]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/slab.c
7bd19639efd383bb0b20863cbe7c6b80b3e8877c
[mirror_ubuntu-hirsute-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
109
110 #include <asm/uaccess.h>
111 #include <asm/cacheflush.h>
112 #include <asm/tlbflush.h>
113 #include <asm/page.h>
114
115 /*
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126 #ifdef CONFIG_DEBUG_SLAB
127 #define DEBUG 1
128 #define STATS 1
129 #define FORCED_DEBUG 1
130 #else
131 #define DEBUG 0
132 #define STATS 0
133 #define FORCED_DEBUG 0
134 #endif
135
136 /* Shouldn't this be in a header file somewhere? */
137 #define BYTES_PER_WORD sizeof(void *)
138
139 #ifndef cache_line_size
140 #define cache_line_size() L1_CACHE_BYTES
141 #endif
142
143 #ifndef ARCH_KMALLOC_MINALIGN
144 /*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152 #define ARCH_KMALLOC_MINALIGN 0
153 #endif
154
155 #ifndef ARCH_SLAB_MINALIGN
156 /*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163 #define ARCH_SLAB_MINALIGN 0
164 #endif
165
166 #ifndef ARCH_KMALLOC_FLAGS
167 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168 #endif
169
170 /* Legal flag mask for kmem_cache_create(). */
171 #if DEBUG
172 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174 SLAB_CACHE_DMA | \
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
178 #else
179 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183 #endif
184
185 /*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
204 typedef unsigned int kmem_bufctl_t;
205 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
207 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
209
210 /*
211 * struct slab
212 *
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
216 */
217 struct slab {
218 struct list_head list;
219 unsigned long colouroff;
220 void *s_mem; /* including colour offset */
221 unsigned int inuse; /* num of objs active in slab */
222 kmem_bufctl_t free;
223 unsigned short nodeid;
224 };
225
226 /*
227 * struct slab_rcu
228 *
229 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
230 * arrange for kmem_freepages to be called via RCU. This is useful if
231 * we need to approach a kernel structure obliquely, from its address
232 * obtained without the usual locking. We can lock the structure to
233 * stabilize it and check it's still at the given address, only if we
234 * can be sure that the memory has not been meanwhile reused for some
235 * other kind of object (which our subsystem's lock might corrupt).
236 *
237 * rcu_read_lock before reading the address, then rcu_read_unlock after
238 * taking the spinlock within the structure expected at that address.
239 *
240 * We assume struct slab_rcu can overlay struct slab when destroying.
241 */
242 struct slab_rcu {
243 struct rcu_head head;
244 struct kmem_cache *cachep;
245 void *addr;
246 };
247
248 /*
249 * struct array_cache
250 *
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260 struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
265 spinlock_t lock;
266 void *entry[0]; /*
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
270 * [0] is for gcc 2.95. It should really be [].
271 */
272 };
273
274 /*
275 * bootstrap: The caches do not work without cpuarrays anymore, but the
276 * cpuarrays are allocated from the generic caches...
277 */
278 #define BOOT_CPUCACHE_ENTRIES 1
279 struct arraycache_init {
280 struct array_cache cache;
281 void *entries[BOOT_CPUCACHE_ENTRIES];
282 };
283
284 /*
285 * The slab lists for all objects.
286 */
287 struct kmem_list3 {
288 struct list_head slabs_partial; /* partial list first, better asm code */
289 struct list_head slabs_full;
290 struct list_head slabs_free;
291 unsigned long free_objects;
292 unsigned int free_limit;
293 unsigned int colour_next; /* Per-node cache coloring */
294 spinlock_t list_lock;
295 struct array_cache *shared; /* shared per node */
296 struct array_cache **alien; /* on other nodes */
297 unsigned long next_reap; /* updated without locking */
298 int free_touched; /* updated without locking */
299 };
300
301 /*
302 * Need this for bootstrapping a per node allocator.
303 */
304 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
305 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
306 #define CACHE_CACHE 0
307 #define SIZE_AC 1
308 #define SIZE_L3 (1 + MAX_NUMNODES)
309
310 /*
311 * This function must be completely optimized away if a constant is passed to
312 * it. Mostly the same as what is in linux/slab.h except it returns an index.
313 */
314 static __always_inline int index_of(const size_t size)
315 {
316 extern void __bad_size(void);
317
318 if (__builtin_constant_p(size)) {
319 int i = 0;
320
321 #define CACHE(x) \
322 if (size <=x) \
323 return i; \
324 else \
325 i++;
326 #include "linux/kmalloc_sizes.h"
327 #undef CACHE
328 __bad_size();
329 } else
330 __bad_size();
331 return 0;
332 }
333
334 #define INDEX_AC index_of(sizeof(struct arraycache_init))
335 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
336
337 static void kmem_list3_init(struct kmem_list3 *parent)
338 {
339 INIT_LIST_HEAD(&parent->slabs_full);
340 INIT_LIST_HEAD(&parent->slabs_partial);
341 INIT_LIST_HEAD(&parent->slabs_free);
342 parent->shared = NULL;
343 parent->alien = NULL;
344 parent->colour_next = 0;
345 spin_lock_init(&parent->list_lock);
346 parent->free_objects = 0;
347 parent->free_touched = 0;
348 }
349
350 #define MAKE_LIST(cachep, listp, slab, nodeid) \
351 do { \
352 INIT_LIST_HEAD(listp); \
353 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
354 } while (0)
355
356 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
357 do { \
358 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
359 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
360 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
361 } while (0)
362
363 /*
364 * struct kmem_cache
365 *
366 * manages a cache.
367 */
368
369 struct kmem_cache {
370 /* 1) per-cpu data, touched during every alloc/free */
371 struct array_cache *array[NR_CPUS];
372 /* 2) Cache tunables. Protected by cache_chain_mutex */
373 unsigned int batchcount;
374 unsigned int limit;
375 unsigned int shared;
376
377 unsigned int buffer_size;
378 /* 3) touched by every alloc & free from the backend */
379 struct kmem_list3 *nodelists[MAX_NUMNODES];
380
381 unsigned int flags; /* constant flags */
382 unsigned int num; /* # of objs per slab */
383
384 /* 4) cache_grow/shrink */
385 /* order of pgs per slab (2^n) */
386 unsigned int gfporder;
387
388 /* force GFP flags, e.g. GFP_DMA */
389 gfp_t gfpflags;
390
391 size_t colour; /* cache colouring range */
392 unsigned int colour_off; /* colour offset */
393 struct kmem_cache *slabp_cache;
394 unsigned int slab_size;
395 unsigned int dflags; /* dynamic flags */
396
397 /* constructor func */
398 void (*ctor) (void *, struct kmem_cache *, unsigned long);
399
400 /* de-constructor func */
401 void (*dtor) (void *, struct kmem_cache *, unsigned long);
402
403 /* 5) cache creation/removal */
404 const char *name;
405 struct list_head next;
406
407 /* 6) statistics */
408 #if STATS
409 unsigned long num_active;
410 unsigned long num_allocations;
411 unsigned long high_mark;
412 unsigned long grown;
413 unsigned long reaped;
414 unsigned long errors;
415 unsigned long max_freeable;
416 unsigned long node_allocs;
417 unsigned long node_frees;
418 unsigned long node_overflow;
419 atomic_t allochit;
420 atomic_t allocmiss;
421 atomic_t freehit;
422 atomic_t freemiss;
423 #endif
424 #if DEBUG
425 /*
426 * If debugging is enabled, then the allocator can add additional
427 * fields and/or padding to every object. buffer_size contains the total
428 * object size including these internal fields, the following two
429 * variables contain the offset to the user object and its size.
430 */
431 int obj_offset;
432 int obj_size;
433 #endif
434 };
435
436 #define CFLGS_OFF_SLAB (0x80000000UL)
437 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
438
439 #define BATCHREFILL_LIMIT 16
440 /*
441 * Optimization question: fewer reaps means less probability for unnessary
442 * cpucache drain/refill cycles.
443 *
444 * OTOH the cpuarrays can contain lots of objects,
445 * which could lock up otherwise freeable slabs.
446 */
447 #define REAPTIMEOUT_CPUC (2*HZ)
448 #define REAPTIMEOUT_LIST3 (4*HZ)
449
450 #if STATS
451 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
452 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
453 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
454 #define STATS_INC_GROWN(x) ((x)->grown++)
455 #define STATS_INC_REAPED(x) ((x)->reaped++)
456 #define STATS_SET_HIGH(x) \
457 do { \
458 if ((x)->num_active > (x)->high_mark) \
459 (x)->high_mark = (x)->num_active; \
460 } while (0)
461 #define STATS_INC_ERR(x) ((x)->errors++)
462 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
463 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
464 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
465 #define STATS_SET_FREEABLE(x, i) \
466 do { \
467 if ((x)->max_freeable < i) \
468 (x)->max_freeable = i; \
469 } while (0)
470 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
471 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
472 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
473 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
474 #else
475 #define STATS_INC_ACTIVE(x) do { } while (0)
476 #define STATS_DEC_ACTIVE(x) do { } while (0)
477 #define STATS_INC_ALLOCED(x) do { } while (0)
478 #define STATS_INC_GROWN(x) do { } while (0)
479 #define STATS_INC_REAPED(x) do { } while (0)
480 #define STATS_SET_HIGH(x) do { } while (0)
481 #define STATS_INC_ERR(x) do { } while (0)
482 #define STATS_INC_NODEALLOCS(x) do { } while (0)
483 #define STATS_INC_NODEFREES(x) do { } while (0)
484 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
485 #define STATS_SET_FREEABLE(x, i) do { } while (0)
486 #define STATS_INC_ALLOCHIT(x) do { } while (0)
487 #define STATS_INC_ALLOCMISS(x) do { } while (0)
488 #define STATS_INC_FREEHIT(x) do { } while (0)
489 #define STATS_INC_FREEMISS(x) do { } while (0)
490 #endif
491
492 #if DEBUG
493 /*
494 * Magic nums for obj red zoning.
495 * Placed in the first word before and the first word after an obj.
496 */
497 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
498 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
499
500 /* ...and for poisoning */
501 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
502 #define POISON_FREE 0x6b /* for use-after-free poisoning */
503 #define POISON_END 0xa5 /* end-byte of poisoning */
504
505 /*
506 * memory layout of objects:
507 * 0 : objp
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
512 * redzone word.
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
517 */
518 static int obj_offset(struct kmem_cache *cachep)
519 {
520 return cachep->obj_offset;
521 }
522
523 static int obj_size(struct kmem_cache *cachep)
524 {
525 return cachep->obj_size;
526 }
527
528 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
529 {
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
532 }
533
534 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
535 {
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
538 return (unsigned long *)(objp + cachep->buffer_size -
539 2 * BYTES_PER_WORD);
540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
541 }
542
543 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
544 {
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
547 }
548
549 #else
550
551 #define obj_offset(x) 0
552 #define obj_size(cachep) (cachep->buffer_size)
553 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557 #endif
558
559 /*
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
562 */
563 #if defined(CONFIG_LARGE_ALLOCS)
564 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
565 #define MAX_GFP_ORDER 13 /* up to 32Mb */
566 #elif defined(CONFIG_MMU)
567 #define MAX_OBJ_ORDER 5 /* 32 pages */
568 #define MAX_GFP_ORDER 5 /* 32 pages */
569 #else
570 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
571 #define MAX_GFP_ORDER 8 /* up to 1Mb */
572 #endif
573
574 /*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577 #define BREAK_GFP_ORDER_HI 1
578 #define BREAK_GFP_ORDER_LO 0
579 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
581 /*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
585 */
586 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587 {
588 page->lru.next = (struct list_head *)cache;
589 }
590
591 static inline struct kmem_cache *page_get_cache(struct page *page)
592 {
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
595 return (struct kmem_cache *)page->lru.next;
596 }
597
598 static inline void page_set_slab(struct page *page, struct slab *slab)
599 {
600 page->lru.prev = (struct list_head *)slab;
601 }
602
603 static inline struct slab *page_get_slab(struct page *page)
604 {
605 if (unlikely(PageCompound(page)))
606 page = (struct page *)page_private(page);
607 return (struct slab *)page->lru.prev;
608 }
609
610 static inline struct kmem_cache *virt_to_cache(const void *obj)
611 {
612 struct page *page = virt_to_page(obj);
613 return page_get_cache(page);
614 }
615
616 static inline struct slab *virt_to_slab(const void *obj)
617 {
618 struct page *page = virt_to_page(obj);
619 return page_get_slab(page);
620 }
621
622 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
623 unsigned int idx)
624 {
625 return slab->s_mem + cache->buffer_size * idx;
626 }
627
628 static inline unsigned int obj_to_index(struct kmem_cache *cache,
629 struct slab *slab, void *obj)
630 {
631 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
632 }
633
634 /*
635 * These are the default caches for kmalloc. Custom caches can have other sizes.
636 */
637 struct cache_sizes malloc_sizes[] = {
638 #define CACHE(x) { .cs_size = (x) },
639 #include <linux/kmalloc_sizes.h>
640 CACHE(ULONG_MAX)
641 #undef CACHE
642 };
643 EXPORT_SYMBOL(malloc_sizes);
644
645 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
646 struct cache_names {
647 char *name;
648 char *name_dma;
649 };
650
651 static struct cache_names __initdata cache_names[] = {
652 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
653 #include <linux/kmalloc_sizes.h>
654 {NULL,}
655 #undef CACHE
656 };
657
658 static struct arraycache_init initarray_cache __initdata =
659 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
660 static struct arraycache_init initarray_generic =
661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662
663 /* internal cache of cache description objs */
664 static struct kmem_cache cache_cache = {
665 .batchcount = 1,
666 .limit = BOOT_CPUCACHE_ENTRIES,
667 .shared = 1,
668 .buffer_size = sizeof(struct kmem_cache),
669 .name = "kmem_cache",
670 #if DEBUG
671 .obj_size = sizeof(struct kmem_cache),
672 #endif
673 };
674
675 /* Guard access to the cache-chain. */
676 static DEFINE_MUTEX(cache_chain_mutex);
677 static struct list_head cache_chain;
678
679 /*
680 * vm_enough_memory() looks at this to determine how many slab-allocated pages
681 * are possibly freeable under pressure
682 *
683 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
684 */
685 atomic_t slab_reclaim_pages;
686
687 /*
688 * chicken and egg problem: delay the per-cpu array allocation
689 * until the general caches are up.
690 */
691 static enum {
692 NONE,
693 PARTIAL_AC,
694 PARTIAL_L3,
695 FULL
696 } g_cpucache_up;
697
698 /*
699 * used by boot code to determine if it can use slab based allocator
700 */
701 int slab_is_available(void)
702 {
703 return g_cpucache_up == FULL;
704 }
705
706 static DEFINE_PER_CPU(struct work_struct, reap_work);
707
708 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
709 int node);
710 static void enable_cpucache(struct kmem_cache *cachep);
711 static void cache_reap(void *unused);
712 static int __node_shrink(struct kmem_cache *cachep, int node);
713
714 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
715 {
716 return cachep->array[smp_processor_id()];
717 }
718
719 static inline struct kmem_cache *__find_general_cachep(size_t size,
720 gfp_t gfpflags)
721 {
722 struct cache_sizes *csizep = malloc_sizes;
723
724 #if DEBUG
725 /* This happens if someone tries to call
726 * kmem_cache_create(), or __kmalloc(), before
727 * the generic caches are initialized.
