]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slab.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * struct array_cache
173 *
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183 struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
188 void *entry[]; /*
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
192 */
193 };
194
195 struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198 };
199
200 /*
201 * Need this for bootstrapping a per node allocator.
202 */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
207
208 static int drain_freelist(struct kmem_cache *cache,
209 struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215
216 static int slab_early_init = 1;
217
218 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
219
220 static void kmem_cache_node_init(struct kmem_cache_node *parent)
221 {
222 INIT_LIST_HEAD(&parent->slabs_full);
223 INIT_LIST_HEAD(&parent->slabs_partial);
224 INIT_LIST_HEAD(&parent->slabs_free);
225 parent->shared = NULL;
226 parent->alien = NULL;
227 parent->colour_next = 0;
228 spin_lock_init(&parent->list_lock);
229 parent->free_objects = 0;
230 parent->free_touched = 0;
231 }
232
233 #define MAKE_LIST(cachep, listp, slab, nodeid) \
234 do { \
235 INIT_LIST_HEAD(listp); \
236 list_splice(&get_node(cachep, nodeid)->slab, listp); \
237 } while (0)
238
239 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
240 do { \
241 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
242 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
243 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
244 } while (0)
245
246 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
247 #define CFLGS_OFF_SLAB (0x80000000UL)
248 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
249 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
250
251 #define BATCHREFILL_LIMIT 16
252 /*
253 * Optimization question: fewer reaps means less probability for unnessary
254 * cpucache drain/refill cycles.
255 *
256 * OTOH the cpuarrays can contain lots of objects,
257 * which could lock up otherwise freeable slabs.
258 */
259 #define REAPTIMEOUT_AC (2*HZ)
260 #define REAPTIMEOUT_NODE (4*HZ)
261
262 #if STATS
263 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
264 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
265 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
266 #define STATS_INC_GROWN(x) ((x)->grown++)
267 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
268 #define STATS_SET_HIGH(x) \
269 do { \
270 if ((x)->num_active > (x)->high_mark) \
271 (x)->high_mark = (x)->num_active; \
272 } while (0)
273 #define STATS_INC_ERR(x) ((x)->errors++)
274 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
275 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
276 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
277 #define STATS_SET_FREEABLE(x, i) \
278 do { \
279 if ((x)->max_freeable < i) \
280 (x)->max_freeable = i; \
281 } while (0)
282 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
283 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
284 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
285 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
286 #else
287 #define STATS_INC_ACTIVE(x) do { } while (0)
288 #define STATS_DEC_ACTIVE(x) do { } while (0)
289 #define STATS_INC_ALLOCED(x) do { } while (0)
290 #define STATS_INC_GROWN(x) do { } while (0)
291 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
292 #define STATS_SET_HIGH(x) do { } while (0)
293 #define STATS_INC_ERR(x) do { } while (0)
294 #define STATS_INC_NODEALLOCS(x) do { } while (0)
295 #define STATS_INC_NODEFREES(x) do { } while (0)
296 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
297 #define STATS_SET_FREEABLE(x, i) do { } while (0)
298 #define STATS_INC_ALLOCHIT(x) do { } while (0)
299 #define STATS_INC_ALLOCMISS(x) do { } while (0)
300 #define STATS_INC_FREEHIT(x) do { } while (0)
301 #define STATS_INC_FREEMISS(x) do { } while (0)
302 #endif
303
304 #if DEBUG
305
306 /*
307 * memory layout of objects:
308 * 0 : objp
309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
310 * the end of an object is aligned with the end of the real
311 * allocation. Catches writes behind the end of the allocation.
312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
313 * redzone word.
314 * cachep->obj_offset: The real object.
315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
316 * cachep->size - 1* BYTES_PER_WORD: last caller address
317 * [BYTES_PER_WORD long]
318 */
319 static int obj_offset(struct kmem_cache *cachep)
320 {
321 return cachep->obj_offset;
322 }
323
324 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
325 {
326 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
327 return (unsigned long long*) (objp + obj_offset(cachep) -
328 sizeof(unsigned long long));
329 }
330
331 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
332 {
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 if (cachep->flags & SLAB_STORE_USER)
335 return (unsigned long long *)(objp + cachep->size -
336 sizeof(unsigned long long) -
337 REDZONE_ALIGN);
338 return (unsigned long long *) (objp + cachep->size -
339 sizeof(unsigned long long));
340 }
341
342 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
343 {
344 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
345 return (void **)(objp + cachep->size - BYTES_PER_WORD);
346 }
347
348 #else
349
350 #define obj_offset(x) 0
351 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
352 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
353 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
354
355 #endif
356
357 #ifdef CONFIG_DEBUG_SLAB_LEAK
358
359 static inline bool is_store_user_clean(struct kmem_cache *cachep)
360 {
361 return atomic_read(&cachep->store_user_clean) == 1;
362 }
363
364 static inline void set_store_user_clean(struct kmem_cache *cachep)
365 {
366 atomic_set(&cachep->store_user_clean, 1);
367 }
368
369 static inline void set_store_user_dirty(struct kmem_cache *cachep)
370 {
371 if (is_store_user_clean(cachep))
372 atomic_set(&cachep->store_user_clean, 0);
373 }
374
375 #else
376 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
377
378 #endif
379
380 /*
381 * Do not go above this order unless 0 objects fit into the slab or
382 * overridden on the command line.
383 */
384 #define SLAB_MAX_ORDER_HI 1
385 #define SLAB_MAX_ORDER_LO 0
386 static int slab_max_order = SLAB_MAX_ORDER_LO;
387 static bool slab_max_order_set __initdata;
388
389 static inline struct kmem_cache *virt_to_cache(const void *obj)
390 {
391 struct page *page = virt_to_head_page(obj);
392 return page->slab_cache;
393 }
394
395 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
396 unsigned int idx)
397 {
398 return page->s_mem + cache->size * idx;
399 }
400
401 /*
402 * We want to avoid an expensive divide : (offset / cache->size)
403 * Using the fact that size is a constant for a particular cache,
404 * we can replace (offset / cache->size) by
405 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
406 */
407 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
408 const struct page *page, void *obj)
409 {
410 u32 offset = (obj - page->s_mem);
411 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
412 }
413
414 #define BOOT_CPUCACHE_ENTRIES 1
415 /* internal cache of cache description objs */
416 static struct kmem_cache kmem_cache_boot = {
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
420 .size = sizeof(struct kmem_cache),
421 .name = "kmem_cache",
422 };
423
424 #define BAD_ALIEN_MAGIC 0x01020304ul
425
426 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
427
428 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
429 {
430 return this_cpu_ptr(cachep->cpu_cache);
431 }
432
433 /*
434 * Calculate the number of objects and left-over bytes for a given buffer size.
435 */
436 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
437 unsigned long flags, size_t *left_over)
438 {
439 unsigned int num;
440 size_t slab_size = PAGE_SIZE << gfporder;
441
442 /*
443 * The slab management structure can be either off the slab or
444 * on it. For the latter case, the memory allocated for a
445 * slab is used for:
446 *
447 * - @buffer_size bytes for each object
448 * - One freelist_idx_t for each object
449 *
450 * We don't need to consider alignment of freelist because
451 * freelist will be at the end of slab page. The objects will be
452 * at the correct alignment.
453 *
454 * If the slab management structure is off the slab, then the
455 * alignment will already be calculated into the size. Because
456 * the slabs are all pages aligned, the objects will be at the
457 * correct alignment when allocated.
458 */
459 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
460 num = slab_size / buffer_size;
461 *left_over = slab_size % buffer_size;
462 } else {
463 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
464 *left_over = slab_size %
465 (buffer_size + sizeof(freelist_idx_t));
466 }
467
468 return num;
469 }
470
471 #if DEBUG
472 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
473
474 static void __slab_error(const char *function, struct kmem_cache *cachep,
475 char *msg)
476 {
477 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
478 function, cachep->name, msg);
479 dump_stack();
480 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
481 }
482 #endif
483
484 /*
485 * By default on NUMA we use alien caches to stage the freeing of
486 * objects allocated from other nodes. This causes massive memory
487 * inefficiencies when using fake NUMA setup to split memory into a
488 * large number of small nodes, so it can be disabled on the command
489 * line
490 */
491
492 static int use_alien_caches __read_mostly = 1;
493 static int __init noaliencache_setup(char *s)
494 {
495 use_alien_caches = 0;
496 return 1;
497 }
498 __setup("noaliencache", noaliencache_setup);
499
500 static int __init slab_max_order_setup(char *str)
501 {
502 get_option(&str, &slab_max_order);
503 slab_max_order = slab_max_order < 0 ? 0 :
504 min(slab_max_order, MAX_ORDER - 1);
505 slab_max_order_set = true;
506
507 return 1;
508 }
509 __setup("slab_max_order=", slab_max_order_setup);
510
511 #ifdef CONFIG_NUMA
512 /*
513 * Special reaping functions for NUMA systems called from cache_reap().
514 * These take care of doing round robin flushing of alien caches (containing
515 * objects freed on different nodes from which they were allocated) and the
516 * flushing of remote pcps by calling drain_node_pages.
517 */
518 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
519
520 static void init_reap_node(int cpu)
521 {
522 int node;
523
524 node = next_node(cpu_to_mem(cpu), node_online_map);
525 if (node == MAX_NUMNODES)
526 node = first_node(node_online_map);
527
528 per_cpu(slab_reap_node, cpu) = node;
529 }
530
531 static void next_reap_node(void)
532 {
533 int node = __this_cpu_read(slab_reap_node);
534
535 node = next_node(node, node_online_map);
536 if (unlikely(node >= MAX_NUMNODES))
537 node = first_node(node_online_map);
538 __this_cpu_write(slab_reap_node, node);
539 }
540
541 #else
542 #define init_reap_node(cpu) do { } while (0)
543 #define next_reap_node(void) do { } while (0)
544 #endif
545
546 /*
547 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
548 * via the workqueue/eventd.
549 * Add the CPU number into the expiration time to minimize the possibility of
550 * the CPUs getting into lockstep and contending for the global cache chain
551 * lock.
552 */
553 static void start_cpu_timer(int cpu)
554 {
555 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
556
557 /*
558 * When this gets called from do_initcalls via cpucache_init(),
559 * init_workqueues() has already run, so keventd will be setup
560 * at that time.
561 */
562 if (keventd_up() && reap_work->work.func == NULL) {
563 init_reap_node(cpu);
564 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
565 schedule_delayed_work_on(cpu, reap_work,
566 __round_jiffies_relative(HZ, cpu));
567 }
568 }
569
570 static void init_arraycache(struct array_cache *ac, int limit, int batch)
571 {
572 /*
573 * The array_cache structures contain pointers to free object.
574 * However, when such objects are allocated or transferred to another
575 * cache the pointers are not cleared and they could be counted as
576 * valid references during a kmemleak scan. Therefore, kmemleak must
577 * not scan such objects.
578 */
579 kmemleak_no_scan(ac);
580 if (ac) {
581 ac->avail = 0;
582 ac->limit = limit;
583 ac->batchcount = batch;
584 ac->touched = 0;
585 }
586 }
587
588 static struct array_cache *alloc_arraycache(int node, int entries,
589 int batchcount, gfp_t gfp)
590 {
591 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
592 struct array_cache *ac = NULL;
593
594 ac = kmalloc_node(memsize, gfp, node);
595 init_arraycache(ac, entries, batchcount);
596 return ac;
597 }
598
599 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
600 struct page *page, void *objp)
601 {
602 struct kmem_cache_node *n;
603 int page_node;
604 LIST_HEAD(list);
605
606 page_node = page_to_nid(page);
607 n = get_node(cachep, page_node);
608
609 spin_lock(&n->list_lock);
610 free_block(cachep, &objp, 1, page_node, &list);
611 spin_unlock(&n->list_lock);
612
613 slabs_destroy(cachep, &list);
614 }
615
616 /*
617 * Transfer objects in one arraycache to another.
618 * Locking must be handled by the caller.
619 *
620 * Return the number of entries transferred.
621 */
622 static int transfer_objects(struct array_cache *to,
623 struct array_cache *from, unsigned int max)
624 {
625 /* Figure out how many entries to transfer */
626 int nr = min3(from->avail, max, to->limit - to->avail);
627
628 if (!nr)
629 return 0;
630
631 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
632 sizeof(void *) *nr);
633
634 from->avail -= nr;
635 to->avail += nr;
636 return nr;
637 }
638
639 #ifndef CONFIG_NUMA
640
641 #define drain_alien_cache(cachep, alien) do { } while (0)
642 #define reap_alien(cachep, n) do { } while (0)
643
644 static inline struct alien_cache **alloc_alien_cache(int node,
645 int limit, gfp_t gfp)
646 {
647 return (struct alien_cache **)BAD_ALIEN_MAGIC;
648 }
649
650 static inline void free_alien_cache(struct alien_cache **ac_ptr)
651 {
652 }
653
654 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
655 {
656 return 0;
657 }
658
659 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
660 gfp_t flags)
661 {
662 return NULL;
663 }
664
665 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
666 gfp_t flags, int nodeid)
667 {
668 return NULL;
669 }
670
671 static inline gfp_t gfp_exact_node(gfp_t flags)
672 {
673 return flags;
674 }
675
676 #else /* CONFIG_NUMA */
677
678 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
679 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
680
681 static struct alien_cache *__alloc_alien_cache(int node, int entries,
682 int batch, gfp_t gfp)
683 {
684 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
685 struct alien_cache *alc = NULL;
686
687 alc = kmalloc_node(memsize, gfp, node);
688 init_arraycache(&alc->ac, entries, batch);
689 spin_lock_init(&alc->lock);
690 return alc;
691 }
692
693 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
694 {
695 struct alien_cache **alc_ptr;
696 size_t memsize = sizeof(void *) * nr_node_ids;
697 int i;
698
699 if (limit > 1)
700 limit = 12;
701 alc_ptr = kzalloc_node(memsize, gfp, node);
702 if (!alc_ptr)
703 return NULL;
704
705 for_each_node(i) {
706 if (i == node || !node_online(i))
707 continue;
708 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
709 if (!alc_ptr[i]) {
710 for (i--; i >= 0; i--)
711 kfree(alc_ptr[i]);
712 kfree(alc_ptr);
713 return NULL;
714 }
715 }
716 return alc_ptr;
717 }
718
719 static void free_alien_cache(struct alien_cache **alc_ptr)
720 {
721 int i;
722
723 if (!alc_ptr)
724 return;
725 for_each_node(i)
726 kfree(alc_ptr[i]);
727 kfree(alc_ptr);
728 }
729
730 static void __drain_alien_cache(struct kmem_cache *cachep,
731 struct array_cache *ac, int node,
732 struct list_head *list)
733 {
734 struct kmem_cache_node *n = get_node(cachep, node);
735
736 if (ac->avail) {
737 spin_lock(&n->list_lock);
738 /*
739 * Stuff objects into the remote nodes shared array first.
740 * That way we could avoid the overhead of putting the objects
741 * into the free lists and getting them back later.
