]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slab.c
Merge tag 'mmc-v4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * struct array_cache
173 *
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183 struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
188 void *entry[]; /*
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
192 */
193 };
194
195 struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198 };
199
200 /*
201 * Need this for bootstrapping a per node allocator.
202 */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
207
208 static int drain_freelist(struct kmem_cache *cache,
209 struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215
216 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 void **list);
218 static inline void fixup_slab_list(struct kmem_cache *cachep,
219 struct kmem_cache_node *n, struct page *page,
220 void **list);
221 static int slab_early_init = 1;
222
223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
224
225 static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 {
227 INIT_LIST_HEAD(&parent->slabs_full);
228 INIT_LIST_HEAD(&parent->slabs_partial);
229 INIT_LIST_HEAD(&parent->slabs_free);
230 parent->total_slabs = 0;
231 parent->free_slabs = 0;
232 parent->shared = NULL;
233 parent->alien = NULL;
234 parent->colour_next = 0;
235 spin_lock_init(&parent->list_lock);
236 parent->free_objects = 0;
237 parent->free_touched = 0;
238 }
239
240 #define MAKE_LIST(cachep, listp, slab, nodeid) \
241 do { \
242 INIT_LIST_HEAD(listp); \
243 list_splice(&get_node(cachep, nodeid)->slab, listp); \
244 } while (0)
245
246 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
247 do { \
248 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
249 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
251 } while (0)
252
253 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
254 #define CFLGS_OFF_SLAB (0x80000000UL)
255 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
256 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
257
258 #define BATCHREFILL_LIMIT 16
259 /*
260 * Optimization question: fewer reaps means less probability for unnessary
261 * cpucache drain/refill cycles.
262 *
263 * OTOH the cpuarrays can contain lots of objects,
264 * which could lock up otherwise freeable slabs.
265 */
266 #define REAPTIMEOUT_AC (2*HZ)
267 #define REAPTIMEOUT_NODE (4*HZ)
268
269 #if STATS
270 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
271 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
272 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
273 #define STATS_INC_GROWN(x) ((x)->grown++)
274 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
275 #define STATS_SET_HIGH(x) \
276 do { \
277 if ((x)->num_active > (x)->high_mark) \
278 (x)->high_mark = (x)->num_active; \
279 } while (0)
280 #define STATS_INC_ERR(x) ((x)->errors++)
281 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
282 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
283 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
284 #define STATS_SET_FREEABLE(x, i) \
285 do { \
286 if ((x)->max_freeable < i) \
287 (x)->max_freeable = i; \
288 } while (0)
289 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
290 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
291 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
292 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
293 #else
294 #define STATS_INC_ACTIVE(x) do { } while (0)
295 #define STATS_DEC_ACTIVE(x) do { } while (0)
296 #define STATS_INC_ALLOCED(x) do { } while (0)
297 #define STATS_INC_GROWN(x) do { } while (0)
298 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
299 #define STATS_SET_HIGH(x) do { } while (0)
300 #define STATS_INC_ERR(x) do { } while (0)
301 #define STATS_INC_NODEALLOCS(x) do { } while (0)
302 #define STATS_INC_NODEFREES(x) do { } while (0)
303 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
304 #define STATS_SET_FREEABLE(x, i) do { } while (0)
305 #define STATS_INC_ALLOCHIT(x) do { } while (0)
306 #define STATS_INC_ALLOCMISS(x) do { } while (0)
307 #define STATS_INC_FREEHIT(x) do { } while (0)
308 #define STATS_INC_FREEMISS(x) do { } while (0)
309 #endif
310
311 #if DEBUG
312
313 /*
314 * memory layout of objects:
315 * 0 : objp
316 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
317 * the end of an object is aligned with the end of the real
318 * allocation. Catches writes behind the end of the allocation.
319 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
320 * redzone word.
321 * cachep->obj_offset: The real object.
322 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
323 * cachep->size - 1* BYTES_PER_WORD: last caller address
324 * [BYTES_PER_WORD long]
325 */
326 static int obj_offset(struct kmem_cache *cachep)
327 {
328 return cachep->obj_offset;
329 }
330
331 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
332 {
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 return (unsigned long long*) (objp + obj_offset(cachep) -
335 sizeof(unsigned long long));
336 }
337
338 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
339 {
340 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
341 if (cachep->flags & SLAB_STORE_USER)
342 return (unsigned long long *)(objp + cachep->size -
343 sizeof(unsigned long long) -
344 REDZONE_ALIGN);
345 return (unsigned long long *) (objp + cachep->size -
346 sizeof(unsigned long long));
347 }
348
349 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
350 {
351 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
352 return (void **)(objp + cachep->size - BYTES_PER_WORD);
353 }
354
355 #else
356
357 #define obj_offset(x) 0
358 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
359 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
361
362 #endif
363
364 #ifdef CONFIG_DEBUG_SLAB_LEAK
365
366 static inline bool is_store_user_clean(struct kmem_cache *cachep)
367 {
368 return atomic_read(&cachep->store_user_clean) == 1;
369 }
370
371 static inline void set_store_user_clean(struct kmem_cache *cachep)
372 {
373 atomic_set(&cachep->store_user_clean, 1);
374 }
375
376 static inline void set_store_user_dirty(struct kmem_cache *cachep)
377 {
378 if (is_store_user_clean(cachep))
379 atomic_set(&cachep->store_user_clean, 0);
380 }
381
382 #else
383 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
384
385 #endif
386
387 /*
388 * Do not go above this order unless 0 objects fit into the slab or
389 * overridden on the command line.
390 */
391 #define SLAB_MAX_ORDER_HI 1
392 #define SLAB_MAX_ORDER_LO 0
393 static int slab_max_order = SLAB_MAX_ORDER_LO;
394 static bool slab_max_order_set __initdata;
395
396 static inline struct kmem_cache *virt_to_cache(const void *obj)
397 {
398 struct page *page = virt_to_head_page(obj);
399 return page->slab_cache;
400 }
401
402 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
403 unsigned int idx)
404 {
405 return page->s_mem + cache->size * idx;
406 }
407
408 /*
409 * We want to avoid an expensive divide : (offset / cache->size)
410 * Using the fact that size is a constant for a particular cache,
411 * we can replace (offset / cache->size) by
412 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
413 */
414 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
415 const struct page *page, void *obj)
416 {
417 u32 offset = (obj - page->s_mem);
418 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
419 }
420
421 #define BOOT_CPUCACHE_ENTRIES 1
422 /* internal cache of cache description objs */
423 static struct kmem_cache kmem_cache_boot = {
424 .batchcount = 1,
425 .limit = BOOT_CPUCACHE_ENTRIES,
426 .shared = 1,
427 .size = sizeof(struct kmem_cache),
428 .name = "kmem_cache",
429 };
430
431 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
432
433 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
434 {
435 return this_cpu_ptr(cachep->cpu_cache);
436 }
437
438 /*
439 * Calculate the number of objects and left-over bytes for a given buffer size.
440 */
441 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
442 unsigned long flags, size_t *left_over)
443 {
444 unsigned int num;
445 size_t slab_size = PAGE_SIZE << gfporder;
446
447 /*
448 * The slab management structure can be either off the slab or
449 * on it. For the latter case, the memory allocated for a
450 * slab is used for:
451 *
452 * - @buffer_size bytes for each object
453 * - One freelist_idx_t for each object
454 *
455 * We don't need to consider alignment of freelist because
456 * freelist will be at the end of slab page. The objects will be
457 * at the correct alignment.
458 *
459 * If the slab management structure is off the slab, then the
460 * alignment will already be calculated into the size. Because
461 * the slabs are all pages aligned, the objects will be at the
462 * correct alignment when allocated.
463 */
464 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
465 num = slab_size / buffer_size;
466 *left_over = slab_size % buffer_size;
467 } else {
468 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
469 *left_over = slab_size %
470 (buffer_size + sizeof(freelist_idx_t));
471 }
472
473 return num;
474 }
475
476 #if DEBUG
477 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
478
479 static void __slab_error(const char *function, struct kmem_cache *cachep,
480 char *msg)
481 {
482 pr_err("slab error in %s(): cache `%s': %s\n",
483 function, cachep->name, msg);
484 dump_stack();
485 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
486 }
487 #endif
488
489 /*
490 * By default on NUMA we use alien caches to stage the freeing of
491 * objects allocated from other nodes. This causes massive memory
492 * inefficiencies when using fake NUMA setup to split memory into a
493 * large number of small nodes, so it can be disabled on the command
494 * line
495 */
496
497 static int use_alien_caches __read_mostly = 1;
498 static int __init noaliencache_setup(char *s)
499 {
500 use_alien_caches = 0;
501 return 1;
502 }
503 __setup("noaliencache", noaliencache_setup);
504
505 static int __init slab_max_order_setup(char *str)
506 {
507 get_option(&str, &slab_max_order);
508 slab_max_order = slab_max_order < 0 ? 0 :
509 min(slab_max_order, MAX_ORDER - 1);
510 slab_max_order_set = true;
511
512 return 1;
513 }
514 __setup("slab_max_order=", slab_max_order_setup);
515
516 #ifdef CONFIG_NUMA
517 /*
518 * Special reaping functions for NUMA systems called from cache_reap().
519 * These take care of doing round robin flushing of alien caches (containing
520 * objects freed on different nodes from which they were allocated) and the
521 * flushing of remote pcps by calling drain_node_pages.
522 */
523 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
524
525 static void init_reap_node(int cpu)
526 {
527 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
528 node_online_map);
529 }
530
531 static void next_reap_node(void)
532 {
533 int node = __this_cpu_read(slab_reap_node);
534
535 node = next_node_in(node, node_online_map);
536 __this_cpu_write(slab_reap_node, node);
537 }
538
539 #else
540 #define init_reap_node(cpu) do { } while (0)
541 #define next_reap_node(void) do { } while (0)
542 #endif
543
544 /*
545 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
546 * via the workqueue/eventd.
547 * Add the CPU number into the expiration time to minimize the possibility of
548 * the CPUs getting into lockstep and contending for the global cache chain
549 * lock.
550 */
551 static void start_cpu_timer(int cpu)
552 {
553 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
554
555 /*
556 * When this gets called from do_initcalls via cpucache_init(),
557 * init_workqueues() has already run, so keventd will be setup
558 * at that time.
559 */
560 if (keventd_up() && reap_work->work.func == NULL) {
561 init_reap_node(cpu);
562 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
563 schedule_delayed_work_on(cpu, reap_work,
564 __round_jiffies_relative(HZ, cpu));
565 }
566 }
567
568 static void init_arraycache(struct array_cache *ac, int limit, int batch)
569 {
570 /*
571 * The array_cache structures contain pointers to free object.
572 * However, when such objects are allocated or transferred to another
573 * cache the pointers are not cleared and they could be counted as
574 * valid references during a kmemleak scan. Therefore, kmemleak must
575 * not scan such objects.
576 */
577 kmemleak_no_scan(ac);
578 if (ac) {
579 ac->avail = 0;
580 ac->limit = limit;
581 ac->batchcount = batch;
582 ac->touched = 0;
583 }
584 }
585
586 static struct array_cache *alloc_arraycache(int node, int entries,
587 int batchcount, gfp_t gfp)
588 {
589 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
590 struct array_cache *ac = NULL;
591
592 ac = kmalloc_node(memsize, gfp, node);
593 init_arraycache(ac, entries, batchcount);
594 return ac;
595 }
596
597 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
598 struct page *page, void *objp)
599 {
600 struct kmem_cache_node *n;
601 int page_node;
602 LIST_HEAD(list);
603
604 page_node = page_to_nid(page);
605 n = get_node(cachep, page_node);
606
607 spin_lock(&n->list_lock);
608 free_block(cachep, &objp, 1, page_node, &list);
609 spin_unlock(&n->list_lock);
610
611 slabs_destroy(cachep, &list);
612 }
613
614 /*
615 * Transfer objects in one arraycache to another.
616 * Locking must be handled by the caller.
617 *
618 * Return the number of entries transferred.
619 */
620 static int transfer_objects(struct array_cache *to,
621 struct array_cache *from, unsigned int max)
622 {
623 /* Figure out how many entries to transfer */
624 int nr = min3(from->avail, max, to->limit - to->avail);
625
626 if (!nr)
627 return 0;
628
629 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
630 sizeof(void *) *nr);
631
632 from->avail -= nr;
633 to->avail += nr;
634 return nr;
635 }
636
637 #ifndef CONFIG_NUMA
638
639 #define drain_alien_cache(cachep, alien) do { } while (0)
640 #define reap_alien(cachep, n) do { } while (0)
641
642 static inline struct alien_cache **alloc_alien_cache(int node,
643 int limit, gfp_t gfp)
644 {
645 return NULL;
646 }
647
648 static inline void free_alien_cache(struct alien_cache **ac_ptr)
649 {
650 }
651
652 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
653 {
654 return 0;
655 }
656
657 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
658 gfp_t flags)
659 {
660 return NULL;
661 }
662
663 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
664 gfp_t flags, int nodeid)
665 {
666 return NULL;
667 }
668
669 static inline gfp_t gfp_exact_node(gfp_t flags)
670 {
671 return flags & ~__GFP_NOFAIL;
672 }
673
674 #else /* CONFIG_NUMA */
675
676 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
677 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
678
679 static struct alien_cache *__alloc_alien_cache(int node, int entries,
680 int batch, gfp_t gfp)
681 {
682 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
683 struct alien_cache *alc = NULL;
684
685 alc = kmalloc_node(memsize, gfp, node);
686 init_arraycache(&alc->ac, entries, batch);
687 spin_lock_init(&alc->lock);
688 return alc;
689 }
690
691 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
692 {
693 struct alien_cache **alc_ptr;
694 size_t memsize = sizeof(void *) * nr_node_ids;
695 int i;
696
697 if (limit > 1)
698 limit = 12;
699 alc_ptr = kzalloc_node(memsize, gfp, node);
700 if (!alc_ptr)
701 return NULL;
702
703 for_each_node(i) {
704 if (i == node || !node_online(i))
705 continue;
706 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
707 if (!alc_ptr[i]) {
708 for (i--; i >= 0; i--)
709 kfree(alc_ptr[i]);
710 kfree(alc_ptr);
711 return NULL;
712 }
713 }
714 return alc_ptr;
715 }
716
717 static void free_alien_cache(struct alien_cache **alc_ptr)
718 {
719 int i;
720
721 if (!alc_ptr)
722 return;
723 for_each_node(i)
724 kfree(alc_ptr[i]);
725 kfree(alc_ptr);
726 }
727
728 static void __drain_alien_cache(struct kmem_cache *cachep,
729 struct array_cache *ac, int node,
730 struct list_head *list)
731 {
732 struct kmem_cache_node *n = get_node(cachep, node);
733
734 if (ac->avail) {
735 spin_lock(&n->list_lock);
736 /*
737 * Stuff objects into the remote nodes shared array first.
738 * That way we could avoid the overhead of putting the objects
739 * into the free lists and getting them back later.
740 */
741 if (n->shared)
742 transfer_objects(n->shared, ac, ac->limit);
743
744 free_block(cachep, ac->entry, ac->avail, node, list);
745 ac->avail = 0;
746 spin_unlock(&n->list_lock);
747 }
748 }
749
750 /*
751 * Called from cache_reap() to regularly drain alien caches round robin.
