: slab allocation flags
1954 *
1955 * Also calculates the number of objects per slab.
1956 *
1957 * This could be made much more intelligent. For now, try to avoid using
1958 * high order pages for slabs. When the gfp() functions are more friendly
1959 * towards high-order requests, this should be changed.
1960 */
1961 static size_t calculate_slab_order(struct kmem_cache *cachep,
1962 size_t size, size_t align, unsigned long flags)
1963 {
1964 unsigned long offslab_limit;
1965 size_t left_over = 0;
1966 int gfporder;
1967
1968 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1969 unsigned int num;
1970 size_t remainder;
1971
1972 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1973 if (!num)
1974 continue;
1975
1976 if (flags & CFLGS_OFF_SLAB) {
1977 /*
1978 * Max number of objs-per-slab for caches which
1979 * use off-slab slabs. Needed to avoid a possible
1980 * looping condition in cache_grow().
1981 */
1982 offslab_limit = size - sizeof(struct slab);
1983 offslab_limit /= sizeof(kmem_bufctl_t);
1984
1985 if (num > offslab_limit)
1986 break;
1987 }
1988
1989 /* Found something acceptable - save it away */
1990 cachep->num = num;
1991 cachep->gfporder = gfporder;
1992 left_over = remainder;
1993
1994 /*
1995 * A VFS-reclaimable slab tends to have most allocations
1996 * as GFP_NOFS and we really don't want to have to be allocating
1997 * higher-order pages when we are unable to shrink dcache.
1998 */
1999 if (flags & SLAB_RECLAIM_ACCOUNT)
2000 break;
2001
2002 /*
2003 * Large number of objects is good, but very large slabs are
2004 * currently bad for the gfp()s.
2005 */
2006 if (gfporder >= slab_break_gfp_order)
2007 break;
2008
2009 /*
2010 * Acceptable internal fragmentation?
2011 */
2012 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2013 break;
2014 }
2015 return left_over;
2016 }
2017
2018 static int setup_cpu_cache(struct kmem_cache *cachep)
2019 {
2020 if (g_cpucache_up == FULL)
2021 return enable_cpucache(cachep);
2022
2023 if (g_cpucache_up == NONE) {
2024 /*
2025 * Note: the first kmem_cache_create must create the cache
2026 * that's used by kmalloc(24), otherwise the creation of
2027 * further caches will BUG().
2028 */
2029 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2030
2031 /*
2032 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2033 * the first cache, then we need to set up all its list3s,
2034 * otherwise the creation of further caches will BUG().
2035 */
2036 set_up_list3s(cachep, SIZE_AC);
2037 if (INDEX_AC == INDEX_L3)
2038 g_cpucache_up = PARTIAL_L3;
2039 else
2040 g_cpucache_up = PARTIAL_AC;
2041 } else {
2042 cachep->array[smp_processor_id()] =
2043 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2044
2045 if (g_cpucache_up == PARTIAL_AC) {
2046 set_up_list3s(cachep, SIZE_L3);
2047 g_cpucache_up = PARTIAL_L3;
2048 } else {
2049 int node;
2050 for_each_online_node(node) {
2051 cachep->nodelists[node] =
2052 kmalloc_node(sizeof(struct kmem_list3),
2053 GFP_KERNEL, node);
2054 BUG_ON(!cachep->nodelists[node]);
2055 kmem_list3_init(cachep->nodelists[node]);
2056 }
2057 }
2058 }
2059 cachep->nodelists[numa_node_id()]->next_reap =
2060 jiffies + REAPTIMEOUT_LIST3 +
2061 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2062
2063 cpu_cache_get(cachep)->avail = 0;
2064 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2065 cpu_cache_get(cachep)->batchcount = 1;
2066 cpu_cache_get(cachep)->touched = 0;
2067 cachep->batchcount = 1;
2068 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2069 return 0;
2070 }
2071
2072 /**
2073 * kmem_cache_create - Create a cache.
2074 * @name: A string which is used in /proc/slabinfo to identify this cache.
2075 * @size: The size of objects to be created in this cache.
2076 * @align: The required alignment for the objects.
2077 * @flags: SLAB flags
2078 * @ctor: A constructor for the objects.
2079 * @dtor: A destructor for the objects.
2080 *
2081 * Returns a ptr to the cache on success, NULL on failure.
2082 * Cannot be called within a int, but can be interrupted.
2083 * The @ctor is run when new pages are allocated by the cache
2084 * and the @dtor is run before the pages are handed back.
2085 *
2086 * @name must be valid until the cache is destroyed. This implies that
2087 * the module calling this has to destroy the cache before getting unloaded.
2088 *
2089 * The flags are
2090 *
2091 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2092 * to catch references to uninitialised memory.
2093 *
2094 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2095 * for buffer overruns.
2096 *
2097 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2098 * cacheline. This can be beneficial if you're counting cycles as closely
2099 * as davem.
2100 */
2101 struct kmem_cache *
2102 kmem_cache_create (const char *name, size_t size, size_t align,
2103 unsigned long flags,
2104 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2105 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2106 {
2107 size_t left_over, slab_size, ralign;
2108 struct kmem_cache *cachep = NULL, *pc;
2109
2110 /*
2111 * Sanity checks... these are all serious usage bugs.
2112 */
2113 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2114 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2115 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2116 name);
2117 BUG();
2118 }
2119
2120 /*
2121 * We use cache_chain_mutex to ensure a consistent view of
2122 * cpu_online_map as well. Please see cpuup_callback
2123 */
2124 mutex_lock(&cache_chain_mutex);
2125
2126 list_for_each_entry(pc, &cache_chain, next) {
2127 mm_segment_t old_fs = get_fs();
2128 char tmp;
2129 int res;
2130
2131 /*
2132 * This happens when the module gets unloaded and doesn't
2133 * destroy its slab cache and no-one else reuses the vmalloc
2134 * area of the module. Print a warning.
2135 */
2136 set_fs(KERNEL_DS);
2137 res = __get_user(tmp, pc->name);
2138 set_fs(old_fs);
2139 if (res) {
2140 printk("SLAB: cache with size %d has lost its name\n",
2141 pc->buffer_size);
2142 continue;
2143 }
2144
2145 if (!strcmp(pc->name, name)) {
2146 printk("kmem_cache_create: duplicate cache %s\n", name);
2147 dump_stack();
2148 goto oops;
2149 }
2150 }
2151
2152 #if DEBUG
2153 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2154 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2155 /* No constructor, but inital state check requested */
2156 printk(KERN_ERR "%s: No con, but init state check "
2157 "requested - %s\n", __FUNCTION__, name);
2158 flags &= ~SLAB_DEBUG_INITIAL;
2159 }
2160 #if FORCED_DEBUG
2161 /*
2162 * Enable redzoning and last user accounting, except for caches with
2163 * large objects, if the increased size would increase the object size
2164 * above the next power of two: caches with object sizes just above a
2165 * power of two have a significant amount of internal fragmentation.
2166 */
2167 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2168 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2169 if (!(flags & SLAB_DESTROY_BY_RCU))
2170 flags |= SLAB_POISON;
2171 #endif
2172 if (flags & SLAB_DESTROY_BY_RCU)
2173 BUG_ON(flags & SLAB_POISON);
2174 #endif
2175 if (flags & SLAB_DESTROY_BY_RCU)
2176 BUG_ON(dtor);
2177
2178 /*
2179 * Always checks flags, a caller might be expecting debug support which
2180 * isn't available.
2181 */
2182 BUG_ON(flags & ~CREATE_MASK);
2183
2184 /*
2185 * Check that size is in terms of words. This is needed to avoid
2186 * unaligned accesses for some archs when redzoning is used, and makes
2187 * sure any on-slab bufctl's are also correctly aligned.
2188 */
2189 if (size & (BYTES_PER_WORD - 1)) {
2190 size += (BYTES_PER_WORD - 1);
2191 size &= ~(BYTES_PER_WORD - 1);
2192 }
2193
2194 /* calculate the final buffer alignment: */
2195
2196 /* 1) arch recommendation: can be overridden for debug */
2197 if (flags & SLAB_HWCACHE_ALIGN) {
2198 /*
2199 * Default alignment: as specified by the arch code. Except if
2200 * an object is really small, then squeeze multiple objects into
2201 * one cacheline.
2202 */
2203 ralign = cache_line_size();
2204 while (size <= ralign / 2)
2205 ralign /= 2;
2206 } else {
2207 ralign = BYTES_PER_WORD;
2208 }
2209
2210 /*
2211 * Redzoning and user store require word alignment. Note this will be
2212 * overridden by architecture or caller mandated alignment if either
2213 * is greater than BYTES_PER_WORD.
2214 */
2215 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2216 ralign = BYTES_PER_WORD;
2217
2218 /* 2) arch mandated alignment */
2219 if (ralign < ARCH_SLAB_MINALIGN) {
2220 ralign = ARCH_SLAB_MINALIGN;
2221 }
2222 /* 3) caller mandated alignment */
2223 if (ralign < align) {
2224 ralign = align;
2225 }
2226 /* disable debug if necessary */
2227 if (ralign > BYTES_PER_WORD)
2228 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2229 /*
2230 * 4) Store it.
2231 */
2232 align = ralign;
2233
2234 /* Get cache's description obj. */
2235 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2236 if (!cachep)
2237 goto oops;
2238
2239 #if DEBUG
2240 cachep->obj_size = size;
2241
2242 /*
2243 * Both debugging options require word-alignment which is calculated
2244 * into align above.