728 */
729 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
730 #endif
731 while (size > csizep->cs_size)
732 csizep++;
733
734 /*
735 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
736 * has cs_{dma,}cachep==NULL. Thus no special case
737 * for large kmalloc calls required.
738 */
739 if (unlikely(gfpflags & GFP_DMA))
740 return csizep->cs_dmacachep;
741 return csizep->cs_cachep;
742 }
743
744 struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
745 {
746 return __find_general_cachep(size, gfpflags);
747 }
748 EXPORT_SYMBOL(kmem_find_general_cachep);
749
750 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
751 {
752 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
753 }
754
755 /*
756 * Calculate the number of objects and left-over bytes for a given buffer size.
757 */
758 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
759 size_t align, int flags, size_t *left_over,
760 unsigned int *num)
761 {
762 int nr_objs;
763 size_t mgmt_size;
764 size_t slab_size = PAGE_SIZE << gfporder;
765
766 /*
767 * The slab management structure can be either off the slab or
768 * on it. For the latter case, the memory allocated for a
769 * slab is used for:
770 *
771 * - The struct slab
772 * - One kmem_bufctl_t for each object
773 * - Padding to respect alignment of @align
774 * - @buffer_size bytes for each object
775 *
776 * If the slab management structure is off the slab, then the
777 * alignment will already be calculated into the size. Because
778 * the slabs are all pages aligned, the objects will be at the
779 * correct alignment when allocated.
780 */
781 if (flags & CFLGS_OFF_SLAB) {
782 mgmt_size = 0;
783 nr_objs = slab_size / buffer_size;
784
785 if (nr_objs > SLAB_LIMIT)
786 nr_objs = SLAB_LIMIT;
787 } else {
788 /*
789 * Ignore padding for the initial guess. The padding
790 * is at most @align-1 bytes, and @buffer_size is at
791 * least @align. In the worst case, this result will
792 * be one greater than the number of objects that fit
793 * into the memory allocation when taking the padding
794 * into account.
795 */
796 nr_objs = (slab_size - sizeof(struct slab)) /
797 (buffer_size + sizeof(kmem_bufctl_t));
798
799 /*
800 * This calculated number will be either the right
801 * amount, or one greater than what we want.
802 */
803 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
804 > slab_size)
805 nr_objs--;
806
807 if (nr_objs > SLAB_LIMIT)
808 nr_objs = SLAB_LIMIT;
809
810 mgmt_size = slab_mgmt_size(nr_objs, align);
811 }
812 *num = nr_objs;
813 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
814 }
815
816 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
817
818 static void __slab_error(const char *function, struct kmem_cache *cachep,
819 char *msg)
820 {
821 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
822 function, cachep->name, msg);
823 dump_stack();
824 }
825
826 #ifdef CONFIG_NUMA
827 /*
828 * Special reaping functions for NUMA systems called from cache_reap().
829 * These take care of doing round robin flushing of alien caches (containing
830 * objects freed on different nodes from which they were allocated) and the
831 * flushing of remote pcps by calling drain_node_pages.
832 */
833 static DEFINE_PER_CPU(unsigned long, reap_node);
834
835 static void init_reap_node(int cpu)
836 {
837 int node;
838
839 node = next_node(cpu_to_node(cpu), node_online_map);
840 if (node == MAX_NUMNODES)
841 node = first_node(node_online_map);
842
843 __get_cpu_var(reap_node) = node;
844 }
845
846 static void next_reap_node(void)
847 {
848 int node = __get_cpu_var(reap_node);
849
850 /*
851 * Also drain per cpu pages on remote zones
852 */
853 if (node != numa_node_id())
854 drain_node_pages(node);
855
856 node = next_node(node, node_online_map);
857 if (unlikely(node >= MAX_NUMNODES))
858 node = first_node(node_online_map);
859 __get_cpu_var(reap_node) = node;
860 }
861
862 #else
863 #define init_reap_node(cpu) do { } while (0)
864 #define next_reap_node(void) do { } while (0)
865 #endif
866
867 /*
868 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
869 * via the workqueue/eventd.
870 * Add the CPU number into the expiration time to minimize the possibility of
871 * the CPUs getting into lockstep and contending for the global cache chain
872 * lock.
873 */
874 static void __devinit start_cpu_timer(int cpu)
875 {
876 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
877
878 /*
879 * When this gets called from do_initcalls via cpucache_init(),
880 * init_workqueues() has already run, so keventd will be setup
881 * at that time.
882 */
883 if (keventd_up() && reap_work->func == NULL) {
884 init_reap_node(cpu);
885 INIT_WORK(reap_work, cache_reap, NULL);
886 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
887 }
888 }
889
890 static struct array_cache *alloc_arraycache(int node, int entries,
891 int batchcount)
892 {
893 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
894 struct array_cache *nc = NULL;
895
896 nc = kmalloc_node(memsize, GFP_KERNEL, node);
897 if (nc) {
898 nc->avail = 0;
899 nc->limit = entries;
900 nc->batchcount = batchcount;
901 nc->touched = 0;
902 spin_lock_init(&nc->lock);
903 }
904 return nc;
905 }
906
907 /*
908 * Transfer objects in one arraycache to another.
909 * Locking must be handled by the caller.
910 *
911 * Return the number of entries transferred.
912 */
913 static int transfer_objects(struct array_cache *to,
914 struct array_cache *from, unsigned int max)
915 {
916 /* Figure out how many entries to transfer */
917 int nr = min(min(from->avail, max), to->limit - to->avail);
918
919 if (!nr)
920 return 0;
921
922 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
923 sizeof(void *) *nr);
924
925 from->avail -= nr;
926 to->avail += nr;
927 to->touched = 1;
928 return nr;
929 }
930
931 #ifdef CONFIG_NUMA
932 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
933 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
934
935 static struct array_cache **alloc_alien_cache(int node, int limit)
936 {
937 struct array_cache **ac_ptr;
938 int memsize = sizeof(void *) * MAX_NUMNODES;
939 int i;
940
941 if (limit > 1)
942 limit = 12;
943 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
944 if (ac_ptr) {
945 for_each_node(i) {
946 if (i == node || !node_online(i)) {
947 ac_ptr[i] = NULL;
948 continue;
949 }
950 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
951 if (!ac_ptr[i]) {
952 for (i--; i <= 0; i--)
953 kfree(ac_ptr[i]);
954 kfree(ac_ptr);
955 return NULL;
956 }
957 }
958 }
959 return ac_ptr;
960 }
961
962 static void free_alien_cache(struct array_cache **ac_ptr)
963 {
964 int i;
965
966 if (!ac_ptr)
967 return;
968 for_each_node(i)
969 kfree(ac_ptr[i]);
970 kfree(ac_ptr);
971 }
972
973 static void __drain_alien_cache(struct kmem_cache *cachep,
974 struct array_cache *ac, int node)
975 {
976 struct kmem_list3 *rl3 = cachep->nodelists[node];
977
978 if (ac->avail) {
979 spin_lock(&rl3->list_lock);
980 /*
981 * Stuff objects into the remote nodes shared array first.
982 * That way we could avoid the overhead of putting the objects
983 * into the free lists and getting them back later.
984 */
985 if (rl3->shared)
986 transfer_objects(rl3->shared, ac, ac->limit);
987
988 free_block(cachep, ac->entry, ac->avail, node);
989 ac->avail = 0;
990 spin_unlock(&rl3->list_lock);
991 }
992 }
993
994 /*
995 * Called from cache_reap() to regularly drain alien caches round robin.
996 */
997 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
998 {
999 int node = __get_cpu_var(reap_node);
1000
1001 if (l3->alien) {
1002 struct array_cache *ac = l3->alien[node];
1003
1004 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1005 __drain_alien_cache(cachep, ac, node);
1006 spin_unlock_irq(&ac->lock);
1007 }
1008 }
1009 }
1010
1011 static void drain_alien_cache(struct kmem_cache *cachep,
1012 struct array_cache **alien)
1013 {
1014 int i = 0;
1015 struct array_cache *ac;
1016 unsigned long flags;
1017
1018 for_each_online_node(i) {
1019 ac = alien[i];
1020 if (ac) {
1021 spin_lock_irqsave(&ac->lock, flags);
1022 __drain_alien_cache(cachep, ac, i);
1023 spin_unlock_irqrestore(&ac->lock, flags);
1024 }
1025 }
1026 }
1027
1028 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1029 {
1030 struct slab *slabp = virt_to_slab(objp);
1031 int nodeid = slabp->nodeid;
1032 struct kmem_list3 *l3;
1033 struct array_cache *alien = NULL;
1034
1035 /*
1036 * Make sure we are not freeing a object from another node to the array
1037 * cache on this cpu.
1038 */
1039 if (likely(slabp->nodeid == numa_node_id()))
1040 return 0;
1041
1042 l3 = cachep->nodelists[numa_node_id()];
1043 STATS_INC_NODEFREES(cachep);
1044 if (l3->alien && l3->alien[nodeid]) {
1045 alien = l3->alien[nodeid];
1046 spin_lock(&alien->lock);
1047 if (unlikely(alien->avail == alien->limit)) {
1048 STATS_INC_ACOVERFLOW(cachep);
1049 __drain_alien_cache(cachep, alien, nodeid);
1050 }
1051 alien->entry[alien->avail++] = objp;
1052 spin_unlock(&alien->lock);
1053 } else {
1054 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1055 free_block(cachep, &objp, 1, nodeid);
1056 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1057 }
1058 return 1;
1059 }
1060
1061 #else
1062
1063 #define drain_alien_cache(cachep, alien) do { } while (0)
1064 #define reap_alien(cachep, l3) do { } while (0)
1065
1066 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1067 {
1068 return (struct array_cache **) 0x01020304ul;
1069 }
1070
1071 static inline void free_alien_cache(struct array_cache **ac_ptr)
1072 {
1073 }
1074
1075 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1076 {
1077 return 0;
1078 }
1079
1080 #endif
1081
1082 static int cpuup_callback(struct notifier_block *nfb,
1083 unsigned long action, void *hcpu)
1084 {
1085 long cpu = (long)hcpu;
1086 struct kmem_cache *cachep;
1087 struct kmem_list3 *l3 = NULL;
1088 int node = cpu_to_node(cpu);
1089 int memsize = sizeof(struct kmem_list3);
1090
1091 switch (action) {
1092 case CPU_UP_PREPARE:
1093 mutex_lock(&cache_chain_mutex);
1094 /*
1095 * We need to do this right in the beginning since
1096 * alloc_arraycache's are going to use this list.
1097 * kmalloc_node allows us to add the slab to the right
1098 * kmem_list3 and not this cpu's kmem_list3
1099 */
1100
1101 list_for_each_entry(cachep, &cache_chain, next) {
1102 /*
1103 * Set up the size64 kmemlist for cpu before we can
1104 * begin anything. Make sure some other cpu on this
1105 * node has not already allocated this
1106 */
1107 if (!cachep->nodelists[node]) {
1108 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1109 if (!l3)
1110 goto bad;
1111 kmem_list3_init(l3);
1112 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1113 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1114
1115 /*
1116 * The l3s don't come and go as CPUs come and
1117 * go. cache_chain_mutex is sufficient
1118 * protection here.
1119 */
1120 cachep->nodelists[node] = l3;
1121 }
1122
1123 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1124 cachep->nodelists[node]->free_limit =
1125 (1 + nr_cpus_node(node)) *
1126 cachep->batchcount + cachep->num;
1127 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1128 }
1129
1130 /*
1131 * Now we can go ahead with allocating the shared arrays and
1132 * array caches
1133 */
1134 list_for_each_entry(cachep, &cache_chain, next) {
1135 struct array_cache *nc;
1136 struct array_cache *shared;
1137 struct array_cache **alien;
1138
1139 nc = alloc_arraycache(node, cachep->limit,
1140 cachep->batchcount);
1141 if (!nc)
1142 goto bad;
1143 shared = alloc_arraycache(node,
1144 cachep->shared * cachep->batchcount,
1145 0xbaadf00d);
1146 if (!shared)
1147 goto bad;
1148
1149 alien = alloc_alien_cache(node, cachep->limit);
1150 if (!alien)
1151 goto bad;
1152 cachep->array[cpu] = nc;
1153 l3 = cachep->nodelists[node];
1154 BUG_ON(!l3);
1155
1156 spin_lock_irq(&l3->list_lock);
1157 if (!l3->shared) {
1158 /*
1159 * We are serialised from CPU_DEAD or
1160 * CPU_UP_CANCELLED by the cpucontrol lock
1161 */
1162 l3->shared = shared;
1163 shared = NULL;
1164 }
1165 #ifdef CONFIG_NUMA
1166 if (!l3->alien) {
1167 l3->alien = alien;
1168 alien = NULL;
1169 }
1170 #endif
1171 spin_unlock_irq(&l3->list_lock);
1172 kfree(shared);
1173 free_alien_cache(alien);
1174 }
1175 mutex_unlock(&cache_chain_mutex);
1176 break;
1177 case CPU_ONLINE:
1178 start_cpu_timer(cpu);
1179 break;
1180 #ifdef CONFIG_HOTPLUG_CPU
1181 case CPU_DEAD:
1182 /*
1183 * Even if all the cpus of a node are down, we don't free the
1184 * kmem_list3 of any cache. This to avoid a race between
1185 * cpu_down, and a kmalloc allocation from another cpu for
1186 * memory from the node of the cpu going down. The list3
1187 * structure is usually allocated from kmem_cache_create() and
1188 * gets destroyed at kmem_cache_destroy().
1189 */
1190 /* fall thru */
1191 case CPU_UP_CANCELED:
1192 mutex_lock(&cache_chain_mutex);
1193 list_for_each_entry(cachep, &cache_chain, next) {
1194 struct array_cache *nc;
1195 struct array_cache *shared;
1196 struct array_cache **alien;
1197 cpumask_t mask;
1198
1199 mask = node_to_cpumask(node);
1200 /* cpu is dead; no one can alloc from it. */
1201 nc = cachep->array[cpu];
1202 cachep->array[cpu] = NULL;
1203 l3 = cachep->nodelists[node];
1204
1205 if (!l3)
1206 goto free_array_cache;
1207
1208 spin_lock_irq(&l3->list_lock);
1209
1210 /* Free limit for this kmem_list3 */
1211 l3->free_limit -= cachep->batchcount;
1212 if (nc)
1213 free_block(cachep, nc->entry, nc->avail, node);
1214
1215 if (!cpus_empty(mask)) {
1216 spin_unlock_irq(&l3->list_lock);
1217 goto free_array_cache;
1218 }
1219
1220 shared = l3->shared;
1221 if (shared) {
1222 free_block(cachep, l3->shared->entry,
1223 l3->shared->avail, node);
1224 l3->shared = NULL;
1225 }
1226
1227 alien = l3->alien;
1228 l3->alien = NULL;
1229
1230 spin_unlock_irq(&l3->list_lock);
1231
1232 kfree(shared);
1233 if (alien) {
1234 drain_alien_cache(cachep, alien);
1235 free_alien_cache(alien);
1236 }
1237 free_array_cache:
1238 kfree(nc);
1239 }
1240 /*
1241 * In the previous loop, all the objects were freed to
1242 * the respective cache's slabs, now we can go ahead and
1243 * shrink each nodelist to its limit.