752 */
753 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
754 {
755 int node = __this_cpu_read(slab_reap_node);
756
757 if (n->alien) {
758 struct alien_cache *alc = n->alien[node];
759 struct array_cache *ac;
760
761 if (alc) {
762 ac = &alc->ac;
763 if (ac->avail && spin_trylock_irq(&alc->lock)) {
764 LIST_HEAD(list);
765
766 __drain_alien_cache(cachep, ac, node, &list);
767 spin_unlock_irq(&alc->lock);
768 slabs_destroy(cachep, &list);
769 }
770 }
771 }
772 }
773
774 static void drain_alien_cache(struct kmem_cache *cachep,
775 struct alien_cache **alien)
776 {
777 int i = 0;
778 struct alien_cache *alc;
779 struct array_cache *ac;
780 unsigned long flags;
781
782 for_each_online_node(i) {
783 alc = alien[i];
784 if (alc) {
785 LIST_HEAD(list);
786
787 ac = &alc->ac;
788 spin_lock_irqsave(&alc->lock, flags);
789 __drain_alien_cache(cachep, ac, i, &list);
790 spin_unlock_irqrestore(&alc->lock, flags);
791 slabs_destroy(cachep, &list);
792 }
793 }
794 }
795
796 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
797 int node, int page_node)
798 {
799 struct kmem_cache_node *n;
800 struct alien_cache *alien = NULL;
801 struct array_cache *ac;
802 LIST_HEAD(list);
803
804 n = get_node(cachep, node);
805 STATS_INC_NODEFREES(cachep);
806 if (n->alien && n->alien[page_node]) {
807 alien = n->alien[page_node];
808 ac = &alien->ac;
809 spin_lock(&alien->lock);
810 if (unlikely(ac->avail == ac->limit)) {
811 STATS_INC_ACOVERFLOW(cachep);
812 __drain_alien_cache(cachep, ac, page_node, &list);
813 }
814 ac->entry[ac->avail++] = objp;
815 spin_unlock(&alien->lock);
816 slabs_destroy(cachep, &list);
817 } else {
818 n = get_node(cachep, page_node);
819 spin_lock(&n->list_lock);
820 free_block(cachep, &objp, 1, page_node, &list);
821 spin_unlock(&n->list_lock);
822 slabs_destroy(cachep, &list);
823 }
824 return 1;
825 }
826
827 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
828 {
829 int page_node = page_to_nid(virt_to_page(objp));
830 int node = numa_mem_id();
831 /*
832 * Make sure we are not freeing a object from another node to the array
833 * cache on this cpu.
834 */
835 if (likely(node == page_node))
836 return 0;
837
838 return __cache_free_alien(cachep, objp, node, page_node);
839 }
840
841 /*
842 * Construct gfp mask to allocate from a specific node but do not reclaim or
843 * warn about failures.
844 */
845 static inline gfp_t gfp_exact_node(gfp_t flags)
846 {
847 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
848 }
849 #endif
850
851 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
852 {
853 struct kmem_cache_node *n;
854
855 /*
856 * Set up the kmem_cache_node for cpu before we can
857 * begin anything. Make sure some other cpu on this
858 * node has not already allocated this
859 */
860 n = get_node(cachep, node);
861 if (n) {
862 spin_lock_irq(&n->list_lock);
863 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
864 cachep->num;
865 spin_unlock_irq(&n->list_lock);
866
867 return 0;
868 }
869
870 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
871 if (!n)
872 return -ENOMEM;
873
874 kmem_cache_node_init(n);
875 n->next_reap = jiffies + REAPTIMEOUT_NODE +
876 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
877
878 n->free_limit =
879 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
880
881 /*
882 * The kmem_cache_nodes don't come and go as CPUs
883 * come and go. slab_mutex is sufficient
884 * protection here.
885 */
886 cachep->node[node] = n;
887
888 return 0;
889 }
890
891 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
892 /*
893 * Allocates and initializes node for a node on each slab cache, used for
894 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
895 * will be allocated off-node since memory is not yet online for the new node.
896 * When hotplugging memory or a cpu, existing node are not replaced if
897 * already in use.
898 *
899 * Must hold slab_mutex.
900 */
901 static int init_cache_node_node(int node)
902 {
903 int ret;
904 struct kmem_cache *cachep;
905
906 list_for_each_entry(cachep, &slab_caches, list) {
907 ret = init_cache_node(cachep, node, GFP_KERNEL);
908 if (ret)
909 return ret;
910 }
911
912 return 0;
913 }
914 #endif
915
916 static int setup_kmem_cache_node(struct kmem_cache *cachep,
917 int node, gfp_t gfp, bool force_change)
918 {
919 int ret = -ENOMEM;
920 struct kmem_cache_node *n;
921 struct array_cache *old_shared = NULL;
922 struct array_cache *new_shared = NULL;
923 struct alien_cache **new_alien = NULL;
924 LIST_HEAD(list);
925
926 if (use_alien_caches) {
927 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
928 if (!new_alien)
929 goto fail;
930 }
931
932 if (cachep->shared) {
933 new_shared = alloc_arraycache(node,
934 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
935 if (!new_shared)
936 goto fail;
937 }
938
939 ret = init_cache_node(cachep, node, gfp);
940 if (ret)
941 goto fail;
942
943 n = get_node(cachep, node);
944 spin_lock_irq(&n->list_lock);
945 if (n->shared && force_change) {
946 free_block(cachep, n->shared->entry,
947 n->shared->avail, node, &list);
948 n->shared->avail = 0;
949 }
950
951 if (!n->shared || force_change) {
952 old_shared = n->shared;
953 n->shared = new_shared;
954 new_shared = NULL;
955 }
956
957 if (!n->alien) {
958 n->alien = new_alien;
959 new_alien = NULL;
960 }
961
962 spin_unlock_irq(&n->list_lock);
963 slabs_destroy(cachep, &list);
964
965 /*
966 * To protect lockless access to n->shared during irq disabled context.
967 * If n->shared isn't NULL in irq disabled context, accessing to it is
968 * guaranteed to be valid until irq is re-enabled, because it will be
969 * freed after synchronize_sched().
970 */
971 if (old_shared && force_change)
972 synchronize_sched();
973
974 fail:
975 kfree(old_shared);
976 kfree(new_shared);
977 free_alien_cache(new_alien);
978
979 return ret;
980 }
981
982 #ifdef CONFIG_SMP
983
984 static void cpuup_canceled(long cpu)
985 {
986 struct kmem_cache *cachep;
987 struct kmem_cache_node *n = NULL;
988 int node = cpu_to_mem(cpu);
989 const struct cpumask *mask = cpumask_of_node(node);
990
991 list_for_each_entry(cachep, &slab_caches, list) {
992 struct array_cache *nc;
993 struct array_cache *shared;
994 struct alien_cache **alien;
995 LIST_HEAD(list);
996
997 n = get_node(cachep, node);
998 if (!n)
999 continue;
1000
1001 spin_lock_irq(&n->list_lock);
1002
1003 /* Free limit for this kmem_cache_node */
1004 n->free_limit -= cachep->batchcount;
1005
1006 /* cpu is dead; no one can alloc from it. */
1007 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1008 if (nc) {
1009 free_block(cachep, nc->entry, nc->avail, node, &list);
1010 nc->avail = 0;
1011 }
1012
1013 if (!cpumask_empty(mask)) {
1014 spin_unlock_irq(&n->list_lock);
1015 goto free_slab;
1016 }
1017
1018 shared = n->shared;
1019 if (shared) {
1020 free_block(cachep, shared->entry,
1021 shared->avail, node, &list);
1022 n->shared = NULL;
1023 }
1024
1025 alien = n->alien;
1026 n->alien = NULL;
1027
1028 spin_unlock_irq(&n->list_lock);
1029
1030 kfree(shared);
1031 if (alien) {
1032 drain_alien_cache(cachep, alien);
1033 free_alien_cache(alien);
1034 }
1035
1036 free_slab:
1037 slabs_destroy(cachep, &list);
1038 }
1039 /*
1040 * In the previous loop, all the objects were freed to
1041 * the respective cache's slabs, now we can go ahead and
1042 * shrink each nodelist to its limit.
1043 */
1044 list_for_each_entry(cachep, &slab_caches, list) {
1045 n = get_node(cachep, node);
1046 if (!n)
1047 continue;
1048 drain_freelist(cachep, n, INT_MAX);
1049 }
1050 }
1051
1052 static int cpuup_prepare(long cpu)
1053 {
1054 struct kmem_cache *cachep;
1055 int node = cpu_to_mem(cpu);
1056 int err;
1057
1058 /*
1059 * We need to do this right in the beginning since
1060 * alloc_arraycache's are going to use this list.
1061 * kmalloc_node allows us to add the slab to the right
1062 * kmem_cache_node and not this cpu's kmem_cache_node
1063 */
1064 err = init_cache_node_node(node);
1065 if (err < 0)
1066 goto bad;
1067
1068 /*
1069 * Now we can go ahead with allocating the shared arrays and
1070 * array caches
1071 */
1072 list_for_each_entry(cachep, &slab_caches, list) {
1073 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1074 if (err)
1075 goto bad;
1076 }
1077
1078 return 0;
1079 bad:
1080 cpuup_canceled(cpu);
1081 return -ENOMEM;
1082 }
1083
1084 int slab_prepare_cpu(unsigned int cpu)
1085 {
1086 int err;
1087
1088 mutex_lock(&slab_mutex);
1089 err = cpuup_prepare(cpu);
1090 mutex_unlock(&slab_mutex);
1091 return err;
1092 }
1093
1094 /*
1095 * This is called for a failed online attempt and for a successful
1096 * offline.
1097 *
1098 * Even if all the cpus of a node are down, we don't free the
1099 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1100 * a kmalloc allocation from another cpu for memory from the node of
1101 * the cpu going down. The list3 structure is usually allocated from
1102 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1103 */
1104 int slab_dead_cpu(unsigned int cpu)
1105 {
1106 mutex_lock(&slab_mutex);
1107 cpuup_canceled(cpu);
1108 mutex_unlock(&slab_mutex);
1109 return 0;
1110 }
1111 #endif
1112
1113 static int slab_online_cpu(unsigned int cpu)
1114 {
1115 start_cpu_timer(cpu);
1116 return 0;
1117 }
1118
1119 static int slab_offline_cpu(unsigned int cpu)
1120 {
1121 /*
1122 * Shutdown cache reaper. Note that the slab_mutex is held so
1123 * that if cache_reap() is invoked it cannot do anything
1124 * expensive but will only modify reap_work and reschedule the
1125 * timer.
1126 */
1127 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1128 /* Now the cache_reaper is guaranteed to be not running. */
1129 per_cpu(slab_reap_work, cpu).work.func = NULL;
1130 return 0;
1131 }
1132
1133 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1134 /*
1135 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1136 * Returns -EBUSY if all objects cannot be drained so that the node is not
1137 * removed.
1138 *
1139 * Must hold slab_mutex.
1140 */
1141 static int __meminit drain_cache_node_node(int node)
1142 {
1143 struct kmem_cache *cachep;
1144 int ret = 0;
1145
1146 list_for_each_entry(cachep, &slab_caches, list) {
1147 struct kmem_cache_node *n;
1148
1149 n = get_node(cachep, node);
1150 if (!n)
1151 continue;
1152
1153 drain_freelist(cachep, n, INT_MAX);
1154
1155 if (!list_empty(&n->slabs_full) ||
1156 !list_empty(&n->slabs_partial)) {
1157 ret = -EBUSY;
1158 break;
1159 }
1160 }
1161 return ret;
1162 }
1163
1164 static int __meminit slab_memory_callback(struct notifier_block *self,
1165 unsigned long action, void *arg)
1166 {
1167 struct memory_notify *mnb = arg;
1168 int ret = 0;
1169 int nid;
1170
1171 nid = mnb->status_change_nid;
1172 if (nid < 0)
1173 goto out;
1174
1175 switch (action) {
1176 case MEM_GOING_ONLINE:
1177 mutex_lock(&slab_mutex);
1178 ret = init_cache_node_node(nid);
1179 mutex_unlock(&slab_mutex);
1180 break;
1181 case MEM_GOING_OFFLINE:
1182 mutex_lock(&slab_mutex);
1183 ret = drain_cache_node_node(nid);
1184 mutex_unlock(&slab_mutex);
1185 break;
1186 case MEM_ONLINE:
1187 case MEM_OFFLINE:
1188 case MEM_CANCEL_ONLINE:
1189 case MEM_CANCEL_OFFLINE:
1190 break;
1191 }
1192 out:
1193 return notifier_from_errno(ret);
1194 }
1195 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1196
1197 /*
1198 * swap the static kmem_cache_node with kmalloced memory
1199 */
1200 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1201 int nodeid)
1202 {
1203 struct kmem_cache_node *ptr;
1204
1205 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1206 BUG_ON(!ptr);
1207
1208 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1209 /*
1210 * Do not assume that spinlocks can be initialized via memcpy:
1211 */
1212 spin_lock_init(&ptr->list_lock);
1213
1214 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1215 cachep->node[nodeid] = ptr;
1216 }
1217
1218 /*
1219 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1220 * size of kmem_cache_node.
1221 */
1222 static void __init set_up_node(struct kmem_cache *cachep, int index)
1223 {
1224 int node;
1225
1226 for_each_online_node(node) {
1227 cachep->node[node] = &init_kmem_cache_node[index + node];
1228 cachep->node[node]->next_reap = jiffies +
1229 REAPTIMEOUT_NODE +
1230 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1231 }
1232 }
1233
1234 /*
1235 * Initialisation. Called after the page allocator have been initialised and
1236 * before smp_init().
1237 */
1238 void __init kmem_cache_init(void)
1239 {
1240 int i;
1241
1242 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1243 sizeof(struct rcu_head));
1244 kmem_cache = &kmem_cache_boot;
1245
1246 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1247 use_alien_caches = 0;
1248
1249 for (i = 0; i < NUM_INIT_LISTS; i++)
1250 kmem_cache_node_init(&init_kmem_cache_node[i]);
1251
1252 /*
1253 * Fragmentation resistance on low memory - only use bigger
1254 * page orders on machines with more than 32MB of memory if
1255 * not overridden on the command line.
1256 */
1257 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1258 slab_max_order = SLAB_MAX_ORDER_HI;
1259
1260 /* Bootstrap is tricky, because several objects are allocated
1261 * from caches that do not exist yet:
1262 * 1) initialize the kmem_cache cache: it contains the struct
1263 * kmem_cache structures of all caches, except kmem_cache itself:
1264 * kmem_cache is statically allocated.
1265 * Initially an __init data area is used for the head array and the
1266 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1267 * array at the end of the bootstrap.
1268 * 2) Create the first kmalloc cache.
1269 * The struct kmem_cache for the new cache is allocated normally.
1270 * An __init data area is used for the head array.
1271 * 3) Create the remaining kmalloc caches, with minimally sized
1272 * head arrays.
1273 * 4) Replace the __init data head arrays for kmem_cache and the first
1274 * kmalloc cache with kmalloc allocated arrays.
1275 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1276 * the other cache's with kmalloc allocated memory.
1277 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1278 */
1279
1280 /* 1) create the kmem_cache */
1281
1282 /*
1283 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1284 */
1285 create_boot_cache(kmem_cache, "kmem_cache",
1286 offsetof(struct kmem_cache, node) +
1287 nr_node_ids * sizeof(struct kmem_cache_node *),
1288 SLAB_HWCACHE_ALIGN);
1289 list_add(&kmem_cache->list, &slab_caches);
1290 slab_state = PARTIAL;
1291
1292 /*
1293 * Initialize the caches that provide memory for the kmem_cache_node
1294 * structures first. Without this, further allocations will bug.
