]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slab.c
Merge branch 'locking/core' into x86/core, to prepare for dependent patch
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175 static bool pfmemalloc_active __read_mostly;
176
177 /*
178 * struct array_cache
179 *
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189 struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 void *entry[]; /*
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 */
203 };
204
205 struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208 };
209
210 #define SLAB_OBJ_PFMEMALLOC 1
211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215
216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220 }
221
222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226
227 /*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
230 */
231 #define BOOT_CPUCACHE_ENTRIES 1
232 struct arraycache_init {
233 struct array_cache cache;
234 void *entries[BOOT_CPUCACHE_ENTRIES];
235 };
236
237 /*
238 * Need this for bootstrapping a per node allocator.
239 */
240 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define CACHE_CACHE 0
243 #define SIZE_NODE (MAX_NUMNODES)
244
245 static int drain_freelist(struct kmem_cache *cache,
246 struct kmem_cache_node *n, int tofree);
247 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 int node, struct list_head *list);
249 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251 static void cache_reap(struct work_struct *unused);
252
253 static int slab_early_init = 1;
254
255 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
256
257 static void kmem_cache_node_init(struct kmem_cache_node *parent)
258 {
259 INIT_LIST_HEAD(&parent->slabs_full);
260 INIT_LIST_HEAD(&parent->slabs_partial);
261 INIT_LIST_HEAD(&parent->slabs_free);
262 parent->shared = NULL;
263 parent->alien = NULL;
264 parent->colour_next = 0;
265 spin_lock_init(&parent->list_lock);
266 parent->free_objects = 0;
267 parent->free_touched = 0;
268 }
269
270 #define MAKE_LIST(cachep, listp, slab, nodeid) \
271 do { \
272 INIT_LIST_HEAD(listp); \
273 list_splice(&get_node(cachep, nodeid)->slab, listp); \
274 } while (0)
275
276 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
277 do { \
278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
281 } while (0)
282
283 #define CFLGS_OFF_SLAB (0x80000000UL)
284 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
285
286 #define BATCHREFILL_LIMIT 16
287 /*
288 * Optimization question: fewer reaps means less probability for unnessary
289 * cpucache drain/refill cycles.
290 *
291 * OTOH the cpuarrays can contain lots of objects,
292 * which could lock up otherwise freeable slabs.
293 */
294 #define REAPTIMEOUT_AC (2*HZ)
295 #define REAPTIMEOUT_NODE (4*HZ)
296
297 #if STATS
298 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
299 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
300 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
301 #define STATS_INC_GROWN(x) ((x)->grown++)
302 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
303 #define STATS_SET_HIGH(x) \
304 do { \
305 if ((x)->num_active > (x)->high_mark) \
306 (x)->high_mark = (x)->num_active; \
307 } while (0)
308 #define STATS_INC_ERR(x) ((x)->errors++)
309 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
310 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
311 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
312 #define STATS_SET_FREEABLE(x, i) \
313 do { \
314 if ((x)->max_freeable < i) \
315 (x)->max_freeable = i; \
316 } while (0)
317 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
318 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
319 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
320 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
321 #else
322 #define STATS_INC_ACTIVE(x) do { } while (0)
323 #define STATS_DEC_ACTIVE(x) do { } while (0)
324 #define STATS_INC_ALLOCED(x) do { } while (0)
325 #define STATS_INC_GROWN(x) do { } while (0)
326 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
327 #define STATS_SET_HIGH(x) do { } while (0)
328 #define STATS_INC_ERR(x) do { } while (0)
329 #define STATS_INC_NODEALLOCS(x) do { } while (0)
330 #define STATS_INC_NODEFREES(x) do { } while (0)
331 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
332 #define STATS_SET_FREEABLE(x, i) do { } while (0)
333 #define STATS_INC_ALLOCHIT(x) do { } while (0)
334 #define STATS_INC_ALLOCMISS(x) do { } while (0)
335 #define STATS_INC_FREEHIT(x) do { } while (0)
336 #define STATS_INC_FREEMISS(x) do { } while (0)
337 #endif
338
339 #if DEBUG
340
341 /*
342 * memory layout of objects:
343 * 0 : objp
344 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
345 * the end of an object is aligned with the end of the real
346 * allocation. Catches writes behind the end of the allocation.
347 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
348 * redzone word.
349 * cachep->obj_offset: The real object.
350 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
351 * cachep->size - 1* BYTES_PER_WORD: last caller address
352 * [BYTES_PER_WORD long]
353 */
354 static int obj_offset(struct kmem_cache *cachep)
355 {
356 return cachep->obj_offset;
357 }
358
359 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
360 {
361 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
362 return (unsigned long long*) (objp + obj_offset(cachep) -
363 sizeof(unsigned long long));
364 }
365
366 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
367 {
368 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
369 if (cachep->flags & SLAB_STORE_USER)
370 return (unsigned long long *)(objp + cachep->size -
371 sizeof(unsigned long long) -
372 REDZONE_ALIGN);
373 return (unsigned long long *) (objp + cachep->size -
374 sizeof(unsigned long long));
375 }
376
377 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
378 {
379 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
380 return (void **)(objp + cachep->size - BYTES_PER_WORD);
381 }
382
383 #else
384
385 #define obj_offset(x) 0
386 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
387 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
388 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
389
390 #endif
391
392 #define OBJECT_FREE (0)
393 #define OBJECT_ACTIVE (1)
394
395 #ifdef CONFIG_DEBUG_SLAB_LEAK
396
397 static void set_obj_status(struct page *page, int idx, int val)
398 {
399 int freelist_size;
400 char *status;
401 struct kmem_cache *cachep = page->slab_cache;
402
403 freelist_size = cachep->num * sizeof(freelist_idx_t);
404 status = (char *)page->freelist + freelist_size;
405 status[idx] = val;
406 }
407
408 static inline unsigned int get_obj_status(struct page *page, int idx)
409 {
410 int freelist_size;
411 char *status;
412 struct kmem_cache *cachep = page->slab_cache;
413
414 freelist_size = cachep->num * sizeof(freelist_idx_t);
415 status = (char *)page->freelist + freelist_size;
416
417 return status[idx];
418 }
419
420 #else
421 static inline void set_obj_status(struct page *page, int idx, int val) {}
422
423 #endif
424
425 /*
426 * Do not go above this order unless 0 objects fit into the slab or
427 * overridden on the command line.
428 */
429 #define SLAB_MAX_ORDER_HI 1
430 #define SLAB_MAX_ORDER_LO 0
431 static int slab_max_order = SLAB_MAX_ORDER_LO;
432 static bool slab_max_order_set __initdata;
433
434 static inline struct kmem_cache *virt_to_cache(const void *obj)
435 {
436 struct page *page = virt_to_head_page(obj);
437 return page->slab_cache;
438 }
439
440 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
441 unsigned int idx)
442 {
443 return page->s_mem + cache->size * idx;
444 }
445
446 /*
447 * We want to avoid an expensive divide : (offset / cache->size)
448 * Using the fact that size is a constant for a particular cache,
449 * we can replace (offset / cache->size) by
450 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
451 */
452 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
453 const struct page *page, void *obj)
454 {
455 u32 offset = (obj - page->s_mem);
456 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
457 }
458
459 /* internal cache of cache description objs */
460 static struct kmem_cache kmem_cache_boot = {
461 .batchcount = 1,
462 .limit = BOOT_CPUCACHE_ENTRIES,
463 .shared = 1,
464 .size = sizeof(struct kmem_cache),
465 .name = "kmem_cache",
466 };
467
468 #define BAD_ALIEN_MAGIC 0x01020304ul
469
470 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
471
472 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
473 {
474 return this_cpu_ptr(cachep->cpu_cache);
475 }
476
477 static size_t calculate_freelist_size(int nr_objs, size_t align)
478 {
479 size_t freelist_size;
480
481 freelist_size = nr_objs * sizeof(freelist_idx_t);
482 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
483 freelist_size += nr_objs * sizeof(char);
484
485 if (align)
486 freelist_size = ALIGN(freelist_size, align);
487
488 return freelist_size;
489 }
490
491 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
492 size_t idx_size, size_t align)
493 {
494 int nr_objs;
495 size_t remained_size;
496 size_t freelist_size;
497 int extra_space = 0;
498
499 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
500 extra_space = sizeof(char);
501 /*
502 * Ignore padding for the initial guess. The padding
503 * is at most @align-1 bytes, and @buffer_size is at
504 * least @align. In the worst case, this result will
505 * be one greater than the number of objects that fit
506 * into the memory allocation when taking the padding
507 * into account.
508 */
509 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
510
511 /*
512 * This calculated number will be either the right
513 * amount, or one greater than what we want.
514 */
515 remained_size = slab_size - nr_objs * buffer_size;
516 freelist_size = calculate_freelist_size(nr_objs, align);
517 if (remained_size < freelist_size)
518 nr_objs--;
519
520 return nr_objs;
521 }
522
523 /*
524 * Calculate the number of objects and left-over bytes for a given buffer size.
525 */
526 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
527 size_t align, int flags, size_t *left_over,
528 unsigned int *num)
529 {
530 int nr_objs;
531 size_t mgmt_size;
532 size_t slab_size = PAGE_SIZE << gfporder;
533
534 /*
535 * The slab management structure can be either off the slab or
536 * on it. For the latter case, the memory allocated for a
537 * slab is used for:
538 *
539 * - One unsigned int for each object
540 * - Padding to respect alignment of @align
541 * - @buffer_size bytes for each object
542 *
543 * If the slab management structure is off the slab, then the
544 * alignment will already be calculated into the size. Because
545 * the slabs are all pages aligned, the objects will be at the
546 * correct alignment when allocated.
547 */
548 if (flags & CFLGS_OFF_SLAB) {
549 mgmt_size = 0;
550 nr_objs = slab_size / buffer_size;
551
552 } else {
553 nr_objs = calculate_nr_objs(slab_size, buffer_size,
554 sizeof(freelist_idx_t), align);
555 mgmt_size = calculate_freelist_size(nr_objs, align);
556 }
557 *num = nr_objs;
558 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
559 }
560
561 #if DEBUG
562 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
563
564 static void __slab_error(const char *function, struct kmem_cache *cachep,
565 char *msg)
566 {
567 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
568 function, cachep->name, msg);
569 dump_stack();
570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
571 }
572 #endif
573
574 /*
575 * By default on NUMA we use alien caches to stage the freeing of
576 * objects allocated from other nodes. This causes massive memory
577 * inefficiencies when using fake NUMA setup to split memory into a
578 * large number of small nodes, so it can be disabled on the command
579 * line
580 */
581
582 static int use_alien_caches __read_mostly = 1;
583 static int __init noaliencache_setup(char *s)
584 {
585 use_alien_caches = 0;
586 return 1;
587 }
588 __setup("noaliencache", noaliencache_setup);
589
590 static int __init slab_max_order_setup(char *str)
591 {
592 get_option(&str, &slab_max_order);
593 slab_max_order = slab_max_order < 0 ? 0 :
594 min(slab_max_order, MAX_ORDER - 1);
595 slab_max_order_set = true;
596
597 return 1;
598 }
599 __setup("slab_max_order=", slab_max_order_setup);
600
601 #ifdef CONFIG_NUMA
602 /*
603 * Special reaping functions for NUMA systems called from cache_reap().
604 * These take care of doing round robin flushing of alien caches (containing
605 * objects freed on different nodes from which they were allocated) and the
606 * flushing of remote pcps by calling drain_node_pages.
607 */
608 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
609
610 static void init_reap_node(int cpu)
611 {
612 int node;
613
614 node = next_node(cpu_to_mem(cpu), node_online_map);
615 if (node == MAX_NUMNODES)
616 node = first_node(node_online_map);
617
618 per_cpu(slab_reap_node, cpu) = node;
619 }
620
621 static void next_reap_node(void)
622 {
623 int node = __this_cpu_read(slab_reap_node);
624
625 node = next_node(node, node_online_map);
626 if (unlikely(node >= MAX_NUMNODES))
627 node = first_node(node_online_map);
628 __this_cpu_write(slab_reap_node, node);
629 }
630
631 #else
632 #define init_reap_node(cpu) do { } while (0)
633 #define next_reap_node(void) do { } while (0)
634 #endif
635
636 /*
637 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
638 * via the workqueue/eventd.
639 * Add the CPU number into the expiration time to minimize the possibility of
640 * the CPUs getting into lockstep and contending for the global cache chain
641 * lock.
642 */
643 static void start_cpu_timer(int cpu)
644 {
645 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
646
647 /*
648 * When this gets called from do_initcalls via cpucache_init(),
649 * init_workqueues() has already run, so keventd will be setup
650 * at that time.
651 */
652 if (keventd_up() && reap_work->work.func == NULL) {
653 init_reap_node(cpu);
654 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
655 schedule_delayed_work_on(cpu, reap_work,
656 __round_jiffies_relative(HZ, cpu));
657 }
658 }
659
660 static void init_arraycache(struct array_cache *ac, int limit, int batch)
661 {
662 /*
663 * The array_cache structures contain pointers to free object.
664 * However, when such objects are allocated or transferred to another
665 * cache the pointers are not cleared and they could be counted as
666 * valid references during a kmemleak scan. Therefore, kmemleak must
667 * not scan such objects.
668 */
669 kmemleak_no_scan(ac);
670 if (ac) {
671 ac->avail = 0;
672 ac->limit = limit;
673 ac->batchcount = batch;
674 ac->touched = 0;
675 }
676 }
677
678 static struct array_cache *alloc_arraycache(int node, int entries,
679 int batchcount, gfp_t gfp)
680 {
681 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
682 struct array_cache *ac = NULL;
683
684 ac = kmalloc_node(memsize, gfp, node);
685 init_arraycache(ac, entries, batchcount);
686 return ac;
687 }
688
689 static inline bool is_slab_pfmemalloc(struct page *page)
690 {
691 return PageSlabPfmemalloc(page);
692 }
693
694 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
695 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
696 struct array_cache *ac)
697 {
698 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
699 struct page *page;
700 unsigned long flags;
701
702 if (!pfmemalloc_active)
703 return;
704
705 spin_lock_irqsave(&n->list_lock, flags);
706 list_for_each_entry(page, &n->slabs_full, lru)
707 if (is_slab_pfmemalloc(page))
708 goto out;
709
710 list_for_each_entry(page, &n->slabs_partial, lru)
711 if (is_slab_pfmemalloc(page))
712 goto out;
713
714 list_for_each_entry(page, &n->slabs_free, lru)
715 if (is_slab_pfmemalloc(page))
716 goto out;
717
718 pfmemalloc_active = false;
719 out:
720 spin_unlock_irqrestore(&n->list_lock, flags);
721 }
722
723 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
724 gfp_t flags, bool force_refill)
725 {
726 int i;
727 void *objp = ac->entry[--ac->avail];
728
729 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
730 if (unlikely(is_obj_pfmemalloc(objp))) {
731 struct kmem_cache_node *n;
732
733 if (gfp_pfmemalloc_allowed(flags)) {
734 clear_obj_pfmemalloc(&objp);
735 return objp;
736 }
737
738 /* The caller cannot use PFMEMALLOC objects, find another one */
739 for (i = 0; i < ac->avail; i++) {
740 /* If a !PFMEMALLOC object is found, swap them */
741 if (!is_obj_pfmemalloc(ac->entry[i])) {
742 objp = ac->entry[i];
743 ac->entry[i] = ac->entry[ac->avail];
744 ac->entry[ac->avail] = objp;
745 return objp;
746 }
747 }
748
749 /*
750 * If there are empty slabs on the slabs_free list and we are
751 * being forced to refill the cache, mark this one !pfmemalloc.