2245 */
2246 if (flags & SLAB_RED_ZONE) {
2247 /* add space for red zone words */
2248 cachep->obj_offset += BYTES_PER_WORD;
2249 size += 2 * BYTES_PER_WORD;
2250 }
2251 if (flags & SLAB_STORE_USER) {
2252 /* user store requires one word storage behind the end of
2253 * the real object.
2254 */
2255 size += BYTES_PER_WORD;
2256 }
2257 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2258 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2259 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2260 cachep->obj_offset += PAGE_SIZE - size;
2261 size = PAGE_SIZE;
2262 }
2263 #endif
2264 #endif
2265
2266 /*
2267 * Determine if the slab management is 'on' or 'off' slab.
2268 * (bootstrapping cannot cope with offslab caches so don't do
2269 * it too early on.)
2270 */
2271 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2272 /*
2273 * Size is large, assume best to place the slab management obj
2274 * off-slab (should allow better packing of objs).
2275 */
2276 flags |= CFLGS_OFF_SLAB;
2277
2278 size = ALIGN(size, align);
2279
2280 left_over = calculate_slab_order(cachep, size, align, flags);
2281
2282 if (!cachep->num) {
2283 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2284 kmem_cache_free(&cache_cache, cachep);
2285 cachep = NULL;
2286 goto oops;
2287 }
2288 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2289 + sizeof(struct slab), align);
2290
2291 /*
2292 * If the slab has been placed off-slab, and we have enough space then
2293 * move it on-slab. This is at the expense of any extra colouring.
2294 */
2295 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2296 flags &= ~CFLGS_OFF_SLAB;
2297 left_over -= slab_size;
2298 }
2299
2300 if (flags & CFLGS_OFF_SLAB) {
2301 /* really off slab. No need for manual alignment */
2302 slab_size =
2303 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2304 }
2305
2306 cachep->colour_off = cache_line_size();
2307 /* Offset must be a multiple of the alignment. */
2308 if (cachep->colour_off < align)
2309 cachep->colour_off = align;
2310 cachep->colour = left_over / cachep->colour_off;
2311 cachep->slab_size = slab_size;
2312 cachep->flags = flags;
2313 cachep->gfpflags = 0;
2314 if (flags & SLAB_CACHE_DMA)
2315 cachep->gfpflags |= GFP_DMA;
2316 cachep->buffer_size = size;
2317
2318 if (flags & CFLGS_OFF_SLAB) {
2319 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2320 /*
2321 * This is a possibility for one of the malloc_sizes caches.
2322 * But since we go off slab only for object size greater than
2323 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2324 * this should not happen at all.
2325 * But leave a BUG_ON for some lucky dude.
2326 */
2327 BUG_ON(!cachep->slabp_cache);
2328 }
2329 cachep->ctor = ctor;
2330 cachep->dtor = dtor;
2331 cachep->name = name;
2332
2333 if (setup_cpu_cache(cachep)) {
2334 __kmem_cache_destroy(cachep);
2335 cachep = NULL;
2336 goto oops;
2337 }
2338
2339 /* cache setup completed, link it into the list */
2340 list_add(&cachep->next, &cache_chain);
2341 oops:
2342 if (!cachep && (flags & SLAB_PANIC))
2343 panic("kmem_cache_create(): failed to create slab `%s'\n",
2344 name);
2345 mutex_unlock(&cache_chain_mutex);
2346 return cachep;
2347 }
2348 EXPORT_SYMBOL(kmem_cache_create);
2349
2350 #if DEBUG
2351 static void check_irq_off(void)
2352 {
2353 BUG_ON(!irqs_disabled());
2354 }
2355
2356 static void check_irq_on(void)
2357 {
2358 BUG_ON(irqs_disabled());
2359 }
2360
2361 static void check_spinlock_acquired(struct kmem_cache *cachep)
2362 {
2363 #ifdef CONFIG_SMP
2364 check_irq_off();
2365 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2366 #endif
2367 }
2368
2369 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2370 {
2371 #ifdef CONFIG_SMP
2372 check_irq_off();
2373 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2374 #endif
2375 }
2376
2377 #else
2378 #define check_irq_off() do { } while(0)
2379 #define check_irq_on() do { } while(0)
2380 #define check_spinlock_acquired(x) do { } while(0)
2381 #define check_spinlock_acquired_node(x, y) do { } while(0)
2382 #endif
2383
2384 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2385 struct array_cache *ac,
2386 int force, int node);
2387
2388 static void do_drain(void *arg)
2389 {
2390 struct kmem_cache *cachep = arg;
2391 struct array_cache *ac;
2392 int node = numa_node_id();
2393
2394 check_irq_off();
2395 ac = cpu_cache_get(cachep);
2396 spin_lock(&cachep->nodelists[node]->list_lock);
2397 free_block(cachep, ac->entry, ac->avail, node);
2398 spin_unlock(&cachep->nodelists[node]->list_lock);
2399 ac->avail = 0;
2400 }
2401
2402 static void drain_cpu_caches(struct kmem_cache *cachep)
2403 {
2404 struct kmem_list3 *l3;
2405 int node;
2406
2407 on_each_cpu(do_drain, cachep, 1, 1);
2408 check_irq_on();
2409 for_each_online_node(node) {
2410 l3 = cachep->nodelists[node];
2411 if (l3 && l3->alien)
2412 drain_alien_cache(cachep, l3->alien);
2413 }
2414
2415 for_each_online_node(node) {
2416 l3 = cachep->nodelists[node];
2417 if (l3)
2418 drain_array(cachep, l3, l3->shared, 1, node);
2419 }
2420 }
2421
2422 /*
2423 * Remove slabs from the list of free slabs.
2424 * Specify the number of slabs to drain in tofree.
2425 *
2426 * Returns the actual number of slabs released.
2427 */
2428 static int drain_freelist(struct kmem_cache *cache,
2429 struct kmem_list3 *l3, int tofree)
2430 {
2431 struct list_head *p;
2432 int nr_freed;
2433 struct slab *slabp;
2434
2435 nr_freed = 0;
2436 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2437
2438 spin_lock_irq(&l3->list_lock);
2439 p = l3->slabs_free.prev;
2440 if (p == &l3->slabs_free) {
2441 spin_unlock_irq(&l3->list_lock);
2442 goto out;
2443 }
2444
2445 slabp = list_entry(p, struct slab, list);
2446 #if DEBUG
2447 BUG_ON(slabp->inuse);
2448 #endif
2449 list_del(&slabp->list);
2450 /*
2451 * Safe to drop the lock. The slab is no longer linked
2452 * to the cache.
2453 */
2454 l3->free_objects -= cache->num;
2455 spin_unlock_irq(&l3->list_lock);
2456 slab_destroy(cache, slabp);
2457 nr_freed++;
2458 }
2459 out:
2460 return nr_freed;
2461 }
2462
2463 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2464 static int __cache_shrink(struct kmem_cache *cachep)
2465 {
2466 int ret = 0, i = 0;
2467 struct kmem_list3 *l3;
2468
2469 drain_cpu_caches(cachep);
2470
2471 check_irq_on();
2472 for_each_online_node(i) {
2473 l3 = cachep->nodelists[i];
2474 if (!l3)
2475 continue;
2476
2477 drain_freelist(cachep, l3, l3->free_objects);
2478
2479 ret += !list_empty(&l3->slabs_full) ||
2480 !list_empty(&l3->slabs_partial);
2481 }
2482 return (ret ? 1 : 0);
2483 }
2484
2485 /**
2486 * kmem_cache_shrink - Shrink a cache.
2487 * @cachep: The cache to shrink.
2488 *
2489 * Releases as many slabs as possible for a cache.
2490 * To help debugging, a zero exit status indicates all slabs were released.
2491 */
2492 int kmem_cache_shrink(struct kmem_cache *cachep)
2493 {
2494 int ret;
2495 BUG_ON(!cachep || in_interrupt());
2496
2497 mutex_lock(&cache_chain_mutex);
2498 ret = __cache_shrink(cachep);
2499 mutex_unlock(&cache_chain_mutex);
2500 return ret;
2501 }
2502 EXPORT_SYMBOL(kmem_cache_shrink);
2503
2504 /**
2505 * kmem_cache_destroy - delete a cache
2506 * @cachep: the cache to destroy
2507 *
2508 * Remove a struct kmem_cache object from the slab cache.
2509 *
2510 * It is expected this function will be called by a module when it is
2511 * unloaded. This will remove the cache completely, and avoid a duplicate
2512 * cache being allocated each time a module is loaded and unloaded, if the
2513 * module doesn't have persistent in-kernel storage across loads and unloads.
2514 *
2515 * The cache must be empty before calling this function.
2516 *
2517 * The caller must guarantee that noone will allocate memory from the cache
2518 * during the kmem_cache_destroy().
2519 */
2520 void kmem_cache_destroy(struct kmem_cache *cachep)
2521 {
2522 BUG_ON(!cachep || in_interrupt());
2523
2524 /* Find the cache in the chain of caches. */
2525 mutex_lock(&cache_chain_mutex);
2526 /*
2527 * the chain is never empty, cache_cache is never destroyed
2528 */
2529 list_del(&cachep->next);
2530 if (__cache_shrink(cachep)) {
2531 slab_error(cachep, "Can't free all objects");
2532 list_add(&cachep->next, &cache_chain);
2533 mutex_unlock(&cache_chain_mutex);
2534 return;
2535 }
2536
2537 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2538 synchronize_rcu();
2539
2540 __kmem_cache_destroy(cachep);
2541 mutex_unlock(&cache_chain_mutex);
2542 }
2543 EXPORT_SYMBOL(kmem_cache_destroy);
2544
2545 /*
2546 * Get the memory for a slab management obj.
