]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slab.c
netfilter: masquerade: attach nat extension if not present
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 #include "slab.h"
132
133 /*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143 #ifdef CONFIG_DEBUG_SLAB
144 #define DEBUG 1
145 #define STATS 1
146 #define FORCED_DEBUG 1
147 #else
148 #define DEBUG 0
149 #define STATS 0
150 #define FORCED_DEBUG 0
151 #endif
152
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172 /*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184 struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194 };
195
196 struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199 };
200
201 /*
202 * Need this for bootstrapping a per node allocator.
203 */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
208
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222 static int slab_early_init = 1;
223
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239 }
240
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
255 #define CFLGS_OFF_SLAB (0x80000000UL)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259 #define BATCHREFILL_LIMIT 16
260 /*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
269
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
311
312 #if DEBUG
313
314 /*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 return cachep->obj_offset;
330 }
331
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337 }
338
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348 }
349
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355
356 #else
357
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363 #endif
364
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 return atomic_read(&cachep->store_user_clean) == 1;
370 }
371
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 atomic_set(&cachep->store_user_clean, 1);
375 }
376
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
381 }
382
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385
386 #endif
387
388 /*
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
391 */
392 #define SLAB_MAX_ORDER_HI 1
393 #define SLAB_MAX_ORDER_LO 0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
401 }
402
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 unsigned int idx)
405 {
406 return page->s_mem + cache->size * idx;
407 }
408
409 /*
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416 const struct page *page, void *obj)
417 {
418 u32 offset = (obj - page->s_mem);
419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 }
421
422 #define BOOT_CPUCACHE_ENTRIES 1
423 /* internal cache of cache description objs */
424 static struct kmem_cache kmem_cache_boot = {
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
428 .size = sizeof(struct kmem_cache),
429 .name = "kmem_cache",
430 };
431
432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
433
434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
435 {
436 return this_cpu_ptr(cachep->cpu_cache);
437 }
438
439 /*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 unsigned long flags, size_t *left_over)
444 {
445 unsigned int num;
446 size_t slab_size = PAGE_SIZE << gfporder;
447
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
453 * - @buffer_size bytes for each object
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466 num = slab_size / buffer_size;
467 *left_over = slab_size % buffer_size;
468 } else {
469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
472 }
473
474 return num;
475 }
476
477 #if DEBUG
478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479
480 static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
482 {
483 pr_err("slab error in %s(): cache `%s': %s\n",
484 function, cachep->name, msg);
485 dump_stack();
486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
487 }
488 #endif
489
490 /*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498 static int use_alien_caches __read_mostly = 1;
499 static int __init noaliencache_setup(char *s)
500 {
501 use_alien_caches = 0;
502 return 1;
503 }
504 __setup("noaliencache", noaliencache_setup);
505
506 static int __init slab_max_order_setup(char *str)
507 {
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514 }
515 __setup("slab_max_order=", slab_max_order_setup);
516
517 #ifdef CONFIG_NUMA
518 /*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
524 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525
526 static void init_reap_node(int cpu)
527 {
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
530 }
531
532 static void next_reap_node(void)
533 {
534 int node = __this_cpu_read(slab_reap_node);
535
536 node = next_node_in(node, node_online_map);
537 __this_cpu_write(slab_reap_node, node);
538 }
539
540 #else
541 #define init_reap_node(cpu) do { } while (0)
542 #define next_reap_node(void) do { } while (0)
543 #endif
544
545 /*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
552 static void start_cpu_timer(int cpu)
553 {
554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555
556 if (reap_work->work.func == NULL) {
557 init_reap_node(cpu);
558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
561 }
562 }
563
564 static void init_arraycache(struct array_cache *ac, int limit, int batch)
565 {
566 /*
567 * The array_cache structures contain pointers to free object.
568 * However, when such objects are allocated or transferred to another
569 * cache the pointers are not cleared and they could be counted as
570 * valid references during a kmemleak scan. Therefore, kmemleak must
571 * not scan such objects.
572 */
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
579 }
580 }
581
582 static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584 {
585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
591 }
592
593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
595 {
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
599
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
602
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
606
607 slabs_destroy(cachep, &list);
608 }
609
610 /*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616 static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618 {
619 /* Figure out how many entries to transfer */
620 int nr = min3(from->avail, max, to->limit - to->avail);
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
630 return nr;
631 }
632
633 #ifndef CONFIG_NUMA
634
635 #define drain_alien_cache(cachep, alien) do { } while (0)
636 #define reap_alien(cachep, n) do { } while (0)
637
638 static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
640 {
641 return NULL;
642 }
643
644 static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 {
646 }
647
648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649 {
650 return 0;
651 }
652
653 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655 {
656 return NULL;
657 }
658
659 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 gfp_t flags, int nodeid)
661 {
662 return NULL;
663 }
664
665 static inline gfp_t gfp_exact_node(gfp_t flags)
666 {
667 return flags & ~__GFP_NOFAIL;
668 }
669
670 #else /* CONFIG_NUMA */
671
672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674
675 static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677 {
678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 init_arraycache(&alc->ac, entries, batch);
683 spin_lock_init(&alc->lock);
684 return alc;
685 }
686
687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688 {
689 struct alien_cache **alc_ptr;
690 size_t memsize = sizeof(void *) * nr_node_ids;
691 int i;
692
693 if (limit > 1)
694 limit = 12;
695 alc_ptr = kzalloc_node(memsize, gfp, node);
696 if (!alc_ptr)
697 return NULL;
698
699 for_each_node(i) {
700 if (i == node || !node_online(i))
701 continue;
702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 if (!alc_ptr[i]) {
704 for (i--; i >= 0; i--)
705 kfree(alc_ptr[i]);
706 kfree(alc_ptr);
707 return NULL;
708 }
709 }
710 return alc_ptr;
711 }
712
713 static void free_alien_cache(struct alien_cache **alc_ptr)
714 {
715 int i;
716
717 if (!alc_ptr)
718 return;
719 for_each_node(i)
720 kfree(alc_ptr[i]);
721 kfree(alc_ptr);
722 }
723
724 static void __drain_alien_cache(struct kmem_cache *cachep,
725 struct array_cache *ac, int node,
726 struct list_head *list)
727 {
728 struct kmem_cache_node *n = get_node(cachep, node);
729
730 if (ac->avail) {
731 spin_lock(&n->list_lock);
732 /*
733 * Stuff objects into the remote nodes shared array first.
734 * That way we could avoid the overhead of putting the objects
735 * into the free lists and getting them back later.
736 */
737 if (n->shared)
738 transfer_objects(n->shared, ac, ac->limit);
739
740 free_block(cachep, ac->entry, ac->avail, node, list);
741 ac->avail = 0;
742 spin_unlock(&n->list_lock);
743 }
744 }
745
746 /*
747 * Called from cache_reap() to regularly drain alien caches round robin.
748 */
749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750 {
751 int node = __this_cpu_read(slab_reap_node);
752
753 if (n->alien) {
754 struct alien_cache *alc = n->alien[node];
755 struct array_cache *ac;
756
757 if (alc) {
758 ac = &alc->ac;
759 if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 LIST_HEAD(list);
761
762 __drain_alien_cache(cachep, ac, node, &list);
763 spin_unlock_irq(&alc->lock);
764 slabs_destroy(cachep, &list);
765 }
766 }
767 }
768 }
769
770 static void drain_alien_cache(struct kmem_cache *cachep,
771 struct alien_cache **alien)
772 {
773 int i = 0;
774 struct alien_cache *alc;
775 struct array_cache *ac;
776 unsigned long flags;
777
778 for_each_online_node(i) {
779 alc = alien[i];
780 if (alc) {
781 LIST_HEAD(list);
782
783 ac = &alc->ac;
784 spin_lock_irqsave(&alc->lock, flags);
785 __drain_alien_cache(cachep, ac, i, &list);
786 spin_unlock_irqrestore(&alc->lock, flags);
787 slabs_destroy(cachep, &list);
788 }
789 }
790 }
791
792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 int node, int page_node)
794 {
795 struct kmem_cache_node *n;
796 struct alien_cache *alien = NULL;
797 struct array_cache *ac;
798 LIST_HEAD(list);
799
800 n = get_node(cachep, node);
801 STATS_INC_NODEFREES(cachep);
802 if (n->alien && n->alien[page_node]) {
803 alien = n->alien[page_node];
804 ac = &alien->ac;
805 spin_lock(&alien->lock);
806 if (unlikely(ac->avail == ac->limit)) {
807 STATS_INC_ACOVERFLOW(cachep);
808 __drain_alien_cache(cachep, ac, page_node, &list);
809 }
810 ac->entry[ac->avail++] = objp;
811 spin_unlock(&alien->lock);
812 slabs_destroy(cachep, &list);
813 } else {
814 n = get_node(cachep, page_node);
815 spin_lock(&n->list_lock);
816 free_block(cachep, &objp, 1, page_node, &list);
817 spin_unlock(&n->list_lock);
818 slabs_destroy(cachep, &list);
819 }
820 return 1;
821 }
822
823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824 {
825 int page_node = page_to_nid(virt_to_page(objp));
826 int node = numa_mem_id();
827 /*
828 * Make sure we are not freeing a object from another node to the array
829 * cache on this cpu.
830 */
831 if (likely(node == page_node))
832 return 0;
833
834 return __cache_free_alien(cachep, objp, node, page_node);
835 }
836
837 /*
838 * Construct gfp mask to allocate from a specific node but do not reclaim or
839 * warn about failures.
840 */
841 static inline gfp_t gfp_exact_node(gfp_t flags)
842 {
843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
844 }
845 #endif
846
847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848 {
849 struct kmem_cache_node *n;
850
851 /*
852 * Set up the kmem_cache_node for cpu before we can
853 * begin anything. Make sure some other cpu on this
854 * node has not already allocated this
855 */
856 n = get_node(cachep, node);
857 if (n) {
858 spin_lock_irq(&n->list_lock);
859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 cachep->num;
861 spin_unlock_irq(&n->list_lock);
862
863 return 0;
864 }
865
866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 if (!n)
868 return -ENOMEM;
869
870 kmem_cache_node_init(n);
871 n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873
874 n->free_limit =
875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876
877 /*
878 * The kmem_cache_nodes don't come and go as CPUs
879 * come and go. slab_mutex is sufficient
880 * protection here.
881 */
882 cachep->node[node] = n;
883
884 return 0;
885 }
886
887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888 /*
889 * Allocates and initializes node for a node on each slab cache, used for
890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
891 * will be allocated off-node since memory is not yet online for the new node.
892 * When hotplugging memory or a cpu, existing node are not replaced if
893 * already in use.
894 *
895 * Must hold slab_mutex.
896 */
897 static int init_cache_node_node(int node)
898 {
899 int ret;
900 struct kmem_cache *cachep;
901
902 list_for_each_entry(cachep, &slab_caches, list) {
903 ret = init_cache_node(cachep, node, GFP_KERNEL);
904 if (ret)
905 return ret;
906 }
907
908 return 0;
909 }
910 #endif
911
912 static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914 {
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
961 /*
962 * To protect lockless access to n->shared during irq disabled context.
963 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 * guaranteed to be valid until irq is re-enabled, because it will be
965 * freed after synchronize_sched().
966 */
967 if (old_shared && force_change)
968 synchronize_sched();
969
970 fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976 }
977
978 #ifdef CONFIG_SMP
979
980 static void cpuup_canceled(long cpu)
981 {
982 struct kmem_cache *cachep;
983 struct kmem_cache_node *n = NULL;
984 int node = cpu_to_mem(cpu);
985 const struct cpumask *mask = cpumask_of_node(node);
986
987 list_for_each_entry(cachep, &slab_caches, list) {
988 struct array_cache *nc;
989 struct array_cache *shared;
990 struct alien_cache **alien;
991 LIST_HEAD(list);
992
993 n = get_node(cachep, node);
994 if (!n)
995 continue;
996
997 spin_lock_irq(&n->list_lock);
998
999 /* Free limit for this kmem_cache_node */
1000 n->free_limit -= cachep->batchcount;
1001
1002 /* cpu is dead; no one can alloc from it. */
1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 if (nc) {
1005 free_block(cachep, nc->entry, nc->avail, node, &list);
1006 nc->avail = 0;
1007 }
1008
1009 if (!cpumask_empty(mask)) {
1010 spin_unlock_irq(&n->list_lock);
1011 goto free_slab;
1012 }
1013
1014 shared = n->shared;
1015 if (shared) {
1016 free_block(cachep, shared->entry,
1017 shared->avail, node, &list);
1018 n->shared = NULL;
1019 }
1020
1021 alien = n->alien;
1022 n->alien = NULL;
1023
1024 spin_unlock_irq(&n->list_lock);
1025
1026 kfree(shared);
1027 if (alien) {
1028 drain_alien_cache(cachep, alien);
1029 free_alien_cache(alien);
1030 }
1031
1032 free_slab:
1033 slabs_destroy(cachep, &list);
1034 }
1035 /*
1036 * In the previous loop, all the objects were freed to
1037 * the respective cache's slabs, now we can go ahead and
1038 * shrink each nodelist to its limit.
1039 */
1040 list_for_each_entry(cachep, &slab_caches, list) {
1041 n = get_node(cachep, node);
1042 if (!n)
1043 continue;
1044 drain_freelist(cachep, n, INT_MAX);
1045 }
1046 }
1047
1048 static int cpuup_prepare(long cpu)
1049 {
1050 struct kmem_cache *cachep;
1051 int node = cpu_to_mem(cpu);
1052 int err;
1053
1054 /*
1055 * We need to do this right in the beginning since
1056 * alloc_arraycache's are going to use this list.
