]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slab.c
Move remote node draining out of slab allocators
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
113
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
117
118 /*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128 #ifdef CONFIG_DEBUG_SLAB
129 #define DEBUG 1
130 #define STATS 1
131 #define FORCED_DEBUG 1
132 #else
133 #define DEBUG 0
134 #define STATS 0
135 #define FORCED_DEBUG 0
136 #endif
137
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140
141 #ifndef cache_line_size
142 #define cache_line_size() L1_CACHE_BYTES
143 #endif
144
145 #ifndef ARCH_KMALLOC_MINALIGN
146 /*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
154 */
155 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
156 #endif
157
158 #ifndef ARCH_SLAB_MINALIGN
159 /*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166 #define ARCH_SLAB_MINALIGN 0
167 #endif
168
169 #ifndef ARCH_KMALLOC_FLAGS
170 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171 #endif
172
173 /* Legal flag mask for kmem_cache_create(). */
174 #if DEBUG
175 # define CREATE_MASK (SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177 SLAB_CACHE_DMA | \
178 SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
181 #else
182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_CACHE_DMA | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
186 #endif
187
188 /*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
207 typedef unsigned int kmem_bufctl_t;
208 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
210 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
212
213 /*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228
229 /*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245 struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
249 };
250
251 /*
252 * struct array_cache
253 *
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
275 };
276
277 /*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
280 */
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
285 };
286
287 /*
288 * The slab lists for all objects.
289 */
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
302 };
303
304 /*
305 * Need this for bootstrapping a per node allocator.
306 */
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC 1
311 #define SIZE_L3 (1 + MAX_NUMNODES)
312
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
317 static int enable_cpucache(struct kmem_cache *cachep);
318 static void cache_reap(struct work_struct *unused);
319
320 /*
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 */
324 static __always_inline int index_of(const size_t size)
325 {
326 extern void __bad_size(void);
327
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331 #define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336 #include "linux/kmalloc_sizes.h"
337 #undef CACHE
338 __bad_size();
339 } else
340 __bad_size();
341 return 0;
342 }
343
344 static int slab_early_init = 1;
345
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
349 static void kmem_list3_init(struct kmem_list3 *parent)
350 {
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
356 parent->colour_next = 0;
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360 }
361
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
366 } while (0)
367
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
374
375 /*
376 * struct kmem_cache
377 *
378 * manages a cache.
379 */
380
381 struct kmem_cache {
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache *array[NR_CPUS];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
388
389 unsigned int buffer_size;
390 u32 reciprocal_buffer_size;
391 /* 3) touched by every alloc & free from the backend */
392
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
395
396 /* 4) cache_grow/shrink */
397 /* order of pgs per slab (2^n) */
398 unsigned int gfporder;
399
400 /* force GFP flags, e.g. GFP_DMA */
401 gfp_t gfpflags;
402
403 size_t colour; /* cache colouring range */
404 unsigned int colour_off; /* colour offset */
405 struct kmem_cache *slabp_cache;
406 unsigned int slab_size;
407 unsigned int dflags; /* dynamic flags */
408
409 /* constructor func */
410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
411
412 /* de-constructor func */
413 void (*dtor) (void *, struct kmem_cache *, unsigned long);
414
415 /* 5) cache creation/removal */
416 const char *name;
417 struct list_head next;
418
419 /* 6) statistics */
420 #if STATS
421 unsigned long num_active;
422 unsigned long num_allocations;
423 unsigned long high_mark;
424 unsigned long grown;
425 unsigned long reaped;
426 unsigned long errors;
427 unsigned long max_freeable;
428 unsigned long node_allocs;
429 unsigned long node_frees;
430 unsigned long node_overflow;
431 atomic_t allochit;
432 atomic_t allocmiss;
433 atomic_t freehit;
434 atomic_t freemiss;
435 #endif
436 #if DEBUG
437 /*
438 * If debugging is enabled, then the allocator can add additional
439 * fields and/or padding to every object. buffer_size contains the total
440 * object size including these internal fields, the following two
441 * variables contain the offset to the user object and its size.
442 */
443 int obj_offset;
444 int obj_size;
445 #endif
446 /*
447 * We put nodelists[] at the end of kmem_cache, because we want to size
448 * this array to nr_node_ids slots instead of MAX_NUMNODES
449 * (see kmem_cache_init())
450 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
451 * is statically defined, so we reserve the max number of nodes.
452 */
453 struct kmem_list3 *nodelists[MAX_NUMNODES];
454 /*
455 * Do not add fields after nodelists[]
456 */
457 };
458
459 #define CFLGS_OFF_SLAB (0x80000000UL)
460 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
461
462 #define BATCHREFILL_LIMIT 16
463 /*
464 * Optimization question: fewer reaps means less probability for unnessary
465 * cpucache drain/refill cycles.
466 *
467 * OTOH the cpuarrays can contain lots of objects,
468 * which could lock up otherwise freeable slabs.
469 */
470 #define REAPTIMEOUT_CPUC (2*HZ)
471 #define REAPTIMEOUT_LIST3 (4*HZ)
472
473 #if STATS
474 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
475 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
476 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
477 #define STATS_INC_GROWN(x) ((x)->grown++)
478 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
479 #define STATS_SET_HIGH(x) \
480 do { \
481 if ((x)->num_active > (x)->high_mark) \
482 (x)->high_mark = (x)->num_active; \
483 } while (0)
484 #define STATS_INC_ERR(x) ((x)->errors++)
485 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
486 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
487 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
488 #define STATS_SET_FREEABLE(x, i) \
489 do { \
490 if ((x)->max_freeable < i) \
491 (x)->max_freeable = i; \
492 } while (0)
493 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
494 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
495 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
496 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
497 #else
498 #define STATS_INC_ACTIVE(x) do { } while (0)
499 #define STATS_DEC_ACTIVE(x) do { } while (0)
500 #define STATS_INC_ALLOCED(x) do { } while (0)
501 #define STATS_INC_GROWN(x) do { } while (0)
502 #define STATS_ADD_REAPED(x,y) do { } while (0)
503 #define STATS_SET_HIGH(x) do { } while (0)
504 #define STATS_INC_ERR(x) do { } while (0)
505 #define STATS_INC_NODEALLOCS(x) do { } while (0)
506 #define STATS_INC_NODEFREES(x) do { } while (0)
507 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
508 #define STATS_SET_FREEABLE(x, i) do { } while (0)
509 #define STATS_INC_ALLOCHIT(x) do { } while (0)
510 #define STATS_INC_ALLOCMISS(x) do { } while (0)
511 #define STATS_INC_FREEHIT(x) do { } while (0)
512 #define STATS_INC_FREEMISS(x) do { } while (0)
513 #endif
514
515 #if DEBUG
516
517 /*
518 * memory layout of objects:
519 * 0 : objp
520 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
521 * the end of an object is aligned with the end of the real
522 * allocation. Catches writes behind the end of the allocation.
523 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
524 * redzone word.
525 * cachep->obj_offset: The real object.
526 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
527 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
528 * [BYTES_PER_WORD long]
529 */
530 static int obj_offset(struct kmem_cache *cachep)
531 {
532 return cachep->obj_offset;
533 }
534
535 static int obj_size(struct kmem_cache *cachep)
536 {
537 return cachep->obj_size;
538 }
539
540 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
541 {
542 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
543 return (unsigned long long*) (objp + obj_offset(cachep) -
544 sizeof(unsigned long long));
545 }
546
547 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
548 {
549 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
550 if (cachep->flags & SLAB_STORE_USER)
551 return (unsigned long long *)(objp + cachep->buffer_size -
552 sizeof(unsigned long long) -
553 BYTES_PER_WORD);
554 return (unsigned long long *) (objp + cachep->buffer_size -
555 sizeof(unsigned long long));
556 }
557
558 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
559 {
560 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
561 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
562 }
563
564 #else
565
566 #define obj_offset(x) 0
567 #define obj_size(cachep) (cachep->buffer_size)
568 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
569 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
570 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
571
572 #endif
573
574 /*
575 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
576 * order.
577 */
578 #if defined(CONFIG_LARGE_ALLOCS)
579 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
580 #define MAX_GFP_ORDER 13 /* up to 32Mb */
581 #elif defined(CONFIG_MMU)
582 #define MAX_OBJ_ORDER 5 /* 32 pages */
583 #define MAX_GFP_ORDER 5 /* 32 pages */
584 #else
585 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
586 #define MAX_GFP_ORDER 8 /* up to 1Mb */
587 #endif
588
589 /*
590 * Do not go above this order unless 0 objects fit into the slab.
591 */
592 #define BREAK_GFP_ORDER_HI 1
593 #define BREAK_GFP_ORDER_LO 0
594 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
595
596 /*
597 * Functions for storing/retrieving the cachep and or slab from the page
598 * allocator. These are used to find the slab an obj belongs to. With kfree(),
599 * these are used to find the cache which an obj belongs to.
600 */
601 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
602 {
603 page->lru.next = (struct list_head *)cache;
604 }
605
606 static inline struct kmem_cache *page_get_cache(struct page *page)
607 {
608 page = compound_head(page);
609 BUG_ON(!PageSlab(page));
610 return (struct kmem_cache *)page->lru.next;
611 }
612
613 static inline void page_set_slab(struct page *page, struct slab *slab)
614 {
615 page->lru.prev = (struct list_head *)slab;
616 }
617
618 static inline struct slab *page_get_slab(struct page *page)
619 {
620 BUG_ON(!PageSlab(page));
621 return (struct slab *)page->lru.prev;
622 }
623
624 static inline struct kmem_cache *virt_to_cache(const void *obj)
625 {
626 struct page *page = virt_to_head_page(obj);
627 return page_get_cache(page);
628 }
629
630 static inline struct slab *virt_to_slab(const void *obj)
631 {
632 struct page *page = virt_to_head_page(obj);
633 return page_get_slab(page);
634 }
635
636 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
637 unsigned int idx)
638 {
639 return slab->s_mem + cache->buffer_size * idx;
640 }
641
642 /*
643 * We want to avoid an expensive divide : (offset / cache->buffer_size)
644 * Using the fact that buffer_size is a constant for a particular cache,
645 * we can replace (offset / cache->buffer_size) by
646 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
647 */
648 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
649 const struct slab *slab, void *obj)
650 {
651 u32 offset = (obj - slab->s_mem);
652 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
653 }
654
655 /*
656 * These are the default caches for kmalloc. Custom caches can have other sizes.
657 */
658 struct cache_sizes malloc_sizes[] = {
659 #define CACHE(x) { .cs_size = (x) },
660 #include <linux/kmalloc_sizes.h>
661 CACHE(ULONG_MAX)
662 #undef CACHE
663 };
664 EXPORT_SYMBOL(malloc_sizes);
665
666 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
667 struct cache_names {
668 char *name;
669 char *name_dma;
670 };
671
672 static struct cache_names __initdata cache_names[] = {
673 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
674 #include <linux/kmalloc_sizes.h>
675 {NULL,}
676 #undef CACHE
677 };
678
679 static struct arraycache_init initarray_cache __initdata =
680 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
681 static struct arraycache_init initarray_generic =
682 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
683
684 /* internal cache of cache description objs */
685 static struct kmem_cache cache_cache = {
686 .batchcount = 1,
687 .limit = BOOT_CPUCACHE_ENTRIES,
688 .shared = 1,
689 .buffer_size = sizeof(struct kmem_cache),
690 .name = "kmem_cache",
691 };
692
693 #define BAD_ALIEN_MAGIC 0x01020304ul
694
695 #ifdef CONFIG_LOCKDEP
696
697 /*
698 * Slab sometimes uses the kmalloc slabs to store the slab headers
699 * for other slabs "off slab".
700 * The locking for this is tricky in that it nests within the locks
701 * of all other slabs in a few places; to deal with this special
702 * locking we put on-slab caches into a separate lock-class.
703 *
704 * We set lock class for alien array caches which are up during init.
705 * The lock annotation will be lost if all cpus of a node goes down and
706 * then comes back up during hotplug
707 */
708 static struct lock_class_key on_slab_l3_key;
709 static struct lock_class_key on_slab_alc_key;
710
711 static inline void init_lock_keys(void)
712
713 {
714 int q;
715 struct cache_sizes *s = malloc_sizes;
716
717 while (s->cs_size != ULONG_MAX) {
718 for_each_node(q) {
719 struct array_cache **alc;
720 int r;
721 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
722 if (!l3 || OFF_SLAB(s->cs_cachep))
723 continue;
724 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
725 alc = l3->alien;
726 /*
727 * FIXME: This check for BAD_ALIEN_MAGIC
728 * should go away when common slab code is taught to
729 * work even without alien caches.
730 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
731 * for alloc_alien_cache,
732 */
733 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
734 continue;
735 for_each_node(r) {
736 if (alc[r])
737 lockdep_set_class(&alc[r]->lock,
738 &on_slab_alc_key);
739 }
740 }
741 s++;
742 }
743 }
744 #else
745 static inline void init_lock_keys(void)
746 {
747 }
748 #endif
749
750 /*
751 * 1. Guard access to the cache-chain.
752 * 2. Protect sanity of cpu_online_map against cpu hotplug events
753 */
754 static DEFINE_MUTEX(cache_chain_mutex);
755 static struct list_head cache_chain;
756
757 /*
758 * chicken and egg problem: delay the per-cpu array allocation
759 * until the general caches are up.
760 */
761 static enum {
762 NONE,
763 PARTIAL_AC,
764 PARTIAL_L3,
765 FULL
766 } g_cpucache_up;
767
768 /*
769 * used by boot code to determine if it can use slab based allocator
770 */
771 int slab_is_available(void)
772 {
773 return g_cpucache_up == FULL;
774 }
775
776 static DEFINE_PER_CPU(struct delayed_work, reap_work);
777
778 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
779 {
780 return cachep->array[smp_processor_id()];
781 }
782
783 static inline struct kmem_cache *__find_general_cachep(size_t size,
784 gfp_t gfpflags)
785 {
786 struct cache_sizes *csizep = malloc_sizes;
787
788 #if DEBUG
789 /* This happens if someone tries to call
790 * kmem_cache_create(), or __kmalloc(), before
791 * the generic caches are initialized.
792 */
793 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
794 #endif
795 while (size > csizep->cs_size)
796 csizep++;
797
798 /*
799 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
800 * has cs_{dma,}cachep==NULL. Thus no special case
801 * for large kmalloc calls required.
802 */
803 #ifdef CONFIG_ZONE_DMA
804 if (unlikely(gfpflags & GFP_DMA))
805 return csizep->cs_dmacachep;
806 #endif
807 return csizep->cs_cachep;
808 }
809
810 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
811 {
812 return __find_general_cachep(size, gfpflags);
813 }
814
815 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
816 {
817 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
818 }
819
820 /*
821 * Calculate the number of objects and left-over bytes for a given buffer size.
822 */
823 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
824 size_t align, int flags, size_t *left_over,
825 unsigned int *num)
826 {
827 int nr_objs;
828 size_t mgmt_size;
829 size_t slab_size = PAGE_SIZE << gfporder;
830
831 /*
832 * The slab management structure can be either off the slab or
833 * on it. For the latter case, the memory allocated for a
834 * slab is used for:
835 *
836 * - The struct slab
837 * - One kmem_bufctl_t for each object
838 * - Padding to respect alignment of @align
839 * - @buffer_size bytes for each object
840 *
841 * If the slab management structure is off the slab, then the
842 * alignment will already be calculated into the size. Because
843 * the slabs are all pages aligned, the objects will be at the
844 * correct alignment when allocated.