2547 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2548 * always come from malloc_sizes caches. The slab descriptor cannot
2549 * come from the same cache which is getting created because,
2550 * when we are searching for an appropriate cache for these
2551 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2552 * If we are creating a malloc_sizes cache here it would not be visible to
2553 * kmem_find_general_cachep till the initialization is complete.
2554 * Hence we cannot have slabp_cache same as the original cache.
2555 */
2556 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2557 int colour_off, gfp_t local_flags,
2558 int nodeid)
2559 {
2560 struct slab *slabp;
2561
2562 if (OFF_SLAB(cachep)) {
2563 /* Slab management obj is off-slab. */
2564 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2565 local_flags & ~GFP_THISNODE, nodeid);
2566 if (!slabp)
2567 return NULL;
2568 } else {
2569 slabp = objp + colour_off;
2570 colour_off += cachep->slab_size;
2571 }
2572 slabp->inuse = 0;
2573 slabp->colouroff = colour_off;
2574 slabp->s_mem = objp + colour_off;
2575 slabp->nodeid = nodeid;
2576 return slabp;
2577 }
2578
2579 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2580 {
2581 return (kmem_bufctl_t *) (slabp + 1);
2582 }
2583
2584 static void cache_init_objs(struct kmem_cache *cachep,
2585 struct slab *slabp, unsigned long ctor_flags)
2586 {
2587 int i;
2588
2589 for (i = 0; i < cachep->num; i++) {
2590 void *objp = index_to_obj(cachep, slabp, i);
2591 #if DEBUG
2592 /* need to poison the objs? */
2593 if (cachep->flags & SLAB_POISON)
2594 poison_obj(cachep, objp, POISON_FREE);
2595 if (cachep->flags & SLAB_STORE_USER)
2596 *dbg_userword(cachep, objp) = NULL;
2597
2598 if (cachep->flags & SLAB_RED_ZONE) {
2599 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2600 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2601 }
2602 /*
2603 * Constructors are not allowed to allocate memory from the same
2604 * cache which they are a constructor for. Otherwise, deadlock.
2605 * They must also be threaded.
2606 */
2607 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2608 cachep->ctor(objp + obj_offset(cachep), cachep,
2609 ctor_flags);
2610
2611 if (cachep->flags & SLAB_RED_ZONE) {
2612 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2613 slab_error(cachep, "constructor overwrote the"
2614 " end of an object");
2615 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2616 slab_error(cachep, "constructor overwrote the"
2617 " start of an object");
2618 }
2619 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2620 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2621 kernel_map_pages(virt_to_page(objp),
2622 cachep->buffer_size / PAGE_SIZE, 0);
2623 #else
2624 if (cachep->ctor)
2625 cachep->ctor(objp, cachep, ctor_flags);
2626 #endif
2627 slab_bufctl(slabp)[i] = i + 1;
2628 }
2629 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2630 slabp->free = 0;
2631 }
2632
2633 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2634 {
2635 if (flags & GFP_DMA)
2636 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2637 else
2638 BUG_ON(cachep->gfpflags & GFP_DMA);
2639 }
2640
2641 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2642 int nodeid)
2643 {
2644 void *objp = index_to_obj(cachep, slabp, slabp->free);
2645 kmem_bufctl_t next;
2646
2647 slabp->inuse++;
2648 next = slab_bufctl(slabp)[slabp->free];
2649 #if DEBUG
2650 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2651 WARN_ON(slabp->nodeid != nodeid);
2652 #endif
2653 slabp->free = next;
2654
2655 return objp;
2656 }
2657
2658 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2659 void *objp, int nodeid)
2660 {
2661 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2662
2663 #if DEBUG
2664 /* Verify that the slab belongs to the intended node */
2665 WARN_ON(slabp->nodeid != nodeid);
2666
2667 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2668 printk(KERN_ERR "slab: double free detected in cache "
2669 "'%s', objp %p\n", cachep->name, objp);
2670 BUG();
2671 }
2672 #endif
2673 slab_bufctl(slabp)[objnr] = slabp->free;
2674 slabp->free = objnr;
2675 slabp->inuse--;
2676 }
2677
2678 /*
2679 * Map pages beginning at addr to the given cache and slab. This is required
2680 * for the slab allocator to be able to lookup the cache and slab of a
2681 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2682 */
2683 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2684 void *addr)
2685 {
2686 int nr_pages;
2687 struct page *page;
2688
2689 page = virt_to_page(addr);
2690
2691 nr_pages = 1;
2692 if (likely(!PageCompound(page)))
2693 nr_pages <<= cache->gfporder;
2694
2695 do {
2696 page_set_cache(page, cache);
2697 page_set_slab(page, slab);
2698 page++;
2699 } while (--nr_pages);
2700 }
2701
2702 /*
2703 * Grow (by 1) the number of slabs within a cache. This is called by
2704 * kmem_cache_alloc() when there are no active objs left in a cache.
2705 */
2706 static int cache_grow(struct kmem_cache *cachep,
2707 gfp_t flags, int nodeid, void *objp)
2708 {
2709 struct slab *slabp;
2710 size_t offset;
2711 gfp_t local_flags;
2712 unsigned long ctor_flags;
2713 struct kmem_list3 *l3;
2714
2715 /*
2716 * Be lazy and only check for valid flags here, keeping it out of the
2717 * critical path in kmem_cache_alloc().
2718 */
2719 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2720 if (flags & __GFP_NO_GROW)
2721 return 0;
2722
2723 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2724 local_flags = (flags & GFP_LEVEL_MASK);
2725 if (!(local_flags & __GFP_WAIT))
2726 /*
2727 * Not allowed to sleep. Need to tell a constructor about
2728 * this - it might need to know...
2729 */
2730 ctor_flags |= SLAB_CTOR_ATOMIC;
2731
2732 /* Take the l3 list lock to change the colour_next on this node */
2733 check_irq_off();
2734 l3 = cachep->nodelists[nodeid];
2735 spin_lock(&l3->list_lock);
2736
2737 /* Get colour for the slab, and cal the next value. */
2738 offset = l3->colour_next;
2739 l3->colour_next++;
2740 if (l3->colour_next >= cachep->colour)
2741 l3->colour_next = 0;
2742 spin_unlock(&l3->list_lock);
2743
2744 offset *= cachep->colour_off;
2745
2746 if (local_flags & __GFP_WAIT)
2747 local_irq_enable();
2748
2749 /*
2750 * The test for missing atomic flag is performed here, rather than
2751 * the more obvious place, simply to reduce the critical path length
2752 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2753 * will eventually be caught here (where it matters).
2754 */
2755 kmem_flagcheck(cachep, flags);
2756
2757 /*
2758 * Get mem for the objs. Attempt to allocate a physical page from
2759 * 'nodeid'.
2760 */
2761 if (!objp)
2762 objp = kmem_getpages(cachep, flags, nodeid);
2763 if (!objp)
2764 goto failed;
2765
2766 /* Get slab management. */
2767 slabp = alloc_slabmgmt(cachep, objp, offset,
2768 local_flags & ~GFP_THISNODE, nodeid);
2769 if (!slabp)
2770 goto opps1;
2771
2772 slabp->nodeid = nodeid;
2773 slab_map_pages(cachep, slabp, objp);
2774
2775 cache_init_objs(cachep, slabp, ctor_flags);
2776
2777 if (local_flags & __GFP_WAIT)
2778 local_irq_disable();
2779 check_irq_off();
2780 spin_lock(&l3->list_lock);
2781
2782 /* Make slab active. */
2783 list_add_tail(&slabp->list, &(l3->slabs_free));
2784 STATS_INC_GROWN(cachep);
2785 l3->free_objects += cachep->num;
2786 spin_unlock(&l3->list_lock);
2787 return 1;
2788 opps1:
2789 kmem_freepages(cachep, objp);
2790 failed:
2791 if (local_flags & __GFP_WAIT)
2792 local_irq_disable();
2793 return 0;
2794 }
2795
2796 #if DEBUG
2797
2798 /*
2799 * Perform extra freeing checks:
2800 * - detect bad pointers.
2801 * - POISON/RED_ZONE checking
2802 * - destructor calls, for caches with POISON+dtor
2803 */
2804 static void kfree_debugcheck(const void *objp)
2805 {
2806 struct page *page;
2807
2808 if (!virt_addr_valid(objp)) {
2809 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2810 (unsigned long)objp);
2811 BUG();
2812 }
2813 page = virt_to_page(objp);
2814 if (!PageSlab(page)) {
2815 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2816 (unsigned long)objp);
2817 BUG();
2818 }
2819 }
2820
2821 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2822 {
2823 unsigned long redzone1, redzone2;
2824
2825 redzone1 = *dbg_redzone1(cache, obj);
2826 redzone2 = *dbg_redzone2(cache, obj);
2827
2828 /*
2829 * Redzone is ok.