1057 * kmalloc_node allows us to add the slab to the right
1058 * kmem_cache_node and not this cpu's kmem_cache_node
1059 */
1060 err = init_cache_node_node(node);
1061 if (err < 0)
1062 goto bad;
1063
1064 /*
1065 * Now we can go ahead with allocating the shared arrays and
1066 * array caches
1067 */
1068 list_for_each_entry(cachep, &slab_caches, list) {
1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 if (err)
1071 goto bad;
1072 }
1073
1074 return 0;
1075 bad:
1076 cpuup_canceled(cpu);
1077 return -ENOMEM;
1078 }
1079
1080 int slab_prepare_cpu(unsigned int cpu)
1081 {
1082 int err;
1083
1084 mutex_lock(&slab_mutex);
1085 err = cpuup_prepare(cpu);
1086 mutex_unlock(&slab_mutex);
1087 return err;
1088 }
1089
1090 /*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down. The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100 int slab_dead_cpu(unsigned int cpu)
1101 {
1102 mutex_lock(&slab_mutex);
1103 cpuup_canceled(cpu);
1104 mutex_unlock(&slab_mutex);
1105 return 0;
1106 }
1107 #endif
1108
1109 static int slab_online_cpu(unsigned int cpu)
1110 {
1111 start_cpu_timer(cpu);
1112 return 0;
1113 }
1114
1115 static int slab_offline_cpu(unsigned int cpu)
1116 {
1117 /*
1118 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 * that if cache_reap() is invoked it cannot do anything
1120 * expensive but will only modify reap_work and reschedule the
1121 * timer.
1122 */
1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 /* Now the cache_reaper is guaranteed to be not running. */
1125 per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 return 0;
1127 }
1128
1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130 /*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
1135 * Must hold slab_mutex.
1136 */
1137 static int __meminit drain_cache_node_node(int node)
1138 {
1139 struct kmem_cache *cachep;
1140 int ret = 0;
1141
1142 list_for_each_entry(cachep, &slab_caches, list) {
1143 struct kmem_cache_node *n;
1144
1145 n = get_node(cachep, node);
1146 if (!n)
1147 continue;
1148
1149 drain_freelist(cachep, n, INT_MAX);
1150
1151 if (!list_empty(&n->slabs_full) ||
1152 !list_empty(&n->slabs_partial)) {
1153 ret = -EBUSY;
1154 break;
1155 }
1156 }
1157 return ret;
1158 }
1159
1160 static int __meminit slab_memory_callback(struct notifier_block *self,
1161 unsigned long action, void *arg)
1162 {
1163 struct memory_notify *mnb = arg;
1164 int ret = 0;
1165 int nid;
1166
1167 nid = mnb->status_change_nid;
1168 if (nid < 0)
1169 goto out;
1170
1171 switch (action) {
1172 case MEM_GOING_ONLINE:
1173 mutex_lock(&slab_mutex);
1174 ret = init_cache_node_node(nid);
1175 mutex_unlock(&slab_mutex);
1176 break;
1177 case MEM_GOING_OFFLINE:
1178 mutex_lock(&slab_mutex);
1179 ret = drain_cache_node_node(nid);
1180 mutex_unlock(&slab_mutex);
1181 break;
1182 case MEM_ONLINE:
1183 case MEM_OFFLINE:
1184 case MEM_CANCEL_ONLINE:
1185 case MEM_CANCEL_OFFLINE:
1186 break;
1187 }
1188 out:
1189 return notifier_from_errno(ret);
1190 }
1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
1193 /*
1194 * swap the static kmem_cache_node with kmalloced memory
1195 */
1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197 int nodeid)
1198 {
1199 struct kmem_cache_node *ptr;
1200
1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 BUG_ON(!ptr);
1203
1204 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205 /*
1206 * Do not assume that spinlocks can be initialized via memcpy:
1207 */
1208 spin_lock_init(&ptr->list_lock);
1209
1210 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211 cachep->node[nodeid] = ptr;
1212 }
1213
1214 /*
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
1217 */
1218 static void __init set_up_node(struct kmem_cache *cachep, int index)
1219 {
1220 int node;
1221
1222 for_each_online_node(node) {
1223 cachep->node[node] = &init_kmem_cache_node[index + node];
1224 cachep->node[node]->next_reap = jiffies +
1225 REAPTIMEOUT_NODE +
1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 }
1228 }
1229
1230 /*
1231 * Initialisation. Called after the page allocator have been initialised and
1232 * before smp_init().
1233 */
1234 void __init kmem_cache_init(void)
1235 {
1236 int i;
1237
1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239 sizeof(struct rcu_head));
1240 kmem_cache = &kmem_cache_boot;
1241
1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243 use_alien_caches = 0;
1244
1245 for (i = 0; i < NUM_INIT_LISTS; i++)
1246 kmem_cache_node_init(&init_kmem_cache_node[i]);
1247
1248 /*
1249 * Fragmentation resistance on low memory - only use bigger
1250 * page orders on machines with more than 32MB of memory if
1251 * not overridden on the command line.
1252 */
1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254 slab_max_order = SLAB_MAX_ORDER_HI;
1255
1256 /* Bootstrap is tricky, because several objects are allocated
1257 * from caches that do not exist yet:
1258 * 1) initialize the kmem_cache cache: it contains the struct
1259 * kmem_cache structures of all caches, except kmem_cache itself:
1260 * kmem_cache is statically allocated.
1261 * Initially an __init data area is used for the head array and the
1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1263 * array at the end of the bootstrap.
1264 * 2) Create the first kmalloc cache.
1265 * The struct kmem_cache for the new cache is allocated normally.
1266 * An __init data area is used for the head array.
1267 * 3) Create the remaining kmalloc caches, with minimally sized
1268 * head arrays.
1269 * 4) Replace the __init data head arrays for kmem_cache and the first
1270 * kmalloc cache with kmalloc allocated arrays.
1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272 * the other cache's with kmalloc allocated memory.
1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1274 */
1275
1276 /* 1) create the kmem_cache */
1277
1278 /*
1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1280 */
1281 create_boot_cache(kmem_cache, "kmem_cache",
1282 offsetof(struct kmem_cache, node) +
1283 nr_node_ids * sizeof(struct kmem_cache_node *),
1284 SLAB_HWCACHE_ALIGN);
1285 list_add(&kmem_cache->list, &slab_caches);
1286 slab_state = PARTIAL;
1287
1288 /*
1289 * Initialize the caches that provide memory for the kmem_cache_node
1290 * structures first. Without this, further allocations will bug.
1291 */
1292 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1293 kmalloc_info[INDEX_NODE].name,
1294 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1295 slab_state = PARTIAL_NODE;
1296 setup_kmalloc_cache_index_table();
1297
1298 slab_early_init = 0;
1299
1300 /* 5) Replace the bootstrap kmem_cache_node */
1301 {
1302 int nid;
1303
1304 for_each_online_node(nid) {
1305 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1306
1307 init_list(kmalloc_caches[INDEX_NODE],
1308 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1309 }
1310 }
1311
1312 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1313 }
1314
1315 void __init kmem_cache_init_late(void)
1316 {
1317 struct kmem_cache *cachep;
1318
1319 slab_state = UP;
1320
1321 /* 6) resize the head arrays to their final sizes */
1322 mutex_lock(&slab_mutex);
1323 list_for_each_entry(cachep, &slab_caches, list)
1324 if (enable_cpucache(cachep, GFP_NOWAIT))
1325 BUG();
1326 mutex_unlock(&slab_mutex);
1327
1328 /* Done! */
1329 slab_state = FULL;
1330
1331 #ifdef CONFIG_NUMA
1332 /*
1333 * Register a memory hotplug callback that initializes and frees
1334 * node.
1335 */
1336 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1337 #endif
1338
1339 /*
1340 * The reap timers are started later, with a module init call: That part
1341 * of the kernel is not yet operational.
1342 */
1343 }
1344
1345 static int __init cpucache_init(void)
1346 {
1347 int ret;
1348
1349 /*
1350 * Register the timers that return unneeded pages to the page allocator
1351 */
1352 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1353 slab_online_cpu, slab_offline_cpu);
1354 WARN_ON(ret < 0);
1355
1356 /* Done! */
1357 slab_state = FULL;
1358 return 0;
1359 }
1360 __initcall(cpucache_init);
1361
1362 static noinline void
1363 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1364 {
1365 #if DEBUG
1366 struct kmem_cache_node *n;
1367 unsigned long flags;
1368 int node;
1369 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1370 DEFAULT_RATELIMIT_BURST);
1371
1372 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1373 return;
1374
1375 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1376 nodeid, gfpflags, &gfpflags);
1377 pr_warn(" cache: %s, object size: %d, order: %d\n",
1378 cachep->name, cachep->size, cachep->gfporder);
1379
1380 for_each_kmem_cache_node(cachep, node, n) {
1381 unsigned long total_slabs, free_slabs, free_objs;
1382
1383 spin_lock_irqsave(&n->list_lock, flags);
1384 total_slabs = n->total_slabs;
1385 free_slabs = n->free_slabs;
1386 free_objs = n->free_objects;
1387 spin_unlock_irqrestore(&n->list_lock, flags);
1388
1389 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1390 node, total_slabs - free_slabs, total_slabs,
1391 (total_slabs * cachep->num) - free_objs,
1392 total_slabs * cachep->num);
1393 }
1394 #endif
1395 }
1396
1397 /*
1398 * Interface to system's page allocator. No need to hold the
1399 * kmem_cache_node ->list_lock.
1400 *
1401 * If we requested dmaable memory, we will get it. Even if we
1402 * did not request dmaable memory, we might get it, but that
1403 * would be relatively rare and ignorable.
1404 */
1405 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1406 int nodeid)
1407 {
1408 struct page *page;
1409 int nr_pages;
1410
1411 flags |= cachep->allocflags;
1412 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1413 flags |= __GFP_RECLAIMABLE;
1414
1415 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1416 if (!page) {
1417 slab_out_of_memory(cachep, flags, nodeid);
1418 return NULL;
1419 }
1420
1421 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1422 __free_pages(page, cachep->gfporder);
1423 return NULL;
1424 }
1425
1426 nr_pages = (1 << cachep->gfporder);
1427 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1428 add_zone_page_state(page_zone(page),
1429 NR_SLAB_RECLAIMABLE, nr_pages);
1430 else
1431 add_zone_page_state(page_zone(page),
1432 NR_SLAB_UNRECLAIMABLE, nr_pages);
1433
1434 __SetPageSlab(page);
1435 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1436 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1437 SetPageSlabPfmemalloc(page);
1438
1439 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1440 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1441
1442 if (cachep->ctor)
1443 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1444 else
1445 kmemcheck_mark_unallocated_pages(page, nr_pages);
1446 }
1447
1448 return page;
1449 }
1450
1451 /*
1452 * Interface to system's page release.