1295 */
1296 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1297 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1298 slab_state = PARTIAL_NODE;
1299 setup_kmalloc_cache_index_table();
1300
1301 slab_early_init = 0;
1302
1303 /* 5) Replace the bootstrap kmem_cache_node */
1304 {
1305 int nid;
1306
1307 for_each_online_node(nid) {
1308 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1309
1310 init_list(kmalloc_caches[INDEX_NODE],
1311 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1312 }
1313 }
1314
1315 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1316 }
1317
1318 void __init kmem_cache_init_late(void)
1319 {
1320 struct kmem_cache *cachep;
1321
1322 slab_state = UP;
1323
1324 /* 6) resize the head arrays to their final sizes */
1325 mutex_lock(&slab_mutex);
1326 list_for_each_entry(cachep, &slab_caches, list)
1327 if (enable_cpucache(cachep, GFP_NOWAIT))
1328 BUG();
1329 mutex_unlock(&slab_mutex);
1330
1331 /* Done! */
1332 slab_state = FULL;
1333
1334 #ifdef CONFIG_NUMA
1335 /*
1336 * Register a memory hotplug callback that initializes and frees
1337 * node.
1338 */
1339 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1340 #endif
1341
1342 /*
1343 * The reap timers are started later, with a module init call: That part
1344 * of the kernel is not yet operational.
1345 */
1346 }
1347
1348 static int __init cpucache_init(void)
1349 {
1350 int ret;
1351
1352 /*
1353 * Register the timers that return unneeded pages to the page allocator
1354 */
1355 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1356 slab_online_cpu, slab_offline_cpu);
1357 WARN_ON(ret < 0);
1358
1359 /* Done! */
1360 slab_state = FULL;
1361 return 0;
1362 }
1363 __initcall(cpucache_init);
1364
1365 static noinline void
1366 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1367 {
1368 #if DEBUG
1369 struct kmem_cache_node *n;
1370 unsigned long flags;
1371 int node;
1372 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1373 DEFAULT_RATELIMIT_BURST);
1374
1375 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1376 return;
1377
1378 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1379 nodeid, gfpflags, &gfpflags);
1380 pr_warn(" cache: %s, object size: %d, order: %d\n",
1381 cachep->name, cachep->size, cachep->gfporder);
1382
1383 for_each_kmem_cache_node(cachep, node, n) {
1384 unsigned long total_slabs, free_slabs, free_objs;
1385
1386 spin_lock_irqsave(&n->list_lock, flags);
1387 total_slabs = n->total_slabs;
1388 free_slabs = n->free_slabs;
1389 free_objs = n->free_objects;
1390 spin_unlock_irqrestore(&n->list_lock, flags);
1391
1392 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1393 node, total_slabs - free_slabs, total_slabs,
1394 (total_slabs * cachep->num) - free_objs,
1395 total_slabs * cachep->num);
1396 }
1397 #endif
1398 }
1399
1400 /*
1401 * Interface to system's page allocator. No need to hold the
1402 * kmem_cache_node ->list_lock.
1403 *
1404 * If we requested dmaable memory, we will get it. Even if we
1405 * did not request dmaable memory, we might get it, but that
1406 * would be relatively rare and ignorable.
1407 */
1408 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1409 int nodeid)
1410 {
1411 struct page *page;
1412 int nr_pages;
1413
1414 flags |= cachep->allocflags;
1415 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1416 flags |= __GFP_RECLAIMABLE;
1417
1418 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1419 if (!page) {
1420 slab_out_of_memory(cachep, flags, nodeid);
1421 return NULL;
1422 }
1423
1424 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1425 __free_pages(page, cachep->gfporder);
1426 return NULL;
1427 }
1428
1429 nr_pages = (1 << cachep->gfporder);
1430 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1431 add_zone_page_state(page_zone(page),
1432 NR_SLAB_RECLAIMABLE, nr_pages);
1433 else
1434 add_zone_page_state(page_zone(page),
1435 NR_SLAB_UNRECLAIMABLE, nr_pages);
1436
1437 __SetPageSlab(page);
1438 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1439 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1440 SetPageSlabPfmemalloc(page);
1441
1442 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1443 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1444
1445 if (cachep->ctor)
1446 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1447 else
1448 kmemcheck_mark_unallocated_pages(page, nr_pages);
1449 }
1450
1451 return page;
1452 }
1453
1454 /*
1455 * Interface to system's page release.
1456 */
1457 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1458 {
1459 int order = cachep->gfporder;
1460 unsigned long nr_freed = (1 << order);
1461
1462 kmemcheck_free_shadow(page, order);
1463
1464 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1465 sub_zone_page_state(page_zone(page),
1466 NR_SLAB_RECLAIMABLE, nr_freed);
1467 else
1468 sub_zone_page_state(page_zone(page),
1469 NR_SLAB_UNRECLAIMABLE, nr_freed);
1470
1471 BUG_ON(!PageSlab(page));
1472 __ClearPageSlabPfmemalloc(page);
1473 __ClearPageSlab(page);
1474 page_mapcount_reset(page);
1475 page->mapping = NULL;
1476
1477 if (current->reclaim_state)
1478 current->reclaim_state->reclaimed_slab += nr_freed;
1479 memcg_uncharge_slab(page, order, cachep);
1480 __free_pages(page, order);
1481 }
1482
1483 static void kmem_rcu_free(struct rcu_head *head)
1484 {
1485 struct kmem_cache *cachep;
1486 struct page *page;
1487
1488 page = container_of(head, struct page, rcu_head);
1489 cachep = page->slab_cache;
1490
1491 kmem_freepages(cachep, page);
1492 }
1493
1494 #if DEBUG
1495 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1496 {
1497 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1498 (cachep->size % PAGE_SIZE) == 0)
1499 return true;
1500
1501 return false;
1502 }
1503
1504 #ifdef CONFIG_DEBUG_PAGEALLOC
1505 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1506 unsigned long caller)
1507 {
1508 int size = cachep->object_size;
1509
1510 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1511
1512 if (size < 5 * sizeof(unsigned long))
1513 return;
1514
1515 *addr++ = 0x12345678;
1516 *addr++ = caller;
1517 *addr++ = smp_processor_id();
1518 size -= 3 * sizeof(unsigned long);
1519 {
1520 unsigned long *sptr = &caller;
1521 unsigned long svalue;
1522
1523 while (!kstack_end(sptr)) {
1524 svalue = *sptr++;
1525 if (kernel_text_address(svalue)) {
1526 *addr++ = svalue;
1527 size -= sizeof(unsigned long);
1528 if (size <= sizeof(unsigned long))
1529 break;
1530 }
1531 }
1532
1533 }
1534 *addr++ = 0x87654321;
1535 }
1536
1537 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1538 int map, unsigned long caller)
1539 {
1540 if (!is_debug_pagealloc_cache(cachep))
1541 return;
1542
1543 if (caller)
1544 store_stackinfo(cachep, objp, caller);
1545
1546 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1547 }
1548
1549 #else
1550 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1551 int map, unsigned long caller) {}
1552
1553 #endif
1554
1555 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1556 {
1557 int size = cachep->object_size;
1558 addr = &((char *)addr)[obj_offset(cachep)];
1559
1560 memset(addr, val, size);
1561 *(unsigned char *)(addr + size - 1) = POISON_END;
1562 }
1563
1564 static void dump_line(char *data, int offset, int limit)
1565 {
1566 int i;
1567 unsigned char error = 0;
1568 int bad_count = 0;
1569
1570 pr_err("%03x: ", offset);
1571 for (i = 0; i < limit; i++) {
1572 if (data[offset + i] != POISON_FREE) {
1573 error = data[offset + i];
1574 bad_count++;
1575 }
1576 }
1577 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1578 &data[offset], limit, 1);
1579
1580 if (bad_count == 1) {
1581 error ^= POISON_FREE;
1582 if (!(error & (error - 1))) {
1583 pr_err("Single bit error detected. Probably bad RAM.\n");
1584 #ifdef CONFIG_X86
1585 pr_err("Run memtest86+ or a similar memory test tool.\n");
1586 #else
1587 pr_err("Run a memory test tool.\n");
1588 #endif
1589 }
1590 }
1591 }
1592 #endif
1593
1594 #if DEBUG
1595
1596 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1597 {
1598 int i, size;
1599 char *realobj;
1600
1601 if (cachep->flags & SLAB_RED_ZONE) {
1602 pr_err("Redzone: 0x%llx/0x%llx\n",
1603 *dbg_redzone1(cachep, objp),
1604 *dbg_redzone2(cachep, objp));
1605 }
1606
1607 if (cachep->flags & SLAB_STORE_USER) {
1608 pr_err("Last user: [<%p>](%pSR)\n",
1609 *dbg_userword(cachep, objp),
1610 *dbg_userword(cachep, objp));
1611 }
1612 realobj = (char *)objp + obj_offset(cachep);
1613 size = cachep->object_size;
1614 for (i = 0; i < size && lines; i += 16, lines--) {
1615 int limit;
1616 limit = 16;
1617 if (i + limit > size)
1618 limit = size - i;
1619 dump_line(realobj, i, limit);
1620 }
1621 }
1622
1623 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1624 {
1625 char *realobj;
1626 int size, i;
1627 int lines = 0;
1628
1629 if (is_debug_pagealloc_cache(cachep))
1630 return;
1631
1632 realobj = (char *)objp + obj_offset(cachep);
1633 size = cachep->object_size;
1634
1635 for (i = 0; i < size; i++) {
1636 char exp = POISON_FREE;
1637 if (i == size - 1)
1638 exp = POISON_END;
1639 if (realobj[i] != exp) {
1640 int limit;
1641 /* Mismatch ! */
1642 /* Print header */
1643 if (lines == 0) {
1644 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1645 print_tainted(), cachep->name,
1646 realobj, size);
1647 print_objinfo(cachep, objp, 0);
1648 }
1649 /* Hexdump the affected line */
1650 i = (i / 16) * 16;
1651 limit = 16;
1652 if (i + limit > size)
1653 limit = size - i;
1654 dump_line(realobj, i, limit);
1655 i += 16;
1656 lines++;
1657 /* Limit to 5 lines */
1658 if (lines > 5)
1659 break;
1660 }
1661 }
1662 if (lines != 0) {
1663 /* Print some data about the neighboring objects, if they
1664 * exist:
1665 */
1666 struct page *page = virt_to_head_page(objp);
1667 unsigned int objnr;
1668
1669 objnr = obj_to_index(cachep, page, objp);
1670 if (objnr) {
1671 objp = index_to_obj(cachep, page, objnr - 1);
1672 realobj = (char *)objp + obj_offset(cachep);
1673 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1674 print_objinfo(cachep, objp, 2);
1675 }
1676 if (objnr + 1 < cachep->num) {
1677 objp = index_to_obj(cachep, page, objnr + 1);
1678 realobj = (char *)objp + obj_offset(cachep);
1679 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1680 print_objinfo(cachep, objp, 2);
1681 }
1682 }
1683 }
1684 #endif
1685
1686 #if DEBUG
1687 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1688 struct page *page)
1689 {
1690 int i;
1691
1692 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1693 poison_obj(cachep, page->freelist - obj_offset(cachep),
1694 POISON_FREE);
1695 }
1696
1697 for (i = 0; i < cachep->num; i++) {
1698 void *objp = index_to_obj(cachep, page, i);
1699
1700 if (cachep->flags & SLAB_POISON) {
1701 check_poison_obj(cachep, objp);
1702 slab_kernel_map(cachep, objp, 1, 0);
1703 }
1704 if (cachep->flags & SLAB_RED_ZONE) {
1705 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1706 slab_error(cachep, "start of a freed object was overwritten");
1707 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1708 slab_error(cachep, "end of a freed object was overwritten");
1709 }
1710 }
1711 }
1712 #else
1713 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1714 struct page *page)
1715 {
1716 }
1717 #endif
1718
1719 /**
1720 * slab_destroy - destroy and release all objects in a slab
1721 * @cachep: cache pointer being destroyed
1722 * @page: page pointer being destroyed
1723 *
1724 * Destroy all the objs in a slab page, and release the mem back to the system.
1725 * Before calling the slab page must have been unlinked from the cache. The
1726 * kmem_cache_node ->list_lock is not held/needed.
1727 */
1728 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1729 {
1730 void *freelist;
1731
1732 freelist = page->freelist;
1733 slab_destroy_debugcheck(cachep, page);
1734 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1735 call_rcu(&page->rcu_head, kmem_rcu_free);
1736 else
1737 kmem_freepages(cachep, page);
1738
1739 /*
1740 * From now on, we don't use freelist
1741 * although actual page can be freed in rcu context
1742 */
1743 if (OFF_SLAB(cachep))
1744 kmem_cache_free(cachep->freelist_cache, freelist);
1745 }
1746
1747 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1748 {
1749 struct page *page, *n;
1750
1751 list_for_each_entry_safe(page, n, list, lru) {
1752 list_del(&page->lru);
1753 slab_destroy(cachep, page);
1754 }
1755 }
1756
1757 /**
1758 * calculate_slab_order - calculate size (page order) of slabs
1759 * @cachep: pointer to the cache that is being created
1760 * @size: size of objects to be created in this cache.
1761 * @flags: slab allocation flags
1762 *
1763 * Also calculates the number of objects per slab.
1764 *
1765 * This could be made much more intelligent. For now, try to avoid using
1766 * high order pages for slabs. When the gfp() functions are more friendly
1767 * towards high-order requests, this should be changed.
1768 */
1769 static size_t calculate_slab_order(struct kmem_cache *cachep,
1770 size_t size, unsigned long flags)
1771 {
1772 size_t left_over = 0;
1773 int gfporder;
1774
1775 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1776 unsigned int num;
1777 size_t remainder;
1778
1779 num = cache_estimate(gfporder, size, flags, &remainder);
1780 if (!num)
1781 continue;
1782
1783 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1784 if (num > SLAB_OBJ_MAX_NUM)
1785 break;
1786
1787 if (flags & CFLGS_OFF_SLAB) {
1788 struct kmem_cache *freelist_cache;
1789 size_t freelist_size;
1790
1791 freelist_size = num * sizeof(freelist_idx_t);
1792 freelist_cache = kmalloc_slab(freelist_size, 0u);
1793 if (!freelist_cache)
1794 continue;
1795
1796 /*
1797 * Needed to avoid possible looping condition
1798 * in cache_grow_begin()
1799 */
1800 if (OFF_SLAB(freelist_cache))
1801 continue;
1802
1803 /* check if off slab has enough benefit */
1804 if (freelist_cache->size > cachep->size / 2)
1805 continue;
1806 }
1807
1808 /* Found something acceptable - save it away */
1809 cachep->num = num;
1810 cachep->gfporder = gfporder;
1811 left_over = remainder;
1812
1813 /*
1814 * A VFS-reclaimable slab tends to have most allocations
1815 * as GFP_NOFS and we really don't want to have to be allocating
1816 * higher-order pages when we are unable to shrink dcache.
1817 */
1818 if (flags & SLAB_RECLAIM_ACCOUNT)
1819 break;
1820
1821 /*
1822 * Large number of objects is good, but very large slabs are
1823 * currently bad for the gfp()s.
1824 */
1825 if (gfporder >= slab_max_order)
1826 break;
1827
1828 /*
1829 * Acceptable internal fragmentation?