845 */
846 if (flags & CFLGS_OFF_SLAB) {
847 mgmt_size = 0;
848 nr_objs = slab_size / buffer_size;
849
850 if (nr_objs > SLAB_LIMIT)
851 nr_objs = SLAB_LIMIT;
852 } else {
853 /*
854 * Ignore padding for the initial guess. The padding
855 * is at most @align-1 bytes, and @buffer_size is at
856 * least @align. In the worst case, this result will
857 * be one greater than the number of objects that fit
858 * into the memory allocation when taking the padding
859 * into account.
860 */
861 nr_objs = (slab_size - sizeof(struct slab)) /
862 (buffer_size + sizeof(kmem_bufctl_t));
863
864 /*
865 * This calculated number will be either the right
866 * amount, or one greater than what we want.
867 */
868 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
869 > slab_size)
870 nr_objs--;
871
872 if (nr_objs > SLAB_LIMIT)
873 nr_objs = SLAB_LIMIT;
874
875 mgmt_size = slab_mgmt_size(nr_objs, align);
876 }
877 *num = nr_objs;
878 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
879 }
880
881 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
882
883 static void __slab_error(const char *function, struct kmem_cache *cachep,
884 char *msg)
885 {
886 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
887 function, cachep->name, msg);
888 dump_stack();
889 }
890
891 /*
892 * By default on NUMA we use alien caches to stage the freeing of
893 * objects allocated from other nodes. This causes massive memory
894 * inefficiencies when using fake NUMA setup to split memory into a
895 * large number of small nodes, so it can be disabled on the command
896 * line
897 */
898
899 static int use_alien_caches __read_mostly = 1;
900 static int __init noaliencache_setup(char *s)
901 {
902 use_alien_caches = 0;
903 return 1;
904 }
905 __setup("noaliencache", noaliencache_setup);
906
907 #ifdef CONFIG_NUMA
908 /*
909 * Special reaping functions for NUMA systems called from cache_reap().
910 * These take care of doing round robin flushing of alien caches (containing
911 * objects freed on different nodes from which they were allocated) and the
912 * flushing of remote pcps by calling drain_node_pages.
913 */
914 static DEFINE_PER_CPU(unsigned long, reap_node);
915
916 static void init_reap_node(int cpu)
917 {
918 int node;
919
920 node = next_node(cpu_to_node(cpu), node_online_map);
921 if (node == MAX_NUMNODES)
922 node = first_node(node_online_map);
923
924 per_cpu(reap_node, cpu) = node;
925 }
926
927 static void next_reap_node(void)
928 {
929 int node = __get_cpu_var(reap_node);
930
931 node = next_node(node, node_online_map);
932 if (unlikely(node >= MAX_NUMNODES))
933 node = first_node(node_online_map);
934 __get_cpu_var(reap_node) = node;
935 }
936
937 #else
938 #define init_reap_node(cpu) do { } while (0)
939 #define next_reap_node(void) do { } while (0)
940 #endif
941
942 /*
943 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
944 * via the workqueue/eventd.
945 * Add the CPU number into the expiration time to minimize the possibility of
946 * the CPUs getting into lockstep and contending for the global cache chain
947 * lock.
948 */
949 static void __devinit start_cpu_timer(int cpu)
950 {
951 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
952
953 /*
954 * When this gets called from do_initcalls via cpucache_init(),
955 * init_workqueues() has already run, so keventd will be setup
956 * at that time.
957 */
958 if (keventd_up() && reap_work->work.func == NULL) {
959 init_reap_node(cpu);
960 INIT_DELAYED_WORK(reap_work, cache_reap);
961 schedule_delayed_work_on(cpu, reap_work,
962 __round_jiffies_relative(HZ, cpu));
963 }
964 }
965
966 static struct array_cache *alloc_arraycache(int node, int entries,
967 int batchcount)
968 {
969 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
970 struct array_cache *nc = NULL;
971
972 nc = kmalloc_node(memsize, GFP_KERNEL, node);
973 if (nc) {
974 nc->avail = 0;
975 nc->limit = entries;
976 nc->batchcount = batchcount;
977 nc->touched = 0;
978 spin_lock_init(&nc->lock);
979 }
980 return nc;
981 }
982
983 /*
984 * Transfer objects in one arraycache to another.
985 * Locking must be handled by the caller.
986 *
987 * Return the number of entries transferred.
988 */
989 static int transfer_objects(struct array_cache *to,
990 struct array_cache *from, unsigned int max)
991 {
992 /* Figure out how many entries to transfer */
993 int nr = min(min(from->avail, max), to->limit - to->avail);
994
995 if (!nr)
996 return 0;
997
998 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
999 sizeof(void *) *nr);
1000
1001 from->avail -= nr;
1002 to->avail += nr;
1003 to->touched = 1;
1004 return nr;
1005 }
1006
1007 #ifndef CONFIG_NUMA
1008
1009 #define drain_alien_cache(cachep, alien) do { } while (0)
1010 #define reap_alien(cachep, l3) do { } while (0)
1011
1012 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1013 {
1014 return (struct array_cache **)BAD_ALIEN_MAGIC;
1015 }
1016
1017 static inline void free_alien_cache(struct array_cache **ac_ptr)
1018 {
1019 }
1020
1021 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1022 {
1023 return 0;
1024 }
1025
1026 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1027 gfp_t flags)
1028 {
1029 return NULL;
1030 }
1031
1032 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1033 gfp_t flags, int nodeid)
1034 {
1035 return NULL;
1036 }
1037
1038 #else /* CONFIG_NUMA */
1039
1040 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1041 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1042
1043 static struct array_cache **alloc_alien_cache(int node, int limit)
1044 {
1045 struct array_cache **ac_ptr;
1046 int memsize = sizeof(void *) * nr_node_ids;
1047 int i;
1048
1049 if (limit > 1)
1050 limit = 12;
1051 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1052 if (ac_ptr) {
1053 for_each_node(i) {
1054 if (i == node || !node_online(i)) {
1055 ac_ptr[i] = NULL;
1056 continue;
1057 }
1058 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1059 if (!ac_ptr[i]) {
1060 for (i--; i <= 0; i--)
1061 kfree(ac_ptr[i]);
1062 kfree(ac_ptr);
1063 return NULL;
1064 }
1065 }
1066 }
1067 return ac_ptr;
1068 }
1069
1070 static void free_alien_cache(struct array_cache **ac_ptr)
1071 {
1072 int i;
1073
1074 if (!ac_ptr)
1075 return;
1076 for_each_node(i)
1077 kfree(ac_ptr[i]);
1078 kfree(ac_ptr);
1079 }
1080
1081 static void __drain_alien_cache(struct kmem_cache *cachep,
1082 struct array_cache *ac, int node)
1083 {
1084 struct kmem_list3 *rl3 = cachep->nodelists[node];
1085
1086 if (ac->avail) {
1087 spin_lock(&rl3->list_lock);
1088 /*
1089 * Stuff objects into the remote nodes shared array first.
1090 * That way we could avoid the overhead of putting the objects
1091 * into the free lists and getting them back later.
1092 */
1093 if (rl3->shared)
1094 transfer_objects(rl3->shared, ac, ac->limit);
1095
1096 free_block(cachep, ac->entry, ac->avail, node);
1097 ac->avail = 0;
1098 spin_unlock(&rl3->list_lock);
1099 }
1100 }
1101
1102 /*
1103 * Called from cache_reap() to regularly drain alien caches round robin.
1104 */
1105 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1106 {
1107 int node = __get_cpu_var(reap_node);
1108
1109 if (l3->alien) {
1110 struct array_cache *ac = l3->alien[node];
1111
1112 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1113 __drain_alien_cache(cachep, ac, node);
1114 spin_unlock_irq(&ac->lock);
1115 }
1116 }
1117 }
1118
1119 static void drain_alien_cache(struct kmem_cache *cachep,
1120 struct array_cache **alien)
1121 {
1122 int i = 0;
1123 struct array_cache *ac;
1124 unsigned long flags;
1125
1126 for_each_online_node(i) {
1127 ac = alien[i];
1128 if (ac) {
1129 spin_lock_irqsave(&ac->lock, flags);
1130 __drain_alien_cache(cachep, ac, i);
1131 spin_unlock_irqrestore(&ac->lock, flags);
1132 }
1133 }
1134 }
1135
1136 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1137 {
1138 struct slab *slabp = virt_to_slab(objp);
1139 int nodeid = slabp->nodeid;
1140 struct kmem_list3 *l3;
1141 struct array_cache *alien = NULL;
1142 int node;
1143
1144 node = numa_node_id();
1145
1146 /*
1147 * Make sure we are not freeing a object from another node to the array
1148 * cache on this cpu.
1149 */
1150 if (likely(slabp->nodeid == node))
1151 return 0;
1152
1153 l3 = cachep->nodelists[node];
1154 STATS_INC_NODEFREES(cachep);
1155 if (l3->alien && l3->alien[nodeid]) {
1156 alien = l3->alien[nodeid];
1157 spin_lock(&alien->lock);
1158 if (unlikely(alien->avail == alien->limit)) {
1159 STATS_INC_ACOVERFLOW(cachep);
1160 __drain_alien_cache(cachep, alien, nodeid);
1161 }
1162 alien->entry[alien->avail++] = objp;
1163 spin_unlock(&alien->lock);
1164 } else {
1165 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1166 free_block(cachep, &objp, 1, nodeid);
1167 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1168 }
1169 return 1;
1170 }
1171 #endif
1172
1173 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1174 unsigned long action, void *hcpu)
1175 {
1176 long cpu = (long)hcpu;
1177 struct kmem_cache *cachep;
1178 struct kmem_list3 *l3 = NULL;
1179 int node = cpu_to_node(cpu);
1180 int memsize = sizeof(struct kmem_list3);
1181
1182 switch (action) {
1183 case CPU_LOCK_ACQUIRE:
1184 mutex_lock(&cache_chain_mutex);
1185 break;
1186 case CPU_UP_PREPARE:
1187 case CPU_UP_PREPARE_FROZEN:
1188 /*
1189 * We need to do this right in the beginning since
1190 * alloc_arraycache's are going to use this list.
1191 * kmalloc_node allows us to add the slab to the right
1192 * kmem_list3 and not this cpu's kmem_list3
1193 */
1194
1195 list_for_each_entry(cachep, &cache_chain, next) {
1196 /*
1197 * Set up the size64 kmemlist for cpu before we can
1198 * begin anything. Make sure some other cpu on this
1199 * node has not already allocated this
1200 */
1201 if (!cachep->nodelists[node]) {
1202 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1203 if (!l3)
1204 goto bad;
1205 kmem_list3_init(l3);
1206 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1207 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1208
1209 /*
1210 * The l3s don't come and go as CPUs come and
1211 * go. cache_chain_mutex is sufficient
1212 * protection here.
1213 */
1214 cachep->nodelists[node] = l3;
1215 }
1216
1217 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1218 cachep->nodelists[node]->free_limit =
1219 (1 + nr_cpus_node(node)) *
1220 cachep->batchcount + cachep->num;
1221 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1222 }
1223
1224 /*
1225 * Now we can go ahead with allocating the shared arrays and
1226 * array caches
1227 */
1228 list_for_each_entry(cachep, &cache_chain, next) {
1229 struct array_cache *nc;
1230 struct array_cache *shared = NULL;
1231 struct array_cache **alien = NULL;
1232
1233 nc = alloc_arraycache(node, cachep->limit,
1234 cachep->batchcount);
1235 if (!nc)
1236 goto bad;
1237 if (cachep->shared) {
1238 shared = alloc_arraycache(node,
1239 cachep->shared * cachep->batchcount,
1240 0xbaadf00d);
1241 if (!shared)
1242 goto bad;
1243 }
1244 if (use_alien_caches) {
1245 alien = alloc_alien_cache(node, cachep->limit);
1246 if (!alien)
1247 goto bad;
1248 }
1249 cachep->array[cpu] = nc;
1250 l3 = cachep->nodelists[node];
1251 BUG_ON(!l3);
1252
1253 spin_lock_irq(&l3->list_lock);
1254 if (!l3->shared) {
1255 /*
1256 * We are serialised from CPU_DEAD or
1257 * CPU_UP_CANCELLED by the cpucontrol lock
1258 */
1259 l3->shared = shared;
1260 shared = NULL;
1261 }
1262 #ifdef CONFIG_NUMA
1263 if (!l3->alien) {
1264 l3->alien = alien;
1265 alien = NULL;
1266 }
1267 #endif
1268 spin_unlock_irq(&l3->list_lock);
1269 kfree(shared);
1270 free_alien_cache(alien);
1271 }
1272 break;
1273 case CPU_ONLINE:
1274 case CPU_ONLINE_FROZEN:
1275 start_cpu_timer(cpu);
1276 break;
1277 #ifdef CONFIG_HOTPLUG_CPU
1278 case CPU_DOWN_PREPARE:
1279 case CPU_DOWN_PREPARE_FROZEN:
1280 /*
1281 * Shutdown cache reaper. Note that the cache_chain_mutex is
1282 * held so that if cache_reap() is invoked it cannot do
1283 * anything expensive but will only modify reap_work
1284 * and reschedule the timer.
1285 */
1286 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1287 /* Now the cache_reaper is guaranteed to be not running. */
1288 per_cpu(reap_work, cpu).work.func = NULL;
1289 break;
1290 case CPU_DOWN_FAILED:
1291 case CPU_DOWN_FAILED_FROZEN:
1292 start_cpu_timer(cpu);
1293 break;
1294 case CPU_DEAD:
1295 case CPU_DEAD_FROZEN:
1296 /*
1297 * Even if all the cpus of a node are down, we don't free the
1298 * kmem_list3 of any cache. This to avoid a race between
1299 * cpu_down, and a kmalloc allocation from another cpu for
1300 * memory from the node of the cpu going down. The list3
1301 * structure is usually allocated from kmem_cache_create() and
1302 * gets destroyed at kmem_cache_destroy().
1303 */
1304 /* fall thru */
1305 #endif
1306 case CPU_UP_CANCELED:
1307 case CPU_UP_CANCELED_FROZEN:
1308 list_for_each_entry(cachep, &cache_chain, next) {
1309 struct array_cache *nc;
1310 struct array_cache *shared;
1311 struct array_cache **alien;
1312 cpumask_t mask;
1313
1314 mask = node_to_cpumask(node);
1315 /* cpu is dead; no one can alloc from it. */
1316 nc = cachep->array[cpu];
1317 cachep->array[cpu] = NULL;
1318 l3 = cachep->nodelists[node];
1319
1320 if (!l3)
1321 goto free_array_cache;
1322
1323 spin_lock_irq(&l3->list_lock);
1324
1325 /* Free limit for this kmem_list3 */
1326 l3->free_limit -= cachep->batchcount;
1327 if (nc)
1328 free_block(cachep, nc->entry, nc->avail, node);
1329
1330 if (!cpus_empty(mask)) {
1331 spin_unlock_irq(&l3->list_lock);
1332 goto free_array_cache;
1333 }
1334
1335 shared = l3->shared;
1336 if (shared) {
1337 free_block(cachep, shared->entry,
1338 shared->avail, node);
1339 l3->shared = NULL;
1340 }
1341
1342 alien = l3->alien;
1343 l3->alien = NULL;
1344
1345 spin_unlock_irq(&l3->list_lock);
1346
1347 kfree(shared);
1348 if (alien) {
1349 drain_alien_cache(cachep, alien);
1350 free_alien_cache(alien);
1351 }
1352 free_array_cache:
1353 kfree(nc);
1354 }
1355 /*
1356 * In the previous loop, all the objects were freed to
1357 * the respective cache's slabs, now we can go ahead and
1358 * shrink each nodelist to its limit.