1453 */
1454 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1455 {
1456 int order = cachep->gfporder;
1457 unsigned long nr_freed = (1 << order);
1458
1459 kmemcheck_free_shadow(page, order);
1460
1461 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1462 sub_zone_page_state(page_zone(page),
1463 NR_SLAB_RECLAIMABLE, nr_freed);
1464 else
1465 sub_zone_page_state(page_zone(page),
1466 NR_SLAB_UNRECLAIMABLE, nr_freed);
1467
1468 BUG_ON(!PageSlab(page));
1469 __ClearPageSlabPfmemalloc(page);
1470 __ClearPageSlab(page);
1471 page_mapcount_reset(page);
1472 page->mapping = NULL;
1473
1474 if (current->reclaim_state)
1475 current->reclaim_state->reclaimed_slab += nr_freed;
1476 memcg_uncharge_slab(page, order, cachep);
1477 __free_pages(page, order);
1478 }
1479
1480 static void kmem_rcu_free(struct rcu_head *head)
1481 {
1482 struct kmem_cache *cachep;
1483 struct page *page;
1484
1485 page = container_of(head, struct page, rcu_head);
1486 cachep = page->slab_cache;
1487
1488 kmem_freepages(cachep, page);
1489 }
1490
1491 #if DEBUG
1492 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1493 {
1494 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1495 (cachep->size % PAGE_SIZE) == 0)
1496 return true;
1497
1498 return false;
1499 }
1500
1501 #ifdef CONFIG_DEBUG_PAGEALLOC
1502 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1503 unsigned long caller)
1504 {
1505 int size = cachep->object_size;
1506
1507 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1508
1509 if (size < 5 * sizeof(unsigned long))
1510 return;
1511
1512 *addr++ = 0x12345678;
1513 *addr++ = caller;
1514 *addr++ = smp_processor_id();
1515 size -= 3 * sizeof(unsigned long);
1516 {
1517 unsigned long *sptr = &caller;
1518 unsigned long svalue;
1519
1520 while (!kstack_end(sptr)) {
1521 svalue = *sptr++;
1522 if (kernel_text_address(svalue)) {
1523 *addr++ = svalue;
1524 size -= sizeof(unsigned long);
1525 if (size <= sizeof(unsigned long))
1526 break;
1527 }
1528 }
1529
1530 }
1531 *addr++ = 0x87654321;
1532 }
1533
1534 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1535 int map, unsigned long caller)
1536 {
1537 if (!is_debug_pagealloc_cache(cachep))
1538 return;
1539
1540 if (caller)
1541 store_stackinfo(cachep, objp, caller);
1542
1543 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1544 }
1545
1546 #else
1547 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1548 int map, unsigned long caller) {}
1549
1550 #endif
1551
1552 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1553 {
1554 int size = cachep->object_size;
1555 addr = &((char *)addr)[obj_offset(cachep)];
1556
1557 memset(addr, val, size);
1558 *(unsigned char *)(addr + size - 1) = POISON_END;
1559 }
1560
1561 static void dump_line(char *data, int offset, int limit)
1562 {
1563 int i;
1564 unsigned char error = 0;
1565 int bad_count = 0;
1566
1567 pr_err("%03x: ", offset);
1568 for (i = 0; i < limit; i++) {
1569 if (data[offset + i] != POISON_FREE) {
1570 error = data[offset + i];
1571 bad_count++;
1572 }
1573 }
1574 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1575 &data[offset], limit, 1);
1576
1577 if (bad_count == 1) {
1578 error ^= POISON_FREE;
1579 if (!(error & (error - 1))) {
1580 pr_err("Single bit error detected. Probably bad RAM.\n");
1581 #ifdef CONFIG_X86
1582 pr_err("Run memtest86+ or a similar memory test tool.\n");
1583 #else
1584 pr_err("Run a memory test tool.\n");
1585 #endif
1586 }
1587 }
1588 }
1589 #endif
1590
1591 #if DEBUG
1592
1593 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1594 {
1595 int i, size;
1596 char *realobj;
1597
1598 if (cachep->flags & SLAB_RED_ZONE) {
1599 pr_err("Redzone: 0x%llx/0x%llx\n",
1600 *dbg_redzone1(cachep, objp),
1601 *dbg_redzone2(cachep, objp));
1602 }
1603
1604 if (cachep->flags & SLAB_STORE_USER) {
1605 pr_err("Last user: [<%p>](%pSR)\n",
1606 *dbg_userword(cachep, objp),
1607 *dbg_userword(cachep, objp));
1608 }
1609 realobj = (char *)objp + obj_offset(cachep);
1610 size = cachep->object_size;
1611 for (i = 0; i < size && lines; i += 16, lines--) {
1612 int limit;
1613 limit = 16;
1614 if (i + limit > size)
1615 limit = size - i;
1616 dump_line(realobj, i, limit);
1617 }
1618 }
1619
1620 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1621 {
1622 char *realobj;
1623 int size, i;
1624 int lines = 0;
1625
1626 if (is_debug_pagealloc_cache(cachep))
1627 return;
1628
1629 realobj = (char *)objp + obj_offset(cachep);
1630 size = cachep->object_size;
1631
1632 for (i = 0; i < size; i++) {
1633 char exp = POISON_FREE;
1634 if (i == size - 1)
1635 exp = POISON_END;
1636 if (realobj[i] != exp) {
1637 int limit;
1638 /* Mismatch ! */
1639 /* Print header */
1640 if (lines == 0) {
1641 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1642 print_tainted(), cachep->name,
1643 realobj, size);
1644 print_objinfo(cachep, objp, 0);
1645 }
1646 /* Hexdump the affected line */
1647 i = (i / 16) * 16;
1648 limit = 16;
1649 if (i + limit > size)
1650 limit = size - i;
1651 dump_line(realobj, i, limit);
1652 i += 16;
1653 lines++;
1654 /* Limit to 5 lines */
1655 if (lines > 5)
1656 break;
1657 }
1658 }
1659 if (lines != 0) {
1660 /* Print some data about the neighboring objects, if they
1661 * exist:
1662 */
1663 struct page *page = virt_to_head_page(objp);
1664 unsigned int objnr;
1665
1666 objnr = obj_to_index(cachep, page, objp);
1667 if (objnr) {
1668 objp = index_to_obj(cachep, page, objnr - 1);
1669 realobj = (char *)objp + obj_offset(cachep);
1670 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1671 print_objinfo(cachep, objp, 2);
1672 }
1673 if (objnr + 1 < cachep->num) {
1674 objp = index_to_obj(cachep, page, objnr + 1);
1675 realobj = (char *)objp + obj_offset(cachep);
1676 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1677 print_objinfo(cachep, objp, 2);
1678 }
1679 }
1680 }
1681 #endif
1682
1683 #if DEBUG
1684 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1685 struct page *page)
1686 {
1687 int i;
1688
1689 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1690 poison_obj(cachep, page->freelist - obj_offset(cachep),
1691 POISON_FREE);
1692 }
1693
1694 for (i = 0; i < cachep->num; i++) {
1695 void *objp = index_to_obj(cachep, page, i);
1696
1697 if (cachep->flags & SLAB_POISON) {
1698 check_poison_obj(cachep, objp);
1699 slab_kernel_map(cachep, objp, 1, 0);
1700 }
1701 if (cachep->flags & SLAB_RED_ZONE) {
1702 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1703 slab_error(cachep, "start of a freed object was overwritten");
1704 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1705 slab_error(cachep, "end of a freed object was overwritten");
1706 }
1707 }
1708 }
1709 #else
1710 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1711 struct page *page)
1712 {
1713 }
1714 #endif
1715
1716 /**
1717 * slab_destroy - destroy and release all objects in a slab
1718 * @cachep: cache pointer being destroyed
1719 * @page: page pointer being destroyed
1720 *
1721 * Destroy all the objs in a slab page, and release the mem back to the system.
1722 * Before calling the slab page must have been unlinked from the cache. The
1723 * kmem_cache_node ->list_lock is not held/needed.
1724 */
1725 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1726 {
1727 void *freelist;
1728
1729 freelist = page->freelist;
1730 slab_destroy_debugcheck(cachep, page);
1731 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1732 call_rcu(&page->rcu_head, kmem_rcu_free);
1733 else
1734 kmem_freepages(cachep, page);
1735
1736 /*
1737 * From now on, we don't use freelist
1738 * although actual page can be freed in rcu context
1739 */
1740 if (OFF_SLAB(cachep))
1741 kmem_cache_free(cachep->freelist_cache, freelist);
1742 }
1743
1744 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1745 {
1746 struct page *page, *n;
1747
1748 list_for_each_entry_safe(page, n, list, lru) {
1749 list_del(&page->lru);
1750 slab_destroy(cachep, page);
1751 }
1752 }
1753
1754 /**
1755 * calculate_slab_order - calculate size (page order) of slabs
1756 * @cachep: pointer to the cache that is being created
1757 * @size: size of objects to be created in this cache.
1758 * @flags: slab allocation flags
1759 *
1760 * Also calculates the number of objects per slab.
1761 *
1762 * This could be made much more intelligent. For now, try to avoid using
1763 * high order pages for slabs. When the gfp() functions are more friendly
1764 * towards high-order requests, this should be changed.
1765 */
1766 static size_t calculate_slab_order(struct kmem_cache *cachep,
1767 size_t size, unsigned long flags)
1768 {
1769 size_t left_over = 0;
1770 int gfporder;
1771
1772 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1773 unsigned int num;
1774 size_t remainder;
1775
1776 num = cache_estimate(gfporder, size, flags, &remainder);
1777 if (!num)
1778 continue;
1779
1780 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1781 if (num > SLAB_OBJ_MAX_NUM)
1782 break;
1783
1784 if (flags & CFLGS_OFF_SLAB) {
1785 struct kmem_cache *freelist_cache;
1786 size_t freelist_size;
1787
1788 freelist_size = num * sizeof(freelist_idx_t);
1789 freelist_cache = kmalloc_slab(freelist_size, 0u);
1790 if (!freelist_cache)
1791 continue;
1792
1793 /*
1794 * Needed to avoid possible looping condition
1795 * in cache_grow_begin()
1796 */
1797 if (OFF_SLAB(freelist_cache))
1798 continue;
1799
1800 /* check if off slab has enough benefit */
1801 if (freelist_cache->size > cachep->size / 2)
1802 continue;
1803 }
1804
1805 /* Found something acceptable - save it away */
1806 cachep->num = num;
1807 cachep->gfporder = gfporder;
1808 left_over = remainder;
1809
1810 /*
1811 * A VFS-reclaimable slab tends to have most allocations
1812 * as GFP_NOFS and we really don't want to have to be allocating
1813 * higher-order pages when we are unable to shrink dcache.
1814 */
1815 if (flags & SLAB_RECLAIM_ACCOUNT)
1816 break;
1817
1818 /*
1819 * Large number of objects is good, but very large slabs are
1820 * currently bad for the gfp()s.
1821 */
1822 if (gfporder >= slab_max_order)
1823 break;
1824
1825 /*
1826 * Acceptable internal fragmentation?
1827 */
1828 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1829 break;
1830 }
1831 return left_over;
1832 }
1833
1834 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1835 struct kmem_cache *cachep, int entries, int batchcount)
1836 {
1837 int cpu;
1838 size_t size;
1839 struct array_cache __percpu *cpu_cache;
1840
1841 size = sizeof(void *) * entries + sizeof(struct array_cache);
1842 cpu_cache = __alloc_percpu(size, sizeof(void *));
1843
1844 if (!cpu_cache)
1845 return NULL;
1846
1847 for_each_possible_cpu(cpu) {
1848 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1849 entries, batchcount);
1850 }
1851
1852 return cpu_cache;
1853 }
1854
1855 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1856 {
1857 if (slab_state >= FULL)
1858 return enable_cpucache(cachep, gfp);
1859
1860 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1861 if (!cachep->cpu_cache)
1862 return 1;
1863
1864 if (slab_state == DOWN) {
1865 /* Creation of first cache (kmem_cache). */
1866 set_up_node(kmem_cache, CACHE_CACHE);
1867 } else if (slab_state == PARTIAL) {
1868 /* For kmem_cache_node */
1869 set_up_node(cachep, SIZE_NODE);
1870 } else {
1871 int node;
1872
1873 for_each_online_node(node) {
1874 cachep->node[node] = kmalloc_node(
1875 sizeof(struct kmem_cache_node), gfp, node);
1876 BUG_ON(!cachep->node[node]);
1877 kmem_cache_node_init(cachep->node[node]);
1878 }
1879 }
1880
1881 cachep->node[numa_mem_id()]->next_reap =
1882 jiffies + REAPTIMEOUT_NODE +
1883 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1884
1885 cpu_cache_get(cachep)->avail = 0;
1886 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1887 cpu_cache_get(cachep)->batchcount = 1;
1888 cpu_cache_get(cachep)->touched = 0;
1889 cachep->batchcount = 1;
1890 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1891 return 0;
1892 }
1893
1894 unsigned long kmem_cache_flags(unsigned long object_size,
1895 unsigned long flags, const char *name,
1896 void (*ctor)(void *))
1897 {
1898 return flags;
1899 }
1900
1901 struct kmem_cache *
1902 __kmem_cache_alias(const char *name, size_t size, size_t align,
1903 unsigned long flags, void (*ctor)(void *))
1904 {
1905 struct kmem_cache *cachep;
1906
1907 cachep = find_mergeable(size, align, flags, name, ctor);
1908 if (cachep) {
1909 cachep->refcount++;
1910
1911 /*
1912 * Adjust the object sizes so that we clear
1913 * the complete object on kzalloc.
1914 */
1915 cachep->object_size = max_t(int, cachep->object_size, size);
1916 }
1917 return cachep;
1918 }
1919
1920 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1921 size_t size, unsigned long flags)
1922 {
1923 size_t left;
1924
1925 cachep->num = 0;
1926
1927 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1928 return false;
1929
1930 left = calculate_slab_order(cachep, size,
1931 flags | CFLGS_OBJFREELIST_SLAB);
1932 if (!cachep->num)
1933 return false;
1934
1935 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1936 return false;
1937
1938 cachep->colour = left / cachep->colour_off;
1939
1940 return true;
1941 }
1942
1943 static bool set_off_slab_cache(struct kmem_cache *cachep,
1944 size_t size, unsigned long flags)
1945 {
1946 size_t left;
1947
1948 cachep->num = 0;
1949
1950 /*
1951 * Always use on-slab management when SLAB_NOLEAKTRACE
1952 * to avoid recursive calls into kmemleak.
1953 */
1954 if (flags & SLAB_NOLEAKTRACE)
1955 return false;
1956
1957 /*
1958 * Size is large, assume best to place the slab management obj
1959 * off-slab (should allow better packing of objs).
1960 */
1961 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1962 if (!cachep->num)
1963 return false;
1964
1965 /*
1966 * If the slab has been placed off-slab, and we have enough space then
1967 * move it on-slab. This is at the expense of any extra colouring.
1968 */
1969 if (left >= cachep->num * sizeof(freelist_idx_t))
1970 return false;
1971
1972 cachep->colour = left / cachep->colour_off;
1973
1974 return true;
1975 }
1976
1977 static bool set_on_slab_cache(struct kmem_cache *cachep,
1978 size_t size, unsigned long flags)
1979 {
1980 size_t left;
1981
1982 cachep->num = 0;
1983
1984 left = calculate_slab_order(cachep, size, flags);
1985 if (!cachep->num)
1986 return false;
1987
1988 cachep->colour = left / cachep->colour_off;
1989
1990 return true;
1991 }
1992
1993 /**
1994 * __kmem_cache_create - Create a cache.
1995 * @cachep: cache management descriptor
1996 * @flags: SLAB flags
1997 *
1998 * Returns a ptr to the cache on success, NULL on failure.
1999 * Cannot be called within a int, but can be interrupted.
2000 * The @ctor is run when new pages are allocated by the cache.
2001 *
2002 * The flags are
2003 *
2004 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2005 * to catch references to uninitialised memory.
2006 *
2007 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2008 * for buffer overruns.
2009 *
2010 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2011 * cacheline. This can be beneficial if you're counting cycles as closely
2012 * as davem.
2013 */
2014 int
2015 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2016 {
2017 size_t ralign = BYTES_PER_WORD;
2018 gfp_t gfp;
2019 int err;
2020 size_t size = cachep->size;
2021
2022 #if DEBUG
2023 #if FORCED_DEBUG
2024 /*
2025 * Enable redzoning and last user accounting, except for caches with
2026 * large objects, if the increased size would increase the object size
2027 * above the next power of two: caches with object sizes just above a
2028 * power of two have a significant amount of internal fragmentation.
2029 */
2030 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2031 2 * sizeof(unsigned long long)))
2032 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2033 if (!(flags & SLAB_DESTROY_BY_RCU))
2034 flags |= SLAB_POISON;
2035 #endif
2036 #endif
2037
2038 /*
2039 * Check that size is in terms of words. This is needed to avoid
2040 * unaligned accesses for some archs when redzoning is used, and makes
2041 * sure any on-slab bufctl's are also correctly aligned.
2042 */
2043 if (size & (BYTES_PER_WORD - 1)) {
2044 size += (BYTES_PER_WORD - 1);
2045 size &= ~(BYTES_PER_WORD - 1);
2046 }
2047
2048 if (flags & SLAB_RED_ZONE) {
2049 ralign = REDZONE_ALIGN;
2050 /* If redzoning, ensure that the second redzone is suitably
2051 * aligned, by adjusting the object size accordingly. */
2052 size += REDZONE_ALIGN - 1;
2053 size &= ~(REDZONE_ALIGN - 1);
2054 }
2055
2056 /* 3) caller mandated alignment */
2057 if (ralign < cachep->align) {
2058 ralign = cachep->align;
2059 }
2060 /* disable debug if necessary */
2061 if (ralign > __alignof__(unsigned long long))
2062 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2063 /*
2064 * 4) Store it.