1830 */
1831 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1832 break;
1833 }
1834 return left_over;
1835 }
1836
1837 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1838 struct kmem_cache *cachep, int entries, int batchcount)
1839 {
1840 int cpu;
1841 size_t size;
1842 struct array_cache __percpu *cpu_cache;
1843
1844 size = sizeof(void *) * entries + sizeof(struct array_cache);
1845 cpu_cache = __alloc_percpu(size, sizeof(void *));
1846
1847 if (!cpu_cache)
1848 return NULL;
1849
1850 for_each_possible_cpu(cpu) {
1851 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1852 entries, batchcount);
1853 }
1854
1855 return cpu_cache;
1856 }
1857
1858 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1859 {
1860 if (slab_state >= FULL)
1861 return enable_cpucache(cachep, gfp);
1862
1863 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1864 if (!cachep->cpu_cache)
1865 return 1;
1866
1867 if (slab_state == DOWN) {
1868 /* Creation of first cache (kmem_cache). */
1869 set_up_node(kmem_cache, CACHE_CACHE);
1870 } else if (slab_state == PARTIAL) {
1871 /* For kmem_cache_node */
1872 set_up_node(cachep, SIZE_NODE);
1873 } else {
1874 int node;
1875
1876 for_each_online_node(node) {
1877 cachep->node[node] = kmalloc_node(
1878 sizeof(struct kmem_cache_node), gfp, node);
1879 BUG_ON(!cachep->node[node]);
1880 kmem_cache_node_init(cachep->node[node]);
1881 }
1882 }
1883
1884 cachep->node[numa_mem_id()]->next_reap =
1885 jiffies + REAPTIMEOUT_NODE +
1886 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1887
1888 cpu_cache_get(cachep)->avail = 0;
1889 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1890 cpu_cache_get(cachep)->batchcount = 1;
1891 cpu_cache_get(cachep)->touched = 0;
1892 cachep->batchcount = 1;
1893 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1894 return 0;
1895 }
1896
1897 unsigned long kmem_cache_flags(unsigned long object_size,
1898 unsigned long flags, const char *name,
1899 void (*ctor)(void *))
1900 {
1901 return flags;
1902 }
1903
1904 struct kmem_cache *
1905 __kmem_cache_alias(const char *name, size_t size, size_t align,
1906 unsigned long flags, void (*ctor)(void *))
1907 {
1908 struct kmem_cache *cachep;
1909
1910 cachep = find_mergeable(size, align, flags, name, ctor);
1911 if (cachep) {
1912 cachep->refcount++;
1913
1914 /*
1915 * Adjust the object sizes so that we clear
1916 * the complete object on kzalloc.
1917 */
1918 cachep->object_size = max_t(int, cachep->object_size, size);
1919 }
1920 return cachep;
1921 }
1922
1923 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1924 size_t size, unsigned long flags)
1925 {
1926 size_t left;
1927
1928 cachep->num = 0;
1929
1930 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1931 return false;
1932
1933 left = calculate_slab_order(cachep, size,
1934 flags | CFLGS_OBJFREELIST_SLAB);
1935 if (!cachep->num)
1936 return false;
1937
1938 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1939 return false;
1940
1941 cachep->colour = left / cachep->colour_off;
1942
1943 return true;
1944 }
1945
1946 static bool set_off_slab_cache(struct kmem_cache *cachep,
1947 size_t size, unsigned long flags)
1948 {
1949 size_t left;
1950
1951 cachep->num = 0;
1952
1953 /*
1954 * Always use on-slab management when SLAB_NOLEAKTRACE
1955 * to avoid recursive calls into kmemleak.
1956 */
1957 if (flags & SLAB_NOLEAKTRACE)
1958 return false;
1959
1960 /*
1961 * Size is large, assume best to place the slab management obj
1962 * off-slab (should allow better packing of objs).
1963 */
1964 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1965 if (!cachep->num)
1966 return false;
1967
1968 /*
1969 * If the slab has been placed off-slab, and we have enough space then
1970 * move it on-slab. This is at the expense of any extra colouring.
1971 */
1972 if (left >= cachep->num * sizeof(freelist_idx_t))
1973 return false;
1974
1975 cachep->colour = left / cachep->colour_off;
1976
1977 return true;
1978 }
1979
1980 static bool set_on_slab_cache(struct kmem_cache *cachep,
1981 size_t size, unsigned long flags)
1982 {
1983 size_t left;
1984
1985 cachep->num = 0;
1986
1987 left = calculate_slab_order(cachep, size, flags);
1988 if (!cachep->num)
1989 return false;
1990
1991 cachep->colour = left / cachep->colour_off;
1992
1993 return true;
1994 }
1995
1996 /**
1997 * __kmem_cache_create - Create a cache.
1998 * @cachep: cache management descriptor
1999 * @flags: SLAB flags
2000 *
2001 * Returns a ptr to the cache on success, NULL on failure.
2002 * Cannot be called within a int, but can be interrupted.
2003 * The @ctor is run when new pages are allocated by the cache.
2004 *
2005 * The flags are
2006 *
2007 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2008 * to catch references to uninitialised memory.
2009 *
2010 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2011 * for buffer overruns.
2012 *
2013 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2014 * cacheline. This can be beneficial if you're counting cycles as closely
2015 * as davem.
2016 */
2017 int
2018 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2019 {
2020 size_t ralign = BYTES_PER_WORD;
2021 gfp_t gfp;
2022 int err;
2023 size_t size = cachep->size;
2024
2025 #if DEBUG
2026 #if FORCED_DEBUG
2027 /*
2028 * Enable redzoning and last user accounting, except for caches with
2029 * large objects, if the increased size would increase the object size
2030 * above the next power of two: caches with object sizes just above a
2031 * power of two have a significant amount of internal fragmentation.
2032 */
2033 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2034 2 * sizeof(unsigned long long)))
2035 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2036 if (!(flags & SLAB_DESTROY_BY_RCU))
2037 flags |= SLAB_POISON;
2038 #endif
2039 #endif
2040
2041 /*
2042 * Check that size is in terms of words. This is needed to avoid
2043 * unaligned accesses for some archs when redzoning is used, and makes
2044 * sure any on-slab bufctl's are also correctly aligned.
2045 */
2046 if (size & (BYTES_PER_WORD - 1)) {
2047 size += (BYTES_PER_WORD - 1);
2048 size &= ~(BYTES_PER_WORD - 1);
2049 }
2050
2051 if (flags & SLAB_RED_ZONE) {
2052 ralign = REDZONE_ALIGN;
2053 /* If redzoning, ensure that the second redzone is suitably
2054 * aligned, by adjusting the object size accordingly. */
2055 size += REDZONE_ALIGN - 1;
2056 size &= ~(REDZONE_ALIGN - 1);
2057 }
2058
2059 /* 3) caller mandated alignment */
2060 if (ralign < cachep->align) {
2061 ralign = cachep->align;
2062 }
2063 /* disable debug if necessary */
2064 if (ralign > __alignof__(unsigned long long))
2065 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2066 /*
2067 * 4) Store it.
2068 */
2069 cachep->align = ralign;
2070 cachep->colour_off = cache_line_size();
2071 /* Offset must be a multiple of the alignment. */
2072 if (cachep->colour_off < cachep->align)
2073 cachep->colour_off = cachep->align;
2074
2075 if (slab_is_available())
2076 gfp = GFP_KERNEL;
2077 else
2078 gfp = GFP_NOWAIT;
2079
2080 #if DEBUG
2081
2082 /*
2083 * Both debugging options require word-alignment which is calculated
2084 * into align above.
2085 */
2086 if (flags & SLAB_RED_ZONE) {
2087 /* add space for red zone words */
2088 cachep->obj_offset += sizeof(unsigned long long);
2089 size += 2 * sizeof(unsigned long long);
2090 }
2091 if (flags & SLAB_STORE_USER) {
2092 /* user store requires one word storage behind the end of
2093 * the real object. But if the second red zone needs to be
2094 * aligned to 64 bits, we must allow that much space.
2095 */
2096 if (flags & SLAB_RED_ZONE)
2097 size += REDZONE_ALIGN;
2098 else
2099 size += BYTES_PER_WORD;
2100 }
2101 #endif
2102
2103 kasan_cache_create(cachep, &size, &flags);
2104
2105 size = ALIGN(size, cachep->align);
2106 /*
2107 * We should restrict the number of objects in a slab to implement
2108 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2109 */
2110 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2111 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2112
2113 #if DEBUG
2114 /*
2115 * To activate debug pagealloc, off-slab management is necessary
2116 * requirement. In early phase of initialization, small sized slab
2117 * doesn't get initialized so it would not be possible. So, we need
2118 * to check size >= 256. It guarantees that all necessary small
2119 * sized slab is initialized in current slab initialization sequence.
2120 */
2121 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2122 size >= 256 && cachep->object_size > cache_line_size()) {
2123 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2124 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2125
2126 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2127 flags |= CFLGS_OFF_SLAB;
2128 cachep->obj_offset += tmp_size - size;
2129 size = tmp_size;
2130 goto done;
2131 }
2132 }
2133 }
2134 #endif
2135
2136 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2137 flags |= CFLGS_OBJFREELIST_SLAB;
2138 goto done;
2139 }
2140
2141 if (set_off_slab_cache(cachep, size, flags)) {
2142 flags |= CFLGS_OFF_SLAB;
2143 goto done;
2144 }
2145
2146 if (set_on_slab_cache(cachep, size, flags))
2147 goto done;
2148
2149 return -E2BIG;
2150
2151 done:
2152 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2153 cachep->flags = flags;
2154 cachep->allocflags = __GFP_COMP;
2155 if (flags & SLAB_CACHE_DMA)
2156 cachep->allocflags |= GFP_DMA;
2157 cachep->size = size;
2158 cachep->reciprocal_buffer_size = reciprocal_value(size);
2159
2160 #if DEBUG
2161 /*
2162 * If we're going to use the generic kernel_map_pages()
2163 * poisoning, then it's going to smash the contents of
2164 * the redzone and userword anyhow, so switch them off.
2165 */
2166 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2167 (cachep->flags & SLAB_POISON) &&
2168 is_debug_pagealloc_cache(cachep))
2169 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2170 #endif
2171
2172 if (OFF_SLAB(cachep)) {
2173 cachep->freelist_cache =
2174 kmalloc_slab(cachep->freelist_size, 0u);
2175 }
2176
2177 err = setup_cpu_cache(cachep, gfp);
2178 if (err) {
2179 __kmem_cache_release(cachep);
2180 return err;
2181 }
2182
2183 return 0;
2184 }
2185
2186 #if DEBUG
2187 static void check_irq_off(void)
2188 {
2189 BUG_ON(!irqs_disabled());
2190 }
2191
2192 static void check_irq_on(void)
2193 {
2194 BUG_ON(irqs_disabled());
2195 }
2196
2197 static void check_mutex_acquired(void)
2198 {
2199 BUG_ON(!mutex_is_locked(&slab_mutex));
2200 }
2201
2202 static void check_spinlock_acquired(struct kmem_cache *cachep)
2203 {
2204 #ifdef CONFIG_SMP
2205 check_irq_off();
2206 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2207 #endif
2208 }
2209
2210 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2211 {
2212 #ifdef CONFIG_SMP
2213 check_irq_off();
2214 assert_spin_locked(&get_node(cachep, node)->list_lock);
2215 #endif
2216 }
2217
2218 #else
2219 #define check_irq_off() do { } while(0)
2220 #define check_irq_on() do { } while(0)
2221 #define check_mutex_acquired() do { } while(0)
2222 #define check_spinlock_acquired(x) do { } while(0)
2223 #define check_spinlock_acquired_node(x, y) do { } while(0)
2224 #endif
2225
2226 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2227 int node, bool free_all, struct list_head *list)
2228 {
2229 int tofree;
2230
2231 if (!ac || !ac->avail)
2232 return;
2233
2234 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2235 if (tofree > ac->avail)
2236 tofree = (ac->avail + 1) / 2;
2237
2238 free_block(cachep, ac->entry, tofree, node, list);
2239 ac->avail -= tofree;
2240 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2241 }
2242
2243 static void do_drain(void *arg)
2244 {
2245 struct kmem_cache *cachep = arg;
2246 struct array_cache *ac;
2247 int node = numa_mem_id();
2248 struct kmem_cache_node *n;
2249 LIST_HEAD(list);
2250
2251 check_irq_off();
2252 ac = cpu_cache_get(cachep);
2253 n = get_node(cachep, node);
2254 spin_lock(&n->list_lock);
2255 free_block(cachep, ac->entry, ac->avail, node, &list);
2256 spin_unlock(&n->list_lock);
2257 slabs_destroy(cachep, &list);
2258 ac->avail = 0;
2259 }
2260
2261 static void drain_cpu_caches(struct kmem_cache *cachep)
2262 {
2263 struct kmem_cache_node *n;
2264 int node;
2265 LIST_HEAD(list);
2266
2267 on_each_cpu(do_drain, cachep, 1);
2268 check_irq_on();
2269 for_each_kmem_cache_node(cachep, node, n)
2270 if (n->alien)
2271 drain_alien_cache(cachep, n->alien);
2272
2273 for_each_kmem_cache_node(cachep, node, n) {
2274 spin_lock_irq(&n->list_lock);
2275 drain_array_locked(cachep, n->shared, node, true, &list);
2276 spin_unlock_irq(&n->list_lock);
2277
2278 slabs_destroy(cachep, &list);
2279 }
2280 }
2281
2282 /*
2283 * Remove slabs from the list of free slabs.
2284 * Specify the number of slabs to drain in tofree.
2285 *
2286 * Returns the actual number of slabs released.
2287 */
2288 static int drain_freelist(struct kmem_cache *cache,
2289 struct kmem_cache_node *n, int tofree)
2290 {
2291 struct list_head *p;
2292 int nr_freed;
2293 struct page *page;
2294
2295 nr_freed = 0;
2296 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2297
2298 spin_lock_irq(&n->list_lock);
2299 p = n->slabs_free.prev;
2300 if (p == &n->slabs_free) {
2301 spin_unlock_irq(&n->list_lock);
2302 goto out;
2303 }
2304
2305 page = list_entry(p, struct page, lru);
2306 list_del(&page->lru);
2307 n->free_slabs--;
2308 n->total_slabs--;
2309 /*
2310 * Safe to drop the lock. The slab is no longer linked
2311 * to the cache.
2312 */
2313 n->free_objects -= cache->num;
2314 spin_unlock_irq(&n->list_lock);
2315 slab_destroy(cache, page);
2316 nr_freed++;
2317 }
2318 out:
2319 return nr_freed;
2320 }
2321
2322 int __kmem_cache_shrink(struct kmem_cache *cachep)
2323 {
2324 int ret = 0;
2325 int node;
2326 struct kmem_cache_node *n;
2327
2328 drain_cpu_caches(cachep);
2329
2330 check_irq_on();
2331 for_each_kmem_cache_node(cachep, node, n) {
2332 drain_freelist(cachep, n, INT_MAX);
2333
2334 ret += !list_empty(&n->slabs_full) ||
2335 !list_empty(&n->slabs_partial);
2336 }
2337 return (ret ? 1 : 0);
2338 }
2339
2340 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2341 {
2342 return __kmem_cache_shrink(cachep);
2343 }
2344
2345 void __kmem_cache_release(struct kmem_cache *cachep)
2346 {
2347 int i;
2348 struct kmem_cache_node *n;
2349
2350 cache_random_seq_destroy(cachep);
2351
2352 free_percpu(cachep->cpu_cache);
2353
2354 /* NUMA: free the node structures */
2355 for_each_kmem_cache_node(cachep, i, n) {
2356 kfree(n->shared);
2357 free_alien_cache(n->alien);
2358 kfree(n);
2359 cachep->node[i] = NULL;
2360 }
2361 }
2362
2363 /*
2364 * Get the memory for a slab management obj.