752 */
753 n = get_node(cachep, numa_mem_id());
754 if (!list_empty(&n->slabs_free) && force_refill) {
755 struct page *page = virt_to_head_page(objp);
756 ClearPageSlabPfmemalloc(page);
757 clear_obj_pfmemalloc(&objp);
758 recheck_pfmemalloc_active(cachep, ac);
759 return objp;
760 }
761
762 /* No !PFMEMALLOC objects available */
763 ac->avail++;
764 objp = NULL;
765 }
766
767 return objp;
768 }
769
770 static inline void *ac_get_obj(struct kmem_cache *cachep,
771 struct array_cache *ac, gfp_t flags, bool force_refill)
772 {
773 void *objp;
774
775 if (unlikely(sk_memalloc_socks()))
776 objp = __ac_get_obj(cachep, ac, flags, force_refill);
777 else
778 objp = ac->entry[--ac->avail];
779
780 return objp;
781 }
782
783 static noinline void *__ac_put_obj(struct kmem_cache *cachep,
784 struct array_cache *ac, void *objp)
785 {
786 if (unlikely(pfmemalloc_active)) {
787 /* Some pfmemalloc slabs exist, check if this is one */
788 struct page *page = virt_to_head_page(objp);
789 if (PageSlabPfmemalloc(page))
790 set_obj_pfmemalloc(&objp);
791 }
792
793 return objp;
794 }
795
796 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
797 void *objp)
798 {
799 if (unlikely(sk_memalloc_socks()))
800 objp = __ac_put_obj(cachep, ac, objp);
801
802 ac->entry[ac->avail++] = objp;
803 }
804
805 /*
806 * Transfer objects in one arraycache to another.
807 * Locking must be handled by the caller.
808 *
809 * Return the number of entries transferred.
810 */
811 static int transfer_objects(struct array_cache *to,
812 struct array_cache *from, unsigned int max)
813 {
814 /* Figure out how many entries to transfer */
815 int nr = min3(from->avail, max, to->limit - to->avail);
816
817 if (!nr)
818 return 0;
819
820 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
821 sizeof(void *) *nr);
822
823 from->avail -= nr;
824 to->avail += nr;
825 return nr;
826 }
827
828 #ifndef CONFIG_NUMA
829
830 #define drain_alien_cache(cachep, alien) do { } while (0)
831 #define reap_alien(cachep, n) do { } while (0)
832
833 static inline struct alien_cache **alloc_alien_cache(int node,
834 int limit, gfp_t gfp)
835 {
836 return (struct alien_cache **)BAD_ALIEN_MAGIC;
837 }
838
839 static inline void free_alien_cache(struct alien_cache **ac_ptr)
840 {
841 }
842
843 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
844 {
845 return 0;
846 }
847
848 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
849 gfp_t flags)
850 {
851 return NULL;
852 }
853
854 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
855 gfp_t flags, int nodeid)
856 {
857 return NULL;
858 }
859
860 static inline gfp_t gfp_exact_node(gfp_t flags)
861 {
862 return flags;
863 }
864
865 #else /* CONFIG_NUMA */
866
867 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
868 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
869
870 static struct alien_cache *__alloc_alien_cache(int node, int entries,
871 int batch, gfp_t gfp)
872 {
873 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
874 struct alien_cache *alc = NULL;
875
876 alc = kmalloc_node(memsize, gfp, node);
877 init_arraycache(&alc->ac, entries, batch);
878 spin_lock_init(&alc->lock);
879 return alc;
880 }
881
882 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
883 {
884 struct alien_cache **alc_ptr;
885 size_t memsize = sizeof(void *) * nr_node_ids;
886 int i;
887
888 if (limit > 1)
889 limit = 12;
890 alc_ptr = kzalloc_node(memsize, gfp, node);
891 if (!alc_ptr)
892 return NULL;
893
894 for_each_node(i) {
895 if (i == node || !node_online(i))
896 continue;
897 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
898 if (!alc_ptr[i]) {
899 for (i--; i >= 0; i--)
900 kfree(alc_ptr[i]);
901 kfree(alc_ptr);
902 return NULL;
903 }
904 }
905 return alc_ptr;
906 }
907
908 static void free_alien_cache(struct alien_cache **alc_ptr)
909 {
910 int i;
911
912 if (!alc_ptr)
913 return;
914 for_each_node(i)
915 kfree(alc_ptr[i]);
916 kfree(alc_ptr);
917 }
918
919 static void __drain_alien_cache(struct kmem_cache *cachep,
920 struct array_cache *ac, int node,
921 struct list_head *list)
922 {
923 struct kmem_cache_node *n = get_node(cachep, node);
924
925 if (ac->avail) {
926 spin_lock(&n->list_lock);
927 /*
928 * Stuff objects into the remote nodes shared array first.
929 * That way we could avoid the overhead of putting the objects
930 * into the free lists and getting them back later.
931 */
932 if (n->shared)
933 transfer_objects(n->shared, ac, ac->limit);
934
935 free_block(cachep, ac->entry, ac->avail, node, list);
936 ac->avail = 0;
937 spin_unlock(&n->list_lock);
938 }
939 }
940
941 /*
942 * Called from cache_reap() to regularly drain alien caches round robin.
943 */
944 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
945 {
946 int node = __this_cpu_read(slab_reap_node);
947
948 if (n->alien) {
949 struct alien_cache *alc = n->alien[node];
950 struct array_cache *ac;
951
952 if (alc) {
953 ac = &alc->ac;
954 if (ac->avail && spin_trylock_irq(&alc->lock)) {
955 LIST_HEAD(list);
956
957 __drain_alien_cache(cachep, ac, node, &list);
958 spin_unlock_irq(&alc->lock);
959 slabs_destroy(cachep, &list);
960 }
961 }
962 }
963 }
964
965 static void drain_alien_cache(struct kmem_cache *cachep,
966 struct alien_cache **alien)
967 {
968 int i = 0;
969 struct alien_cache *alc;
970 struct array_cache *ac;
971 unsigned long flags;
972
973 for_each_online_node(i) {
974 alc = alien[i];
975 if (alc) {
976 LIST_HEAD(list);
977
978 ac = &alc->ac;
979 spin_lock_irqsave(&alc->lock, flags);
980 __drain_alien_cache(cachep, ac, i, &list);
981 spin_unlock_irqrestore(&alc->lock, flags);
982 slabs_destroy(cachep, &list);
983 }
984 }
985 }
986
987 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
988 int node, int page_node)
989 {
990 struct kmem_cache_node *n;
991 struct alien_cache *alien = NULL;
992 struct array_cache *ac;
993 LIST_HEAD(list);
994
995 n = get_node(cachep, node);
996 STATS_INC_NODEFREES(cachep);
997 if (n->alien && n->alien[page_node]) {
998 alien = n->alien[page_node];
999 ac = &alien->ac;
1000 spin_lock(&alien->lock);
1001 if (unlikely(ac->avail == ac->limit)) {
1002 STATS_INC_ACOVERFLOW(cachep);
1003 __drain_alien_cache(cachep, ac, page_node, &list);
1004 }
1005 ac_put_obj(cachep, ac, objp);
1006 spin_unlock(&alien->lock);
1007 slabs_destroy(cachep, &list);
1008 } else {
1009 n = get_node(cachep, page_node);
1010 spin_lock(&n->list_lock);
1011 free_block(cachep, &objp, 1, page_node, &list);
1012 spin_unlock(&n->list_lock);
1013 slabs_destroy(cachep, &list);
1014 }
1015 return 1;
1016 }
1017
1018 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1019 {
1020 int page_node = page_to_nid(virt_to_page(objp));
1021 int node = numa_mem_id();
1022 /*
1023 * Make sure we are not freeing a object from another node to the array
1024 * cache on this cpu.
1025 */
1026 if (likely(node == page_node))
1027 return 0;
1028
1029 return __cache_free_alien(cachep, objp, node, page_node);
1030 }
1031
1032 /*
1033 * Construct gfp mask to allocate from a specific node but do not invoke reclaim
1034 * or warn about failures.
1035 */
1036 static inline gfp_t gfp_exact_node(gfp_t flags)
1037 {
1038 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_WAIT;
1039 }
1040 #endif
1041
1042 /*
1043 * Allocates and initializes node for a node on each slab cache, used for
1044 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1045 * will be allocated off-node since memory is not yet online for the new node.
1046 * When hotplugging memory or a cpu, existing node are not replaced if
1047 * already in use.
1048 *
1049 * Must hold slab_mutex.
1050 */
1051 static int init_cache_node_node(int node)
1052 {
1053 struct kmem_cache *cachep;
1054 struct kmem_cache_node *n;
1055 const size_t memsize = sizeof(struct kmem_cache_node);
1056
1057 list_for_each_entry(cachep, &slab_caches, list) {
1058 /*
1059 * Set up the kmem_cache_node for cpu before we can
1060 * begin anything. Make sure some other cpu on this
1061 * node has not already allocated this
1062 */
1063 n = get_node(cachep, node);
1064 if (!n) {
1065 n = kmalloc_node(memsize, GFP_KERNEL, node);
1066 if (!n)
1067 return -ENOMEM;
1068 kmem_cache_node_init(n);
1069 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1070 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1071
1072 /*
1073 * The kmem_cache_nodes don't come and go as CPUs
1074 * come and go. slab_mutex is sufficient
1075 * protection here.
1076 */
1077 cachep->node[node] = n;
1078 }
1079
1080 spin_lock_irq(&n->list_lock);
1081 n->free_limit =
1082 (1 + nr_cpus_node(node)) *
1083 cachep->batchcount + cachep->num;
1084 spin_unlock_irq(&n->list_lock);
1085 }
1086 return 0;
1087 }
1088
1089 static inline int slabs_tofree(struct kmem_cache *cachep,
1090 struct kmem_cache_node *n)
1091 {
1092 return (n->free_objects + cachep->num - 1) / cachep->num;
1093 }
1094
1095 static void cpuup_canceled(long cpu)
1096 {
1097 struct kmem_cache *cachep;
1098 struct kmem_cache_node *n = NULL;
1099 int node = cpu_to_mem(cpu);
1100 const struct cpumask *mask = cpumask_of_node(node);
1101
1102 list_for_each_entry(cachep, &slab_caches, list) {
1103 struct array_cache *nc;
1104 struct array_cache *shared;
1105 struct alien_cache **alien;
1106 LIST_HEAD(list);
1107
1108 n = get_node(cachep, node);
1109 if (!n)
1110 continue;
1111
1112 spin_lock_irq(&n->list_lock);
1113
1114 /* Free limit for this kmem_cache_node */
1115 n->free_limit -= cachep->batchcount;
1116
1117 /* cpu is dead; no one can alloc from it. */
1118 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1119 if (nc) {
1120 free_block(cachep, nc->entry, nc->avail, node, &list);
1121 nc->avail = 0;
1122 }
1123
1124 if (!cpumask_empty(mask)) {
1125 spin_unlock_irq(&n->list_lock);
1126 goto free_slab;
1127 }
1128
1129 shared = n->shared;
1130 if (shared) {
1131 free_block(cachep, shared->entry,
1132 shared->avail, node, &list);
1133 n->shared = NULL;
1134 }
1135
1136 alien = n->alien;
1137 n->alien = NULL;
1138
1139 spin_unlock_irq(&n->list_lock);
1140
1141 kfree(shared);
1142 if (alien) {
1143 drain_alien_cache(cachep, alien);
1144 free_alien_cache(alien);
1145 }
1146
1147 free_slab:
1148 slabs_destroy(cachep, &list);
1149 }
1150 /*
1151 * In the previous loop, all the objects were freed to
1152 * the respective cache's slabs, now we can go ahead and
1153 * shrink each nodelist to its limit.
1154 */
1155 list_for_each_entry(cachep, &slab_caches, list) {
1156 n = get_node(cachep, node);
1157 if (!n)
1158 continue;
1159 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1160 }
1161 }
1162
1163 static int cpuup_prepare(long cpu)
1164 {
1165 struct kmem_cache *cachep;
1166 struct kmem_cache_node *n = NULL;
1167 int node = cpu_to_mem(cpu);
1168 int err;
1169
1170 /*
1171 * We need to do this right in the beginning since
1172 * alloc_arraycache's are going to use this list.
1173 * kmalloc_node allows us to add the slab to the right
1174 * kmem_cache_node and not this cpu's kmem_cache_node
1175 */
1176 err = init_cache_node_node(node);
1177 if (err < 0)
1178 goto bad;
1179
1180 /*
1181 * Now we can go ahead with allocating the shared arrays and
1182 * array caches
1183 */
1184 list_for_each_entry(cachep, &slab_caches, list) {
1185 struct array_cache *shared = NULL;
1186 struct alien_cache **alien = NULL;
1187
1188 if (cachep->shared) {
1189 shared = alloc_arraycache(node,
1190 cachep->shared * cachep->batchcount,
1191 0xbaadf00d, GFP_KERNEL);
1192 if (!shared)
1193 goto bad;
1194 }
1195 if (use_alien_caches) {
1196 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1197 if (!alien) {
1198 kfree(shared);
1199 goto bad;
1200 }
1201 }
1202 n = get_node(cachep, node);
1203 BUG_ON(!n);
1204
1205 spin_lock_irq(&n->list_lock);
1206 if (!n->shared) {
1207 /*
1208 * We are serialised from CPU_DEAD or
1209 * CPU_UP_CANCELLED by the cpucontrol lock
1210 */
1211 n->shared = shared;
1212 shared = NULL;
1213 }
1214 #ifdef CONFIG_NUMA
1215 if (!n->alien) {
1216 n->alien = alien;
1217 alien = NULL;
1218 }
1219 #endif
1220 spin_unlock_irq(&n->list_lock);
1221 kfree(shared);
1222 free_alien_cache(alien);
1223 }
1224
1225 return 0;
1226 bad:
1227 cpuup_canceled(cpu);
1228 return -ENOMEM;
1229 }
1230
1231 static int cpuup_callback(struct notifier_block *nfb,
1232 unsigned long action, void *hcpu)
1233 {
1234 long cpu = (long)hcpu;
1235 int err = 0;
1236
1237 switch (action) {
1238 case CPU_UP_PREPARE:
1239 case CPU_UP_PREPARE_FROZEN:
1240 mutex_lock(&slab_mutex);
1241 err = cpuup_prepare(cpu);
1242 mutex_unlock(&slab_mutex);
1243 break;
1244 case CPU_ONLINE:
1245 case CPU_ONLINE_FROZEN:
1246 start_cpu_timer(cpu);
1247 break;
1248 #ifdef CONFIG_HOTPLUG_CPU
1249 case CPU_DOWN_PREPARE:
1250 case CPU_DOWN_PREPARE_FROZEN:
1251 /*
1252 * Shutdown cache reaper. Note that the slab_mutex is
1253 * held so that if cache_reap() is invoked it cannot do
1254 * anything expensive but will only modify reap_work
1255 * and reschedule the timer.