1244 */
1245 list_for_each_entry(cachep, &cache_chain, next) {
1246 l3 = cachep->nodelists[node];
1247 if (!l3)
1248 continue;
1249 spin_lock_irq(&l3->list_lock);
1250 /* free slabs belonging to this node */
1251 __node_shrink(cachep, node);
1252 spin_unlock_irq(&l3->list_lock);
1253 }
1254 mutex_unlock(&cache_chain_mutex);
1255 break;
1256 #endif
1257 }
1258 return NOTIFY_OK;
1259 bad:
1260 mutex_unlock(&cache_chain_mutex);
1261 return NOTIFY_BAD;
1262 }
1263
1264 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1265
1266 /*
1267 * swap the static kmem_list3 with kmalloced memory
1268 */
1269 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1270 int nodeid)
1271 {
1272 struct kmem_list3 *ptr;
1273
1274 BUG_ON(cachep->nodelists[nodeid] != list);
1275 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1276 BUG_ON(!ptr);
1277
1278 local_irq_disable();
1279 memcpy(ptr, list, sizeof(struct kmem_list3));
1280 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1281 cachep->nodelists[nodeid] = ptr;
1282 local_irq_enable();
1283 }
1284
1285 /*
1286 * Initialisation. Called after the page allocator have been initialised and
1287 * before smp_init().
1288 */
1289 void __init kmem_cache_init(void)
1290 {
1291 size_t left_over;
1292 struct cache_sizes *sizes;
1293 struct cache_names *names;
1294 int i;
1295 int order;
1296
1297 for (i = 0; i < NUM_INIT_LISTS; i++) {
1298 kmem_list3_init(&initkmem_list3[i]);
1299 if (i < MAX_NUMNODES)
1300 cache_cache.nodelists[i] = NULL;
1301 }
1302
1303 /*
1304 * Fragmentation resistance on low memory - only use bigger
1305 * page orders on machines with more than 32MB of memory.
1306 */
1307 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1308 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1309
1310 /* Bootstrap is tricky, because several objects are allocated
1311 * from caches that do not exist yet:
1312 * 1) initialize the cache_cache cache: it contains the struct
1313 * kmem_cache structures of all caches, except cache_cache itself:
1314 * cache_cache is statically allocated.
1315 * Initially an __init data area is used for the head array and the
1316 * kmem_list3 structures, it's replaced with a kmalloc allocated
1317 * array at the end of the bootstrap.
1318 * 2) Create the first kmalloc cache.
1319 * The struct kmem_cache for the new cache is allocated normally.
1320 * An __init data area is used for the head array.
1321 * 3) Create the remaining kmalloc caches, with minimally sized
1322 * head arrays.
1323 * 4) Replace the __init data head arrays for cache_cache and the first
1324 * kmalloc cache with kmalloc allocated arrays.
1325 * 5) Replace the __init data for kmem_list3 for cache_cache and
1326 * the other cache's with kmalloc allocated memory.
1327 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1328 */
1329
1330 /* 1) create the cache_cache */
1331 INIT_LIST_HEAD(&cache_chain);
1332 list_add(&cache_cache.next, &cache_chain);
1333 cache_cache.colour_off = cache_line_size();
1334 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1335 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1336
1337 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1338 cache_line_size());
1339
1340 for (order = 0; order < MAX_ORDER; order++) {
1341 cache_estimate(order, cache_cache.buffer_size,
1342 cache_line_size(), 0, &left_over, &cache_cache.num);
1343 if (cache_cache.num)
1344 break;
1345 }
1346 BUG_ON(!cache_cache.num);
1347 cache_cache.gfporder = order;
1348 cache_cache.colour = left_over / cache_cache.colour_off;
1349 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1350 sizeof(struct slab), cache_line_size());
1351
1352 /* 2+3) create the kmalloc caches */
1353 sizes = malloc_sizes;
1354 names = cache_names;
1355
1356 /*
1357 * Initialize the caches that provide memory for the array cache and the
1358 * kmem_list3 structures first. Without this, further allocations will
1359 * bug.
1360 */
1361
1362 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1363 sizes[INDEX_AC].cs_size,
1364 ARCH_KMALLOC_MINALIGN,
1365 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1366 NULL, NULL);
1367
1368 if (INDEX_AC != INDEX_L3) {
1369 sizes[INDEX_L3].cs_cachep =
1370 kmem_cache_create(names[INDEX_L3].name,
1371 sizes[INDEX_L3].cs_size,
1372 ARCH_KMALLOC_MINALIGN,
1373 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1374 NULL, NULL);
1375 }
1376
1377 while (sizes->cs_size != ULONG_MAX) {
1378 /*
1379 * For performance, all the general caches are L1 aligned.
1380 * This should be particularly beneficial on SMP boxes, as it
1381 * eliminates "false sharing".
1382 * Note for systems short on memory removing the alignment will
1383 * allow tighter packing of the smaller caches.
1384 */
1385 if (!sizes->cs_cachep) {
1386 sizes->cs_cachep = kmem_cache_create(names->name,
1387 sizes->cs_size,
1388 ARCH_KMALLOC_MINALIGN,
1389 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1390 NULL, NULL);
1391 }
1392
1393 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1394 sizes->cs_size,
1395 ARCH_KMALLOC_MINALIGN,
1396 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1397 SLAB_PANIC,
1398 NULL, NULL);
1399 sizes++;
1400 names++;
1401 }
1402 /* 4) Replace the bootstrap head arrays */
1403 {
1404 void *ptr;
1405
1406 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1407
1408 local_irq_disable();
1409 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1410 memcpy(ptr, cpu_cache_get(&cache_cache),
1411 sizeof(struct arraycache_init));
1412 cache_cache.array[smp_processor_id()] = ptr;
1413 local_irq_enable();
1414
1415 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1416
1417 local_irq_disable();
1418 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1419 != &initarray_generic.cache);
1420 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1421 sizeof(struct arraycache_init));
1422 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1423 ptr;
1424 local_irq_enable();
1425 }
1426 /* 5) Replace the bootstrap kmem_list3's */
1427 {
1428 int node;
1429 /* Replace the static kmem_list3 structures for the boot cpu */
1430 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1431 numa_node_id());
1432
1433 for_each_online_node(node) {
1434 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1435 &initkmem_list3[SIZE_AC + node], node);
1436
1437 if (INDEX_AC != INDEX_L3) {
1438 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1439 &initkmem_list3[SIZE_L3 + node],
1440 node);
1441 }
1442 }
1443 }
1444
1445 /* 6) resize the head arrays to their final sizes */
1446 {
1447 struct kmem_cache *cachep;
1448 mutex_lock(&cache_chain_mutex);
1449 list_for_each_entry(cachep, &cache_chain, next)
1450 enable_cpucache(cachep);
1451 mutex_unlock(&cache_chain_mutex);
1452 }
1453
1454 /* Done! */
1455 g_cpucache_up = FULL;
1456
1457 /*
1458 * Register a cpu startup notifier callback that initializes
1459 * cpu_cache_get for all new cpus
1460 */
1461 register_cpu_notifier(&cpucache_notifier);
1462
1463 /*
1464 * The reap timers are started later, with a module init call: That part
1465 * of the kernel is not yet operational.
1466 */
1467 }
1468
1469 static int __init cpucache_init(void)
1470 {
1471 int cpu;
1472
1473 /*
1474 * Register the timers that return unneeded pages to the page allocator
1475 */
1476 for_each_online_cpu(cpu)
1477 start_cpu_timer(cpu);
1478 return 0;
1479 }
1480 __initcall(cpucache_init);
1481
1482 /*
1483 * Interface to system's page allocator. No need to hold the cache-lock.
1484 *
1485 * If we requested dmaable memory, we will get it. Even if we
1486 * did not request dmaable memory, we might get it, but that
1487 * would be relatively rare and ignorable.
1488 */
1489 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1490 {
1491 struct page *page;
1492 int nr_pages;
1493 int i;
1494
1495 #ifndef CONFIG_MMU
1496 /*
1497 * Nommu uses slab's for process anonymous memory allocations, and thus
1498 * requires __GFP_COMP to properly refcount higher order allocations
1499 */
1500 flags |= __GFP_COMP;
1501 #endif
1502 flags |= cachep->gfpflags;
1503
1504 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1505 if (!page)
1506 return NULL;
1507
1508 nr_pages = (1 << cachep->gfporder);
1509 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1510 atomic_add(nr_pages, &slab_reclaim_pages);
1511 add_page_state(nr_slab, nr_pages);
1512 for (i = 0; i < nr_pages; i++)
1513 __SetPageSlab(page + i);
1514 return page_address(page);
1515 }
1516
1517 /*
1518 * Interface to system's page release.
1519 */
1520 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1521 {
1522 unsigned long i = (1 << cachep->gfporder);
1523 struct page *page = virt_to_page(addr);
1524 const unsigned long nr_freed = i;
1525
1526 while (i--) {
1527 BUG_ON(!PageSlab(page));
1528 __ClearPageSlab(page);
1529 page++;
1530 }
1531 sub_page_state(nr_slab, nr_freed);
1532 if (current->reclaim_state)
1533 current->reclaim_state->reclaimed_slab += nr_freed;
1534 free_pages((unsigned long)addr, cachep->gfporder);
1535 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1536 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1537 }
1538
1539 static void kmem_rcu_free(struct rcu_head *head)
1540 {
1541 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1542 struct kmem_cache *cachep = slab_rcu->cachep;
1543
1544 kmem_freepages(cachep, slab_rcu->addr);
1545 if (OFF_SLAB(cachep))
1546 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1547 }
1548
1549 #if DEBUG
1550
1551 #ifdef CONFIG_DEBUG_PAGEALLOC
1552 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1553 unsigned long caller)
1554 {
1555 int size = obj_size(cachep);
1556
1557 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1558
1559 if (size < 5 * sizeof(unsigned long))
1560 return;
1561
1562 *addr++ = 0x12345678;
1563 *addr++ = caller;
1564 *addr++ = smp_processor_id();
1565 size -= 3 * sizeof(unsigned long);
1566 {
1567 unsigned long *sptr = &caller;
1568 unsigned long svalue;
1569
1570 while (!kstack_end(sptr)) {
1571 svalue = *sptr++;
1572 if (kernel_text_address(svalue)) {
1573 *addr++ = svalue;
1574 size -= sizeof(unsigned long);
1575 if (size <= sizeof(unsigned long))
1576 break;
1577 }
1578 }
1579
1580 }
1581 *addr++ = 0x87654321;
1582 }
1583 #endif
1584
1585 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1586 {
1587 int size = obj_size(cachep);
1588 addr = &((char *)addr)[obj_offset(cachep)];
1589
1590 memset(addr, val, size);
1591 *(unsigned char *)(addr + size - 1) = POISON_END;
1592 }
1593
1594 static void dump_line(char *data, int offset, int limit)
1595 {
1596 int i;
1597 printk(KERN_ERR "%03x:", offset);
1598 for (i = 0; i < limit; i++)
1599 printk(" %02x", (unsigned char)data[offset + i]);
1600 printk("\n");
1601 }
1602 #endif
1603
1604 #if DEBUG
1605
1606 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1607 {
1608 int i, size;
1609 char *realobj;
1610
1611 if (cachep->flags & SLAB_RED_ZONE) {
1612 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1613 *dbg_redzone1(cachep, objp),
1614 *dbg_redzone2(cachep, objp));
1615 }
1616
1617 if (cachep->flags & SLAB_STORE_USER) {
1618 printk(KERN_ERR "Last user: [<%p>]",
1619 *dbg_userword(cachep, objp));
1620 print_symbol("(%s)",
1621 (unsigned long)*dbg_userword(cachep, objp));
1622 printk("\n");
1623 }
1624 realobj = (char *)objp + obj_offset(cachep);
1625 size = obj_size(cachep);
1626 for (i = 0; i < size && lines; i += 16, lines--) {
1627 int limit;
1628 limit = 16;
1629 if (i + limit > size)
1630 limit = size - i;
1631 dump_line(realobj, i, limit);
1632 }
1633 }
1634
1635 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1636 {
1637 char *realobj;
1638 int size, i;
1639 int lines = 0;
1640
1641 realobj = (char *)objp + obj_offset(cachep);
1642 size = obj_size(cachep);
1643
1644 for (i = 0; i < size; i++) {
1645 char exp = POISON_FREE;
1646 if (i == size - 1)
1647 exp = POISON_END;
1648 if (realobj[i] != exp) {
1649 int limit;
1650 /* Mismatch ! */
1651 /* Print header */
1652 if (lines == 0) {
1653 printk(KERN_ERR
1654 "Slab corruption: start=%p, len=%d\n",
1655 realobj, size);
1656 print_objinfo(cachep, objp, 0);
1657 }
1658 /* Hexdump the affected line */
1659 i = (i / 16) * 16;
1660 limit = 16;
1661 if (i + limit > size)
1662 limit = size - i;
1663 dump_line(realobj, i, limit);
1664 i += 16;
1665 lines++;
1666 /* Limit to 5 lines */
1667 if (lines > 5)
1668 break;
1669 }
1670 }
1671 if (lines != 0) {
1672 /* Print some data about the neighboring objects, if they
1673 * exist:
1674 */
1675 struct slab *slabp = virt_to_slab(objp);
1676 unsigned int objnr;
1677
1678 objnr = obj_to_index(cachep, slabp, objp);
1679 if (objnr) {
1680 objp = index_to_obj(cachep, slabp, objnr - 1);
1681 realobj = (char *)objp + obj_offset(cachep);
1682 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1683 realobj, size);
1684 print_objinfo(cachep, objp, 2);
1685 }
1686 if (objnr + 1 < cachep->num) {
1687 objp = index_to_obj(cachep, slabp, objnr + 1);
1688 realobj = (char *)objp + obj_offset(cachep);
1689 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1690 realobj, size);
1691 print_objinfo(cachep, objp, 2);
1692 }
1693 }
1694 }
1695 #endif
1696
1697 #if DEBUG
1698 /**
1699 * slab_destroy_objs - destroy a slab and its objects
1700 * @cachep: cache pointer being destroyed
1701 * @slabp: slab pointer being destroyed
1702 *
1703 * Call the registered destructor for each object in a slab that is being
1704 * destroyed.