2365 *
2366 * For a slab cache when the slab descriptor is off-slab, the
2367 * slab descriptor can't come from the same cache which is being created,
2368 * Because if it is the case, that means we defer the creation of
2369 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2370 * And we eventually call down to __kmem_cache_create(), which
2371 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2372 * This is a "chicken-and-egg" problem.
2373 *
2374 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2375 * which are all initialized during kmem_cache_init().
2376 */
2377 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2378 struct page *page, int colour_off,
2379 gfp_t local_flags, int nodeid)
2380 {
2381 void *freelist;
2382 void *addr = page_address(page);
2383
2384 page->s_mem = addr + colour_off;
2385 page->active = 0;
2386
2387 if (OBJFREELIST_SLAB(cachep))
2388 freelist = NULL;
2389 else if (OFF_SLAB(cachep)) {
2390 /* Slab management obj is off-slab. */
2391 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2392 local_flags, nodeid);
2393 if (!freelist)
2394 return NULL;
2395 } else {
2396 /* We will use last bytes at the slab for freelist */
2397 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2398 cachep->freelist_size;
2399 }
2400
2401 return freelist;
2402 }
2403
2404 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2405 {
2406 return ((freelist_idx_t *)page->freelist)[idx];
2407 }
2408
2409 static inline void set_free_obj(struct page *page,
2410 unsigned int idx, freelist_idx_t val)
2411 {
2412 ((freelist_idx_t *)(page->freelist))[idx] = val;
2413 }
2414
2415 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2416 {
2417 #if DEBUG
2418 int i;
2419
2420 for (i = 0; i < cachep->num; i++) {
2421 void *objp = index_to_obj(cachep, page, i);
2422
2423 if (cachep->flags & SLAB_STORE_USER)
2424 *dbg_userword(cachep, objp) = NULL;
2425
2426 if (cachep->flags & SLAB_RED_ZONE) {
2427 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2428 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2429 }
2430 /*
2431 * Constructors are not allowed to allocate memory from the same
2432 * cache which they are a constructor for. Otherwise, deadlock.
2433 * They must also be threaded.
2434 */
2435 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2436 kasan_unpoison_object_data(cachep,
2437 objp + obj_offset(cachep));
2438 cachep->ctor(objp + obj_offset(cachep));
2439 kasan_poison_object_data(
2440 cachep, objp + obj_offset(cachep));
2441 }
2442
2443 if (cachep->flags & SLAB_RED_ZONE) {
2444 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2445 slab_error(cachep, "constructor overwrote the end of an object");
2446 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2447 slab_error(cachep, "constructor overwrote the start of an object");
2448 }
2449 /* need to poison the objs? */
2450 if (cachep->flags & SLAB_POISON) {
2451 poison_obj(cachep, objp, POISON_FREE);
2452 slab_kernel_map(cachep, objp, 0, 0);
2453 }
2454 }
2455 #endif
2456 }
2457
2458 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2459 /* Hold information during a freelist initialization */
2460 union freelist_init_state {
2461 struct {
2462 unsigned int pos;
2463 unsigned int *list;
2464 unsigned int count;
2465 unsigned int rand;
2466 };
2467 struct rnd_state rnd_state;
2468 };
2469
2470 /*
2471 * Initialize the state based on the randomization methode available.
2472 * return true if the pre-computed list is available, false otherwize.
2473 */
2474 static bool freelist_state_initialize(union freelist_init_state *state,
2475 struct kmem_cache *cachep,
2476 unsigned int count)
2477 {
2478 bool ret;
2479 unsigned int rand;
2480
2481 /* Use best entropy available to define a random shift */
2482 rand = get_random_int();
2483
2484 /* Use a random state if the pre-computed list is not available */
2485 if (!cachep->random_seq) {
2486 prandom_seed_state(&state->rnd_state, rand);
2487 ret = false;
2488 } else {
2489 state->list = cachep->random_seq;
2490 state->count = count;
2491 state->pos = 0;
2492 state->rand = rand;
2493 ret = true;
2494 }
2495 return ret;
2496 }
2497
2498 /* Get the next entry on the list and randomize it using a random shift */
2499 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2500 {
2501 return (state->list[state->pos++] + state->rand) % state->count;
2502 }
2503
2504 /* Swap two freelist entries */
2505 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2506 {
2507 swap(((freelist_idx_t *)page->freelist)[a],
2508 ((freelist_idx_t *)page->freelist)[b]);
2509 }
2510
2511 /*
2512 * Shuffle the freelist initialization state based on pre-computed lists.
2513 * return true if the list was successfully shuffled, false otherwise.
2514 */
2515 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2516 {
2517 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2518 union freelist_init_state state;
2519 bool precomputed;
2520
2521 if (count < 2)
2522 return false;
2523
2524 precomputed = freelist_state_initialize(&state, cachep, count);
2525
2526 /* Take a random entry as the objfreelist */
2527 if (OBJFREELIST_SLAB(cachep)) {
2528 if (!precomputed)
2529 objfreelist = count - 1;
2530 else
2531 objfreelist = next_random_slot(&state);
2532 page->freelist = index_to_obj(cachep, page, objfreelist) +
2533 obj_offset(cachep);
2534 count--;
2535 }
2536
2537 /*
2538 * On early boot, generate the list dynamically.
2539 * Later use a pre-computed list for speed.
2540 */
2541 if (!precomputed) {
2542 for (i = 0; i < count; i++)
2543 set_free_obj(page, i, i);
2544
2545 /* Fisher-Yates shuffle */
2546 for (i = count - 1; i > 0; i--) {
2547 rand = prandom_u32_state(&state.rnd_state);
2548 rand %= (i + 1);
2549 swap_free_obj(page, i, rand);
2550 }
2551 } else {
2552 for (i = 0; i < count; i++)
2553 set_free_obj(page, i, next_random_slot(&state));
2554 }
2555
2556 if (OBJFREELIST_SLAB(cachep))
2557 set_free_obj(page, cachep->num - 1, objfreelist);
2558
2559 return true;
2560 }
2561 #else
2562 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2563 struct page *page)
2564 {
2565 return false;
2566 }
2567 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2568
2569 static void cache_init_objs(struct kmem_cache *cachep,
2570 struct page *page)
2571 {
2572 int i;
2573 void *objp;
2574 bool shuffled;
2575
2576 cache_init_objs_debug(cachep, page);
2577
2578 /* Try to randomize the freelist if enabled */
2579 shuffled = shuffle_freelist(cachep, page);
2580
2581 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2582 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2583 obj_offset(cachep);
2584 }
2585
2586 for (i = 0; i < cachep->num; i++) {
2587 objp = index_to_obj(cachep, page, i);
2588 kasan_init_slab_obj(cachep, objp);
2589
2590 /* constructor could break poison info */
2591 if (DEBUG == 0 && cachep->ctor) {
2592 kasan_unpoison_object_data(cachep, objp);
2593 cachep->ctor(objp);
2594 kasan_poison_object_data(cachep, objp);
2595 }
2596
2597 if (!shuffled)
2598 set_free_obj(page, i, i);
2599 }
2600 }
2601
2602 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2603 {
2604 void *objp;
2605
2606 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2607 page->active++;
2608
2609 #if DEBUG
2610 if (cachep->flags & SLAB_STORE_USER)
2611 set_store_user_dirty(cachep);
2612 #endif
2613
2614 return objp;
2615 }
2616
2617 static void slab_put_obj(struct kmem_cache *cachep,
2618 struct page *page, void *objp)
2619 {
2620 unsigned int objnr = obj_to_index(cachep, page, objp);
2621 #if DEBUG
2622 unsigned int i;
2623
2624 /* Verify double free bug */
2625 for (i = page->active; i < cachep->num; i++) {
2626 if (get_free_obj(page, i) == objnr) {
2627 pr_err("slab: double free detected in cache '%s', objp %p\n",
2628 cachep->name, objp);
2629 BUG();
2630 }
2631 }
2632 #endif
2633 page->active--;
2634 if (!page->freelist)
2635 page->freelist = objp + obj_offset(cachep);
2636
2637 set_free_obj(page, page->active, objnr);
2638 }
2639
2640 /*
2641 * Map pages beginning at addr to the given cache and slab. This is required
2642 * for the slab allocator to be able to lookup the cache and slab of a
2643 * virtual address for kfree, ksize, and slab debugging.
2644 */
2645 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2646 void *freelist)
2647 {
2648 page->slab_cache = cache;
2649 page->freelist = freelist;
2650 }
2651
2652 /*
2653 * Grow (by 1) the number of slabs within a cache. This is called by
2654 * kmem_cache_alloc() when there are no active objs left in a cache.
2655 */
2656 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2657 gfp_t flags, int nodeid)
2658 {
2659 void *freelist;
2660 size_t offset;
2661 gfp_t local_flags;
2662 int page_node;
2663 struct kmem_cache_node *n;
2664 struct page *page;
2665
2666 /*
2667 * Be lazy and only check for valid flags here, keeping it out of the
2668 * critical path in kmem_cache_alloc().
2669 */
2670 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2671 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2672 flags &= ~GFP_SLAB_BUG_MASK;
2673 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2674 invalid_mask, &invalid_mask, flags, &flags);
2675 dump_stack();
2676 }
2677 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2678
2679 check_irq_off();
2680 if (gfpflags_allow_blocking(local_flags))
2681 local_irq_enable();
2682
2683 /*
2684 * Get mem for the objs. Attempt to allocate a physical page from
2685 * 'nodeid'.
2686 */
2687 page = kmem_getpages(cachep, local_flags, nodeid);
2688 if (!page)
2689 goto failed;
2690
2691 page_node = page_to_nid(page);
2692 n = get_node(cachep, page_node);
2693
2694 /* Get colour for the slab, and cal the next value. */
2695 n->colour_next++;
2696 if (n->colour_next >= cachep->colour)
2697 n->colour_next = 0;
2698
2699 offset = n->colour_next;
2700 if (offset >= cachep->colour)
2701 offset = 0;
2702
2703 offset *= cachep->colour_off;
2704
2705 /* Get slab management. */
2706 freelist = alloc_slabmgmt(cachep, page, offset,
2707 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2708 if (OFF_SLAB(cachep) && !freelist)
2709 goto opps1;
2710
2711 slab_map_pages(cachep, page, freelist);
2712
2713 kasan_poison_slab(page);
2714 cache_init_objs(cachep, page);
2715
2716 if (gfpflags_allow_blocking(local_flags))
2717 local_irq_disable();
2718
2719 return page;
2720
2721 opps1:
2722 kmem_freepages(cachep, page);
2723 failed:
2724 if (gfpflags_allow_blocking(local_flags))
2725 local_irq_disable();
2726 return NULL;
2727 }
2728
2729 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2730 {
2731 struct kmem_cache_node *n;
2732 void *list = NULL;
2733
2734 check_irq_off();
2735
2736 if (!page)
2737 return;
2738
2739 INIT_LIST_HEAD(&page->lru);
2740 n = get_node(cachep, page_to_nid(page));
2741
2742 spin_lock(&n->list_lock);
2743 n->total_slabs++;
2744 if (!page->active) {
2745 list_add_tail(&page->lru, &(n->slabs_free));
2746 n->free_slabs++;
2747 } else
2748 fixup_slab_list(cachep, n, page, &list);
2749
2750 STATS_INC_GROWN(cachep);
2751 n->free_objects += cachep->num - page->active;
2752 spin_unlock(&n->list_lock);
2753
2754 fixup_objfreelist_debug(cachep, &list);
2755 }
2756
2757 #if DEBUG
2758
2759 /*
2760 * Perform extra freeing checks:
2761 * - detect bad pointers.
2762 * - POISON/RED_ZONE checking
2763 */
2764 static void kfree_debugcheck(const void *objp)
2765 {
2766 if (!virt_addr_valid(objp)) {
2767 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2768 (unsigned long)objp);
2769 BUG();
2770 }
2771 }
2772
2773 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2774 {
2775 unsigned long long redzone1, redzone2;
2776
2777 redzone1 = *dbg_redzone1(cache, obj);
2778 redzone2 = *dbg_redzone2(cache, obj);
2779
2780 /*
2781 * Redzone is ok.
2782 */
2783 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2784 return;
2785
2786 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2787 slab_error(cache, "double free detected");
2788 else
2789 slab_error(cache, "memory outside object was overwritten");
2790
2791 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2792 obj, redzone1, redzone2);
2793 }
2794
2795 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2796 unsigned long caller)
2797 {
2798 unsigned int objnr;
2799 struct page *page;
2800
2801 BUG_ON(virt_to_cache(objp) != cachep);
2802
2803 objp -= obj_offset(cachep);
2804 kfree_debugcheck(objp);
2805 page = virt_to_head_page(objp);
2806
2807 if (cachep->flags & SLAB_RED_ZONE) {
2808 verify_redzone_free(cachep, objp);
2809 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2810 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2811 }
2812 if (cachep->flags & SLAB_STORE_USER) {
2813 set_store_user_dirty(cachep);
2814 *dbg_userword(cachep, objp) = (void *)caller;
2815 }
2816
2817 objnr = obj_to_index(cachep, page, objp);
2818
2819 BUG_ON(objnr >= cachep->num);
2820 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2821
2822 if (cachep->flags & SLAB_POISON) {
2823 poison_obj(cachep, objp, POISON_FREE);
2824 slab_kernel_map(cachep, objp, 0, caller);
2825 }
2826 return objp;
2827 }
2828
2829 #else
2830 #define kfree_debugcheck(x) do { } while(0)
2831 #define cache_free_debugcheck(x,objp,z) (objp)
2832 #endif
2833
2834 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2835 void **list)
2836 {
2837 #if DEBUG
2838 void *next = *list;
2839 void *objp;
2840
2841 while (next) {
2842 objp = next - obj_offset(cachep);
2843 next = *(void **)next;
2844 poison_obj(cachep, objp, POISON_FREE);
2845 }
2846 #endif
2847 }
2848
2849 static inline void fixup_slab_list(struct kmem_cache *cachep,
2850 struct kmem_cache_node *n, struct page *page,
2851 void **list)
2852 {
2853 /* move slabp to correct slabp list: */
2854 list_del(&page->lru);
2855 if (page->active == cachep->num) {
2856 list_add(&page->lru, &n->slabs_full);
2857 if (OBJFREELIST_SLAB(cachep)) {
2858 #if DEBUG
2859 /* Poisoning will be done without holding the lock */
2860 if (cachep->flags & SLAB_POISON) {
2861 void **objp = page->freelist;
2862
2863 *objp = *list;
2864 *list = objp;
2865 }
2866 #endif
2867 page->freelist = NULL;
2868 }
2869 } else
2870 list_add(&page->lru, &n->slabs_partial);
2871 }
2872
2873 /* Try to find non-pfmemalloc slab if needed */
2874 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2875 struct page *page, bool pfmemalloc)
2876 {
2877 if (!page)
2878 return NULL;
2879
2880 if (pfmemalloc)
2881 return page;
2882
2883 if (!PageSlabPfmemalloc(page))
2884 return page;
2885
2886 /* No need to keep pfmemalloc slab if we have enough free objects */
2887 if (n->free_objects > n->free_limit) {
2888 ClearPageSlabPfmemalloc(page);
2889 return page;
2890 }
2891
2892 /* Move pfmemalloc slab to the end of list to speed up next search */
2893 list_del(&page->lru);
2894 if (!page->active) {
2895 list_add_tail(&page->lru, &n->slabs_free);
2896 n->free_slabs++;
2897 } else
2898 list_add_tail(&page->lru, &n->slabs_partial);
2899
2900 list_for_each_entry(page, &n->slabs_partial, lru) {
2901 if (!PageSlabPfmemalloc(page))
2902 return page;
2903 }
2904
2905 n->free_touched = 1;
2906 list_for_each_entry(page, &n->slabs_free, lru) {
2907 if (!PageSlabPfmemalloc(page)) {
2908 n->free_slabs--;
2909 return page;
2910 }
2911 }
2912
2913 return NULL;
2914 }
2915
2916 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2917 {
2918 struct page *page;
2919
2920 assert_spin_locked(&n->list_lock);
2921 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2922 if (!page) {
2923 n->free_touched = 1;
2924 page = list_first_entry_or_null(&n->slabs_free, struct page,
2925 lru);
2926 if (page)
2927 n->free_slabs--;
2928 }
2929
2930 if (sk_memalloc_socks())
2931 page = get_valid_first_slab(n, page, pfmemalloc);
2932
2933 return page;
2934 }
2935
2936 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2937 struct kmem_cache_node *n, gfp_t flags)
2938 {
2939 struct page *page;
2940 void *obj;
2941 void *list = NULL;
2942
2943 if (!gfp_pfmemalloc_allowed(flags))
2944 return NULL;
2945
2946 spin_lock(&n->list_lock);
2947 page = get_first_slab(n, true);
2948 if (!page) {
2949 spin_unlock(&n->list_lock);
2950 return NULL;
2951 }
2952
2953 obj = slab_get_obj(cachep, page);
2954 n->free_objects--;
2955
2956 fixup_slab_list(cachep, n, page, &list);
2957
2958 spin_unlock(&n->list_lock);
2959 fixup_objfreelist_debug(cachep, &list);
2960
2961 return obj;
2962 }
2963
2964 /*
2965 * Slab list should be fixed up by fixup_slab_list() for existing slab
2966 * or cache_grow_end() for new slab
2967 */
2968 static __always_inline int alloc_block(struct kmem_cache *cachep,
2969 struct array_cache *ac, struct page *page, int batchcount)
2970 {
2971 /*
2972 * There must be at least one object available for
2973 * allocation.