2065 */
2066 cachep->align = ralign;
2067 cachep->colour_off = cache_line_size();
2068 /* Offset must be a multiple of the alignment. */
2069 if (cachep->colour_off < cachep->align)
2070 cachep->colour_off = cachep->align;
2071
2072 if (slab_is_available())
2073 gfp = GFP_KERNEL;
2074 else
2075 gfp = GFP_NOWAIT;
2076
2077 #if DEBUG
2078
2079 /*
2080 * Both debugging options require word-alignment which is calculated
2081 * into align above.
2082 */
2083 if (flags & SLAB_RED_ZONE) {
2084 /* add space for red zone words */
2085 cachep->obj_offset += sizeof(unsigned long long);
2086 size += 2 * sizeof(unsigned long long);
2087 }
2088 if (flags & SLAB_STORE_USER) {
2089 /* user store requires one word storage behind the end of
2090 * the real object. But if the second red zone needs to be
2091 * aligned to 64 bits, we must allow that much space.
2092 */
2093 if (flags & SLAB_RED_ZONE)
2094 size += REDZONE_ALIGN;
2095 else
2096 size += BYTES_PER_WORD;
2097 }
2098 #endif
2099
2100 kasan_cache_create(cachep, &size, &flags);
2101
2102 size = ALIGN(size, cachep->align);
2103 /*
2104 * We should restrict the number of objects in a slab to implement
2105 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2106 */
2107 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2108 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2109
2110 #if DEBUG
2111 /*
2112 * To activate debug pagealloc, off-slab management is necessary
2113 * requirement. In early phase of initialization, small sized slab
2114 * doesn't get initialized so it would not be possible. So, we need
2115 * to check size >= 256. It guarantees that all necessary small
2116 * sized slab is initialized in current slab initialization sequence.
2117 */
2118 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2119 size >= 256 && cachep->object_size > cache_line_size()) {
2120 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2121 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2122
2123 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2124 flags |= CFLGS_OFF_SLAB;
2125 cachep->obj_offset += tmp_size - size;
2126 size = tmp_size;
2127 goto done;
2128 }
2129 }
2130 }
2131 #endif
2132
2133 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2134 flags |= CFLGS_OBJFREELIST_SLAB;
2135 goto done;
2136 }
2137
2138 if (set_off_slab_cache(cachep, size, flags)) {
2139 flags |= CFLGS_OFF_SLAB;
2140 goto done;
2141 }
2142
2143 if (set_on_slab_cache(cachep, size, flags))
2144 goto done;
2145
2146 return -E2BIG;
2147
2148 done:
2149 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2150 cachep->flags = flags;
2151 cachep->allocflags = __GFP_COMP;
2152 if (flags & SLAB_CACHE_DMA)
2153 cachep->allocflags |= GFP_DMA;
2154 cachep->size = size;
2155 cachep->reciprocal_buffer_size = reciprocal_value(size);
2156
2157 #if DEBUG
2158 /*
2159 * If we're going to use the generic kernel_map_pages()
2160 * poisoning, then it's going to smash the contents of
2161 * the redzone and userword anyhow, so switch them off.
2162 */
2163 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2164 (cachep->flags & SLAB_POISON) &&
2165 is_debug_pagealloc_cache(cachep))
2166 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2167 #endif
2168
2169 if (OFF_SLAB(cachep)) {
2170 cachep->freelist_cache =
2171 kmalloc_slab(cachep->freelist_size, 0u);
2172 }
2173
2174 err = setup_cpu_cache(cachep, gfp);
2175 if (err) {
2176 __kmem_cache_release(cachep);
2177 return err;
2178 }
2179
2180 return 0;
2181 }
2182
2183 #if DEBUG
2184 static void check_irq_off(void)
2185 {
2186 BUG_ON(!irqs_disabled());
2187 }
2188
2189 static void check_irq_on(void)
2190 {
2191 BUG_ON(irqs_disabled());
2192 }
2193
2194 static void check_mutex_acquired(void)
2195 {
2196 BUG_ON(!mutex_is_locked(&slab_mutex));
2197 }
2198
2199 static void check_spinlock_acquired(struct kmem_cache *cachep)
2200 {
2201 #ifdef CONFIG_SMP
2202 check_irq_off();
2203 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2204 #endif
2205 }
2206
2207 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2208 {
2209 #ifdef CONFIG_SMP
2210 check_irq_off();
2211 assert_spin_locked(&get_node(cachep, node)->list_lock);
2212 #endif
2213 }
2214
2215 #else
2216 #define check_irq_off() do { } while(0)
2217 #define check_irq_on() do { } while(0)
2218 #define check_mutex_acquired() do { } while(0)
2219 #define check_spinlock_acquired(x) do { } while(0)
2220 #define check_spinlock_acquired_node(x, y) do { } while(0)
2221 #endif
2222
2223 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2224 int node, bool free_all, struct list_head *list)
2225 {
2226 int tofree;
2227
2228 if (!ac || !ac->avail)
2229 return;
2230
2231 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2232 if (tofree > ac->avail)
2233 tofree = (ac->avail + 1) / 2;
2234
2235 free_block(cachep, ac->entry, tofree, node, list);
2236 ac->avail -= tofree;
2237 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2238 }
2239
2240 static void do_drain(void *arg)
2241 {
2242 struct kmem_cache *cachep = arg;
2243 struct array_cache *ac;
2244 int node = numa_mem_id();
2245 struct kmem_cache_node *n;
2246 LIST_HEAD(list);
2247
2248 check_irq_off();
2249 ac = cpu_cache_get(cachep);
2250 n = get_node(cachep, node);
2251 spin_lock(&n->list_lock);
2252 free_block(cachep, ac->entry, ac->avail, node, &list);
2253 spin_unlock(&n->list_lock);
2254 slabs_destroy(cachep, &list);
2255 ac->avail = 0;
2256 }
2257
2258 static void drain_cpu_caches(struct kmem_cache *cachep)
2259 {
2260 struct kmem_cache_node *n;
2261 int node;
2262 LIST_HEAD(list);
2263
2264 on_each_cpu(do_drain, cachep, 1);
2265 check_irq_on();
2266 for_each_kmem_cache_node(cachep, node, n)
2267 if (n->alien)
2268 drain_alien_cache(cachep, n->alien);
2269
2270 for_each_kmem_cache_node(cachep, node, n) {
2271 spin_lock_irq(&n->list_lock);
2272 drain_array_locked(cachep, n->shared, node, true, &list);
2273 spin_unlock_irq(&n->list_lock);
2274
2275 slabs_destroy(cachep, &list);
2276 }
2277 }
2278
2279 /*
2280 * Remove slabs from the list of free slabs.
2281 * Specify the number of slabs to drain in tofree.
2282 *
2283 * Returns the actual number of slabs released.
2284 */
2285 static int drain_freelist(struct kmem_cache *cache,
2286 struct kmem_cache_node *n, int tofree)
2287 {
2288 struct list_head *p;
2289 int nr_freed;
2290 struct page *page;
2291
2292 nr_freed = 0;
2293 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2294
2295 spin_lock_irq(&n->list_lock);
2296 p = n->slabs_free.prev;
2297 if (p == &n->slabs_free) {
2298 spin_unlock_irq(&n->list_lock);
2299 goto out;
2300 }
2301
2302 page = list_entry(p, struct page, lru);
2303 list_del(&page->lru);
2304 n->free_slabs--;
2305 n->total_slabs--;
2306 /*
2307 * Safe to drop the lock. The slab is no longer linked
2308 * to the cache.
2309 */
2310 n->free_objects -= cache->num;
2311 spin_unlock_irq(&n->list_lock);
2312 slab_destroy(cache, page);
2313 nr_freed++;
2314 }
2315 out:
2316 return nr_freed;
2317 }
2318
2319 int __kmem_cache_shrink(struct kmem_cache *cachep)
2320 {
2321 int ret = 0;
2322 int node;
2323 struct kmem_cache_node *n;
2324
2325 drain_cpu_caches(cachep);
2326
2327 check_irq_on();
2328 for_each_kmem_cache_node(cachep, node, n) {
2329 drain_freelist(cachep, n, INT_MAX);
2330
2331 ret += !list_empty(&n->slabs_full) ||
2332 !list_empty(&n->slabs_partial);
2333 }
2334 return (ret ? 1 : 0);
2335 }
2336
2337 #ifdef CONFIG_MEMCG
2338 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2339 {
2340 __kmem_cache_shrink(cachep);
2341 }
2342 #endif
2343
2344 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2345 {
2346 return __kmem_cache_shrink(cachep);
2347 }
2348
2349 void __kmem_cache_release(struct kmem_cache *cachep)
2350 {
2351 int i;
2352 struct kmem_cache_node *n;
2353
2354 cache_random_seq_destroy(cachep);
2355
2356 free_percpu(cachep->cpu_cache);
2357
2358 /* NUMA: free the node structures */
2359 for_each_kmem_cache_node(cachep, i, n) {
2360 kfree(n->shared);
2361 free_alien_cache(n->alien);
2362 kfree(n);
2363 cachep->node[i] = NULL;
2364 }
2365 }
2366
2367 /*
2368 * Get the memory for a slab management obj.
2369 *
2370 * For a slab cache when the slab descriptor is off-slab, the
2371 * slab descriptor can't come from the same cache which is being created,
2372 * Because if it is the case, that means we defer the creation of
2373 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2374 * And we eventually call down to __kmem_cache_create(), which
2375 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2376 * This is a "chicken-and-egg" problem.
2377 *
2378 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2379 * which are all initialized during kmem_cache_init().
2380 */
2381 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2382 struct page *page, int colour_off,
2383 gfp_t local_flags, int nodeid)
2384 {
2385 void *freelist;
2386 void *addr = page_address(page);
2387
2388 page->s_mem = addr + colour_off;
2389 page->active = 0;
2390
2391 if (OBJFREELIST_SLAB(cachep))
2392 freelist = NULL;
2393 else if (OFF_SLAB(cachep)) {
2394 /* Slab management obj is off-slab. */
2395 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2396 local_flags, nodeid);
2397 if (!freelist)
2398 return NULL;
2399 } else {
2400 /* We will use last bytes at the slab for freelist */
2401 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2402 cachep->freelist_size;
2403 }
2404
2405 return freelist;
2406 }
2407
2408 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2409 {
2410 return ((freelist_idx_t *)page->freelist)[idx];
2411 }
2412
2413 static inline void set_free_obj(struct page *page,
2414 unsigned int idx, freelist_idx_t val)
2415 {
2416 ((freelist_idx_t *)(page->freelist))[idx] = val;
2417 }
2418
2419 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2420 {
2421 #if DEBUG
2422 int i;
2423
2424 for (i = 0; i < cachep->num; i++) {
2425 void *objp = index_to_obj(cachep, page, i);
2426
2427 if (cachep->flags & SLAB_STORE_USER)
2428 *dbg_userword(cachep, objp) = NULL;
2429
2430 if (cachep->flags & SLAB_RED_ZONE) {
2431 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2432 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2433 }
2434 /*
2435 * Constructors are not allowed to allocate memory from the same
2436 * cache which they are a constructor for. Otherwise, deadlock.
2437 * They must also be threaded.
2438 */
2439 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2440 kasan_unpoison_object_data(cachep,
2441 objp + obj_offset(cachep));
2442 cachep->ctor(objp + obj_offset(cachep));
2443 kasan_poison_object_data(
2444 cachep, objp + obj_offset(cachep));
2445 }
2446
2447 if (cachep->flags & SLAB_RED_ZONE) {
2448 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2449 slab_error(cachep, "constructor overwrote the end of an object");
2450 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2451 slab_error(cachep, "constructor overwrote the start of an object");
2452 }
2453 /* need to poison the objs? */
2454 if (cachep->flags & SLAB_POISON) {
2455 poison_obj(cachep, objp, POISON_FREE);
2456 slab_kernel_map(cachep, objp, 0, 0);
2457 }
2458 }
2459 #endif
2460 }
2461
2462 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2463 /* Hold information during a freelist initialization */
2464 union freelist_init_state {
2465 struct {
2466 unsigned int pos;
2467 unsigned int *list;
2468 unsigned int count;
2469 };
2470 struct rnd_state rnd_state;
2471 };
2472
2473 /*
2474 * Initialize the state based on the randomization methode available.
2475 * return true if the pre-computed list is available, false otherwize.
2476 */
2477 static bool freelist_state_initialize(union freelist_init_state *state,
2478 struct kmem_cache *cachep,
2479 unsigned int count)
2480 {
2481 bool ret;
2482 unsigned int rand;
2483
2484 /* Use best entropy available to define a random shift */
2485 rand = get_random_int();
2486
2487 /* Use a random state if the pre-computed list is not available */
2488 if (!cachep->random_seq) {
2489 prandom_seed_state(&state->rnd_state, rand);
2490 ret = false;
2491 } else {
2492 state->list = cachep->random_seq;
2493 state->count = count;
2494 state->pos = rand % count;
2495 ret = true;
2496 }
2497 return ret;
2498 }
2499
2500 /* Get the next entry on the list and randomize it using a random shift */
2501 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2502 {
2503 if (state->pos >= state->count)
2504 state->pos = 0;
2505 return state->list[state->pos++];
2506 }
2507
2508 /* Swap two freelist entries */
2509 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2510 {
2511 swap(((freelist_idx_t *)page->freelist)[a],
2512 ((freelist_idx_t *)page->freelist)[b]);
2513 }
2514
2515 /*
2516 * Shuffle the freelist initialization state based on pre-computed lists.
2517 * return true if the list was successfully shuffled, false otherwise.
2518 */
2519 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2520 {
2521 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2522 union freelist_init_state state;
2523 bool precomputed;
2524
2525 if (count < 2)
2526 return false;
2527
2528 precomputed = freelist_state_initialize(&state, cachep, count);
2529
2530 /* Take a random entry as the objfreelist */
2531 if (OBJFREELIST_SLAB(cachep)) {
2532 if (!precomputed)
2533 objfreelist = count - 1;
2534 else
2535 objfreelist = next_random_slot(&state);
2536 page->freelist = index_to_obj(cachep, page, objfreelist) +
2537 obj_offset(cachep);
2538 count--;
2539 }
2540
2541 /*
2542 * On early boot, generate the list dynamically.