2830 */
2831 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2832 return;
2833
2834 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2835 slab_error(cache, "double free detected");
2836 else
2837 slab_error(cache, "memory outside object was overwritten");
2838
2839 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2840 obj, redzone1, redzone2);
2841 }
2842
2843 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2844 void *caller)
2845 {
2846 struct page *page;
2847 unsigned int objnr;
2848 struct slab *slabp;
2849
2850 objp -= obj_offset(cachep);
2851 kfree_debugcheck(objp);
2852 page = virt_to_page(objp);
2853
2854 slabp = page_get_slab(page);
2855
2856 if (cachep->flags & SLAB_RED_ZONE) {
2857 verify_redzone_free(cachep, objp);
2858 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2859 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2860 }
2861 if (cachep->flags & SLAB_STORE_USER)
2862 *dbg_userword(cachep, objp) = caller;
2863
2864 objnr = obj_to_index(cachep, slabp, objp);
2865
2866 BUG_ON(objnr >= cachep->num);
2867 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2868
2869 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2870 /*
2871 * Need to call the slab's constructor so the caller can
2872 * perform a verify of its state (debugging). Called without
2873 * the cache-lock held.
2874 */
2875 cachep->ctor(objp + obj_offset(cachep),
2876 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2877 }
2878 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2879 /* we want to cache poison the object,
2880 * call the destruction callback
2881 */
2882 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2883 }
2884 #ifdef CONFIG_DEBUG_SLAB_LEAK
2885 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2886 #endif
2887 if (cachep->flags & SLAB_POISON) {
2888 #ifdef CONFIG_DEBUG_PAGEALLOC
2889 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2890 store_stackinfo(cachep, objp, (unsigned long)caller);
2891 kernel_map_pages(virt_to_page(objp),
2892 cachep->buffer_size / PAGE_SIZE, 0);
2893 } else {
2894 poison_obj(cachep, objp, POISON_FREE);
2895 }
2896 #else
2897 poison_obj(cachep, objp, POISON_FREE);
2898 #endif
2899 }
2900 return objp;
2901 }
2902
2903 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2904 {
2905 kmem_bufctl_t i;
2906 int entries = 0;
2907
2908 /* Check slab's freelist to see if this obj is there. */
2909 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2910 entries++;
2911 if (entries > cachep->num || i >= cachep->num)
2912 goto bad;
2913 }
2914 if (entries != cachep->num - slabp->inuse) {
2915 bad:
2916 printk(KERN_ERR "slab: Internal list corruption detected in "
2917 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2918 cachep->name, cachep->num, slabp, slabp->inuse);
2919 for (i = 0;
2920 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2921 i++) {
2922 if (i % 16 == 0)
2923 printk("\n%03x:", i);
2924 printk(" %02x", ((unsigned char *)slabp)[i]);
2925 }
2926 printk("\n");
2927 BUG();
2928 }
2929 }
2930 #else
2931 #define kfree_debugcheck(x) do { } while(0)
2932 #define cache_free_debugcheck(x,objp,z) (objp)
2933 #define check_slabp(x,y) do { } while(0)
2934 #endif
2935
2936 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2937 {
2938 int batchcount;
2939 struct kmem_list3 *l3;
2940 struct array_cache *ac;
2941 int node;
2942
2943 node = numa_node_id();
2944
2945 check_irq_off();
2946 ac = cpu_cache_get(cachep);
2947 retry:
2948 batchcount = ac->batchcount;
2949 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2950 /*
2951 * If there was little recent activity on this cache, then
2952 * perform only a partial refill. Otherwise we could generate
2953 * refill bouncing.
2954 */
2955 batchcount = BATCHREFILL_LIMIT;
2956 }
2957 l3 = cachep->nodelists[node];
2958
2959 BUG_ON(ac->avail > 0 || !l3);
2960 spin_lock(&l3->list_lock);
2961
2962 /* See if we can refill from the shared array */
2963 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2964 goto alloc_done;
2965
2966 while (batchcount > 0) {
2967 struct list_head *entry;
2968 struct slab *slabp;
2969 /* Get slab alloc is to come from. */
2970 entry = l3->slabs_partial.next;
2971 if (entry == &l3->slabs_partial) {
2972 l3->free_touched = 1;
2973 entry = l3->slabs_free.next;
2974 if (entry == &l3->slabs_free)
2975 goto must_grow;
2976 }
2977
2978 slabp = list_entry(entry, struct slab, list);
2979 check_slabp(cachep, slabp);
2980 check_spinlock_acquired(cachep);
2981 while (slabp->inuse < cachep->num && batchcount--) {
2982 STATS_INC_ALLOCED(cachep);
2983 STATS_INC_ACTIVE(cachep);
2984 STATS_SET_HIGH(cachep);
2985
2986 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2987 node);
2988 }
2989 check_slabp(cachep, slabp);
2990
2991 /* move slabp to correct slabp list: */
2992 list_del(&slabp->list);
2993 if (slabp->free == BUFCTL_END)
2994 list_add(&slabp->list, &l3->slabs_full);
2995 else
2996 list_add(&slabp->list, &l3->slabs_partial);
2997 }
2998
2999 must_grow:
3000 l3->free_objects -= ac->avail;
3001 alloc_done:
3002 spin_unlock(&l3->list_lock);
3003
3004 if (unlikely(!ac->avail)) {
3005 int x;
3006 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3007
3008 /* cache_grow can reenable interrupts, then ac could change. */
3009 ac = cpu_cache_get(cachep);
3010 if (!x && ac->avail == 0) /* no objects in sight? abort */
3011 return NULL;
3012
3013 if (!ac->avail) /* objects refilled by interrupt? */
3014 goto retry;
3015 }
3016 ac->touched = 1;
3017 return ac->entry[--ac->avail];
3018 }
3019
3020 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3021 gfp_t flags)
3022 {
3023 might_sleep_if(flags & __GFP_WAIT);
3024 #if DEBUG
3025 kmem_flagcheck(cachep, flags);
3026 #endif
3027 }
3028
3029 #if DEBUG
3030 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3031 gfp_t flags, void *objp, void *caller)
3032 {
3033 if (!objp)
3034 return objp;
3035 if (cachep->flags & SLAB_POISON) {
3036 #ifdef CONFIG_DEBUG_PAGEALLOC
3037 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3038 kernel_map_pages(virt_to_page(objp),
3039 cachep->buffer_size / PAGE_SIZE, 1);
3040 else
3041 check_poison_obj(cachep, objp);
3042 #else
3043 check_poison_obj(cachep, objp);
3044 #endif
3045 poison_obj(cachep, objp, POISON_INUSE);
3046 }
3047 if (cachep->flags & SLAB_STORE_USER)
3048 *dbg_userword(cachep, objp) = caller;
3049
3050 if (cachep->flags & SLAB_RED_ZONE) {
3051 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3052 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3053 slab_error(cachep, "double free, or memory outside"
3054 " object was overwritten");
3055 printk(KERN_ERR
3056 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3057 objp, *dbg_redzone1(cachep, objp),
3058 *dbg_redzone2(cachep, objp));
3059 }
3060 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3061 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3062 }
3063 #ifdef CONFIG_DEBUG_SLAB_LEAK
3064 {
3065 struct slab *slabp;
3066 unsigned objnr;
3067
3068 slabp = page_get_slab(virt_to_page(objp));
3069 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3070 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3071 }
3072 #endif
3073 objp += obj_offset(cachep);
3074 if (cachep->ctor && cachep->flags & SLAB_POISON) {
3075 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
3076
3077 if (!(flags & __GFP_WAIT))
3078 ctor_flags |= SLAB_CTOR_ATOMIC;
3079
3080 cachep->ctor(objp, cachep, ctor_flags);
3081 }
3082 #if ARCH_SLAB_MINALIGN
3083 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3084 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3085 objp, ARCH_SLAB_MINALIGN);
3086 }
3087 #endif
3088 return objp;
3089 }
3090 #else
3091 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3092 #endif
3093
3094 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3095 {
3096 void *objp;
3097 struct array_cache *ac;
3098
3099 check_irq_off();
3100 ac = cpu_cache_get(cachep);
3101 if (likely(ac->avail)) {
3102 STATS_INC_ALLOCHIT(cachep);
3103 ac->touched = 1;
3104 objp = ac->entry[--ac->avail];
3105 } else {
3106 STATS_INC_ALLOCMISS(cachep);
3107 objp = cache_alloc_refill(cachep, flags);
3108 }
3109 return objp;
3110 }
3111
3112 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3113 gfp_t flags, void *caller)
3114 {
3115 unsigned long save_flags;
3116 void *objp = NULL;
3117
3118 cache_alloc_debugcheck_before(cachep, flags);
3119
3120 local_irq_save(save_flags);
3121
3122 if (unlikely(NUMA_BUILD &&
3123 current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
3124 objp = alternate_node_alloc(cachep, flags);
3125
3126 if (!objp)
3127 objp = ____cache_alloc(cachep, flags);
3128 /*
3129 * We may just have run out of memory on the local node.
3130 * ____cache_alloc_node() knows how to locate memory on other nodes
3131 */
3132 if (NUMA_BUILD && !objp)
3133 objp = ____cache_alloc_node(cachep, flags, numa_node_id());
3134 local_irq_restore(save_flags);
3135 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3136 caller);
3137 prefetchw(objp);
3138 return objp;
3139 }
3140
3141 #ifdef CONFIG_NUMA
3142 /*
3143 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3144 *
3145 * If we are in_interrupt, then process context, including cpusets and
3146 * mempolicy, may not apply and should not be used for allocation policy.