2974 */
2975 BUG_ON(page->active >= cachep->num);
2976
2977 while (page->active < cachep->num && batchcount--) {
2978 STATS_INC_ALLOCED(cachep);
2979 STATS_INC_ACTIVE(cachep);
2980 STATS_SET_HIGH(cachep);
2981
2982 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2983 }
2984
2985 return batchcount;
2986 }
2987
2988 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2989 {
2990 int batchcount;
2991 struct kmem_cache_node *n;
2992 struct array_cache *ac, *shared;
2993 int node;
2994 void *list = NULL;
2995 struct page *page;
2996
2997 check_irq_off();
2998 node = numa_mem_id();
2999
3000 ac = cpu_cache_get(cachep);
3001 batchcount = ac->batchcount;
3002 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3003 /*
3004 * If there was little recent activity on this cache, then
3005 * perform only a partial refill. Otherwise we could generate
3006 * refill bouncing.
3007 */
3008 batchcount = BATCHREFILL_LIMIT;
3009 }
3010 n = get_node(cachep, node);
3011
3012 BUG_ON(ac->avail > 0 || !n);
3013 shared = READ_ONCE(n->shared);
3014 if (!n->free_objects && (!shared || !shared->avail))
3015 goto direct_grow;
3016
3017 spin_lock(&n->list_lock);
3018 shared = READ_ONCE(n->shared);
3019
3020 /* See if we can refill from the shared array */
3021 if (shared && transfer_objects(ac, shared, batchcount)) {
3022 shared->touched = 1;
3023 goto alloc_done;
3024 }
3025
3026 while (batchcount > 0) {
3027 /* Get slab alloc is to come from. */
3028 page = get_first_slab(n, false);
3029 if (!page)
3030 goto must_grow;
3031
3032 check_spinlock_acquired(cachep);
3033
3034 batchcount = alloc_block(cachep, ac, page, batchcount);
3035 fixup_slab_list(cachep, n, page, &list);
3036 }
3037
3038 must_grow:
3039 n->free_objects -= ac->avail;
3040 alloc_done:
3041 spin_unlock(&n->list_lock);
3042 fixup_objfreelist_debug(cachep, &list);
3043
3044 direct_grow:
3045 if (unlikely(!ac->avail)) {
3046 /* Check if we can use obj in pfmemalloc slab */
3047 if (sk_memalloc_socks()) {
3048 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3049
3050 if (obj)
3051 return obj;
3052 }
3053
3054 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3055
3056 /*
3057 * cache_grow_begin() can reenable interrupts,
3058 * then ac could change.
3059 */
3060 ac = cpu_cache_get(cachep);
3061 if (!ac->avail && page)
3062 alloc_block(cachep, ac, page, batchcount);
3063 cache_grow_end(cachep, page);
3064
3065 if (!ac->avail)
3066 return NULL;
3067 }
3068 ac->touched = 1;
3069
3070 return ac->entry[--ac->avail];
3071 }
3072
3073 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3074 gfp_t flags)
3075 {
3076 might_sleep_if(gfpflags_allow_blocking(flags));
3077 }
3078
3079 #if DEBUG
3080 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3081 gfp_t flags, void *objp, unsigned long caller)
3082 {
3083 if (!objp)
3084 return objp;
3085 if (cachep->flags & SLAB_POISON) {
3086 check_poison_obj(cachep, objp);
3087 slab_kernel_map(cachep, objp, 1, 0);
3088 poison_obj(cachep, objp, POISON_INUSE);
3089 }
3090 if (cachep->flags & SLAB_STORE_USER)
3091 *dbg_userword(cachep, objp) = (void *)caller;
3092
3093 if (cachep->flags & SLAB_RED_ZONE) {
3094 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3095 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3096 slab_error(cachep, "double free, or memory outside object was overwritten");
3097 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3098 objp, *dbg_redzone1(cachep, objp),
3099 *dbg_redzone2(cachep, objp));
3100 }
3101 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3102 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3103 }
3104
3105 objp += obj_offset(cachep);
3106 if (cachep->ctor && cachep->flags & SLAB_POISON)
3107 cachep->ctor(objp);
3108 if (ARCH_SLAB_MINALIGN &&
3109 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3110 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3111 objp, (int)ARCH_SLAB_MINALIGN);
3112 }
3113 return objp;
3114 }
3115 #else
3116 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3117 #endif
3118
3119 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3120 {
3121 void *objp;
3122 struct array_cache *ac;
3123
3124 check_irq_off();
3125
3126 ac = cpu_cache_get(cachep);
3127 if (likely(ac->avail)) {
3128 ac->touched = 1;
3129 objp = ac->entry[--ac->avail];
3130
3131 STATS_INC_ALLOCHIT(cachep);
3132 goto out;
3133 }
3134
3135 STATS_INC_ALLOCMISS(cachep);
3136 objp = cache_alloc_refill(cachep, flags);
3137 /*
3138 * the 'ac' may be updated by cache_alloc_refill(),
3139 * and kmemleak_erase() requires its correct value.
3140 */
3141 ac = cpu_cache_get(cachep);
3142
3143 out:
3144 /*
3145 * To avoid a false negative, if an object that is in one of the
3146 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3147 * treat the array pointers as a reference to the object.
3148 */
3149 if (objp)
3150 kmemleak_erase(&ac->entry[ac->avail]);
3151 return objp;
3152 }
3153
3154 #ifdef CONFIG_NUMA
3155 /*
3156 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3157 *
3158 * If we are in_interrupt, then process context, including cpusets and
3159 * mempolicy, may not apply and should not be used for allocation policy.
3160 */
3161 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3162 {
3163 int nid_alloc, nid_here;
3164
3165 if (in_interrupt() || (flags & __GFP_THISNODE))
3166 return NULL;
3167 nid_alloc = nid_here = numa_mem_id();
3168 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3169 nid_alloc = cpuset_slab_spread_node();
3170 else if (current->mempolicy)
3171 nid_alloc = mempolicy_slab_node();
3172 if (nid_alloc != nid_here)
3173 return ____cache_alloc_node(cachep, flags, nid_alloc);
3174 return NULL;
3175 }
3176
3177 /*
3178 * Fallback function if there was no memory available and no objects on a
3179 * certain node and fall back is permitted. First we scan all the
3180 * available node for available objects. If that fails then we
3181 * perform an allocation without specifying a node. This allows the page
3182 * allocator to do its reclaim / fallback magic. We then insert the
3183 * slab into the proper nodelist and then allocate from it.
3184 */
3185 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3186 {
3187 struct zonelist *zonelist;
3188 struct zoneref *z;
3189 struct zone *zone;
3190 enum zone_type high_zoneidx = gfp_zone(flags);
3191 void *obj = NULL;
3192 struct page *page;
3193 int nid;
3194 unsigned int cpuset_mems_cookie;
3195
3196 if (flags & __GFP_THISNODE)
3197 return NULL;
3198
3199 retry_cpuset:
3200 cpuset_mems_cookie = read_mems_allowed_begin();
3201 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3202
3203 retry:
3204 /*
3205 * Look through allowed nodes for objects available
3206 * from existing per node queues.
3207 */
3208 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3209 nid = zone_to_nid(zone);
3210
3211 if (cpuset_zone_allowed(zone, flags) &&
3212 get_node(cache, nid) &&
3213 get_node(cache, nid)->free_objects) {
3214 obj = ____cache_alloc_node(cache,
3215 gfp_exact_node(flags), nid);
3216 if (obj)
3217 break;
3218 }
3219 }
3220
3221 if (!obj) {
3222 /*
3223 * This allocation will be performed within the constraints
3224 * of the current cpuset / memory policy requirements.
3225 * We may trigger various forms of reclaim on the allowed
3226 * set and go into memory reserves if necessary.
3227 */
3228 page = cache_grow_begin(cache, flags, numa_mem_id());
3229 cache_grow_end(cache, page);
3230 if (page) {
3231 nid = page_to_nid(page);
3232 obj = ____cache_alloc_node(cache,
3233 gfp_exact_node(flags), nid);
3234
3235 /*
3236 * Another processor may allocate the objects in
3237 * the slab since we are not holding any locks.
3238 */
3239 if (!obj)
3240 goto retry;
3241 }
3242 }
3243
3244 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3245 goto retry_cpuset;
3246 return obj;
3247 }
3248
3249 /*
3250 * A interface to enable slab creation on nodeid
3251 */
3252 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3253 int nodeid)
3254 {
3255 struct page *page;
3256 struct kmem_cache_node *n;
3257 void *obj = NULL;
3258 void *list = NULL;
3259
3260 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3261 n = get_node(cachep, nodeid);
3262 BUG_ON(!n);
3263
3264 check_irq_off();
3265 spin_lock(&n->list_lock);
3266 page = get_first_slab(n, false);
3267 if (!page)
3268 goto must_grow;
3269
3270 check_spinlock_acquired_node(cachep, nodeid);
3271
3272 STATS_INC_NODEALLOCS(cachep);
3273 STATS_INC_ACTIVE(cachep);
3274 STATS_SET_HIGH(cachep);
3275
3276 BUG_ON(page->active == cachep->num);
3277
3278 obj = slab_get_obj(cachep, page);
3279 n->free_objects--;
3280
3281 fixup_slab_list(cachep, n, page, &list);
3282
3283 spin_unlock(&n->list_lock);
3284 fixup_objfreelist_debug(cachep, &list);
3285 return obj;
3286
3287 must_grow:
3288 spin_unlock(&n->list_lock);
3289 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3290 if (page) {
3291 /* This slab isn't counted yet so don't update free_objects */
3292 obj = slab_get_obj(cachep, page);
3293 }
3294 cache_grow_end(cachep, page);
3295
3296 return obj ? obj : fallback_alloc(cachep, flags);
3297 }
3298
3299 static __always_inline void *
3300 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3301 unsigned long caller)
3302 {
3303 unsigned long save_flags;
3304 void *ptr;
3305 int slab_node = numa_mem_id();
3306
3307 flags &= gfp_allowed_mask;
3308 cachep = slab_pre_alloc_hook(cachep, flags);
3309 if (unlikely(!cachep))
3310 return NULL;
3311
3312 cache_alloc_debugcheck_before(cachep, flags);
3313 local_irq_save(save_flags);
3314
3315 if (nodeid == NUMA_NO_NODE)
3316 nodeid = slab_node;
3317
3318 if (unlikely(!get_node(cachep, nodeid))) {
3319 /* Node not bootstrapped yet */
3320 ptr = fallback_alloc(cachep, flags);
3321 goto out;
3322 }
3323
3324 if (nodeid == slab_node) {
3325 /*
3326 * Use the locally cached objects if possible.
3327 * However ____cache_alloc does not allow fallback
3328 * to other nodes. It may fail while we still have
3329 * objects on other nodes available.
3330 */
3331 ptr = ____cache_alloc(cachep, flags);
3332 if (ptr)
3333 goto out;
3334 }
3335 /* ___cache_alloc_node can fall back to other nodes */
3336 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3337 out:
3338 local_irq_restore(save_flags);
3339 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3340
3341 if (unlikely(flags & __GFP_ZERO) && ptr)
3342 memset(ptr, 0, cachep->object_size);
3343
3344 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3345 return ptr;
3346 }
3347
3348 static __always_inline void *
3349 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3350 {
3351 void *objp;
3352
3353 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3354 objp = alternate_node_alloc(cache, flags);
3355 if (objp)
3356 goto out;
3357 }
3358 objp = ____cache_alloc(cache, flags);
3359
3360 /*
3361 * We may just have run out of memory on the local node.
3362 * ____cache_alloc_node() knows how to locate memory on other nodes
3363 */
3364 if (!objp)
3365 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3366
3367 out:
3368 return objp;
3369 }
3370 #else
3371
3372 static __always_inline void *
3373 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3374 {
3375 return ____cache_alloc(cachep, flags);
3376 }
3377
3378 #endif /* CONFIG_NUMA */
3379
3380 static __always_inline void *
3381 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3382 {
3383 unsigned long save_flags;
3384 void *objp;
3385
3386 flags &= gfp_allowed_mask;
3387 cachep = slab_pre_alloc_hook(cachep, flags);
3388 if (unlikely(!cachep))
3389 return NULL;
3390
3391 cache_alloc_debugcheck_before(cachep, flags);
3392 local_irq_save(save_flags);
3393 objp = __do_cache_alloc(cachep, flags);
3394 local_irq_restore(save_flags);
3395 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3396 prefetchw(objp);
3397
3398 if (unlikely(flags & __GFP_ZERO) && objp)
3399 memset(objp, 0, cachep->object_size);
3400
3401 slab_post_alloc_hook(cachep, flags, 1, &objp);
3402 return objp;
3403 }
3404
3405 /*
3406 * Caller needs to acquire correct kmem_cache_node's list_lock
3407 * @list: List of detached free slabs should be freed by caller
3408 */
3409 static void free_block(struct kmem_cache *cachep, void **objpp,
3410 int nr_objects, int node, struct list_head *list)
3411 {
3412 int i;
3413 struct kmem_cache_node *n = get_node(cachep, node);
3414 struct page *page;
3415
3416 n->free_objects += nr_objects;
3417
3418 for (i = 0; i < nr_objects; i++) {
3419 void *objp;
3420 struct page *page;
3421
3422 objp = objpp[i];
3423
3424 page = virt_to_head_page(objp);
3425 list_del(&page->lru);
3426 check_spinlock_acquired_node(cachep, node);
3427 slab_put_obj(cachep, page, objp);
3428 STATS_DEC_ACTIVE(cachep);
3429
3430 /* fixup slab chains */
3431 if (page->active == 0) {
3432 list_add(&page->lru, &n->slabs_free);
3433 n->free_slabs++;
3434 } else {
3435 /* Unconditionally move a slab to the end of the
3436 * partial list on free - maximum time for the
3437 * other objects to be freed, too.