1705 */
1706 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1707 {
1708 int i;
1709 for (i = 0; i < cachep->num; i++) {
1710 void *objp = index_to_obj(cachep, slabp, i);
1711
1712 if (cachep->flags & SLAB_POISON) {
1713 #ifdef CONFIG_DEBUG_PAGEALLOC
1714 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1715 OFF_SLAB(cachep))
1716 kernel_map_pages(virt_to_page(objp),
1717 cachep->buffer_size / PAGE_SIZE, 1);
1718 else
1719 check_poison_obj(cachep, objp);
1720 #else
1721 check_poison_obj(cachep, objp);
1722 #endif
1723 }
1724 if (cachep->flags & SLAB_RED_ZONE) {
1725 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1726 slab_error(cachep, "start of a freed object "
1727 "was overwritten");
1728 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1729 slab_error(cachep, "end of a freed object "
1730 "was overwritten");
1731 }
1732 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1733 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1734 }
1735 }
1736 #else
1737 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1738 {
1739 if (cachep->dtor) {
1740 int i;
1741 for (i = 0; i < cachep->num; i++) {
1742 void *objp = index_to_obj(cachep, slabp, i);
1743 (cachep->dtor) (objp, cachep, 0);
1744 }
1745 }
1746 }
1747 #endif
1748
1749 /**
1750 * slab_destroy - destroy and release all objects in a slab
1751 * @cachep: cache pointer being destroyed
1752 * @slabp: slab pointer being destroyed
1753 *
1754 * Destroy all the objs in a slab, and release the mem back to the system.
1755 * Before calling the slab must have been unlinked from the cache. The
1756 * cache-lock is not held/needed.
1757 */
1758 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1759 {
1760 void *addr = slabp->s_mem - slabp->colouroff;
1761
1762 slab_destroy_objs(cachep, slabp);
1763 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1764 struct slab_rcu *slab_rcu;
1765
1766 slab_rcu = (struct slab_rcu *)slabp;
1767 slab_rcu->cachep = cachep;
1768 slab_rcu->addr = addr;
1769 call_rcu(&slab_rcu->head, kmem_rcu_free);
1770 } else {
1771 kmem_freepages(cachep, addr);
1772 if (OFF_SLAB(cachep))
1773 kmem_cache_free(cachep->slabp_cache, slabp);
1774 }
1775 }
1776
1777 /*
1778 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1779 * size of kmem_list3.
1780 */
1781 static void set_up_list3s(struct kmem_cache *cachep, int index)
1782 {
1783 int node;
1784
1785 for_each_online_node(node) {
1786 cachep->nodelists[node] = &initkmem_list3[index + node];
1787 cachep->nodelists[node]->next_reap = jiffies +
1788 REAPTIMEOUT_LIST3 +
1789 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1790 }
1791 }
1792
1793 /**
1794 * calculate_slab_order - calculate size (page order) of slabs
1795 * @cachep: pointer to the cache that is being created
1796 * @size: size of objects to be created in this cache.
1797 * @align: required alignment for the objects.
1798 * @flags: slab allocation flags
1799 *
1800 * Also calculates the number of objects per slab.
1801 *
1802 * This could be made much more intelligent. For now, try to avoid using
1803 * high order pages for slabs. When the gfp() functions are more friendly
1804 * towards high-order requests, this should be changed.
1805 */
1806 static size_t calculate_slab_order(struct kmem_cache *cachep,
1807 size_t size, size_t align, unsigned long flags)
1808 {
1809 unsigned long offslab_limit;
1810 size_t left_over = 0;
1811 int gfporder;
1812
1813 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1814 unsigned int num;
1815 size_t remainder;
1816
1817 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1818 if (!num)
1819 continue;
1820
1821 if (flags & CFLGS_OFF_SLAB) {
1822 /*
1823 * Max number of objs-per-slab for caches which
1824 * use off-slab slabs. Needed to avoid a possible
1825 * looping condition in cache_grow().
1826 */
1827 offslab_limit = size - sizeof(struct slab);
1828 offslab_limit /= sizeof(kmem_bufctl_t);
1829
1830 if (num > offslab_limit)
1831 break;
1832 }
1833
1834 /* Found something acceptable - save it away */
1835 cachep->num = num;
1836 cachep->gfporder = gfporder;
1837 left_over = remainder;
1838
1839 /*
1840 * A VFS-reclaimable slab tends to have most allocations
1841 * as GFP_NOFS and we really don't want to have to be allocating
1842 * higher-order pages when we are unable to shrink dcache.
1843 */
1844 if (flags & SLAB_RECLAIM_ACCOUNT)
1845 break;
1846
1847 /*
1848 * Large number of objects is good, but very large slabs are
1849 * currently bad for the gfp()s.
1850 */
1851 if (gfporder >= slab_break_gfp_order)
1852 break;
1853
1854 /*
1855 * Acceptable internal fragmentation?
1856 */
1857 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1858 break;
1859 }
1860 return left_over;
1861 }
1862
1863 static void setup_cpu_cache(struct kmem_cache *cachep)
1864 {
1865 if (g_cpucache_up == FULL) {
1866 enable_cpucache(cachep);
1867 return;
1868 }
1869 if (g_cpucache_up == NONE) {
1870 /*
1871 * Note: the first kmem_cache_create must create the cache
1872 * that's used by kmalloc(24), otherwise the creation of
1873 * further caches will BUG().
1874 */
1875 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1876
1877 /*
1878 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1879 * the first cache, then we need to set up all its list3s,
1880 * otherwise the creation of further caches will BUG().
1881 */
1882 set_up_list3s(cachep, SIZE_AC);
1883 if (INDEX_AC == INDEX_L3)
1884 g_cpucache_up = PARTIAL_L3;
1885 else
1886 g_cpucache_up = PARTIAL_AC;
1887 } else {
1888 cachep->array[smp_processor_id()] =
1889 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1890
1891 if (g_cpucache_up == PARTIAL_AC) {
1892 set_up_list3s(cachep, SIZE_L3);
1893 g_cpucache_up = PARTIAL_L3;
1894 } else {
1895 int node;
1896 for_each_online_node(node) {
1897 cachep->nodelists[node] =
1898 kmalloc_node(sizeof(struct kmem_list3),
1899 GFP_KERNEL, node);
1900 BUG_ON(!cachep->nodelists[node]);
1901 kmem_list3_init(cachep->nodelists[node]);
1902 }
1903 }
1904 }
1905 cachep->nodelists[numa_node_id()]->next_reap =
1906 jiffies + REAPTIMEOUT_LIST3 +
1907 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1908
1909 cpu_cache_get(cachep)->avail = 0;
1910 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1911 cpu_cache_get(cachep)->batchcount = 1;
1912 cpu_cache_get(cachep)->touched = 0;
1913 cachep->batchcount = 1;
1914 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1915 }
1916
1917 /**
1918 * kmem_cache_create - Create a cache.
1919 * @name: A string which is used in /proc/slabinfo to identify this cache.
1920 * @size: The size of objects to be created in this cache.
1921 * @align: The required alignment for the objects.
1922 * @flags: SLAB flags
1923 * @ctor: A constructor for the objects.
1924 * @dtor: A destructor for the objects.
1925 *
1926 * Returns a ptr to the cache on success, NULL on failure.
1927 * Cannot be called within a int, but can be interrupted.
1928 * The @ctor is run when new pages are allocated by the cache
1929 * and the @dtor is run before the pages are handed back.
1930 *
1931 * @name must be valid until the cache is destroyed. This implies that
1932 * the module calling this has to destroy the cache before getting unloaded.
1933 *
1934 * The flags are
1935 *
1936 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1937 * to catch references to uninitialised memory.
1938 *
1939 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1940 * for buffer overruns.
1941 *
1942 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1943 * cacheline. This can be beneficial if you're counting cycles as closely
1944 * as davem.
1945 */
1946 struct kmem_cache *
1947 kmem_cache_create (const char *name, size_t size, size_t align,
1948 unsigned long flags,
1949 void (*ctor)(void*, struct kmem_cache *, unsigned long),
1950 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1951 {
1952 size_t left_over, slab_size, ralign;
1953 struct kmem_cache *cachep = NULL;
1954 struct list_head *p;
1955
1956 /*
1957 * Sanity checks... these are all serious usage bugs.
1958 */
1959 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1960 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1961 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1962 name);
1963 BUG();
1964 }
1965
1966 /*
1967 * Prevent CPUs from coming and going.
1968 * lock_cpu_hotplug() nests outside cache_chain_mutex
1969 */
1970 lock_cpu_hotplug();
1971
1972 mutex_lock(&cache_chain_mutex);
1973
1974 list_for_each(p, &cache_chain) {
1975 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1976 mm_segment_t old_fs = get_fs();
1977 char tmp;
1978 int res;
1979
1980 /*
1981 * This happens when the module gets unloaded and doesn't
1982 * destroy its slab cache and no-one else reuses the vmalloc
1983 * area of the module. Print a warning.
1984 */
1985 set_fs(KERNEL_DS);
1986 res = __get_user(tmp, pc->name);
1987 set_fs(old_fs);
1988 if (res) {
1989 printk("SLAB: cache with size %d has lost its name\n",
1990 pc->buffer_size);
1991 continue;
1992 }
1993
1994 if (!strcmp(pc->name, name)) {
1995 printk("kmem_cache_create: duplicate cache %s\n", name);
1996 dump_stack();
1997 goto oops;
1998 }
1999 }
2000
2001 #if DEBUG
2002 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2003 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2004 /* No constructor, but inital state check requested */
2005 printk(KERN_ERR "%s: No con, but init state check "
2006 "requested - %s\n", __FUNCTION__, name);
2007 flags &= ~SLAB_DEBUG_INITIAL;
2008 }
2009 #if FORCED_DEBUG
2010 /*
2011 * Enable redzoning and last user accounting, except for caches with
2012 * large objects, if the increased size would increase the object size
2013 * above the next power of two: caches with object sizes just above a
2014 * power of two have a significant amount of internal fragmentation.
2015 */
2016 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2017 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2018 if (!(flags & SLAB_DESTROY_BY_RCU))
2019 flags |= SLAB_POISON;
2020 #endif
2021 if (flags & SLAB_DESTROY_BY_RCU)
2022 BUG_ON(flags & SLAB_POISON);
2023 #endif
2024 if (flags & SLAB_DESTROY_BY_RCU)
2025 BUG_ON(dtor);
2026
2027 /*
2028 * Always checks flags, a caller might be expecting debug support which
2029 * isn't available.
2030 */
2031 BUG_ON(flags & ~CREATE_MASK);
2032
2033 /*
2034 * Check that size is in terms of words. This is needed to avoid
2035 * unaligned accesses for some archs when redzoning is used, and makes
2036 * sure any on-slab bufctl's are also correctly aligned.
2037 */
2038 if (size & (BYTES_PER_WORD - 1)) {
2039 size += (BYTES_PER_WORD - 1);
2040 size &= ~(BYTES_PER_WORD - 1);
2041 }
2042
2043 /* calculate the final buffer alignment: */
2044
2045 /* 1) arch recommendation: can be overridden for debug */
2046 if (flags & SLAB_HWCACHE_ALIGN) {
2047 /*
2048 * Default alignment: as specified by the arch code. Except if
2049 * an object is really small, then squeeze multiple objects into
2050 * one cacheline.
2051 */
2052 ralign = cache_line_size();
2053 while (size <= ralign / 2)
2054 ralign /= 2;
2055 } else {
2056 ralign = BYTES_PER_WORD;
2057 }
2058 /* 2) arch mandated alignment: disables debug if necessary */
2059 if (ralign < ARCH_SLAB_MINALIGN) {
2060 ralign = ARCH_SLAB_MINALIGN;
2061 if (ralign > BYTES_PER_WORD)
2062 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2063 }
2064 /* 3) caller mandated alignment: disables debug if necessary */
2065 if (ralign < align) {
2066 ralign = align;
2067 if (ralign > BYTES_PER_WORD)
2068 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2069 }
2070 /*
2071 * 4) Store it. Note that the debug code below can reduce
2072 * the alignment to BYTES_PER_WORD.
2073 */
2074 align = ralign;
2075
2076 /* Get cache's description obj. */
2077 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2078 if (!cachep)
2079 goto oops;
2080
2081 #if DEBUG
2082 cachep->obj_size = size;
2083
2084 if (flags & SLAB_RED_ZONE) {
2085 /* redzoning only works with word aligned caches */
2086 align = BYTES_PER_WORD;
2087
2088 /* add space for red zone words */
2089 cachep->obj_offset += BYTES_PER_WORD;
2090 size += 2 * BYTES_PER_WORD;
2091 }
2092 if (flags & SLAB_STORE_USER) {
2093 /* user store requires word alignment and
2094 * one word storage behind the end of the real
2095 * object.
2096 */
2097 align = BYTES_PER_WORD;
2098 size += BYTES_PER_WORD;
2099 }
2100 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2101 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2102 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2103 cachep->obj_offset += PAGE_SIZE - size;
2104 size = PAGE_SIZE;
2105 }
2106 #endif
2107 #endif
2108
2109 /* Determine if the slab management is 'on' or 'off' slab. */
2110 if (size >= (PAGE_SIZE >> 3))
2111 /*
2112 * Size is large, assume best to place the slab management obj
2113 * off-slab (should allow better packing of objs).
2114 */
2115 flags |= CFLGS_OFF_SLAB;
2116
2117 size = ALIGN(size, align);
2118
2119 left_over = calculate_slab_order(cachep, size, align, flags);
2120
2121 if (!cachep->num) {
2122 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2123 kmem_cache_free(&cache_cache, cachep);
2124 cachep = NULL;
2125 goto oops;
2126 }
2127 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2128 + sizeof(struct slab), align);
2129
2130 /*
2131 * If the slab has been placed off-slab, and we have enough space then
2132 * move it on-slab. This is at the expense of any extra colouring.