1256 */
1257 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1258 /* Now the cache_reaper is guaranteed to be not running. */
1259 per_cpu(slab_reap_work, cpu).work.func = NULL;
1260 break;
1261 case CPU_DOWN_FAILED:
1262 case CPU_DOWN_FAILED_FROZEN:
1263 start_cpu_timer(cpu);
1264 break;
1265 case CPU_DEAD:
1266 case CPU_DEAD_FROZEN:
1267 /*
1268 * Even if all the cpus of a node are down, we don't free the
1269 * kmem_cache_node of any cache. This to avoid a race between
1270 * cpu_down, and a kmalloc allocation from another cpu for
1271 * memory from the node of the cpu going down. The node
1272 * structure is usually allocated from kmem_cache_create() and
1273 * gets destroyed at kmem_cache_destroy().
1274 */
1275 /* fall through */
1276 #endif
1277 case CPU_UP_CANCELED:
1278 case CPU_UP_CANCELED_FROZEN:
1279 mutex_lock(&slab_mutex);
1280 cpuup_canceled(cpu);
1281 mutex_unlock(&slab_mutex);
1282 break;
1283 }
1284 return notifier_from_errno(err);
1285 }
1286
1287 static struct notifier_block cpucache_notifier = {
1288 &cpuup_callback, NULL, 0
1289 };
1290
1291 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1292 /*
1293 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1294 * Returns -EBUSY if all objects cannot be drained so that the node is not
1295 * removed.
1296 *
1297 * Must hold slab_mutex.
1298 */
1299 static int __meminit drain_cache_node_node(int node)
1300 {
1301 struct kmem_cache *cachep;
1302 int ret = 0;
1303
1304 list_for_each_entry(cachep, &slab_caches, list) {
1305 struct kmem_cache_node *n;
1306
1307 n = get_node(cachep, node);
1308 if (!n)
1309 continue;
1310
1311 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1312
1313 if (!list_empty(&n->slabs_full) ||
1314 !list_empty(&n->slabs_partial)) {
1315 ret = -EBUSY;
1316 break;
1317 }
1318 }
1319 return ret;
1320 }
1321
1322 static int __meminit slab_memory_callback(struct notifier_block *self,
1323 unsigned long action, void *arg)
1324 {
1325 struct memory_notify *mnb = arg;
1326 int ret = 0;
1327 int nid;
1328
1329 nid = mnb->status_change_nid;
1330 if (nid < 0)
1331 goto out;
1332
1333 switch (action) {
1334 case MEM_GOING_ONLINE:
1335 mutex_lock(&slab_mutex);
1336 ret = init_cache_node_node(nid);
1337 mutex_unlock(&slab_mutex);
1338 break;
1339 case MEM_GOING_OFFLINE:
1340 mutex_lock(&slab_mutex);
1341 ret = drain_cache_node_node(nid);
1342 mutex_unlock(&slab_mutex);
1343 break;
1344 case MEM_ONLINE:
1345 case MEM_OFFLINE:
1346 case MEM_CANCEL_ONLINE:
1347 case MEM_CANCEL_OFFLINE:
1348 break;
1349 }
1350 out:
1351 return notifier_from_errno(ret);
1352 }
1353 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1354
1355 /*
1356 * swap the static kmem_cache_node with kmalloced memory
1357 */
1358 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1359 int nodeid)
1360 {
1361 struct kmem_cache_node *ptr;
1362
1363 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1364 BUG_ON(!ptr);
1365
1366 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1367 /*
1368 * Do not assume that spinlocks can be initialized via memcpy:
1369 */
1370 spin_lock_init(&ptr->list_lock);
1371
1372 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1373 cachep->node[nodeid] = ptr;
1374 }
1375
1376 /*
1377 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1378 * size of kmem_cache_node.
1379 */
1380 static void __init set_up_node(struct kmem_cache *cachep, int index)
1381 {
1382 int node;
1383
1384 for_each_online_node(node) {
1385 cachep->node[node] = &init_kmem_cache_node[index + node];
1386 cachep->node[node]->next_reap = jiffies +
1387 REAPTIMEOUT_NODE +
1388 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1389 }
1390 }
1391
1392 /*
1393 * Initialisation. Called after the page allocator have been initialised and
1394 * before smp_init().
1395 */
1396 void __init kmem_cache_init(void)
1397 {
1398 int i;
1399
1400 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1401 sizeof(struct rcu_head));
1402 kmem_cache = &kmem_cache_boot;
1403
1404 if (num_possible_nodes() == 1)
1405 use_alien_caches = 0;
1406
1407 for (i = 0; i < NUM_INIT_LISTS; i++)
1408 kmem_cache_node_init(&init_kmem_cache_node[i]);
1409
1410 /*
1411 * Fragmentation resistance on low memory - only use bigger
1412 * page orders on machines with more than 32MB of memory if
1413 * not overridden on the command line.
1414 */
1415 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1416 slab_max_order = SLAB_MAX_ORDER_HI;
1417
1418 /* Bootstrap is tricky, because several objects are allocated
1419 * from caches that do not exist yet:
1420 * 1) initialize the kmem_cache cache: it contains the struct
1421 * kmem_cache structures of all caches, except kmem_cache itself:
1422 * kmem_cache is statically allocated.
1423 * Initially an __init data area is used for the head array and the
1424 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1425 * array at the end of the bootstrap.
1426 * 2) Create the first kmalloc cache.
1427 * The struct kmem_cache for the new cache is allocated normally.
1428 * An __init data area is used for the head array.
1429 * 3) Create the remaining kmalloc caches, with minimally sized
1430 * head arrays.
1431 * 4) Replace the __init data head arrays for kmem_cache and the first
1432 * kmalloc cache with kmalloc allocated arrays.
1433 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1434 * the other cache's with kmalloc allocated memory.
1435 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1436 */
1437
1438 /* 1) create the kmem_cache */
1439
1440 /*
1441 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1442 */
1443 create_boot_cache(kmem_cache, "kmem_cache",
1444 offsetof(struct kmem_cache, node) +
1445 nr_node_ids * sizeof(struct kmem_cache_node *),
1446 SLAB_HWCACHE_ALIGN);
1447 list_add(&kmem_cache->list, &slab_caches);
1448 slab_state = PARTIAL;
1449
1450 /*
1451 * Initialize the caches that provide memory for the kmem_cache_node
1452 * structures first. Without this, further allocations will bug.
1453 */
1454 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1455 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1456 slab_state = PARTIAL_NODE;
1457
1458 slab_early_init = 0;
1459
1460 /* 5) Replace the bootstrap kmem_cache_node */
1461 {
1462 int nid;
1463
1464 for_each_online_node(nid) {
1465 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1466
1467 init_list(kmalloc_caches[INDEX_NODE],
1468 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1469 }
1470 }
1471
1472 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1473 }
1474
1475 void __init kmem_cache_init_late(void)
1476 {
1477 struct kmem_cache *cachep;
1478
1479 slab_state = UP;
1480
1481 /* 6) resize the head arrays to their final sizes */
1482 mutex_lock(&slab_mutex);
1483 list_for_each_entry(cachep, &slab_caches, list)
1484 if (enable_cpucache(cachep, GFP_NOWAIT))
1485 BUG();
1486 mutex_unlock(&slab_mutex);
1487
1488 /* Done! */
1489 slab_state = FULL;
1490
1491 /*
1492 * Register a cpu startup notifier callback that initializes
1493 * cpu_cache_get for all new cpus
1494 */
1495 register_cpu_notifier(&cpucache_notifier);
1496
1497 #ifdef CONFIG_NUMA
1498 /*
1499 * Register a memory hotplug callback that initializes and frees
1500 * node.
1501 */
1502 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1503 #endif
1504
1505 /*
1506 * The reap timers are started later, with a module init call: That part
1507 * of the kernel is not yet operational.
1508 */
1509 }
1510
1511 static int __init cpucache_init(void)
1512 {
1513 int cpu;
1514
1515 /*
1516 * Register the timers that return unneeded pages to the page allocator
1517 */
1518 for_each_online_cpu(cpu)
1519 start_cpu_timer(cpu);
1520
1521 /* Done! */
1522 slab_state = FULL;
1523 return 0;
1524 }
1525 __initcall(cpucache_init);
1526
1527 static noinline void
1528 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1529 {
1530 #if DEBUG
1531 struct kmem_cache_node *n;
1532 struct page *page;
1533 unsigned long flags;
1534 int node;
1535 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1536 DEFAULT_RATELIMIT_BURST);
1537
1538 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1539 return;
1540
1541 printk(KERN_WARNING
1542 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1543 nodeid, gfpflags);
1544 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1545 cachep->name, cachep->size, cachep->gfporder);
1546
1547 for_each_kmem_cache_node(cachep, node, n) {
1548 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1549 unsigned long active_slabs = 0, num_slabs = 0;
1550
1551 spin_lock_irqsave(&n->list_lock, flags);
1552 list_for_each_entry(page, &n->slabs_full, lru) {
1553 active_objs += cachep->num;
1554 active_slabs++;
1555 }
1556 list_for_each_entry(page, &n->slabs_partial, lru) {
1557 active_objs += page->active;
1558 active_slabs++;
1559 }
1560 list_for_each_entry(page, &n->slabs_free, lru)
1561 num_slabs++;
1562
1563 free_objects += n->free_objects;
1564 spin_unlock_irqrestore(&n->list_lock, flags);
1565
1566 num_slabs += active_slabs;
1567 num_objs = num_slabs * cachep->num;
1568 printk(KERN_WARNING
1569 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1570 node, active_slabs, num_slabs, active_objs, num_objs,
1571 free_objects);
1572 }
1573 #endif
1574 }
1575
1576 /*
1577 * Interface to system's page allocator. No need to hold the
1578 * kmem_cache_node ->list_lock.
1579 *
1580 * If we requested dmaable memory, we will get it. Even if we
1581 * did not request dmaable memory, we might get it, but that
1582 * would be relatively rare and ignorable.
1583 */
1584 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1585 int nodeid)
1586 {
1587 struct page *page;
1588 int nr_pages;
1589
1590 flags |= cachep->allocflags;
1591 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1592 flags |= __GFP_RECLAIMABLE;
1593
1594 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1595 return NULL;
1596
1597 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1598 if (!page) {
1599 memcg_uncharge_slab(cachep, cachep->gfporder);
1600 slab_out_of_memory(cachep, flags, nodeid);
1601 return NULL;
1602 }
1603
1604 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1605 if (unlikely(page->pfmemalloc))
1606 pfmemalloc_active = true;
1607
1608 nr_pages = (1 << cachep->gfporder);
1609 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1610 add_zone_page_state(page_zone(page),
1611 NR_SLAB_RECLAIMABLE, nr_pages);
1612 else
1613 add_zone_page_state(page_zone(page),
1614 NR_SLAB_UNRECLAIMABLE, nr_pages);
1615 __SetPageSlab(page);
1616 if (page->pfmemalloc)
1617 SetPageSlabPfmemalloc(page);
1618
1619 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1620 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1621
1622 if (cachep->ctor)
1623 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1624 else
1625 kmemcheck_mark_unallocated_pages(page, nr_pages);
1626 }
1627
1628 return page;
1629 }
1630
1631 /*
1632 * Interface to system's page release.