3438 */
3439 list_add_tail(&page->lru, &n->slabs_partial);
3440 }
3441 }
3442
3443 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3444 n->free_objects -= cachep->num;
3445
3446 page = list_last_entry(&n->slabs_free, struct page, lru);
3447 list_move(&page->lru, list);
3448 n->free_slabs--;
3449 n->total_slabs--;
3450 }
3451 }
3452
3453 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3454 {
3455 int batchcount;
3456 struct kmem_cache_node *n;
3457 int node = numa_mem_id();
3458 LIST_HEAD(list);
3459
3460 batchcount = ac->batchcount;
3461
3462 check_irq_off();
3463 n = get_node(cachep, node);
3464 spin_lock(&n->list_lock);
3465 if (n->shared) {
3466 struct array_cache *shared_array = n->shared;
3467 int max = shared_array->limit - shared_array->avail;
3468 if (max) {
3469 if (batchcount > max)
3470 batchcount = max;
3471 memcpy(&(shared_array->entry[shared_array->avail]),
3472 ac->entry, sizeof(void *) * batchcount);
3473 shared_array->avail += batchcount;
3474 goto free_done;
3475 }
3476 }
3477
3478 free_block(cachep, ac->entry, batchcount, node, &list);
3479 free_done:
3480 #if STATS
3481 {
3482 int i = 0;
3483 struct page *page;
3484
3485 list_for_each_entry(page, &n->slabs_free, lru) {
3486 BUG_ON(page->active);
3487
3488 i++;
3489 }
3490 STATS_SET_FREEABLE(cachep, i);
3491 }
3492 #endif
3493 spin_unlock(&n->list_lock);
3494 slabs_destroy(cachep, &list);
3495 ac->avail -= batchcount;
3496 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3497 }
3498
3499 /*
3500 * Release an obj back to its cache. If the obj has a constructed state, it must
3501 * be in this state _before_ it is released. Called with disabled ints.
3502 */
3503 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3504 unsigned long caller)
3505 {
3506 /* Put the object into the quarantine, don't touch it for now. */
3507 if (kasan_slab_free(cachep, objp))
3508 return;
3509
3510 ___cache_free(cachep, objp, caller);
3511 }
3512
3513 void ___cache_free(struct kmem_cache *cachep, void *objp,
3514 unsigned long caller)
3515 {
3516 struct array_cache *ac = cpu_cache_get(cachep);
3517
3518 check_irq_off();
3519 kmemleak_free_recursive(objp, cachep->flags);
3520 objp = cache_free_debugcheck(cachep, objp, caller);
3521
3522 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3523
3524 /*
3525 * Skip calling cache_free_alien() when the platform is not numa.
3526 * This will avoid cache misses that happen while accessing slabp (which
3527 * is per page memory reference) to get nodeid. Instead use a global
3528 * variable to skip the call, which is mostly likely to be present in
3529 * the cache.
3530 */
3531 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3532 return;
3533
3534 if (ac->avail < ac->limit) {
3535 STATS_INC_FREEHIT(cachep);
3536 } else {
3537 STATS_INC_FREEMISS(cachep);
3538 cache_flusharray(cachep, ac);
3539 }
3540
3541 if (sk_memalloc_socks()) {
3542 struct page *page = virt_to_head_page(objp);
3543
3544 if (unlikely(PageSlabPfmemalloc(page))) {
3545 cache_free_pfmemalloc(cachep, page, objp);
3546 return;
3547 }
3548 }
3549
3550 ac->entry[ac->avail++] = objp;
3551 }
3552
3553 /**
3554 * kmem_cache_alloc - Allocate an object
3555 * @cachep: The cache to allocate from.
3556 * @flags: See kmalloc().
3557 *
3558 * Allocate an object from this cache. The flags are only relevant
3559 * if the cache has no available objects.
3560 */
3561 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3562 {
3563 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3564
3565 kasan_slab_alloc(cachep, ret, flags);
3566 trace_kmem_cache_alloc(_RET_IP_, ret,
3567 cachep->object_size, cachep->size, flags);
3568
3569 return ret;
3570 }
3571 EXPORT_SYMBOL(kmem_cache_alloc);
3572
3573 static __always_inline void
3574 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3575 size_t size, void **p, unsigned long caller)
3576 {
3577 size_t i;
3578
3579 for (i = 0; i < size; i++)
3580 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3581 }
3582
3583 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3584 void **p)
3585 {
3586 size_t i;
3587
3588 s = slab_pre_alloc_hook(s, flags);
3589 if (!s)
3590 return 0;
3591
3592 cache_alloc_debugcheck_before(s, flags);
3593
3594 local_irq_disable();
3595 for (i = 0; i < size; i++) {
3596 void *objp = __do_cache_alloc(s, flags);
3597
3598 if (unlikely(!objp))
3599 goto error;
3600 p[i] = objp;
3601 }
3602 local_irq_enable();
3603
3604 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3605
3606 /* Clear memory outside IRQ disabled section */
3607 if (unlikely(flags & __GFP_ZERO))
3608 for (i = 0; i < size; i++)
3609 memset(p[i], 0, s->object_size);
3610
3611 slab_post_alloc_hook(s, flags, size, p);
3612 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3613 return size;
3614 error:
3615 local_irq_enable();
3616 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3617 slab_post_alloc_hook(s, flags, i, p);
3618 __kmem_cache_free_bulk(s, i, p);
3619 return 0;
3620 }
3621 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3622
3623 #ifdef CONFIG_TRACING
3624 void *
3625 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3626 {
3627 void *ret;
3628
3629 ret = slab_alloc(cachep, flags, _RET_IP_);
3630
3631 kasan_kmalloc(cachep, ret, size, flags);
3632 trace_kmalloc(_RET_IP_, ret,
3633 size, cachep->size, flags);
3634 return ret;
3635 }
3636 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3637 #endif
3638
3639 #ifdef CONFIG_NUMA
3640 /**
3641 * kmem_cache_alloc_node - Allocate an object on the specified node
3642 * @cachep: The cache to allocate from.
3643 * @flags: See kmalloc().
3644 * @nodeid: node number of the target node.
3645 *
3646 * Identical to kmem_cache_alloc but it will allocate memory on the given
3647 * node, which can improve the performance for cpu bound structures.
3648 *
3649 * Fallback to other node is possible if __GFP_THISNODE is not set.
3650 */
3651 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3652 {
3653 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3654
3655 kasan_slab_alloc(cachep, ret, flags);
3656 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3657 cachep->object_size, cachep->size,
3658 flags, nodeid);
3659
3660 return ret;
3661 }
3662 EXPORT_SYMBOL(kmem_cache_alloc_node);
3663
3664 #ifdef CONFIG_TRACING
3665 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3666 gfp_t flags,
3667 int nodeid,
3668 size_t size)
3669 {
3670 void *ret;
3671
3672 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3673
3674 kasan_kmalloc(cachep, ret, size, flags);
3675 trace_kmalloc_node(_RET_IP_, ret,
3676 size, cachep->size,
3677 flags, nodeid);
3678 return ret;
3679 }
3680 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3681 #endif
3682
3683 static __always_inline void *
3684 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3685 {
3686 struct kmem_cache *cachep;
3687 void *ret;
3688
3689 cachep = kmalloc_slab(size, flags);
3690 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3691 return cachep;
3692 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3693 kasan_kmalloc(cachep, ret, size, flags);
3694
3695 return ret;
3696 }
3697
3698 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3699 {
3700 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3701 }
3702 EXPORT_SYMBOL(__kmalloc_node);
3703
3704 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3705 int node, unsigned long caller)
3706 {
3707 return __do_kmalloc_node(size, flags, node, caller);
3708 }
3709 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3710 #endif /* CONFIG_NUMA */
3711
3712 /**
3713 * __do_kmalloc - allocate memory
3714 * @size: how many bytes of memory are required.
3715 * @flags: the type of memory to allocate (see kmalloc).
3716 * @caller: function caller for debug tracking of the caller
3717 */
3718 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3719 unsigned long caller)
3720 {
3721 struct kmem_cache *cachep;
3722 void *ret;
3723
3724 cachep = kmalloc_slab(size, flags);
3725 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3726 return cachep;
3727 ret = slab_alloc(cachep, flags, caller);
3728
3729 kasan_kmalloc(cachep, ret, size, flags);
3730 trace_kmalloc(caller, ret,
3731 size, cachep->size, flags);
3732
3733 return ret;
3734 }
3735
3736 void *__kmalloc(size_t size, gfp_t flags)
3737 {
3738 return __do_kmalloc(size, flags, _RET_IP_);
3739 }
3740 EXPORT_SYMBOL(__kmalloc);
3741
3742 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3743 {
3744 return __do_kmalloc(size, flags, caller);
3745 }
3746 EXPORT_SYMBOL(__kmalloc_track_caller);
3747
3748 /**
3749 * kmem_cache_free - Deallocate an object
3750 * @cachep: The cache the allocation was from.
3751 * @objp: The previously allocated object.
3752 *
3753 * Free an object which was previously allocated from this
3754 * cache.
3755 */
3756 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3757 {
3758 unsigned long flags;
3759 cachep = cache_from_obj(cachep, objp);
3760 if (!cachep)
3761 return;
3762
3763 local_irq_save(flags);
3764 debug_check_no_locks_freed(objp, cachep->object_size);
3765 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3766 debug_check_no_obj_freed(objp, cachep->object_size);
3767 __cache_free(cachep, objp, _RET_IP_);
3768 local_irq_restore(flags);
3769
3770 trace_kmem_cache_free(_RET_IP_, objp);
3771 }
3772 EXPORT_SYMBOL(kmem_cache_free);
3773
3774 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3775 {
3776 struct kmem_cache *s;
3777 size_t i;
3778
3779 local_irq_disable();
3780 for (i = 0; i < size; i++) {
3781 void *objp = p[i];
3782
3783 if (!orig_s) /* called via kfree_bulk */
3784 s = virt_to_cache(objp);
3785 else
3786 s = cache_from_obj(orig_s, objp);
3787
3788 debug_check_no_locks_freed(objp, s->object_size);
3789 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3790 debug_check_no_obj_freed(objp, s->object_size);
3791
3792 __cache_free(s, objp, _RET_IP_);
3793 }
3794 local_irq_enable();
3795
3796 /* FIXME: add tracing */
3797 }
3798 EXPORT_SYMBOL(kmem_cache_free_bulk);
3799
3800 /**
3801 * kfree - free previously allocated memory
3802 * @objp: pointer returned by kmalloc.
3803 *
3804 * If @objp is NULL, no operation is performed.
3805 *
3806 * Don't free memory not originally allocated by kmalloc()
3807 * or you will run into trouble.
3808 */
3809 void kfree(const void *objp)
3810 {
3811 struct kmem_cache *c;
3812 unsigned long flags;
3813
3814 trace_kfree(_RET_IP_, objp);
3815
3816 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3817 return;
3818 local_irq_save(flags);
3819 kfree_debugcheck(objp);
3820 c = virt_to_cache(objp);
3821 debug_check_no_locks_freed(objp, c->object_size);
3822
3823 debug_check_no_obj_freed(objp, c->object_size);
3824 __cache_free(c, (void *)objp, _RET_IP_);
3825 local_irq_restore(flags);
3826 }
3827 EXPORT_SYMBOL(kfree);
3828
3829 /*
3830 * This initializes kmem_cache_node or resizes various caches for all nodes.
3831 */
3832 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3833 {
3834 int ret;
3835 int node;
3836 struct kmem_cache_node *n;
3837
3838 for_each_online_node(node) {
3839 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3840 if (ret)
3841 goto fail;
3842
3843 }
3844
3845 return 0;
3846
3847 fail:
3848 if (!cachep->list.next) {
3849 /* Cache is not active yet. Roll back what we did */
3850 node--;
3851 while (node >= 0) {
3852 n = get_node(cachep, node);
3853 if (n) {
3854 kfree(n->shared);
3855 free_alien_cache(n->alien);
3856 kfree(n);
3857 cachep->node[node] = NULL;
3858 }
3859 node--;
3860 }
3861 }
3862 return -ENOMEM;
3863 }
3864
3865 /* Always called with the slab_mutex held */
3866 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3867 int batchcount, int shared, gfp_t gfp)
3868 {
3869 struct array_cache __percpu *cpu_cache, *prev;
3870 int cpu;
3871
3872 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3873 if (!cpu_cache)
3874 return -ENOMEM;
3875
3876 prev = cachep->cpu_cache;
3877 cachep->cpu_cache = cpu_cache;
3878 kick_all_cpus_sync();
3879
3880 check_irq_on();
3881 cachep->batchcount = batchcount;
3882 cachep->limit = limit;
3883 cachep->shared = shared;
3884
3885 if (!prev)
3886 goto setup_node;
3887
3888 for_each_online_cpu(cpu) {
3889 LIST_HEAD(list);
3890 int node;
3891 struct kmem_cache_node *n;
3892 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3893
3894 node = cpu_to_mem(cpu);
3895 n = get_node(cachep, node);
3896 spin_lock_irq(&n->list_lock);
3897 free_block(cachep, ac->entry, ac->avail, node, &list);
3898 spin_unlock_irq(&n->list_lock);
3899 slabs_destroy(cachep, &list);
3900 }
3901 free_percpu(prev);
3902
3903 setup_node:
3904 return setup_kmem_cache_nodes(cachep, gfp);
3905 }
3906
3907 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3908 int batchcount, int shared, gfp_t gfp)
3909 {
3910 int ret;
3911 struct kmem_cache *c;
3912
3913 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3914
3915 if (slab_state < FULL)
3916 return ret;
3917
3918 if ((ret < 0) || !is_root_cache(cachep))
3919 return ret;
3920
3921 lockdep_assert_held(&slab_mutex);
3922 for_each_memcg_cache(c, cachep) {
3923 /* return value determined by the root cache only */
3924 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3925 }
3926
3927 return ret;
3928 }
3929
3930 /* Called with slab_mutex held always */
3931 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3932 {
3933 int err;
3934 int limit = 0;
3935 int shared = 0;
3936 int batchcount = 0;
3937
3938 err = cache_random_seq_create(cachep, cachep->num, gfp);
3939 if (err)
3940 goto end;
3941
3942 if (!is_root_cache(cachep)) {
3943 struct kmem_cache *root = memcg_root_cache(cachep);
3944 limit = root->limit;
3945 shared = root->shared;
3946 batchcount = root->batchcount;
3947 }
3948
3949 if (limit && shared && batchcount)
3950 goto skip_setup;
3951 /*
3952 * The head array serves three purposes:
3953 * - create a LIFO ordering, i.e. return objects that are cache-warm
3954 * - reduce the number of spinlock operations.