742 */
743 if (n->shared)
744 transfer_objects(n->shared, ac, ac->limit);
745
746 free_block(cachep, ac->entry, ac->avail, node, list);
747 ac->avail = 0;
748 spin_unlock(&n->list_lock);
749 }
750 }
751
752 /*
753 * Called from cache_reap() to regularly drain alien caches round robin.
754 */
755 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
756 {
757 int node = __this_cpu_read(slab_reap_node);
758
759 if (n->alien) {
760 struct alien_cache *alc = n->alien[node];
761 struct array_cache *ac;
762
763 if (alc) {
764 ac = &alc->ac;
765 if (ac->avail && spin_trylock_irq(&alc->lock)) {
766 LIST_HEAD(list);
767
768 __drain_alien_cache(cachep, ac, node, &list);
769 spin_unlock_irq(&alc->lock);
770 slabs_destroy(cachep, &list);
771 }
772 }
773 }
774 }
775
776 static void drain_alien_cache(struct kmem_cache *cachep,
777 struct alien_cache **alien)
778 {
779 int i = 0;
780 struct alien_cache *alc;
781 struct array_cache *ac;
782 unsigned long flags;
783
784 for_each_online_node(i) {
785 alc = alien[i];
786 if (alc) {
787 LIST_HEAD(list);
788
789 ac = &alc->ac;
790 spin_lock_irqsave(&alc->lock, flags);
791 __drain_alien_cache(cachep, ac, i, &list);
792 spin_unlock_irqrestore(&alc->lock, flags);
793 slabs_destroy(cachep, &list);
794 }
795 }
796 }
797
798 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
799 int node, int page_node)
800 {
801 struct kmem_cache_node *n;
802 struct alien_cache *alien = NULL;
803 struct array_cache *ac;
804 LIST_HEAD(list);
805
806 n = get_node(cachep, node);
807 STATS_INC_NODEFREES(cachep);
808 if (n->alien && n->alien[page_node]) {
809 alien = n->alien[page_node];
810 ac = &alien->ac;
811 spin_lock(&alien->lock);
812 if (unlikely(ac->avail == ac->limit)) {
813 STATS_INC_ACOVERFLOW(cachep);
814 __drain_alien_cache(cachep, ac, page_node, &list);
815 }
816 ac->entry[ac->avail++] = objp;
817 spin_unlock(&alien->lock);
818 slabs_destroy(cachep, &list);
819 } else {
820 n = get_node(cachep, page_node);
821 spin_lock(&n->list_lock);
822 free_block(cachep, &objp, 1, page_node, &list);
823 spin_unlock(&n->list_lock);
824 slabs_destroy(cachep, &list);
825 }
826 return 1;
827 }
828
829 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
830 {
831 int page_node = page_to_nid(virt_to_page(objp));
832 int node = numa_mem_id();
833 /*
834 * Make sure we are not freeing a object from another node to the array
835 * cache on this cpu.
836 */
837 if (likely(node == page_node))
838 return 0;
839
840 return __cache_free_alien(cachep, objp, node, page_node);
841 }
842
843 /*
844 * Construct gfp mask to allocate from a specific node but do not direct reclaim
845 * or warn about failures. kswapd may still wake to reclaim in the background.
846 */
847 static inline gfp_t gfp_exact_node(gfp_t flags)
848 {
849 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
850 }
851 #endif
852
853 /*
854 * Allocates and initializes node for a node on each slab cache, used for
855 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
856 * will be allocated off-node since memory is not yet online for the new node.
857 * When hotplugging memory or a cpu, existing node are not replaced if
858 * already in use.
859 *
860 * Must hold slab_mutex.
861 */
862 static int init_cache_node_node(int node)
863 {
864 struct kmem_cache *cachep;
865 struct kmem_cache_node *n;
866 const size_t memsize = sizeof(struct kmem_cache_node);
867
868 list_for_each_entry(cachep, &slab_caches, list) {
869 /*
870 * Set up the kmem_cache_node for cpu before we can
871 * begin anything. Make sure some other cpu on this
872 * node has not already allocated this
873 */
874 n = get_node(cachep, node);
875 if (!n) {
876 n = kmalloc_node(memsize, GFP_KERNEL, node);
877 if (!n)
878 return -ENOMEM;
879 kmem_cache_node_init(n);
880 n->next_reap = jiffies + REAPTIMEOUT_NODE +
881 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
882
883 /*
884 * The kmem_cache_nodes don't come and go as CPUs
885 * come and go. slab_mutex is sufficient
886 * protection here.
887 */
888 cachep->node[node] = n;
889 }
890
891 spin_lock_irq(&n->list_lock);
892 n->free_limit =
893 (1 + nr_cpus_node(node)) *
894 cachep->batchcount + cachep->num;
895 spin_unlock_irq(&n->list_lock);
896 }
897 return 0;
898 }
899
900 static inline int slabs_tofree(struct kmem_cache *cachep,
901 struct kmem_cache_node *n)
902 {
903 return (n->free_objects + cachep->num - 1) / cachep->num;
904 }
905
906 static void cpuup_canceled(long cpu)
907 {
908 struct kmem_cache *cachep;
909 struct kmem_cache_node *n = NULL;
910 int node = cpu_to_mem(cpu);
911 const struct cpumask *mask = cpumask_of_node(node);
912
913 list_for_each_entry(cachep, &slab_caches, list) {
914 struct array_cache *nc;
915 struct array_cache *shared;
916 struct alien_cache **alien;
917 LIST_HEAD(list);
918
919 n = get_node(cachep, node);
920 if (!n)
921 continue;
922
923 spin_lock_irq(&n->list_lock);
924
925 /* Free limit for this kmem_cache_node */
926 n->free_limit -= cachep->batchcount;
927
928 /* cpu is dead; no one can alloc from it. */
929 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
930 if (nc) {
931 free_block(cachep, nc->entry, nc->avail, node, &list);
932 nc->avail = 0;
933 }
934
935 if (!cpumask_empty(mask)) {
936 spin_unlock_irq(&n->list_lock);
937 goto free_slab;
938 }
939
940 shared = n->shared;
941 if (shared) {
942 free_block(cachep, shared->entry,
943 shared->avail, node, &list);
944 n->shared = NULL;
945 }
946
947 alien = n->alien;
948 n->alien = NULL;
949
950 spin_unlock_irq(&n->list_lock);
951
952 kfree(shared);
953 if (alien) {
954 drain_alien_cache(cachep, alien);
955 free_alien_cache(alien);
956 }
957
958 free_slab:
959 slabs_destroy(cachep, &list);
960 }
961 /*
962 * In the previous loop, all the objects were freed to
963 * the respective cache's slabs, now we can go ahead and
964 * shrink each nodelist to its limit.
965 */
966 list_for_each_entry(cachep, &slab_caches, list) {
967 n = get_node(cachep, node);
968 if (!n)
969 continue;
970 drain_freelist(cachep, n, slabs_tofree(cachep, n));
971 }
972 }
973
974 static int cpuup_prepare(long cpu)
975 {
976 struct kmem_cache *cachep;
977 struct kmem_cache_node *n = NULL;
978 int node = cpu_to_mem(cpu);
979 int err;
980
981 /*
982 * We need to do this right in the beginning since
983 * alloc_arraycache's are going to use this list.
984 * kmalloc_node allows us to add the slab to the right
985 * kmem_cache_node and not this cpu's kmem_cache_node
986 */
987 err = init_cache_node_node(node);
988 if (err < 0)
989 goto bad;
990
991 /*
992 * Now we can go ahead with allocating the shared arrays and
993 * array caches
994 */
995 list_for_each_entry(cachep, &slab_caches, list) {
996 struct array_cache *shared = NULL;
997 struct alien_cache **alien = NULL;
998
999 if (cachep->shared) {
1000 shared = alloc_arraycache(node,
1001 cachep->shared * cachep->batchcount,
1002 0xbaadf00d, GFP_KERNEL);
1003 if (!shared)
1004 goto bad;
1005 }
1006 if (use_alien_caches) {
1007 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1008 if (!alien) {
1009 kfree(shared);
1010 goto bad;
1011 }
1012 }
1013 n = get_node(cachep, node);
1014 BUG_ON(!n);
1015
1016 spin_lock_irq(&n->list_lock);
1017 if (!n->shared) {
1018 /*
1019 * We are serialised from CPU_DEAD or
1020 * CPU_UP_CANCELLED by the cpucontrol lock
1021 */
1022 n->shared = shared;
1023 shared = NULL;
1024 }
1025 #ifdef CONFIG_NUMA
1026 if (!n->alien) {
1027 n->alien = alien;
1028 alien = NULL;
1029 }
1030 #endif
1031 spin_unlock_irq(&n->list_lock);
1032 kfree(shared);
1033 free_alien_cache(alien);
1034 }
1035
1036 return 0;
1037 bad:
1038 cpuup_canceled(cpu);
1039 return -ENOMEM;
1040 }
1041
1042 static int cpuup_callback(struct notifier_block *nfb,
1043 unsigned long action, void *hcpu)
1044 {
1045 long cpu = (long)hcpu;
1046 int err = 0;
1047
1048 switch (action) {
1049 case CPU_UP_PREPARE:
1050 case CPU_UP_PREPARE_FROZEN:
1051 mutex_lock(&slab_mutex);
1052 err = cpuup_prepare(cpu);
1053 mutex_unlock(&slab_mutex);
1054 break;
1055 case CPU_ONLINE:
1056 case CPU_ONLINE_FROZEN:
1057 start_cpu_timer(cpu);
1058 break;
1059 #ifdef CONFIG_HOTPLUG_CPU
1060 case CPU_DOWN_PREPARE:
1061 case CPU_DOWN_PREPARE_FROZEN:
1062 /*
1063 * Shutdown cache reaper. Note that the slab_mutex is
1064 * held so that if cache_reap() is invoked it cannot do
1065 * anything expensive but will only modify reap_work
1066 * and reschedule the timer.
1067 */
1068 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1069 /* Now the cache_reaper is guaranteed to be not running. */
1070 per_cpu(slab_reap_work, cpu).work.func = NULL;
1071 break;
1072 case CPU_DOWN_FAILED:
1073 case CPU_DOWN_FAILED_FROZEN:
1074 start_cpu_timer(cpu);
1075 break;
1076 case CPU_DEAD:
1077 case CPU_DEAD_FROZEN:
1078 /*
1079 * Even if all the cpus of a node are down, we don't free the
1080 * kmem_cache_node of any cache. This to avoid a race between
1081 * cpu_down, and a kmalloc allocation from another cpu for
1082 * memory from the node of the cpu going down. The node
1083 * structure is usually allocated from kmem_cache_create() and
1084 * gets destroyed at kmem_cache_destroy().
1085 */
1086 /* fall through */
1087 #endif
1088 case CPU_UP_CANCELED:
1089 case CPU_UP_CANCELED_FROZEN:
1090 mutex_lock(&slab_mutex);
1091 cpuup_canceled(cpu);
1092 mutex_unlock(&slab_mutex);
1093 break;
1094 }
1095 return notifier_from_errno(err);
1096 }
1097
1098 static struct notifier_block cpucache_notifier = {
1099 &cpuup_callback, NULL, 0
1100 };
1101
1102 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1103 /*
1104 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1105 * Returns -EBUSY if all objects cannot be drained so that the node is not
1106 * removed.
1107 *
1108 * Must hold slab_mutex.
1109 */
1110 static int __meminit drain_cache_node_node(int node)
1111 {
1112 struct kmem_cache *cachep;
1113 int ret = 0;
1114
1115 list_for_each_entry(cachep, &slab_caches, list) {
1116 struct kmem_cache_node *n;
1117
1118 n = get_node(cachep, node);
1119 if (!n)
1120 continue;
1121
1122 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1123
1124 if (!list_empty(&n->slabs_full) ||
1125 !list_empty(&n->slabs_partial)) {
1126 ret = -EBUSY;
1127 break;
1128 }
1129 }
1130 return ret;
1131 }
1132
1133 static int __meminit slab_memory_callback(struct notifier_block *self,
1134 unsigned long action, void *arg)
1135 {
1136 struct memory_notify *mnb = arg;
1137 int ret = 0;
1138 int nid;
1139
1140 nid = mnb->status_change_nid;
1141 if (nid < 0)
1142 goto out;
1143
1144 switch (action) {
1145 case MEM_GOING_ONLINE:
1146 mutex_lock(&slab_mutex);
1147 ret = init_cache_node_node(nid);
1148 mutex_unlock(&slab_mutex);
1149 break;
1150 case MEM_GOING_OFFLINE:
1151 mutex_lock(&slab_mutex);
1152 ret = drain_cache_node_node(nid);
1153 mutex_unlock(&slab_mutex);
1154 break;
1155 case MEM_ONLINE:
1156 case MEM_OFFLINE:
1157 case MEM_CANCEL_ONLINE:
1158 case MEM_CANCEL_OFFLINE:
1159 break;
1160 }
1161 out:
1162 return notifier_from_errno(ret);
1163 }
1164 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1165
1166 /*
1167 * swap the static kmem_cache_node with kmalloced memory
1168 */
1169 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1170 int nodeid)
1171 {
1172 struct kmem_cache_node *ptr;
1173
1174 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1175 BUG_ON(!ptr);
1176
1177 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1178 /*
1179 * Do not assume that spinlocks can be initialized via memcpy:
1180 */
1181 spin_lock_init(&ptr->list_lock);
1182
1183 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1184 cachep->node[nodeid] = ptr;
1185 }
1186
1187 /*
1188 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1189 * size of kmem_cache_node.
1190 */
1191 static void __init set_up_node(struct kmem_cache *cachep, int index)
1192 {
1193 int node;
1194
1195 for_each_online_node(node) {
1196 cachep->node[node] = &init_kmem_cache_node[index + node];
1197 cachep->node[node]->next_reap = jiffies +
1198 REAPTIMEOUT_NODE +
1199 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1200 }
1201 }
1202
1203 /*
1204 * Initialisation. Called after the page allocator have been initialised and
1205 * before smp_init().
1206 */
1207 void __init kmem_cache_init(void)
1208 {
1209 int i;
1210
1211 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1212 sizeof(struct rcu_head));
1213 kmem_cache = &kmem_cache_boot;
1214
1215 if (num_possible_nodes() == 1)
1216 use_alien_caches = 0;
1217
1218 for (i = 0; i < NUM_INIT_LISTS; i++)
1219 kmem_cache_node_init(&init_kmem_cache_node[i]);
1220
1221 /*
1222 * Fragmentation resistance on low memory - only use bigger
1223 * page orders on machines with more than 32MB of memory if
1224 * not overridden on the command line.
1225 */
1226 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1227 slab_max_order = SLAB_MAX_ORDER_HI;
1228
1229 /* Bootstrap is tricky, because several objects are allocated
1230 * from caches that do not exist yet:
1231 * 1) initialize the kmem_cache cache: it contains the struct
1232 * kmem_cache structures of all caches, except kmem_cache itself:
1233 * kmem_cache is statically allocated.