1359 */
1360 list_for_each_entry(cachep, &cache_chain, next) {
1361 l3 = cachep->nodelists[node];
1362 if (!l3)
1363 continue;
1364 drain_freelist(cachep, l3, l3->free_objects);
1365 }
1366 break;
1367 case CPU_LOCK_RELEASE:
1368 mutex_unlock(&cache_chain_mutex);
1369 break;
1370 }
1371 return NOTIFY_OK;
1372 bad:
1373 return NOTIFY_BAD;
1374 }
1375
1376 static struct notifier_block __cpuinitdata cpucache_notifier = {
1377 &cpuup_callback, NULL, 0
1378 };
1379
1380 /*
1381 * swap the static kmem_list3 with kmalloced memory
1382 */
1383 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1384 int nodeid)
1385 {
1386 struct kmem_list3 *ptr;
1387
1388 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1389 BUG_ON(!ptr);
1390
1391 local_irq_disable();
1392 memcpy(ptr, list, sizeof(struct kmem_list3));
1393 /*
1394 * Do not assume that spinlocks can be initialized via memcpy:
1395 */
1396 spin_lock_init(&ptr->list_lock);
1397
1398 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1399 cachep->nodelists[nodeid] = ptr;
1400 local_irq_enable();
1401 }
1402
1403 /*
1404 * Initialisation. Called after the page allocator have been initialised and
1405 * before smp_init().
1406 */
1407 void __init kmem_cache_init(void)
1408 {
1409 size_t left_over;
1410 struct cache_sizes *sizes;
1411 struct cache_names *names;
1412 int i;
1413 int order;
1414 int node;
1415
1416 if (num_possible_nodes() == 1)
1417 use_alien_caches = 0;
1418
1419 for (i = 0; i < NUM_INIT_LISTS; i++) {
1420 kmem_list3_init(&initkmem_list3[i]);
1421 if (i < MAX_NUMNODES)
1422 cache_cache.nodelists[i] = NULL;
1423 }
1424
1425 /*
1426 * Fragmentation resistance on low memory - only use bigger
1427 * page orders on machines with more than 32MB of memory.
1428 */
1429 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1430 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1431
1432 /* Bootstrap is tricky, because several objects are allocated
1433 * from caches that do not exist yet:
1434 * 1) initialize the cache_cache cache: it contains the struct
1435 * kmem_cache structures of all caches, except cache_cache itself:
1436 * cache_cache is statically allocated.
1437 * Initially an __init data area is used for the head array and the
1438 * kmem_list3 structures, it's replaced with a kmalloc allocated
1439 * array at the end of the bootstrap.
1440 * 2) Create the first kmalloc cache.
1441 * The struct kmem_cache for the new cache is allocated normally.
1442 * An __init data area is used for the head array.
1443 * 3) Create the remaining kmalloc caches, with minimally sized
1444 * head arrays.
1445 * 4) Replace the __init data head arrays for cache_cache and the first
1446 * kmalloc cache with kmalloc allocated arrays.
1447 * 5) Replace the __init data for kmem_list3 for cache_cache and
1448 * the other cache's with kmalloc allocated memory.
1449 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1450 */
1451
1452 node = numa_node_id();
1453
1454 /* 1) create the cache_cache */
1455 INIT_LIST_HEAD(&cache_chain);
1456 list_add(&cache_cache.next, &cache_chain);
1457 cache_cache.colour_off = cache_line_size();
1458 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1459 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1460
1461 /*
1462 * struct kmem_cache size depends on nr_node_ids, which
1463 * can be less than MAX_NUMNODES.
1464 */
1465 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1466 nr_node_ids * sizeof(struct kmem_list3 *);
1467 #if DEBUG
1468 cache_cache.obj_size = cache_cache.buffer_size;
1469 #endif
1470 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1471 cache_line_size());
1472 cache_cache.reciprocal_buffer_size =
1473 reciprocal_value(cache_cache.buffer_size);
1474
1475 for (order = 0; order < MAX_ORDER; order++) {
1476 cache_estimate(order, cache_cache.buffer_size,
1477 cache_line_size(), 0, &left_over, &cache_cache.num);
1478 if (cache_cache.num)
1479 break;
1480 }
1481 BUG_ON(!cache_cache.num);
1482 cache_cache.gfporder = order;
1483 cache_cache.colour = left_over / cache_cache.colour_off;
1484 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1485 sizeof(struct slab), cache_line_size());
1486
1487 /* 2+3) create the kmalloc caches */
1488 sizes = malloc_sizes;
1489 names = cache_names;
1490
1491 /*
1492 * Initialize the caches that provide memory for the array cache and the
1493 * kmem_list3 structures first. Without this, further allocations will
1494 * bug.
1495 */
1496
1497 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1498 sizes[INDEX_AC].cs_size,
1499 ARCH_KMALLOC_MINALIGN,
1500 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1501 NULL, NULL);
1502
1503 if (INDEX_AC != INDEX_L3) {
1504 sizes[INDEX_L3].cs_cachep =
1505 kmem_cache_create(names[INDEX_L3].name,
1506 sizes[INDEX_L3].cs_size,
1507 ARCH_KMALLOC_MINALIGN,
1508 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1509 NULL, NULL);
1510 }
1511
1512 slab_early_init = 0;
1513
1514 while (sizes->cs_size != ULONG_MAX) {
1515 /*
1516 * For performance, all the general caches are L1 aligned.
1517 * This should be particularly beneficial on SMP boxes, as it
1518 * eliminates "false sharing".
1519 * Note for systems short on memory removing the alignment will
1520 * allow tighter packing of the smaller caches.
1521 */
1522 if (!sizes->cs_cachep) {
1523 sizes->cs_cachep = kmem_cache_create(names->name,
1524 sizes->cs_size,
1525 ARCH_KMALLOC_MINALIGN,
1526 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1527 NULL, NULL);
1528 }
1529 #ifdef CONFIG_ZONE_DMA
1530 sizes->cs_dmacachep = kmem_cache_create(
1531 names->name_dma,
1532 sizes->cs_size,
1533 ARCH_KMALLOC_MINALIGN,
1534 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1535 SLAB_PANIC,
1536 NULL, NULL);
1537 #endif
1538 sizes++;
1539 names++;
1540 }
1541 /* 4) Replace the bootstrap head arrays */
1542 {
1543 struct array_cache *ptr;
1544
1545 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1546
1547 local_irq_disable();
1548 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1549 memcpy(ptr, cpu_cache_get(&cache_cache),
1550 sizeof(struct arraycache_init));
1551 /*
1552 * Do not assume that spinlocks can be initialized via memcpy:
1553 */
1554 spin_lock_init(&ptr->lock);
1555
1556 cache_cache.array[smp_processor_id()] = ptr;
1557 local_irq_enable();
1558
1559 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1560
1561 local_irq_disable();
1562 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1563 != &initarray_generic.cache);
1564 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1565 sizeof(struct arraycache_init));
1566 /*
1567 * Do not assume that spinlocks can be initialized via memcpy:
1568 */
1569 spin_lock_init(&ptr->lock);
1570
1571 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1572 ptr;
1573 local_irq_enable();
1574 }
1575 /* 5) Replace the bootstrap kmem_list3's */
1576 {
1577 int nid;
1578
1579 /* Replace the static kmem_list3 structures for the boot cpu */
1580 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1581
1582 for_each_online_node(nid) {
1583 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1584 &initkmem_list3[SIZE_AC + nid], nid);
1585
1586 if (INDEX_AC != INDEX_L3) {
1587 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1588 &initkmem_list3[SIZE_L3 + nid], nid);
1589 }
1590 }
1591 }
1592
1593 /* 6) resize the head arrays to their final sizes */
1594 {
1595 struct kmem_cache *cachep;
1596 mutex_lock(&cache_chain_mutex);
1597 list_for_each_entry(cachep, &cache_chain, next)
1598 if (enable_cpucache(cachep))
1599 BUG();
1600 mutex_unlock(&cache_chain_mutex);
1601 }
1602
1603 /* Annotate slab for lockdep -- annotate the malloc caches */
1604 init_lock_keys();
1605
1606
1607 /* Done! */
1608 g_cpucache_up = FULL;
1609
1610 /*
1611 * Register a cpu startup notifier callback that initializes
1612 * cpu_cache_get for all new cpus
1613 */
1614 register_cpu_notifier(&cpucache_notifier);
1615
1616 /*
1617 * The reap timers are started later, with a module init call: That part
1618 * of the kernel is not yet operational.
1619 */
1620 }
1621
1622 static int __init cpucache_init(void)
1623 {
1624 int cpu;
1625
1626 /*
1627 * Register the timers that return unneeded pages to the page allocator
1628 */
1629 for_each_online_cpu(cpu)
1630 start_cpu_timer(cpu);
1631 return 0;
1632 }
1633 __initcall(cpucache_init);
1634
1635 /*
1636 * Interface to system's page allocator. No need to hold the cache-lock.
1637 *
1638 * If we requested dmaable memory, we will get it. Even if we
1639 * did not request dmaable memory, we might get it, but that
1640 * would be relatively rare and ignorable.
1641 */
1642 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1643 {
1644 struct page *page;
1645 int nr_pages;
1646 int i;
1647
1648 #ifndef CONFIG_MMU
1649 /*
1650 * Nommu uses slab's for process anonymous memory allocations, and thus
1651 * requires __GFP_COMP to properly refcount higher order allocations
1652 */
1653 flags |= __GFP_COMP;
1654 #endif
1655
1656 flags |= cachep->gfpflags;
1657
1658 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1659 if (!page)
1660 return NULL;
1661
1662 nr_pages = (1 << cachep->gfporder);
1663 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1664 add_zone_page_state(page_zone(page),
1665 NR_SLAB_RECLAIMABLE, nr_pages);
1666 else
1667 add_zone_page_state(page_zone(page),
1668 NR_SLAB_UNRECLAIMABLE, nr_pages);
1669 for (i = 0; i < nr_pages; i++)
1670 __SetPageSlab(page + i);
1671 return page_address(page);
1672 }
1673
1674 /*
1675 * Interface to system's page release.
1676 */
1677 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1678 {
1679 unsigned long i = (1 << cachep->gfporder);
1680 struct page *page = virt_to_page(addr);
1681 const unsigned long nr_freed = i;
1682
1683 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1684 sub_zone_page_state(page_zone(page),
1685 NR_SLAB_RECLAIMABLE, nr_freed);
1686 else
1687 sub_zone_page_state(page_zone(page),
1688 NR_SLAB_UNRECLAIMABLE, nr_freed);
1689 while (i--) {
1690 BUG_ON(!PageSlab(page));
1691 __ClearPageSlab(page);
1692 page++;
1693 }
1694 if (current->reclaim_state)
1695 current->reclaim_state->reclaimed_slab += nr_freed;
1696 free_pages((unsigned long)addr, cachep->gfporder);
1697 }
1698
1699 static void kmem_rcu_free(struct rcu_head *head)
1700 {
1701 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1702 struct kmem_cache *cachep = slab_rcu->cachep;
1703
1704 kmem_freepages(cachep, slab_rcu->addr);
1705 if (OFF_SLAB(cachep))
1706 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1707 }
1708
1709 #if DEBUG
1710
1711 #ifdef CONFIG_DEBUG_PAGEALLOC
1712 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1713 unsigned long caller)
1714 {
1715 int size = obj_size(cachep);
1716
1717 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1718
1719 if (size < 5 * sizeof(unsigned long))
1720 return;
1721
1722 *addr++ = 0x12345678;
1723 *addr++ = caller;
1724 *addr++ = smp_processor_id();
1725 size -= 3 * sizeof(unsigned long);
1726 {
1727 unsigned long *sptr = &caller;
1728 unsigned long svalue;
1729
1730 while (!kstack_end(sptr)) {
1731 svalue = *sptr++;
1732 if (kernel_text_address(svalue)) {
1733 *addr++ = svalue;
1734 size -= sizeof(unsigned long);
1735 if (size <= sizeof(unsigned long))
1736 break;
1737 }
1738 }
1739
1740 }
1741 *addr++ = 0x87654321;
1742 }
1743 #endif
1744
1745 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1746 {
1747 int size = obj_size(cachep);
1748 addr = &((char *)addr)[obj_offset(cachep)];
1749
1750 memset(addr, val, size);
1751 *(unsigned char *)(addr + size - 1) = POISON_END;
1752 }
1753
1754 static void dump_line(char *data, int offset, int limit)
1755 {
1756 int i;
1757 unsigned char error = 0;
1758 int bad_count = 0;
1759
1760 printk(KERN_ERR "%03x:", offset);
1761 for (i = 0; i < limit; i++) {
1762 if (data[offset + i] != POISON_FREE) {
1763 error = data[offset + i];
1764 bad_count++;
1765 }
1766 printk(" %02x", (unsigned char)data[offset + i]);
1767 }
1768 printk("\n");
1769
1770 if (bad_count == 1) {
1771 error ^= POISON_FREE;
1772 if (!(error & (error - 1))) {
1773 printk(KERN_ERR "Single bit error detected. Probably "
1774 "bad RAM.\n");
1775 #ifdef CONFIG_X86
1776 printk(KERN_ERR "Run memtest86+ or a similar memory "
1777 "test tool.\n");
1778 #else
1779 printk(KERN_ERR "Run a memory test tool.\n");
1780 #endif
1781 }
1782 }
1783 }
1784 #endif
1785
1786 #if DEBUG
1787
1788 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1789 {
1790 int i, size;
1791 char *realobj;
1792
1793 if (cachep->flags & SLAB_RED_ZONE) {
1794 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1795 *dbg_redzone1(cachep, objp),
1796 *dbg_redzone2(cachep, objp));
1797 }
1798
1799 if (cachep->flags & SLAB_STORE_USER) {
1800 printk(KERN_ERR "Last user: [<%p>]",
1801 *dbg_userword(cachep, objp));
1802 print_symbol("(%s)",
1803 (unsigned long)*dbg_userword(cachep, objp));
1804 printk("\n");
1805 }
1806 realobj = (char *)objp + obj_offset(cachep);
1807 size = obj_size(cachep);
1808 for (i = 0; i < size && lines; i += 16, lines--) {
1809 int limit;
1810 limit = 16;
1811 if (i + limit > size)
1812 limit = size - i;
1813 dump_line(realobj, i, limit);
1814 }
1815 }
1816
1817 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1818 {
1819 char *realobj;
1820 int size, i;
1821 int lines = 0;
1822
1823 realobj = (char *)objp + obj_offset(cachep);
1824 size = obj_size(cachep);
1825
1826 for (i = 0; i < size; i++) {
1827 char exp = POISON_FREE;
1828 if (i == size - 1)
1829 exp = POISON_END;
1830 if (realobj[i] != exp) {
1831 int limit;
1832 /* Mismatch ! */
1833 /* Print header */
1834 if (lines == 0) {
1835 printk(KERN_ERR
1836 "Slab corruption: %s start=%p, len=%d\n",
1837 cachep->name, realobj, size);
1838 print_objinfo(cachep, objp, 0);
1839 }
1840 /* Hexdump the affected line */
1841 i = (i / 16) * 16;
1842 limit = 16;
1843 if (i + limit > size)
1844 limit = size - i;
1845 dump_line(realobj, i, limit);
1846 i += 16;
1847 lines++;
1848 /* Limit to 5 lines */
1849 if (lines > 5)
1850 break;
1851 }
1852 }
1853 if (lines != 0) {
1854 /* Print some data about the neighboring objects, if they
1855 * exist:
1856 */
1857 struct slab *slabp = virt_to_slab(objp);
1858 unsigned int objnr;
1859
1860 objnr = obj_to_index(cachep, slabp, objp);
1861 if (objnr) {
1862 objp = index_to_obj(cachep, slabp, objnr - 1);
1863 realobj = (char *)objp + obj_offset(cachep);
1864 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1865 realobj, size);
1866 print_objinfo(cachep, objp, 2);
1867 }
1868 if (objnr + 1 < cachep->num) {
1869 objp = index_to_obj(cachep, slabp, objnr + 1);
1870 realobj = (char *)objp + obj_offset(cachep);
1871 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1872 realobj, size);
1873 print_objinfo(cachep, objp, 2);
1874 }
1875 }
1876 }
1877 #endif
1878
1879 #if DEBUG
1880 /**
1881 * slab_destroy_objs - destroy a slab and its objects
1882 * @cachep: cache pointer being destroyed
1883 * @slabp: slab pointer being destroyed
1884 *
1885 * Call the registered destructor for each object in a slab that is being
1886 * destroyed.