2133 */
2134 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2135 flags &= ~CFLGS_OFF_SLAB;
2136 left_over -= slab_size;
2137 }
2138
2139 if (flags & CFLGS_OFF_SLAB) {
2140 /* really off slab. No need for manual alignment */
2141 slab_size =
2142 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2143 }
2144
2145 cachep->colour_off = cache_line_size();
2146 /* Offset must be a multiple of the alignment. */
2147 if (cachep->colour_off < align)
2148 cachep->colour_off = align;
2149 cachep->colour = left_over / cachep->colour_off;
2150 cachep->slab_size = slab_size;
2151 cachep->flags = flags;
2152 cachep->gfpflags = 0;
2153 if (flags & SLAB_CACHE_DMA)
2154 cachep->gfpflags |= GFP_DMA;
2155 cachep->buffer_size = size;
2156
2157 if (flags & CFLGS_OFF_SLAB)
2158 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2159 cachep->ctor = ctor;
2160 cachep->dtor = dtor;
2161 cachep->name = name;
2162
2163
2164 setup_cpu_cache(cachep);
2165
2166 /* cache setup completed, link it into the list */
2167 list_add(&cachep->next, &cache_chain);
2168 oops:
2169 if (!cachep && (flags & SLAB_PANIC))
2170 panic("kmem_cache_create(): failed to create slab `%s'\n",
2171 name);
2172 mutex_unlock(&cache_chain_mutex);
2173 unlock_cpu_hotplug();
2174 return cachep;
2175 }
2176 EXPORT_SYMBOL(kmem_cache_create);
2177
2178 #if DEBUG
2179 static void check_irq_off(void)
2180 {
2181 BUG_ON(!irqs_disabled());
2182 }
2183
2184 static void check_irq_on(void)
2185 {
2186 BUG_ON(irqs_disabled());
2187 }
2188
2189 static void check_spinlock_acquired(struct kmem_cache *cachep)
2190 {
2191 #ifdef CONFIG_SMP
2192 check_irq_off();
2193 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2194 #endif
2195 }
2196
2197 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2198 {
2199 #ifdef CONFIG_SMP
2200 check_irq_off();
2201 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2202 #endif
2203 }
2204
2205 #else
2206 #define check_irq_off() do { } while(0)
2207 #define check_irq_on() do { } while(0)
2208 #define check_spinlock_acquired(x) do { } while(0)
2209 #define check_spinlock_acquired_node(x, y) do { } while(0)
2210 #endif
2211
2212 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2213 struct array_cache *ac,
2214 int force, int node);
2215
2216 static void do_drain(void *arg)
2217 {
2218 struct kmem_cache *cachep = arg;
2219 struct array_cache *ac;
2220 int node = numa_node_id();
2221
2222 check_irq_off();
2223 ac = cpu_cache_get(cachep);
2224 spin_lock(&cachep->nodelists[node]->list_lock);
2225 free_block(cachep, ac->entry, ac->avail, node);
2226 spin_unlock(&cachep->nodelists[node]->list_lock);
2227 ac->avail = 0;
2228 }
2229
2230 static void drain_cpu_caches(struct kmem_cache *cachep)
2231 {
2232 struct kmem_list3 *l3;
2233 int node;
2234
2235 on_each_cpu(do_drain, cachep, 1, 1);
2236 check_irq_on();
2237 for_each_online_node(node) {
2238 l3 = cachep->nodelists[node];
2239 if (l3 && l3->alien)
2240 drain_alien_cache(cachep, l3->alien);
2241 }
2242
2243 for_each_online_node(node) {
2244 l3 = cachep->nodelists[node];
2245 if (l3)
2246 drain_array(cachep, l3, l3->shared, 1, node);
2247 }
2248 }
2249
2250 static int __node_shrink(struct kmem_cache *cachep, int node)
2251 {
2252 struct slab *slabp;
2253 struct kmem_list3 *l3 = cachep->nodelists[node];
2254 int ret;
2255
2256 for (;;) {
2257 struct list_head *p;
2258
2259 p = l3->slabs_free.prev;
2260 if (p == &l3->slabs_free)
2261 break;
2262
2263 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2264 #if DEBUG
2265 BUG_ON(slabp->inuse);
2266 #endif
2267 list_del(&slabp->list);
2268
2269 l3->free_objects -= cachep->num;
2270 spin_unlock_irq(&l3->list_lock);
2271 slab_destroy(cachep, slabp);
2272 spin_lock_irq(&l3->list_lock);
2273 }
2274 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2275 return ret;
2276 }
2277
2278 static int __cache_shrink(struct kmem_cache *cachep)
2279 {
2280 int ret = 0, i = 0;
2281 struct kmem_list3 *l3;
2282
2283 drain_cpu_caches(cachep);
2284
2285 check_irq_on();
2286 for_each_online_node(i) {
2287 l3 = cachep->nodelists[i];
2288 if (l3) {
2289 spin_lock_irq(&l3->list_lock);
2290 ret += __node_shrink(cachep, i);
2291 spin_unlock_irq(&l3->list_lock);
2292 }
2293 }
2294 return (ret ? 1 : 0);
2295 }
2296
2297 /**
2298 * kmem_cache_shrink - Shrink a cache.
2299 * @cachep: The cache to shrink.
2300 *
2301 * Releases as many slabs as possible for a cache.
2302 * To help debugging, a zero exit status indicates all slabs were released.
2303 */
2304 int kmem_cache_shrink(struct kmem_cache *cachep)
2305 {
2306 BUG_ON(!cachep || in_interrupt());
2307
2308 return __cache_shrink(cachep);
2309 }
2310 EXPORT_SYMBOL(kmem_cache_shrink);
2311
2312 /**
2313 * kmem_cache_destroy - delete a cache
2314 * @cachep: the cache to destroy
2315 *
2316 * Remove a struct kmem_cache object from the slab cache.
2317 * Returns 0 on success.
2318 *
2319 * It is expected this function will be called by a module when it is
2320 * unloaded. This will remove the cache completely, and avoid a duplicate
2321 * cache being allocated each time a module is loaded and unloaded, if the
2322 * module doesn't have persistent in-kernel storage across loads and unloads.
2323 *
2324 * The cache must be empty before calling this function.
2325 *
2326 * The caller must guarantee that noone will allocate memory from the cache
2327 * during the kmem_cache_destroy().
2328 */
2329 int kmem_cache_destroy(struct kmem_cache *cachep)
2330 {
2331 int i;
2332 struct kmem_list3 *l3;
2333
2334 BUG_ON(!cachep || in_interrupt());
2335
2336 /* Don't let CPUs to come and go */
2337 lock_cpu_hotplug();
2338
2339 /* Find the cache in the chain of caches. */
2340 mutex_lock(&cache_chain_mutex);
2341 /*
2342 * the chain is never empty, cache_cache is never destroyed
2343 */
2344 list_del(&cachep->next);
2345 mutex_unlock(&cache_chain_mutex);
2346
2347 if (__cache_shrink(cachep)) {
2348 slab_error(cachep, "Can't free all objects");
2349 mutex_lock(&cache_chain_mutex);
2350 list_add(&cachep->next, &cache_chain);
2351 mutex_unlock(&cache_chain_mutex);
2352 unlock_cpu_hotplug();
2353 return 1;
2354 }
2355
2356 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2357 synchronize_rcu();
2358
2359 for_each_online_cpu(i)
2360 kfree(cachep->array[i]);
2361
2362 /* NUMA: free the list3 structures */
2363 for_each_online_node(i) {
2364 l3 = cachep->nodelists[i];
2365 if (l3) {
2366 kfree(l3->shared);
2367 free_alien_cache(l3->alien);
2368 kfree(l3);
2369 }
2370 }
2371 kmem_cache_free(&cache_cache, cachep);
2372 unlock_cpu_hotplug();
2373 return 0;
2374 }
2375 EXPORT_SYMBOL(kmem_cache_destroy);
2376
2377 /* Get the memory for a slab management obj. */
2378 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2379 int colour_off, gfp_t local_flags,
2380 int nodeid)
2381 {
2382 struct slab *slabp;
2383
2384 if (OFF_SLAB(cachep)) {
2385 /* Slab management obj is off-slab. */
2386 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2387 local_flags, nodeid);
2388 if (!slabp)
2389 return NULL;
2390 } else {
2391 slabp = objp + colour_off;
2392 colour_off += cachep->slab_size;
2393 }
2394 slabp->inuse = 0;
2395 slabp->colouroff = colour_off;
2396 slabp->s_mem = objp + colour_off;
2397 slabp->nodeid = nodeid;
2398 return slabp;
2399 }
2400
2401 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2402 {
2403 return (kmem_bufctl_t *) (slabp + 1);
2404 }
2405
2406 static void cache_init_objs(struct kmem_cache *cachep,
2407 struct slab *slabp, unsigned long ctor_flags)
2408 {
2409 int i;
2410
2411 for (i = 0; i < cachep->num; i++) {
2412 void *objp = index_to_obj(cachep, slabp, i);
2413 #if DEBUG
2414 /* need to poison the objs? */
2415 if (cachep->flags & SLAB_POISON)
2416 poison_obj(cachep, objp, POISON_FREE);
2417 if (cachep->flags & SLAB_STORE_USER)
2418 *dbg_userword(cachep, objp) = NULL;
2419
2420 if (cachep->flags & SLAB_RED_ZONE) {
2421 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2422 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2423 }
2424 /*
2425 * Constructors are not allowed to allocate memory from the same
2426 * cache which they are a constructor for. Otherwise, deadlock.
2427 * They must also be threaded.
2428 */
2429 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2430 cachep->ctor(objp + obj_offset(cachep), cachep,
2431 ctor_flags);
2432
2433 if (cachep->flags & SLAB_RED_ZONE) {
2434 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2435 slab_error(cachep, "constructor overwrote the"
2436 " end of an object");
2437 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2438 slab_error(cachep, "constructor overwrote the"
2439 " start of an object");
2440 }
2441 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2442 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2443 kernel_map_pages(virt_to_page(objp),
2444 cachep->buffer_size / PAGE_SIZE, 0);
2445 #else
2446 if (cachep->ctor)
2447 cachep->ctor(objp, cachep, ctor_flags);
2448 #endif
2449 slab_bufctl(slabp)[i] = i + 1;
2450 }
2451 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2452 slabp->free = 0;
2453 }
2454
2455 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2456 {
2457 if (flags & SLAB_DMA)
2458 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2459 else
2460 BUG_ON(cachep->gfpflags & GFP_DMA);
2461 }
2462
2463 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2464 int nodeid)
2465 {
2466 void *objp = index_to_obj(cachep, slabp, slabp->free);
2467 kmem_bufctl_t next;
2468
2469 slabp->inuse++;
2470 next = slab_bufctl(slabp)[slabp->free];
2471 #if DEBUG
2472 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2473 WARN_ON(slabp->nodeid != nodeid);
2474 #endif
2475 slabp->free = next;
2476
2477 return objp;
2478 }
2479
2480 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2481 void *objp, int nodeid)
2482 {
2483 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2484
2485 #if DEBUG
2486 /* Verify that the slab belongs to the intended node */
2487 WARN_ON(slabp->nodeid != nodeid);
2488
2489 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2490 printk(KERN_ERR "slab: double free detected in cache "
2491 "'%s', objp %p\n", cachep->name, objp);
2492 BUG();
2493 }
2494 #endif
2495 slab_bufctl(slabp)[objnr] = slabp->free;
2496 slabp->free = objnr;
2497 slabp->inuse--;
2498 }
2499
2500 /*
2501 * Map pages beginning at addr to the given cache and slab. This is required
2502 * for the slab allocator to be able to lookup the cache and slab of a
2503 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2504 */
2505 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2506 void *addr)
2507 {
2508 int nr_pages;
2509 struct page *page;
2510
2511 page = virt_to_page(addr);
2512
2513 nr_pages = 1;
2514 if (likely(!PageCompound(page)))
2515 nr_pages <<= cache->gfporder;
2516
2517 do {
2518 page_set_cache(page, cache);
2519 page_set_slab(page, slab);
2520 page++;
2521 } while (--nr_pages);
2522 }
2523
2524 /*
2525 * Grow (by 1) the number of slabs within a cache. This is called by
2526 * kmem_cache_alloc() when there are no active objs left in a cache.
2527 */
2528 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2529 {
2530 struct slab *slabp;
2531 void *objp;
2532 size_t offset;
2533 gfp_t local_flags;
2534 unsigned long ctor_flags;
2535 struct kmem_list3 *l3;
2536
2537 /*
2538 * Be lazy and only check for valid flags here, keeping it out of the
2539 * critical path in kmem_cache_alloc().
2540 */
2541 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2542 if (flags & SLAB_NO_GROW)
2543 return 0;
2544
2545 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2546 local_flags = (flags & SLAB_LEVEL_MASK);
2547 if (!(local_flags & __GFP_WAIT))
2548 /*
2549 * Not allowed to sleep. Need to tell a constructor about
2550 * this - it might need to know...
2551 */
2552 ctor_flags |= SLAB_CTOR_ATOMIC;
2553
2554 /* Take the l3 list lock to change the colour_next on this node */
2555 check_irq_off();
2556 l3 = cachep->nodelists[nodeid];
2557 spin_lock(&l3->list_lock);
2558
2559 /* Get colour for the slab, and cal the next value. */
2560 offset = l3->colour_next;
2561 l3->colour_next++;
2562 if (l3->colour_next >= cachep->colour)
2563 l3->colour_next = 0;
2564 spin_unlock(&l3->list_lock);
2565
2566 offset *= cachep->colour_off;
2567
2568 if (local_flags & __GFP_WAIT)
2569 local_irq_enable();
2570
2571 /*
2572 * The test for missing atomic flag is performed here, rather than
2573 * the more obvious place, simply to reduce the critical path length
2574 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2575 * will eventually be caught here (where it matters).
2576 */
2577 kmem_flagcheck(cachep, flags);
2578
2579 /*
2580 * Get mem for the objs. Attempt to allocate a physical page from
2581 * 'nodeid'.
2582 */
2583 objp = kmem_getpages(cachep, flags, nodeid);
2584 if (!objp)
2585 goto failed;
2586
2587 /* Get slab management. */
2588 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2589 if (!slabp)
2590 goto opps1;
2591
2592 slabp->nodeid = nodeid;
2593 slab_map_pages(cachep, slabp, objp);
2594
2595 cache_init_objs(cachep, slabp, ctor_flags);
2596
2597 if (local_flags & __GFP_WAIT)
2598 local_irq_disable();
2599 check_irq_off();
2600 spin_lock(&l3->list_lock);
2601
2602 /* Make slab active. */
2603 list_add_tail(&slabp->list, &(l3->slabs_free));
2604 STATS_INC_GROWN(cachep);
2605 l3->free_objects += cachep->num;
2606 spin_unlock(&l3->list_lock);
2607 return 1;
2608 opps1:
2609 kmem_freepages(cachep, objp);
2610 failed:
2611 if (local_flags & __GFP_WAIT)
2612 local_irq_disable();
2613 return 0;
2614 }
2615
2616 #if DEBUG
2617
2618 /*
2619 * Perform extra freeing checks:
2620 * - detect bad pointers.
2621 * - POISON/RED_ZONE checking
2622 * - destructor calls, for caches with POISON+dtor
2623 */
2624 static void kfree_debugcheck(const void *objp)
2625 {
2626 struct page *page;
2627
2628 if (!virt_addr_valid(objp)) {
2629 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2630 (unsigned long)objp);
2631 BUG();
2632 }
2633 page = virt_to_page(objp);
2634 if (!PageSlab(page)) {
2635 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2636 (unsigned long)objp);
2637 BUG();
2638 }
2639 }
2640
2641 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2642 void *caller)
2643 {
2644 struct page *page;
2645 unsigned int objnr;
2646 struct slab *slabp;
2647
2648 objp -= obj_offset(cachep);
2649 kfree_debugcheck(objp);
2650 page = virt_to_page(objp);
2651
2652 if (page_get_cache(page) != cachep) {
2653 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2654 "cache %p, got %p\n",
2655 page_get_cache(page), cachep);
2656 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2657 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2658 page_get_cache(page)->name);
2659 WARN_ON(1);
2660 }
2661 slabp = page_get_slab(page);
2662
2663 if (cachep->flags & SLAB_RED_ZONE) {
2664 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2665 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2666 slab_error(cachep, "double free, or memory outside"
2667 " object was overwritten");
2668 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2669 "redzone 2:0x%lx.\n",
2670 objp, *dbg_redzone1(cachep, objp),
2671 *dbg_redzone2(cachep, objp));
2672 }
2673 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2674 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2675 }
2676 if (cachep->flags & SLAB_STORE_USER)
2677 *dbg_userword(cachep, objp) = caller;
2678
2679 objnr = obj_to_index(cachep, slabp, objp);
2680
2681 BUG_ON(objnr >= cachep->num);
2682 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2683
2684 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2685 /*
2686 * Need to call the slab's constructor so the caller can
2687 * perform a verify of its state (debugging). Called without
2688 * the cache-lock held.