1234 * Initially an __init data area is used for the head array and the
1235 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1236 * array at the end of the bootstrap.
1237 * 2) Create the first kmalloc cache.
1238 * The struct kmem_cache for the new cache is allocated normally.
1239 * An __init data area is used for the head array.
1240 * 3) Create the remaining kmalloc caches, with minimally sized
1241 * head arrays.
1242 * 4) Replace the __init data head arrays for kmem_cache and the first
1243 * kmalloc cache with kmalloc allocated arrays.
1244 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1245 * the other cache's with kmalloc allocated memory.
1246 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1247 */
1248
1249 /* 1) create the kmem_cache */
1250
1251 /*
1252 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1253 */
1254 create_boot_cache(kmem_cache, "kmem_cache",
1255 offsetof(struct kmem_cache, node) +
1256 nr_node_ids * sizeof(struct kmem_cache_node *),
1257 SLAB_HWCACHE_ALIGN);
1258 list_add(&kmem_cache->list, &slab_caches);
1259 slab_state = PARTIAL;
1260
1261 /*
1262 * Initialize the caches that provide memory for the kmem_cache_node
1263 * structures first. Without this, further allocations will bug.
1264 */
1265 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1266 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1267 slab_state = PARTIAL_NODE;
1268 setup_kmalloc_cache_index_table();
1269
1270 slab_early_init = 0;
1271
1272 /* 5) Replace the bootstrap kmem_cache_node */
1273 {
1274 int nid;
1275
1276 for_each_online_node(nid) {
1277 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1278
1279 init_list(kmalloc_caches[INDEX_NODE],
1280 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1281 }
1282 }
1283
1284 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1285 }
1286
1287 void __init kmem_cache_init_late(void)
1288 {
1289 struct kmem_cache *cachep;
1290
1291 slab_state = UP;
1292
1293 /* 6) resize the head arrays to their final sizes */
1294 mutex_lock(&slab_mutex);
1295 list_for_each_entry(cachep, &slab_caches, list)
1296 if (enable_cpucache(cachep, GFP_NOWAIT))
1297 BUG();
1298 mutex_unlock(&slab_mutex);
1299
1300 /* Done! */
1301 slab_state = FULL;
1302
1303 /*
1304 * Register a cpu startup notifier callback that initializes
1305 * cpu_cache_get for all new cpus
1306 */
1307 register_cpu_notifier(&cpucache_notifier);
1308
1309 #ifdef CONFIG_NUMA
1310 /*
1311 * Register a memory hotplug callback that initializes and frees
1312 * node.
1313 */
1314 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1315 #endif
1316
1317 /*
1318 * The reap timers are started later, with a module init call: That part
1319 * of the kernel is not yet operational.
1320 */
1321 }
1322
1323 static int __init cpucache_init(void)
1324 {
1325 int cpu;
1326
1327 /*
1328 * Register the timers that return unneeded pages to the page allocator
1329 */
1330 for_each_online_cpu(cpu)
1331 start_cpu_timer(cpu);
1332
1333 /* Done! */
1334 slab_state = FULL;
1335 return 0;
1336 }
1337 __initcall(cpucache_init);
1338
1339 static noinline void
1340 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1341 {
1342 #if DEBUG
1343 struct kmem_cache_node *n;
1344 struct page *page;
1345 unsigned long flags;
1346 int node;
1347 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1348 DEFAULT_RATELIMIT_BURST);
1349
1350 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1351 return;
1352
1353 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1354 nodeid, gfpflags, &gfpflags);
1355 pr_warn(" cache: %s, object size: %d, order: %d\n",
1356 cachep->name, cachep->size, cachep->gfporder);
1357
1358 for_each_kmem_cache_node(cachep, node, n) {
1359 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1360 unsigned long active_slabs = 0, num_slabs = 0;
1361
1362 spin_lock_irqsave(&n->list_lock, flags);
1363 list_for_each_entry(page, &n->slabs_full, lru) {
1364 active_objs += cachep->num;
1365 active_slabs++;
1366 }
1367 list_for_each_entry(page, &n->slabs_partial, lru) {
1368 active_objs += page->active;
1369 active_slabs++;
1370 }
1371 list_for_each_entry(page, &n->slabs_free, lru)
1372 num_slabs++;
1373
1374 free_objects += n->free_objects;
1375 spin_unlock_irqrestore(&n->list_lock, flags);
1376
1377 num_slabs += active_slabs;
1378 num_objs = num_slabs * cachep->num;
1379 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1380 node, active_slabs, num_slabs, active_objs, num_objs,
1381 free_objects);
1382 }
1383 #endif
1384 }
1385
1386 /*
1387 * Interface to system's page allocator. No need to hold the
1388 * kmem_cache_node ->list_lock.
1389 *
1390 * If we requested dmaable memory, we will get it. Even if we
1391 * did not request dmaable memory, we might get it, but that
1392 * would be relatively rare and ignorable.
1393 */
1394 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1395 int nodeid)
1396 {
1397 struct page *page;
1398 int nr_pages;
1399
1400 flags |= cachep->allocflags;
1401 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1402 flags |= __GFP_RECLAIMABLE;
1403
1404 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1405 if (!page) {
1406 slab_out_of_memory(cachep, flags, nodeid);
1407 return NULL;
1408 }
1409
1410 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1411 __free_pages(page, cachep->gfporder);
1412 return NULL;
1413 }
1414
1415 nr_pages = (1 << cachep->gfporder);
1416 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1417 add_zone_page_state(page_zone(page),
1418 NR_SLAB_RECLAIMABLE, nr_pages);
1419 else
1420 add_zone_page_state(page_zone(page),
1421 NR_SLAB_UNRECLAIMABLE, nr_pages);
1422
1423 __SetPageSlab(page);
1424 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1425 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1426 SetPageSlabPfmemalloc(page);
1427
1428 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1429 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1430
1431 if (cachep->ctor)
1432 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1433 else
1434 kmemcheck_mark_unallocated_pages(page, nr_pages);
1435 }
1436
1437 return page;
1438 }
1439
1440 /*
1441 * Interface to system's page release.
1442 */
1443 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1444 {
1445 const unsigned long nr_freed = (1 << cachep->gfporder);
1446
1447 kmemcheck_free_shadow(page, cachep->gfporder);
1448
1449 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1450 sub_zone_page_state(page_zone(page),
1451 NR_SLAB_RECLAIMABLE, nr_freed);
1452 else
1453 sub_zone_page_state(page_zone(page),
1454 NR_SLAB_UNRECLAIMABLE, nr_freed);
1455
1456 BUG_ON(!PageSlab(page));
1457 __ClearPageSlabPfmemalloc(page);
1458 __ClearPageSlab(page);
1459 page_mapcount_reset(page);
1460 page->mapping = NULL;
1461
1462 if (current->reclaim_state)
1463 current->reclaim_state->reclaimed_slab += nr_freed;
1464 __free_kmem_pages(page, cachep->gfporder);
1465 }
1466
1467 static void kmem_rcu_free(struct rcu_head *head)
1468 {
1469 struct kmem_cache *cachep;
1470 struct page *page;
1471
1472 page = container_of(head, struct page, rcu_head);
1473 cachep = page->slab_cache;
1474
1475 kmem_freepages(cachep, page);
1476 }
1477
1478 #if DEBUG
1479 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1480 {
1481 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1482 (cachep->size % PAGE_SIZE) == 0)
1483 return true;
1484
1485 return false;
1486 }
1487
1488 #ifdef CONFIG_DEBUG_PAGEALLOC
1489 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1490 unsigned long caller)
1491 {
1492 int size = cachep->object_size;
1493
1494 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1495
1496 if (size < 5 * sizeof(unsigned long))
1497 return;
1498
1499 *addr++ = 0x12345678;
1500 *addr++ = caller;
1501 *addr++ = smp_processor_id();
1502 size -= 3 * sizeof(unsigned long);
1503 {
1504 unsigned long *sptr = &caller;
1505 unsigned long svalue;
1506
1507 while (!kstack_end(sptr)) {
1508 svalue = *sptr++;
1509 if (kernel_text_address(svalue)) {
1510 *addr++ = svalue;
1511 size -= sizeof(unsigned long);
1512 if (size <= sizeof(unsigned long))
1513 break;
1514 }
1515 }
1516
1517 }
1518 *addr++ = 0x87654321;
1519 }
1520
1521 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1522 int map, unsigned long caller)
1523 {
1524 if (!is_debug_pagealloc_cache(cachep))
1525 return;
1526
1527 if (caller)
1528 store_stackinfo(cachep, objp, caller);
1529
1530 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1531 }
1532
1533 #else
1534 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1535 int map, unsigned long caller) {}
1536
1537 #endif
1538
1539 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1540 {
1541 int size = cachep->object_size;
1542 addr = &((char *)addr)[obj_offset(cachep)];
1543
1544 memset(addr, val, size);
1545 *(unsigned char *)(addr + size - 1) = POISON_END;
1546 }
1547
1548 static void dump_line(char *data, int offset, int limit)
1549 {
1550 int i;
1551 unsigned char error = 0;
1552 int bad_count = 0;
1553
1554 printk(KERN_ERR "%03x: ", offset);
1555 for (i = 0; i < limit; i++) {
1556 if (data[offset + i] != POISON_FREE) {
1557 error = data[offset + i];
1558 bad_count++;
1559 }
1560 }
1561 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1562 &data[offset], limit, 1);
1563
1564 if (bad_count == 1) {
1565 error ^= POISON_FREE;
1566 if (!(error & (error - 1))) {
1567 printk(KERN_ERR "Single bit error detected. Probably "
1568 "bad RAM.\n");
1569 #ifdef CONFIG_X86
1570 printk(KERN_ERR "Run memtest86+ or a similar memory "
1571 "test tool.\n");
1572 #else
1573 printk(KERN_ERR "Run a memory test tool.\n");
1574 #endif
1575 }
1576 }
1577 }
1578 #endif
1579
1580 #if DEBUG
1581
1582 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1583 {
1584 int i, size;
1585 char *realobj;
1586
1587 if (cachep->flags & SLAB_RED_ZONE) {
1588 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1589 *dbg_redzone1(cachep, objp),
1590 *dbg_redzone2(cachep, objp));
1591 }
1592
1593 if (cachep->flags & SLAB_STORE_USER) {
1594 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1595 *dbg_userword(cachep, objp),
1596 *dbg_userword(cachep, objp));
1597 }
1598 realobj = (char *)objp + obj_offset(cachep);
1599 size = cachep->object_size;
1600 for (i = 0; i < size && lines; i += 16, lines--) {
1601 int limit;
1602 limit = 16;
1603 if (i + limit > size)
1604 limit = size - i;
1605 dump_line(realobj, i, limit);
1606 }
1607 }
1608
1609 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1610 {
1611 char *realobj;
1612 int size, i;
1613 int lines = 0;
1614
1615 if (is_debug_pagealloc_cache(cachep))
1616 return;
1617
1618 realobj = (char *)objp + obj_offset(cachep);
1619 size = cachep->object_size;
1620
1621 for (i = 0; i < size; i++) {
1622 char exp = POISON_FREE;
1623 if (i == size - 1)
1624 exp = POISON_END;
1625 if (realobj[i] != exp) {
1626 int limit;
1627 /* Mismatch ! */
1628 /* Print header */
1629 if (lines == 0) {
1630 printk(KERN_ERR
1631 "Slab corruption (%s): %s start=%p, len=%d\n",
1632 print_tainted(), cachep->name, realobj, size);
1633 print_objinfo(cachep, objp, 0);
1634 }
1635 /* Hexdump the affected line */
1636 i = (i / 16) * 16;
1637 limit = 16;
1638 if (i + limit > size)
1639 limit = size - i;
1640 dump_line(realobj, i, limit);
1641 i += 16;
1642 lines++;
1643 /* Limit to 5 lines */
1644 if (lines > 5)
1645 break;
1646 }
1647 }
1648 if (lines != 0) {
1649 /* Print some data about the neighboring objects, if they
1650 * exist:
1651 */
1652 struct page *page = virt_to_head_page(objp);
1653 unsigned int objnr;
1654
1655 objnr = obj_to_index(cachep, page, objp);
1656 if (objnr) {
1657 objp = index_to_obj(cachep, page, objnr - 1);
1658 realobj = (char *)objp + obj_offset(cachep);
1659 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1660 realobj, size);
1661 print_objinfo(cachep, objp, 2);
1662 }
1663 if (objnr + 1 < cachep->num) {
1664 objp = index_to_obj(cachep, page, objnr + 1);
1665 realobj = (char *)objp + obj_offset(cachep);
1666 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1667 realobj, size);
1668 print_objinfo(cachep, objp, 2);
1669 }
1670 }
1671 }
1672 #endif
1673
1674 #if DEBUG
1675 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1676 struct page *page)
1677 {
1678 int i;
1679
1680 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1681 poison_obj(cachep, page->freelist - obj_offset(cachep),
1682 POISON_FREE);
1683 }
1684
1685 for (i = 0; i < cachep->num; i++) {
1686 void *objp = index_to_obj(cachep, page, i);
1687
1688 if (cachep->flags & SLAB_POISON) {
1689 check_poison_obj(cachep, objp);
1690 slab_kernel_map(cachep, objp, 1, 0);
1691 }
1692 if (cachep->flags & SLAB_RED_ZONE) {
1693 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1694 slab_error(cachep, "start of a freed object "
1695 "was overwritten");
1696 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1697 slab_error(cachep, "end of a freed object "
1698 "was overwritten");
1699 }
1700 }
1701 }
1702 #else
1703 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1704 struct page *page)
1705 {
1706 }
1707 #endif
1708
1709 /**
1710 * slab_destroy - destroy and release all objects in a slab
1711 * @cachep: cache pointer being destroyed
1712 * @page: page pointer being destroyed
1713 *
1714 * Destroy all the objs in a slab page, and release the mem back to the system.
1715 * Before calling the slab page must have been unlinked from the cache. The
1716 * kmem_cache_node ->list_lock is not held/needed.
1717 */
1718 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1719 {
1720 void *freelist;
1721
1722 freelist = page->freelist;
1723 slab_destroy_debugcheck(cachep, page);
1724 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1725 call_rcu(&page->rcu_head, kmem_rcu_free);
1726 else
1727 kmem_freepages(cachep, page);
1728
1729 /*
1730 * From now on, we don't use freelist
1731 * although actual page can be freed in rcu context
1732 */
1733 if (OFF_SLAB(cachep))
1734 kmem_cache_free(cachep->freelist_cache, freelist);
1735 }
1736
1737 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1738 {
1739 struct page *page, *n;
1740
1741 list_for_each_entry_safe(page, n, list, lru) {
1742 list_del(&page->lru);
1743 slab_destroy(cachep, page);
1744 }
1745 }
1746
1747 /**
1748 * calculate_slab_order - calculate size (page order) of slabs
1749 * @cachep: pointer to the cache that is being created
1750 * @size: size of objects to be created in this cache.