1887 */
1888 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1889 {
1890 int i;
1891 for (i = 0; i < cachep->num; i++) {
1892 void *objp = index_to_obj(cachep, slabp, i);
1893
1894 if (cachep->flags & SLAB_POISON) {
1895 #ifdef CONFIG_DEBUG_PAGEALLOC
1896 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1897 OFF_SLAB(cachep))
1898 kernel_map_pages(virt_to_page(objp),
1899 cachep->buffer_size / PAGE_SIZE, 1);
1900 else
1901 check_poison_obj(cachep, objp);
1902 #else
1903 check_poison_obj(cachep, objp);
1904 #endif
1905 }
1906 if (cachep->flags & SLAB_RED_ZONE) {
1907 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1908 slab_error(cachep, "start of a freed object "
1909 "was overwritten");
1910 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1911 slab_error(cachep, "end of a freed object "
1912 "was overwritten");
1913 }
1914 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1915 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1916 }
1917 }
1918 #else
1919 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1920 {
1921 if (cachep->dtor) {
1922 int i;
1923 for (i = 0; i < cachep->num; i++) {
1924 void *objp = index_to_obj(cachep, slabp, i);
1925 (cachep->dtor) (objp, cachep, 0);
1926 }
1927 }
1928 }
1929 #endif
1930
1931 /**
1932 * slab_destroy - destroy and release all objects in a slab
1933 * @cachep: cache pointer being destroyed
1934 * @slabp: slab pointer being destroyed
1935 *
1936 * Destroy all the objs in a slab, and release the mem back to the system.
1937 * Before calling the slab must have been unlinked from the cache. The
1938 * cache-lock is not held/needed.
1939 */
1940 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1941 {
1942 void *addr = slabp->s_mem - slabp->colouroff;
1943
1944 slab_destroy_objs(cachep, slabp);
1945 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1946 struct slab_rcu *slab_rcu;
1947
1948 slab_rcu = (struct slab_rcu *)slabp;
1949 slab_rcu->cachep = cachep;
1950 slab_rcu->addr = addr;
1951 call_rcu(&slab_rcu->head, kmem_rcu_free);
1952 } else {
1953 kmem_freepages(cachep, addr);
1954 if (OFF_SLAB(cachep))
1955 kmem_cache_free(cachep->slabp_cache, slabp);
1956 }
1957 }
1958
1959 /*
1960 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1961 * size of kmem_list3.
1962 */
1963 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1964 {
1965 int node;
1966
1967 for_each_online_node(node) {
1968 cachep->nodelists[node] = &initkmem_list3[index + node];
1969 cachep->nodelists[node]->next_reap = jiffies +
1970 REAPTIMEOUT_LIST3 +
1971 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1972 }
1973 }
1974
1975 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1976 {
1977 int i;
1978 struct kmem_list3 *l3;
1979
1980 for_each_online_cpu(i)
1981 kfree(cachep->array[i]);
1982
1983 /* NUMA: free the list3 structures */
1984 for_each_online_node(i) {
1985 l3 = cachep->nodelists[i];
1986 if (l3) {
1987 kfree(l3->shared);
1988 free_alien_cache(l3->alien);
1989 kfree(l3);
1990 }
1991 }
1992 kmem_cache_free(&cache_cache, cachep);
1993 }
1994
1995
1996 /**
1997 * calculate_slab_order - calculate size (page order) of slabs
1998 * @cachep: pointer to the cache that is being created
1999 * @size: size of objects to be created in this cache.
2000 * @align: required alignment for the objects.
2001 * @flags: slab allocation flags
2002 *
2003 * Also calculates the number of objects per slab.
2004 *
2005 * This could be made much more intelligent. For now, try to avoid using
2006 * high order pages for slabs. When the gfp() functions are more friendly
2007 * towards high-order requests, this should be changed.
2008 */
2009 static size_t calculate_slab_order(struct kmem_cache *cachep,
2010 size_t size, size_t align, unsigned long flags)
2011 {
2012 unsigned long offslab_limit;
2013 size_t left_over = 0;
2014 int gfporder;
2015
2016 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
2017 unsigned int num;
2018 size_t remainder;
2019
2020 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2021 if (!num)
2022 continue;
2023
2024 if (flags & CFLGS_OFF_SLAB) {
2025 /*
2026 * Max number of objs-per-slab for caches which
2027 * use off-slab slabs. Needed to avoid a possible
2028 * looping condition in cache_grow().
2029 */
2030 offslab_limit = size - sizeof(struct slab);
2031 offslab_limit /= sizeof(kmem_bufctl_t);
2032
2033 if (num > offslab_limit)
2034 break;
2035 }
2036
2037 /* Found something acceptable - save it away */
2038 cachep->num = num;
2039 cachep->gfporder = gfporder;
2040 left_over = remainder;
2041
2042 /*
2043 * A VFS-reclaimable slab tends to have most allocations
2044 * as GFP_NOFS and we really don't want to have to be allocating
2045 * higher-order pages when we are unable to shrink dcache.
2046 */
2047 if (flags & SLAB_RECLAIM_ACCOUNT)
2048 break;
2049
2050 /*
2051 * Large number of objects is good, but very large slabs are
2052 * currently bad for the gfp()s.
2053 */
2054 if (gfporder >= slab_break_gfp_order)
2055 break;
2056
2057 /*
2058 * Acceptable internal fragmentation?
2059 */
2060 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2061 break;
2062 }
2063 return left_over;
2064 }
2065
2066 static int setup_cpu_cache(struct kmem_cache *cachep)
2067 {
2068 if (g_cpucache_up == FULL)
2069 return enable_cpucache(cachep);
2070
2071 if (g_cpucache_up == NONE) {
2072 /*
2073 * Note: the first kmem_cache_create must create the cache
2074 * that's used by kmalloc(24), otherwise the creation of
2075 * further caches will BUG().
2076 */
2077 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2078
2079 /*
2080 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2081 * the first cache, then we need to set up all its list3s,
2082 * otherwise the creation of further caches will BUG().
2083 */
2084 set_up_list3s(cachep, SIZE_AC);
2085 if (INDEX_AC == INDEX_L3)
2086 g_cpucache_up = PARTIAL_L3;
2087 else
2088 g_cpucache_up = PARTIAL_AC;
2089 } else {
2090 cachep->array[smp_processor_id()] =
2091 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2092
2093 if (g_cpucache_up == PARTIAL_AC) {
2094 set_up_list3s(cachep, SIZE_L3);
2095 g_cpucache_up = PARTIAL_L3;
2096 } else {
2097 int node;
2098 for_each_online_node(node) {
2099 cachep->nodelists[node] =
2100 kmalloc_node(sizeof(struct kmem_list3),
2101 GFP_KERNEL, node);
2102 BUG_ON(!cachep->nodelists[node]);
2103 kmem_list3_init(cachep->nodelists[node]);
2104 }
2105 }
2106 }
2107 cachep->nodelists[numa_node_id()]->next_reap =
2108 jiffies + REAPTIMEOUT_LIST3 +
2109 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2110
2111 cpu_cache_get(cachep)->avail = 0;
2112 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2113 cpu_cache_get(cachep)->batchcount = 1;
2114 cpu_cache_get(cachep)->touched = 0;
2115 cachep->batchcount = 1;
2116 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2117 return 0;
2118 }
2119
2120 /**
2121 * kmem_cache_create - Create a cache.
2122 * @name: A string which is used in /proc/slabinfo to identify this cache.
2123 * @size: The size of objects to be created in this cache.
2124 * @align: The required alignment for the objects.
2125 * @flags: SLAB flags
2126 * @ctor: A constructor for the objects.
2127 * @dtor: A destructor for the objects.
2128 *
2129 * Returns a ptr to the cache on success, NULL on failure.
2130 * Cannot be called within a int, but can be interrupted.
2131 * The @ctor is run when new pages are allocated by the cache
2132 * and the @dtor is run before the pages are handed back.
2133 *
2134 * @name must be valid until the cache is destroyed. This implies that
2135 * the module calling this has to destroy the cache before getting unloaded.
2136 *
2137 * The flags are
2138 *
2139 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2140 * to catch references to uninitialised memory.
2141 *
2142 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2143 * for buffer overruns.
2144 *
2145 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2146 * cacheline. This can be beneficial if you're counting cycles as closely
2147 * as davem.
2148 */
2149 struct kmem_cache *
2150 kmem_cache_create (const char *name, size_t size, size_t align,
2151 unsigned long flags,
2152 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2153 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2154 {
2155 size_t left_over, slab_size, ralign;
2156 struct kmem_cache *cachep = NULL, *pc;
2157
2158 /*
2159 * Sanity checks... these are all serious usage bugs.
2160 */
2161 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2162 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2163 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2164 name);
2165 BUG();
2166 }
2167
2168 /*
2169 * We use cache_chain_mutex to ensure a consistent view of
2170 * cpu_online_map as well. Please see cpuup_callback
2171 */
2172 mutex_lock(&cache_chain_mutex);
2173
2174 list_for_each_entry(pc, &cache_chain, next) {
2175 char tmp;
2176 int res;
2177
2178 /*
2179 * This happens when the module gets unloaded and doesn't
2180 * destroy its slab cache and no-one else reuses the vmalloc
2181 * area of the module. Print a warning.
2182 */
2183 res = probe_kernel_address(pc->name, tmp);
2184 if (res) {
2185 printk(KERN_ERR
2186 "SLAB: cache with size %d has lost its name\n",
2187 pc->buffer_size);
2188 continue;
2189 }
2190
2191 if (!strcmp(pc->name, name)) {
2192 printk(KERN_ERR
2193 "kmem_cache_create: duplicate cache %s\n", name);
2194 dump_stack();
2195 goto oops;
2196 }
2197 }
2198
2199 #if DEBUG
2200 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2201 #if FORCED_DEBUG
2202 /*
2203 * Enable redzoning and last user accounting, except for caches with
2204 * large objects, if the increased size would increase the object size
2205 * above the next power of two: caches with object sizes just above a
2206 * power of two have a significant amount of internal fragmentation.
2207 */
2208 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2209 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2210 if (!(flags & SLAB_DESTROY_BY_RCU))
2211 flags |= SLAB_POISON;
2212 #endif
2213 if (flags & SLAB_DESTROY_BY_RCU)
2214 BUG_ON(flags & SLAB_POISON);
2215 #endif
2216 if (flags & SLAB_DESTROY_BY_RCU)
2217 BUG_ON(dtor);
2218
2219 /*
2220 * Always checks flags, a caller might be expecting debug support which
2221 * isn't available.
2222 */
2223 BUG_ON(flags & ~CREATE_MASK);
2224
2225 /*
2226 * Check that size is in terms of words. This is needed to avoid
2227 * unaligned accesses for some archs when redzoning is used, and makes
2228 * sure any on-slab bufctl's are also correctly aligned.
2229 */
2230 if (size & (BYTES_PER_WORD - 1)) {
2231 size += (BYTES_PER_WORD - 1);
2232 size &= ~(BYTES_PER_WORD - 1);
2233 }
2234
2235 /* calculate the final buffer alignment: */
2236
2237 /* 1) arch recommendation: can be overridden for debug */
2238 if (flags & SLAB_HWCACHE_ALIGN) {
2239 /*
2240 * Default alignment: as specified by the arch code. Except if
2241 * an object is really small, then squeeze multiple objects into
2242 * one cacheline.
2243 */
2244 ralign = cache_line_size();
2245 while (size <= ralign / 2)
2246 ralign /= 2;
2247 } else {
2248 ralign = BYTES_PER_WORD;
2249 }
2250
2251 /*
2252 * Redzoning and user store require word alignment. Note this will be
2253 * overridden by architecture or caller mandated alignment if either
2254 * is greater than BYTES_PER_WORD.
2255 */
2256 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2257 ralign = __alignof__(unsigned long long);
2258
2259 /* 2) arch mandated alignment */
2260 if (ralign < ARCH_SLAB_MINALIGN) {
2261 ralign = ARCH_SLAB_MINALIGN;
2262 }
2263 /* 3) caller mandated alignment */
2264 if (ralign < align) {
2265 ralign = align;
2266 }
2267 /* disable debug if necessary */
2268 if (ralign > __alignof__(unsigned long long))
2269 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2270 /*
2271 * 4) Store it.
2272 */
2273 align = ralign;
2274
2275 /* Get cache's description obj. */
2276 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2277 if (!cachep)
2278 goto oops;
2279
2280 #if DEBUG
2281 cachep->obj_size = size;
2282
2283 /*
2284 * Both debugging options require word-alignment which is calculated
2285 * into align above.
2286 */
2287 if (flags & SLAB_RED_ZONE) {
2288 /* add space for red zone words */
2289 cachep->obj_offset += sizeof(unsigned long long);
2290 size += 2 * sizeof(unsigned long long);
2291 }
2292 if (flags & SLAB_STORE_USER) {
2293 /* user store requires one word storage behind the end of
2294 * the real object.
2295 */
2296 size += BYTES_PER_WORD;
2297 }
2298 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2299 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2300 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2301 cachep->obj_offset += PAGE_SIZE - size;
2302 size = PAGE_SIZE;
2303 }
2304 #endif
2305 #endif
2306
2307 /*
2308 * Determine if the slab management is 'on' or 'off' slab.
2309 * (bootstrapping cannot cope with offslab caches so don't do
2310 * it too early on.)
2311 */
2312 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2313 /*
2314 * Size is large, assume best to place the slab management obj
2315 * off-slab (should allow better packing of objs).
2316 */
2317 flags |= CFLGS_OFF_SLAB;
2318
2319 size = ALIGN(size, align);
2320
2321 left_over = calculate_slab_order(cachep, size, align, flags);
2322
2323 if (!cachep->num) {
2324 printk(KERN_ERR
2325 "kmem_cache_create: couldn't create cache %s.\n", name);
2326 kmem_cache_free(&cache_cache, cachep);
2327 cachep = NULL;
2328 goto oops;
2329 }
2330 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2331 + sizeof(struct slab), align);
2332
2333 /*
2334 * If the slab has been placed off-slab, and we have enough space then
2335 * move it on-slab. This is at the expense of any extra colouring.
2336 */
2337 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2338 flags &= ~CFLGS_OFF_SLAB;
2339 left_over -= slab_size;
2340 }
2341
2342 if (flags & CFLGS_OFF_SLAB) {
2343 /* really off slab. No need for manual alignment */
2344 slab_size =
2345 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2346 }
2347
2348 cachep->colour_off = cache_line_size();
2349 /* Offset must be a multiple of the alignment. */
2350 if (cachep->colour_off < align)
2351 cachep->colour_off = align;
2352 cachep->colour = left_over / cachep->colour_off;
2353 cachep->slab_size = slab_size;
2354 cachep->flags = flags;
2355 cachep->gfpflags = 0;
2356 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2357 cachep->gfpflags |= GFP_DMA;
2358 cachep->buffer_size = size;
2359 cachep->reciprocal_buffer_size = reciprocal_value(size);
2360
2361 if (flags & CFLGS_OFF_SLAB) {
2362 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2363 /*
2364 * This is a possibility for one of the malloc_sizes caches.