2689 */
2690 cachep->ctor(objp + obj_offset(cachep),
2691 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2692 }
2693 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2694 /* we want to cache poison the object,
2695 * call the destruction callback
2696 */
2697 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2698 }
2699 #ifdef CONFIG_DEBUG_SLAB_LEAK
2700 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2701 #endif
2702 if (cachep->flags & SLAB_POISON) {
2703 #ifdef CONFIG_DEBUG_PAGEALLOC
2704 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2705 store_stackinfo(cachep, objp, (unsigned long)caller);
2706 kernel_map_pages(virt_to_page(objp),
2707 cachep->buffer_size / PAGE_SIZE, 0);
2708 } else {
2709 poison_obj(cachep, objp, POISON_FREE);
2710 }
2711 #else
2712 poison_obj(cachep, objp, POISON_FREE);
2713 #endif
2714 }
2715 return objp;
2716 }
2717
2718 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2719 {
2720 kmem_bufctl_t i;
2721 int entries = 0;
2722
2723 /* Check slab's freelist to see if this obj is there. */
2724 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2725 entries++;
2726 if (entries > cachep->num || i >= cachep->num)
2727 goto bad;
2728 }
2729 if (entries != cachep->num - slabp->inuse) {
2730 bad:
2731 printk(KERN_ERR "slab: Internal list corruption detected in "
2732 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2733 cachep->name, cachep->num, slabp, slabp->inuse);
2734 for (i = 0;
2735 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2736 i++) {
2737 if (i % 16 == 0)
2738 printk("\n%03x:", i);
2739 printk(" %02x", ((unsigned char *)slabp)[i]);
2740 }
2741 printk("\n");
2742 BUG();
2743 }
2744 }
2745 #else
2746 #define kfree_debugcheck(x) do { } while(0)
2747 #define cache_free_debugcheck(x,objp,z) (objp)
2748 #define check_slabp(x,y) do { } while(0)
2749 #endif
2750
2751 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2752 {
2753 int batchcount;
2754 struct kmem_list3 *l3;
2755 struct array_cache *ac;
2756
2757 check_irq_off();
2758 ac = cpu_cache_get(cachep);
2759 retry:
2760 batchcount = ac->batchcount;
2761 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2762 /*
2763 * If there was little recent activity on this cache, then
2764 * perform only a partial refill. Otherwise we could generate
2765 * refill bouncing.
2766 */
2767 batchcount = BATCHREFILL_LIMIT;
2768 }
2769 l3 = cachep->nodelists[numa_node_id()];
2770
2771 BUG_ON(ac->avail > 0 || !l3);
2772 spin_lock(&l3->list_lock);
2773
2774 /* See if we can refill from the shared array */
2775 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2776 goto alloc_done;
2777
2778 while (batchcount > 0) {
2779 struct list_head *entry;
2780 struct slab *slabp;
2781 /* Get slab alloc is to come from. */
2782 entry = l3->slabs_partial.next;
2783 if (entry == &l3->slabs_partial) {
2784 l3->free_touched = 1;
2785 entry = l3->slabs_free.next;
2786 if (entry == &l3->slabs_free)
2787 goto must_grow;
2788 }
2789
2790 slabp = list_entry(entry, struct slab, list);
2791 check_slabp(cachep, slabp);
2792 check_spinlock_acquired(cachep);
2793 while (slabp->inuse < cachep->num && batchcount--) {
2794 STATS_INC_ALLOCED(cachep);
2795 STATS_INC_ACTIVE(cachep);
2796 STATS_SET_HIGH(cachep);
2797
2798 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2799 numa_node_id());
2800 }
2801 check_slabp(cachep, slabp);
2802
2803 /* move slabp to correct slabp list: */
2804 list_del(&slabp->list);
2805 if (slabp->free == BUFCTL_END)
2806 list_add(&slabp->list, &l3->slabs_full);
2807 else
2808 list_add(&slabp->list, &l3->slabs_partial);
2809 }
2810
2811 must_grow:
2812 l3->free_objects -= ac->avail;
2813 alloc_done:
2814 spin_unlock(&l3->list_lock);
2815
2816 if (unlikely(!ac->avail)) {
2817 int x;
2818 x = cache_grow(cachep, flags, numa_node_id());
2819
2820 /* cache_grow can reenable interrupts, then ac could change. */
2821 ac = cpu_cache_get(cachep);
2822 if (!x && ac->avail == 0) /* no objects in sight? abort */
2823 return NULL;
2824
2825 if (!ac->avail) /* objects refilled by interrupt? */
2826 goto retry;
2827 }
2828 ac->touched = 1;
2829 return ac->entry[--ac->avail];
2830 }
2831
2832 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2833 gfp_t flags)
2834 {
2835 might_sleep_if(flags & __GFP_WAIT);
2836 #if DEBUG
2837 kmem_flagcheck(cachep, flags);
2838 #endif
2839 }
2840
2841 #if DEBUG
2842 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2843 gfp_t flags, void *objp, void *caller)
2844 {
2845 if (!objp)
2846 return objp;
2847 if (cachep->flags & SLAB_POISON) {
2848 #ifdef CONFIG_DEBUG_PAGEALLOC
2849 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2850 kernel_map_pages(virt_to_page(objp),
2851 cachep->buffer_size / PAGE_SIZE, 1);
2852 else
2853 check_poison_obj(cachep, objp);
2854 #else
2855 check_poison_obj(cachep, objp);
2856 #endif
2857 poison_obj(cachep, objp, POISON_INUSE);
2858 }
2859 if (cachep->flags & SLAB_STORE_USER)
2860 *dbg_userword(cachep, objp) = caller;
2861
2862 if (cachep->flags & SLAB_RED_ZONE) {
2863 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2864 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2865 slab_error(cachep, "double free, or memory outside"
2866 " object was overwritten");
2867 printk(KERN_ERR
2868 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2869 objp, *dbg_redzone1(cachep, objp),
2870 *dbg_redzone2(cachep, objp));
2871 }
2872 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2873 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2874 }
2875 #ifdef CONFIG_DEBUG_SLAB_LEAK
2876 {
2877 struct slab *slabp;
2878 unsigned objnr;
2879
2880 slabp = page_get_slab(virt_to_page(objp));
2881 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2882 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2883 }
2884 #endif
2885 objp += obj_offset(cachep);
2886 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2887 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2888
2889 if (!(flags & __GFP_WAIT))
2890 ctor_flags |= SLAB_CTOR_ATOMIC;
2891
2892 cachep->ctor(objp, cachep, ctor_flags);
2893 }
2894 return objp;
2895 }
2896 #else
2897 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2898 #endif
2899
2900 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2901 {
2902 void *objp;
2903 struct array_cache *ac;
2904
2905 #ifdef CONFIG_NUMA
2906 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2907 objp = alternate_node_alloc(cachep, flags);
2908 if (objp != NULL)
2909 return objp;
2910 }
2911 #endif
2912
2913 check_irq_off();
2914 ac = cpu_cache_get(cachep);
2915 if (likely(ac->avail)) {
2916 STATS_INC_ALLOCHIT(cachep);
2917 ac->touched = 1;
2918 objp = ac->entry[--ac->avail];
2919 } else {
2920 STATS_INC_ALLOCMISS(cachep);
2921 objp = cache_alloc_refill(cachep, flags);
2922 }
2923 return objp;
2924 }
2925
2926 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2927 gfp_t flags, void *caller)
2928 {
2929 unsigned long save_flags;
2930 void *objp;
2931
2932 cache_alloc_debugcheck_before(cachep, flags);
2933
2934 local_irq_save(save_flags);
2935 objp = ____cache_alloc(cachep, flags);
2936 local_irq_restore(save_flags);
2937 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2938 caller);
2939 prefetchw(objp);
2940 return objp;
2941 }
2942
2943 #ifdef CONFIG_NUMA
2944 /*
2945 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2946 *
2947 * If we are in_interrupt, then process context, including cpusets and
2948 * mempolicy, may not apply and should not be used for allocation policy.
2949 */
2950 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2951 {
2952 int nid_alloc, nid_here;
2953
2954 if (in_interrupt())
2955 return NULL;
2956 nid_alloc = nid_here = numa_node_id();
2957 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2958 nid_alloc = cpuset_mem_spread_node();
2959 else if (current->mempolicy)
2960 nid_alloc = slab_node(current->mempolicy);
2961 if (nid_alloc != nid_here)
2962 return __cache_alloc_node(cachep, flags, nid_alloc);
2963 return NULL;
2964 }
2965
2966 /*
2967 * A interface to enable slab creation on nodeid
2968 */
2969 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2970 int nodeid)
2971 {
2972 struct list_head *entry;
2973 struct slab *slabp;
2974 struct kmem_list3 *l3;
2975 void *obj;
2976 int x;
2977
2978 l3 = cachep->nodelists[nodeid];
2979 BUG_ON(!l3);
2980
2981 retry:
2982 check_irq_off();
2983 spin_lock(&l3->list_lock);
2984 entry = l3->slabs_partial.next;
2985 if (entry == &l3->slabs_partial) {
2986 l3->free_touched = 1;
2987 entry = l3->slabs_free.next;
2988 if (entry == &l3->slabs_free)
2989 goto must_grow;
2990 }
2991
2992 slabp = list_entry(entry, struct slab, list);
2993 check_spinlock_acquired_node(cachep, nodeid);
2994 check_slabp(cachep, slabp);
2995
2996 STATS_INC_NODEALLOCS(cachep);
2997 STATS_INC_ACTIVE(cachep);
2998 STATS_SET_HIGH(cachep);
2999
3000 BUG_ON(slabp->inuse == cachep->num);
3001
3002 obj = slab_get_obj(cachep, slabp, nodeid);
3003 check_slabp(cachep, slabp);
3004 l3->free_objects--;
3005 /* move slabp to correct slabp list: */
3006 list_del(&slabp->list);
3007
3008 if (slabp->free == BUFCTL_END)
3009 list_add(&slabp->list, &l3->slabs_full);
3010 else
3011 list_add(&slabp->list, &l3->slabs_partial);
3012
3013 spin_unlock(&l3->list_lock);
3014 goto done;
3015
3016 must_grow:
3017 spin_unlock(&l3->list_lock);
3018 x = cache_grow(cachep, flags, nodeid);
3019
3020 if (!x)
3021 return NULL;
3022
3023 goto retry;
3024 done:
3025 return obj;
3026 }
3027 #endif
3028
3029 /*
3030 * Caller needs to acquire correct kmem_list's list_lock
3031 */
3032 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3033 int node)
3034 {
3035 int i;
3036 struct kmem_list3 *l3;
3037
3038 for (i = 0; i < nr_objects; i++) {
3039 void *objp = objpp[i];
3040 struct slab *slabp;
3041
3042 slabp = virt_to_slab(objp);
3043 l3 = cachep->nodelists[node];
3044 list_del(&slabp->list);
3045 check_spinlock_acquired_node(cachep, node);
3046 check_slabp(cachep, slabp);
3047 slab_put_obj(cachep, slabp, objp, node);
3048 STATS_DEC_ACTIVE(cachep);
3049 l3->free_objects++;
3050 check_slabp(cachep, slabp);
3051
3052 /* fixup slab chains */
3053 if (slabp->inuse == 0) {
3054 if (l3->free_objects > l3->free_limit) {
3055 l3->free_objects -= cachep->num;
3056 slab_destroy(cachep, slabp);
3057 } else {
3058 list_add(&slabp->list, &l3->slabs_free);
3059 }
3060 } else {
3061 /* Unconditionally move a slab to the end of the
3062 * partial list on free - maximum time for the
3063 * other objects to be freed, too.
3064 */
3065 list_add_tail(&slabp->list, &l3->slabs_partial);
3066 }
3067 }
3068 }
3069
3070 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3071 {
3072 int batchcount;
3073 struct kmem_list3 *l3;
3074 int node = numa_node_id();
3075
3076 batchcount = ac->batchcount;
3077 #if DEBUG
3078 BUG_ON(!batchcount || batchcount > ac->avail);
3079 #endif
3080 check_irq_off();
3081 l3 = cachep->nodelists[node];
3082 spin_lock(&l3->list_lock);
3083 if (l3->shared) {
3084 struct array_cache *shared_array = l3->shared;
3085 int max = shared_array->limit - shared_array->avail;
3086 if (max) {
3087 if (batchcount > max)
3088 batchcount = max;
3089 memcpy(&(shared_array->entry[shared_array->avail]),
3090 ac->entry, sizeof(void *) * batchcount);
3091 shared_array->avail += batchcount;
3092 goto free_done;
3093 }
3094 }
3095
3096 free_block(cachep, ac->entry, batchcount, node);
3097 free_done:
3098 #if STATS
3099 {
3100 int i = 0;
3101 struct list_head *p;
3102
3103 p = l3->slabs_free.next;
3104 while (p != &(l3->slabs_free)) {
3105 struct slab *slabp;
3106
3107 slabp = list_entry(p, struct slab, list);
3108 BUG_ON(slabp->inuse);
3109
3110 i++;
3111 p = p->next;
3112 }
3113 STATS_SET_FREEABLE(cachep, i);
3114 }
3115 #endif
3116 spin_unlock(&l3->list_lock);
3117 ac->avail -= batchcount;
3118 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3119 }
3120
3121 /*
3122 * Release an obj back to its cache. If the obj has a constructed state, it must
3123 * be in this state _before_ it is released. Called with disabled ints.
3124 */
3125 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3126 {
3127 struct array_cache *ac = cpu_cache_get(cachep);
3128
3129 check_irq_off();
3130 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3131
3132 if (cache_free_alien(cachep, objp))
3133 return;
3134
3135 if (likely(ac->avail < ac->limit)) {
3136 STATS_INC_FREEHIT(cachep);
3137 ac->entry[ac->avail++] = objp;
3138 return;
3139 } else {
3140 STATS_INC_FREEMISS(cachep);
3141 cache_flusharray(cachep, ac);
3142 ac->entry[ac->avail++] = objp;
3143 }
3144 }
3145
3146 /**
3147 * kmem_cache_alloc - Allocate an object
3148 * @cachep: The cache to allocate from.
3149 * @flags: See kmalloc().
3150 *
3151 * Allocate an object from this cache. The flags are only relevant
3152 * if the cache has no available objects.
3153 */
3154 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3155 {
3156 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3157 }
3158 EXPORT_SYMBOL(kmem_cache_alloc);
3159
3160 /**
3161 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3162 * @cache: The cache to allocate from.
3163 * @flags: See kmalloc().
3164 *
3165 * Allocate an object from this cache and set the allocated memory to zero.
3166 * The flags are only relevant if the cache has no available objects.
3167 */
3168 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3169 {
3170 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3171 if (ret)
3172 memset(ret, 0, obj_size(cache));
3173 return ret;
3174 }
3175 EXPORT_SYMBOL(kmem_cache_zalloc);
3176
3177 /**
3178 * kmem_ptr_validate - check if an untrusted pointer might
3179 * be a slab entry.