2543 * Later use a pre-computed list for speed.
2544 */
2545 if (!precomputed) {
2546 for (i = 0; i < count; i++)
2547 set_free_obj(page, i, i);
2548
2549 /* Fisher-Yates shuffle */
2550 for (i = count - 1; i > 0; i--) {
2551 rand = prandom_u32_state(&state.rnd_state);
2552 rand %= (i + 1);
2553 swap_free_obj(page, i, rand);
2554 }
2555 } else {
2556 for (i = 0; i < count; i++)
2557 set_free_obj(page, i, next_random_slot(&state));
2558 }
2559
2560 if (OBJFREELIST_SLAB(cachep))
2561 set_free_obj(page, cachep->num - 1, objfreelist);
2562
2563 return true;
2564 }
2565 #else
2566 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2567 struct page *page)
2568 {
2569 return false;
2570 }
2571 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2572
2573 static void cache_init_objs(struct kmem_cache *cachep,
2574 struct page *page)
2575 {
2576 int i;
2577 void *objp;
2578 bool shuffled;
2579
2580 cache_init_objs_debug(cachep, page);
2581
2582 /* Try to randomize the freelist if enabled */
2583 shuffled = shuffle_freelist(cachep, page);
2584
2585 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2586 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2587 obj_offset(cachep);
2588 }
2589
2590 for (i = 0; i < cachep->num; i++) {
2591 objp = index_to_obj(cachep, page, i);
2592 kasan_init_slab_obj(cachep, objp);
2593
2594 /* constructor could break poison info */
2595 if (DEBUG == 0 && cachep->ctor) {
2596 kasan_unpoison_object_data(cachep, objp);
2597 cachep->ctor(objp);
2598 kasan_poison_object_data(cachep, objp);
2599 }
2600
2601 if (!shuffled)
2602 set_free_obj(page, i, i);
2603 }
2604 }
2605
2606 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2607 {
2608 void *objp;
2609
2610 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2611 page->active++;
2612
2613 #if DEBUG
2614 if (cachep->flags & SLAB_STORE_USER)
2615 set_store_user_dirty(cachep);
2616 #endif
2617
2618 return objp;
2619 }
2620
2621 static void slab_put_obj(struct kmem_cache *cachep,
2622 struct page *page, void *objp)
2623 {
2624 unsigned int objnr = obj_to_index(cachep, page, objp);
2625 #if DEBUG
2626 unsigned int i;
2627
2628 /* Verify double free bug */
2629 for (i = page->active; i < cachep->num; i++) {
2630 if (get_free_obj(page, i) == objnr) {
2631 pr_err("slab: double free detected in cache '%s', objp %p\n",
2632 cachep->name, objp);
2633 BUG();
2634 }
2635 }
2636 #endif
2637 page->active--;
2638 if (!page->freelist)
2639 page->freelist = objp + obj_offset(cachep);
2640
2641 set_free_obj(page, page->active, objnr);
2642 }
2643
2644 /*
2645 * Map pages beginning at addr to the given cache and slab. This is required
2646 * for the slab allocator to be able to lookup the cache and slab of a
2647 * virtual address for kfree, ksize, and slab debugging.
2648 */
2649 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2650 void *freelist)
2651 {
2652 page->slab_cache = cache;
2653 page->freelist = freelist;
2654 }
2655
2656 /*
2657 * Grow (by 1) the number of slabs within a cache. This is called by
2658 * kmem_cache_alloc() when there are no active objs left in a cache.
2659 */
2660 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2661 gfp_t flags, int nodeid)
2662 {
2663 void *freelist;
2664 size_t offset;
2665 gfp_t local_flags;
2666 int page_node;
2667 struct kmem_cache_node *n;
2668 struct page *page;
2669
2670 /*
2671 * Be lazy and only check for valid flags here, keeping it out of the
2672 * critical path in kmem_cache_alloc().
2673 */
2674 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2675 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2676 flags &= ~GFP_SLAB_BUG_MASK;
2677 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2678 invalid_mask, &invalid_mask, flags, &flags);
2679 dump_stack();
2680 }
2681 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2682
2683 check_irq_off();
2684 if (gfpflags_allow_blocking(local_flags))
2685 local_irq_enable();
2686
2687 /*
2688 * Get mem for the objs. Attempt to allocate a physical page from
2689 * 'nodeid'.
2690 */
2691 page = kmem_getpages(cachep, local_flags, nodeid);
2692 if (!page)
2693 goto failed;
2694
2695 page_node = page_to_nid(page);
2696 n = get_node(cachep, page_node);
2697
2698 /* Get colour for the slab, and cal the next value. */
2699 n->colour_next++;
2700 if (n->colour_next >= cachep->colour)
2701 n->colour_next = 0;
2702
2703 offset = n->colour_next;
2704 if (offset >= cachep->colour)
2705 offset = 0;
2706
2707 offset *= cachep->colour_off;
2708
2709 /* Get slab management. */
2710 freelist = alloc_slabmgmt(cachep, page, offset,
2711 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2712 if (OFF_SLAB(cachep) && !freelist)
2713 goto opps1;
2714
2715 slab_map_pages(cachep, page, freelist);
2716
2717 kasan_poison_slab(page);
2718 cache_init_objs(cachep, page);
2719
2720 if (gfpflags_allow_blocking(local_flags))
2721 local_irq_disable();
2722
2723 return page;
2724
2725 opps1:
2726 kmem_freepages(cachep, page);
2727 failed:
2728 if (gfpflags_allow_blocking(local_flags))
2729 local_irq_disable();
2730 return NULL;
2731 }
2732
2733 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2734 {
2735 struct kmem_cache_node *n;
2736 void *list = NULL;
2737
2738 check_irq_off();
2739
2740 if (!page)
2741 return;
2742
2743 INIT_LIST_HEAD(&page->lru);
2744 n = get_node(cachep, page_to_nid(page));
2745
2746 spin_lock(&n->list_lock);
2747 n->total_slabs++;
2748 if (!page->active) {
2749 list_add_tail(&page->lru, &(n->slabs_free));
2750 n->free_slabs++;
2751 } else
2752 fixup_slab_list(cachep, n, page, &list);
2753
2754 STATS_INC_GROWN(cachep);
2755 n->free_objects += cachep->num - page->active;
2756 spin_unlock(&n->list_lock);
2757
2758 fixup_objfreelist_debug(cachep, &list);
2759 }
2760
2761 #if DEBUG
2762
2763 /*
2764 * Perform extra freeing checks:
2765 * - detect bad pointers.
2766 * - POISON/RED_ZONE checking
2767 */
2768 static void kfree_debugcheck(const void *objp)
2769 {
2770 if (!virt_addr_valid(objp)) {
2771 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2772 (unsigned long)objp);
2773 BUG();
2774 }
2775 }
2776
2777 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2778 {
2779 unsigned long long redzone1, redzone2;
2780
2781 redzone1 = *dbg_redzone1(cache, obj);
2782 redzone2 = *dbg_redzone2(cache, obj);
2783
2784 /*
2785 * Redzone is ok.
2786 */
2787 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2788 return;
2789
2790 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2791 slab_error(cache, "double free detected");
2792 else
2793 slab_error(cache, "memory outside object was overwritten");
2794
2795 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2796 obj, redzone1, redzone2);
2797 }
2798
2799 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2800 unsigned long caller)
2801 {
2802 unsigned int objnr;
2803 struct page *page;
2804
2805 BUG_ON(virt_to_cache(objp) != cachep);
2806
2807 objp -= obj_offset(cachep);
2808 kfree_debugcheck(objp);
2809 page = virt_to_head_page(objp);
2810
2811 if (cachep->flags & SLAB_RED_ZONE) {
2812 verify_redzone_free(cachep, objp);
2813 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2814 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2815 }
2816 if (cachep->flags & SLAB_STORE_USER) {
2817 set_store_user_dirty(cachep);
2818 *dbg_userword(cachep, objp) = (void *)caller;
2819 }
2820
2821 objnr = obj_to_index(cachep, page, objp);
2822
2823 BUG_ON(objnr >= cachep->num);
2824 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2825
2826 if (cachep->flags & SLAB_POISON) {
2827 poison_obj(cachep, objp, POISON_FREE);
2828 slab_kernel_map(cachep, objp, 0, caller);
2829 }
2830 return objp;
2831 }
2832
2833 #else
2834 #define kfree_debugcheck(x) do { } while(0)
2835 #define cache_free_debugcheck(x,objp,z) (objp)
2836 #endif
2837
2838 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2839 void **list)
2840 {
2841 #if DEBUG
2842 void *next = *list;
2843 void *objp;
2844
2845 while (next) {
2846 objp = next - obj_offset(cachep);
2847 next = *(void **)next;
2848 poison_obj(cachep, objp, POISON_FREE);
2849 }
2850 #endif
2851 }
2852
2853 static inline void fixup_slab_list(struct kmem_cache *cachep,
2854 struct kmem_cache_node *n, struct page *page,
2855 void **list)
2856 {
2857 /* move slabp to correct slabp list: */
2858 list_del(&page->lru);
2859 if (page->active == cachep->num) {
2860 list_add(&page->lru, &n->slabs_full);
2861 if (OBJFREELIST_SLAB(cachep)) {
2862 #if DEBUG
2863 /* Poisoning will be done without holding the lock */
2864 if (cachep->flags & SLAB_POISON) {
2865 void **objp = page->freelist;
2866
2867 *objp = *list;
2868 *list = objp;
2869 }
2870 #endif
2871 page->freelist = NULL;
2872 }
2873 } else
2874 list_add(&page->lru, &n->slabs_partial);
2875 }
2876
2877 /* Try to find non-pfmemalloc slab if needed */
2878 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2879 struct page *page, bool pfmemalloc)
2880 {
2881 if (!page)
2882 return NULL;
2883
2884 if (pfmemalloc)
2885 return page;
2886
2887 if (!PageSlabPfmemalloc(page))
2888 return page;
2889
2890 /* No need to keep pfmemalloc slab if we have enough free objects */
2891 if (n->free_objects > n->free_limit) {
2892 ClearPageSlabPfmemalloc(page);
2893 return page;
2894 }
2895
2896 /* Move pfmemalloc slab to the end of list to speed up next search */
2897 list_del(&page->lru);
2898 if (!page->active) {
2899 list_add_tail(&page->lru, &n->slabs_free);
2900 n->free_slabs++;
2901 } else
2902 list_add_tail(&page->lru, &n->slabs_partial);
2903
2904 list_for_each_entry(page, &n->slabs_partial, lru) {
2905 if (!PageSlabPfmemalloc(page))
2906 return page;
2907 }
2908
2909 n->free_touched = 1;
2910 list_for_each_entry(page, &n->slabs_free, lru) {
2911 if (!PageSlabPfmemalloc(page)) {
2912 n->free_slabs--;
2913 return page;
2914 }
2915 }
2916
2917 return NULL;
2918 }
2919
2920 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2921 {
2922 struct page *page;
2923
2924 assert_spin_locked(&n->list_lock);
2925 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2926 if (!page) {
2927 n->free_touched = 1;
2928 page = list_first_entry_or_null(&n->slabs_free, struct page,
2929 lru);
2930 if (page)
2931 n->free_slabs--;
2932 }
2933
2934 if (sk_memalloc_socks())
2935 page = get_valid_first_slab(n, page, pfmemalloc);
2936
2937 return page;
2938 }
2939
2940 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2941 struct kmem_cache_node *n, gfp_t flags)
2942 {
2943 struct page *page;
2944 void *obj;
2945 void *list = NULL;
2946
2947 if (!gfp_pfmemalloc_allowed(flags))
2948 return NULL;
2949
2950 spin_lock(&n->list_lock);
2951 page = get_first_slab(n, true);
2952 if (!page) {
2953 spin_unlock(&n->list_lock);
2954 return NULL;
2955 }
2956
2957 obj = slab_get_obj(cachep, page);
2958 n->free_objects--;
2959
2960 fixup_slab_list(cachep, n, page, &list);
2961
2962 spin_unlock(&n->list_lock);
2963 fixup_objfreelist_debug(cachep, &list);
2964
2965 return obj;
2966 }
2967
2968 /*
2969 * Slab list should be fixed up by fixup_slab_list() for existing slab
2970 * or cache_grow_end() for new slab
2971 */
2972 static __always_inline int alloc_block(struct kmem_cache *cachep,
2973 struct array_cache *ac, struct page *page, int batchcount)
2974 {
2975 /*
2976 * There must be at least one object available for
2977 * allocation.
2978 */
2979 BUG_ON(page->active >= cachep->num);
2980
2981 while (page->active < cachep->num && batchcount--) {
2982 STATS_INC_ALLOCED(cachep);
2983 STATS_INC_ACTIVE(cachep);
2984 STATS_SET_HIGH(cachep);
2985
2986 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2987 }
2988
2989 return batchcount;
2990 }
2991
2992 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2993 {
2994 int batchcount;
2995 struct kmem_cache_node *n;
2996 struct array_cache *ac, *shared;
2997 int node;
2998 void *list = NULL;
2999 struct page *page;
3000
3001 check_irq_off();
3002 node = numa_mem_id();
3003
3004 ac = cpu_cache_get(cachep);
3005 batchcount = ac->batchcount;
3006 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3007 /*
3008 * If there was little recent activity on this cache, then
3009 * perform only a partial refill. Otherwise we could generate
3010 * refill bouncing.