2365 * But since we go off slab only for object size greater than
2366 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2367 * this should not happen at all.
2368 * But leave a BUG_ON for some lucky dude.
2369 */
2370 BUG_ON(!cachep->slabp_cache);
2371 }
2372 cachep->ctor = ctor;
2373 cachep->dtor = dtor;
2374 cachep->name = name;
2375
2376 if (setup_cpu_cache(cachep)) {
2377 __kmem_cache_destroy(cachep);
2378 cachep = NULL;
2379 goto oops;
2380 }
2381
2382 /* cache setup completed, link it into the list */
2383 list_add(&cachep->next, &cache_chain);
2384 oops:
2385 if (!cachep && (flags & SLAB_PANIC))
2386 panic("kmem_cache_create(): failed to create slab `%s'\n",
2387 name);
2388 mutex_unlock(&cache_chain_mutex);
2389 return cachep;
2390 }
2391 EXPORT_SYMBOL(kmem_cache_create);
2392
2393 #if DEBUG
2394 static void check_irq_off(void)
2395 {
2396 BUG_ON(!irqs_disabled());
2397 }
2398
2399 static void check_irq_on(void)
2400 {
2401 BUG_ON(irqs_disabled());
2402 }
2403
2404 static void check_spinlock_acquired(struct kmem_cache *cachep)
2405 {
2406 #ifdef CONFIG_SMP
2407 check_irq_off();
2408 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2409 #endif
2410 }
2411
2412 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2413 {
2414 #ifdef CONFIG_SMP
2415 check_irq_off();
2416 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2417 #endif
2418 }
2419
2420 #else
2421 #define check_irq_off() do { } while(0)
2422 #define check_irq_on() do { } while(0)
2423 #define check_spinlock_acquired(x) do { } while(0)
2424 #define check_spinlock_acquired_node(x, y) do { } while(0)
2425 #endif
2426
2427 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2428 struct array_cache *ac,
2429 int force, int node);
2430
2431 static void do_drain(void *arg)
2432 {
2433 struct kmem_cache *cachep = arg;
2434 struct array_cache *ac;
2435 int node = numa_node_id();
2436
2437 check_irq_off();
2438 ac = cpu_cache_get(cachep);
2439 spin_lock(&cachep->nodelists[node]->list_lock);
2440 free_block(cachep, ac->entry, ac->avail, node);
2441 spin_unlock(&cachep->nodelists[node]->list_lock);
2442 ac->avail = 0;
2443 }
2444
2445 static void drain_cpu_caches(struct kmem_cache *cachep)
2446 {
2447 struct kmem_list3 *l3;
2448 int node;
2449
2450 on_each_cpu(do_drain, cachep, 1, 1);
2451 check_irq_on();
2452 for_each_online_node(node) {
2453 l3 = cachep->nodelists[node];
2454 if (l3 && l3->alien)
2455 drain_alien_cache(cachep, l3->alien);
2456 }
2457
2458 for_each_online_node(node) {
2459 l3 = cachep->nodelists[node];
2460 if (l3)
2461 drain_array(cachep, l3, l3->shared, 1, node);
2462 }
2463 }
2464
2465 /*
2466 * Remove slabs from the list of free slabs.
2467 * Specify the number of slabs to drain in tofree.
2468 *
2469 * Returns the actual number of slabs released.
2470 */
2471 static int drain_freelist(struct kmem_cache *cache,
2472 struct kmem_list3 *l3, int tofree)
2473 {
2474 struct list_head *p;
2475 int nr_freed;
2476 struct slab *slabp;
2477
2478 nr_freed = 0;
2479 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2480
2481 spin_lock_irq(&l3->list_lock);
2482 p = l3->slabs_free.prev;
2483 if (p == &l3->slabs_free) {
2484 spin_unlock_irq(&l3->list_lock);
2485 goto out;
2486 }
2487
2488 slabp = list_entry(p, struct slab, list);
2489 #if DEBUG
2490 BUG_ON(slabp->inuse);
2491 #endif
2492 list_del(&slabp->list);
2493 /*
2494 * Safe to drop the lock. The slab is no longer linked
2495 * to the cache.
2496 */
2497 l3->free_objects -= cache->num;
2498 spin_unlock_irq(&l3->list_lock);
2499 slab_destroy(cache, slabp);
2500 nr_freed++;
2501 }
2502 out:
2503 return nr_freed;
2504 }
2505
2506 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2507 static int __cache_shrink(struct kmem_cache *cachep)
2508 {
2509 int ret = 0, i = 0;
2510 struct kmem_list3 *l3;
2511
2512 drain_cpu_caches(cachep);
2513
2514 check_irq_on();
2515 for_each_online_node(i) {
2516 l3 = cachep->nodelists[i];
2517 if (!l3)
2518 continue;
2519
2520 drain_freelist(cachep, l3, l3->free_objects);
2521
2522 ret += !list_empty(&l3->slabs_full) ||
2523 !list_empty(&l3->slabs_partial);
2524 }
2525 return (ret ? 1 : 0);
2526 }
2527
2528 /**
2529 * kmem_cache_shrink - Shrink a cache.
2530 * @cachep: The cache to shrink.
2531 *
2532 * Releases as many slabs as possible for a cache.
2533 * To help debugging, a zero exit status indicates all slabs were released.
2534 */
2535 int kmem_cache_shrink(struct kmem_cache *cachep)
2536 {
2537 int ret;
2538 BUG_ON(!cachep || in_interrupt());
2539
2540 mutex_lock(&cache_chain_mutex);
2541 ret = __cache_shrink(cachep);
2542 mutex_unlock(&cache_chain_mutex);
2543 return ret;
2544 }
2545 EXPORT_SYMBOL(kmem_cache_shrink);
2546
2547 /**
2548 * kmem_cache_destroy - delete a cache
2549 * @cachep: the cache to destroy
2550 *
2551 * Remove a &struct kmem_cache object from the slab cache.
2552 *
2553 * It is expected this function will be called by a module when it is
2554 * unloaded. This will remove the cache completely, and avoid a duplicate
2555 * cache being allocated each time a module is loaded and unloaded, if the
2556 * module doesn't have persistent in-kernel storage across loads and unloads.
2557 *
2558 * The cache must be empty before calling this function.
2559 *
2560 * The caller must guarantee that noone will allocate memory from the cache
2561 * during the kmem_cache_destroy().
2562 */
2563 void kmem_cache_destroy(struct kmem_cache *cachep)
2564 {
2565 BUG_ON(!cachep || in_interrupt());
2566
2567 /* Find the cache in the chain of caches. */
2568 mutex_lock(&cache_chain_mutex);
2569 /*
2570 * the chain is never empty, cache_cache is never destroyed
2571 */
2572 list_del(&cachep->next);
2573 if (__cache_shrink(cachep)) {
2574 slab_error(cachep, "Can't free all objects");
2575 list_add(&cachep->next, &cache_chain);
2576 mutex_unlock(&cache_chain_mutex);
2577 return;
2578 }
2579
2580 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2581 synchronize_rcu();
2582
2583 __kmem_cache_destroy(cachep);
2584 mutex_unlock(&cache_chain_mutex);
2585 }
2586 EXPORT_SYMBOL(kmem_cache_destroy);
2587
2588 /*
2589 * Get the memory for a slab management obj.
2590 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2591 * always come from malloc_sizes caches. The slab descriptor cannot
2592 * come from the same cache which is getting created because,
2593 * when we are searching for an appropriate cache for these
2594 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2595 * If we are creating a malloc_sizes cache here it would not be visible to
2596 * kmem_find_general_cachep till the initialization is complete.
2597 * Hence we cannot have slabp_cache same as the original cache.
2598 */
2599 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2600 int colour_off, gfp_t local_flags,
2601 int nodeid)
2602 {
2603 struct slab *slabp;
2604
2605 if (OFF_SLAB(cachep)) {
2606 /* Slab management obj is off-slab. */
2607 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2608 local_flags & ~GFP_THISNODE, nodeid);
2609 if (!slabp)
2610 return NULL;
2611 } else {
2612 slabp = objp + colour_off;
2613 colour_off += cachep->slab_size;
2614 }
2615 slabp->inuse = 0;
2616 slabp->colouroff = colour_off;
2617 slabp->s_mem = objp + colour_off;
2618 slabp->nodeid = nodeid;
2619 return slabp;
2620 }
2621
2622 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2623 {
2624 return (kmem_bufctl_t *) (slabp + 1);
2625 }
2626
2627 static void cache_init_objs(struct kmem_cache *cachep,
2628 struct slab *slabp, unsigned long ctor_flags)
2629 {
2630 int i;
2631
2632 for (i = 0; i < cachep->num; i++) {
2633 void *objp = index_to_obj(cachep, slabp, i);
2634 #if DEBUG
2635 /* need to poison the objs? */
2636 if (cachep->flags & SLAB_POISON)
2637 poison_obj(cachep, objp, POISON_FREE);
2638 if (cachep->flags & SLAB_STORE_USER)
2639 *dbg_userword(cachep, objp) = NULL;
2640
2641 if (cachep->flags & SLAB_RED_ZONE) {
2642 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2643 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2644 }
2645 /*
2646 * Constructors are not allowed to allocate memory from the same
2647 * cache which they are a constructor for. Otherwise, deadlock.
2648 * They must also be threaded.
2649 */
2650 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2651 cachep->ctor(objp + obj_offset(cachep), cachep,
2652 ctor_flags);
2653
2654 if (cachep->flags & SLAB_RED_ZONE) {
2655 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2656 slab_error(cachep, "constructor overwrote the"
2657 " end of an object");
2658 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2659 slab_error(cachep, "constructor overwrote the"
2660 " start of an object");
2661 }
2662 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2663 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2664 kernel_map_pages(virt_to_page(objp),
2665 cachep->buffer_size / PAGE_SIZE, 0);
2666 #else
2667 if (cachep->ctor)
2668 cachep->ctor(objp, cachep, ctor_flags);
2669 #endif
2670 slab_bufctl(slabp)[i] = i + 1;
2671 }
2672 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2673 slabp->free = 0;
2674 }
2675
2676 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2677 {
2678 if (CONFIG_ZONE_DMA_FLAG) {
2679 if (flags & GFP_DMA)
2680 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2681 else
2682 BUG_ON(cachep->gfpflags & GFP_DMA);
2683 }
2684 }
2685
2686 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2687 int nodeid)
2688 {
2689 void *objp = index_to_obj(cachep, slabp, slabp->free);
2690 kmem_bufctl_t next;
2691
2692 slabp->inuse++;
2693 next = slab_bufctl(slabp)[slabp->free];
2694 #if DEBUG
2695 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2696 WARN_ON(slabp->nodeid != nodeid);
2697 #endif
2698 slabp->free = next;
2699
2700 return objp;
2701 }
2702
2703 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2704 void *objp, int nodeid)
2705 {
2706 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2707
2708 #if DEBUG
2709 /* Verify that the slab belongs to the intended node */
2710 WARN_ON(slabp->nodeid != nodeid);
2711
2712 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2713 printk(KERN_ERR "slab: double free detected in cache "
2714 "'%s', objp %p\n", cachep->name, objp);
2715 BUG();
2716 }
2717 #endif
2718 slab_bufctl(slabp)[objnr] = slabp->free;
2719 slabp->free = objnr;
2720 slabp->inuse--;
2721 }
2722
2723 /*
2724 * Map pages beginning at addr to the given cache and slab. This is required
2725 * for the slab allocator to be able to lookup the cache and slab of a
2726 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2727 */
2728 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2729 void *addr)
2730 {
2731 int nr_pages;
2732 struct page *page;
2733
2734 page = virt_to_page(addr);
2735
2736 nr_pages = 1;
2737 if (likely(!PageCompound(page)))
2738 nr_pages <<= cache->gfporder;
2739
2740 do {
2741 page_set_cache(page, cache);
2742 page_set_slab(page, slab);
2743 page++;
2744 } while (--nr_pages);
2745 }
2746
2747 /*
2748 * Grow (by 1) the number of slabs within a cache. This is called by
2749 * kmem_cache_alloc() when there are no active objs left in a cache.
2750 */
2751 static int cache_grow(struct kmem_cache *cachep,
2752 gfp_t flags, int nodeid, void *objp)
2753 {
2754 struct slab *slabp;
2755 size_t offset;
2756 gfp_t local_flags;
2757 unsigned long ctor_flags;
2758 struct kmem_list3 *l3;
2759
2760 /*
2761 * Be lazy and only check for valid flags here, keeping it out of the
2762 * critical path in kmem_cache_alloc().
2763 */
2764 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
2765
2766 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2767 local_flags = (flags & GFP_LEVEL_MASK);
2768 /* Take the l3 list lock to change the colour_next on this node */
2769 check_irq_off();
2770 l3 = cachep->nodelists[nodeid];
2771 spin_lock(&l3->list_lock);
2772
2773 /* Get colour for the slab, and cal the next value. */
2774 offset = l3->colour_next;
2775 l3->colour_next++;
2776 if (l3->colour_next >= cachep->colour)
2777 l3->colour_next = 0;
2778 spin_unlock(&l3->list_lock);
2779
2780 offset *= cachep->colour_off;
2781
2782 if (local_flags & __GFP_WAIT)
2783 local_irq_enable();
2784
2785 /*
2786 * The test for missing atomic flag is performed here, rather than
2787 * the more obvious place, simply to reduce the critical path length
2788 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2789 * will eventually be caught here (where it matters).
2790 */
2791 kmem_flagcheck(cachep, flags);
2792
2793 /*
2794 * Get mem for the objs. Attempt to allocate a physical page from
2795 * 'nodeid'.
2796 */
2797 if (!objp)
2798 objp = kmem_getpages(cachep, flags, nodeid);
2799 if (!objp)
2800 goto failed;
2801
2802 /* Get slab management. */
2803 slabp = alloc_slabmgmt(cachep, objp, offset,
2804 local_flags & ~GFP_THISNODE, nodeid);
2805 if (!slabp)
2806 goto opps1;
2807
2808 slabp->nodeid = nodeid;
2809 slab_map_pages(cachep, slabp, objp);
2810
2811 cache_init_objs(cachep, slabp, ctor_flags);
2812
2813 if (local_flags & __GFP_WAIT)
2814 local_irq_disable();
2815 check_irq_off();
2816 spin_lock(&l3->list_lock);
2817
2818 /* Make slab active. */
2819 list_add_tail(&slabp->list, &(l3->slabs_free));
2820 STATS_INC_GROWN(cachep);
2821 l3->free_objects += cachep->num;
2822 spin_unlock(&l3->list_lock);
2823 return 1;
2824 opps1:
2825 kmem_freepages(cachep, objp);
2826 failed:
2827 if (local_flags & __GFP_WAIT)
2828 local_irq_disable();
2829 return 0;
2830 }
2831
2832 #if DEBUG
2833
2834 /*
2835 * Perform extra freeing checks:
2836 * - detect bad pointers.
2837 * - POISON/RED_ZONE checking
2838 * - destructor calls, for caches with POISON+dtor
2839 */
2840 static void kfree_debugcheck(const void *objp)
2841 {
2842 if (!virt_addr_valid(objp)) {
2843 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2844 (unsigned long)objp);
2845 BUG();
2846 }
2847 }
2848
2849 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2850 {
2851 unsigned long long redzone1, redzone2;
2852
2853 redzone1 = *dbg_redzone1(cache, obj);
2854 redzone2 = *dbg_redzone2(cache, obj);
2855
2856 /*
2857 * Redzone is ok.