1633 */
1634 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1635 {
1636 const unsigned long nr_freed = (1 << cachep->gfporder);
1637
1638 kmemcheck_free_shadow(page, cachep->gfporder);
1639
1640 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1641 sub_zone_page_state(page_zone(page),
1642 NR_SLAB_RECLAIMABLE, nr_freed);
1643 else
1644 sub_zone_page_state(page_zone(page),
1645 NR_SLAB_UNRECLAIMABLE, nr_freed);
1646
1647 BUG_ON(!PageSlab(page));
1648 __ClearPageSlabPfmemalloc(page);
1649 __ClearPageSlab(page);
1650 page_mapcount_reset(page);
1651 page->mapping = NULL;
1652
1653 if (current->reclaim_state)
1654 current->reclaim_state->reclaimed_slab += nr_freed;
1655 __free_pages(page, cachep->gfporder);
1656 memcg_uncharge_slab(cachep, cachep->gfporder);
1657 }
1658
1659 static void kmem_rcu_free(struct rcu_head *head)
1660 {
1661 struct kmem_cache *cachep;
1662 struct page *page;
1663
1664 page = container_of(head, struct page, rcu_head);
1665 cachep = page->slab_cache;
1666
1667 kmem_freepages(cachep, page);
1668 }
1669
1670 #if DEBUG
1671
1672 #ifdef CONFIG_DEBUG_PAGEALLOC
1673 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1674 unsigned long caller)
1675 {
1676 int size = cachep->object_size;
1677
1678 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1679
1680 if (size < 5 * sizeof(unsigned long))
1681 return;
1682
1683 *addr++ = 0x12345678;
1684 *addr++ = caller;
1685 *addr++ = smp_processor_id();
1686 size -= 3 * sizeof(unsigned long);
1687 {
1688 unsigned long *sptr = &caller;
1689 unsigned long svalue;
1690
1691 while (!kstack_end(sptr)) {
1692 svalue = *sptr++;
1693 if (kernel_text_address(svalue)) {
1694 *addr++ = svalue;
1695 size -= sizeof(unsigned long);
1696 if (size <= sizeof(unsigned long))
1697 break;
1698 }
1699 }
1700
1701 }
1702 *addr++ = 0x87654321;
1703 }
1704 #endif
1705
1706 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1707 {
1708 int size = cachep->object_size;
1709 addr = &((char *)addr)[obj_offset(cachep)];
1710
1711 memset(addr, val, size);
1712 *(unsigned char *)(addr + size - 1) = POISON_END;
1713 }
1714
1715 static void dump_line(char *data, int offset, int limit)
1716 {
1717 int i;
1718 unsigned char error = 0;
1719 int bad_count = 0;
1720
1721 printk(KERN_ERR "%03x: ", offset);
1722 for (i = 0; i < limit; i++) {
1723 if (data[offset + i] != POISON_FREE) {
1724 error = data[offset + i];
1725 bad_count++;
1726 }
1727 }
1728 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1729 &data[offset], limit, 1);
1730
1731 if (bad_count == 1) {
1732 error ^= POISON_FREE;
1733 if (!(error & (error - 1))) {
1734 printk(KERN_ERR "Single bit error detected. Probably "
1735 "bad RAM.\n");
1736 #ifdef CONFIG_X86
1737 printk(KERN_ERR "Run memtest86+ or a similar memory "
1738 "test tool.\n");
1739 #else
1740 printk(KERN_ERR "Run a memory test tool.\n");
1741 #endif
1742 }
1743 }
1744 }
1745 #endif
1746
1747 #if DEBUG
1748
1749 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1750 {
1751 int i, size;
1752 char *realobj;
1753
1754 if (cachep->flags & SLAB_RED_ZONE) {
1755 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1756 *dbg_redzone1(cachep, objp),
1757 *dbg_redzone2(cachep, objp));
1758 }
1759
1760 if (cachep->flags & SLAB_STORE_USER) {
1761 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1762 *dbg_userword(cachep, objp),
1763 *dbg_userword(cachep, objp));
1764 }
1765 realobj = (char *)objp + obj_offset(cachep);
1766 size = cachep->object_size;
1767 for (i = 0; i < size && lines; i += 16, lines--) {
1768 int limit;
1769 limit = 16;
1770 if (i + limit > size)
1771 limit = size - i;
1772 dump_line(realobj, i, limit);
1773 }
1774 }
1775
1776 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1777 {
1778 char *realobj;
1779 int size, i;
1780 int lines = 0;
1781
1782 realobj = (char *)objp + obj_offset(cachep);
1783 size = cachep->object_size;
1784
1785 for (i = 0; i < size; i++) {
1786 char exp = POISON_FREE;
1787 if (i == size - 1)
1788 exp = POISON_END;
1789 if (realobj[i] != exp) {
1790 int limit;
1791 /* Mismatch ! */
1792 /* Print header */
1793 if (lines == 0) {
1794 printk(KERN_ERR
1795 "Slab corruption (%s): %s start=%p, len=%d\n",
1796 print_tainted(), cachep->name, realobj, size);
1797 print_objinfo(cachep, objp, 0);
1798 }
1799 /* Hexdump the affected line */
1800 i = (i / 16) * 16;
1801 limit = 16;
1802 if (i + limit > size)
1803 limit = size - i;
1804 dump_line(realobj, i, limit);
1805 i += 16;
1806 lines++;
1807 /* Limit to 5 lines */
1808 if (lines > 5)
1809 break;
1810 }
1811 }
1812 if (lines != 0) {
1813 /* Print some data about the neighboring objects, if they
1814 * exist:
1815 */
1816 struct page *page = virt_to_head_page(objp);
1817 unsigned int objnr;
1818
1819 objnr = obj_to_index(cachep, page, objp);
1820 if (objnr) {
1821 objp = index_to_obj(cachep, page, objnr - 1);
1822 realobj = (char *)objp + obj_offset(cachep);
1823 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1824 realobj, size);
1825 print_objinfo(cachep, objp, 2);
1826 }
1827 if (objnr + 1 < cachep->num) {
1828 objp = index_to_obj(cachep, page, objnr + 1);
1829 realobj = (char *)objp + obj_offset(cachep);
1830 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1831 realobj, size);
1832 print_objinfo(cachep, objp, 2);
1833 }
1834 }
1835 }
1836 #endif
1837
1838 #if DEBUG
1839 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1840 struct page *page)
1841 {
1842 int i;
1843 for (i = 0; i < cachep->num; i++) {
1844 void *objp = index_to_obj(cachep, page, i);
1845
1846 if (cachep->flags & SLAB_POISON) {
1847 #ifdef CONFIG_DEBUG_PAGEALLOC
1848 if (cachep->size % PAGE_SIZE == 0 &&
1849 OFF_SLAB(cachep))
1850 kernel_map_pages(virt_to_page(objp),
1851 cachep->size / PAGE_SIZE, 1);
1852 else
1853 check_poison_obj(cachep, objp);
1854 #else
1855 check_poison_obj(cachep, objp);
1856 #endif
1857 }
1858 if (cachep->flags & SLAB_RED_ZONE) {
1859 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1860 slab_error(cachep, "start of a freed object "
1861 "was overwritten");
1862 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1863 slab_error(cachep, "end of a freed object "
1864 "was overwritten");
1865 }
1866 }
1867 }
1868 #else
1869 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1870 struct page *page)
1871 {
1872 }
1873 #endif
1874
1875 /**
1876 * slab_destroy - destroy and release all objects in a slab
1877 * @cachep: cache pointer being destroyed
1878 * @page: page pointer being destroyed
1879 *
1880 * Destroy all the objs in a slab page, and release the mem back to the system.
1881 * Before calling the slab page must have been unlinked from the cache. The
1882 * kmem_cache_node ->list_lock is not held/needed.
1883 */
1884 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1885 {
1886 void *freelist;
1887
1888 freelist = page->freelist;
1889 slab_destroy_debugcheck(cachep, page);
1890 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1891 struct rcu_head *head;
1892
1893 /*
1894 * RCU free overloads the RCU head over the LRU.
1895 * slab_page has been overloeaded over the LRU,
1896 * however it is not used from now on so that
1897 * we can use it safely.
1898 */
1899 head = (void *)&page->rcu_head;
1900 call_rcu(head, kmem_rcu_free);
1901
1902 } else {
1903 kmem_freepages(cachep, page);
1904 }
1905
1906 /*
1907 * From now on, we don't use freelist
1908 * although actual page can be freed in rcu context
1909 */
1910 if (OFF_SLAB(cachep))
1911 kmem_cache_free(cachep->freelist_cache, freelist);
1912 }
1913
1914 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1915 {
1916 struct page *page, *n;
1917
1918 list_for_each_entry_safe(page, n, list, lru) {
1919 list_del(&page->lru);
1920 slab_destroy(cachep, page);
1921 }
1922 }
1923
1924 /**
1925 * calculate_slab_order - calculate size (page order) of slabs
1926 * @cachep: pointer to the cache that is being created
1927 * @size: size of objects to be created in this cache.
1928 * @align: required alignment for the objects.
1929 * @flags: slab allocation flags
1930 *
1931 * Also calculates the number of objects per slab.
1932 *
1933 * This could be made much more intelligent. For now, try to avoid using
1934 * high order pages for slabs. When the gfp() functions are more friendly
1935 * towards high-order requests, this should be changed.
1936 */
1937 static size_t calculate_slab_order(struct kmem_cache *cachep,
1938 size_t size, size_t align, unsigned long flags)
1939 {
1940 unsigned long offslab_limit;
1941 size_t left_over = 0;
1942 int gfporder;
1943
1944 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1945 unsigned int num;
1946 size_t remainder;
1947
1948 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1949 if (!num)
1950 continue;
1951
1952 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1953 if (num > SLAB_OBJ_MAX_NUM)
1954 break;
1955
1956 if (flags & CFLGS_OFF_SLAB) {
1957 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1958 /*
1959 * Max number of objs-per-slab for caches which
1960 * use off-slab slabs. Needed to avoid a possible
1961 * looping condition in cache_grow().
1962 */
1963 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1964 freelist_size_per_obj += sizeof(char);
1965 offslab_limit = size;
1966 offslab_limit /= freelist_size_per_obj;
1967
1968 if (num > offslab_limit)
1969 break;
1970 }
1971
1972 /* Found something acceptable - save it away */
1973 cachep->num = num;
1974 cachep->gfporder = gfporder;
1975 left_over = remainder;
1976
1977 /*
1978 * A VFS-reclaimable slab tends to have most allocations
1979 * as GFP_NOFS and we really don't want to have to be allocating
1980 * higher-order pages when we are unable to shrink dcache.
1981 */
1982 if (flags & SLAB_RECLAIM_ACCOUNT)
1983 break;
1984
1985 /*
1986 * Large number of objects is good, but very large slabs are
1987 * currently bad for the gfp()s.
1988 */
1989 if (gfporder >= slab_max_order)
1990 break;
1991
1992 /*
1993 * Acceptable internal fragmentation?
1994 */
1995 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1996 break;
1997 }
1998 return left_over;
1999 }
2000
2001 static struct array_cache __percpu *alloc_kmem_cache_cpus(
2002 struct kmem_cache *cachep, int entries, int batchcount)
2003 {
2004 int cpu;
2005 size_t size;
2006 struct array_cache __percpu *cpu_cache;
2007
2008 size = sizeof(void *) * entries + sizeof(struct array_cache);
2009 cpu_cache = __alloc_percpu(size, sizeof(void *));
2010
2011 if (!cpu_cache)
2012 return NULL;
2013
2014 for_each_possible_cpu(cpu) {
2015 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2016 entries, batchcount);
2017 }
2018
2019 return cpu_cache;
2020 }
2021
2022 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2023 {
2024 if (slab_state >= FULL)
2025 return enable_cpucache(cachep, gfp);
2026
2027 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2028 if (!cachep->cpu_cache)
2029 return 1;
2030
2031 if (slab_state == DOWN) {
2032 /* Creation of first cache (kmem_cache). */
2033 set_up_node(kmem_cache, CACHE_CACHE);
2034 } else if (slab_state == PARTIAL) {
2035 /* For kmem_cache_node */
2036 set_up_node(cachep, SIZE_NODE);
2037 } else {
2038 int node;
2039
2040 for_each_online_node(node) {
2041 cachep->node[node] = kmalloc_node(
2042 sizeof(struct kmem_cache_node), gfp, node);
2043 BUG_ON(!cachep->node[node]);
2044 kmem_cache_node_init(cachep->node[node]);
2045 }
2046 }
2047
2048 cachep->node[numa_mem_id()]->next_reap =
2049 jiffies + REAPTIMEOUT_NODE +
2050 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2051
2052 cpu_cache_get(cachep)->avail = 0;
2053 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2054 cpu_cache_get(cachep)->batchcount = 1;
2055 cpu_cache_get(cachep)->touched = 0;
2056 cachep->batchcount = 1;
2057 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2058 return 0;
2059 }
2060
2061 unsigned long kmem_cache_flags(unsigned long object_size,
2062 unsigned long flags, const char *name,
2063 void (*ctor)(void *))
2064 {
2065 return flags;
2066 }
2067
2068 struct kmem_cache *
2069 __kmem_cache_alias(const char *name, size_t size, size_t align,
2070 unsigned long flags, void (*ctor)(void *))
2071 {
2072 struct kmem_cache *cachep;
2073
2074 cachep = find_mergeable(size, align, flags, name, ctor);
2075 if (cachep) {
2076 cachep->refcount++;
2077
2078 /*
2079 * Adjust the object sizes so that we clear
2080 * the complete object on kzalloc.
2081 */
2082 cachep->object_size = max_t(int, cachep->object_size, size);
2083 }
2084 return cachep;
2085 }
2086
2087 /**
2088 * __kmem_cache_create - Create a cache.
2089 * @cachep: cache management descriptor
2090 * @flags: SLAB flags
2091 *
2092 * Returns a ptr to the cache on success, NULL on failure.
2093 * Cannot be called within a int, but can be interrupted.
2094 * The @ctor is run when new pages are allocated by the cache.
2095 *
2096 * The flags are
2097 *
2098 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2099 * to catch references to uninitialised memory.
2100 *
2101 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2102 * for buffer overruns.
2103 *
2104 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2105 * cacheline. This can be beneficial if you're counting cycles as closely
2106 * as davem.
2107 */
2108 int
2109 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2110 {
2111 size_t left_over, freelist_size;
2112 size_t ralign = BYTES_PER_WORD;
2113 gfp_t gfp;
2114 int err;
2115 size_t size = cachep->size;
2116
2117 #if DEBUG
2118 #if FORCED_DEBUG
2119 /*
2120 * Enable redzoning and last user accounting, except for caches with
2121 * large objects, if the increased size would increase the object size
2122 * above the next power of two: caches with object sizes just above a
2123 * power of two have a significant amount of internal fragmentation.
2124 */
2125 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2126 2 * sizeof(unsigned long long)))
2127 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2128 if (!(flags & SLAB_DESTROY_BY_RCU))
2129 flags |= SLAB_POISON;
2130 #endif
2131 if (flags & SLAB_DESTROY_BY_RCU)
2132 BUG_ON(flags & SLAB_POISON);
2133 #endif
2134
2135 /*
2136 * Check that size is in terms of words. This is needed to avoid
2137 * unaligned accesses for some archs when redzoning is used, and makes
2138 * sure any on-slab bufctl's are also correctly aligned.
2139 */
2140 if (size & (BYTES_PER_WORD - 1)) {
2141 size += (BYTES_PER_WORD - 1);
2142 size &= ~(BYTES_PER_WORD - 1);
2143 }
2144
2145 if (flags & SLAB_RED_ZONE) {
2146 ralign = REDZONE_ALIGN;
2147 /* If redzoning, ensure that the second redzone is suitably
2148 * aligned, by adjusting the object size accordingly. */
2149 size += REDZONE_ALIGN - 1;
2150 size &= ~(REDZONE_ALIGN - 1);
2151 }
2152
2153 /* 3) caller mandated alignment */
2154 if (ralign < cachep->align) {
2155 ralign = cachep->align;
2156 }
2157 /* disable debug if necessary */
2158 if (ralign > __alignof__(unsigned long long))
2159 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2160 /*
2161 * 4) Store it.
2162 */
2163 cachep->align = ralign;
2164
2165 if (slab_is_available())
2166 gfp = GFP_KERNEL;
2167 else
2168 gfp = GFP_NOWAIT;
2169
2170 #if DEBUG
2171
2172 /*
2173 * Both debugging options require word-alignment which is calculated
2174 * into align above.
2175 */
2176 if (flags & SLAB_RED_ZONE) {
2177 /* add space for red zone words */
2178 cachep->obj_offset += sizeof(unsigned long long);
2179 size += 2 * sizeof(unsigned long long);
2180 }
2181 if (flags & SLAB_STORE_USER) {
2182 /* user store requires one word storage behind the end of
2183 * the real object. But if the second red zone needs to be
2184 * aligned to 64 bits, we must allow that much space.
2185 */
2186 if (flags & SLAB_RED_ZONE)
2187 size += REDZONE_ALIGN;
2188 else
2189 size += BYTES_PER_WORD;
2190 }
2191 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2192 if (size >= kmalloc_size(INDEX_NODE + 1)
2193 && cachep->object_size > cache_line_size()
2194 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2195 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2196 size = PAGE_SIZE;
2197 }
2198 #endif
2199 #endif
2200
2201 /*
2202 * Determine if the slab management is 'on' or 'off' slab.
2203 * (bootstrapping cannot cope with offslab caches so don't do
2204 * it too early on. Always use on-slab management when
2205 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2206 */
2207 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2208 !(flags & SLAB_NOLEAKTRACE))
2209 /*
2210 * Size is large, assume best to place the slab management obj
2211 * off-slab (should allow better packing of objs).