3180 * @cachep: the cache we're checking against
3181 * @ptr: pointer to validate
3182 *
3183 * This verifies that the untrusted pointer looks sane:
3184 * it is _not_ a guarantee that the pointer is actually
3185 * part of the slab cache in question, but it at least
3186 * validates that the pointer can be dereferenced and
3187 * looks half-way sane.
3188 *
3189 * Currently only used for dentry validation.
3190 */
3191 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3192 {
3193 unsigned long addr = (unsigned long)ptr;
3194 unsigned long min_addr = PAGE_OFFSET;
3195 unsigned long align_mask = BYTES_PER_WORD - 1;
3196 unsigned long size = cachep->buffer_size;
3197 struct page *page;
3198
3199 if (unlikely(addr < min_addr))
3200 goto out;
3201 if (unlikely(addr > (unsigned long)high_memory - size))
3202 goto out;
3203 if (unlikely(addr & align_mask))
3204 goto out;
3205 if (unlikely(!kern_addr_valid(addr)))
3206 goto out;
3207 if (unlikely(!kern_addr_valid(addr + size - 1)))
3208 goto out;
3209 page = virt_to_page(ptr);
3210 if (unlikely(!PageSlab(page)))
3211 goto out;
3212 if (unlikely(page_get_cache(page) != cachep))
3213 goto out;
3214 return 1;
3215 out:
3216 return 0;
3217 }
3218
3219 #ifdef CONFIG_NUMA
3220 /**
3221 * kmem_cache_alloc_node - Allocate an object on the specified node
3222 * @cachep: The cache to allocate from.
3223 * @flags: See kmalloc().
3224 * @nodeid: node number of the target node.
3225 *
3226 * Identical to kmem_cache_alloc, except that this function is slow
3227 * and can sleep. And it will allocate memory on the given node, which
3228 * can improve the performance for cpu bound structures.
3229 * New and improved: it will now make sure that the object gets
3230 * put on the correct node list so that there is no false sharing.
3231 */
3232 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3233 {
3234 unsigned long save_flags;
3235 void *ptr;
3236
3237 cache_alloc_debugcheck_before(cachep, flags);
3238 local_irq_save(save_flags);
3239
3240 if (nodeid == -1 || nodeid == numa_node_id() ||
3241 !cachep->nodelists[nodeid])
3242 ptr = ____cache_alloc(cachep, flags);
3243 else
3244 ptr = __cache_alloc_node(cachep, flags, nodeid);
3245 local_irq_restore(save_flags);
3246
3247 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3248 __builtin_return_address(0));
3249
3250 return ptr;
3251 }
3252 EXPORT_SYMBOL(kmem_cache_alloc_node);
3253
3254 void *kmalloc_node(size_t size, gfp_t flags, int node)
3255 {
3256 struct kmem_cache *cachep;
3257
3258 cachep = kmem_find_general_cachep(size, flags);
3259 if (unlikely(cachep == NULL))
3260 return NULL;
3261 return kmem_cache_alloc_node(cachep, flags, node);
3262 }
3263 EXPORT_SYMBOL(kmalloc_node);
3264 #endif
3265
3266 /**
3267 * kmalloc - allocate memory
3268 * @size: how many bytes of memory are required.
3269 * @flags: the type of memory to allocate.
3270 * @caller: function caller for debug tracking of the caller
3271 *
3272 * kmalloc is the normal method of allocating memory
3273 * in the kernel.
3274 *
3275 * The @flags argument may be one of:
3276 *
3277 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3278 *
3279 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3280 *
3281 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3282 *
3283 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3284 * must be suitable for DMA. This can mean different things on different
3285 * platforms. For example, on i386, it means that the memory must come
3286 * from the first 16MB.
3287 */
3288 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3289 void *caller)
3290 {
3291 struct kmem_cache *cachep;
3292
3293 /* If you want to save a few bytes .text space: replace
3294 * __ with kmem_.
3295 * Then kmalloc uses the uninlined functions instead of the inline
3296 * functions.
3297 */
3298 cachep = __find_general_cachep(size, flags);
3299 if (unlikely(cachep == NULL))
3300 return NULL;
3301 return __cache_alloc(cachep, flags, caller);
3302 }
3303
3304
3305 void *__kmalloc(size_t size, gfp_t flags)
3306 {
3307 #ifndef CONFIG_DEBUG_SLAB
3308 return __do_kmalloc(size, flags, NULL);
3309 #else
3310 return __do_kmalloc(size, flags, __builtin_return_address(0));
3311 #endif
3312 }
3313 EXPORT_SYMBOL(__kmalloc);
3314
3315 #ifdef CONFIG_DEBUG_SLAB
3316 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3317 {
3318 return __do_kmalloc(size, flags, caller);
3319 }
3320 EXPORT_SYMBOL(__kmalloc_track_caller);
3321 #endif
3322
3323 #ifdef CONFIG_SMP
3324 /**
3325 * __alloc_percpu - allocate one copy of the object for every present
3326 * cpu in the system, zeroing them.
3327 * Objects should be dereferenced using the per_cpu_ptr macro only.
3328 *
3329 * @size: how many bytes of memory are required.
3330 */
3331 void *__alloc_percpu(size_t size)
3332 {
3333 int i;
3334 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3335
3336 if (!pdata)
3337 return NULL;
3338
3339 /*
3340 * Cannot use for_each_online_cpu since a cpu may come online
3341 * and we have no way of figuring out how to fix the array
3342 * that we have allocated then....
3343 */
3344 for_each_possible_cpu(i) {
3345 int node = cpu_to_node(i);
3346
3347 if (node_online(node))
3348 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3349 else
3350 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3351
3352 if (!pdata->ptrs[i])
3353 goto unwind_oom;
3354 memset(pdata->ptrs[i], 0, size);
3355 }
3356
3357 /* Catch derefs w/o wrappers */
3358 return (void *)(~(unsigned long)pdata);
3359
3360 unwind_oom:
3361 while (--i >= 0) {
3362 if (!cpu_possible(i))
3363 continue;
3364 kfree(pdata->ptrs[i]);
3365 }
3366 kfree(pdata);
3367 return NULL;
3368 }
3369 EXPORT_SYMBOL(__alloc_percpu);
3370 #endif
3371
3372 /**
3373 * kmem_cache_free - Deallocate an object
3374 * @cachep: The cache the allocation was from.
3375 * @objp: The previously allocated object.
3376 *
3377 * Free an object which was previously allocated from this
3378 * cache.
3379 */
3380 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3381 {
3382 unsigned long flags;
3383
3384 local_irq_save(flags);
3385 __cache_free(cachep, objp);
3386 local_irq_restore(flags);
3387 }
3388 EXPORT_SYMBOL(kmem_cache_free);
3389
3390 /**
3391 * kfree - free previously allocated memory
3392 * @objp: pointer returned by kmalloc.
3393 *
3394 * If @objp is NULL, no operation is performed.
3395 *
3396 * Don't free memory not originally allocated by kmalloc()
3397 * or you will run into trouble.
3398 */
3399 void kfree(const void *objp)
3400 {
3401 struct kmem_cache *c;
3402 unsigned long flags;
3403
3404 if (unlikely(!objp))
3405 return;
3406 local_irq_save(flags);
3407 kfree_debugcheck(objp);
3408 c = virt_to_cache(objp);
3409 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3410 __cache_free(c, (void *)objp);
3411 local_irq_restore(flags);
3412 }
3413 EXPORT_SYMBOL(kfree);
3414
3415 #ifdef CONFIG_SMP
3416 /**
3417 * free_percpu - free previously allocated percpu memory
3418 * @objp: pointer returned by alloc_percpu.
3419 *
3420 * Don't free memory not originally allocated by alloc_percpu()
3421 * The complemented objp is to check for that.
3422 */
3423 void free_percpu(const void *objp)
3424 {
3425 int i;
3426 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3427
3428 /*
3429 * We allocate for all cpus so we cannot use for online cpu here.
3430 */
3431 for_each_possible_cpu(i)
3432 kfree(p->ptrs[i]);
3433 kfree(p);
3434 }
3435 EXPORT_SYMBOL(free_percpu);
3436 #endif
3437
3438 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3439 {
3440 return obj_size(cachep);
3441 }
3442 EXPORT_SYMBOL(kmem_cache_size);
3443
3444 const char *kmem_cache_name(struct kmem_cache *cachep)
3445 {
3446 return cachep->name;
3447 }
3448 EXPORT_SYMBOL_GPL(kmem_cache_name);
3449
3450 /*
3451 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3452 */
3453 static int alloc_kmemlist(struct kmem_cache *cachep)
3454 {
3455 int node;
3456 struct kmem_list3 *l3;
3457 struct array_cache *new_shared;
3458 struct array_cache **new_alien;
3459
3460 for_each_online_node(node) {
3461
3462 new_alien = alloc_alien_cache(node, cachep->limit);
3463 if (!new_alien)
3464 goto fail;
3465
3466 new_shared = alloc_arraycache(node,
3467 cachep->shared*cachep->batchcount,
3468 0xbaadf00d);
3469 if (!new_shared) {
3470 free_alien_cache(new_alien);
3471 goto fail;
3472 }
3473
3474 l3 = cachep->nodelists[node];
3475 if (l3) {
3476 struct array_cache *shared = l3->shared;
3477
3478 spin_lock_irq(&l3->list_lock);
3479
3480 if (shared)
3481 free_block(cachep, shared->entry,
3482 shared->avail, node);
3483
3484 l3->shared = new_shared;
3485 if (!l3->alien) {
3486 l3->alien = new_alien;
3487 new_alien = NULL;
3488 }
3489 l3->free_limit = (1 + nr_cpus_node(node)) *
3490 cachep->batchcount + cachep->num;
3491 spin_unlock_irq(&l3->list_lock);
3492 kfree(shared);
3493 free_alien_cache(new_alien);
3494 continue;
3495 }
3496 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3497 if (!l3) {
3498 free_alien_cache(new_alien);
3499 kfree(new_shared);
3500 goto fail;
3501 }
3502
3503 kmem_list3_init(l3);
3504 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3505 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3506 l3->shared = new_shared;
3507 l3->alien = new_alien;
3508 l3->free_limit = (1 + nr_cpus_node(node)) *
3509 cachep->batchcount + cachep->num;
3510 cachep->nodelists[node] = l3;
3511 }
3512 return 0;
3513
3514 fail:
3515 if (!cachep->next.next) {
3516 /* Cache is not active yet. Roll back what we did */
3517 node--;
3518 while (node >= 0) {
3519 if (cachep->nodelists[node]) {
3520 l3 = cachep->nodelists[node];
3521
3522 kfree(l3->shared);
3523 free_alien_cache(l3->alien);
3524 kfree(l3);
3525 cachep->nodelists[node] = NULL;
3526 }
3527 node--;
3528 }
3529 }
3530 return -ENOMEM;
3531 }
3532
3533 struct ccupdate_struct {
3534 struct kmem_cache *cachep;
3535 struct array_cache *new[NR_CPUS];
3536 };
3537
3538 static void do_ccupdate_local(void *info)
3539 {
3540 struct ccupdate_struct *new = info;
3541 struct array_cache *old;
3542
3543 check_irq_off();
3544 old = cpu_cache_get(new->cachep);
3545
3546 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3547 new->new[smp_processor_id()] = old;
3548 }
3549
3550 /* Always called with the cache_chain_mutex held */
3551 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3552 int batchcount, int shared)
3553 {
3554 struct ccupdate_struct new;
3555 int i, err;
3556
3557 memset(&new.new, 0, sizeof(new.new));
3558 for_each_online_cpu(i) {
3559 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3560 batchcount);
3561 if (!new.new[i]) {
3562 for (i--; i >= 0; i--)
3563 kfree(new.new[i]);
3564 return -ENOMEM;
3565 }
3566 }
3567 new.cachep = cachep;
3568
3569 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3570
3571 check_irq_on();
3572 cachep->batchcount = batchcount;
3573 cachep->limit = limit;
3574 cachep->shared = shared;
3575
3576 for_each_online_cpu(i) {
3577 struct array_cache *ccold = new.new[i];
3578 if (!ccold)
3579 continue;
3580 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3581 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3582 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3583 kfree(ccold);
3584 }
3585
3586 err = alloc_kmemlist(cachep);
3587 if (err) {
3588 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3589 cachep->name, -err);
3590 BUG();
3591 }
3592 return 0;
3593 }
3594
3595 /* Called with cache_chain_mutex held always */
3596 static void enable_cpucache(struct kmem_cache *cachep)
3597 {
3598 int err;
3599 int limit, shared;
3600
3601 /*
3602 * The head array serves three purposes:
3603 * - create a LIFO ordering, i.e. return objects that are cache-warm
3604 * - reduce the number of spinlock operations.
3605 * - reduce the number of linked list operations on the slab and
3606 * bufctl chains: array operations are cheaper.
3607 * The numbers are guessed, we should auto-tune as described by
3608 * Bonwick.
3609 */
3610 if (cachep->buffer_size > 131072)
3611 limit = 1;
3612 else if (cachep->buffer_size > PAGE_SIZE)
3613 limit = 8;
3614 else if (cachep->buffer_size > 1024)
3615 limit = 24;
3616 else if (cachep->buffer_size > 256)
3617 limit = 54;
3618 else
3619 limit = 120;
3620
3621 /*
3622 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3623 * allocation behaviour: Most allocs on one cpu, most free operations
3624 * on another cpu. For these cases, an efficient object passing between
3625 * cpus is necessary. This is provided by a shared array. The array
3626 * replaces Bonwick's magazine layer.
3627 * On uniprocessor, it's functionally equivalent (but less efficient)
3628 * to a larger limit. Thus disabled by default.
3629 */
3630 shared = 0;
3631 #ifdef CONFIG_SMP
3632 if (cachep->buffer_size <= PAGE_SIZE)
3633 shared = 8;
3634 #endif
3635
3636 #if DEBUG
3637 /*
3638 * With debugging enabled, large batchcount lead to excessively long
3639 * periods with disabled local interrupts. Limit the batchcount
3640 */
3641 if (limit > 32)
3642 limit = 32;
3643 #endif
3644 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3645 if (err)
3646 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3647 cachep->name, -err);
3648 }
3649
3650 /*
3651 * Drain an array if it contains any elements taking the l3 lock only if
3652 * necessary. Note that the l3 listlock also protects the array_cache
3653 * if drain_array() is used on the shared array.
3654 */
3655 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3656 struct array_cache *ac, int force, int node)
3657 {
3658 int tofree;
3659
3660 if (!ac || !ac->avail)
3661 return;
3662 if (ac->touched && !force) {
3663 ac->touched = 0;
3664 } else {
3665 spin_lock_irq(&l3->list_lock);
3666 if (ac->avail) {
3667 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3668 if (tofree > ac->avail)
3669 tofree = (ac->avail + 1) / 2;
3670 free_block(cachep, ac->entry, tofree, node);
3671 ac->avail -= tofree;
3672 memmove(ac->entry, &(ac->entry[tofree]),
3673 sizeof(void *) * ac->avail);
3674 }
3675 spin_unlock_irq(&l3->list_lock);
3676 }
3677 }
3678
3679 /**
3680 * cache_reap - Reclaim memory from caches.