1751 * @flags: slab allocation flags
1752 *
1753 * Also calculates the number of objects per slab.
1754 *
1755 * This could be made much more intelligent. For now, try to avoid using
1756 * high order pages for slabs. When the gfp() functions are more friendly
1757 * towards high-order requests, this should be changed.
1758 */
1759 static size_t calculate_slab_order(struct kmem_cache *cachep,
1760 size_t size, unsigned long flags)
1761 {
1762 size_t left_over = 0;
1763 int gfporder;
1764
1765 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1766 unsigned int num;
1767 size_t remainder;
1768
1769 num = cache_estimate(gfporder, size, flags, &remainder);
1770 if (!num)
1771 continue;
1772
1773 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1774 if (num > SLAB_OBJ_MAX_NUM)
1775 break;
1776
1777 if (flags & CFLGS_OFF_SLAB) {
1778 struct kmem_cache *freelist_cache;
1779 size_t freelist_size;
1780
1781 freelist_size = num * sizeof(freelist_idx_t);
1782 freelist_cache = kmalloc_slab(freelist_size, 0u);
1783 if (!freelist_cache)
1784 continue;
1785
1786 /*
1787 * Needed to avoid possible looping condition
1788 * in cache_grow()
1789 */
1790 if (OFF_SLAB(freelist_cache))
1791 continue;
1792
1793 /* check if off slab has enough benefit */
1794 if (freelist_cache->size > cachep->size / 2)
1795 continue;
1796 }
1797
1798 /* Found something acceptable - save it away */
1799 cachep->num = num;
1800 cachep->gfporder = gfporder;
1801 left_over = remainder;
1802
1803 /*
1804 * A VFS-reclaimable slab tends to have most allocations
1805 * as GFP_NOFS and we really don't want to have to be allocating
1806 * higher-order pages when we are unable to shrink dcache.
1807 */
1808 if (flags & SLAB_RECLAIM_ACCOUNT)
1809 break;
1810
1811 /*
1812 * Large number of objects is good, but very large slabs are
1813 * currently bad for the gfp()s.
1814 */
1815 if (gfporder >= slab_max_order)
1816 break;
1817
1818 /*
1819 * Acceptable internal fragmentation?
1820 */
1821 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1822 break;
1823 }
1824 return left_over;
1825 }
1826
1827 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1828 struct kmem_cache *cachep, int entries, int batchcount)
1829 {
1830 int cpu;
1831 size_t size;
1832 struct array_cache __percpu *cpu_cache;
1833
1834 size = sizeof(void *) * entries + sizeof(struct array_cache);
1835 cpu_cache = __alloc_percpu(size, sizeof(void *));
1836
1837 if (!cpu_cache)
1838 return NULL;
1839
1840 for_each_possible_cpu(cpu) {
1841 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1842 entries, batchcount);
1843 }
1844
1845 return cpu_cache;
1846 }
1847
1848 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1849 {
1850 if (slab_state >= FULL)
1851 return enable_cpucache(cachep, gfp);
1852
1853 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1854 if (!cachep->cpu_cache)
1855 return 1;
1856
1857 if (slab_state == DOWN) {
1858 /* Creation of first cache (kmem_cache). */
1859 set_up_node(kmem_cache, CACHE_CACHE);
1860 } else if (slab_state == PARTIAL) {
1861 /* For kmem_cache_node */
1862 set_up_node(cachep, SIZE_NODE);
1863 } else {
1864 int node;
1865
1866 for_each_online_node(node) {
1867 cachep->node[node] = kmalloc_node(
1868 sizeof(struct kmem_cache_node), gfp, node);
1869 BUG_ON(!cachep->node[node]);
1870 kmem_cache_node_init(cachep->node[node]);
1871 }
1872 }
1873
1874 cachep->node[numa_mem_id()]->next_reap =
1875 jiffies + REAPTIMEOUT_NODE +
1876 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1877
1878 cpu_cache_get(cachep)->avail = 0;
1879 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1880 cpu_cache_get(cachep)->batchcount = 1;
1881 cpu_cache_get(cachep)->touched = 0;
1882 cachep->batchcount = 1;
1883 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1884 return 0;
1885 }
1886
1887 unsigned long kmem_cache_flags(unsigned long object_size,
1888 unsigned long flags, const char *name,
1889 void (*ctor)(void *))
1890 {
1891 return flags;
1892 }
1893
1894 struct kmem_cache *
1895 __kmem_cache_alias(const char *name, size_t size, size_t align,
1896 unsigned long flags, void (*ctor)(void *))
1897 {
1898 struct kmem_cache *cachep;
1899
1900 cachep = find_mergeable(size, align, flags, name, ctor);
1901 if (cachep) {
1902 cachep->refcount++;
1903
1904 /*
1905 * Adjust the object sizes so that we clear
1906 * the complete object on kzalloc.
1907 */
1908 cachep->object_size = max_t(int, cachep->object_size, size);
1909 }
1910 return cachep;
1911 }
1912
1913 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1914 size_t size, unsigned long flags)
1915 {
1916 size_t left;
1917
1918 cachep->num = 0;
1919
1920 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1921 return false;
1922
1923 left = calculate_slab_order(cachep, size,
1924 flags | CFLGS_OBJFREELIST_SLAB);
1925 if (!cachep->num)
1926 return false;
1927
1928 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1929 return false;
1930
1931 cachep->colour = left / cachep->colour_off;
1932
1933 return true;
1934 }
1935
1936 static bool set_off_slab_cache(struct kmem_cache *cachep,
1937 size_t size, unsigned long flags)
1938 {
1939 size_t left;
1940
1941 cachep->num = 0;
1942
1943 /*
1944 * Always use on-slab management when SLAB_NOLEAKTRACE
1945 * to avoid recursive calls into kmemleak.
1946 */
1947 if (flags & SLAB_NOLEAKTRACE)
1948 return false;
1949
1950 /*
1951 * Size is large, assume best to place the slab management obj
1952 * off-slab (should allow better packing of objs).
1953 */
1954 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1955 if (!cachep->num)
1956 return false;
1957
1958 /*
1959 * If the slab has been placed off-slab, and we have enough space then
1960 * move it on-slab. This is at the expense of any extra colouring.
1961 */
1962 if (left >= cachep->num * sizeof(freelist_idx_t))
1963 return false;
1964
1965 cachep->colour = left / cachep->colour_off;
1966
1967 return true;
1968 }
1969
1970 static bool set_on_slab_cache(struct kmem_cache *cachep,
1971 size_t size, unsigned long flags)
1972 {
1973 size_t left;
1974
1975 cachep->num = 0;
1976
1977 left = calculate_slab_order(cachep, size, flags);
1978 if (!cachep->num)
1979 return false;
1980
1981 cachep->colour = left / cachep->colour_off;
1982
1983 return true;
1984 }
1985
1986 /**
1987 * __kmem_cache_create - Create a cache.
1988 * @cachep: cache management descriptor
1989 * @flags: SLAB flags
1990 *
1991 * Returns a ptr to the cache on success, NULL on failure.
1992 * Cannot be called within a int, but can be interrupted.
1993 * The @ctor is run when new pages are allocated by the cache.
1994 *
1995 * The flags are
1996 *
1997 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1998 * to catch references to uninitialised memory.
1999 *
2000 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2001 * for buffer overruns.
2002 *
2003 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2004 * cacheline. This can be beneficial if you're counting cycles as closely
2005 * as davem.
2006 */
2007 int
2008 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2009 {
2010 size_t ralign = BYTES_PER_WORD;
2011 gfp_t gfp;
2012 int err;
2013 size_t size = cachep->size;
2014
2015 #if DEBUG
2016 #if FORCED_DEBUG
2017 /*
2018 * Enable redzoning and last user accounting, except for caches with
2019 * large objects, if the increased size would increase the object size
2020 * above the next power of two: caches with object sizes just above a
2021 * power of two have a significant amount of internal fragmentation.
2022 */
2023 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2024 2 * sizeof(unsigned long long)))
2025 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2026 if (!(flags & SLAB_DESTROY_BY_RCU))
2027 flags |= SLAB_POISON;
2028 #endif
2029 #endif
2030
2031 /*
2032 * Check that size is in terms of words. This is needed to avoid
2033 * unaligned accesses for some archs when redzoning is used, and makes
2034 * sure any on-slab bufctl's are also correctly aligned.
2035 */
2036 if (size & (BYTES_PER_WORD - 1)) {
2037 size += (BYTES_PER_WORD - 1);
2038 size &= ~(BYTES_PER_WORD - 1);
2039 }
2040
2041 if (flags & SLAB_RED_ZONE) {
2042 ralign = REDZONE_ALIGN;
2043 /* If redzoning, ensure that the second redzone is suitably
2044 * aligned, by adjusting the object size accordingly. */
2045 size += REDZONE_ALIGN - 1;
2046 size &= ~(REDZONE_ALIGN - 1);
2047 }
2048
2049 /* 3) caller mandated alignment */
2050 if (ralign < cachep->align) {
2051 ralign = cachep->align;
2052 }
2053 /* disable debug if necessary */
2054 if (ralign > __alignof__(unsigned long long))
2055 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2056 /*
2057 * 4) Store it.
2058 */
2059 cachep->align = ralign;
2060 cachep->colour_off = cache_line_size();
2061 /* Offset must be a multiple of the alignment. */
2062 if (cachep->colour_off < cachep->align)
2063 cachep->colour_off = cachep->align;
2064
2065 if (slab_is_available())
2066 gfp = GFP_KERNEL;
2067 else
2068 gfp = GFP_NOWAIT;
2069
2070 #if DEBUG
2071
2072 /*
2073 * Both debugging options require word-alignment which is calculated
2074 * into align above.
2075 */
2076 if (flags & SLAB_RED_ZONE) {
2077 /* add space for red zone words */
2078 cachep->obj_offset += sizeof(unsigned long long);
2079 size += 2 * sizeof(unsigned long long);
2080 }
2081 if (flags & SLAB_STORE_USER) {
2082 /* user store requires one word storage behind the end of
2083 * the real object. But if the second red zone needs to be
2084 * aligned to 64 bits, we must allow that much space.
2085 */
2086 if (flags & SLAB_RED_ZONE)
2087 size += REDZONE_ALIGN;
2088 else
2089 size += BYTES_PER_WORD;
2090 }
2091 #endif
2092
2093 size = ALIGN(size, cachep->align);
2094 /*
2095 * We should restrict the number of objects in a slab to implement
2096 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2097 */
2098 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2099 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2100
2101 #if DEBUG
2102 /*
2103 * To activate debug pagealloc, off-slab management is necessary
2104 * requirement. In early phase of initialization, small sized slab
2105 * doesn't get initialized so it would not be possible. So, we need
2106 * to check size >= 256. It guarantees that all necessary small
2107 * sized slab is initialized in current slab initialization sequence.
2108 */
2109 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2110 size >= 256 && cachep->object_size > cache_line_size()) {
2111 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2112 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2113
2114 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2115 flags |= CFLGS_OFF_SLAB;
2116 cachep->obj_offset += tmp_size - size;
2117 size = tmp_size;
2118 goto done;
2119 }
2120 }
2121 }
2122 #endif
2123
2124 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2125 flags |= CFLGS_OBJFREELIST_SLAB;
2126 goto done;
2127 }
2128
2129 if (set_off_slab_cache(cachep, size, flags)) {
2130 flags |= CFLGS_OFF_SLAB;
2131 goto done;
2132 }
2133
2134 if (set_on_slab_cache(cachep, size, flags))
2135 goto done;
2136
2137 return -E2BIG;
2138
2139 done:
2140 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2141 cachep->flags = flags;
2142 cachep->allocflags = __GFP_COMP;
2143 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2144 cachep->allocflags |= GFP_DMA;
2145 cachep->size = size;
2146 cachep->reciprocal_buffer_size = reciprocal_value(size);
2147
2148 #if DEBUG
2149 /*
2150 * If we're going to use the generic kernel_map_pages()
2151 * poisoning, then it's going to smash the contents of
2152 * the redzone and userword anyhow, so switch them off.
2153 */
2154 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2155 (cachep->flags & SLAB_POISON) &&
2156 is_debug_pagealloc_cache(cachep))
2157 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2158 #endif
2159
2160 if (OFF_SLAB(cachep)) {
2161 cachep->freelist_cache =
2162 kmalloc_slab(cachep->freelist_size, 0u);
2163 }
2164
2165 err = setup_cpu_cache(cachep, gfp);
2166 if (err) {
2167 __kmem_cache_release(cachep);
2168 return err;
2169 }
2170
2171 return 0;
2172 }
2173
2174 #if DEBUG
2175 static void check_irq_off(void)
2176 {
2177 BUG_ON(!irqs_disabled());
2178 }
2179
2180 static void check_irq_on(void)
2181 {
2182 BUG_ON(irqs_disabled());
2183 }
2184
2185 static void check_spinlock_acquired(struct kmem_cache *cachep)
2186 {
2187 #ifdef CONFIG_SMP
2188 check_irq_off();
2189 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2190 #endif
2191 }
2192
2193 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2194 {
2195 #ifdef CONFIG_SMP
2196 check_irq_off();
2197 assert_spin_locked(&get_node(cachep, node)->list_lock);
2198 #endif
2199 }
2200
2201 #else
2202 #define check_irq_off() do { } while(0)
2203 #define check_irq_on() do { } while(0)
2204 #define check_spinlock_acquired(x) do { } while(0)
2205 #define check_spinlock_acquired_node(x, y) do { } while(0)
2206 #endif
2207
2208 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2209 struct array_cache *ac,
2210 int force, int node);
2211
2212 static void do_drain(void *arg)
2213 {
2214 struct kmem_cache *cachep = arg;
2215 struct array_cache *ac;
2216 int node = numa_mem_id();
2217 struct kmem_cache_node *n;
2218 LIST_HEAD(list);
2219
2220 check_irq_off();
2221 ac = cpu_cache_get(cachep);
2222 n = get_node(cachep, node);
2223 spin_lock(&n->list_lock);
2224 free_block(cachep, ac->entry, ac->avail, node, &list);
2225 spin_unlock(&n->list_lock);
2226 slabs_destroy(cachep, &list);
2227 ac->avail = 0;
2228 }
2229
2230 static void drain_cpu_caches(struct kmem_cache *cachep)
2231 {
2232 struct kmem_cache_node *n;
2233 int node;
2234
2235 on_each_cpu(do_drain, cachep, 1);
2236 check_irq_on();
2237 for_each_kmem_cache_node(cachep, node, n)
2238 if (n->alien)
2239 drain_alien_cache(cachep, n->alien);
2240
2241 for_each_kmem_cache_node(cachep, node, n)
2242 drain_array(cachep, n, n->shared, 1, node);
2243 }
2244
2245 /*
2246 * Remove slabs from the list of free slabs.
2247 * Specify the number of slabs to drain in tofree.
2248 *
2249 * Returns the actual number of slabs released.