2212 */
2213 flags |= CFLGS_OFF_SLAB;
2214
2215 size = ALIGN(size, cachep->align);
2216 /*
2217 * We should restrict the number of objects in a slab to implement
2218 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2219 */
2220 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2221 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2222
2223 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2224
2225 if (!cachep->num)
2226 return -E2BIG;
2227
2228 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2229
2230 /*
2231 * If the slab has been placed off-slab, and we have enough space then
2232 * move it on-slab. This is at the expense of any extra colouring.
2233 */
2234 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2235 flags &= ~CFLGS_OFF_SLAB;
2236 left_over -= freelist_size;
2237 }
2238
2239 if (flags & CFLGS_OFF_SLAB) {
2240 /* really off slab. No need for manual alignment */
2241 freelist_size = calculate_freelist_size(cachep->num, 0);
2242
2243 #ifdef CONFIG_PAGE_POISONING
2244 /* If we're going to use the generic kernel_map_pages()
2245 * poisoning, then it's going to smash the contents of
2246 * the redzone and userword anyhow, so switch them off.
2247 */
2248 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2249 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2250 #endif
2251 }
2252
2253 cachep->colour_off = cache_line_size();
2254 /* Offset must be a multiple of the alignment. */
2255 if (cachep->colour_off < cachep->align)
2256 cachep->colour_off = cachep->align;
2257 cachep->colour = left_over / cachep->colour_off;
2258 cachep->freelist_size = freelist_size;
2259 cachep->flags = flags;
2260 cachep->allocflags = __GFP_COMP;
2261 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2262 cachep->allocflags |= GFP_DMA;
2263 cachep->size = size;
2264 cachep->reciprocal_buffer_size = reciprocal_value(size);
2265
2266 if (flags & CFLGS_OFF_SLAB) {
2267 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2268 /*
2269 * This is a possibility for one of the kmalloc_{dma,}_caches.
2270 * But since we go off slab only for object size greater than
2271 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2272 * in ascending order,this should not happen at all.
2273 * But leave a BUG_ON for some lucky dude.
2274 */
2275 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2276 }
2277
2278 err = setup_cpu_cache(cachep, gfp);
2279 if (err) {
2280 __kmem_cache_shutdown(cachep);
2281 return err;
2282 }
2283
2284 return 0;
2285 }
2286
2287 #if DEBUG
2288 static void check_irq_off(void)
2289 {
2290 BUG_ON(!irqs_disabled());
2291 }
2292
2293 static void check_irq_on(void)
2294 {
2295 BUG_ON(irqs_disabled());
2296 }
2297
2298 static void check_spinlock_acquired(struct kmem_cache *cachep)
2299 {
2300 #ifdef CONFIG_SMP
2301 check_irq_off();
2302 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2303 #endif
2304 }
2305
2306 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2307 {
2308 #ifdef CONFIG_SMP
2309 check_irq_off();
2310 assert_spin_locked(&get_node(cachep, node)->list_lock);
2311 #endif
2312 }
2313
2314 #else
2315 #define check_irq_off() do { } while(0)
2316 #define check_irq_on() do { } while(0)
2317 #define check_spinlock_acquired(x) do { } while(0)
2318 #define check_spinlock_acquired_node(x, y) do { } while(0)
2319 #endif
2320
2321 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2322 struct array_cache *ac,
2323 int force, int node);
2324
2325 static void do_drain(void *arg)
2326 {
2327 struct kmem_cache *cachep = arg;
2328 struct array_cache *ac;
2329 int node = numa_mem_id();
2330 struct kmem_cache_node *n;
2331 LIST_HEAD(list);
2332
2333 check_irq_off();
2334 ac = cpu_cache_get(cachep);
2335 n = get_node(cachep, node);
2336 spin_lock(&n->list_lock);
2337 free_block(cachep, ac->entry, ac->avail, node, &list);
2338 spin_unlock(&n->list_lock);
2339 slabs_destroy(cachep, &list);
2340 ac->avail = 0;
2341 }
2342
2343 static void drain_cpu_caches(struct kmem_cache *cachep)
2344 {
2345 struct kmem_cache_node *n;
2346 int node;
2347
2348 on_each_cpu(do_drain, cachep, 1);
2349 check_irq_on();
2350 for_each_kmem_cache_node(cachep, node, n)
2351 if (n->alien)
2352 drain_alien_cache(cachep, n->alien);
2353
2354 for_each_kmem_cache_node(cachep, node, n)
2355 drain_array(cachep, n, n->shared, 1, node);
2356 }
2357
2358 /*
2359 * Remove slabs from the list of free slabs.
2360 * Specify the number of slabs to drain in tofree.
2361 *
2362 * Returns the actual number of slabs released.
2363 */
2364 static int drain_freelist(struct kmem_cache *cache,
2365 struct kmem_cache_node *n, int tofree)
2366 {
2367 struct list_head *p;
2368 int nr_freed;
2369 struct page *page;
2370
2371 nr_freed = 0;
2372 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2373
2374 spin_lock_irq(&n->list_lock);
2375 p = n->slabs_free.prev;
2376 if (p == &n->slabs_free) {
2377 spin_unlock_irq(&n->list_lock);
2378 goto out;
2379 }
2380
2381 page = list_entry(p, struct page, lru);
2382 #if DEBUG
2383 BUG_ON(page->active);
2384 #endif
2385 list_del(&page->lru);
2386 /*
2387 * Safe to drop the lock. The slab is no longer linked
2388 * to the cache.
2389 */
2390 n->free_objects -= cache->num;
2391 spin_unlock_irq(&n->list_lock);
2392 slab_destroy(cache, page);
2393 nr_freed++;
2394 }
2395 out:
2396 return nr_freed;
2397 }
2398
2399 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2400 {
2401 int ret = 0;
2402 int node;
2403 struct kmem_cache_node *n;
2404
2405 drain_cpu_caches(cachep);
2406
2407 check_irq_on();
2408 for_each_kmem_cache_node(cachep, node, n) {
2409 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2410
2411 ret += !list_empty(&n->slabs_full) ||
2412 !list_empty(&n->slabs_partial);
2413 }
2414 return (ret ? 1 : 0);
2415 }
2416
2417 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2418 {
2419 int i;
2420 struct kmem_cache_node *n;
2421 int rc = __kmem_cache_shrink(cachep, false);
2422
2423 if (rc)
2424 return rc;
2425
2426 free_percpu(cachep->cpu_cache);
2427
2428 /* NUMA: free the node structures */
2429 for_each_kmem_cache_node(cachep, i, n) {
2430 kfree(n->shared);
2431 free_alien_cache(n->alien);
2432 kfree(n);
2433 cachep->node[i] = NULL;
2434 }
2435 return 0;
2436 }
2437
2438 /*
2439 * Get the memory for a slab management obj.
2440 *
2441 * For a slab cache when the slab descriptor is off-slab, the
2442 * slab descriptor can't come from the same cache which is being created,
2443 * Because if it is the case, that means we defer the creation of
2444 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2445 * And we eventually call down to __kmem_cache_create(), which
2446 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2447 * This is a "chicken-and-egg" problem.
2448 *
2449 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2450 * which are all initialized during kmem_cache_init().
2451 */
2452 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2453 struct page *page, int colour_off,
2454 gfp_t local_flags, int nodeid)
2455 {
2456 void *freelist;
2457 void *addr = page_address(page);
2458
2459 if (OFF_SLAB(cachep)) {
2460 /* Slab management obj is off-slab. */
2461 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2462 local_flags, nodeid);
2463 if (!freelist)
2464 return NULL;
2465 } else {
2466 freelist = addr + colour_off;
2467 colour_off += cachep->freelist_size;
2468 }
2469 page->active = 0;
2470 page->s_mem = addr + colour_off;
2471 return freelist;
2472 }
2473
2474 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2475 {
2476 return ((freelist_idx_t *)page->freelist)[idx];
2477 }
2478
2479 static inline void set_free_obj(struct page *page,
2480 unsigned int idx, freelist_idx_t val)
2481 {
2482 ((freelist_idx_t *)(page->freelist))[idx] = val;
2483 }
2484
2485 static void cache_init_objs(struct kmem_cache *cachep,
2486 struct page *page)
2487 {
2488 int i;
2489
2490 for (i = 0; i < cachep->num; i++) {
2491 void *objp = index_to_obj(cachep, page, i);
2492 #if DEBUG
2493 /* need to poison the objs? */
2494 if (cachep->flags & SLAB_POISON)
2495 poison_obj(cachep, objp, POISON_FREE);
2496 if (cachep->flags & SLAB_STORE_USER)
2497 *dbg_userword(cachep, objp) = NULL;
2498
2499 if (cachep->flags & SLAB_RED_ZONE) {
2500 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2501 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2502 }
2503 /*
2504 * Constructors are not allowed to allocate memory from the same
2505 * cache which they are a constructor for. Otherwise, deadlock.
2506 * They must also be threaded.
2507 */
2508 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2509 cachep->ctor(objp + obj_offset(cachep));
2510
2511 if (cachep->flags & SLAB_RED_ZONE) {
2512 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2513 slab_error(cachep, "constructor overwrote the"
2514 " end of an object");
2515 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2516 slab_error(cachep, "constructor overwrote the"
2517 " start of an object");
2518 }
2519 if ((cachep->size % PAGE_SIZE) == 0 &&
2520 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2521 kernel_map_pages(virt_to_page(objp),
2522 cachep->size / PAGE_SIZE, 0);
2523 #else
2524 if (cachep->ctor)
2525 cachep->ctor(objp);
2526 #endif
2527 set_obj_status(page, i, OBJECT_FREE);
2528 set_free_obj(page, i, i);
2529 }
2530 }
2531
2532 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2533 {
2534 if (CONFIG_ZONE_DMA_FLAG) {
2535 if (flags & GFP_DMA)
2536 BUG_ON(!(cachep->allocflags & GFP_DMA));
2537 else
2538 BUG_ON(cachep->allocflags & GFP_DMA);
2539 }
2540 }
2541
2542 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2543 int nodeid)
2544 {
2545 void *objp;
2546
2547 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2548 page->active++;
2549 #if DEBUG
2550 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2551 #endif
2552
2553 return objp;
2554 }
2555
2556 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2557 void *objp, int nodeid)
2558 {
2559 unsigned int objnr = obj_to_index(cachep, page, objp);
2560 #if DEBUG
2561 unsigned int i;
2562
2563 /* Verify that the slab belongs to the intended node */
2564 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2565
2566 /* Verify double free bug */
2567 for (i = page->active; i < cachep->num; i++) {
2568 if (get_free_obj(page, i) == objnr) {
2569 printk(KERN_ERR "slab: double free detected in cache "
2570 "'%s', objp %p\n", cachep->name, objp);
2571 BUG();
2572 }
2573 }
2574 #endif
2575 page->active--;
2576 set_free_obj(page, page->active, objnr);
2577 }
2578
2579 /*
2580 * Map pages beginning at addr to the given cache and slab. This is required
2581 * for the slab allocator to be able to lookup the cache and slab of a
2582 * virtual address for kfree, ksize, and slab debugging.
2583 */
2584 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2585 void *freelist)
2586 {
2587 page->slab_cache = cache;
2588 page->freelist = freelist;
2589 }
2590
2591 /*
2592 * Grow (by 1) the number of slabs within a cache. This is called by
2593 * kmem_cache_alloc() when there are no active objs left in a cache.
2594 */
2595 static int cache_grow(struct kmem_cache *cachep,
2596 gfp_t flags, int nodeid, struct page *page)
2597 {
2598 void *freelist;
2599 size_t offset;
2600 gfp_t local_flags;
2601 struct kmem_cache_node *n;
2602
2603 /*
2604 * Be lazy and only check for valid flags here, keeping it out of the
2605 * critical path in kmem_cache_alloc().
2606 */
2607 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2608 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2609 BUG();
2610 }
2611 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2612
2613 /* Take the node list lock to change the colour_next on this node */
2614 check_irq_off();
2615 n = get_node(cachep, nodeid);
2616 spin_lock(&n->list_lock);
2617
2618 /* Get colour for the slab, and cal the next value. */
2619 offset = n->colour_next;
2620 n->colour_next++;
2621 if (n->colour_next >= cachep->colour)
2622 n->colour_next = 0;
2623 spin_unlock(&n->list_lock);
2624
2625 offset *= cachep->colour_off;
2626
2627 if (local_flags & __GFP_WAIT)
2628 local_irq_enable();
2629
2630 /*
2631 * The test for missing atomic flag is performed here, rather than
2632 * the more obvious place, simply to reduce the critical path length
2633 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2634 * will eventually be caught here (where it matters).
2635 */
2636 kmem_flagcheck(cachep, flags);
2637
2638 /*
2639 * Get mem for the objs. Attempt to allocate a physical page from
2640 * 'nodeid'.
2641 */
2642 if (!page)
2643 page = kmem_getpages(cachep, local_flags, nodeid);
2644 if (!page)
2645 goto failed;
2646
2647 /* Get slab management. */
2648 freelist = alloc_slabmgmt(cachep, page, offset,
2649 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2650 if (!freelist)
2651 goto opps1;
2652
2653 slab_map_pages(cachep, page, freelist);
2654
2655 cache_init_objs(cachep, page);
2656
2657 if (local_flags & __GFP_WAIT)
2658 local_irq_disable();
2659 check_irq_off();
2660 spin_lock(&n->list_lock);
2661
2662 /* Make slab active. */
2663 list_add_tail(&page->lru, &(n->slabs_free));
2664 STATS_INC_GROWN(cachep);
2665 n->free_objects += cachep->num;
2666 spin_unlock(&n->list_lock);
2667 return 1;
2668 opps1:
2669 kmem_freepages(cachep, page);
2670 failed:
2671 if (local_flags & __GFP_WAIT)
2672 local_irq_disable();
2673 return 0;
2674 }
2675
2676 #if DEBUG
2677
2678 /*
2679 * Perform extra freeing checks:
2680 * - detect bad pointers.
2681 * - POISON/RED_ZONE checking
2682 */
2683 static void kfree_debugcheck(const void *objp)
2684 {
2685 if (!virt_addr_valid(objp)) {
2686 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2687 (unsigned long)objp);
2688 BUG();
2689 }
2690 }
2691
2692 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2693 {
2694 unsigned long long redzone1, redzone2;
2695
2696 redzone1 = *dbg_redzone1(cache, obj);
2697 redzone2 = *dbg_redzone2(cache, obj);
2698
2699 /*
2700 * Redzone is ok.