3681 * @unused: unused parameter
3682 *
3683 * Called from workqueue/eventd every few seconds.
3684 * Purpose:
3685 * - clear the per-cpu caches for this CPU.
3686 * - return freeable pages to the main free memory pool.
3687 *
3688 * If we cannot acquire the cache chain mutex then just give up - we'll try
3689 * again on the next iteration.
3690 */
3691 static void cache_reap(void *unused)
3692 {
3693 struct list_head *walk;
3694 struct kmem_list3 *l3;
3695 int node = numa_node_id();
3696
3697 if (!mutex_trylock(&cache_chain_mutex)) {
3698 /* Give up. Setup the next iteration. */
3699 schedule_delayed_work(&__get_cpu_var(reap_work),
3700 REAPTIMEOUT_CPUC);
3701 return;
3702 }
3703
3704 list_for_each(walk, &cache_chain) {
3705 struct kmem_cache *searchp;
3706 struct list_head *p;
3707 int tofree;
3708 struct slab *slabp;
3709
3710 searchp = list_entry(walk, struct kmem_cache, next);
3711 check_irq_on();
3712
3713 /*
3714 * We only take the l3 lock if absolutely necessary and we
3715 * have established with reasonable certainty that
3716 * we can do some work if the lock was obtained.
3717 */
3718 l3 = searchp->nodelists[node];
3719
3720 reap_alien(searchp, l3);
3721
3722 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3723
3724 /*
3725 * These are racy checks but it does not matter
3726 * if we skip one check or scan twice.
3727 */
3728 if (time_after(l3->next_reap, jiffies))
3729 goto next;
3730
3731 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3732
3733 drain_array(searchp, l3, l3->shared, 0, node);
3734
3735 if (l3->free_touched) {
3736 l3->free_touched = 0;
3737 goto next;
3738 }
3739
3740 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3741 (5 * searchp->num);
3742 do {
3743 /*
3744 * Do not lock if there are no free blocks.
3745 */
3746 if (list_empty(&l3->slabs_free))
3747 break;
3748
3749 spin_lock_irq(&l3->list_lock);
3750 p = l3->slabs_free.next;
3751 if (p == &(l3->slabs_free)) {
3752 spin_unlock_irq(&l3->list_lock);
3753 break;
3754 }
3755
3756 slabp = list_entry(p, struct slab, list);
3757 BUG_ON(slabp->inuse);
3758 list_del(&slabp->list);
3759 STATS_INC_REAPED(searchp);
3760
3761 /*
3762 * Safe to drop the lock. The slab is no longer linked
3763 * to the cache. searchp cannot disappear, we hold
3764 * cache_chain_lock
3765 */
3766 l3->free_objects -= searchp->num;
3767 spin_unlock_irq(&l3->list_lock);
3768 slab_destroy(searchp, slabp);
3769 } while (--tofree > 0);
3770 next:
3771 cond_resched();
3772 }
3773 check_irq_on();
3774 mutex_unlock(&cache_chain_mutex);
3775 next_reap_node();
3776 /* Set up the next iteration */
3777 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3778 }
3779
3780 #ifdef CONFIG_PROC_FS
3781
3782 static void print_slabinfo_header(struct seq_file *m)
3783 {
3784 /*
3785 * Output format version, so at least we can change it
3786 * without _too_ many complaints.
3787 */
3788 #if STATS
3789 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3790 #else
3791 seq_puts(m, "slabinfo - version: 2.1\n");
3792 #endif
3793 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3794 "<objperslab> <pagesperslab>");
3795 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3796 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3797 #if STATS
3798 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3799 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3800 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3801 #endif
3802 seq_putc(m, '\n');
3803 }
3804
3805 static void *s_start(struct seq_file *m, loff_t *pos)
3806 {
3807 loff_t n = *pos;
3808 struct list_head *p;
3809
3810 mutex_lock(&cache_chain_mutex);
3811 if (!n)
3812 print_slabinfo_header(m);
3813 p = cache_chain.next;
3814 while (n--) {
3815 p = p->next;
3816 if (p == &cache_chain)
3817 return NULL;
3818 }
3819 return list_entry(p, struct kmem_cache, next);
3820 }
3821
3822 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3823 {
3824 struct kmem_cache *cachep = p;
3825 ++*pos;
3826 return cachep->next.next == &cache_chain ?
3827 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3828 }
3829
3830 static void s_stop(struct seq_file *m, void *p)
3831 {
3832 mutex_unlock(&cache_chain_mutex);
3833 }
3834
3835 static int s_show(struct seq_file *m, void *p)
3836 {
3837 struct kmem_cache *cachep = p;
3838 struct list_head *q;
3839 struct slab *slabp;
3840 unsigned long active_objs;
3841 unsigned long num_objs;
3842 unsigned long active_slabs = 0;
3843 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3844 const char *name;
3845 char *error = NULL;
3846 int node;
3847 struct kmem_list3 *l3;
3848
3849 active_objs = 0;
3850 num_slabs = 0;
3851 for_each_online_node(node) {
3852 l3 = cachep->nodelists[node];
3853 if (!l3)
3854 continue;
3855
3856 check_irq_on();
3857 spin_lock_irq(&l3->list_lock);
3858
3859 list_for_each(q, &l3->slabs_full) {
3860 slabp = list_entry(q, struct slab, list);
3861 if (slabp->inuse != cachep->num && !error)
3862 error = "slabs_full accounting error";
3863 active_objs += cachep->num;
3864 active_slabs++;
3865 }
3866 list_for_each(q, &l3->slabs_partial) {
3867 slabp = list_entry(q, struct slab, list);
3868 if (slabp->inuse == cachep->num && !error)
3869 error = "slabs_partial inuse accounting error";
3870 if (!slabp->inuse && !error)
3871 error = "slabs_partial/inuse accounting error";
3872 active_objs += slabp->inuse;
3873 active_slabs++;
3874 }
3875 list_for_each(q, &l3->slabs_free) {
3876 slabp = list_entry(q, struct slab, list);
3877 if (slabp->inuse && !error)
3878 error = "slabs_free/inuse accounting error";
3879 num_slabs++;
3880 }
3881 free_objects += l3->free_objects;
3882 if (l3->shared)
3883 shared_avail += l3->shared->avail;
3884
3885 spin_unlock_irq(&l3->list_lock);
3886 }
3887 num_slabs += active_slabs;
3888 num_objs = num_slabs * cachep->num;
3889 if (num_objs - active_objs != free_objects && !error)
3890 error = "free_objects accounting error";
3891
3892 name = cachep->name;
3893 if (error)
3894 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3895
3896 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3897 name, active_objs, num_objs, cachep->buffer_size,
3898 cachep->num, (1 << cachep->gfporder));
3899 seq_printf(m, " : tunables %4u %4u %4u",
3900 cachep->limit, cachep->batchcount, cachep->shared);
3901 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3902 active_slabs, num_slabs, shared_avail);
3903 #if STATS
3904 { /* list3 stats */
3905 unsigned long high = cachep->high_mark;
3906 unsigned long allocs = cachep->num_allocations;
3907 unsigned long grown = cachep->grown;
3908 unsigned long reaped = cachep->reaped;
3909 unsigned long errors = cachep->errors;
3910 unsigned long max_freeable = cachep->max_freeable;
3911 unsigned long node_allocs = cachep->node_allocs;
3912 unsigned long node_frees = cachep->node_frees;
3913 unsigned long overflows = cachep->node_overflow;
3914
3915 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3916 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
3917 reaped, errors, max_freeable, node_allocs,
3918 node_frees, overflows);
3919 }
3920 /* cpu stats */
3921 {
3922 unsigned long allochit = atomic_read(&cachep->allochit);
3923 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3924 unsigned long freehit = atomic_read(&cachep->freehit);
3925 unsigned long freemiss = atomic_read(&cachep->freemiss);
3926
3927 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3928 allochit, allocmiss, freehit, freemiss);
3929 }
3930 #endif
3931 seq_putc(m, '\n');
3932 return 0;
3933 }
3934
3935 /*
3936 * slabinfo_op - iterator that generates /proc/slabinfo
3937 *
3938 * Output layout:
3939 * cache-name
3940 * num-active-objs
3941 * total-objs
3942 * object size
3943 * num-active-slabs
3944 * total-slabs
3945 * num-pages-per-slab
3946 * + further values on SMP and with statistics enabled
3947 */
3948
3949 struct seq_operations slabinfo_op = {
3950 .start = s_start,
3951 .next = s_next,
3952 .stop = s_stop,
3953 .show = s_show,
3954 };
3955
3956 #define MAX_SLABINFO_WRITE 128
3957 /**
3958 * slabinfo_write - Tuning for the slab allocator
3959 * @file: unused
3960 * @buffer: user buffer
3961 * @count: data length
3962 * @ppos: unused
3963 */
3964 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3965 size_t count, loff_t *ppos)
3966 {
3967 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3968 int limit, batchcount, shared, res;
3969 struct list_head *p;
3970
3971 if (count > MAX_SLABINFO_WRITE)
3972 return -EINVAL;
3973 if (copy_from_user(&kbuf, buffer, count))
3974 return -EFAULT;
3975 kbuf[MAX_SLABINFO_WRITE] = '\0';
3976
3977 tmp = strchr(kbuf, ' ');
3978 if (!tmp)
3979 return -EINVAL;
3980 *tmp = '\0';
3981 tmp++;
3982 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3983 return -EINVAL;
3984
3985 /* Find the cache in the chain of caches. */
3986 mutex_lock(&cache_chain_mutex);
3987 res = -EINVAL;
3988 list_for_each(p, &cache_chain) {
3989 struct kmem_cache *cachep;
3990
3991 cachep = list_entry(p, struct kmem_cache, next);
3992 if (!strcmp(cachep->name, kbuf)) {
3993 if (limit < 1 || batchcount < 1 ||
3994 batchcount > limit || shared < 0) {
3995 res = 0;
3996 } else {
3997 res = do_tune_cpucache(cachep, limit,
3998 batchcount, shared);
3999 }
4000 break;
4001 }
4002 }
4003 mutex_unlock(&cache_chain_mutex);
4004 if (res >= 0)
4005 res = count;
4006 return res;
4007 }
4008
4009 #ifdef CONFIG_DEBUG_SLAB_LEAK
4010
4011 static void *leaks_start(struct seq_file *m, loff_t *pos)
4012 {
4013 loff_t n = *pos;
4014 struct list_head *p;
4015
4016 mutex_lock(&cache_chain_mutex);
4017 p = cache_chain.next;
4018 while (n--) {
4019 p = p->next;
4020 if (p == &cache_chain)
4021 return NULL;
4022 }
4023 return list_entry(p, struct kmem_cache, next);
4024 }
4025
4026 static inline int add_caller(unsigned long *n, unsigned long v)
4027 {
4028 unsigned long *p;
4029 int l;
4030 if (!v)
4031 return 1;
4032 l = n[1];
4033 p = n + 2;
4034 while (l) {
4035 int i = l/2;
4036 unsigned long *q = p + 2 * i;
4037 if (*q == v) {
4038 q[1]++;
4039 return 1;
4040 }
4041 if (*q > v) {
4042 l = i;
4043 } else {
4044 p = q + 2;
4045 l -= i + 1;
4046 }
4047 }
4048 if (++n[1] == n[0])
4049 return 0;
4050 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4051 p[0] = v;
4052 p[1] = 1;
4053 return 1;
4054 }
4055
4056 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4057 {
4058 void *p;
4059 int i;
4060 if (n[0] == n[1])
4061 return;
4062 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4063 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4064 continue;
4065 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4066 return;
4067 }
4068 }
4069
4070 static void show_symbol(struct seq_file *m, unsigned long address)
4071 {
4072 #ifdef CONFIG_KALLSYMS
4073 char *modname;
4074 const char *name;
4075 unsigned long offset, size;
4076 char namebuf[KSYM_NAME_LEN+1];
4077
4078 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4079
4080 if (name) {
4081 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4082 if (modname)
4083 seq_printf(m, " [%s]", modname);
4084 return;
4085 }
4086 #endif
4087 seq_printf(m, "%p", (void *)address);
4088 }
4089
4090 static int leaks_show(struct seq_file *m, void *p)
4091 {
4092 struct kmem_cache *cachep = p;
4093 struct list_head *q;
4094 struct slab *slabp;
4095 struct kmem_list3 *l3;
4096 const char *name;
4097 unsigned long *n = m->private;
4098 int node;
4099 int i;
4100
4101 if (!(cachep->flags & SLAB_STORE_USER))
4102 return 0;
4103 if (!(cachep->flags & SLAB_RED_ZONE))
4104 return 0;
4105
4106 /* OK, we can do it */
4107
4108 n[1] = 0;
4109
4110 for_each_online_node(node) {
4111 l3 = cachep->nodelists[node];
4112 if (!l3)
4113 continue;
4114
4115 check_irq_on();
4116 spin_lock_irq(&l3->list_lock);
4117
4118 list_for_each(q, &l3->slabs_full) {
4119 slabp = list_entry(q, struct slab, list);
4120 handle_slab(n, cachep, slabp);
4121 }
4122 list_for_each(q, &l3->slabs_partial) {
4123 slabp = list_entry(q, struct slab, list);
4124 handle_slab(n, cachep, slabp);
4125 }
4126 spin_unlock_irq(&l3->list_lock);
4127 }
4128 name = cachep->name;
4129 if (n[0] == n[1]) {
4130 /* Increase the buffer size */
4131 mutex_unlock(&cache_chain_mutex);
4132 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4133 if (!m->private) {
4134 /* Too bad, we are really out */
4135 m->private = n;
4136 mutex_lock(&cache_chain_mutex);
4137 return -ENOMEM;
4138 }
4139 *(unsigned long *)m->private = n[0] * 2;
4140 kfree(n);
4141 mutex_lock(&cache_chain_mutex);
4142 /* Now make sure this entry will be retried */
4143 m->count = m->size;
4144 return 0;
4145 }
4146 for (i = 0; i < n[1]; i++) {
4147 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4148 show_symbol(m, n[2*i+2]);
4149 seq_putc(m, '\n');
4150 }
4151 return 0;
4152 }
4153
4154 struct seq_operations slabstats_op = {
4155 .start = leaks_start,
4156 .next = s_next,
4157 .stop = s_stop,
4158 .show = leaks_show,
4159 };
4160 #endif
4161 #endif
4162
4163 /**
4164 * ksize - get the actual amount of memory allocated for a given object
4165 * @objp: Pointer to the object
4166 *
4167 * kmalloc may internally round up allocations and return more memory
4168 * than requested. ksize() can be used to determine the actual amount of
4169 * memory allocated. The caller may use this additional memory, even though
4170 * a smaller amount of memory was initially specified with the kmalloc call.
4171 * The caller must guarantee that objp points to a valid object previously
4172 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4173 * must not be freed during the duration of the call.
4174 */
4175 unsigned int ksize(const void *objp)
4176 {
4177 if (unlikely(objp == NULL))
4178 return 0;
4179
4180 return obj_size(virt_to_cache(objp));
4181 }