2858 */
2859 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2860 return;
2861
2862 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2863 slab_error(cache, "double free detected");
2864 else
2865 slab_error(cache, "memory outside object was overwritten");
2866
2867 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2868 obj, redzone1, redzone2);
2869 }
2870
2871 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2872 void *caller)
2873 {
2874 struct page *page;
2875 unsigned int objnr;
2876 struct slab *slabp;
2877
2878 objp -= obj_offset(cachep);
2879 kfree_debugcheck(objp);
2880 page = virt_to_head_page(objp);
2881
2882 slabp = page_get_slab(page);
2883
2884 if (cachep->flags & SLAB_RED_ZONE) {
2885 verify_redzone_free(cachep, objp);
2886 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2887 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2888 }
2889 if (cachep->flags & SLAB_STORE_USER)
2890 *dbg_userword(cachep, objp) = caller;
2891
2892 objnr = obj_to_index(cachep, slabp, objp);
2893
2894 BUG_ON(objnr >= cachep->num);
2895 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2896
2897 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2898 /* we want to cache poison the object,
2899 * call the destruction callback
2900 */
2901 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2902 }
2903 #ifdef CONFIG_DEBUG_SLAB_LEAK
2904 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2905 #endif
2906 if (cachep->flags & SLAB_POISON) {
2907 #ifdef CONFIG_DEBUG_PAGEALLOC
2908 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2909 store_stackinfo(cachep, objp, (unsigned long)caller);
2910 kernel_map_pages(virt_to_page(objp),
2911 cachep->buffer_size / PAGE_SIZE, 0);
2912 } else {
2913 poison_obj(cachep, objp, POISON_FREE);
2914 }
2915 #else
2916 poison_obj(cachep, objp, POISON_FREE);
2917 #endif
2918 }
2919 return objp;
2920 }
2921
2922 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2923 {
2924 kmem_bufctl_t i;
2925 int entries = 0;
2926
2927 /* Check slab's freelist to see if this obj is there. */
2928 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2929 entries++;
2930 if (entries > cachep->num || i >= cachep->num)
2931 goto bad;
2932 }
2933 if (entries != cachep->num - slabp->inuse) {
2934 bad:
2935 printk(KERN_ERR "slab: Internal list corruption detected in "
2936 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2937 cachep->name, cachep->num, slabp, slabp->inuse);
2938 for (i = 0;
2939 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2940 i++) {
2941 if (i % 16 == 0)
2942 printk("\n%03x:", i);
2943 printk(" %02x", ((unsigned char *)slabp)[i]);
2944 }
2945 printk("\n");
2946 BUG();
2947 }
2948 }
2949 #else
2950 #define kfree_debugcheck(x) do { } while(0)
2951 #define cache_free_debugcheck(x,objp,z) (objp)
2952 #define check_slabp(x,y) do { } while(0)
2953 #endif
2954
2955 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2956 {
2957 int batchcount;
2958 struct kmem_list3 *l3;
2959 struct array_cache *ac;
2960 int node;
2961
2962 node = numa_node_id();
2963
2964 check_irq_off();
2965 ac = cpu_cache_get(cachep);
2966 retry:
2967 batchcount = ac->batchcount;
2968 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2969 /*
2970 * If there was little recent activity on this cache, then
2971 * perform only a partial refill. Otherwise we could generate
2972 * refill bouncing.
2973 */
2974 batchcount = BATCHREFILL_LIMIT;
2975 }
2976 l3 = cachep->nodelists[node];
2977
2978 BUG_ON(ac->avail > 0 || !l3);
2979 spin_lock(&l3->list_lock);
2980
2981 /* See if we can refill from the shared array */
2982 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2983 goto alloc_done;
2984
2985 while (batchcount > 0) {
2986 struct list_head *entry;
2987 struct slab *slabp;
2988 /* Get slab alloc is to come from. */
2989 entry = l3->slabs_partial.next;
2990 if (entry == &l3->slabs_partial) {
2991 l3->free_touched = 1;
2992 entry = l3->slabs_free.next;
2993 if (entry == &l3->slabs_free)
2994 goto must_grow;
2995 }
2996
2997 slabp = list_entry(entry, struct slab, list);
2998 check_slabp(cachep, slabp);
2999 check_spinlock_acquired(cachep);
3000
3001 /*
3002 * The slab was either on partial or free list so
3003 * there must be at least one object available for
3004 * allocation.
3005 */
3006 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3007
3008 while (slabp->inuse < cachep->num && batchcount--) {
3009 STATS_INC_ALLOCED(cachep);
3010 STATS_INC_ACTIVE(cachep);
3011 STATS_SET_HIGH(cachep);
3012
3013 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3014 node);
3015 }
3016 check_slabp(cachep, slabp);
3017
3018 /* move slabp to correct slabp list: */
3019 list_del(&slabp->list);
3020 if (slabp->free == BUFCTL_END)
3021 list_add(&slabp->list, &l3->slabs_full);
3022 else
3023 list_add(&slabp->list, &l3->slabs_partial);
3024 }
3025
3026 must_grow:
3027 l3->free_objects -= ac->avail;
3028 alloc_done:
3029 spin_unlock(&l3->list_lock);
3030
3031 if (unlikely(!ac->avail)) {
3032 int x;
3033 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3034
3035 /* cache_grow can reenable interrupts, then ac could change. */
3036 ac = cpu_cache_get(cachep);
3037 if (!x && ac->avail == 0) /* no objects in sight? abort */
3038 return NULL;
3039
3040 if (!ac->avail) /* objects refilled by interrupt? */
3041 goto retry;
3042 }
3043 ac->touched = 1;
3044 return ac->entry[--ac->avail];
3045 }
3046
3047 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3048 gfp_t flags)
3049 {
3050 might_sleep_if(flags & __GFP_WAIT);
3051 #if DEBUG
3052 kmem_flagcheck(cachep, flags);
3053 #endif
3054 }
3055
3056 #if DEBUG
3057 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3058 gfp_t flags, void *objp, void *caller)
3059 {
3060 if (!objp)
3061 return objp;
3062 if (cachep->flags & SLAB_POISON) {
3063 #ifdef CONFIG_DEBUG_PAGEALLOC
3064 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3065 kernel_map_pages(virt_to_page(objp),
3066 cachep->buffer_size / PAGE_SIZE, 1);
3067 else
3068 check_poison_obj(cachep, objp);
3069 #else
3070 check_poison_obj(cachep, objp);
3071 #endif
3072 poison_obj(cachep, objp, POISON_INUSE);
3073 }
3074 if (cachep->flags & SLAB_STORE_USER)
3075 *dbg_userword(cachep, objp) = caller;
3076
3077 if (cachep->flags & SLAB_RED_ZONE) {
3078 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3079 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3080 slab_error(cachep, "double free, or memory outside"
3081 " object was overwritten");
3082 printk(KERN_ERR
3083 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3084 objp, *dbg_redzone1(cachep, objp),
3085 *dbg_redzone2(cachep, objp));
3086 }
3087 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3088 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3089 }
3090 #ifdef CONFIG_DEBUG_SLAB_LEAK
3091 {
3092 struct slab *slabp;
3093 unsigned objnr;
3094
3095 slabp = page_get_slab(virt_to_head_page(objp));
3096 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3097 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3098 }
3099 #endif
3100 objp += obj_offset(cachep);
3101 if (cachep->ctor && cachep->flags & SLAB_POISON)
3102 cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
3103 #if ARCH_SLAB_MINALIGN
3104 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3105 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3106 objp, ARCH_SLAB_MINALIGN);
3107 }
3108 #endif
3109 return objp;
3110 }
3111 #else
3112 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3113 #endif
3114
3115 #ifdef CONFIG_FAILSLAB
3116
3117 static struct failslab_attr {
3118
3119 struct fault_attr attr;
3120
3121 u32 ignore_gfp_wait;
3122 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3123 struct dentry *ignore_gfp_wait_file;
3124 #endif
3125
3126 } failslab = {
3127 .attr = FAULT_ATTR_INITIALIZER,
3128 .ignore_gfp_wait = 1,
3129 };
3130
3131 static int __init setup_failslab(char *str)
3132 {
3133 return setup_fault_attr(&failslab.attr, str);
3134 }
3135 __setup("failslab=", setup_failslab);
3136
3137 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3138 {
3139 if (cachep == &cache_cache)
3140 return 0;
3141 if (flags & __GFP_NOFAIL)
3142 return 0;
3143 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3144 return 0;
3145
3146 return should_fail(&failslab.attr, obj_size(cachep));
3147 }
3148
3149 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3150
3151 static int __init failslab_debugfs(void)
3152 {
3153 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3154 struct dentry *dir;
3155 int err;
3156
3157 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3158 if (err)
3159 return err;
3160 dir = failslab.attr.dentries.dir;
3161
3162 failslab.ignore_gfp_wait_file =
3163 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3164 &failslab.ignore_gfp_wait);
3165
3166 if (!failslab.ignore_gfp_wait_file) {
3167 err = -ENOMEM;
3168 debugfs_remove(failslab.ignore_gfp_wait_file);
3169 cleanup_fault_attr_dentries(&failslab.attr);
3170 }
3171
3172 return err;
3173 }
3174
3175 late_initcall(failslab_debugfs);
3176
3177 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3178
3179 #else /* CONFIG_FAILSLAB */
3180
3181 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3182 {
3183 return 0;
3184 }
3185
3186 #endif /* CONFIG_FAILSLAB */
3187
3188 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3189 {
3190 void *objp;
3191 struct array_cache *ac;
3192
3193 check_irq_off();
3194
3195 ac = cpu_cache_get(cachep);
3196 if (likely(ac->avail)) {
3197 STATS_INC_ALLOCHIT(cachep);
3198 ac->touched = 1;
3199 objp = ac->entry[--ac->avail];
3200 } else {
3201 STATS_INC_ALLOCMISS(cachep);
3202 objp = cache_alloc_refill(cachep, flags);
3203 }
3204 return objp;
3205 }
3206
3207 #ifdef CONFIG_NUMA
3208 /*
3209 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3210 *
3211 * If we are in_interrupt, then process context, including cpusets and
3212 * mempolicy, may not apply and should not be used for allocation policy.
3213 */
3214 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3215 {
3216 int nid_alloc, nid_here;
3217
3218 if (in_interrupt() || (flags & __GFP_THISNODE))
3219 return NULL;
3220 nid_alloc = nid_here = numa_node_id();
3221 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3222 nid_alloc = cpuset_mem_spread_node();
3223 else if (current->mempolicy)
3224 nid_alloc = slab_node(current->mempolicy);
3225 if (nid_alloc != nid_here)
3226 return ____cache_alloc_node(cachep, flags, nid_alloc);
3227 return NULL;
3228 }
3229
3230 /*
3231 * Fallback function if there was no memory available and no objects on a
3232 * certain node and fall back is permitted. First we scan all the
3233 * available nodelists for available objects. If that fails then we
3234 * perform an allocation without specifying a node. This allows the page
3235 * allocator to do its reclaim / fallback magic. We then insert the
3236 * slab into the proper nodelist and then allocate from it.
3237 */
3238 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3239 {
3240 struct zonelist *zonelist;
3241 gfp_t local_flags;
3242 struct zone **z;
3243 void *obj = NULL;
3244 int nid;
3245
3246 if (flags & __GFP_THISNODE)
3247 return NULL;
3248
3249 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3250 ->node_zonelists[gfp_zone(flags)];
3251 local_flags = (flags & GFP_LEVEL_MASK);
3252
3253 retry:
3254 /*
3255 * Look through allowed nodes for objects available
3256 * from existing per node queues.
3257 */
3258 for (z = zonelist->zones; *z && !obj; z++) {
3259 nid = zone_to_nid(*z);
3260
3261 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3262 cache->nodelists[nid] &&
3263 cache->nodelists[nid]->free_objects)
3264 obj = ____cache_alloc_node(cache,
3265 flags | GFP_THISNODE, nid);
3266 }
3267
3268 if (!obj) {
3269 /*
3270 * This allocation will be performed within the constraints
3271 * of the current cpuset / memory policy requirements.
3272 * We may trigger various forms of reclaim on the allowed
3273 * set and go into memory reserves if necessary.
3274 */
3275 if (local_flags & __GFP_WAIT)
3276 local_irq_enable();
3277 kmem_flagcheck(cache, flags);
3278 obj = kmem_getpages(cache, flags, -1);
3279 if (local_flags & __GFP_WAIT)
3280 local_irq_disable();
3281 if (obj) {
3282 /*
3283 * Insert into the appropriate per node queues
3284 */
3285 nid = page_to_nid(virt_to_page(obj));
3286 if (cache_grow(cache, flags, nid, obj)) {
3287 obj = ____cache_alloc_node(cache,
3288 flags | GFP_THISNODE, nid);
3289 if (!obj)
3290 /*
3291 * Another processor may allocate the
3292 * objects in the slab since we are
3293 * not holding any locks.
3294 */
3295 goto retry;
3296 } else {
3297 /* cache_grow already freed obj */
3298 obj = NULL;
3299 }
3300 }
3301 }
3302 return obj;
3303 }
3304
3305 /*
3306 * A interface to enable slab creation on nodeid
3307 */
3308 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3309 int nodeid)
3310 {
3311 struct list_head *entry;
3312 struct slab *slabp;
3313 struct kmem_list3 *l3;
3314 void *obj;
3315 int x;
3316
3317 l3 = cachep->nodelists[nodeid];
3318 BUG_ON(!l3);
3319
3320 retry:
3321 check_irq_off();
3322 spin_lock(&l3->list_lock);
3323 entry = l3->slabs_partial.next;
3324 if (entry == &l3->slabs_partial) {
3325 l3->free_touched = 1;
3326 entry = l3->slabs_free.next;
3327 if (entry == &l3->slabs_free)
3328 goto must_grow;
3329 }
3330
3331 slabp = list_entry(entry, struct slab, list);
3332 check_spinlock_acquired_node(cachep, nodeid);
3333 check_slabp(cachep, slabp);
3334
3335 STATS_INC_NODEALLOCS(cachep);
3336 STATS_INC_ACTIVE(cachep);
3337 STATS_SET_HIGH(cachep);
3338
3339 BUG_ON(slabp->inuse == cachep->num);
3340
3341 obj = slab_get_obj(cachep, slabp, nodeid);
3342 check_slabp(cachep, slabp);
3343 l3->free_objects--;
3344 /* move slabp to correct slabp list: */
3345 list_del(&slabp->list);
3346
3347 if (slabp->free == BUFCTL_END)
3348 list_add(&slabp->list, &l3->slabs_full);
3349 else
3350 list_add(&slabp->list, &l3->slabs_partial);
3351
3352 spin_unlock(&l3->list_lock);
3353 goto done;
3354
3355 must_grow:
3356 spin_unlock(&l3->list_lock);
3357 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3358 if (x)
3359 goto retry;
3360
3361 return fallback_alloc(cachep, flags);
3362
3363 done:
3364 return obj;
3365 }
3366
3367 /**
3368 * kmem_cache_alloc_node - Allocate an object on the specified node
3369 * @cachep: The cache to allocate from.
3370 * @flags: See kmalloc().
3371 * @nodeid: node number of the target node.
3372 * @caller: return address of caller, used for debug information
3373 *
3374 * Identical to kmem_cache_alloc but it will allocate memory on the given
3375 * node, which can improve the performance for cpu bound structures.