2701 */
2702 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2703 return;
2704
2705 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2706 slab_error(cache, "double free detected");
2707 else
2708 slab_error(cache, "memory outside object was overwritten");
2709
2710 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2711 obj, redzone1, redzone2);
2712 }
2713
2714 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2715 unsigned long caller)
2716 {
2717 unsigned int objnr;
2718 struct page *page;
2719
2720 BUG_ON(virt_to_cache(objp) != cachep);
2721
2722 objp -= obj_offset(cachep);
2723 kfree_debugcheck(objp);
2724 page = virt_to_head_page(objp);
2725
2726 if (cachep->flags & SLAB_RED_ZONE) {
2727 verify_redzone_free(cachep, objp);
2728 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2729 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2730 }
2731 if (cachep->flags & SLAB_STORE_USER)
2732 *dbg_userword(cachep, objp) = (void *)caller;
2733
2734 objnr = obj_to_index(cachep, page, objp);
2735
2736 BUG_ON(objnr >= cachep->num);
2737 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2738
2739 set_obj_status(page, objnr, OBJECT_FREE);
2740 if (cachep->flags & SLAB_POISON) {
2741 #ifdef CONFIG_DEBUG_PAGEALLOC
2742 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2743 store_stackinfo(cachep, objp, caller);
2744 kernel_map_pages(virt_to_page(objp),
2745 cachep->size / PAGE_SIZE, 0);
2746 } else {
2747 poison_obj(cachep, objp, POISON_FREE);
2748 }
2749 #else
2750 poison_obj(cachep, objp, POISON_FREE);
2751 #endif
2752 }
2753 return objp;
2754 }
2755
2756 #else
2757 #define kfree_debugcheck(x) do { } while(0)
2758 #define cache_free_debugcheck(x,objp,z) (objp)
2759 #endif
2760
2761 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2762 bool force_refill)
2763 {
2764 int batchcount;
2765 struct kmem_cache_node *n;
2766 struct array_cache *ac;
2767 int node;
2768
2769 check_irq_off();
2770 node = numa_mem_id();
2771 if (unlikely(force_refill))
2772 goto force_grow;
2773 retry:
2774 ac = cpu_cache_get(cachep);
2775 batchcount = ac->batchcount;
2776 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2777 /*
2778 * If there was little recent activity on this cache, then
2779 * perform only a partial refill. Otherwise we could generate
2780 * refill bouncing.
2781 */
2782 batchcount = BATCHREFILL_LIMIT;
2783 }
2784 n = get_node(cachep, node);
2785
2786 BUG_ON(ac->avail > 0 || !n);
2787 spin_lock(&n->list_lock);
2788
2789 /* See if we can refill from the shared array */
2790 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2791 n->shared->touched = 1;
2792 goto alloc_done;
2793 }
2794
2795 while (batchcount > 0) {
2796 struct list_head *entry;
2797 struct page *page;
2798 /* Get slab alloc is to come from. */
2799 entry = n->slabs_partial.next;
2800 if (entry == &n->slabs_partial) {
2801 n->free_touched = 1;
2802 entry = n->slabs_free.next;
2803 if (entry == &n->slabs_free)
2804 goto must_grow;
2805 }
2806
2807 page = list_entry(entry, struct page, lru);
2808 check_spinlock_acquired(cachep);
2809
2810 /*
2811 * The slab was either on partial or free list so
2812 * there must be at least one object available for
2813 * allocation.
2814 */
2815 BUG_ON(page->active >= cachep->num);
2816
2817 while (page->active < cachep->num && batchcount--) {
2818 STATS_INC_ALLOCED(cachep);
2819 STATS_INC_ACTIVE(cachep);
2820 STATS_SET_HIGH(cachep);
2821
2822 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2823 node));
2824 }
2825
2826 /* move slabp to correct slabp list: */
2827 list_del(&page->lru);
2828 if (page->active == cachep->num)
2829 list_add(&page->lru, &n->slabs_full);
2830 else
2831 list_add(&page->lru, &n->slabs_partial);
2832 }
2833
2834 must_grow:
2835 n->free_objects -= ac->avail;
2836 alloc_done:
2837 spin_unlock(&n->list_lock);
2838
2839 if (unlikely(!ac->avail)) {
2840 int x;
2841 force_grow:
2842 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2843
2844 /* cache_grow can reenable interrupts, then ac could change. */
2845 ac = cpu_cache_get(cachep);
2846 node = numa_mem_id();
2847
2848 /* no objects in sight? abort */
2849 if (!x && (ac->avail == 0 || force_refill))
2850 return NULL;
2851
2852 if (!ac->avail) /* objects refilled by interrupt? */
2853 goto retry;
2854 }
2855 ac->touched = 1;
2856
2857 return ac_get_obj(cachep, ac, flags, force_refill);
2858 }
2859
2860 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2861 gfp_t flags)
2862 {
2863 might_sleep_if(flags & __GFP_WAIT);
2864 #if DEBUG
2865 kmem_flagcheck(cachep, flags);
2866 #endif
2867 }
2868
2869 #if DEBUG
2870 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2871 gfp_t flags, void *objp, unsigned long caller)
2872 {
2873 struct page *page;
2874
2875 if (!objp)
2876 return objp;
2877 if (cachep->flags & SLAB_POISON) {
2878 #ifdef CONFIG_DEBUG_PAGEALLOC
2879 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2880 kernel_map_pages(virt_to_page(objp),
2881 cachep->size / PAGE_SIZE, 1);
2882 else
2883 check_poison_obj(cachep, objp);
2884 #else
2885 check_poison_obj(cachep, objp);
2886 #endif
2887 poison_obj(cachep, objp, POISON_INUSE);
2888 }
2889 if (cachep->flags & SLAB_STORE_USER)
2890 *dbg_userword(cachep, objp) = (void *)caller;
2891
2892 if (cachep->flags & SLAB_RED_ZONE) {
2893 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2894 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2895 slab_error(cachep, "double free, or memory outside"
2896 " object was overwritten");
2897 printk(KERN_ERR
2898 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2899 objp, *dbg_redzone1(cachep, objp),
2900 *dbg_redzone2(cachep, objp));
2901 }
2902 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2903 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2904 }
2905
2906 page = virt_to_head_page(objp);
2907 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2908 objp += obj_offset(cachep);
2909 if (cachep->ctor && cachep->flags & SLAB_POISON)
2910 cachep->ctor(objp);
2911 if (ARCH_SLAB_MINALIGN &&
2912 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2913 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2914 objp, (int)ARCH_SLAB_MINALIGN);
2915 }
2916 return objp;
2917 }
2918 #else
2919 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2920 #endif
2921
2922 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2923 {
2924 if (unlikely(cachep == kmem_cache))
2925 return false;
2926
2927 return should_failslab(cachep->object_size, flags, cachep->flags);
2928 }
2929
2930 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2931 {
2932 void *objp;
2933 struct array_cache *ac;
2934 bool force_refill = false;
2935
2936 check_irq_off();
2937
2938 ac = cpu_cache_get(cachep);
2939 if (likely(ac->avail)) {
2940 ac->touched = 1;
2941 objp = ac_get_obj(cachep, ac, flags, false);
2942
2943 /*
2944 * Allow for the possibility all avail objects are not allowed
2945 * by the current flags
2946 */
2947 if (objp) {
2948 STATS_INC_ALLOCHIT(cachep);
2949 goto out;
2950 }
2951 force_refill = true;
2952 }
2953
2954 STATS_INC_ALLOCMISS(cachep);
2955 objp = cache_alloc_refill(cachep, flags, force_refill);
2956 /*
2957 * the 'ac' may be updated by cache_alloc_refill(),
2958 * and kmemleak_erase() requires its correct value.
2959 */
2960 ac = cpu_cache_get(cachep);
2961
2962 out:
2963 /*
2964 * To avoid a false negative, if an object that is in one of the
2965 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2966 * treat the array pointers as a reference to the object.
2967 */
2968 if (objp)
2969 kmemleak_erase(&ac->entry[ac->avail]);
2970 return objp;
2971 }
2972
2973 #ifdef CONFIG_NUMA
2974 /*
2975 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2976 *
2977 * If we are in_interrupt, then process context, including cpusets and
2978 * mempolicy, may not apply and should not be used for allocation policy.
2979 */
2980 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2981 {
2982 int nid_alloc, nid_here;
2983
2984 if (in_interrupt() || (flags & __GFP_THISNODE))
2985 return NULL;
2986 nid_alloc = nid_here = numa_mem_id();
2987 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2988 nid_alloc = cpuset_slab_spread_node();
2989 else if (current->mempolicy)
2990 nid_alloc = mempolicy_slab_node();
2991 if (nid_alloc != nid_here)
2992 return ____cache_alloc_node(cachep, flags, nid_alloc);
2993 return NULL;
2994 }
2995
2996 /*
2997 * Fallback function if there was no memory available and no objects on a
2998 * certain node and fall back is permitted. First we scan all the
2999 * available node for available objects. If that fails then we
3000 * perform an allocation without specifying a node. This allows the page
3001 * allocator to do its reclaim / fallback magic. We then insert the
3002 * slab into the proper nodelist and then allocate from it.
3003 */
3004 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3005 {
3006 struct zonelist *zonelist;
3007 gfp_t local_flags;
3008 struct zoneref *z;
3009 struct zone *zone;
3010 enum zone_type high_zoneidx = gfp_zone(flags);
3011 void *obj = NULL;
3012 int nid;
3013 unsigned int cpuset_mems_cookie;
3014
3015 if (flags & __GFP_THISNODE)
3016 return NULL;
3017
3018 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3019
3020 retry_cpuset:
3021 cpuset_mems_cookie = read_mems_allowed_begin();
3022 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3023
3024 retry:
3025 /*
3026 * Look through allowed nodes for objects available
3027 * from existing per node queues.
3028 */
3029 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3030 nid = zone_to_nid(zone);
3031
3032 if (cpuset_zone_allowed(zone, flags) &&
3033 get_node(cache, nid) &&
3034 get_node(cache, nid)->free_objects) {
3035 obj = ____cache_alloc_node(cache,
3036 gfp_exact_node(flags), nid);
3037 if (obj)
3038 break;
3039 }
3040 }
3041
3042 if (!obj) {
3043 /*
3044 * This allocation will be performed within the constraints
3045 * of the current cpuset / memory policy requirements.
3046 * We may trigger various forms of reclaim on the allowed
3047 * set and go into memory reserves if necessary.
3048 */
3049 struct page *page;
3050
3051 if (local_flags & __GFP_WAIT)
3052 local_irq_enable();
3053 kmem_flagcheck(cache, flags);
3054 page = kmem_getpages(cache, local_flags, numa_mem_id());
3055 if (local_flags & __GFP_WAIT)
3056 local_irq_disable();
3057 if (page) {
3058 /*
3059 * Insert into the appropriate per node queues
3060 */
3061 nid = page_to_nid(page);
3062 if (cache_grow(cache, flags, nid, page)) {
3063 obj = ____cache_alloc_node(cache,
3064 gfp_exact_node(flags), nid);
3065 if (!obj)
3066 /*
3067 * Another processor may allocate the
3068 * objects in the slab since we are
3069 * not holding any locks.
3070 */
3071 goto retry;
3072 } else {
3073 /* cache_grow already freed obj */
3074 obj = NULL;
3075 }
3076 }
3077 }
3078
3079 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3080 goto retry_cpuset;
3081 return obj;
3082 }
3083
3084 /*
3085 * A interface to enable slab creation on nodeid
3086 */
3087 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3088 int nodeid)
3089 {
3090 struct list_head *entry;
3091 struct page *page;
3092 struct kmem_cache_node *n;
3093 void *obj;
3094 int x;
3095
3096 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3097 n = get_node(cachep, nodeid);
3098 BUG_ON(!n);
3099
3100 retry:
3101 check_irq_off();
3102 spin_lock(&n->list_lock);
3103 entry = n->slabs_partial.next;
3104 if (entry == &n->slabs_partial) {
3105 n->free_touched = 1;
3106 entry = n->slabs_free.next;
3107 if (entry == &n->slabs_free)
3108 goto must_grow;
3109 }
3110
3111 page = list_entry(entry, struct page, lru);
3112 check_spinlock_acquired_node(cachep, nodeid);
3113
3114 STATS_INC_NODEALLOCS(cachep);
3115 STATS_INC_ACTIVE(cachep);
3116 STATS_SET_HIGH(cachep);
3117
3118 BUG_ON(page->active == cachep->num);
3119
3120 obj = slab_get_obj(cachep, page, nodeid);
3121 n->free_objects--;
3122 /* move slabp to correct slabp list: */
3123 list_del(&page->lru);
3124
3125 if (page->active == cachep->num)
3126 list_add(&page->lru, &n->slabs_full);
3127 else
3128 list_add(&page->lru, &n->slabs_partial);
3129
3130 spin_unlock(&n->list_lock);
3131 goto done;
3132
3133 must_grow:
3134 spin_unlock(&n->list_lock);
3135 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3136 if (x)
3137 goto retry;
3138
3139 return fallback_alloc(cachep, flags);
3140
3141 done:
3142 return obj;
3143 }
3144
3145 static __always_inline void *
3146 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3147 unsigned long caller)
3148 {
3149 unsigned long save_flags;
3150 void *ptr;
3151 int slab_node = numa_mem_id();
3152
3153 flags &= gfp_allowed_mask;
3154
3155 lockdep_trace_alloc(flags);
3156
3157 if (slab_should_failslab(cachep, flags))
3158 return NULL;
3159
3160 cachep = memcg_kmem_get_cache(cachep, flags);
3161
3162 cache_alloc_debugcheck_before(cachep, flags);
3163 local_irq_save(save_flags);
3164
3165 if (nodeid == NUMA_NO_NODE)
3166 nodeid = slab_node;
3167
3168 if (unlikely(!get_node(cachep, nodeid))) {
3169 /* Node not bootstrapped yet */
3170 ptr = fallback_alloc(cachep, flags);
3171 goto out;
3172 }
3173
3174 if (nodeid == slab_node) {
3175 /*
3176 * Use the locally cached objects if possible.
3177 * However ____cache_alloc does not allow fallback
3178 * to other nodes. It may fail while we still have
3179 * objects on other nodes available.
3180 */
3181 ptr = ____cache_alloc(cachep, flags);
3182 if (ptr)
3183 goto out;
3184 }
3185 /* ___cache_alloc_node can fall back to other nodes */
3186 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3187 out:
3188 local_irq_restore(save_flags);
3189 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3190 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3191 flags);
3192
3193 if (likely(ptr)) {
3194 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3195 if (unlikely(flags & __GFP_ZERO))
3196 memset(ptr, 0, cachep->object_size);
3197 }
3198
3199 memcg_kmem_put_cache(cachep);
3200 return ptr;
3201 }
3202
3203 static __always_inline void *
3204 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3205 {
3206 void *objp;
3207
3208 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3209 objp = alternate_node_alloc(cache, flags);
3210 if (objp)
3211 goto out;
3212 }
3213 objp = ____cache_alloc(cache, flags);
3214
3215 /*
3216 * We may just have run out of memory on the local node.