3011 */
3012 batchcount = BATCHREFILL_LIMIT;
3013 }
3014 n = get_node(cachep, node);
3015
3016 BUG_ON(ac->avail > 0 || !n);
3017 shared = READ_ONCE(n->shared);
3018 if (!n->free_objects && (!shared || !shared->avail))
3019 goto direct_grow;
3020
3021 spin_lock(&n->list_lock);
3022 shared = READ_ONCE(n->shared);
3023
3024 /* See if we can refill from the shared array */
3025 if (shared && transfer_objects(ac, shared, batchcount)) {
3026 shared->touched = 1;
3027 goto alloc_done;
3028 }
3029
3030 while (batchcount > 0) {
3031 /* Get slab alloc is to come from. */
3032 page = get_first_slab(n, false);
3033 if (!page)
3034 goto must_grow;
3035
3036 check_spinlock_acquired(cachep);
3037
3038 batchcount = alloc_block(cachep, ac, page, batchcount);
3039 fixup_slab_list(cachep, n, page, &list);
3040 }
3041
3042 must_grow:
3043 n->free_objects -= ac->avail;
3044 alloc_done:
3045 spin_unlock(&n->list_lock);
3046 fixup_objfreelist_debug(cachep, &list);
3047
3048 direct_grow:
3049 if (unlikely(!ac->avail)) {
3050 /* Check if we can use obj in pfmemalloc slab */
3051 if (sk_memalloc_socks()) {
3052 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3053
3054 if (obj)
3055 return obj;
3056 }
3057
3058 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3059
3060 /*
3061 * cache_grow_begin() can reenable interrupts,
3062 * then ac could change.
3063 */
3064 ac = cpu_cache_get(cachep);
3065 if (!ac->avail && page)
3066 alloc_block(cachep, ac, page, batchcount);
3067 cache_grow_end(cachep, page);
3068
3069 if (!ac->avail)
3070 return NULL;
3071 }
3072 ac->touched = 1;
3073
3074 return ac->entry[--ac->avail];
3075 }
3076
3077 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3078 gfp_t flags)
3079 {
3080 might_sleep_if(gfpflags_allow_blocking(flags));
3081 }
3082
3083 #if DEBUG
3084 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3085 gfp_t flags, void *objp, unsigned long caller)
3086 {
3087 if (!objp)
3088 return objp;
3089 if (cachep->flags & SLAB_POISON) {
3090 check_poison_obj(cachep, objp);
3091 slab_kernel_map(cachep, objp, 1, 0);
3092 poison_obj(cachep, objp, POISON_INUSE);
3093 }
3094 if (cachep->flags & SLAB_STORE_USER)
3095 *dbg_userword(cachep, objp) = (void *)caller;
3096
3097 if (cachep->flags & SLAB_RED_ZONE) {
3098 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3099 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3100 slab_error(cachep, "double free, or memory outside object was overwritten");
3101 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3102 objp, *dbg_redzone1(cachep, objp),
3103 *dbg_redzone2(cachep, objp));
3104 }
3105 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3106 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3107 }
3108
3109 objp += obj_offset(cachep);
3110 if (cachep->ctor && cachep->flags & SLAB_POISON)
3111 cachep->ctor(objp);
3112 if (ARCH_SLAB_MINALIGN &&
3113 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3114 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3115 objp, (int)ARCH_SLAB_MINALIGN);
3116 }
3117 return objp;
3118 }
3119 #else
3120 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3121 #endif
3122
3123 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3124 {
3125 void *objp;
3126 struct array_cache *ac;
3127
3128 check_irq_off();
3129
3130 ac = cpu_cache_get(cachep);
3131 if (likely(ac->avail)) {
3132 ac->touched = 1;
3133 objp = ac->entry[--ac->avail];
3134
3135 STATS_INC_ALLOCHIT(cachep);
3136 goto out;
3137 }
3138
3139 STATS_INC_ALLOCMISS(cachep);
3140 objp = cache_alloc_refill(cachep, flags);
3141 /*
3142 * the 'ac' may be updated by cache_alloc_refill(),
3143 * and kmemleak_erase() requires its correct value.
3144 */
3145 ac = cpu_cache_get(cachep);
3146
3147 out:
3148 /*
3149 * To avoid a false negative, if an object that is in one of the
3150 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3151 * treat the array pointers as a reference to the object.
3152 */
3153 if (objp)
3154 kmemleak_erase(&ac->entry[ac->avail]);
3155 return objp;
3156 }
3157
3158 #ifdef CONFIG_NUMA
3159 /*
3160 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3161 *
3162 * If we are in_interrupt, then process context, including cpusets and
3163 * mempolicy, may not apply and should not be used for allocation policy.
3164 */
3165 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3166 {
3167 int nid_alloc, nid_here;
3168
3169 if (in_interrupt() || (flags & __GFP_THISNODE))
3170 return NULL;
3171 nid_alloc = nid_here = numa_mem_id();
3172 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3173 nid_alloc = cpuset_slab_spread_node();
3174 else if (current->mempolicy)
3175 nid_alloc = mempolicy_slab_node();
3176 if (nid_alloc != nid_here)
3177 return ____cache_alloc_node(cachep, flags, nid_alloc);
3178 return NULL;
3179 }
3180
3181 /*
3182 * Fallback function if there was no memory available and no objects on a
3183 * certain node and fall back is permitted. First we scan all the
3184 * available node for available objects. If that fails then we
3185 * perform an allocation without specifying a node. This allows the page
3186 * allocator to do its reclaim / fallback magic. We then insert the
3187 * slab into the proper nodelist and then allocate from it.
3188 */
3189 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3190 {
3191 struct zonelist *zonelist;
3192 struct zoneref *z;
3193 struct zone *zone;
3194 enum zone_type high_zoneidx = gfp_zone(flags);
3195 void *obj = NULL;
3196 struct page *page;
3197 int nid;
3198 unsigned int cpuset_mems_cookie;
3199
3200 if (flags & __GFP_THISNODE)
3201 return NULL;
3202
3203 retry_cpuset:
3204 cpuset_mems_cookie = read_mems_allowed_begin();
3205 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3206
3207 retry:
3208 /*
3209 * Look through allowed nodes for objects available
3210 * from existing per node queues.
3211 */
3212 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3213 nid = zone_to_nid(zone);
3214
3215 if (cpuset_zone_allowed(zone, flags) &&
3216 get_node(cache, nid) &&
3217 get_node(cache, nid)->free_objects) {
3218 obj = ____cache_alloc_node(cache,
3219 gfp_exact_node(flags), nid);
3220 if (obj)
3221 break;
3222 }
3223 }
3224
3225 if (!obj) {
3226 /*
3227 * This allocation will be performed within the constraints
3228 * of the current cpuset / memory policy requirements.
3229 * We may trigger various forms of reclaim on the allowed
3230 * set and go into memory reserves if necessary.
3231 */
3232 page = cache_grow_begin(cache, flags, numa_mem_id());
3233 cache_grow_end(cache, page);
3234 if (page) {
3235 nid = page_to_nid(page);
3236 obj = ____cache_alloc_node(cache,
3237 gfp_exact_node(flags), nid);
3238
3239 /*
3240 * Another processor may allocate the objects in
3241 * the slab since we are not holding any locks.
3242 */
3243 if (!obj)
3244 goto retry;
3245 }
3246 }
3247
3248 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3249 goto retry_cpuset;
3250 return obj;
3251 }
3252
3253 /*
3254 * A interface to enable slab creation on nodeid
3255 */
3256 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3257 int nodeid)
3258 {
3259 struct page *page;
3260 struct kmem_cache_node *n;
3261 void *obj = NULL;
3262 void *list = NULL;
3263
3264 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3265 n = get_node(cachep, nodeid);
3266 BUG_ON(!n);
3267
3268 check_irq_off();
3269 spin_lock(&n->list_lock);
3270 page = get_first_slab(n, false);
3271 if (!page)
3272 goto must_grow;
3273
3274 check_spinlock_acquired_node(cachep, nodeid);
3275
3276 STATS_INC_NODEALLOCS(cachep);
3277 STATS_INC_ACTIVE(cachep);
3278 STATS_SET_HIGH(cachep);
3279
3280 BUG_ON(page->active == cachep->num);
3281
3282 obj = slab_get_obj(cachep, page);
3283 n->free_objects--;
3284
3285 fixup_slab_list(cachep, n, page, &list);
3286
3287 spin_unlock(&n->list_lock);
3288 fixup_objfreelist_debug(cachep, &list);
3289 return obj;
3290
3291 must_grow:
3292 spin_unlock(&n->list_lock);
3293 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3294 if (page) {
3295 /* This slab isn't counted yet so don't update free_objects */
3296 obj = slab_get_obj(cachep, page);
3297 }
3298 cache_grow_end(cachep, page);
3299
3300 return obj ? obj : fallback_alloc(cachep, flags);
3301 }
3302
3303 static __always_inline void *
3304 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3305 unsigned long caller)
3306 {
3307 unsigned long save_flags;
3308 void *ptr;
3309 int slab_node = numa_mem_id();
3310
3311 flags &= gfp_allowed_mask;
3312 cachep = slab_pre_alloc_hook(cachep, flags);
3313 if (unlikely(!cachep))
3314 return NULL;
3315
3316 cache_alloc_debugcheck_before(cachep, flags);
3317 local_irq_save(save_flags);
3318
3319 if (nodeid == NUMA_NO_NODE)
3320 nodeid = slab_node;
3321
3322 if (unlikely(!get_node(cachep, nodeid))) {
3323 /* Node not bootstrapped yet */
3324 ptr = fallback_alloc(cachep, flags);
3325 goto out;
3326 }
3327
3328 if (nodeid == slab_node) {
3329 /*
3330 * Use the locally cached objects if possible.
3331 * However ____cache_alloc does not allow fallback
3332 * to other nodes. It may fail while we still have
3333 * objects on other nodes available.
3334 */
3335 ptr = ____cache_alloc(cachep, flags);
3336 if (ptr)
3337 goto out;
3338 }
3339 /* ___cache_alloc_node can fall back to other nodes */
3340 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3341 out:
3342 local_irq_restore(save_flags);
3343 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3344
3345 if (unlikely(flags & __GFP_ZERO) && ptr)
3346 memset(ptr, 0, cachep->object_size);
3347
3348 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3349 return ptr;
3350 }
3351
3352 static __always_inline void *
3353 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3354 {
3355 void *objp;
3356
3357 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3358 objp = alternate_node_alloc(cache, flags);
3359 if (objp)
3360 goto out;
3361 }
3362 objp = ____cache_alloc(cache, flags);
3363
3364 /*
3365 * We may just have run out of memory on the local node.
3366 * ____cache_alloc_node() knows how to locate memory on other nodes
3367 */
3368 if (!objp)
3369 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3370
3371 out:
3372 return objp;
3373 }
3374 #else
3375
3376 static __always_inline void *
3377 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3378 {
3379 return ____cache_alloc(cachep, flags);
3380 }
3381
3382 #endif /* CONFIG_NUMA */
3383
3384 static __always_inline void *
3385 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3386 {
3387 unsigned long save_flags;
3388 void *objp;
3389
3390 flags &= gfp_allowed_mask;
3391 cachep = slab_pre_alloc_hook(cachep, flags);
3392 if (unlikely(!cachep))
3393 return NULL;
3394
3395 cache_alloc_debugcheck_before(cachep, flags);
3396 local_irq_save(save_flags);
3397 objp = __do_cache_alloc(cachep, flags);
3398 local_irq_restore(save_flags);
3399 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3400 prefetchw(objp);
3401
3402 if (unlikely(flags & __GFP_ZERO) && objp)
3403 memset(objp, 0, cachep->object_size);
3404
3405 slab_post_alloc_hook(cachep, flags, 1, &objp);
3406 return objp;
3407 }
3408
3409 /*
3410 * Caller needs to acquire correct kmem_cache_node's list_lock
3411 * @list: List of detached free slabs should be freed by caller
3412 */
3413 static void free_block(struct kmem_cache *cachep, void **objpp,
3414 int nr_objects, int node, struct list_head *list)
3415 {
3416 int i;
3417 struct kmem_cache_node *n = get_node(cachep, node);
3418 struct page *page;
3419
3420 n->free_objects += nr_objects;
3421
3422 for (i = 0; i < nr_objects; i++) {
3423 void *objp;
3424 struct page *page;
3425
3426 objp = objpp[i];
3427
3428 page = virt_to_head_page(objp);
3429 list_del(&page->lru);
3430 check_spinlock_acquired_node(cachep, node);
3431 slab_put_obj(cachep, page, objp);
3432 STATS_DEC_ACTIVE(cachep);
3433
3434 /* fixup slab chains */
3435 if (page->active == 0) {
3436 list_add(&page->lru, &n->slabs_free);
3437 n->free_slabs++;
3438 } else {
3439 /* Unconditionally move a slab to the end of the
3440 * partial list on free - maximum time for the
3441 * other objects to be freed, too.
3442 */
3443 list_add_tail(&page->lru, &n->slabs_partial);
3444 }
3445 }
3446
3447 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3448 n->free_objects -= cachep->num;
3449
3450 page = list_last_entry(&n->slabs_free, struct page, lru);
3451 list_move(&page->lru, list);
3452 n->free_slabs--;
3453 n->total_slabs--;
3454 }
3455 }
3456
3457 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3458 {
3459 int batchcount;
3460 struct kmem_cache_node *n;
3461 int node = numa_mem_id();
3462 LIST_HEAD(list);
3463
3464 batchcount = ac->batchcount;
3465
3466 check_irq_off();
3467 n = get_node(cachep, node);
3468 spin_lock(&n->list_lock);
3469 if (n->shared) {
3470 struct array_cache *shared_array = n->shared;
3471 int max = shared_array->limit - shared_array->avail;
3472 if (max) {
3473 if (batchcount > max)
3474 batchcount = max;
3475 memcpy(&(shared_array->entry[shared_array->avail]),
3476 ac->entry, sizeof(void *) * batchcount);
3477 shared_array->avail += batchcount;
3478 goto free_done;
3479 }
3480 }
3481
3482 free_block(cachep, ac->entry, batchcount, node, &list);
3483 free_done:
3484 #if STATS
3485 {
3486 int i = 0;
3487 struct page *page;
3488
3489 list_for_each_entry(page, &n->slabs_free, lru) {
3490 BUG_ON(page->active);
3491
3492 i++;
3493 }
3494 STATS_SET_FREEABLE(cachep, i);
3495 }
3496 #endif
3497 spin_unlock(&n->list_lock);
3498 slabs_destroy(cachep, &list);
3499 ac->avail -= batchcount;
3500 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3501 }
3502
3503 /*
3504 * Release an obj back to its cache. If the obj has a constructed state, it must
3505 * be in this state _before_ it is released. Called with disabled ints.