2250 */
2251 static int drain_freelist(struct kmem_cache *cache,
2252 struct kmem_cache_node *n, int tofree)
2253 {
2254 struct list_head *p;
2255 int nr_freed;
2256 struct page *page;
2257
2258 nr_freed = 0;
2259 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2260
2261 spin_lock_irq(&n->list_lock);
2262 p = n->slabs_free.prev;
2263 if (p == &n->slabs_free) {
2264 spin_unlock_irq(&n->list_lock);
2265 goto out;
2266 }
2267
2268 page = list_entry(p, struct page, lru);
2269 list_del(&page->lru);
2270 /*
2271 * Safe to drop the lock. The slab is no longer linked
2272 * to the cache.
2273 */
2274 n->free_objects -= cache->num;
2275 spin_unlock_irq(&n->list_lock);
2276 slab_destroy(cache, page);
2277 nr_freed++;
2278 }
2279 out:
2280 return nr_freed;
2281 }
2282
2283 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2284 {
2285 int ret = 0;
2286 int node;
2287 struct kmem_cache_node *n;
2288
2289 drain_cpu_caches(cachep);
2290
2291 check_irq_on();
2292 for_each_kmem_cache_node(cachep, node, n) {
2293 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2294
2295 ret += !list_empty(&n->slabs_full) ||
2296 !list_empty(&n->slabs_partial);
2297 }
2298 return (ret ? 1 : 0);
2299 }
2300
2301 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2302 {
2303 return __kmem_cache_shrink(cachep, false);
2304 }
2305
2306 void __kmem_cache_release(struct kmem_cache *cachep)
2307 {
2308 int i;
2309 struct kmem_cache_node *n;
2310
2311 free_percpu(cachep->cpu_cache);
2312
2313 /* NUMA: free the node structures */
2314 for_each_kmem_cache_node(cachep, i, n) {
2315 kfree(n->shared);
2316 free_alien_cache(n->alien);
2317 kfree(n);
2318 cachep->node[i] = NULL;
2319 }
2320 }
2321
2322 /*
2323 * Get the memory for a slab management obj.
2324 *
2325 * For a slab cache when the slab descriptor is off-slab, the
2326 * slab descriptor can't come from the same cache which is being created,
2327 * Because if it is the case, that means we defer the creation of
2328 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2329 * And we eventually call down to __kmem_cache_create(), which
2330 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2331 * This is a "chicken-and-egg" problem.
2332 *
2333 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2334 * which are all initialized during kmem_cache_init().
2335 */
2336 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2337 struct page *page, int colour_off,
2338 gfp_t local_flags, int nodeid)
2339 {
2340 void *freelist;
2341 void *addr = page_address(page);
2342
2343 page->s_mem = addr + colour_off;
2344 page->active = 0;
2345
2346 if (OBJFREELIST_SLAB(cachep))
2347 freelist = NULL;
2348 else if (OFF_SLAB(cachep)) {
2349 /* Slab management obj is off-slab. */
2350 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2351 local_flags, nodeid);
2352 if (!freelist)
2353 return NULL;
2354 } else {
2355 /* We will use last bytes at the slab for freelist */
2356 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2357 cachep->freelist_size;
2358 }
2359
2360 return freelist;
2361 }
2362
2363 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2364 {
2365 return ((freelist_idx_t *)page->freelist)[idx];
2366 }
2367
2368 static inline void set_free_obj(struct page *page,
2369 unsigned int idx, freelist_idx_t val)
2370 {
2371 ((freelist_idx_t *)(page->freelist))[idx] = val;
2372 }
2373
2374 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2375 {
2376 #if DEBUG
2377 int i;
2378
2379 for (i = 0; i < cachep->num; i++) {
2380 void *objp = index_to_obj(cachep, page, i);
2381
2382 if (cachep->flags & SLAB_STORE_USER)
2383 *dbg_userword(cachep, objp) = NULL;
2384
2385 if (cachep->flags & SLAB_RED_ZONE) {
2386 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2387 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2388 }
2389 /*
2390 * Constructors are not allowed to allocate memory from the same
2391 * cache which they are a constructor for. Otherwise, deadlock.
2392 * They must also be threaded.
2393 */
2394 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2395 cachep->ctor(objp + obj_offset(cachep));
2396
2397 if (cachep->flags & SLAB_RED_ZONE) {
2398 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2399 slab_error(cachep, "constructor overwrote the"
2400 " end of an object");
2401 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2402 slab_error(cachep, "constructor overwrote the"
2403 " start of an object");
2404 }
2405 /* need to poison the objs? */
2406 if (cachep->flags & SLAB_POISON) {
2407 poison_obj(cachep, objp, POISON_FREE);
2408 slab_kernel_map(cachep, objp, 0, 0);
2409 }
2410 }
2411 #endif
2412 }
2413
2414 static void cache_init_objs(struct kmem_cache *cachep,
2415 struct page *page)
2416 {
2417 int i;
2418
2419 cache_init_objs_debug(cachep, page);
2420
2421 if (OBJFREELIST_SLAB(cachep)) {
2422 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2423 obj_offset(cachep);
2424 }
2425
2426 for (i = 0; i < cachep->num; i++) {
2427 /* constructor could break poison info */
2428 if (DEBUG == 0 && cachep->ctor)
2429 cachep->ctor(index_to_obj(cachep, page, i));
2430
2431 set_free_obj(page, i, i);
2432 }
2433 }
2434
2435 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2436 {
2437 if (CONFIG_ZONE_DMA_FLAG) {
2438 if (flags & GFP_DMA)
2439 BUG_ON(!(cachep->allocflags & GFP_DMA));
2440 else
2441 BUG_ON(cachep->allocflags & GFP_DMA);
2442 }
2443 }
2444
2445 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2446 {
2447 void *objp;
2448
2449 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2450 page->active++;
2451
2452 #if DEBUG
2453 if (cachep->flags & SLAB_STORE_USER)
2454 set_store_user_dirty(cachep);
2455 #endif
2456
2457 return objp;
2458 }
2459
2460 static void slab_put_obj(struct kmem_cache *cachep,
2461 struct page *page, void *objp)
2462 {
2463 unsigned int objnr = obj_to_index(cachep, page, objp);
2464 #if DEBUG
2465 unsigned int i;
2466
2467 /* Verify double free bug */
2468 for (i = page->active; i < cachep->num; i++) {
2469 if (get_free_obj(page, i) == objnr) {
2470 printk(KERN_ERR "slab: double free detected in cache "
2471 "'%s', objp %p\n", cachep->name, objp);
2472 BUG();
2473 }
2474 }
2475 #endif
2476 page->active--;
2477 if (!page->freelist)
2478 page->freelist = objp + obj_offset(cachep);
2479
2480 set_free_obj(page, page->active, objnr);
2481 }
2482
2483 /*
2484 * Map pages beginning at addr to the given cache and slab. This is required
2485 * for the slab allocator to be able to lookup the cache and slab of a
2486 * virtual address for kfree, ksize, and slab debugging.
2487 */
2488 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2489 void *freelist)
2490 {
2491 page->slab_cache = cache;
2492 page->freelist = freelist;
2493 }
2494
2495 /*
2496 * Grow (by 1) the number of slabs within a cache. This is called by
2497 * kmem_cache_alloc() when there are no active objs left in a cache.
2498 */
2499 static int cache_grow(struct kmem_cache *cachep,
2500 gfp_t flags, int nodeid, struct page *page)
2501 {
2502 void *freelist;
2503 size_t offset;
2504 gfp_t local_flags;
2505 struct kmem_cache_node *n;
2506
2507 /*
2508 * Be lazy and only check for valid flags here, keeping it out of the
2509 * critical path in kmem_cache_alloc().
2510 */
2511 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2512 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2513 BUG();
2514 }
2515 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2516
2517 /* Take the node list lock to change the colour_next on this node */
2518 check_irq_off();
2519 n = get_node(cachep, nodeid);
2520 spin_lock(&n->list_lock);
2521
2522 /* Get colour for the slab, and cal the next value. */
2523 offset = n->colour_next;
2524 n->colour_next++;
2525 if (n->colour_next >= cachep->colour)
2526 n->colour_next = 0;
2527 spin_unlock(&n->list_lock);
2528
2529 offset *= cachep->colour_off;
2530
2531 if (gfpflags_allow_blocking(local_flags))
2532 local_irq_enable();
2533
2534 /*
2535 * The test for missing atomic flag is performed here, rather than
2536 * the more obvious place, simply to reduce the critical path length
2537 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2538 * will eventually be caught here (where it matters).
2539 */
2540 kmem_flagcheck(cachep, flags);
2541
2542 /*
2543 * Get mem for the objs. Attempt to allocate a physical page from
2544 * 'nodeid'.
2545 */
2546 if (!page)
2547 page = kmem_getpages(cachep, local_flags, nodeid);
2548 if (!page)
2549 goto failed;
2550
2551 /* Get slab management. */
2552 freelist = alloc_slabmgmt(cachep, page, offset,
2553 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2554 if (OFF_SLAB(cachep) && !freelist)
2555 goto opps1;
2556
2557 slab_map_pages(cachep, page, freelist);
2558
2559 cache_init_objs(cachep, page);
2560
2561 if (gfpflags_allow_blocking(local_flags))
2562 local_irq_disable();
2563 check_irq_off();
2564 spin_lock(&n->list_lock);
2565
2566 /* Make slab active. */
2567 list_add_tail(&page->lru, &(n->slabs_free));
2568 STATS_INC_GROWN(cachep);
2569 n->free_objects += cachep->num;
2570 spin_unlock(&n->list_lock);
2571 return 1;
2572 opps1:
2573 kmem_freepages(cachep, page);
2574 failed:
2575 if (gfpflags_allow_blocking(local_flags))
2576 local_irq_disable();
2577 return 0;
2578 }
2579
2580 #if DEBUG
2581
2582 /*
2583 * Perform extra freeing checks:
2584 * - detect bad pointers.
2585 * - POISON/RED_ZONE checking
2586 */
2587 static void kfree_debugcheck(const void *objp)
2588 {
2589 if (!virt_addr_valid(objp)) {
2590 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2591 (unsigned long)objp);
2592 BUG();
2593 }
2594 }
2595
2596 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2597 {
2598 unsigned long long redzone1, redzone2;
2599
2600 redzone1 = *dbg_redzone1(cache, obj);
2601 redzone2 = *dbg_redzone2(cache, obj);
2602
2603 /*
2604 * Redzone is ok.
2605 */
2606 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2607 return;
2608
2609 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2610 slab_error(cache, "double free detected");
2611 else
2612 slab_error(cache, "memory outside object was overwritten");
2613
2614 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2615 obj, redzone1, redzone2);
2616 }
2617
2618 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2619 unsigned long caller)
2620 {
2621 unsigned int objnr;
2622 struct page *page;
2623
2624 BUG_ON(virt_to_cache(objp) != cachep);
2625
2626 objp -= obj_offset(cachep);
2627 kfree_debugcheck(objp);
2628 page = virt_to_head_page(objp);
2629
2630 if (cachep->flags & SLAB_RED_ZONE) {
2631 verify_redzone_free(cachep, objp);
2632 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2633 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2634 }
2635 if (cachep->flags & SLAB_STORE_USER) {
2636 set_store_user_dirty(cachep);
2637 *dbg_userword(cachep, objp) = (void *)caller;
2638 }
2639
2640 objnr = obj_to_index(cachep, page, objp);
2641
2642 BUG_ON(objnr >= cachep->num);
2643 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2644
2645 if (cachep->flags & SLAB_POISON) {
2646 poison_obj(cachep, objp, POISON_FREE);
2647 slab_kernel_map(cachep, objp, 0, caller);
2648 }
2649 return objp;
2650 }
2651
2652 #else
2653 #define kfree_debugcheck(x) do { } while(0)
2654 #define cache_free_debugcheck(x,objp,z) (objp)
2655 #endif
2656
2657 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2658 void **list)
2659 {
2660 #if DEBUG
2661 void *next = *list;
2662 void *objp;
2663
2664 while (next) {
2665 objp = next - obj_offset(cachep);
2666 next = *(void **)next;
2667 poison_obj(cachep, objp, POISON_FREE);
2668 }
2669 #endif
2670 }
2671
2672 static inline void fixup_slab_list(struct kmem_cache *cachep,
2673 struct kmem_cache_node *n, struct page *page,
2674 void **list)
2675 {
2676 /* move slabp to correct slabp list: */
2677 list_del(&page->lru);
2678 if (page->active == cachep->num) {
2679 list_add(&page->lru, &n->slabs_full);
2680 if (OBJFREELIST_SLAB(cachep)) {
2681 #if DEBUG
2682 /* Poisoning will be done without holding the lock */
2683 if (cachep->flags & SLAB_POISON) {
2684 void **objp = page->freelist;
2685
2686 *objp = *list;
2687 *list = objp;
2688 }
2689 #endif
2690 page->freelist = NULL;
2691 }
2692 } else
2693 list_add(&page->lru, &n->slabs_partial);
2694 }
2695
2696 /* Try to find non-pfmemalloc slab if needed */
2697 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2698 struct page *page, bool pfmemalloc)
2699 {
2700 if (!page)
2701 return NULL;
2702
2703 if (pfmemalloc)
2704 return page;
2705
2706 if (!PageSlabPfmemalloc(page))
2707 return page;
2708
2709 /* No need to keep pfmemalloc slab if we have enough free objects */
2710 if (n->free_objects > n->free_limit) {
2711 ClearPageSlabPfmemalloc(page);
2712 return page;
2713 }
2714
2715 /* Move pfmemalloc slab to the end of list to speed up next search */
2716 list_del(&page->lru);
2717 if (!page->active)
2718 list_add_tail(&page->lru, &n->slabs_free);
2719 else
2720 list_add_tail(&page->lru, &n->slabs_partial);
2721
2722 list_for_each_entry(page, &n->slabs_partial, lru) {
2723 if (!PageSlabPfmemalloc(page))
2724 return page;
2725 }
2726
2727 list_for_each_entry(page, &n->slabs_free, lru) {
2728 if (!PageSlabPfmemalloc(page))
2729 return page;
2730 }
2731
2732 return NULL;
2733 }
2734
2735 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2736 {
2737 struct page *page;
2738
2739 page = list_first_entry_or_null(&n->slabs_partial,
2740 struct page, lru);
2741 if (!page) {
2742 n->free_touched = 1;
2743 page = list_first_entry_or_null(&n->slabs_free,
2744 struct page, lru);
2745 }
2746
2747 if (sk_memalloc_socks())
2748 return get_valid_first_slab(n, page, pfmemalloc);
2749
2750 return page;
2751 }
2752
2753 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2754 struct kmem_cache_node *n, gfp_t flags)
2755 {
2756 struct page *page;
2757 void *obj;
2758 void *list = NULL;
2759
2760 if (!gfp_pfmemalloc_allowed(flags))
2761 return NULL;
2762
2763 spin_lock(&n->list_lock);
2764 page = get_first_slab(n, true);
2765 if (!page) {
2766 spin_unlock(&n->list_lock);
2767 return NULL;
2768 }
2769
2770 obj = slab_get_obj(cachep, page);
2771 n->free_objects--;
2772
2773 fixup_slab_list(cachep, n, page, &list);
2774
2775 spin_unlock(&n->list_lock);
2776 fixup_objfreelist_debug(cachep, &list);
2777
2778 return obj;
2779 }
2780
2781 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2782 {
2783 int batchcount;
2784 struct kmem_cache_node *n;
2785 struct array_cache *ac;
2786 int node;
2787 void *list = NULL;
2788
2789 check_irq_off();
2790 node = numa_mem_id();
2791
2792 retry:
2793 ac = cpu_cache_get(cachep);
2794 batchcount = ac->batchcount;
2795 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2796 /*
2797 * If there was little recent activity on this cache, then
2798 * perform only a partial refill. Otherwise we could generate
2799 * refill bouncing.