3217 * ____cache_alloc_node() knows how to locate memory on other nodes
3218 */
3219 if (!objp)
3220 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3221
3222 out:
3223 return objp;
3224 }
3225 #else
3226
3227 static __always_inline void *
3228 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3229 {
3230 return ____cache_alloc(cachep, flags);
3231 }
3232
3233 #endif /* CONFIG_NUMA */
3234
3235 static __always_inline void *
3236 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3237 {
3238 unsigned long save_flags;
3239 void *objp;
3240
3241 flags &= gfp_allowed_mask;
3242
3243 lockdep_trace_alloc(flags);
3244
3245 if (slab_should_failslab(cachep, flags))
3246 return NULL;
3247
3248 cachep = memcg_kmem_get_cache(cachep, flags);
3249
3250 cache_alloc_debugcheck_before(cachep, flags);
3251 local_irq_save(save_flags);
3252 objp = __do_cache_alloc(cachep, flags);
3253 local_irq_restore(save_flags);
3254 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3255 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3256 flags);
3257 prefetchw(objp);
3258
3259 if (likely(objp)) {
3260 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3261 if (unlikely(flags & __GFP_ZERO))
3262 memset(objp, 0, cachep->object_size);
3263 }
3264
3265 memcg_kmem_put_cache(cachep);
3266 return objp;
3267 }
3268
3269 /*
3270 * Caller needs to acquire correct kmem_cache_node's list_lock
3271 * @list: List of detached free slabs should be freed by caller
3272 */
3273 static void free_block(struct kmem_cache *cachep, void **objpp,
3274 int nr_objects, int node, struct list_head *list)
3275 {
3276 int i;
3277 struct kmem_cache_node *n = get_node(cachep, node);
3278
3279 for (i = 0; i < nr_objects; i++) {
3280 void *objp;
3281 struct page *page;
3282
3283 clear_obj_pfmemalloc(&objpp[i]);
3284 objp = objpp[i];
3285
3286 page = virt_to_head_page(objp);
3287 list_del(&page->lru);
3288 check_spinlock_acquired_node(cachep, node);
3289 slab_put_obj(cachep, page, objp, node);
3290 STATS_DEC_ACTIVE(cachep);
3291 n->free_objects++;
3292
3293 /* fixup slab chains */
3294 if (page->active == 0) {
3295 if (n->free_objects > n->free_limit) {
3296 n->free_objects -= cachep->num;
3297 list_add_tail(&page->lru, list);
3298 } else {
3299 list_add(&page->lru, &n->slabs_free);
3300 }
3301 } else {
3302 /* Unconditionally move a slab to the end of the
3303 * partial list on free - maximum time for the
3304 * other objects to be freed, too.
3305 */
3306 list_add_tail(&page->lru, &n->slabs_partial);
3307 }
3308 }
3309 }
3310
3311 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3312 {
3313 int batchcount;
3314 struct kmem_cache_node *n;
3315 int node = numa_mem_id();
3316 LIST_HEAD(list);
3317
3318 batchcount = ac->batchcount;
3319 #if DEBUG
3320 BUG_ON(!batchcount || batchcount > ac->avail);
3321 #endif
3322 check_irq_off();
3323 n = get_node(cachep, node);
3324 spin_lock(&n->list_lock);
3325 if (n->shared) {
3326 struct array_cache *shared_array = n->shared;
3327 int max = shared_array->limit - shared_array->avail;
3328 if (max) {
3329 if (batchcount > max)
3330 batchcount = max;
3331 memcpy(&(shared_array->entry[shared_array->avail]),
3332 ac->entry, sizeof(void *) * batchcount);
3333 shared_array->avail += batchcount;
3334 goto free_done;
3335 }
3336 }
3337
3338 free_block(cachep, ac->entry, batchcount, node, &list);
3339 free_done:
3340 #if STATS
3341 {
3342 int i = 0;
3343 struct list_head *p;
3344
3345 p = n->slabs_free.next;
3346 while (p != &(n->slabs_free)) {
3347 struct page *page;
3348
3349 page = list_entry(p, struct page, lru);
3350 BUG_ON(page->active);
3351
3352 i++;
3353 p = p->next;
3354 }
3355 STATS_SET_FREEABLE(cachep, i);
3356 }
3357 #endif
3358 spin_unlock(&n->list_lock);
3359 slabs_destroy(cachep, &list);
3360 ac->avail -= batchcount;
3361 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3362 }
3363
3364 /*
3365 * Release an obj back to its cache. If the obj has a constructed state, it must
3366 * be in this state _before_ it is released. Called with disabled ints.
3367 */
3368 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3369 unsigned long caller)
3370 {
3371 struct array_cache *ac = cpu_cache_get(cachep);
3372
3373 check_irq_off();
3374 kmemleak_free_recursive(objp, cachep->flags);
3375 objp = cache_free_debugcheck(cachep, objp, caller);
3376
3377 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3378
3379 /*
3380 * Skip calling cache_free_alien() when the platform is not numa.
3381 * This will avoid cache misses that happen while accessing slabp (which
3382 * is per page memory reference) to get nodeid. Instead use a global
3383 * variable to skip the call, which is mostly likely to be present in
3384 * the cache.
3385 */
3386 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3387 return;
3388
3389 if (ac->avail < ac->limit) {
3390 STATS_INC_FREEHIT(cachep);
3391 } else {
3392 STATS_INC_FREEMISS(cachep);
3393 cache_flusharray(cachep, ac);
3394 }
3395
3396 ac_put_obj(cachep, ac, objp);
3397 }
3398
3399 /**
3400 * kmem_cache_alloc - Allocate an object
3401 * @cachep: The cache to allocate from.
3402 * @flags: See kmalloc().
3403 *
3404 * Allocate an object from this cache. The flags are only relevant
3405 * if the cache has no available objects.
3406 */
3407 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3408 {
3409 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3410
3411 trace_kmem_cache_alloc(_RET_IP_, ret,
3412 cachep->object_size, cachep->size, flags);
3413
3414 return ret;
3415 }
3416 EXPORT_SYMBOL(kmem_cache_alloc);
3417
3418 #ifdef CONFIG_TRACING
3419 void *
3420 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3421 {
3422 void *ret;
3423
3424 ret = slab_alloc(cachep, flags, _RET_IP_);
3425
3426 trace_kmalloc(_RET_IP_, ret,
3427 size, cachep->size, flags);
3428 return ret;
3429 }
3430 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3431 #endif
3432
3433 #ifdef CONFIG_NUMA
3434 /**
3435 * kmem_cache_alloc_node - Allocate an object on the specified node
3436 * @cachep: The cache to allocate from.
3437 * @flags: See kmalloc().
3438 * @nodeid: node number of the target node.
3439 *
3440 * Identical to kmem_cache_alloc but it will allocate memory on the given
3441 * node, which can improve the performance for cpu bound structures.
3442 *
3443 * Fallback to other node is possible if __GFP_THISNODE is not set.
3444 */
3445 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3446 {
3447 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3448
3449 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3450 cachep->object_size, cachep->size,
3451 flags, nodeid);
3452
3453 return ret;
3454 }
3455 EXPORT_SYMBOL(kmem_cache_alloc_node);
3456
3457 #ifdef CONFIG_TRACING
3458 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3459 gfp_t flags,
3460 int nodeid,
3461 size_t size)
3462 {
3463 void *ret;
3464
3465 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3466
3467 trace_kmalloc_node(_RET_IP_, ret,
3468 size, cachep->size,
3469 flags, nodeid);
3470 return ret;
3471 }
3472 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3473 #endif
3474
3475 static __always_inline void *
3476 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3477 {
3478 struct kmem_cache *cachep;
3479
3480 cachep = kmalloc_slab(size, flags);
3481 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3482 return cachep;
3483 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3484 }
3485
3486 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3487 {
3488 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3489 }
3490 EXPORT_SYMBOL(__kmalloc_node);
3491
3492 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3493 int node, unsigned long caller)
3494 {
3495 return __do_kmalloc_node(size, flags, node, caller);
3496 }
3497 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3498 #endif /* CONFIG_NUMA */
3499
3500 /**
3501 * __do_kmalloc - allocate memory
3502 * @size: how many bytes of memory are required.
3503 * @flags: the type of memory to allocate (see kmalloc).
3504 * @caller: function caller for debug tracking of the caller
3505 */
3506 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3507 unsigned long caller)
3508 {
3509 struct kmem_cache *cachep;
3510 void *ret;
3511
3512 cachep = kmalloc_slab(size, flags);
3513 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3514 return cachep;
3515 ret = slab_alloc(cachep, flags, caller);
3516
3517 trace_kmalloc(caller, ret,
3518 size, cachep->size, flags);
3519
3520 return ret;
3521 }
3522
3523 void *__kmalloc(size_t size, gfp_t flags)
3524 {
3525 return __do_kmalloc(size, flags, _RET_IP_);
3526 }
3527 EXPORT_SYMBOL(__kmalloc);
3528
3529 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3530 {
3531 return __do_kmalloc(size, flags, caller);
3532 }
3533 EXPORT_SYMBOL(__kmalloc_track_caller);
3534
3535 /**
3536 * kmem_cache_free - Deallocate an object
3537 * @cachep: The cache the allocation was from.
3538 * @objp: The previously allocated object.
3539 *
3540 * Free an object which was previously allocated from this
3541 * cache.
3542 */
3543 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3544 {
3545 unsigned long flags;
3546 cachep = cache_from_obj(cachep, objp);
3547 if (!cachep)
3548 return;
3549
3550 local_irq_save(flags);
3551 debug_check_no_locks_freed(objp, cachep->object_size);
3552 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3553 debug_check_no_obj_freed(objp, cachep->object_size);
3554 __cache_free(cachep, objp, _RET_IP_);
3555 local_irq_restore(flags);
3556
3557 trace_kmem_cache_free(_RET_IP_, objp);
3558 }
3559 EXPORT_SYMBOL(kmem_cache_free);
3560
3561 /**
3562 * kfree - free previously allocated memory
3563 * @objp: pointer returned by kmalloc.
3564 *
3565 * If @objp is NULL, no operation is performed.
3566 *
3567 * Don't free memory not originally allocated by kmalloc()
3568 * or you will run into trouble.
3569 */
3570 void kfree(const void *objp)
3571 {
3572 struct kmem_cache *c;
3573 unsigned long flags;
3574
3575 trace_kfree(_RET_IP_, objp);
3576
3577 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3578 return;
3579 local_irq_save(flags);
3580 kfree_debugcheck(objp);
3581 c = virt_to_cache(objp);
3582 debug_check_no_locks_freed(objp, c->object_size);
3583
3584 debug_check_no_obj_freed(objp, c->object_size);
3585 __cache_free(c, (void *)objp, _RET_IP_);
3586 local_irq_restore(flags);
3587 }
3588 EXPORT_SYMBOL(kfree);
3589
3590 /*
3591 * This initializes kmem_cache_node or resizes various caches for all nodes.
3592 */
3593 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3594 {
3595 int node;
3596 struct kmem_cache_node *n;
3597 struct array_cache *new_shared;
3598 struct alien_cache **new_alien = NULL;
3599
3600 for_each_online_node(node) {
3601
3602 if (use_alien_caches) {
3603 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3604 if (!new_alien)
3605 goto fail;
3606 }
3607
3608 new_shared = NULL;
3609 if (cachep->shared) {
3610 new_shared = alloc_arraycache(node,
3611 cachep->shared*cachep->batchcount,
3612 0xbaadf00d, gfp);
3613 if (!new_shared) {
3614 free_alien_cache(new_alien);
3615 goto fail;
3616 }
3617 }
3618
3619 n = get_node(cachep, node);
3620 if (n) {
3621 struct array_cache *shared = n->shared;
3622 LIST_HEAD(list);
3623
3624 spin_lock_irq(&n->list_lock);
3625
3626 if (shared)
3627 free_block(cachep, shared->entry,
3628 shared->avail, node, &list);
3629
3630 n->shared = new_shared;
3631 if (!n->alien) {
3632 n->alien = new_alien;
3633 new_alien = NULL;
3634 }
3635 n->free_limit = (1 + nr_cpus_node(node)) *
3636 cachep->batchcount + cachep->num;
3637 spin_unlock_irq(&n->list_lock);
3638 slabs_destroy(cachep, &list);
3639 kfree(shared);
3640 free_alien_cache(new_alien);
3641 continue;
3642 }
3643 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3644 if (!n) {
3645 free_alien_cache(new_alien);
3646 kfree(new_shared);
3647 goto fail;
3648 }
3649
3650 kmem_cache_node_init(n);
3651 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3652 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3653 n->shared = new_shared;
3654 n->alien = new_alien;
3655 n->free_limit = (1 + nr_cpus_node(node)) *
3656 cachep->batchcount + cachep->num;
3657 cachep->node[node] = n;
3658 }
3659 return 0;
3660
3661 fail:
3662 if (!cachep->list.next) {
3663 /* Cache is not active yet. Roll back what we did */
3664 node--;
3665 while (node >= 0) {
3666 n = get_node(cachep, node);
3667 if (n) {
3668 kfree(n->shared);
3669 free_alien_cache(n->alien);
3670 kfree(n);
3671 cachep->node[node] = NULL;
3672 }
3673 node--;
3674 }
3675 }
3676 return -ENOMEM;
3677 }
3678
3679 /* Always called with the slab_mutex held */
3680 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3681 int batchcount, int shared, gfp_t gfp)
3682 {
3683 struct array_cache __percpu *cpu_cache, *prev;
3684 int cpu;
3685
3686 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3687 if (!cpu_cache)
3688 return -ENOMEM;
3689
3690 prev = cachep->cpu_cache;
3691 cachep->cpu_cache = cpu_cache;
3692 kick_all_cpus_sync();
3693
3694 check_irq_on();
3695 cachep->batchcount = batchcount;
3696 cachep->limit = limit;
3697 cachep->shared = shared;
3698
3699 if (!prev)
3700 goto alloc_node;
3701
3702 for_each_online_cpu(cpu) {
3703 LIST_HEAD(list);
3704 int node;
3705 struct kmem_cache_node *n;
3706 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3707
3708 node = cpu_to_mem(cpu);
3709 n = get_node(cachep, node);
3710 spin_lock_irq(&n->list_lock);
3711 free_block(cachep, ac->entry, ac->avail, node, &list);
3712 spin_unlock_irq(&n->list_lock);
3713 slabs_destroy(cachep, &list);
3714 }
3715 free_percpu(prev);
3716
3717 alloc_node:
3718 return alloc_kmem_cache_node(cachep, gfp);
3719 }
3720
3721 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3722 int batchcount, int shared, gfp_t gfp)
3723 {
3724 int ret;
3725 struct kmem_cache *c;
3726
3727 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3728
3729 if (slab_state < FULL)
3730 return ret;
3731
3732 if ((ret < 0) || !is_root_cache(cachep))
3733 return ret;
3734
3735 lockdep_assert_held(&slab_mutex);
3736 for_each_memcg_cache(c, cachep) {
3737 /* return value determined by the root cache only */
3738 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3739 }
3740
3741 return ret;
3742 }
3743
3744 /* Called with slab_mutex held always */
3745 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3746 {
3747 int err;
3748 int limit = 0;
3749 int shared = 0;
3750 int batchcount = 0;
3751
3752 if (!is_root_cache(cachep)) {
3753 struct kmem_cache *root = memcg_root_cache(cachep);
3754 limit = root->limit;
3755 shared = root->shared;
3756 batchcount = root->batchcount;
3757 }
3758
3759 if (limit && shared && batchcount)
3760 goto skip_setup;
3761 /*
3762 * The head array serves three purposes:
3763 * - create a LIFO ordering, i.e. return objects that are cache-warm
3764 * - reduce the number of spinlock operations.