3955 * - reduce the number of linked list operations on the slab and
3956 * bufctl chains: array operations are cheaper.
3957 * The numbers are guessed, we should auto-tune as described by
3958 * Bonwick.
3959 */
3960 if (cachep->size > 131072)
3961 limit = 1;
3962 else if (cachep->size > PAGE_SIZE)
3963 limit = 8;
3964 else if (cachep->size > 1024)
3965 limit = 24;
3966 else if (cachep->size > 256)
3967 limit = 54;
3968 else
3969 limit = 120;
3970
3971 /*
3972 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3973 * allocation behaviour: Most allocs on one cpu, most free operations
3974 * on another cpu. For these cases, an efficient object passing between
3975 * cpus is necessary. This is provided by a shared array. The array
3976 * replaces Bonwick's magazine layer.
3977 * On uniprocessor, it's functionally equivalent (but less efficient)
3978 * to a larger limit. Thus disabled by default.
3979 */
3980 shared = 0;
3981 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3982 shared = 8;
3983
3984 #if DEBUG
3985 /*
3986 * With debugging enabled, large batchcount lead to excessively long
3987 * periods with disabled local interrupts. Limit the batchcount
3988 */
3989 if (limit > 32)
3990 limit = 32;
3991 #endif
3992 batchcount = (limit + 1) / 2;
3993 skip_setup:
3994 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3995 end:
3996 if (err)
3997 pr_err("enable_cpucache failed for %s, error %d\n",
3998 cachep->name, -err);
3999 return err;
4000 }
4001
4002 /*
4003 * Drain an array if it contains any elements taking the node lock only if
4004 * necessary. Note that the node listlock also protects the array_cache
4005 * if drain_array() is used on the shared array.
4006 */
4007 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4008 struct array_cache *ac, int node)
4009 {
4010 LIST_HEAD(list);
4011
4012 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4013 check_mutex_acquired();
4014
4015 if (!ac || !ac->avail)
4016 return;
4017
4018 if (ac->touched) {
4019 ac->touched = 0;
4020 return;
4021 }
4022
4023 spin_lock_irq(&n->list_lock);
4024 drain_array_locked(cachep, ac, node, false, &list);
4025 spin_unlock_irq(&n->list_lock);
4026
4027 slabs_destroy(cachep, &list);
4028 }
4029
4030 /**
4031 * cache_reap - Reclaim memory from caches.
4032 * @w: work descriptor
4033 *
4034 * Called from workqueue/eventd every few seconds.
4035 * Purpose:
4036 * - clear the per-cpu caches for this CPU.
4037 * - return freeable pages to the main free memory pool.
4038 *
4039 * If we cannot acquire the cache chain mutex then just give up - we'll try
4040 * again on the next iteration.
4041 */
4042 static void cache_reap(struct work_struct *w)
4043 {
4044 struct kmem_cache *searchp;
4045 struct kmem_cache_node *n;
4046 int node = numa_mem_id();
4047 struct delayed_work *work = to_delayed_work(w);
4048
4049 if (!mutex_trylock(&slab_mutex))
4050 /* Give up. Setup the next iteration. */
4051 goto out;
4052
4053 list_for_each_entry(searchp, &slab_caches, list) {
4054 check_irq_on();
4055
4056 /*
4057 * We only take the node lock if absolutely necessary and we
4058 * have established with reasonable certainty that
4059 * we can do some work if the lock was obtained.
4060 */
4061 n = get_node(searchp, node);
4062
4063 reap_alien(searchp, n);
4064
4065 drain_array(searchp, n, cpu_cache_get(searchp), node);
4066
4067 /*
4068 * These are racy checks but it does not matter
4069 * if we skip one check or scan twice.
4070 */
4071 if (time_after(n->next_reap, jiffies))
4072 goto next;
4073
4074 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4075
4076 drain_array(searchp, n, n->shared, node);
4077
4078 if (n->free_touched)
4079 n->free_touched = 0;
4080 else {
4081 int freed;
4082
4083 freed = drain_freelist(searchp, n, (n->free_limit +
4084 5 * searchp->num - 1) / (5 * searchp->num));
4085 STATS_ADD_REAPED(searchp, freed);
4086 }
4087 next:
4088 cond_resched();
4089 }
4090 check_irq_on();
4091 mutex_unlock(&slab_mutex);
4092 next_reap_node();
4093 out:
4094 /* Set up the next iteration */
4095 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4096 }
4097
4098 #ifdef CONFIG_SLABINFO
4099 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4100 {
4101 unsigned long active_objs, num_objs, active_slabs;
4102 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4103 unsigned long free_slabs = 0;
4104 int node;
4105 struct kmem_cache_node *n;
4106
4107 for_each_kmem_cache_node(cachep, node, n) {
4108 check_irq_on();
4109 spin_lock_irq(&n->list_lock);
4110
4111 total_slabs += n->total_slabs;
4112 free_slabs += n->free_slabs;
4113 free_objs += n->free_objects;
4114
4115 if (n->shared)
4116 shared_avail += n->shared->avail;
4117
4118 spin_unlock_irq(&n->list_lock);
4119 }
4120 num_objs = total_slabs * cachep->num;
4121 active_slabs = total_slabs - free_slabs;
4122 active_objs = num_objs - free_objs;
4123
4124 sinfo->active_objs = active_objs;
4125 sinfo->num_objs = num_objs;
4126 sinfo->active_slabs = active_slabs;
4127 sinfo->num_slabs = total_slabs;
4128 sinfo->shared_avail = shared_avail;
4129 sinfo->limit = cachep->limit;
4130 sinfo->batchcount = cachep->batchcount;
4131 sinfo->shared = cachep->shared;
4132 sinfo->objects_per_slab = cachep->num;
4133 sinfo->cache_order = cachep->gfporder;
4134 }
4135
4136 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4137 {
4138 #if STATS
4139 { /* node stats */
4140 unsigned long high = cachep->high_mark;
4141 unsigned long allocs = cachep->num_allocations;
4142 unsigned long grown = cachep->grown;
4143 unsigned long reaped = cachep->reaped;
4144 unsigned long errors = cachep->errors;
4145 unsigned long max_freeable = cachep->max_freeable;
4146 unsigned long node_allocs = cachep->node_allocs;
4147 unsigned long node_frees = cachep->node_frees;
4148 unsigned long overflows = cachep->node_overflow;
4149
4150 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4151 allocs, high, grown,
4152 reaped, errors, max_freeable, node_allocs,
4153 node_frees, overflows);
4154 }
4155 /* cpu stats */
4156 {
4157 unsigned long allochit = atomic_read(&cachep->allochit);
4158 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4159 unsigned long freehit = atomic_read(&cachep->freehit);
4160 unsigned long freemiss = atomic_read(&cachep->freemiss);
4161
4162 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4163 allochit, allocmiss, freehit, freemiss);
4164 }
4165 #endif
4166 }
4167
4168 #define MAX_SLABINFO_WRITE 128
4169 /**
4170 * slabinfo_write - Tuning for the slab allocator
4171 * @file: unused
4172 * @buffer: user buffer
4173 * @count: data length
4174 * @ppos: unused
4175 */
4176 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4177 size_t count, loff_t *ppos)
4178 {
4179 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4180 int limit, batchcount, shared, res;
4181 struct kmem_cache *cachep;
4182
4183 if (count > MAX_SLABINFO_WRITE)
4184 return -EINVAL;
4185 if (copy_from_user(&kbuf, buffer, count))
4186 return -EFAULT;
4187 kbuf[MAX_SLABINFO_WRITE] = '\0';
4188
4189 tmp = strchr(kbuf, ' ');
4190 if (!tmp)
4191 return -EINVAL;
4192 *tmp = '\0';
4193 tmp++;
4194 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4195 return -EINVAL;
4196
4197 /* Find the cache in the chain of caches. */
4198 mutex_lock(&slab_mutex);
4199 res = -EINVAL;
4200 list_for_each_entry(cachep, &slab_caches, list) {
4201 if (!strcmp(cachep->name, kbuf)) {
4202 if (limit < 1 || batchcount < 1 ||
4203 batchcount > limit || shared < 0) {
4204 res = 0;
4205 } else {
4206 res = do_tune_cpucache(cachep, limit,
4207 batchcount, shared,
4208 GFP_KERNEL);
4209 }
4210 break;
4211 }
4212 }
4213 mutex_unlock(&slab_mutex);
4214 if (res >= 0)
4215 res = count;
4216 return res;
4217 }
4218
4219 #ifdef CONFIG_DEBUG_SLAB_LEAK
4220
4221 static inline int add_caller(unsigned long *n, unsigned long v)
4222 {
4223 unsigned long *p;
4224 int l;
4225 if (!v)
4226 return 1;
4227 l = n[1];
4228 p = n + 2;
4229 while (l) {
4230 int i = l/2;
4231 unsigned long *q = p + 2 * i;
4232 if (*q == v) {
4233 q[1]++;
4234 return 1;
4235 }
4236 if (*q > v) {
4237 l = i;
4238 } else {
4239 p = q + 2;
4240 l -= i + 1;
4241 }
4242 }
4243 if (++n[1] == n[0])
4244 return 0;
4245 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4246 p[0] = v;
4247 p[1] = 1;
4248 return 1;
4249 }
4250
4251 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4252 struct page *page)
4253 {
4254 void *p;
4255 int i, j;
4256 unsigned long v;
4257
4258 if (n[0] == n[1])
4259 return;
4260 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4261 bool active = true;
4262
4263 for (j = page->active; j < c->num; j++) {
4264 if (get_free_obj(page, j) == i) {
4265 active = false;
4266 break;
4267 }
4268 }
4269
4270 if (!active)
4271 continue;
4272
4273 /*
4274 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4275 * mapping is established when actual object allocation and
4276 * we could mistakenly access the unmapped object in the cpu
4277 * cache.
4278 */
4279 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4280 continue;
4281
4282 if (!add_caller(n, v))
4283 return;
4284 }
4285 }
4286
4287 static void show_symbol(struct seq_file *m, unsigned long address)
4288 {
4289 #ifdef CONFIG_KALLSYMS
4290 unsigned long offset, size;
4291 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4292
4293 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4294 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4295 if (modname[0])
4296 seq_printf(m, " [%s]", modname);
4297 return;
4298 }
4299 #endif
4300 seq_printf(m, "%p", (void *)address);
4301 }
4302
4303 static int leaks_show(struct seq_file *m, void *p)
4304 {
4305 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4306 struct page *page;
4307 struct kmem_cache_node *n;
4308 const char *name;
4309 unsigned long *x = m->private;
4310 int node;
4311 int i;
4312
4313 if (!(cachep->flags & SLAB_STORE_USER))
4314 return 0;
4315 if (!(cachep->flags & SLAB_RED_ZONE))
4316 return 0;
4317
4318 /*
4319 * Set store_user_clean and start to grab stored user information
4320 * for all objects on this cache. If some alloc/free requests comes
4321 * during the processing, information would be wrong so restart
4322 * whole processing.
4323 */
4324 do {
4325 set_store_user_clean(cachep);
4326 drain_cpu_caches(cachep);
4327
4328 x[1] = 0;
4329
4330 for_each_kmem_cache_node(cachep, node, n) {
4331
4332 check_irq_on();
4333 spin_lock_irq(&n->list_lock);
4334
4335 list_for_each_entry(page, &n->slabs_full, lru)
4336 handle_slab(x, cachep, page);
4337 list_for_each_entry(page, &n->slabs_partial, lru)
4338 handle_slab(x, cachep, page);
4339 spin_unlock_irq(&n->list_lock);
4340 }
4341 } while (!is_store_user_clean(cachep));
4342
4343 name = cachep->name;
4344 if (x[0] == x[1]) {
4345 /* Increase the buffer size */
4346 mutex_unlock(&slab_mutex);
4347 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4348 if (!m->private) {
4349 /* Too bad, we are really out */
4350 m->private = x;
4351 mutex_lock(&slab_mutex);
4352 return -ENOMEM;
4353 }
4354 *(unsigned long *)m->private = x[0] * 2;
4355 kfree(x);
4356 mutex_lock(&slab_mutex);
4357 /* Now make sure this entry will be retried */
4358 m->count = m->size;
4359 return 0;
4360 }
4361 for (i = 0; i < x[1]; i++) {
4362 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4363 show_symbol(m, x[2*i+2]);
4364 seq_putc(m, '\n');
4365 }
4366
4367 return 0;
4368 }
4369
4370 static const struct seq_operations slabstats_op = {
4371 .start = slab_start,
4372 .next = slab_next,
4373 .stop = slab_stop,
4374 .show = leaks_show,
4375 };
4376
4377 static int slabstats_open(struct inode *inode, struct file *file)
4378 {
4379 unsigned long *n;
4380
4381 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4382 if (!n)
4383 return -ENOMEM;
4384
4385 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4386
4387 return 0;
4388 }
4389
4390 static const struct file_operations proc_slabstats_operations = {
4391 .open = slabstats_open,
4392 .read = seq_read,
4393 .llseek = seq_lseek,
4394 .release = seq_release_private,
4395 };
4396 #endif
4397
4398 static int __init slab_proc_init(void)
4399 {
4400 #ifdef CONFIG_DEBUG_SLAB_LEAK
4401 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4402 #endif
4403 return 0;
4404 }
4405 module_init(slab_proc_init);
4406 #endif
4407
4408 #ifdef CONFIG_HARDENED_USERCOPY
4409 /*
4410 * Rejects objects that are incorrectly sized.
4411 *
4412 * Returns NULL if check passes, otherwise const char * to name of cache
4413 * to indicate an error.
4414 */
4415 const char *__check_heap_object(const void *ptr, unsigned long n,
4416 struct page *page)
4417 {
4418 struct kmem_cache *cachep;
4419 unsigned int objnr;
4420 unsigned long offset;
4421
4422 /* Find and validate object. */
4423 cachep = page->slab_cache;
4424 objnr = obj_to_index(cachep, page, (void *)ptr);
4425 BUG_ON(objnr >= cachep->num);
4426
4427 /* Find offset within object. */
4428 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4429
4430 /* Allow address range falling entirely within object size. */
4431 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4432 return NULL;
4433
4434 return cachep->name;
4435 }
4436 #endif /* CONFIG_HARDENED_USERCOPY */
4437
4438 /**
4439 * ksize - get the actual amount of memory allocated for a given object
4440 * @objp: Pointer to the object
4441 *
4442 * kmalloc may internally round up allocations and return more memory
4443 * than requested. ksize() can be used to determine the actual amount of
4444 * memory allocated. The caller may use this additional memory, even though
4445 * a smaller amount of memory was initially specified with the kmalloc call.
4446 * The caller must guarantee that objp points to a valid object previously
4447 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4448 * must not be freed during the duration of the call.
4449 */
4450 size_t ksize(const void *objp)
4451 {
4452 size_t size;
4453
4454 BUG_ON(!objp);
4455 if (unlikely(objp == ZERO_SIZE_PTR))
4456 return 0;
4457
4458 size = virt_to_cache(objp)->object_size;
4459 /* We assume that ksize callers could use the whole allocated area,
4460 * so we need to unpoison this area.
4461 */
4462 kasan_unpoison_shadow(objp, size);
4463
4464 return size;
4465 }
4466 EXPORT_SYMBOL(ksize);