2800 */
2801 batchcount = BATCHREFILL_LIMIT;
2802 }
2803 n = get_node(cachep, node);
2804
2805 BUG_ON(ac->avail > 0 || !n);
2806 spin_lock(&n->list_lock);
2807
2808 /* See if we can refill from the shared array */
2809 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2810 n->shared->touched = 1;
2811 goto alloc_done;
2812 }
2813
2814 while (batchcount > 0) {
2815 struct page *page;
2816 /* Get slab alloc is to come from. */
2817 page = get_first_slab(n, false);
2818 if (!page)
2819 goto must_grow;
2820
2821 check_spinlock_acquired(cachep);
2822
2823 /*
2824 * The slab was either on partial or free list so
2825 * there must be at least one object available for
2826 * allocation.
2827 */
2828 BUG_ON(page->active >= cachep->num);
2829
2830 while (page->active < cachep->num && batchcount--) {
2831 STATS_INC_ALLOCED(cachep);
2832 STATS_INC_ACTIVE(cachep);
2833 STATS_SET_HIGH(cachep);
2834
2835 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2836 }
2837
2838 fixup_slab_list(cachep, n, page, &list);
2839 }
2840
2841 must_grow:
2842 n->free_objects -= ac->avail;
2843 alloc_done:
2844 spin_unlock(&n->list_lock);
2845 fixup_objfreelist_debug(cachep, &list);
2846
2847 if (unlikely(!ac->avail)) {
2848 int x;
2849
2850 /* Check if we can use obj in pfmemalloc slab */
2851 if (sk_memalloc_socks()) {
2852 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2853
2854 if (obj)
2855 return obj;
2856 }
2857
2858 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2859
2860 /* cache_grow can reenable interrupts, then ac could change. */
2861 ac = cpu_cache_get(cachep);
2862 node = numa_mem_id();
2863
2864 /* no objects in sight? abort */
2865 if (!x && ac->avail == 0)
2866 return NULL;
2867
2868 if (!ac->avail) /* objects refilled by interrupt? */
2869 goto retry;
2870 }
2871 ac->touched = 1;
2872
2873 return ac->entry[--ac->avail];
2874 }
2875
2876 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2877 gfp_t flags)
2878 {
2879 might_sleep_if(gfpflags_allow_blocking(flags));
2880 #if DEBUG
2881 kmem_flagcheck(cachep, flags);
2882 #endif
2883 }
2884
2885 #if DEBUG
2886 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2887 gfp_t flags, void *objp, unsigned long caller)
2888 {
2889 if (!objp)
2890 return objp;
2891 if (cachep->flags & SLAB_POISON) {
2892 check_poison_obj(cachep, objp);
2893 slab_kernel_map(cachep, objp, 1, 0);
2894 poison_obj(cachep, objp, POISON_INUSE);
2895 }
2896 if (cachep->flags & SLAB_STORE_USER)
2897 *dbg_userword(cachep, objp) = (void *)caller;
2898
2899 if (cachep->flags & SLAB_RED_ZONE) {
2900 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2901 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2902 slab_error(cachep, "double free, or memory outside"
2903 " object was overwritten");
2904 printk(KERN_ERR
2905 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2906 objp, *dbg_redzone1(cachep, objp),
2907 *dbg_redzone2(cachep, objp));
2908 }
2909 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2910 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2911 }
2912
2913 objp += obj_offset(cachep);
2914 if (cachep->ctor && cachep->flags & SLAB_POISON)
2915 cachep->ctor(objp);
2916 if (ARCH_SLAB_MINALIGN &&
2917 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2918 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2919 objp, (int)ARCH_SLAB_MINALIGN);
2920 }
2921 return objp;
2922 }
2923 #else
2924 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2925 #endif
2926
2927 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2928 {
2929 void *objp;
2930 struct array_cache *ac;
2931
2932 check_irq_off();
2933
2934 ac = cpu_cache_get(cachep);
2935 if (likely(ac->avail)) {
2936 ac->touched = 1;
2937 objp = ac->entry[--ac->avail];
2938
2939 STATS_INC_ALLOCHIT(cachep);
2940 goto out;
2941 }
2942
2943 STATS_INC_ALLOCMISS(cachep);
2944 objp = cache_alloc_refill(cachep, flags);
2945 /*
2946 * the 'ac' may be updated by cache_alloc_refill(),
2947 * and kmemleak_erase() requires its correct value.
2948 */
2949 ac = cpu_cache_get(cachep);
2950
2951 out:
2952 /*
2953 * To avoid a false negative, if an object that is in one of the
2954 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2955 * treat the array pointers as a reference to the object.
2956 */
2957 if (objp)
2958 kmemleak_erase(&ac->entry[ac->avail]);
2959 return objp;
2960 }
2961
2962 #ifdef CONFIG_NUMA
2963 /*
2964 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2965 *
2966 * If we are in_interrupt, then process context, including cpusets and
2967 * mempolicy, may not apply and should not be used for allocation policy.
2968 */
2969 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2970 {
2971 int nid_alloc, nid_here;
2972
2973 if (in_interrupt() || (flags & __GFP_THISNODE))
2974 return NULL;
2975 nid_alloc = nid_here = numa_mem_id();
2976 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2977 nid_alloc = cpuset_slab_spread_node();
2978 else if (current->mempolicy)
2979 nid_alloc = mempolicy_slab_node();
2980 if (nid_alloc != nid_here)
2981 return ____cache_alloc_node(cachep, flags, nid_alloc);
2982 return NULL;
2983 }
2984
2985 /*
2986 * Fallback function if there was no memory available and no objects on a
2987 * certain node and fall back is permitted. First we scan all the
2988 * available node for available objects. If that fails then we
2989 * perform an allocation without specifying a node. This allows the page
2990 * allocator to do its reclaim / fallback magic. We then insert the
2991 * slab into the proper nodelist and then allocate from it.
2992 */
2993 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2994 {
2995 struct zonelist *zonelist;
2996 gfp_t local_flags;
2997 struct zoneref *z;
2998 struct zone *zone;
2999 enum zone_type high_zoneidx = gfp_zone(flags);
3000 void *obj = NULL;
3001 int nid;
3002 unsigned int cpuset_mems_cookie;
3003
3004 if (flags & __GFP_THISNODE)
3005 return NULL;
3006
3007 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3008
3009 retry_cpuset:
3010 cpuset_mems_cookie = read_mems_allowed_begin();
3011 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3012
3013 retry:
3014 /*
3015 * Look through allowed nodes for objects available
3016 * from existing per node queues.
3017 */
3018 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3019 nid = zone_to_nid(zone);
3020
3021 if (cpuset_zone_allowed(zone, flags) &&
3022 get_node(cache, nid) &&
3023 get_node(cache, nid)->free_objects) {
3024 obj = ____cache_alloc_node(cache,
3025 gfp_exact_node(flags), nid);
3026 if (obj)
3027 break;
3028 }
3029 }
3030
3031 if (!obj) {
3032 /*
3033 * This allocation will be performed within the constraints
3034 * of the current cpuset / memory policy requirements.
3035 * We may trigger various forms of reclaim on the allowed
3036 * set and go into memory reserves if necessary.
3037 */
3038 struct page *page;
3039
3040 if (gfpflags_allow_blocking(local_flags))
3041 local_irq_enable();
3042 kmem_flagcheck(cache, flags);
3043 page = kmem_getpages(cache, local_flags, numa_mem_id());
3044 if (gfpflags_allow_blocking(local_flags))
3045 local_irq_disable();
3046 if (page) {
3047 /*
3048 * Insert into the appropriate per node queues
3049 */
3050 nid = page_to_nid(page);
3051 if (cache_grow(cache, flags, nid, page)) {
3052 obj = ____cache_alloc_node(cache,
3053 gfp_exact_node(flags), nid);
3054 if (!obj)
3055 /*
3056 * Another processor may allocate the
3057 * objects in the slab since we are
3058 * not holding any locks.
3059 */
3060 goto retry;
3061 } else {
3062 /* cache_grow already freed obj */
3063 obj = NULL;
3064 }
3065 }
3066 }
3067
3068 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3069 goto retry_cpuset;
3070 return obj;
3071 }
3072
3073 /*
3074 * A interface to enable slab creation on nodeid
3075 */
3076 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3077 int nodeid)
3078 {
3079 struct page *page;
3080 struct kmem_cache_node *n;
3081 void *obj;
3082 void *list = NULL;
3083 int x;
3084
3085 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3086 n = get_node(cachep, nodeid);
3087 BUG_ON(!n);
3088
3089 retry:
3090 check_irq_off();
3091 spin_lock(&n->list_lock);
3092 page = get_first_slab(n, false);
3093 if (!page)
3094 goto must_grow;
3095
3096 check_spinlock_acquired_node(cachep, nodeid);
3097
3098 STATS_INC_NODEALLOCS(cachep);
3099 STATS_INC_ACTIVE(cachep);
3100 STATS_SET_HIGH(cachep);
3101
3102 BUG_ON(page->active == cachep->num);
3103
3104 obj = slab_get_obj(cachep, page);
3105 n->free_objects--;
3106
3107 fixup_slab_list(cachep, n, page, &list);
3108
3109 spin_unlock(&n->list_lock);
3110 fixup_objfreelist_debug(cachep, &list);
3111 goto done;
3112
3113 must_grow:
3114 spin_unlock(&n->list_lock);
3115 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3116 if (x)
3117 goto retry;
3118
3119 return fallback_alloc(cachep, flags);
3120
3121 done:
3122 return obj;
3123 }
3124
3125 static __always_inline void *
3126 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3127 unsigned long caller)
3128 {
3129 unsigned long save_flags;
3130 void *ptr;
3131 int slab_node = numa_mem_id();
3132
3133 flags &= gfp_allowed_mask;
3134 cachep = slab_pre_alloc_hook(cachep, flags);
3135 if (unlikely(!cachep))
3136 return NULL;
3137
3138 cache_alloc_debugcheck_before(cachep, flags);
3139 local_irq_save(save_flags);
3140
3141 if (nodeid == NUMA_NO_NODE)
3142 nodeid = slab_node;
3143
3144 if (unlikely(!get_node(cachep, nodeid))) {
3145 /* Node not bootstrapped yet */
3146 ptr = fallback_alloc(cachep, flags);
3147 goto out;
3148 }
3149
3150 if (nodeid == slab_node) {
3151 /*
3152 * Use the locally cached objects if possible.
3153 * However ____cache_alloc does not allow fallback
3154 * to other nodes. It may fail while we still have
3155 * objects on other nodes available.
3156 */
3157 ptr = ____cache_alloc(cachep, flags);
3158 if (ptr)
3159 goto out;
3160 }
3161 /* ___cache_alloc_node can fall back to other nodes */
3162 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3163 out:
3164 local_irq_restore(save_flags);
3165 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3166
3167 if (unlikely(flags & __GFP_ZERO) && ptr)
3168 memset(ptr, 0, cachep->object_size);
3169
3170 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3171 return ptr;
3172 }
3173
3174 static __always_inline void *
3175 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3176 {
3177 void *objp;
3178
3179 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3180 objp = alternate_node_alloc(cache, flags);
3181 if (objp)
3182 goto out;
3183 }
3184 objp = ____cache_alloc(cache, flags);
3185
3186 /*
3187 * We may just have run out of memory on the local node.
3188 * ____cache_alloc_node() knows how to locate memory on other nodes
3189 */
3190 if (!objp)
3191 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3192
3193 out:
3194 return objp;
3195 }
3196 #else
3197
3198 static __always_inline void *
3199 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3200 {
3201 return ____cache_alloc(cachep, flags);
3202 }
3203
3204 #endif /* CONFIG_NUMA */
3205
3206 static __always_inline void *
3207 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3208 {
3209 unsigned long save_flags;
3210 void *objp;
3211
3212 flags &= gfp_allowed_mask;
3213 cachep = slab_pre_alloc_hook(cachep, flags);
3214 if (unlikely(!cachep))
3215 return NULL;
3216
3217 cache_alloc_debugcheck_before(cachep, flags);
3218 local_irq_save(save_flags);
3219 objp = __do_cache_alloc(cachep, flags);
3220 local_irq_restore(save_flags);
3221 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3222 prefetchw(objp);
3223
3224 if (unlikely(flags & __GFP_ZERO) && objp)
3225 memset(objp, 0, cachep->object_size);
3226
3227 slab_post_alloc_hook(cachep, flags, 1, &objp);
3228 return objp;
3229 }
3230
3231 /*
3232 * Caller needs to acquire correct kmem_cache_node's list_lock
3233 * @list: List of detached free slabs should be freed by caller
3234 */
3235 static void free_block(struct kmem_cache *cachep, void **objpp,
3236 int nr_objects, int node, struct list_head *list)
3237 {
3238 int i;
3239 struct kmem_cache_node *n = get_node(cachep, node);
3240
3241 for (i = 0; i < nr_objects; i++) {
3242 void *objp;
3243 struct page *page;
3244
3245 objp = objpp[i];
3246
3247 page = virt_to_head_page(objp);
3248 list_del(&page->lru);
3249 check_spinlock_acquired_node(cachep, node);
3250 slab_put_obj(cachep, page, objp);
3251 STATS_DEC_ACTIVE(cachep);
3252 n->free_objects++;
3253
3254 /* fixup slab chains */
3255 if (page->active == 0) {
3256 if (n->free_objects > n->free_limit) {
3257 n->free_objects -= cachep->num;
3258 list_add_tail(&page->lru, list);
3259 } else {
3260 list_add(&page->lru, &n->slabs_free);
3261 }
3262 } else {
3263 /* Unconditionally move a slab to the end of the
3264 * partial list on free - maximum time for the
3265 * other objects to be freed, too.