3765 * - reduce the number of linked list operations on the slab and
3766 * bufctl chains: array operations are cheaper.
3767 * The numbers are guessed, we should auto-tune as described by
3768 * Bonwick.
3769 */
3770 if (cachep->size > 131072)
3771 limit = 1;
3772 else if (cachep->size > PAGE_SIZE)
3773 limit = 8;
3774 else if (cachep->size > 1024)
3775 limit = 24;
3776 else if (cachep->size > 256)
3777 limit = 54;
3778 else
3779 limit = 120;
3780
3781 /*
3782 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3783 * allocation behaviour: Most allocs on one cpu, most free operations
3784 * on another cpu. For these cases, an efficient object passing between
3785 * cpus is necessary. This is provided by a shared array. The array
3786 * replaces Bonwick's magazine layer.
3787 * On uniprocessor, it's functionally equivalent (but less efficient)
3788 * to a larger limit. Thus disabled by default.
3789 */
3790 shared = 0;
3791 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3792 shared = 8;
3793
3794 #if DEBUG
3795 /*
3796 * With debugging enabled, large batchcount lead to excessively long
3797 * periods with disabled local interrupts. Limit the batchcount
3798 */
3799 if (limit > 32)
3800 limit = 32;
3801 #endif
3802 batchcount = (limit + 1) / 2;
3803 skip_setup:
3804 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3805 if (err)
3806 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3807 cachep->name, -err);
3808 return err;
3809 }
3810
3811 /*
3812 * Drain an array if it contains any elements taking the node lock only if
3813 * necessary. Note that the node listlock also protects the array_cache
3814 * if drain_array() is used on the shared array.
3815 */
3816 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3817 struct array_cache *ac, int force, int node)
3818 {
3819 LIST_HEAD(list);
3820 int tofree;
3821
3822 if (!ac || !ac->avail)
3823 return;
3824 if (ac->touched && !force) {
3825 ac->touched = 0;
3826 } else {
3827 spin_lock_irq(&n->list_lock);
3828 if (ac->avail) {
3829 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3830 if (tofree > ac->avail)
3831 tofree = (ac->avail + 1) / 2;
3832 free_block(cachep, ac->entry, tofree, node, &list);
3833 ac->avail -= tofree;
3834 memmove(ac->entry, &(ac->entry[tofree]),
3835 sizeof(void *) * ac->avail);
3836 }
3837 spin_unlock_irq(&n->list_lock);
3838 slabs_destroy(cachep, &list);
3839 }
3840 }
3841
3842 /**
3843 * cache_reap - Reclaim memory from caches.
3844 * @w: work descriptor
3845 *
3846 * Called from workqueue/eventd every few seconds.
3847 * Purpose:
3848 * - clear the per-cpu caches for this CPU.
3849 * - return freeable pages to the main free memory pool.
3850 *
3851 * If we cannot acquire the cache chain mutex then just give up - we'll try
3852 * again on the next iteration.
3853 */
3854 static void cache_reap(struct work_struct *w)
3855 {
3856 struct kmem_cache *searchp;
3857 struct kmem_cache_node *n;
3858 int node = numa_mem_id();
3859 struct delayed_work *work = to_delayed_work(w);
3860
3861 if (!mutex_trylock(&slab_mutex))
3862 /* Give up. Setup the next iteration. */
3863 goto out;
3864
3865 list_for_each_entry(searchp, &slab_caches, list) {
3866 check_irq_on();
3867
3868 /*
3869 * We only take the node lock if absolutely necessary and we
3870 * have established with reasonable certainty that
3871 * we can do some work if the lock was obtained.
3872 */
3873 n = get_node(searchp, node);
3874
3875 reap_alien(searchp, n);
3876
3877 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3878
3879 /*
3880 * These are racy checks but it does not matter
3881 * if we skip one check or scan twice.
3882 */
3883 if (time_after(n->next_reap, jiffies))
3884 goto next;
3885
3886 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3887
3888 drain_array(searchp, n, n->shared, 0, node);
3889
3890 if (n->free_touched)
3891 n->free_touched = 0;
3892 else {
3893 int freed;
3894
3895 freed = drain_freelist(searchp, n, (n->free_limit +
3896 5 * searchp->num - 1) / (5 * searchp->num));
3897 STATS_ADD_REAPED(searchp, freed);
3898 }
3899 next:
3900 cond_resched();
3901 }
3902 check_irq_on();
3903 mutex_unlock(&slab_mutex);
3904 next_reap_node();
3905 out:
3906 /* Set up the next iteration */
3907 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3908 }
3909
3910 #ifdef CONFIG_SLABINFO
3911 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3912 {
3913 struct page *page;
3914 unsigned long active_objs;
3915 unsigned long num_objs;
3916 unsigned long active_slabs = 0;
3917 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3918 const char *name;
3919 char *error = NULL;
3920 int node;
3921 struct kmem_cache_node *n;
3922
3923 active_objs = 0;
3924 num_slabs = 0;
3925 for_each_kmem_cache_node(cachep, node, n) {
3926
3927 check_irq_on();
3928 spin_lock_irq(&n->list_lock);
3929
3930 list_for_each_entry(page, &n->slabs_full, lru) {
3931 if (page->active != cachep->num && !error)
3932 error = "slabs_full accounting error";
3933 active_objs += cachep->num;
3934 active_slabs++;
3935 }
3936 list_for_each_entry(page, &n->slabs_partial, lru) {
3937 if (page->active == cachep->num && !error)
3938 error = "slabs_partial accounting error";
3939 if (!page->active && !error)
3940 error = "slabs_partial accounting error";
3941 active_objs += page->active;
3942 active_slabs++;
3943 }
3944 list_for_each_entry(page, &n->slabs_free, lru) {
3945 if (page->active && !error)
3946 error = "slabs_free accounting error";
3947 num_slabs++;
3948 }
3949 free_objects += n->free_objects;
3950 if (n->shared)
3951 shared_avail += n->shared->avail;
3952
3953 spin_unlock_irq(&n->list_lock);
3954 }
3955 num_slabs += active_slabs;
3956 num_objs = num_slabs * cachep->num;
3957 if (num_objs - active_objs != free_objects && !error)
3958 error = "free_objects accounting error";
3959
3960 name = cachep->name;
3961 if (error)
3962 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3963
3964 sinfo->active_objs = active_objs;
3965 sinfo->num_objs = num_objs;
3966 sinfo->active_slabs = active_slabs;
3967 sinfo->num_slabs = num_slabs;
3968 sinfo->shared_avail = shared_avail;
3969 sinfo->limit = cachep->limit;
3970 sinfo->batchcount = cachep->batchcount;
3971 sinfo->shared = cachep->shared;
3972 sinfo->objects_per_slab = cachep->num;
3973 sinfo->cache_order = cachep->gfporder;
3974 }
3975
3976 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3977 {
3978 #if STATS
3979 { /* node stats */
3980 unsigned long high = cachep->high_mark;
3981 unsigned long allocs = cachep->num_allocations;
3982 unsigned long grown = cachep->grown;
3983 unsigned long reaped = cachep->reaped;
3984 unsigned long errors = cachep->errors;
3985 unsigned long max_freeable = cachep->max_freeable;
3986 unsigned long node_allocs = cachep->node_allocs;
3987 unsigned long node_frees = cachep->node_frees;
3988 unsigned long overflows = cachep->node_overflow;
3989
3990 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3991 "%4lu %4lu %4lu %4lu %4lu",
3992 allocs, high, grown,
3993 reaped, errors, max_freeable, node_allocs,
3994 node_frees, overflows);
3995 }
3996 /* cpu stats */
3997 {
3998 unsigned long allochit = atomic_read(&cachep->allochit);
3999 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4000 unsigned long freehit = atomic_read(&cachep->freehit);
4001 unsigned long freemiss = atomic_read(&cachep->freemiss);
4002
4003 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4004 allochit, allocmiss, freehit, freemiss);
4005 }
4006 #endif
4007 }
4008
4009 #define MAX_SLABINFO_WRITE 128
4010 /**
4011 * slabinfo_write - Tuning for the slab allocator
4012 * @file: unused
4013 * @buffer: user buffer
4014 * @count: data length
4015 * @ppos: unused
4016 */
4017 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4018 size_t count, loff_t *ppos)
4019 {
4020 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4021 int limit, batchcount, shared, res;
4022 struct kmem_cache *cachep;
4023
4024 if (count > MAX_SLABINFO_WRITE)
4025 return -EINVAL;
4026 if (copy_from_user(&kbuf, buffer, count))
4027 return -EFAULT;
4028 kbuf[MAX_SLABINFO_WRITE] = '\0';
4029
4030 tmp = strchr(kbuf, ' ');
4031 if (!tmp)
4032 return -EINVAL;
4033 *tmp = '\0';
4034 tmp++;
4035 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4036 return -EINVAL;
4037
4038 /* Find the cache in the chain of caches. */
4039 mutex_lock(&slab_mutex);
4040 res = -EINVAL;
4041 list_for_each_entry(cachep, &slab_caches, list) {
4042 if (!strcmp(cachep->name, kbuf)) {
4043 if (limit < 1 || batchcount < 1 ||
4044 batchcount > limit || shared < 0) {
4045 res = 0;
4046 } else {
4047 res = do_tune_cpucache(cachep, limit,
4048 batchcount, shared,
4049 GFP_KERNEL);
4050 }
4051 break;
4052 }
4053 }
4054 mutex_unlock(&slab_mutex);
4055 if (res >= 0)
4056 res = count;
4057 return res;
4058 }
4059
4060 #ifdef CONFIG_DEBUG_SLAB_LEAK
4061
4062 static inline int add_caller(unsigned long *n, unsigned long v)
4063 {
4064 unsigned long *p;
4065 int l;
4066 if (!v)
4067 return 1;
4068 l = n[1];
4069 p = n + 2;
4070 while (l) {
4071 int i = l/2;
4072 unsigned long *q = p + 2 * i;
4073 if (*q == v) {
4074 q[1]++;
4075 return 1;
4076 }
4077 if (*q > v) {
4078 l = i;
4079 } else {
4080 p = q + 2;
4081 l -= i + 1;
4082 }
4083 }
4084 if (++n[1] == n[0])
4085 return 0;
4086 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4087 p[0] = v;
4088 p[1] = 1;
4089 return 1;
4090 }
4091
4092 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4093 struct page *page)
4094 {
4095 void *p;
4096 int i;
4097
4098 if (n[0] == n[1])
4099 return;
4100 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4101 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4102 continue;
4103
4104 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4105 return;
4106 }
4107 }
4108
4109 static void show_symbol(struct seq_file *m, unsigned long address)
4110 {
4111 #ifdef CONFIG_KALLSYMS
4112 unsigned long offset, size;
4113 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4114
4115 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4116 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4117 if (modname[0])
4118 seq_printf(m, " [%s]", modname);
4119 return;
4120 }
4121 #endif
4122 seq_printf(m, "%p", (void *)address);
4123 }
4124
4125 static int leaks_show(struct seq_file *m, void *p)
4126 {
4127 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4128 struct page *page;
4129 struct kmem_cache_node *n;
4130 const char *name;
4131 unsigned long *x = m->private;
4132 int node;
4133 int i;
4134
4135 if (!(cachep->flags & SLAB_STORE_USER))
4136 return 0;
4137 if (!(cachep->flags & SLAB_RED_ZONE))
4138 return 0;
4139
4140 /* OK, we can do it */
4141
4142 x[1] = 0;
4143
4144 for_each_kmem_cache_node(cachep, node, n) {
4145
4146 check_irq_on();
4147 spin_lock_irq(&n->list_lock);
4148
4149 list_for_each_entry(page, &n->slabs_full, lru)
4150 handle_slab(x, cachep, page);
4151 list_for_each_entry(page, &n->slabs_partial, lru)
4152 handle_slab(x, cachep, page);
4153 spin_unlock_irq(&n->list_lock);
4154 }
4155 name = cachep->name;
4156 if (x[0] == x[1]) {
4157 /* Increase the buffer size */
4158 mutex_unlock(&slab_mutex);
4159 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4160 if (!m->private) {
4161 /* Too bad, we are really out */
4162 m->private = x;
4163 mutex_lock(&slab_mutex);
4164 return -ENOMEM;
4165 }
4166 *(unsigned long *)m->private = x[0] * 2;
4167 kfree(x);
4168 mutex_lock(&slab_mutex);
4169 /* Now make sure this entry will be retried */
4170 m->count = m->size;
4171 return 0;
4172 }
4173 for (i = 0; i < x[1]; i++) {
4174 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4175 show_symbol(m, x[2*i+2]);
4176 seq_putc(m, '\n');
4177 }
4178
4179 return 0;
4180 }
4181
4182 static const struct seq_operations slabstats_op = {
4183 .start = slab_start,
4184 .next = slab_next,
4185 .stop = slab_stop,
4186 .show = leaks_show,
4187 };
4188
4189 static int slabstats_open(struct inode *inode, struct file *file)
4190 {
4191 unsigned long *n;
4192
4193 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4194 if (!n)
4195 return -ENOMEM;
4196
4197 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4198
4199 return 0;
4200 }
4201
4202 static const struct file_operations proc_slabstats_operations = {
4203 .open = slabstats_open,
4204 .read = seq_read,
4205 .llseek = seq_lseek,
4206 .release = seq_release_private,
4207 };
4208 #endif
4209
4210 static int __init slab_proc_init(void)
4211 {
4212 #ifdef CONFIG_DEBUG_SLAB_LEAK
4213 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4214 #endif
4215 return 0;
4216 }
4217 module_init(slab_proc_init);
4218 #endif
4219
4220 /**
4221 * ksize - get the actual amount of memory allocated for a given object
4222 * @objp: Pointer to the object
4223 *
4224 * kmalloc may internally round up allocations and return more memory
4225 * than requested. ksize() can be used to determine the actual amount of
4226 * memory allocated. The caller may use this additional memory, even though
4227 * a smaller amount of memory was initially specified with the kmalloc call.
4228 * The caller must guarantee that objp points to a valid object previously
4229 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4230 * must not be freed during the duration of the call.
4231 */
4232 size_t ksize(const void *objp)
4233 {
4234 BUG_ON(!objp);
4235 if (unlikely(objp == ZERO_SIZE_PTR))
4236 return 0;
4237
4238 return virt_to_cache(objp)->object_size;
4239 }
4240 EXPORT_SYMBOL(ksize);