3376 *
3377 * Fallback to other node is possible if __GFP_THISNODE is not set.
3378 */
3379 static __always_inline void *
3380 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3381 void *caller)
3382 {
3383 unsigned long save_flags;
3384 void *ptr;
3385
3386 if (should_failslab(cachep, flags))
3387 return NULL;
3388
3389 cache_alloc_debugcheck_before(cachep, flags);
3390 local_irq_save(save_flags);
3391
3392 if (unlikely(nodeid == -1))
3393 nodeid = numa_node_id();
3394
3395 if (unlikely(!cachep->nodelists[nodeid])) {
3396 /* Node not bootstrapped yet */
3397 ptr = fallback_alloc(cachep, flags);
3398 goto out;
3399 }
3400
3401 if (nodeid == numa_node_id()) {
3402 /*
3403 * Use the locally cached objects if possible.
3404 * However ____cache_alloc does not allow fallback
3405 * to other nodes. It may fail while we still have
3406 * objects on other nodes available.
3407 */
3408 ptr = ____cache_alloc(cachep, flags);
3409 if (ptr)
3410 goto out;
3411 }
3412 /* ___cache_alloc_node can fall back to other nodes */
3413 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3414 out:
3415 local_irq_restore(save_flags);
3416 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3417
3418 return ptr;
3419 }
3420
3421 static __always_inline void *
3422 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3423 {
3424 void *objp;
3425
3426 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3427 objp = alternate_node_alloc(cache, flags);
3428 if (objp)
3429 goto out;
3430 }
3431 objp = ____cache_alloc(cache, flags);
3432
3433 /*
3434 * We may just have run out of memory on the local node.
3435 * ____cache_alloc_node() knows how to locate memory on other nodes
3436 */
3437 if (!objp)
3438 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3439
3440 out:
3441 return objp;
3442 }
3443 #else
3444
3445 static __always_inline void *
3446 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3447 {
3448 return ____cache_alloc(cachep, flags);
3449 }
3450
3451 #endif /* CONFIG_NUMA */
3452
3453 static __always_inline void *
3454 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3455 {
3456 unsigned long save_flags;
3457 void *objp;
3458
3459 if (should_failslab(cachep, flags))
3460 return NULL;
3461
3462 cache_alloc_debugcheck_before(cachep, flags);
3463 local_irq_save(save_flags);
3464 objp = __do_cache_alloc(cachep, flags);
3465 local_irq_restore(save_flags);
3466 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3467 prefetchw(objp);
3468
3469 return objp;
3470 }
3471
3472 /*
3473 * Caller needs to acquire correct kmem_list's list_lock
3474 */
3475 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3476 int node)
3477 {
3478 int i;
3479 struct kmem_list3 *l3;
3480
3481 for (i = 0; i < nr_objects; i++) {
3482 void *objp = objpp[i];
3483 struct slab *slabp;
3484
3485 slabp = virt_to_slab(objp);
3486 l3 = cachep->nodelists[node];
3487 list_del(&slabp->list);
3488 check_spinlock_acquired_node(cachep, node);
3489 check_slabp(cachep, slabp);
3490 slab_put_obj(cachep, slabp, objp, node);
3491 STATS_DEC_ACTIVE(cachep);
3492 l3->free_objects++;
3493 check_slabp(cachep, slabp);
3494
3495 /* fixup slab chains */
3496 if (slabp->inuse == 0) {
3497 if (l3->free_objects > l3->free_limit) {
3498 l3->free_objects -= cachep->num;
3499 /* No need to drop any previously held
3500 * lock here, even if we have a off-slab slab
3501 * descriptor it is guaranteed to come from
3502 * a different cache, refer to comments before
3503 * alloc_slabmgmt.
3504 */
3505 slab_destroy(cachep, slabp);
3506 } else {
3507 list_add(&slabp->list, &l3->slabs_free);
3508 }
3509 } else {
3510 /* Unconditionally move a slab to the end of the
3511 * partial list on free - maximum time for the
3512 * other objects to be freed, too.
3513 */
3514 list_add_tail(&slabp->list, &l3->slabs_partial);
3515 }
3516 }
3517 }
3518
3519 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3520 {
3521 int batchcount;
3522 struct kmem_list3 *l3;
3523 int node = numa_node_id();
3524
3525 batchcount = ac->batchcount;
3526 #if DEBUG
3527 BUG_ON(!batchcount || batchcount > ac->avail);
3528 #endif
3529 check_irq_off();
3530 l3 = cachep->nodelists[node];
3531 spin_lock(&l3->list_lock);
3532 if (l3->shared) {
3533 struct array_cache *shared_array = l3->shared;
3534 int max = shared_array->limit - shared_array->avail;
3535 if (max) {
3536 if (batchcount > max)
3537 batchcount = max;
3538 memcpy(&(shared_array->entry[shared_array->avail]),
3539 ac->entry, sizeof(void *) * batchcount);
3540 shared_array->avail += batchcount;
3541 goto free_done;
3542 }
3543 }
3544
3545 free_block(cachep, ac->entry, batchcount, node);
3546 free_done:
3547 #if STATS
3548 {
3549 int i = 0;
3550 struct list_head *p;
3551
3552 p = l3->slabs_free.next;
3553 while (p != &(l3->slabs_free)) {
3554 struct slab *slabp;
3555
3556 slabp = list_entry(p, struct slab, list);
3557 BUG_ON(slabp->inuse);
3558
3559 i++;
3560 p = p->next;
3561 }
3562 STATS_SET_FREEABLE(cachep, i);
3563 }
3564 #endif
3565 spin_unlock(&l3->list_lock);
3566 ac->avail -= batchcount;
3567 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3568 }
3569
3570 /*
3571 * Release an obj back to its cache. If the obj has a constructed state, it must
3572 * be in this state _before_ it is released. Called with disabled ints.
3573 */
3574 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3575 {
3576 struct array_cache *ac = cpu_cache_get(cachep);
3577
3578 check_irq_off();
3579 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3580
3581 if (use_alien_caches && cache_free_alien(cachep, objp))
3582 return;
3583
3584 if (likely(ac->avail < ac->limit)) {
3585 STATS_INC_FREEHIT(cachep);
3586 ac->entry[ac->avail++] = objp;
3587 return;
3588 } else {
3589 STATS_INC_FREEMISS(cachep);
3590 cache_flusharray(cachep, ac);
3591 ac->entry[ac->avail++] = objp;
3592 }
3593 }
3594
3595 /**
3596 * kmem_cache_alloc - Allocate an object
3597 * @cachep: The cache to allocate from.
3598 * @flags: See kmalloc().
3599 *
3600 * Allocate an object from this cache. The flags are only relevant
3601 * if the cache has no available objects.
3602 */
3603 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3604 {
3605 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3606 }
3607 EXPORT_SYMBOL(kmem_cache_alloc);
3608
3609 /**
3610 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3611 * @cache: The cache to allocate from.
3612 * @flags: See kmalloc().
3613 *
3614 * Allocate an object from this cache and set the allocated memory to zero.
3615 * The flags are only relevant if the cache has no available objects.
3616 */
3617 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3618 {
3619 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3620 if (ret)
3621 memset(ret, 0, obj_size(cache));
3622 return ret;
3623 }
3624 EXPORT_SYMBOL(kmem_cache_zalloc);
3625
3626 /**
3627 * kmem_ptr_validate - check if an untrusted pointer might
3628 * be a slab entry.
3629 * @cachep: the cache we're checking against
3630 * @ptr: pointer to validate
3631 *
3632 * This verifies that the untrusted pointer looks sane:
3633 * it is _not_ a guarantee that the pointer is actually
3634 * part of the slab cache in question, but it at least
3635 * validates that the pointer can be dereferenced and
3636 * looks half-way sane.
3637 *
3638 * Currently only used for dentry validation.
3639 */
3640 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3641 {
3642 unsigned long addr = (unsigned long)ptr;
3643 unsigned long min_addr = PAGE_OFFSET;
3644 unsigned long align_mask = BYTES_PER_WORD - 1;
3645 unsigned long size = cachep->buffer_size;
3646 struct page *page;
3647
3648 if (unlikely(addr < min_addr))
3649 goto out;
3650 if (unlikely(addr > (unsigned long)high_memory - size))
3651 goto out;
3652 if (unlikely(addr & align_mask))
3653 goto out;
3654 if (unlikely(!kern_addr_valid(addr)))
3655 goto out;
3656 if (unlikely(!kern_addr_valid(addr + size - 1)))
3657 goto out;
3658 page = virt_to_page(ptr);
3659 if (unlikely(!PageSlab(page)))
3660 goto out;
3661 if (unlikely(page_get_cache(page) != cachep))
3662 goto out;
3663 return 1;
3664 out:
3665 return 0;
3666 }
3667
3668 #ifdef CONFIG_NUMA
3669 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3670 {
3671 return __cache_alloc_node(cachep, flags, nodeid,
3672 __builtin_return_address(0));
3673 }
3674 EXPORT_SYMBOL(kmem_cache_alloc_node);
3675
3676 static __always_inline void *
3677 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3678 {
3679 struct kmem_cache *cachep;
3680
3681 cachep = kmem_find_general_cachep(size, flags);
3682 if (unlikely(cachep == NULL))
3683 return NULL;
3684 return kmem_cache_alloc_node(cachep, flags, node);
3685 }
3686
3687 #ifdef CONFIG_DEBUG_SLAB
3688 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3689 {
3690 return __do_kmalloc_node(size, flags, node,
3691 __builtin_return_address(0));
3692 }
3693 EXPORT_SYMBOL(__kmalloc_node);
3694
3695 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3696 int node, void *caller)
3697 {
3698 return __do_kmalloc_node(size, flags, node, caller);
3699 }
3700 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3701 #else
3702 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3703 {
3704 return __do_kmalloc_node(size, flags, node, NULL);
3705 }
3706 EXPORT_SYMBOL(__kmalloc_node);
3707 #endif /* CONFIG_DEBUG_SLAB */
3708 #endif /* CONFIG_NUMA */
3709
3710 /**
3711 * __do_kmalloc - allocate memory
3712 * @size: how many bytes of memory are required.
3713 * @flags: the type of memory to allocate (see kmalloc).
3714 * @caller: function caller for debug tracking of the caller
3715 */
3716 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3717 void *caller)
3718 {
3719 struct kmem_cache *cachep;
3720
3721 /* If you want to save a few bytes .text space: replace
3722 * __ with kmem_.
3723 * Then kmalloc uses the uninlined functions instead of the inline
3724 * functions.
3725 */
3726 cachep = __find_general_cachep(size, flags);
3727 if (unlikely(cachep == NULL))
3728 return NULL;
3729 return __cache_alloc(cachep, flags, caller);
3730 }
3731
3732
3733 #ifdef CONFIG_DEBUG_SLAB
3734 void *__kmalloc(size_t size, gfp_t flags)
3735 {
3736 return __do_kmalloc(size, flags, __builtin_return_address(0));
3737 }
3738 EXPORT_SYMBOL(__kmalloc);
3739
3740 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3741 {
3742 return __do_kmalloc(size, flags, caller);
3743 }
3744 EXPORT_SYMBOL(__kmalloc_track_caller);
3745
3746 #else
3747 void *__kmalloc(size_t size, gfp_t flags)
3748 {
3749 return __do_kmalloc(size, flags, NULL);
3750 }
3751 EXPORT_SYMBOL(__kmalloc);
3752 #endif
3753
3754 /**
3755 * krealloc - reallocate memory. The contents will remain unchanged.
3756 * @p: object to reallocate memory for.
3757 * @new_size: how many bytes of memory are required.
3758 * @flags: the type of memory to allocate.
3759 *
3760 * The contents of the object pointed to are preserved up to the
3761 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3762 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3763 * %NULL pointer, the object pointed to is freed.
3764 */
3765 void *krealloc(const void *p, size_t new_size, gfp_t flags)
3766 {
3767 struct kmem_cache *cache, *new_cache;
3768 void *ret;
3769
3770 if (unlikely(!p))
3771 return kmalloc_track_caller(new_size, flags);
3772
3773 if (unlikely(!new_size)) {
3774 kfree(p);
3775 return NULL;
3776 }
3777
3778 cache = virt_to_cache(p);
3779 new_cache = __find_general_cachep(new_size, flags);
3780
3781 /*
3782 * If new size fits in the current cache, bail out.
3783 */
3784 if (likely(cache == new_cache))
3785 return (void *)p;
3786
3787 /*
3788 * We are on the slow-path here so do not use __cache_alloc
3789 * because it bloats kernel text.
3790 */
3791 ret = kmalloc_track_caller(new_size, flags);
3792 if (ret) {
3793 memcpy(ret, p, min(new_size, ksize(p)));
3794 kfree(p);
3795 }
3796 return ret;
3797 }
3798 EXPORT_SYMBOL(krealloc);
3799
3800 /**
3801 * kmem_cache_free - Deallocate an object
3802 * @cachep: The cache the allocation was from.
3803 * @objp: The previously allocated object.
3804 *
3805 * Free an object which was previously allocated from this
3806 * cache.
3807 */
3808 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3809 {
3810 unsigned long flags;
3811
3812 BUG_ON(virt_to_cache(objp) != cachep);
3813
3814 local_irq_save(flags);
3815 debug_check_no_locks_freed(objp, obj_size(cachep));
3816 __cache_free(cachep, objp);
3817 local_irq_restore(flags);
3818 }
3819 EXPORT_SYMBOL(kmem_cache_free);
3820
3821 /**
3822 * kfree - free previously allocated memory
3823 * @objp: pointer returned by kmalloc.
3824 *
3825 * If @objp is NULL, no operation is performed.
3826 *
3827 * Don't free memory not originally allocated by kmalloc()
3828 * or you will run into trouble.