3266 */
3267 list_add_tail(&page->lru, &n->slabs_partial);
3268 }
3269 }
3270 }
3271
3272 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3273 {
3274 int batchcount;
3275 struct kmem_cache_node *n;
3276 int node = numa_mem_id();
3277 LIST_HEAD(list);
3278
3279 batchcount = ac->batchcount;
3280
3281 check_irq_off();
3282 n = get_node(cachep, node);
3283 spin_lock(&n->list_lock);
3284 if (n->shared) {
3285 struct array_cache *shared_array = n->shared;
3286 int max = shared_array->limit - shared_array->avail;
3287 if (max) {
3288 if (batchcount > max)
3289 batchcount = max;
3290 memcpy(&(shared_array->entry[shared_array->avail]),
3291 ac->entry, sizeof(void *) * batchcount);
3292 shared_array->avail += batchcount;
3293 goto free_done;
3294 }
3295 }
3296
3297 free_block(cachep, ac->entry, batchcount, node, &list);
3298 free_done:
3299 #if STATS
3300 {
3301 int i = 0;
3302 struct page *page;
3303
3304 list_for_each_entry(page, &n->slabs_free, lru) {
3305 BUG_ON(page->active);
3306
3307 i++;
3308 }
3309 STATS_SET_FREEABLE(cachep, i);
3310 }
3311 #endif
3312 spin_unlock(&n->list_lock);
3313 slabs_destroy(cachep, &list);
3314 ac->avail -= batchcount;
3315 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3316 }
3317
3318 /*
3319 * Release an obj back to its cache. If the obj has a constructed state, it must
3320 * be in this state _before_ it is released. Called with disabled ints.
3321 */
3322 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3323 unsigned long caller)
3324 {
3325 struct array_cache *ac = cpu_cache_get(cachep);
3326
3327 check_irq_off();
3328 kmemleak_free_recursive(objp, cachep->flags);
3329 objp = cache_free_debugcheck(cachep, objp, caller);
3330
3331 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3332
3333 /*
3334 * Skip calling cache_free_alien() when the platform is not numa.
3335 * This will avoid cache misses that happen while accessing slabp (which
3336 * is per page memory reference) to get nodeid. Instead use a global
3337 * variable to skip the call, which is mostly likely to be present in
3338 * the cache.
3339 */
3340 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3341 return;
3342
3343 if (ac->avail < ac->limit) {
3344 STATS_INC_FREEHIT(cachep);
3345 } else {
3346 STATS_INC_FREEMISS(cachep);
3347 cache_flusharray(cachep, ac);
3348 }
3349
3350 if (sk_memalloc_socks()) {
3351 struct page *page = virt_to_head_page(objp);
3352
3353 if (unlikely(PageSlabPfmemalloc(page))) {
3354 cache_free_pfmemalloc(cachep, page, objp);
3355 return;
3356 }
3357 }
3358
3359 ac->entry[ac->avail++] = objp;
3360 }
3361
3362 /**
3363 * kmem_cache_alloc - Allocate an object
3364 * @cachep: The cache to allocate from.
3365 * @flags: See kmalloc().
3366 *
3367 * Allocate an object from this cache. The flags are only relevant
3368 * if the cache has no available objects.
3369 */
3370 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3371 {
3372 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3373
3374 trace_kmem_cache_alloc(_RET_IP_, ret,
3375 cachep->object_size, cachep->size, flags);
3376
3377 return ret;
3378 }
3379 EXPORT_SYMBOL(kmem_cache_alloc);
3380
3381 static __always_inline void
3382 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3383 size_t size, void **p, unsigned long caller)
3384 {
3385 size_t i;
3386
3387 for (i = 0; i < size; i++)
3388 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3389 }
3390
3391 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3392 void **p)
3393 {
3394 size_t i;
3395
3396 s = slab_pre_alloc_hook(s, flags);
3397 if (!s)
3398 return 0;
3399
3400 cache_alloc_debugcheck_before(s, flags);
3401
3402 local_irq_disable();
3403 for (i = 0; i < size; i++) {
3404 void *objp = __do_cache_alloc(s, flags);
3405
3406 if (unlikely(!objp))
3407 goto error;
3408 p[i] = objp;
3409 }
3410 local_irq_enable();
3411
3412 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3413
3414 /* Clear memory outside IRQ disabled section */
3415 if (unlikely(flags & __GFP_ZERO))
3416 for (i = 0; i < size; i++)
3417 memset(p[i], 0, s->object_size);
3418
3419 slab_post_alloc_hook(s, flags, size, p);
3420 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3421 return size;
3422 error:
3423 local_irq_enable();
3424 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3425 slab_post_alloc_hook(s, flags, i, p);
3426 __kmem_cache_free_bulk(s, i, p);
3427 return 0;
3428 }
3429 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3430
3431 #ifdef CONFIG_TRACING
3432 void *
3433 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3434 {
3435 void *ret;
3436
3437 ret = slab_alloc(cachep, flags, _RET_IP_);
3438
3439 trace_kmalloc(_RET_IP_, ret,
3440 size, cachep->size, flags);
3441 return ret;
3442 }
3443 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3444 #endif
3445
3446 #ifdef CONFIG_NUMA
3447 /**
3448 * kmem_cache_alloc_node - Allocate an object on the specified node
3449 * @cachep: The cache to allocate from.
3450 * @flags: See kmalloc().
3451 * @nodeid: node number of the target node.
3452 *
3453 * Identical to kmem_cache_alloc but it will allocate memory on the given
3454 * node, which can improve the performance for cpu bound structures.
3455 *
3456 * Fallback to other node is possible if __GFP_THISNODE is not set.
3457 */
3458 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3459 {
3460 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3461
3462 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3463 cachep->object_size, cachep->size,
3464 flags, nodeid);
3465
3466 return ret;
3467 }
3468 EXPORT_SYMBOL(kmem_cache_alloc_node);
3469
3470 #ifdef CONFIG_TRACING
3471 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3472 gfp_t flags,
3473 int nodeid,
3474 size_t size)
3475 {
3476 void *ret;
3477
3478 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3479
3480 trace_kmalloc_node(_RET_IP_, ret,
3481 size, cachep->size,
3482 flags, nodeid);
3483 return ret;
3484 }
3485 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3486 #endif
3487
3488 static __always_inline void *
3489 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3490 {
3491 struct kmem_cache *cachep;
3492
3493 cachep = kmalloc_slab(size, flags);
3494 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3495 return cachep;
3496 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3497 }
3498
3499 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3500 {
3501 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3502 }
3503 EXPORT_SYMBOL(__kmalloc_node);
3504
3505 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3506 int node, unsigned long caller)
3507 {
3508 return __do_kmalloc_node(size, flags, node, caller);
3509 }
3510 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3511 #endif /* CONFIG_NUMA */
3512
3513 /**
3514 * __do_kmalloc - allocate memory
3515 * @size: how many bytes of memory are required.
3516 * @flags: the type of memory to allocate (see kmalloc).
3517 * @caller: function caller for debug tracking of the caller
3518 */
3519 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3520 unsigned long caller)
3521 {
3522 struct kmem_cache *cachep;
3523 void *ret;
3524
3525 cachep = kmalloc_slab(size, flags);
3526 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3527 return cachep;
3528 ret = slab_alloc(cachep, flags, caller);
3529
3530 trace_kmalloc(caller, ret,
3531 size, cachep->size, flags);
3532
3533 return ret;
3534 }
3535
3536 void *__kmalloc(size_t size, gfp_t flags)
3537 {
3538 return __do_kmalloc(size, flags, _RET_IP_);
3539 }
3540 EXPORT_SYMBOL(__kmalloc);
3541
3542 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3543 {
3544 return __do_kmalloc(size, flags, caller);
3545 }
3546 EXPORT_SYMBOL(__kmalloc_track_caller);
3547
3548 /**
3549 * kmem_cache_free - Deallocate an object
3550 * @cachep: The cache the allocation was from.
3551 * @objp: The previously allocated object.
3552 *
3553 * Free an object which was previously allocated from this
3554 * cache.
3555 */
3556 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3557 {
3558 unsigned long flags;
3559 cachep = cache_from_obj(cachep, objp);
3560 if (!cachep)
3561 return;
3562
3563 local_irq_save(flags);
3564 debug_check_no_locks_freed(objp, cachep->object_size);
3565 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3566 debug_check_no_obj_freed(objp, cachep->object_size);
3567 __cache_free(cachep, objp, _RET_IP_);
3568 local_irq_restore(flags);
3569
3570 trace_kmem_cache_free(_RET_IP_, objp);
3571 }
3572 EXPORT_SYMBOL(kmem_cache_free);
3573
3574 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3575 {
3576 struct kmem_cache *s;
3577 size_t i;
3578
3579 local_irq_disable();
3580 for (i = 0; i < size; i++) {
3581 void *objp = p[i];
3582
3583 if (!orig_s) /* called via kfree_bulk */
3584 s = virt_to_cache(objp);
3585 else
3586 s = cache_from_obj(orig_s, objp);
3587
3588 debug_check_no_locks_freed(objp, s->object_size);
3589 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3590 debug_check_no_obj_freed(objp, s->object_size);
3591
3592 __cache_free(s, objp, _RET_IP_);
3593 }
3594 local_irq_enable();
3595
3596 /* FIXME: add tracing */
3597 }
3598 EXPORT_SYMBOL(kmem_cache_free_bulk);
3599
3600 /**
3601 * kfree - free previously allocated memory
3602 * @objp: pointer returned by kmalloc.
3603 *
3604 * If @objp is NULL, no operation is performed.
3605 *
3606 * Don't free memory not originally allocated by kmalloc()
3607 * or you will run into trouble.
3608 */
3609 void kfree(const void *objp)
3610 {
3611 struct kmem_cache *c;
3612 unsigned long flags;
3613
3614 trace_kfree(_RET_IP_, objp);
3615
3616 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3617 return;
3618 local_irq_save(flags);
3619 kfree_debugcheck(objp);
3620 c = virt_to_cache(objp);
3621 debug_check_no_locks_freed(objp, c->object_size);
3622
3623 debug_check_no_obj_freed(objp, c->object_size);
3624 __cache_free(c, (void *)objp, _RET_IP_);
3625 local_irq_restore(flags);
3626 }
3627 EXPORT_SYMBOL(kfree);
3628
3629 /*
3630 * This initializes kmem_cache_node or resizes various caches for all nodes.
3631 */
3632 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3633 {
3634 int node;
3635 struct kmem_cache_node *n;
3636 struct array_cache *new_shared;
3637 struct alien_cache **new_alien = NULL;
3638
3639 for_each_online_node(node) {
3640
3641 if (use_alien_caches) {
3642 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3643 if (!new_alien)
3644 goto fail;
3645 }
3646
3647 new_shared = NULL;
3648 if (cachep->shared) {
3649 new_shared = alloc_arraycache(node,
3650 cachep->shared*cachep->batchcount,
3651 0xbaadf00d, gfp);
3652 if (!new_shared) {
3653 free_alien_cache(new_alien);
3654 goto fail;
3655 }
3656 }
3657
3658 n = get_node(cachep, node);
3659 if (n) {
3660 struct array_cache *shared = n->shared;
3661 LIST_HEAD(list);
3662
3663 spin_lock_irq(&n->list_lock);
3664
3665 if (shared)
3666 free_block(cachep, shared->entry,
3667 shared->avail, node, &list);
3668
3669 n->shared = new_shared;
3670 if (!n->alien) {
3671 n->alien = new_alien;
3672 new_alien = NULL;
3673 }
3674 n->free_limit = (1 + nr_cpus_node(node)) *
3675 cachep->batchcount + cachep->num;
3676 spin_unlock_irq(&n->list_lock);
3677 slabs_destroy(cachep, &list);
3678 kfree(shared);
3679 free_alien_cache(new_alien);
3680 continue;
3681 }
3682 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3683 if (!n) {
3684 free_alien_cache(new_alien);
3685 kfree(new_shared);
3686 goto fail;
3687 }
3688
3689 kmem_cache_node_init(n);
3690 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3691 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3692 n->shared = new_shared;
3693 n->alien = new_alien;
3694 n->free_limit = (1 + nr_cpus_node(node)) *
3695 cachep->batchcount + cachep->num;
3696 cachep->node[node] = n;
3697 }
3698 return 0;
3699
3700 fail:
3701 if (!cachep->list.next) {
3702 /* Cache is not active yet. Roll back what we did */
3703 node--;
3704 while (node >= 0) {
3705 n = get_node(cachep, node);
3706 if (n) {
3707 kfree(n->shared);
3708 free_alien_cache(n->alien);
3709 kfree(n);
3710 cachep->node[node] = NULL;
3711 }
3712 node--;
3713 }
3714 }
3715 return -ENOMEM;
3716 }
3717
3718 /* Always called with the slab_mutex held */
3719 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3720 int batchcount, int shared, gfp_t gfp)
3721 {
3722 struct array_cache __percpu *cpu_cache, *prev;
3723 int cpu;
3724
3725 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3726 if (!cpu_cache)
3727 return -ENOMEM;
3728
3729 prev = cachep->cpu_cache;
3730 cachep->cpu_cache = cpu_cache;
3731 kick_all_cpus_sync();
3732
3733 check_irq_on();
3734 cachep->batchcount = batchcount;
3735 cachep->limit = limit;
3736 cachep->shared = shared;
3737
3738 if (!prev)
3739 goto alloc_node;
3740
3741 for_each_online_cpu(cpu) {
3742 LIST_HEAD(list);
3743 int node;
3744 struct kmem_cache_node *n;
3745 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3746
3747 node = cpu_to_mem(cpu);
3748 n = get_node(cachep, node);
3749 spin_lock_irq(&n->list_lock);
3750 free_block(cachep, ac->entry, ac->avail, node, &list);
3751 spin_unlock_irq(&n->list_lock);
3752 slabs_destroy(cachep, &list);
3753 }
3754 free_percpu(prev);
3755
3756 alloc_node:
3757 return alloc_kmem_cache_node(cachep, gfp);
3758 }
3759
3760 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3761 int batchcount, int shared, gfp_t gfp)
3762 {
3763 int ret;
3764 struct kmem_cache *c;
3765
3766 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3767
3768 if (slab_state < FULL)
3769 return ret;
3770
3771 if ((ret < 0) || !is_root_cache(cachep))
3772 return ret;
3773
3774 lockdep_assert_held(&slab_mutex);
3775 for_each_memcg_cache(c, cachep) {
3776 /* return value determined by the root cache only */
3777 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3778 }
3779
3780 return ret;
3781 }
3782
3783 /* Called with slab_mutex held always */
3784 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3785 {
3786 int err;
3787 int limit = 0;
3788 int shared = 0;
3789 int batchcount = 0;
3790
3791 if (!is_root_cache(cachep)) {
3792 struct kmem_cache *root = memcg_root_cache(cachep);
3793 limit = root->limit;
3794 shared = root->shared;
3795 batchcount = root->batchcount;
3796 }
3797
3798 if (limit && shared && batchcount)
3799 goto skip_setup;
3800 /*
3801 * The head array serves three purposes:
3802 * - create a LIFO ordering, i.e. return objects that are cache-warm
3803 * - reduce the number of spinlock operations.
3804 * - reduce the number of linked list operations on the slab and
3805 * bufctl chains: array operations are cheaper.
3806 * The numbers are guessed, we should auto-tune as described by
3807 * Bonwick.