3506 */
3507 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3508 unsigned long caller)
3509 {
3510 /* Put the object into the quarantine, don't touch it for now. */
3511 if (kasan_slab_free(cachep, objp))
3512 return;
3513
3514 ___cache_free(cachep, objp, caller);
3515 }
3516
3517 void ___cache_free(struct kmem_cache *cachep, void *objp,
3518 unsigned long caller)
3519 {
3520 struct array_cache *ac = cpu_cache_get(cachep);
3521
3522 check_irq_off();
3523 kmemleak_free_recursive(objp, cachep->flags);
3524 objp = cache_free_debugcheck(cachep, objp, caller);
3525
3526 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3527
3528 /*
3529 * Skip calling cache_free_alien() when the platform is not numa.
3530 * This will avoid cache misses that happen while accessing slabp (which
3531 * is per page memory reference) to get nodeid. Instead use a global
3532 * variable to skip the call, which is mostly likely to be present in
3533 * the cache.
3534 */
3535 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3536 return;
3537
3538 if (ac->avail < ac->limit) {
3539 STATS_INC_FREEHIT(cachep);
3540 } else {
3541 STATS_INC_FREEMISS(cachep);
3542 cache_flusharray(cachep, ac);
3543 }
3544
3545 if (sk_memalloc_socks()) {
3546 struct page *page = virt_to_head_page(objp);
3547
3548 if (unlikely(PageSlabPfmemalloc(page))) {
3549 cache_free_pfmemalloc(cachep, page, objp);
3550 return;
3551 }
3552 }
3553
3554 ac->entry[ac->avail++] = objp;
3555 }
3556
3557 /**
3558 * kmem_cache_alloc - Allocate an object
3559 * @cachep: The cache to allocate from.
3560 * @flags: See kmalloc().
3561 *
3562 * Allocate an object from this cache. The flags are only relevant
3563 * if the cache has no available objects.
3564 */
3565 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3566 {
3567 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3568
3569 kasan_slab_alloc(cachep, ret, flags);
3570 trace_kmem_cache_alloc(_RET_IP_, ret,
3571 cachep->object_size, cachep->size, flags);
3572
3573 return ret;
3574 }
3575 EXPORT_SYMBOL(kmem_cache_alloc);
3576
3577 static __always_inline void
3578 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3579 size_t size, void **p, unsigned long caller)
3580 {
3581 size_t i;
3582
3583 for (i = 0; i < size; i++)
3584 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3585 }
3586
3587 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3588 void **p)
3589 {
3590 size_t i;
3591
3592 s = slab_pre_alloc_hook(s, flags);
3593 if (!s)
3594 return 0;
3595
3596 cache_alloc_debugcheck_before(s, flags);
3597
3598 local_irq_disable();
3599 for (i = 0; i < size; i++) {
3600 void *objp = __do_cache_alloc(s, flags);
3601
3602 if (unlikely(!objp))
3603 goto error;
3604 p[i] = objp;
3605 }
3606 local_irq_enable();
3607
3608 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3609
3610 /* Clear memory outside IRQ disabled section */
3611 if (unlikely(flags & __GFP_ZERO))
3612 for (i = 0; i < size; i++)
3613 memset(p[i], 0, s->object_size);
3614
3615 slab_post_alloc_hook(s, flags, size, p);
3616 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3617 return size;
3618 error:
3619 local_irq_enable();
3620 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3621 slab_post_alloc_hook(s, flags, i, p);
3622 __kmem_cache_free_bulk(s, i, p);
3623 return 0;
3624 }
3625 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3626
3627 #ifdef CONFIG_TRACING
3628 void *
3629 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3630 {
3631 void *ret;
3632
3633 ret = slab_alloc(cachep, flags, _RET_IP_);
3634
3635 kasan_kmalloc(cachep, ret, size, flags);
3636 trace_kmalloc(_RET_IP_, ret,
3637 size, cachep->size, flags);
3638 return ret;
3639 }
3640 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3641 #endif
3642
3643 #ifdef CONFIG_NUMA
3644 /**
3645 * kmem_cache_alloc_node - Allocate an object on the specified node
3646 * @cachep: The cache to allocate from.
3647 * @flags: See kmalloc().
3648 * @nodeid: node number of the target node.
3649 *
3650 * Identical to kmem_cache_alloc but it will allocate memory on the given
3651 * node, which can improve the performance for cpu bound structures.
3652 *
3653 * Fallback to other node is possible if __GFP_THISNODE is not set.
3654 */
3655 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3656 {
3657 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3658
3659 kasan_slab_alloc(cachep, ret, flags);
3660 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3661 cachep->object_size, cachep->size,
3662 flags, nodeid);
3663
3664 return ret;
3665 }
3666 EXPORT_SYMBOL(kmem_cache_alloc_node);
3667
3668 #ifdef CONFIG_TRACING
3669 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3670 gfp_t flags,
3671 int nodeid,
3672 size_t size)
3673 {
3674 void *ret;
3675
3676 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3677
3678 kasan_kmalloc(cachep, ret, size, flags);
3679 trace_kmalloc_node(_RET_IP_, ret,
3680 size, cachep->size,
3681 flags, nodeid);
3682 return ret;
3683 }
3684 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3685 #endif
3686
3687 static __always_inline void *
3688 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3689 {
3690 struct kmem_cache *cachep;
3691 void *ret;
3692
3693 cachep = kmalloc_slab(size, flags);
3694 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3695 return cachep;
3696 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3697 kasan_kmalloc(cachep, ret, size, flags);
3698
3699 return ret;
3700 }
3701
3702 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3703 {
3704 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3705 }
3706 EXPORT_SYMBOL(__kmalloc_node);
3707
3708 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3709 int node, unsigned long caller)
3710 {
3711 return __do_kmalloc_node(size, flags, node, caller);
3712 }
3713 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3714 #endif /* CONFIG_NUMA */
3715
3716 /**
3717 * __do_kmalloc - allocate memory
3718 * @size: how many bytes of memory are required.
3719 * @flags: the type of memory to allocate (see kmalloc).
3720 * @caller: function caller for debug tracking of the caller
3721 */
3722 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3723 unsigned long caller)
3724 {
3725 struct kmem_cache *cachep;
3726 void *ret;
3727
3728 cachep = kmalloc_slab(size, flags);
3729 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3730 return cachep;
3731 ret = slab_alloc(cachep, flags, caller);
3732
3733 kasan_kmalloc(cachep, ret, size, flags);
3734 trace_kmalloc(caller, ret,
3735 size, cachep->size, flags);
3736
3737 return ret;
3738 }
3739
3740 void *__kmalloc(size_t size, gfp_t flags)
3741 {
3742 return __do_kmalloc(size, flags, _RET_IP_);
3743 }
3744 EXPORT_SYMBOL(__kmalloc);
3745
3746 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3747 {
3748 return __do_kmalloc(size, flags, caller);
3749 }
3750 EXPORT_SYMBOL(__kmalloc_track_caller);
3751
3752 /**
3753 * kmem_cache_free - Deallocate an object
3754 * @cachep: The cache the allocation was from.
3755 * @objp: The previously allocated object.
3756 *
3757 * Free an object which was previously allocated from this
3758 * cache.
3759 */
3760 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3761 {
3762 unsigned long flags;
3763 cachep = cache_from_obj(cachep, objp);
3764 if (!cachep)
3765 return;
3766
3767 local_irq_save(flags);
3768 debug_check_no_locks_freed(objp, cachep->object_size);
3769 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3770 debug_check_no_obj_freed(objp, cachep->object_size);
3771 __cache_free(cachep, objp, _RET_IP_);
3772 local_irq_restore(flags);
3773
3774 trace_kmem_cache_free(_RET_IP_, objp);
3775 }
3776 EXPORT_SYMBOL(kmem_cache_free);
3777
3778 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3779 {
3780 struct kmem_cache *s;
3781 size_t i;
3782
3783 local_irq_disable();
3784 for (i = 0; i < size; i++) {
3785 void *objp = p[i];
3786
3787 if (!orig_s) /* called via kfree_bulk */
3788 s = virt_to_cache(objp);
3789 else
3790 s = cache_from_obj(orig_s, objp);
3791
3792 debug_check_no_locks_freed(objp, s->object_size);
3793 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3794 debug_check_no_obj_freed(objp, s->object_size);
3795
3796 __cache_free(s, objp, _RET_IP_);
3797 }
3798 local_irq_enable();
3799
3800 /* FIXME: add tracing */
3801 }
3802 EXPORT_SYMBOL(kmem_cache_free_bulk);
3803
3804 /**
3805 * kfree - free previously allocated memory
3806 * @objp: pointer returned by kmalloc.
3807 *
3808 * If @objp is NULL, no operation is performed.
3809 *
3810 * Don't free memory not originally allocated by kmalloc()
3811 * or you will run into trouble.
3812 */
3813 void kfree(const void *objp)
3814 {
3815 struct kmem_cache *c;
3816 unsigned long flags;
3817
3818 trace_kfree(_RET_IP_, objp);
3819
3820 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3821 return;
3822 local_irq_save(flags);
3823 kfree_debugcheck(objp);
3824 c = virt_to_cache(objp);
3825 debug_check_no_locks_freed(objp, c->object_size);
3826
3827 debug_check_no_obj_freed(objp, c->object_size);
3828 __cache_free(c, (void *)objp, _RET_IP_);
3829 local_irq_restore(flags);
3830 }
3831 EXPORT_SYMBOL(kfree);
3832
3833 /*
3834 * This initializes kmem_cache_node or resizes various caches for all nodes.
3835 */
3836 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3837 {
3838 int ret;
3839 int node;
3840 struct kmem_cache_node *n;
3841
3842 for_each_online_node(node) {
3843 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3844 if (ret)
3845 goto fail;
3846
3847 }
3848
3849 return 0;
3850
3851 fail:
3852 if (!cachep->list.next) {
3853 /* Cache is not active yet. Roll back what we did */
3854 node--;
3855 while (node >= 0) {
3856 n = get_node(cachep, node);
3857 if (n) {
3858 kfree(n->shared);
3859 free_alien_cache(n->alien);
3860 kfree(n);
3861 cachep->node[node] = NULL;
3862 }
3863 node--;
3864 }
3865 }
3866 return -ENOMEM;
3867 }
3868
3869 /* Always called with the slab_mutex held */
3870 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3871 int batchcount, int shared, gfp_t gfp)
3872 {
3873 struct array_cache __percpu *cpu_cache, *prev;
3874 int cpu;
3875
3876 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3877 if (!cpu_cache)
3878 return -ENOMEM;
3879
3880 prev = cachep->cpu_cache;
3881 cachep->cpu_cache = cpu_cache;
3882 kick_all_cpus_sync();
3883
3884 check_irq_on();
3885 cachep->batchcount = batchcount;
3886 cachep->limit = limit;
3887 cachep->shared = shared;
3888
3889 if (!prev)
3890 goto setup_node;
3891
3892 for_each_online_cpu(cpu) {
3893 LIST_HEAD(list);
3894 int node;
3895 struct kmem_cache_node *n;
3896 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3897
3898 node = cpu_to_mem(cpu);
3899 n = get_node(cachep, node);
3900 spin_lock_irq(&n->list_lock);
3901 free_block(cachep, ac->entry, ac->avail, node, &list);
3902 spin_unlock_irq(&n->list_lock);
3903 slabs_destroy(cachep, &list);
3904 }
3905 free_percpu(prev);
3906
3907 setup_node:
3908 return setup_kmem_cache_nodes(cachep, gfp);
3909 }
3910
3911 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3912 int batchcount, int shared, gfp_t gfp)
3913 {
3914 int ret;
3915 struct kmem_cache *c;
3916
3917 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3918
3919 if (slab_state < FULL)
3920 return ret;
3921
3922 if ((ret < 0) || !is_root_cache(cachep))
3923 return ret;
3924
3925 lockdep_assert_held(&slab_mutex);
3926 for_each_memcg_cache(c, cachep) {
3927 /* return value determined by the root cache only */
3928 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3929 }
3930
3931 return ret;
3932 }
3933
3934 /* Called with slab_mutex held always */
3935 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3936 {
3937 int err;
3938 int limit = 0;
3939 int shared = 0;
3940 int batchcount = 0;
3941
3942 err = cache_random_seq_create(cachep, cachep->num, gfp);
3943 if (err)
3944 goto end;
3945
3946 if (!is_root_cache(cachep)) {
3947 struct kmem_cache *root = memcg_root_cache(cachep);
3948 limit = root->limit;
3949 shared = root->shared;
3950 batchcount = root->batchcount;
3951 }
3952
3953 if (limit && shared && batchcount)
3954 goto skip_setup;
3955 /*
3956 * The head array serves three purposes:
3957 * - create a LIFO ordering, i.e. return objects that are cache-warm
3958 * - reduce the number of spinlock operations.
3959 * - reduce the number of linked list operations on the slab and
3960 * bufctl chains: array operations are cheaper.
3961 * The numbers are guessed, we should auto-tune as described by
3962 * Bonwick.
3963 */
3964 if (cachep->size > 131072)
3965 limit = 1;
3966 else if (cachep->size > PAGE_SIZE)
3967 limit = 8;
3968 else if (cachep->size > 1024)
3969 limit = 24;
3970 else if (cachep->size > 256)
3971 limit = 54;
3972 else
3973 limit = 120;
3974
3975 /*
3976 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3977 * allocation behaviour: Most allocs on one cpu, most free operations
3978 * on another cpu. For these cases, an efficient object passing between
3979 * cpus is necessary. This is provided by a shared array. The array
3980 * replaces Bonwick's magazine layer.
3981 * On uniprocessor, it's functionally equivalent (but less efficient)
3982 * to a larger limit. Thus disabled by default.