3147 */
3148 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3149 {
3150 int nid_alloc, nid_here;
3151
3152 if (in_interrupt() || (flags & __GFP_THISNODE))
3153 return NULL;
3154 nid_alloc = nid_here = numa_node_id();
3155 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3156 nid_alloc = cpuset_mem_spread_node();
3157 else if (current->mempolicy)
3158 nid_alloc = slab_node(current->mempolicy);
3159 if (nid_alloc != nid_here)
3160 return ____cache_alloc_node(cachep, flags, nid_alloc);
3161 return NULL;
3162 }
3163
3164 /*
3165 * Fallback function if there was no memory available and no objects on a
3166 * certain node and fall back is permitted. First we scan all the
3167 * available nodelists for available objects. If that fails then we
3168 * perform an allocation without specifying a node. This allows the page
3169 * allocator to do its reclaim / fallback magic. We then insert the
3170 * slab into the proper nodelist and then allocate from it.
3171 */
3172 void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3173 {
3174 struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3175 ->node_zonelists[gfp_zone(flags)];
3176 struct zone **z;
3177 void *obj = NULL;
3178 int nid;
3179
3180 retry:
3181 /*
3182 * Look through allowed nodes for objects available
3183 * from existing per node queues.
3184 */
3185 for (z = zonelist->zones; *z && !obj; z++) {
3186 nid = zone_to_nid(*z);
3187
3188 if (cpuset_zone_allowed(*z, flags) &&
3189 cache->nodelists[nid] &&
3190 cache->nodelists[nid]->free_objects)
3191 obj = ____cache_alloc_node(cache,
3192 flags | GFP_THISNODE, nid);
3193 }
3194
3195 if (!obj) {
3196 /*
3197 * This allocation will be performed within the constraints
3198 * of the current cpuset / memory policy requirements.
3199 * We may trigger various forms of reclaim on the allowed
3200 * set and go into memory reserves if necessary.
3201 */
3202 obj = kmem_getpages(cache, flags, -1);
3203 if (obj) {
3204 /*
3205 * Insert into the appropriate per node queues
3206 */
3207 nid = page_to_nid(virt_to_page(obj));
3208 if (cache_grow(cache, flags, nid, obj)) {
3209 obj = ____cache_alloc_node(cache,
3210 flags | GFP_THISNODE, nid);
3211 if (!obj)
3212 /*
3213 * Another processor may allocate the
3214 * objects in the slab since we are
3215 * not holding any locks.
3216 */
3217 goto retry;
3218 } else {
3219 kmem_freepages(cache, obj);
3220 obj = NULL;
3221 }
3222 }
3223 }
3224 return obj;
3225 }
3226
3227 /*
3228 * A interface to enable slab creation on nodeid
3229 */
3230 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3231 int nodeid)
3232 {
3233 struct list_head *entry;
3234 struct slab *slabp;
3235 struct kmem_list3 *l3;
3236 void *obj;
3237 int x;
3238
3239 l3 = cachep->nodelists[nodeid];
3240 BUG_ON(!l3);
3241
3242 retry:
3243 check_irq_off();
3244 spin_lock(&l3->list_lock);
3245 entry = l3->slabs_partial.next;
3246 if (entry == &l3->slabs_partial) {
3247 l3->free_touched = 1;
3248 entry = l3->slabs_free.next;
3249 if (entry == &l3->slabs_free)
3250 goto must_grow;
3251 }
3252
3253 slabp = list_entry(entry, struct slab, list);
3254 check_spinlock_acquired_node(cachep, nodeid);
3255 check_slabp(cachep, slabp);
3256
3257 STATS_INC_NODEALLOCS(cachep);
3258 STATS_INC_ACTIVE(cachep);
3259 STATS_SET_HIGH(cachep);
3260
3261 BUG_ON(slabp->inuse == cachep->num);
3262
3263 obj = slab_get_obj(cachep, slabp, nodeid);
3264 check_slabp(cachep, slabp);
3265 l3->free_objects--;
3266 /* move slabp to correct slabp list: */
3267 list_del(&slabp->list);
3268
3269 if (slabp->free == BUFCTL_END)
3270 list_add(&slabp->list, &l3->slabs_full);
3271 else
3272 list_add(&slabp->list, &l3->slabs_partial);
3273
3274 spin_unlock(&l3->list_lock);
3275 goto done;
3276
3277 must_grow:
3278 spin_unlock(&l3->list_lock);
3279 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3280 if (x)
3281 goto retry;
3282
3283 if (!(flags & __GFP_THISNODE))
3284 /* Unable to grow the cache. Fall back to other nodes. */
3285 return fallback_alloc(cachep, flags);
3286
3287 return NULL;
3288
3289 done:
3290 return obj;
3291 }
3292 #endif
3293
3294 /*
3295 * Caller needs to acquire correct kmem_list's list_lock
3296 */
3297 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3298 int node)
3299 {
3300 int i;
3301 struct kmem_list3 *l3;
3302
3303 for (i = 0; i < nr_objects; i++) {
3304 void *objp = objpp[i];
3305 struct slab *slabp;
3306
3307 slabp = virt_to_slab(objp);
3308 l3 = cachep->nodelists[node];
3309 list_del(&slabp->list);
3310 check_spinlock_acquired_node(cachep, node);
3311 check_slabp(cachep, slabp);
3312 slab_put_obj(cachep, slabp, objp, node);
3313 STATS_DEC_ACTIVE(cachep);
3314 l3->free_objects++;
3315 check_slabp(cachep, slabp);
3316
3317 /* fixup slab chains */
3318 if (slabp->inuse == 0) {
3319 if (l3->free_objects > l3->free_limit) {
3320 l3->free_objects -= cachep->num;
3321 /* No need to drop any previously held
3322 * lock here, even if we have a off-slab slab
3323 * descriptor it is guaranteed to come from
3324 * a different cache, refer to comments before
3325 * alloc_slabmgmt.
3326 */
3327 slab_destroy(cachep, slabp);
3328 } else {
3329 list_add(&slabp->list, &l3->slabs_free);
3330 }
3331 } else {
3332 /* Unconditionally move a slab to the end of the
3333 * partial list on free - maximum time for the
3334 * other objects to be freed, too.
3335 */
3336 list_add_tail(&slabp->list, &l3->slabs_partial);
3337 }
3338 }
3339 }
3340
3341 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3342 {
3343 int batchcount;
3344 struct kmem_list3 *l3;
3345 int node = numa_node_id();
3346
3347 batchcount = ac->batchcount;
3348 #if DEBUG
3349 BUG_ON(!batchcount || batchcount > ac->avail);
3350 #endif
3351 check_irq_off();
3352 l3 = cachep->nodelists[node];
3353 spin_lock(&l3->list_lock);
3354 if (l3->shared) {
3355 struct array_cache *shared_array = l3->shared;
3356 int max = shared_array->limit - shared_array->avail;
3357 if (max) {
3358 if (batchcount > max)
3359 batchcount = max;
3360 memcpy(&(shared_array->entry[shared_array->avail]),
3361 ac->entry, sizeof(void *) * batchcount);
3362 shared_array->avail += batchcount;
3363 goto free_done;
3364 }
3365 }
3366
3367 free_block(cachep, ac->entry, batchcount, node);
3368 free_done:
3369 #if STATS
3370 {
3371 int i = 0;
3372 struct list_head *p;
3373
3374 p = l3->slabs_free.next;
3375 while (p != &(l3->slabs_free)) {
3376 struct slab *slabp;
3377
3378 slabp = list_entry(p, struct slab, list);
3379 BUG_ON(slabp->inuse);
3380
3381 i++;
3382 p = p->next;
3383 }
3384 STATS_SET_FREEABLE(cachep, i);
3385 }
3386 #endif
3387 spin_unlock(&l3->list_lock);
3388 ac->avail -= batchcount;
3389 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3390 }
3391
3392 /*
3393 * Release an obj back to its cache. If the obj has a constructed state, it must
3394 * be in this state _before_ it is released. Called with disabled ints.
3395 */
3396 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3397 {
3398 struct array_cache *ac = cpu_cache_get(cachep);
3399
3400 check_irq_off();
3401 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3402
3403 if (cache_free_alien(cachep, objp))
3404 return;
3405
3406 if (likely(ac->avail < ac->limit)) {
3407 STATS_INC_FREEHIT(cachep);
3408 ac->entry[ac->avail++] = objp;
3409 return;
3410 } else {
3411 STATS_INC_FREEMISS(cachep);
3412 cache_flusharray(cachep, ac);
3413 ac->entry[ac->avail++] = objp;
3414 }
3415 }
3416
3417 /**
3418 * kmem_cache_alloc - Allocate an object
3419 * @cachep: The cache to allocate from.
3420 * @flags: See kmalloc().
3421 *
3422 * Allocate an object from this cache. The flags are only relevant
3423 * if the cache has no available objects.
3424 */
3425 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3426 {
3427 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3428 }
3429 EXPORT_SYMBOL(kmem_cache_alloc);
3430
3431 /**
3432 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3433 * @cache: The cache to allocate from.
3434 * @flags: See kmalloc().
3435 *
3436 * Allocate an object from this cache and set the allocated memory to zero.
3437 * The flags are only relevant if the cache has no available objects.
3438 */
3439 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3440 {
3441 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3442 if (ret)
3443 memset(ret, 0, obj_size(cache));
3444 return ret;
3445 }
3446 EXPORT_SYMBOL(kmem_cache_zalloc);
3447
3448 /**
3449 * kmem_ptr_validate - check if an untrusted pointer might
3450 * be a slab entry.