3808 */
3809 if (cachep->size > 131072)
3810 limit = 1;
3811 else if (cachep->size > PAGE_SIZE)
3812 limit = 8;
3813 else if (cachep->size > 1024)
3814 limit = 24;
3815 else if (cachep->size > 256)
3816 limit = 54;
3817 else
3818 limit = 120;
3819
3820 /*
3821 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3822 * allocation behaviour: Most allocs on one cpu, most free operations
3823 * on another cpu. For these cases, an efficient object passing between
3824 * cpus is necessary. This is provided by a shared array. The array
3825 * replaces Bonwick's magazine layer.
3826 * On uniprocessor, it's functionally equivalent (but less efficient)
3827 * to a larger limit. Thus disabled by default.
3828 */
3829 shared = 0;
3830 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3831 shared = 8;
3832
3833 #if DEBUG
3834 /*
3835 * With debugging enabled, large batchcount lead to excessively long
3836 * periods with disabled local interrupts. Limit the batchcount
3837 */
3838 if (limit > 32)
3839 limit = 32;
3840 #endif
3841 batchcount = (limit + 1) / 2;
3842 skip_setup:
3843 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3844 if (err)
3845 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3846 cachep->name, -err);
3847 return err;
3848 }
3849
3850 /*
3851 * Drain an array if it contains any elements taking the node lock only if
3852 * necessary. Note that the node listlock also protects the array_cache
3853 * if drain_array() is used on the shared array.
3854 */
3855 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3856 struct array_cache *ac, int force, int node)
3857 {
3858 LIST_HEAD(list);
3859 int tofree;
3860
3861 if (!ac || !ac->avail)
3862 return;
3863 if (ac->touched && !force) {
3864 ac->touched = 0;
3865 } else {
3866 spin_lock_irq(&n->list_lock);
3867 if (ac->avail) {
3868 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3869 if (tofree > ac->avail)
3870 tofree = (ac->avail + 1) / 2;
3871 free_block(cachep, ac->entry, tofree, node, &list);
3872 ac->avail -= tofree;
3873 memmove(ac->entry, &(ac->entry[tofree]),
3874 sizeof(void *) * ac->avail);
3875 }
3876 spin_unlock_irq(&n->list_lock);
3877 slabs_destroy(cachep, &list);
3878 }
3879 }
3880
3881 /**
3882 * cache_reap - Reclaim memory from caches.
3883 * @w: work descriptor
3884 *
3885 * Called from workqueue/eventd every few seconds.
3886 * Purpose:
3887 * - clear the per-cpu caches for this CPU.
3888 * - return freeable pages to the main free memory pool.
3889 *
3890 * If we cannot acquire the cache chain mutex then just give up - we'll try
3891 * again on the next iteration.
3892 */
3893 static void cache_reap(struct work_struct *w)
3894 {
3895 struct kmem_cache *searchp;
3896 struct kmem_cache_node *n;
3897 int node = numa_mem_id();
3898 struct delayed_work *work = to_delayed_work(w);
3899
3900 if (!mutex_trylock(&slab_mutex))
3901 /* Give up. Setup the next iteration. */
3902 goto out;
3903
3904 list_for_each_entry(searchp, &slab_caches, list) {
3905 check_irq_on();
3906
3907 /*
3908 * We only take the node lock if absolutely necessary and we
3909 * have established with reasonable certainty that
3910 * we can do some work if the lock was obtained.
3911 */
3912 n = get_node(searchp, node);
3913
3914 reap_alien(searchp, n);
3915
3916 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3917
3918 /*
3919 * These are racy checks but it does not matter
3920 * if we skip one check or scan twice.
3921 */
3922 if (time_after(n->next_reap, jiffies))
3923 goto next;
3924
3925 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3926
3927 drain_array(searchp, n, n->shared, 0, node);
3928
3929 if (n->free_touched)
3930 n->free_touched = 0;
3931 else {
3932 int freed;
3933
3934 freed = drain_freelist(searchp, n, (n->free_limit +
3935 5 * searchp->num - 1) / (5 * searchp->num));
3936 STATS_ADD_REAPED(searchp, freed);
3937 }
3938 next:
3939 cond_resched();
3940 }
3941 check_irq_on();
3942 mutex_unlock(&slab_mutex);
3943 next_reap_node();
3944 out:
3945 /* Set up the next iteration */
3946 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3947 }
3948
3949 #ifdef CONFIG_SLABINFO
3950 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3951 {
3952 struct page *page;
3953 unsigned long active_objs;
3954 unsigned long num_objs;
3955 unsigned long active_slabs = 0;
3956 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3957 const char *name;
3958 char *error = NULL;
3959 int node;
3960 struct kmem_cache_node *n;
3961
3962 active_objs = 0;
3963 num_slabs = 0;
3964 for_each_kmem_cache_node(cachep, node, n) {
3965
3966 check_irq_on();
3967 spin_lock_irq(&n->list_lock);
3968
3969 list_for_each_entry(page, &n->slabs_full, lru) {
3970 if (page->active != cachep->num && !error)
3971 error = "slabs_full accounting error";
3972 active_objs += cachep->num;
3973 active_slabs++;
3974 }
3975 list_for_each_entry(page, &n->slabs_partial, lru) {
3976 if (page->active == cachep->num && !error)
3977 error = "slabs_partial accounting error";
3978 if (!page->active && !error)
3979 error = "slabs_partial accounting error";
3980 active_objs += page->active;
3981 active_slabs++;
3982 }
3983 list_for_each_entry(page, &n->slabs_free, lru) {
3984 if (page->active && !error)
3985 error = "slabs_free accounting error";
3986 num_slabs++;
3987 }
3988 free_objects += n->free_objects;
3989 if (n->shared)
3990 shared_avail += n->shared->avail;
3991
3992 spin_unlock_irq(&n->list_lock);
3993 }
3994 num_slabs += active_slabs;
3995 num_objs = num_slabs * cachep->num;
3996 if (num_objs - active_objs != free_objects && !error)
3997 error = "free_objects accounting error";
3998
3999 name = cachep->name;
4000 if (error)
4001 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4002
4003 sinfo->active_objs = active_objs;
4004 sinfo->num_objs = num_objs;
4005 sinfo->active_slabs = active_slabs;
4006 sinfo->num_slabs = num_slabs;
4007 sinfo->shared_avail = shared_avail;
4008 sinfo->limit = cachep->limit;
4009 sinfo->batchcount = cachep->batchcount;
4010 sinfo->shared = cachep->shared;
4011 sinfo->objects_per_slab = cachep->num;
4012 sinfo->cache_order = cachep->gfporder;
4013 }
4014
4015 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4016 {
4017 #if STATS
4018 { /* node stats */
4019 unsigned long high = cachep->high_mark;
4020 unsigned long allocs = cachep->num_allocations;
4021 unsigned long grown = cachep->grown;
4022 unsigned long reaped = cachep->reaped;
4023 unsigned long errors = cachep->errors;
4024 unsigned long max_freeable = cachep->max_freeable;
4025 unsigned long node_allocs = cachep->node_allocs;
4026 unsigned long node_frees = cachep->node_frees;
4027 unsigned long overflows = cachep->node_overflow;
4028
4029 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4030 "%4lu %4lu %4lu %4lu %4lu",
4031 allocs, high, grown,
4032 reaped, errors, max_freeable, node_allocs,
4033 node_frees, overflows);
4034 }
4035 /* cpu stats */
4036 {
4037 unsigned long allochit = atomic_read(&cachep->allochit);
4038 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4039 unsigned long freehit = atomic_read(&cachep->freehit);
4040 unsigned long freemiss = atomic_read(&cachep->freemiss);
4041
4042 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4043 allochit, allocmiss, freehit, freemiss);
4044 }
4045 #endif
4046 }
4047
4048 #define MAX_SLABINFO_WRITE 128
4049 /**
4050 * slabinfo_write - Tuning for the slab allocator
4051 * @file: unused
4052 * @buffer: user buffer
4053 * @count: data length
4054 * @ppos: unused
4055 */
4056 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4057 size_t count, loff_t *ppos)
4058 {
4059 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4060 int limit, batchcount, shared, res;
4061 struct kmem_cache *cachep;
4062
4063 if (count > MAX_SLABINFO_WRITE)
4064 return -EINVAL;
4065 if (copy_from_user(&kbuf, buffer, count))
4066 return -EFAULT;
4067 kbuf[MAX_SLABINFO_WRITE] = '\0';
4068
4069 tmp = strchr(kbuf, ' ');
4070 if (!tmp)
4071 return -EINVAL;
4072 *tmp = '\0';
4073 tmp++;
4074 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4075 return -EINVAL;
4076
4077 /* Find the cache in the chain of caches. */
4078 mutex_lock(&slab_mutex);
4079 res = -EINVAL;
4080 list_for_each_entry(cachep, &slab_caches, list) {
4081 if (!strcmp(cachep->name, kbuf)) {
4082 if (limit < 1 || batchcount < 1 ||
4083 batchcount > limit || shared < 0) {
4084 res = 0;
4085 } else {
4086 res = do_tune_cpucache(cachep, limit,
4087 batchcount, shared,
4088 GFP_KERNEL);
4089 }
4090 break;
4091 }
4092 }
4093 mutex_unlock(&slab_mutex);
4094 if (res >= 0)
4095 res = count;
4096 return res;
4097 }
4098
4099 #ifdef CONFIG_DEBUG_SLAB_LEAK
4100
4101 static inline int add_caller(unsigned long *n, unsigned long v)
4102 {
4103 unsigned long *p;
4104 int l;
4105 if (!v)
4106 return 1;
4107 l = n[1];
4108 p = n + 2;
4109 while (l) {
4110 int i = l/2;
4111 unsigned long *q = p + 2 * i;
4112 if (*q == v) {
4113 q[1]++;
4114 return 1;
4115 }
4116 if (*q > v) {
4117 l = i;
4118 } else {
4119 p = q + 2;
4120 l -= i + 1;
4121 }
4122 }
4123 if (++n[1] == n[0])
4124 return 0;
4125 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4126 p[0] = v;
4127 p[1] = 1;
4128 return 1;
4129 }
4130
4131 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4132 struct page *page)
4133 {
4134 void *p;
4135 int i, j;
4136 unsigned long v;
4137
4138 if (n[0] == n[1])
4139 return;
4140 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4141 bool active = true;
4142
4143 for (j = page->active; j < c->num; j++) {
4144 if (get_free_obj(page, j) == i) {
4145 active = false;
4146 break;
4147 }
4148 }
4149
4150 if (!active)
4151 continue;
4152
4153 /*
4154 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4155 * mapping is established when actual object allocation and
4156 * we could mistakenly access the unmapped object in the cpu
4157 * cache.
4158 */
4159 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4160 continue;
4161
4162 if (!add_caller(n, v))
4163 return;
4164 }
4165 }
4166
4167 static void show_symbol(struct seq_file *m, unsigned long address)
4168 {
4169 #ifdef CONFIG_KALLSYMS
4170 unsigned long offset, size;
4171 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4172
4173 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4174 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4175 if (modname[0])
4176 seq_printf(m, " [%s]", modname);
4177 return;
4178 }
4179 #endif
4180 seq_printf(m, "%p", (void *)address);
4181 }
4182
4183 static int leaks_show(struct seq_file *m, void *p)
4184 {
4185 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4186 struct page *page;
4187 struct kmem_cache_node *n;
4188 const char *name;
4189 unsigned long *x = m->private;
4190 int node;
4191 int i;
4192
4193 if (!(cachep->flags & SLAB_STORE_USER))
4194 return 0;
4195 if (!(cachep->flags & SLAB_RED_ZONE))
4196 return 0;
4197
4198 /*
4199 * Set store_user_clean and start to grab stored user information
4200 * for all objects on this cache. If some alloc/free requests comes
4201 * during the processing, information would be wrong so restart
4202 * whole processing.
4203 */
4204 do {
4205 set_store_user_clean(cachep);
4206 drain_cpu_caches(cachep);
4207
4208 x[1] = 0;
4209
4210 for_each_kmem_cache_node(cachep, node, n) {
4211
4212 check_irq_on();
4213 spin_lock_irq(&n->list_lock);
4214
4215 list_for_each_entry(page, &n->slabs_full, lru)
4216 handle_slab(x, cachep, page);
4217 list_for_each_entry(page, &n->slabs_partial, lru)
4218 handle_slab(x, cachep, page);
4219 spin_unlock_irq(&n->list_lock);
4220 }
4221 } while (!is_store_user_clean(cachep));
4222
4223 name = cachep->name;
4224 if (x[0] == x[1]) {
4225 /* Increase the buffer size */
4226 mutex_unlock(&slab_mutex);
4227 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4228 if (!m->private) {
4229 /* Too bad, we are really out */
4230 m->private = x;
4231 mutex_lock(&slab_mutex);
4232 return -ENOMEM;
4233 }
4234 *(unsigned long *)m->private = x[0] * 2;
4235 kfree(x);
4236 mutex_lock(&slab_mutex);
4237 /* Now make sure this entry will be retried */
4238 m->count = m->size;
4239 return 0;
4240 }
4241 for (i = 0; i < x[1]; i++) {
4242 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4243 show_symbol(m, x[2*i+2]);
4244 seq_putc(m, '\n');
4245 }
4246
4247 return 0;
4248 }
4249
4250 static const struct seq_operations slabstats_op = {
4251 .start = slab_start,
4252 .next = slab_next,
4253 .stop = slab_stop,
4254 .show = leaks_show,
4255 };
4256
4257 static int slabstats_open(struct inode *inode, struct file *file)
4258 {
4259 unsigned long *n;
4260
4261 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4262 if (!n)
4263 return -ENOMEM;
4264
4265 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4266
4267 return 0;
4268 }
4269
4270 static const struct file_operations proc_slabstats_operations = {
4271 .open = slabstats_open,
4272 .read = seq_read,
4273 .llseek = seq_lseek,
4274 .release = seq_release_private,
4275 };
4276 #endif
4277
4278 static int __init slab_proc_init(void)
4279 {
4280 #ifdef CONFIG_DEBUG_SLAB_LEAK
4281 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4282 #endif
4283 return 0;
4284 }
4285 module_init(slab_proc_init);
4286 #endif
4287
4288 /**
4289 * ksize - get the actual amount of memory allocated for a given object
4290 * @objp: Pointer to the object
4291 *
4292 * kmalloc may internally round up allocations and return more memory
4293 * than requested. ksize() can be used to determine the actual amount of
4294 * memory allocated. The caller may use this additional memory, even though
4295 * a smaller amount of memory was initially specified with the kmalloc call.
4296 * The caller must guarantee that objp points to a valid object previously
4297 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4298 * must not be freed during the duration of the call.
4299 */
4300 size_t ksize(const void *objp)
4301 {
4302 BUG_ON(!objp);
4303 if (unlikely(objp == ZERO_SIZE_PTR))
4304 return 0;
4305
4306 return virt_to_cache(objp)->object_size;
4307 }
4308 EXPORT_SYMBOL(ksize);