3983 */
3984 shared = 0;
3985 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3986 shared = 8;
3987
3988 #if DEBUG
3989 /*
3990 * With debugging enabled, large batchcount lead to excessively long
3991 * periods with disabled local interrupts. Limit the batchcount
3992 */
3993 if (limit > 32)
3994 limit = 32;
3995 #endif
3996 batchcount = (limit + 1) / 2;
3997 skip_setup:
3998 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3999 end:
4000 if (err)
4001 pr_err("enable_cpucache failed for %s, error %d\n",
4002 cachep->name, -err);
4003 return err;
4004 }
4005
4006 /*
4007 * Drain an array if it contains any elements taking the node lock only if
4008 * necessary. Note that the node listlock also protects the array_cache
4009 * if drain_array() is used on the shared array.
4010 */
4011 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4012 struct array_cache *ac, int node)
4013 {
4014 LIST_HEAD(list);
4015
4016 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4017 check_mutex_acquired();
4018
4019 if (!ac || !ac->avail)
4020 return;
4021
4022 if (ac->touched) {
4023 ac->touched = 0;
4024 return;
4025 }
4026
4027 spin_lock_irq(&n->list_lock);
4028 drain_array_locked(cachep, ac, node, false, &list);
4029 spin_unlock_irq(&n->list_lock);
4030
4031 slabs_destroy(cachep, &list);
4032 }
4033
4034 /**
4035 * cache_reap - Reclaim memory from caches.
4036 * @w: work descriptor
4037 *
4038 * Called from workqueue/eventd every few seconds.
4039 * Purpose:
4040 * - clear the per-cpu caches for this CPU.
4041 * - return freeable pages to the main free memory pool.
4042 *
4043 * If we cannot acquire the cache chain mutex then just give up - we'll try
4044 * again on the next iteration.
4045 */
4046 static void cache_reap(struct work_struct *w)
4047 {
4048 struct kmem_cache *searchp;
4049 struct kmem_cache_node *n;
4050 int node = numa_mem_id();
4051 struct delayed_work *work = to_delayed_work(w);
4052
4053 if (!mutex_trylock(&slab_mutex))
4054 /* Give up. Setup the next iteration. */
4055 goto out;
4056
4057 list_for_each_entry(searchp, &slab_caches, list) {
4058 check_irq_on();
4059
4060 /*
4061 * We only take the node lock if absolutely necessary and we
4062 * have established with reasonable certainty that
4063 * we can do some work if the lock was obtained.
4064 */
4065 n = get_node(searchp, node);
4066
4067 reap_alien(searchp, n);
4068
4069 drain_array(searchp, n, cpu_cache_get(searchp), node);
4070
4071 /*
4072 * These are racy checks but it does not matter
4073 * if we skip one check or scan twice.
4074 */
4075 if (time_after(n->next_reap, jiffies))
4076 goto next;
4077
4078 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4079
4080 drain_array(searchp, n, n->shared, node);
4081
4082 if (n->free_touched)
4083 n->free_touched = 0;
4084 else {
4085 int freed;
4086
4087 freed = drain_freelist(searchp, n, (n->free_limit +
4088 5 * searchp->num - 1) / (5 * searchp->num));
4089 STATS_ADD_REAPED(searchp, freed);
4090 }
4091 next:
4092 cond_resched();
4093 }
4094 check_irq_on();
4095 mutex_unlock(&slab_mutex);
4096 next_reap_node();
4097 out:
4098 /* Set up the next iteration */
4099 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4100 }
4101
4102 #ifdef CONFIG_SLABINFO
4103 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4104 {
4105 unsigned long active_objs, num_objs, active_slabs;
4106 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4107 unsigned long free_slabs = 0;
4108 int node;
4109 struct kmem_cache_node *n;
4110
4111 for_each_kmem_cache_node(cachep, node, n) {
4112 check_irq_on();
4113 spin_lock_irq(&n->list_lock);
4114
4115 total_slabs += n->total_slabs;
4116 free_slabs += n->free_slabs;
4117 free_objs += n->free_objects;
4118
4119 if (n->shared)
4120 shared_avail += n->shared->avail;
4121
4122 spin_unlock_irq(&n->list_lock);
4123 }
4124 num_objs = total_slabs * cachep->num;
4125 active_slabs = total_slabs - free_slabs;
4126 active_objs = num_objs - free_objs;
4127
4128 sinfo->active_objs = active_objs;
4129 sinfo->num_objs = num_objs;
4130 sinfo->active_slabs = active_slabs;
4131 sinfo->num_slabs = total_slabs;
4132 sinfo->shared_avail = shared_avail;
4133 sinfo->limit = cachep->limit;
4134 sinfo->batchcount = cachep->batchcount;
4135 sinfo->shared = cachep->shared;
4136 sinfo->objects_per_slab = cachep->num;
4137 sinfo->cache_order = cachep->gfporder;
4138 }
4139
4140 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4141 {
4142 #if STATS
4143 { /* node stats */
4144 unsigned long high = cachep->high_mark;
4145 unsigned long allocs = cachep->num_allocations;
4146 unsigned long grown = cachep->grown;
4147 unsigned long reaped = cachep->reaped;
4148 unsigned long errors = cachep->errors;
4149 unsigned long max_freeable = cachep->max_freeable;
4150 unsigned long node_allocs = cachep->node_allocs;
4151 unsigned long node_frees = cachep->node_frees;
4152 unsigned long overflows = cachep->node_overflow;
4153
4154 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4155 allocs, high, grown,
4156 reaped, errors, max_freeable, node_allocs,
4157 node_frees, overflows);
4158 }
4159 /* cpu stats */
4160 {
4161 unsigned long allochit = atomic_read(&cachep->allochit);
4162 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4163 unsigned long freehit = atomic_read(&cachep->freehit);
4164 unsigned long freemiss = atomic_read(&cachep->freemiss);
4165
4166 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4167 allochit, allocmiss, freehit, freemiss);
4168 }
4169 #endif
4170 }
4171
4172 #define MAX_SLABINFO_WRITE 128
4173 /**
4174 * slabinfo_write - Tuning for the slab allocator
4175 * @file: unused
4176 * @buffer: user buffer
4177 * @count: data length
4178 * @ppos: unused
4179 */
4180 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4181 size_t count, loff_t *ppos)
4182 {
4183 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4184 int limit, batchcount, shared, res;
4185 struct kmem_cache *cachep;
4186
4187 if (count > MAX_SLABINFO_WRITE)
4188 return -EINVAL;
4189 if (copy_from_user(&kbuf, buffer, count))
4190 return -EFAULT;
4191 kbuf[MAX_SLABINFO_WRITE] = '\0';
4192
4193 tmp = strchr(kbuf, ' ');
4194 if (!tmp)
4195 return -EINVAL;
4196 *tmp = '\0';
4197 tmp++;
4198 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4199 return -EINVAL;
4200
4201 /* Find the cache in the chain of caches. */
4202 mutex_lock(&slab_mutex);
4203 res = -EINVAL;
4204 list_for_each_entry(cachep, &slab_caches, list) {
4205 if (!strcmp(cachep->name, kbuf)) {
4206 if (limit < 1 || batchcount < 1 ||
4207 batchcount > limit || shared < 0) {
4208 res = 0;
4209 } else {
4210 res = do_tune_cpucache(cachep, limit,
4211 batchcount, shared,
4212 GFP_KERNEL);
4213 }
4214 break;
4215 }
4216 }
4217 mutex_unlock(&slab_mutex);
4218 if (res >= 0)
4219 res = count;
4220 return res;
4221 }
4222
4223 #ifdef CONFIG_DEBUG_SLAB_LEAK
4224
4225 static inline int add_caller(unsigned long *n, unsigned long v)
4226 {
4227 unsigned long *p;
4228 int l;
4229 if (!v)
4230 return 1;
4231 l = n[1];
4232 p = n + 2;
4233 while (l) {
4234 int i = l/2;
4235 unsigned long *q = p + 2 * i;
4236 if (*q == v) {
4237 q[1]++;
4238 return 1;
4239 }
4240 if (*q > v) {
4241 l = i;
4242 } else {
4243 p = q + 2;
4244 l -= i + 1;
4245 }
4246 }
4247 if (++n[1] == n[0])
4248 return 0;
4249 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4250 p[0] = v;
4251 p[1] = 1;
4252 return 1;
4253 }
4254
4255 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4256 struct page *page)
4257 {
4258 void *p;
4259 int i, j;
4260 unsigned long v;
4261
4262 if (n[0] == n[1])
4263 return;
4264 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4265 bool active = true;
4266
4267 for (j = page->active; j < c->num; j++) {
4268 if (get_free_obj(page, j) == i) {
4269 active = false;
4270 break;
4271 }
4272 }
4273
4274 if (!active)
4275 continue;
4276
4277 /*
4278 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4279 * mapping is established when actual object allocation and
4280 * we could mistakenly access the unmapped object in the cpu
4281 * cache.
4282 */
4283 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4284 continue;
4285
4286 if (!add_caller(n, v))
4287 return;
4288 }
4289 }
4290
4291 static void show_symbol(struct seq_file *m, unsigned long address)
4292 {
4293 #ifdef CONFIG_KALLSYMS
4294 unsigned long offset, size;
4295 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4296
4297 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4298 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4299 if (modname[0])
4300 seq_printf(m, " [%s]", modname);
4301 return;
4302 }
4303 #endif
4304 seq_printf(m, "%p", (void *)address);
4305 }
4306
4307 static int leaks_show(struct seq_file *m, void *p)
4308 {
4309 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4310 struct page *page;
4311 struct kmem_cache_node *n;
4312 const char *name;
4313 unsigned long *x = m->private;
4314 int node;
4315 int i;
4316
4317 if (!(cachep->flags & SLAB_STORE_USER))
4318 return 0;
4319 if (!(cachep->flags & SLAB_RED_ZONE))
4320 return 0;
4321
4322 /*
4323 * Set store_user_clean and start to grab stored user information
4324 * for all objects on this cache. If some alloc/free requests comes
4325 * during the processing, information would be wrong so restart
4326 * whole processing.
4327 */
4328 do {
4329 set_store_user_clean(cachep);
4330 drain_cpu_caches(cachep);
4331
4332 x[1] = 0;
4333
4334 for_each_kmem_cache_node(cachep, node, n) {
4335
4336 check_irq_on();
4337 spin_lock_irq(&n->list_lock);
4338
4339 list_for_each_entry(page, &n->slabs_full, lru)
4340 handle_slab(x, cachep, page);
4341 list_for_each_entry(page, &n->slabs_partial, lru)
4342 handle_slab(x, cachep, page);
4343 spin_unlock_irq(&n->list_lock);
4344 }
4345 } while (!is_store_user_clean(cachep));
4346
4347 name = cachep->name;
4348 if (x[0] == x[1]) {
4349 /* Increase the buffer size */
4350 mutex_unlock(&slab_mutex);
4351 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4352 if (!m->private) {
4353 /* Too bad, we are really out */
4354 m->private = x;
4355 mutex_lock(&slab_mutex);
4356 return -ENOMEM;
4357 }
4358 *(unsigned long *)m->private = x[0] * 2;
4359 kfree(x);
4360 mutex_lock(&slab_mutex);
4361 /* Now make sure this entry will be retried */
4362 m->count = m->size;
4363 return 0;
4364 }
4365 for (i = 0; i < x[1]; i++) {
4366 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4367 show_symbol(m, x[2*i+2]);
4368 seq_putc(m, '\n');
4369 }
4370
4371 return 0;
4372 }
4373
4374 static const struct seq_operations slabstats_op = {
4375 .start = slab_start,
4376 .next = slab_next,
4377 .stop = slab_stop,
4378 .show = leaks_show,
4379 };
4380
4381 static int slabstats_open(struct inode *inode, struct file *file)
4382 {
4383 unsigned long *n;
4384
4385 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4386 if (!n)
4387 return -ENOMEM;
4388
4389 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4390
4391 return 0;
4392 }
4393
4394 static const struct file_operations proc_slabstats_operations = {
4395 .open = slabstats_open,
4396 .read = seq_read,
4397 .llseek = seq_lseek,
4398 .release = seq_release_private,
4399 };
4400 #endif
4401
4402 static int __init slab_proc_init(void)
4403 {
4404 #ifdef CONFIG_DEBUG_SLAB_LEAK
4405 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4406 #endif
4407 return 0;
4408 }
4409 module_init(slab_proc_init);
4410 #endif
4411
4412 #ifdef CONFIG_HARDENED_USERCOPY
4413 /*
4414 * Rejects objects that are incorrectly sized.
4415 *
4416 * Returns NULL if check passes, otherwise const char * to name of cache
4417 * to indicate an error.
4418 */
4419 const char *__check_heap_object(const void *ptr, unsigned long n,
4420 struct page *page)
4421 {
4422 struct kmem_cache *cachep;
4423 unsigned int objnr;
4424 unsigned long offset;
4425
4426 /* Find and validate object. */
4427 cachep = page->slab_cache;
4428 objnr = obj_to_index(cachep, page, (void *)ptr);
4429 BUG_ON(objnr >= cachep->num);
4430
4431 /* Find offset within object. */
4432 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4433
4434 /* Allow address range falling entirely within object size. */
4435 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4436 return NULL;
4437
4438 return cachep->name;
4439 }
4440 #endif /* CONFIG_HARDENED_USERCOPY */
4441
4442 /**
4443 * ksize - get the actual amount of memory allocated for a given object
4444 * @objp: Pointer to the object
4445 *
4446 * kmalloc may internally round up allocations and return more memory
4447 * than requested. ksize() can be used to determine the actual amount of
4448 * memory allocated. The caller may use this additional memory, even though
4449 * a smaller amount of memory was initially specified with the kmalloc call.
4450 * The caller must guarantee that objp points to a valid object previously
4451 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4452 * must not be freed during the duration of the call.
4453 */
4454 size_t ksize(const void *objp)
4455 {
4456 size_t size;
4457
4458 BUG_ON(!objp);
4459 if (unlikely(objp == ZERO_SIZE_PTR))
4460 return 0;
4461
4462 size = virt_to_cache(objp)->object_size;
4463 /* We assume that ksize callers could use the whole allocated area,
4464 * so we need to unpoison this area.
4465 */
4466 kasan_unpoison_shadow(objp, size);
4467
4468 return size;
4469 }
4470 EXPORT_SYMBOL(ksize);