3451 * @cachep: the cache we're checking against
3452 * @ptr: pointer to validate
3453 *
3454 * This verifies that the untrusted pointer looks sane:
3455 * it is _not_ a guarantee that the pointer is actually
3456 * part of the slab cache in question, but it at least
3457 * validates that the pointer can be dereferenced and
3458 * looks half-way sane.
3459 *
3460 * Currently only used for dentry validation.
3461 */
3462 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3463 {
3464 unsigned long addr = (unsigned long)ptr;
3465 unsigned long min_addr = PAGE_OFFSET;
3466 unsigned long align_mask = BYTES_PER_WORD - 1;
3467 unsigned long size = cachep->buffer_size;
3468 struct page *page;
3469
3470 if (unlikely(addr < min_addr))
3471 goto out;
3472 if (unlikely(addr > (unsigned long)high_memory - size))
3473 goto out;
3474 if (unlikely(addr & align_mask))
3475 goto out;
3476 if (unlikely(!kern_addr_valid(addr)))
3477 goto out;
3478 if (unlikely(!kern_addr_valid(addr + size - 1)))
3479 goto out;
3480 page = virt_to_page(ptr);
3481 if (unlikely(!PageSlab(page)))
3482 goto out;
3483 if (unlikely(page_get_cache(page) != cachep))
3484 goto out;
3485 return 1;
3486 out:
3487 return 0;
3488 }
3489
3490 #ifdef CONFIG_NUMA
3491 /**
3492 * kmem_cache_alloc_node - Allocate an object on the specified node
3493 * @cachep: The cache to allocate from.
3494 * @flags: See kmalloc().
3495 * @nodeid: node number of the target node.
3496 *
3497 * Identical to kmem_cache_alloc but it will allocate memory on the given
3498 * node, which can improve the performance for cpu bound structures.
3499 *
3500 * Fallback to other node is possible if __GFP_THISNODE is not set.
3501 */
3502 static __always_inline void *
3503 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3504 int nodeid, void *caller)
3505 {
3506 unsigned long save_flags;
3507 void *ptr = NULL;
3508
3509 cache_alloc_debugcheck_before(cachep, flags);
3510 local_irq_save(save_flags);
3511
3512 if (unlikely(nodeid == -1))
3513 nodeid = numa_node_id();
3514
3515 if (likely(cachep->nodelists[nodeid])) {
3516 if (nodeid == numa_node_id()) {
3517 /*
3518 * Use the locally cached objects if possible.
3519 * However ____cache_alloc does not allow fallback
3520 * to other nodes. It may fail while we still have
3521 * objects on other nodes available.
3522 */
3523 ptr = ____cache_alloc(cachep, flags);
3524 }
3525 if (!ptr) {
3526 /* ___cache_alloc_node can fall back to other nodes */
3527 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3528 }
3529 } else {
3530 /* Node not bootstrapped yet */
3531 if (!(flags & __GFP_THISNODE))
3532 ptr = fallback_alloc(cachep, flags);
3533 }
3534
3535 local_irq_restore(save_flags);
3536 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3537
3538 return ptr;
3539 }
3540
3541 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3542 {
3543 return __cache_alloc_node(cachep, flags, nodeid,
3544 __builtin_return_address(0));
3545 }
3546 EXPORT_SYMBOL(kmem_cache_alloc_node);
3547
3548 static __always_inline void *
3549 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3550 {
3551 struct kmem_cache *cachep;
3552
3553 cachep = kmem_find_general_cachep(size, flags);
3554 if (unlikely(cachep == NULL))
3555 return NULL;
3556 return kmem_cache_alloc_node(cachep, flags, node);
3557 }
3558
3559 #ifdef CONFIG_DEBUG_SLAB
3560 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3561 {
3562 return __do_kmalloc_node(size, flags, node,
3563 __builtin_return_address(0));
3564 }
3565 EXPORT_SYMBOL(__kmalloc_node);
3566
3567 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3568 int node, void *caller)
3569 {
3570 return __do_kmalloc_node(size, flags, node, caller);
3571 }
3572 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3573 #else
3574 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3575 {
3576 return __do_kmalloc_node(size, flags, node, NULL);
3577 }
3578 EXPORT_SYMBOL(__kmalloc_node);
3579 #endif /* CONFIG_DEBUG_SLAB */
3580 #endif /* CONFIG_NUMA */
3581
3582 /**
3583 * __do_kmalloc - allocate memory
3584 * @size: how many bytes of memory are required.
3585 * @flags: the type of memory to allocate (see kmalloc).
3586 * @caller: function caller for debug tracking of the caller
3587 */
3588 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3589 void *caller)
3590 {
3591 struct kmem_cache *cachep;
3592
3593 /* If you want to save a few bytes .text space: replace
3594 * __ with kmem_.
3595 * Then kmalloc uses the uninlined functions instead of the inline
3596 * functions.
3597 */
3598 cachep = __find_general_cachep(size, flags);
3599 if (unlikely(cachep == NULL))
3600 return NULL;
3601 return __cache_alloc(cachep, flags, caller);
3602 }
3603
3604
3605 #ifdef CONFIG_DEBUG_SLAB
3606 void *__kmalloc(size_t size, gfp_t flags)
3607 {
3608 return __do_kmalloc(size, flags, __builtin_return_address(0));
3609 }
3610 EXPORT_SYMBOL(__kmalloc);
3611
3612 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3613 {
3614 return __do_kmalloc(size, flags, caller);
3615 }
3616 EXPORT_SYMBOL(__kmalloc_track_caller);
3617
3618 #else
3619 void *__kmalloc(size_t size, gfp_t flags)
3620 {
3621 return __do_kmalloc(size, flags, NULL);
3622 }
3623 EXPORT_SYMBOL(__kmalloc);
3624 #endif
3625
3626 /**
3627 * kmem_cache_free - Deallocate an object
3628 * @cachep: The cache the allocation was from.
3629 * @objp: The previously allocated object.
3630 *
3631 * Free an object which was previously allocated from this
3632 * cache.
3633 */
3634 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3635 {
3636 unsigned long flags;
3637
3638 BUG_ON(virt_to_cache(objp) != cachep);
3639
3640 local_irq_save(flags);
3641 __cache_free(cachep, objp);
3642 local_irq_restore(flags);
3643 }
3644 EXPORT_SYMBOL(kmem_cache_free);
3645
3646 /**
3647 * kfree - free previously allocated memory
3648 * @objp: pointer returned by kmalloc.
3649 *
3650 * If @objp is NULL, no operation is performed.
3651 *
3652 * Don't free memory not originally allocated by kmalloc()
3653 * or you will run into trouble.
3654 */
3655 void kfree(const void *objp)
3656 {
3657 struct kmem_cache *c;
3658 unsigned long flags;
3659
3660 if (unlikely(!objp))
3661 return;
3662 local_irq_save(flags);
3663 kfree_debugcheck(objp);
3664 c = virt_to_cache(objp);
3665 debug_check_no_locks_freed(objp, obj_size(c));
3666 __cache_free(c, (void *)objp);
3667 local_irq_restore(flags);
3668 }
3669 EXPORT_SYMBOL(kfree);
3670
3671 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3672 {
3673 return obj_size(cachep);
3674 }
3675 EXPORT_SYMBOL(kmem_cache_size);
3676
3677 const char *kmem_cache_name(struct kmem_cache *cachep)
3678 {
3679 return cachep->name;
3680 }
3681 EXPORT_SYMBOL_GPL(kmem_cache_name);
3682
3683 /*
3684 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3685 */
3686 static int alloc_kmemlist(struct kmem_cache *cachep)
3687 {
3688 int node;
3689 struct kmem_list3 *l3;
3690 struct array_cache *new_shared;
3691 struct array_cache **new_alien = NULL;
3692
3693 for_each_online_node(node) {
3694
3695 if (use_alien_caches) {
3696 new_alien = alloc_alien_cache(node, cachep->limit);
3697 if (!new_alien)
3698 goto fail;
3699 }
3700
3701 new_shared = alloc_arraycache(node,
3702 cachep->shared*cachep->batchcount,
3703 0xbaadf00d);
3704 if (!new_shared) {
3705 free_alien_cache(new_alien);
3706 goto fail;
3707 }
3708
3709 l3 = cachep->nodelists[node];
3710 if (l3) {
3711 struct array_cache *shared = l3->shared;
3712
3713 spin_lock_irq(&l3->list_lock);
3714
3715 if (shared)
3716 free_block(cachep, shared->entry,
3717 shared->avail, node);
3718
3719 l3->shared = new_shared;
3720 if (!l3->alien) {
3721 l3->alien = new_alien;
3722 new_alien = NULL;
3723 }
3724 l3->free_limit = (1 + nr_cpus_node(node)) *
3725 cachep->batchcount + cachep->num;
3726 spin_unlock_irq(&l3->list_lock);
3727 kfree(shared);
3728 free_alien_cache(new_alien);
3729 continue;
3730 }
3731 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3732 if (!l3) {
3733 free_alien_cache(new_alien);
3734 kfree(new_shared);
3735 goto fail;
3736 }
3737
3738 kmem_list3_init(l3);
3739 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3740 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3741 l3->shared = new_shared;
3742 l3->alien = new_alien;
3743 l3->free_limit = (1 + nr_cpus_node(node)) *
3744 cachep->batchcount + cachep->num;
3745 cachep->nodelists[node] = l3;
3746 }
3747 return 0;
3748
3749 fail:
3750 if (!cachep->next.next) {
3751 /* Cache is not active yet. Roll back what we did */
3752 node--;
3753 while (node >= 0) {
3754 if (cachep->nodelists[node]) {
3755 l3 = cachep->nodelists[node];
3756
3757 kfree(l3->shared);
3758 free_alien_cache(l3->alien);
3759 kfree(l3);
3760 cachep->nodelists[node] = NULL;
3761 }
3762 node--;
3763 }
3764 }
3765 return -ENOMEM;
3766 }
3767
3768 struct ccupdate_struct {
3769 struct kmem_cache *cachep;
3770 struct array_cache *new[NR_CPUS];
3771 };
3772
3773 static void do_ccupdate_local(void *info)
3774 {
3775 struct ccupdate_struct *new = info;
3776 struct array_cache *old;
3777
3778 check_irq_off();
3779 old = cpu_cache_get(new->cachep);
3780
3781 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3782 new->new[smp_processor_id()] = old;
3783 }
3784
3785 /* Always called with the cache_chain_mutex held */
3786 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3787 int batchcount, int shared)
3788 {
3789 struct ccupdate_struct *new;
3790 int i;
3791
3792 new = kzalloc(sizeof(*new), GFP_KERNEL);
3793 if (!new)
3794 return -ENOMEM;
3795
3796 for_each_online_cpu(i) {
3797 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3798 batchcount);
3799 if (!new->new[i]) {
3800 for (i--; i >= 0; i--)
3801 kfree(new->new[i]);
3802 kfree(new);
3803 return -ENOMEM;
3804 }
3805 }
3806 new->cachep = cachep;
3807
3808 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3809
3810 check_irq_on();
3811 cachep->batchcount = batchcount;
3812 cachep->limit = limit;
3813 cachep->shared = shared;
3814
3815 for_each_online_cpu(i) {
3816 struct array_cache *ccold = new->new[i];
3817 if (!ccold)
3818 continue;
3819 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3820 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3821 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3822 kfree(ccold);
3823 }
3824 kfree(new);
3825 return alloc_kmemlist(cachep);
3826 }
3827
3828 /* Called with cache_chain_mutex held always */
3829 static int enable_cpucache(struct kmem_cache *cachep)
3830 {
3831 int err;
3832 int limit, shared;
3833
3834 /*
3835 * The head array serves three purposes:
3836 * - create a LIFO ordering, i.e. return objects that are cache-warm
3837 * - reduce the number of spinlock operations.
3838 * - reduce the number of linked list operations on the slab and
3839 * bufctl chains: array operations are cheaper.
3840 * The numbers are guessed, we should auto-tune as described by
3841 * Bonwick.
3842 */
3843 if (cachep->buffer_size > 131072)
3844 limit = 1;
3845 else if (cachep->buffer_size > PAGE_SIZE)
3846 limit = 8;
3847 else if (cachep->buffer_size > 1024)
3848 limit = 24;
3849 else if (cachep->buffer_size > 256)
3850 limit = 54;
3851 else
3852 limit = 120;
3853
3854 /*
3855 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3856 * allocation behaviour: Most allocs on one cpu, most free operations
3857 * on another cpu. For these cases, an efficient object passing between
3858 * cpus is necessary. This is provided by a shared array. The array
3859 * replaces Bonwick's magazine layer.
3860 * On uniprocessor, it's functionally equivalent (but less efficient)
3861 * to a larger limit. Thus disabled by default.
3862 */
3863 shared = 0;
3864 #ifdef CONFIG_SMP
3865 if (cachep->buffer_size <= PAGE_SIZE)
3866 shared = 8;
3867 #endif
3868
3869 #if DEBUG
3870 /*
3871 * With debugging enabled, large batchcount lead to excessively long
3872 * periods with disabled local interrupts. Limit the batchcount
3873 */
3874 if (limit > 32)
3875 limit = 32;
3876 #endif
3877 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3878 if (err)
3879 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3880 cachep->name, -err);
3881 return err;
3882 }
3883
3884 /*
3885 * Drain an array if it contains any elements taking the l3 lock only if
3886 * necessary. Note that the l3 listlock also protects the array_cache
3887 * if drain_array() is used on the shared array.
3888 */
3889 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3890 struct array_cache *ac, int force, int node)
3891 {
3892 int tofree;
3893
3894 if (!ac || !ac->avail)
3895 return;
3896 if (ac->touched && !force) {
3897 ac->touched = 0;
3898 } else {
3899 spin_lock_irq(&l3->list_lock);
3900 if (ac->avail) {
3901 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3902 if (tofree > ac->avail)
3903 tofree = (ac->avail + 1) / 2;
3904 free_block(cachep, ac->entry, tofree, node);
3905 ac->avail -= tofree;
3906 memmove(ac->entry, &(ac->entry[tofree]),
3907 sizeof(void *) * ac->avail);
3908 }
3909 spin_unlock_irq(&l3->list_lock);
3910 }
3911 }
3912
3913 /**
3914 * cache_reap - Reclaim memory from caches.
3915 * @unused: unused parameter
3916 *
3917 * Called from workqueue/eventd every few seconds.
3918 * Purpose:
3919 * - clear the per-cpu caches for this CPU.
3920 * - return freeable pages to the main free memory pool.
3921 *
3922 * If we cannot acquire the cache chain mutex then just give up - we'll try
3923 * again on the next iteration.
3924 */
3925 static void cache_reap(struct work_struct *unused)
3926 {
3927 struct kmem_cache *searchp;
3928 struct kmem_list3 *l3;
3929 int node = numa_node_id();
3930
3931 if (!mutex_trylock(&cache_chain_mutex)) {
3932 /* Give up. Setup the next iteration. */
3933 schedule_delayed_work(&__get_cpu_var(reap_work),
3934 REAPTIMEOUT_CPUC);
3935 return;
3936 }
3937
3938 list_for_each_entry(searchp, &cache_chain, next) {
3939 check_irq_on();
3940
3941 /*
3942 * We only take the l3 lock if absolutely necessary and we
3943 * have established with reasonable certainty that
3944 * we can do some work if the lock was obtained.
3945 */
3946 l3 = searchp->nodelists[node];
3947
3948 reap_alien(searchp, l3);
3949
3950 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3951
3952 /*
3953 * These are racy checks but it does not matter
3954 * if we skip one check or scan twice.
3955 */
3956 if (time_after(l3->next_reap, jiffies))
3957 goto next;
3958
3959 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3960
3961 drain_array(searchp, l3, l3->shared, 0, node);
3962
3963 if (l3->free_touched)
3964 l3->free_touched = 0;
3965 else {
3966 int freed;
3967
3968 freed = drain_freelist(searchp, l3, (l3->free_limit +
3969 5 * searchp->num - 1) / (5 * searchp->num));
3970 STATS_ADD_REAPED(searchp, freed);
3971 }
3972 next:
3973 cond_resched();
3974 }
3975 check_irq_on();
3976 mutex_unlock(&cache_chain_mutex);
3977 next_reap_node();
3978 refresh_cpu_vm_stats(smp_processor_id());
3979 /* Set up the next iteration */
3980 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3981 }
3982
3983 #ifdef CONFIG_PROC_FS
3984
3985 static void print_slabinfo_header(struct seq_file *m)
3986 {
3987 /*
3988 * Output format version, so at least we can change it
3989 * without _too_ many complaints.
3990 */
3991 #if STATS
3992 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3993 #else
3994 seq_puts(m, "slabinfo - version: 2.1\n");
3995 #endif
3996 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3997 "<objperslab> <pagesperslab>");
3998 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3999 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4000 #if STATS
4001 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4002 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4003 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4004 #endif
4005 seq_putc(m, '\n');
4006 }
4007
4008 static void *s_start(struct seq_file *m, loff_t *pos)
4009 {
4010 loff_t n = *pos;
4011 struct list_head *p;
4012
4013 mutex_lock(&cache_chain_mutex);
4014 if (!n)
4015 print_slabinfo_header(m);
4016 p = cache_chain.next;
4017 while (n--) {
4018 p = p->next;
4019 if (p == &cache_chain)
4020 return NULL;
4021 }
4022 return list_entry(p, struct kmem_cache, next);
4023 }
4024
4025 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4026 {
4027 struct kmem_cache *cachep = p;
4028 ++*pos;
4029 return cachep->next.next == &cache_chain ?
4030 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4031 }
4032
4033 static void s_stop(struct seq_file *m, void *p)
4034 {
4035 mutex_unlock(&cache_chain_mutex);
4036 }
4037
4038 static int s_show(struct seq_file *m, void *p)
4039 {
4040 struct kmem_cache *cachep = p;
4041 struct slab *slabp;
4042 unsigned long active_objs;
4043 unsigned long num_objs;
4044 unsigned long active_slabs = 0;
4045 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4046 const char *name;
4047 char *error = NULL;
4048 int node;
4049 struct kmem_list3 *l3;
4050
4051 active_objs = 0;
4052 num_slabs = 0;
4053 for_each_online_node(node) {
4054 l3 = cachep->nodelists[node];
4055 if (!l3)
4056 continue;
4057
4058 check_irq_on();
4059 spin_lock_irq(&l3->list_lock);
4060
4061 list_for_each_entry(slabp, &l3->slabs_full, list) {
4062 if (slabp->inuse != cachep->num && !error)
4063 error = "slabs_full accounting error";
4064 active_objs += cachep->num;
4065 active_slabs++;
4066 }
4067 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4068 if (slabp->inuse == cachep->num && !error)
4069 error = "slabs_partial inuse accounting error";
4070 if (!slabp->inuse && !error)
4071 error = "slabs_partial/inuse accounting error";
4072 active_objs += slabp->inuse;
4073 active_slabs++;
4074 }
4075 list_for_each_entry(slabp, &l3->slabs_free, list) {
4076 if (slabp->inuse && !error)
4077 error = "slabs_free/inuse accounting error";
4078 num_slabs++;
4079 }
4080 free_objects += l3->free_objects;
4081 if (l3->shared)
4082 shared_avail += l3->shared->avail;
4083
4084 spin_unlock_irq(&l3->list_lock);
4085 }
4086 num_slabs += active_slabs;
4087 num_objs = num_slabs * cachep->num;
4088 if (num_objs - active_objs != free_objects && !error)
4089 error = "free_objects accounting error";
4090
4091 name = cachep->name;
4092 if (error)
4093 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4094
4095 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4096 name, active_objs, num_objs, cachep->buffer_size,
4097 cachep->num, (1 << cachep->gfporder));
4098 seq_printf(m, " : tunables %4u %4u %4u",
4099 cachep->limit, cachep->batchcount, cachep->shared);
4100 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4101 active_slabs, num_slabs, shared_avail);
4102 #if STATS
4103 { /* list3 stats */
4104 unsigned long high = cachep->high_mark;
4105 unsigned long allocs = cachep->num_allocations;
4106 unsigned long grown = cachep->grown;
4107 unsigned long reaped = cachep->reaped;
4108 unsigned long errors = cachep->errors;
4109 unsigned long max_freeable = cachep->max_freeable;
4110 unsigned long node_allocs = cachep->node_allocs;
4111 unsigned long node_frees = cachep->node_frees;
4112 unsigned long overflows = cachep->node_overflow;
4113
4114 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4115 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4116 reaped, errors, max_freeable, node_allocs,
4117 node_frees, overflows);
4118 }
4119 /* cpu stats */
4120 {
4121 unsigned long allochit = atomic_read(&cachep->allochit);
4122 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4123 unsigned long freehit = atomic_read(&cachep->freehit);
4124 unsigned long freemiss = atomic_read(&cachep->freemiss);
4125
4126 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4127 allochit, allocmiss, freehit, freemiss);
4128 }
4129 #endif
4130 seq_putc(m, '\n');
4131 return 0;
4132 }
4133
4134 /*
4135 * slabinfo_op - iterator that generates /proc/slabinfo
4136 *
4137 * Output layout:
4138 * cache-name
4139 * num-active-objs
4140 * total-objs
4141 * object size
4142 * num-active-slabs
4143 * total-slabs
4144 * num-pages-per-slab
4145 * + further values on SMP and with statistics enabled
4146 */
4147
4148 struct seq_operations slabinfo_op = {
4149 .start = s_start,
4150 .next = s_next,
4151 .stop = s_stop,
4152 .show = s_show,
4153 };
4154
4155 #define MAX_SLABINFO_WRITE 128
4156 /**
4157 * slabinfo_write - Tuning for the slab allocator
4158 * @file: unused
4159 * @buffer: user buffer
4160 * @count: data length
4161 * @ppos: unused
4162 */
4163 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4164 size_t count, loff_t *ppos)
4165 {
4166 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4167 int limit, batchcount, shared, res;
4168 struct kmem_cache *cachep;
4169
4170 if (count > MAX_SLABINFO_WRITE)
4171 return -EINVAL;
4172 if (copy_from_user(&kbuf, buffer, count))
4173 return -EFAULT;
4174 kbuf[MAX_SLABINFO_WRITE] = '\0';
4175
4176 tmp = strchr(kbuf, ' ');
4177 if (!tmp)
4178 return -EINVAL;
4179 *tmp = '\0';
4180 tmp++;
4181 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4182 return -EINVAL;
4183
4184 /* Find the cache in the chain of caches. */
4185 mutex_lock(&cache_chain_mutex);
4186 res = -EINVAL;
4187 list_for_each_entry(cachep, &cache_chain, next) {
4188 if (!strcmp(cachep->name, kbuf)) {
4189 if (limit < 1 || batchcount < 1 ||
4190 batchcount > limit || shared < 0) {
4191 res = 0;
4192 } else {
4193 res = do_tune_cpucache(cachep, limit,
4194 batchcount, shared);
4195 }
4196 break;
4197 }
4198 }
4199 mutex_unlock(&cache_chain_mutex);
4200 if (res >= 0)
4201 res = count;
4202 return res;
4203 }
4204
4205 #ifdef CONFIG_DEBUG_SLAB_LEAK
4206
4207 static void *leaks_start(struct seq_file *m, loff_t *pos)
4208 {
4209 loff_t n = *pos;
4210 struct list_head *p;
4211
4212 mutex_lock(&cache_chain_mutex);
4213 p = cache_chain.next;
4214 while (n--) {
4215 p = p->next;
4216 if (p == &cache_chain)
4217 return NULL;
4218 }
4219 return list_entry(p, struct kmem_cache, next);
4220 }
4221
4222 static inline int add_caller(unsigned long *n, unsigned long v)
4223 {
4224 unsigned long *p;
4225 int l;
4226 if (!v)
4227 return 1;
4228 l = n[1];
4229 p = n + 2;
4230 while (l) {
4231 int i = l/2;
4232 unsigned long *q = p + 2 * i;
4233 if (*q == v) {
4234 q[1]++;
4235 return 1;
4236 }
4237 if (*q > v) {
4238 l = i;
4239 } else {
4240 p = q + 2;
4241 l -= i + 1;
4242 }
4243 }
4244 if (++n[1] == n[0])
4245 return 0;
4246 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4247 p[0] = v;
4248 p[1] = 1;
4249 return 1;
4250 }
4251
4252 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4253 {
4254 void *p;
4255 int i;
4256 if (n[0] == n[1])
4257 return;
4258 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4259 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4260 continue;
4261 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4262 return;
4263 }
4264 }
4265
4266 static void show_symbol(struct seq_file *m, unsigned long address)
4267 {
4268 #ifdef CONFIG_KALLSYMS
4269 char *modname;
4270 const char *name;
4271 unsigned long offset, size;
4272 char namebuf[KSYM_NAME_LEN+1];
4273
4274 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4275
4276 if (name) {
4277 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4278 if (modname)
4279 seq_printf(m, " [%s]", modname);
4280 return;
4281 }
4282 #endif
4283 seq_printf(m, "%p", (void *)address);
4284 }
4285
4286 static int leaks_show(struct seq_file *m, void *p)
4287 {
4288 struct kmem_cache *cachep = p;
4289 struct slab *slabp;
4290 struct kmem_list3 *l3;
4291 const char *name;
4292 unsigned long *n = m->private;
4293 int node;
4294 int i;
4295
4296 if (!(cachep->flags & SLAB_STORE_USER))
4297 return 0;
4298 if (!(cachep->flags & SLAB_RED_ZONE))
4299 return 0;
4300
4301 /* OK, we can do it */
4302
4303 n[1] = 0;
4304
4305 for_each_online_node(node) {
4306 l3 = cachep->nodelists[node];
4307 if (!l3)
4308 continue;
4309
4310 check_irq_on();
4311 spin_lock_irq(&l3->list_lock);
4312
4313 list_for_each_entry(slabp, &l3->slabs_full, list)
4314 handle_slab(n, cachep, slabp);
4315 list_for_each_entry(slabp, &l3->slabs_partial, list)
4316 handle_slab(n, cachep, slabp);
4317 spin_unlock_irq(&l3->list_lock);
4318 }
4319 name = cachep->name;
4320 if (n[0] == n[1]) {
4321 /* Increase the buffer size */
4322 mutex_unlock(&cache_chain_mutex);
4323 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4324 if (!m->private) {
4325 /* Too bad, we are really out */
4326 m->private = n;
4327 mutex_lock(&cache_chain_mutex);
4328 return -ENOMEM;
4329 }
4330 *(unsigned long *)m->private = n[0] * 2;
4331 kfree(n);
4332 mutex_lock(&cache_chain_mutex);
4333 /* Now make sure this entry will be retried */
4334 m->count = m->size;
4335 return 0;
4336 }
4337 for (i = 0; i < n[1]; i++) {
4338 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4339 show_symbol(m, n[2*i+2]);
4340 seq_putc(m, '\n');
4341 }
4342
4343 return 0;
4344 }
4345
4346 struct seq_operations slabstats_op = {
4347 .start = leaks_start,
4348 .next = s_next,
4349 .stop = s_stop,
4350 .show = leaks_show,
4351 };
4352 #endif
4353 #endif
4354
4355 /**
4356 * ksize - get the actual amount of memory allocated for a given object
4357 * @objp: Pointer to the object
4358 *
4359 * kmalloc may internally round up allocations and return more memory
4360 * than requested. ksize() can be used to determine the actual amount of
4361 * memory allocated. The caller may use this additional memory, even though
4362 * a smaller amount of memory was initially specified with the kmalloc call.
4363 * The caller must guarantee that objp points to a valid object previously
4364 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4365 * must not be freed during the duration of the call.
4366 */
4367 unsigned int ksize(const void *objp)
4368 {
4369 if (unlikely(objp == NULL))
4370 return 0;
4371
4372 return obj_size(virt_to_cache(objp));
4373 }