3829 */
3830 void kfree(const void *objp)
3831 {
3832 struct kmem_cache *c;
3833 unsigned long flags;
3834
3835 if (unlikely(!objp))
3836 return;
3837 local_irq_save(flags);
3838 kfree_debugcheck(objp);
3839 c = virt_to_cache(objp);
3840 debug_check_no_locks_freed(objp, obj_size(c));
3841 __cache_free(c, (void *)objp);
3842 local_irq_restore(flags);
3843 }
3844 EXPORT_SYMBOL(kfree);
3845
3846 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3847 {
3848 return obj_size(cachep);
3849 }
3850 EXPORT_SYMBOL(kmem_cache_size);
3851
3852 const char *kmem_cache_name(struct kmem_cache *cachep)
3853 {
3854 return cachep->name;
3855 }
3856 EXPORT_SYMBOL_GPL(kmem_cache_name);
3857
3858 /*
3859 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3860 */
3861 static int alloc_kmemlist(struct kmem_cache *cachep)
3862 {
3863 int node;
3864 struct kmem_list3 *l3;
3865 struct array_cache *new_shared;
3866 struct array_cache **new_alien = NULL;
3867
3868 for_each_online_node(node) {
3869
3870 if (use_alien_caches) {
3871 new_alien = alloc_alien_cache(node, cachep->limit);
3872 if (!new_alien)
3873 goto fail;
3874 }
3875
3876 new_shared = NULL;
3877 if (cachep->shared) {
3878 new_shared = alloc_arraycache(node,
3879 cachep->shared*cachep->batchcount,
3880 0xbaadf00d);
3881 if (!new_shared) {
3882 free_alien_cache(new_alien);
3883 goto fail;
3884 }
3885 }
3886
3887 l3 = cachep->nodelists[node];
3888 if (l3) {
3889 struct array_cache *shared = l3->shared;
3890
3891 spin_lock_irq(&l3->list_lock);
3892
3893 if (shared)
3894 free_block(cachep, shared->entry,
3895 shared->avail, node);
3896
3897 l3->shared = new_shared;
3898 if (!l3->alien) {
3899 l3->alien = new_alien;
3900 new_alien = NULL;
3901 }
3902 l3->free_limit = (1 + nr_cpus_node(node)) *
3903 cachep->batchcount + cachep->num;
3904 spin_unlock_irq(&l3->list_lock);
3905 kfree(shared);
3906 free_alien_cache(new_alien);
3907 continue;
3908 }
3909 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3910 if (!l3) {
3911 free_alien_cache(new_alien);
3912 kfree(new_shared);
3913 goto fail;
3914 }
3915
3916 kmem_list3_init(l3);
3917 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3918 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3919 l3->shared = new_shared;
3920 l3->alien = new_alien;
3921 l3->free_limit = (1 + nr_cpus_node(node)) *
3922 cachep->batchcount + cachep->num;
3923 cachep->nodelists[node] = l3;
3924 }
3925 return 0;
3926
3927 fail:
3928 if (!cachep->next.next) {
3929 /* Cache is not active yet. Roll back what we did */
3930 node--;
3931 while (node >= 0) {
3932 if (cachep->nodelists[node]) {
3933 l3 = cachep->nodelists[node];
3934
3935 kfree(l3->shared);
3936 free_alien_cache(l3->alien);
3937 kfree(l3);
3938 cachep->nodelists[node] = NULL;
3939 }
3940 node--;
3941 }
3942 }
3943 return -ENOMEM;
3944 }
3945
3946 struct ccupdate_struct {
3947 struct kmem_cache *cachep;
3948 struct array_cache *new[NR_CPUS];
3949 };
3950
3951 static void do_ccupdate_local(void *info)
3952 {
3953 struct ccupdate_struct *new = info;
3954 struct array_cache *old;
3955
3956 check_irq_off();
3957 old = cpu_cache_get(new->cachep);
3958
3959 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3960 new->new[smp_processor_id()] = old;
3961 }
3962
3963 /* Always called with the cache_chain_mutex held */
3964 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3965 int batchcount, int shared)
3966 {
3967 struct ccupdate_struct *new;
3968 int i;
3969
3970 new = kzalloc(sizeof(*new), GFP_KERNEL);
3971 if (!new)
3972 return -ENOMEM;
3973
3974 for_each_online_cpu(i) {
3975 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3976 batchcount);
3977 if (!new->new[i]) {
3978 for (i--; i >= 0; i--)
3979 kfree(new->new[i]);
3980 kfree(new);
3981 return -ENOMEM;
3982 }
3983 }
3984 new->cachep = cachep;
3985
3986 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3987
3988 check_irq_on();
3989 cachep->batchcount = batchcount;
3990 cachep->limit = limit;
3991 cachep->shared = shared;
3992
3993 for_each_online_cpu(i) {
3994 struct array_cache *ccold = new->new[i];
3995 if (!ccold)
3996 continue;
3997 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3998 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3999 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
4000 kfree(ccold);
4001 }
4002 kfree(new);
4003 return alloc_kmemlist(cachep);
4004 }
4005
4006 /* Called with cache_chain_mutex held always */
4007 static int enable_cpucache(struct kmem_cache *cachep)
4008 {
4009 int err;
4010 int limit, shared;
4011
4012 /*
4013 * The head array serves three purposes:
4014 * - create a LIFO ordering, i.e. return objects that are cache-warm
4015 * - reduce the number of spinlock operations.
4016 * - reduce the number of linked list operations on the slab and
4017 * bufctl chains: array operations are cheaper.
4018 * The numbers are guessed, we should auto-tune as described by
4019 * Bonwick.
4020 */
4021 if (cachep->buffer_size > 131072)
4022 limit = 1;
4023 else if (cachep->buffer_size > PAGE_SIZE)
4024 limit = 8;
4025 else if (cachep->buffer_size > 1024)
4026 limit = 24;
4027 else if (cachep->buffer_size > 256)
4028 limit = 54;
4029 else
4030 limit = 120;
4031
4032 /*
4033 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4034 * allocation behaviour: Most allocs on one cpu, most free operations
4035 * on another cpu. For these cases, an efficient object passing between
4036 * cpus is necessary. This is provided by a shared array. The array
4037 * replaces Bonwick's magazine layer.
4038 * On uniprocessor, it's functionally equivalent (but less efficient)
4039 * to a larger limit. Thus disabled by default.
4040 */
4041 shared = 0;
4042 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4043 shared = 8;
4044
4045 #if DEBUG
4046 /*
4047 * With debugging enabled, large batchcount lead to excessively long
4048 * periods with disabled local interrupts. Limit the batchcount
4049 */
4050 if (limit > 32)
4051 limit = 32;
4052 #endif
4053 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4054 if (err)
4055 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4056 cachep->name, -err);
4057 return err;
4058 }
4059
4060 /*
4061 * Drain an array if it contains any elements taking the l3 lock only if
4062 * necessary. Note that the l3 listlock also protects the array_cache
4063 * if drain_array() is used on the shared array.
4064 */
4065 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4066 struct array_cache *ac, int force, int node)
4067 {
4068 int tofree;
4069
4070 if (!ac || !ac->avail)
4071 return;
4072 if (ac->touched && !force) {
4073 ac->touched = 0;
4074 } else {
4075 spin_lock_irq(&l3->list_lock);
4076 if (ac->avail) {
4077 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4078 if (tofree > ac->avail)
4079 tofree = (ac->avail + 1) / 2;
4080 free_block(cachep, ac->entry, tofree, node);
4081 ac->avail -= tofree;
4082 memmove(ac->entry, &(ac->entry[tofree]),
4083 sizeof(void *) * ac->avail);
4084 }
4085 spin_unlock_irq(&l3->list_lock);
4086 }
4087 }
4088
4089 /**
4090 * cache_reap - Reclaim memory from caches.
4091 * @w: work descriptor
4092 *
4093 * Called from workqueue/eventd every few seconds.
4094 * Purpose:
4095 * - clear the per-cpu caches for this CPU.
4096 * - return freeable pages to the main free memory pool.
4097 *
4098 * If we cannot acquire the cache chain mutex then just give up - we'll try
4099 * again on the next iteration.
4100 */
4101 static void cache_reap(struct work_struct *w)
4102 {
4103 struct kmem_cache *searchp;
4104 struct kmem_list3 *l3;
4105 int node = numa_node_id();
4106 struct delayed_work *work =
4107 container_of(w, struct delayed_work, work);
4108
4109 if (!mutex_trylock(&cache_chain_mutex))
4110 /* Give up. Setup the next iteration. */
4111 goto out;
4112
4113 list_for_each_entry(searchp, &cache_chain, next) {
4114 check_irq_on();
4115
4116 /*
4117 * We only take the l3 lock if absolutely necessary and we
4118 * have established with reasonable certainty that
4119 * we can do some work if the lock was obtained.
4120 */
4121 l3 = searchp->nodelists[node];
4122
4123 reap_alien(searchp, l3);
4124
4125 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4126
4127 /*
4128 * These are racy checks but it does not matter
4129 * if we skip one check or scan twice.
4130 */
4131 if (time_after(l3->next_reap, jiffies))
4132 goto next;
4133
4134 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4135
4136 drain_array(searchp, l3, l3->shared, 0, node);
4137
4138 if (l3->free_touched)
4139 l3->free_touched = 0;
4140 else {
4141 int freed;
4142
4143 freed = drain_freelist(searchp, l3, (l3->free_limit +
4144 5 * searchp->num - 1) / (5 * searchp->num));
4145 STATS_ADD_REAPED(searchp, freed);
4146 }
4147 next:
4148 cond_resched();
4149 }
4150 check_irq_on();
4151 mutex_unlock(&cache_chain_mutex);
4152 next_reap_node();
4153 out:
4154 /* Set up the next iteration */
4155 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4156 }
4157
4158 #ifdef CONFIG_PROC_FS
4159
4160 static void print_slabinfo_header(struct seq_file *m)
4161 {
4162 /*
4163 * Output format version, so at least we can change it
4164 * without _too_ many complaints.
4165 */
4166 #if STATS
4167 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4168 #else
4169 seq_puts(m, "slabinfo - version: 2.1\n");
4170 #endif
4171 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4172 "<objperslab> <pagesperslab>");
4173 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4174 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4175 #if STATS
4176 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4177 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4178 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4179 #endif
4180 seq_putc(m, '\n');
4181 }
4182
4183 static void *s_start(struct seq_file *m, loff_t *pos)
4184 {
4185 loff_t n = *pos;
4186 struct list_head *p;
4187
4188 mutex_lock(&cache_chain_mutex);
4189 if (!n)
4190 print_slabinfo_header(m);
4191 p = cache_chain.next;
4192 while (n--) {
4193 p = p->next;
4194 if (p == &cache_chain)
4195 return NULL;
4196 }
4197 return list_entry(p, struct kmem_cache, next);
4198 }
4199
4200 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4201 {
4202 struct kmem_cache *cachep = p;
4203 ++*pos;
4204 return cachep->next.next == &cache_chain ?
4205 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4206 }
4207
4208 static void s_stop(struct seq_file *m, void *p)
4209 {
4210 mutex_unlock(&cache_chain_mutex);
4211 }
4212
4213 static int s_show(struct seq_file *m, void *p)
4214 {
4215 struct kmem_cache *cachep = p;
4216 struct slab *slabp;
4217 unsigned long active_objs;
4218 unsigned long num_objs;
4219 unsigned long active_slabs = 0;
4220 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4221 const char *name;
4222 char *error = NULL;
4223 int node;
4224 struct kmem_list3 *l3;
4225
4226 active_objs = 0;
4227 num_slabs = 0;
4228 for_each_online_node(node) {
4229 l3 = cachep->nodelists[node];
4230 if (!l3)
4231 continue;
4232
4233 check_irq_on();
4234 spin_lock_irq(&l3->list_lock);
4235
4236 list_for_each_entry(slabp, &l3->slabs_full, list) {
4237 if (slabp->inuse != cachep->num && !error)
4238 error = "slabs_full accounting error";
4239 active_objs += cachep->num;
4240 active_slabs++;
4241 }
4242 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4243 if (slabp->inuse == cachep->num && !error)
4244 error = "slabs_partial inuse accounting error";
4245 if (!slabp->inuse && !error)
4246 error = "slabs_partial/inuse accounting error";
4247 active_objs += slabp->inuse;
4248 active_slabs++;
4249 }
4250 list_for_each_entry(slabp, &l3->slabs_free, list) {
4251 if (slabp->inuse && !error)
4252 error = "slabs_free/inuse accounting error";
4253 num_slabs++;
4254 }
4255 free_objects += l3->free_objects;
4256 if (l3->shared)
4257 shared_avail += l3->shared->avail;
4258
4259 spin_unlock_irq(&l3->list_lock);
4260 }
4261 num_slabs += active_slabs;
4262 num_objs = num_slabs * cachep->num;
4263 if (num_objs - active_objs != free_objects && !error)
4264 error = "free_objects accounting error";
4265
4266 name = cachep->name;
4267 if (error)
4268 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4269
4270 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4271 name, active_objs, num_objs, cachep->buffer_size,
4272 cachep->num, (1 << cachep->gfporder));
4273 seq_printf(m, " : tunables %4u %4u %4u",
4274 cachep->limit, cachep->batchcount, cachep->shared);
4275 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4276 active_slabs, num_slabs, shared_avail);
4277 #if STATS
4278 { /* list3 stats */
4279 unsigned long high = cachep->high_mark;
4280 unsigned long allocs = cachep->num_allocations;
4281 unsigned long grown = cachep->grown;
4282 unsigned long reaped = cachep->reaped;
4283 unsigned long errors = cachep->errors;
4284 unsigned long max_freeable = cachep->max_freeable;
4285 unsigned long node_allocs = cachep->node_allocs;
4286 unsigned long node_frees = cachep->node_frees;
4287 unsigned long overflows = cachep->node_overflow;
4288
4289 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4290 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4291 reaped, errors, max_freeable, node_allocs,
4292 node_frees, overflows);
4293 }
4294 /* cpu stats */
4295 {
4296 unsigned long allochit = atomic_read(&cachep->allochit);
4297 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4298 unsigned long freehit = atomic_read(&cachep->freehit);
4299 unsigned long freemiss = atomic_read(&cachep->freemiss);
4300
4301 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4302 allochit, allocmiss, freehit, freemiss);
4303 }
4304 #endif
4305 seq_putc(m, '\n');
4306 return 0;
4307 }
4308
4309 /*
4310 * slabinfo_op - iterator that generates /proc/slabinfo
4311 *
4312 * Output layout:
4313 * cache-name
4314 * num-active-objs
4315 * total-objs
4316 * object size
4317 * num-active-slabs
4318 * total-slabs
4319 * num-pages-per-slab
4320 * + further values on SMP and with statistics enabled
4321 */
4322
4323 const struct seq_operations slabinfo_op = {
4324 .start = s_start,
4325 .next = s_next,
4326 .stop = s_stop,
4327 .show = s_show,
4328 };
4329
4330 #define MAX_SLABINFO_WRITE 128
4331 /**
4332 * slabinfo_write - Tuning for the slab allocator
4333 * @file: unused
4334 * @buffer: user buffer
4335 * @count: data length
4336 * @ppos: unused
4337 */
4338 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4339 size_t count, loff_t *ppos)
4340 {
4341 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4342 int limit, batchcount, shared, res;
4343 struct kmem_cache *cachep;
4344
4345 if (count > MAX_SLABINFO_WRITE)
4346 return -EINVAL;
4347 if (copy_from_user(&kbuf, buffer, count))
4348 return -EFAULT;
4349 kbuf[MAX_SLABINFO_WRITE] = '\0';
4350
4351 tmp = strchr(kbuf, ' ');
4352 if (!tmp)
4353 return -EINVAL;
4354 *tmp = '\0';
4355 tmp++;
4356 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4357 return -EINVAL;
4358
4359 /* Find the cache in the chain of caches. */
4360 mutex_lock(&cache_chain_mutex);
4361 res = -EINVAL;
4362 list_for_each_entry(cachep, &cache_chain, next) {
4363 if (!strcmp(cachep->name, kbuf)) {
4364 if (limit < 1 || batchcount < 1 ||
4365 batchcount > limit || shared < 0) {
4366 res = 0;
4367 } else {
4368 res = do_tune_cpucache(cachep, limit,
4369 batchcount, shared);
4370 }
4371 break;
4372 }
4373 }
4374 mutex_unlock(&cache_chain_mutex);
4375 if (res >= 0)
4376 res = count;
4377 return res;
4378 }
4379
4380 #ifdef CONFIG_DEBUG_SLAB_LEAK
4381
4382 static void *leaks_start(struct seq_file *m, loff_t *pos)
4383 {
4384 loff_t n = *pos;
4385 struct list_head *p;
4386
4387 mutex_lock(&cache_chain_mutex);
4388 p = cache_chain.next;
4389 while (n--) {
4390 p = p->next;
4391 if (p == &cache_chain)
4392 return NULL;
4393 }
4394 return list_entry(p, struct kmem_cache, next);
4395 }
4396
4397 static inline int add_caller(unsigned long *n, unsigned long v)
4398 {
4399 unsigned long *p;
4400 int l;
4401 if (!v)
4402 return 1;
4403 l = n[1];
4404 p = n + 2;
4405 while (l) {
4406 int i = l/2;
4407 unsigned long *q = p + 2 * i;
4408 if (*q == v) {
4409 q[1]++;
4410 return 1;
4411 }
4412 if (*q > v) {
4413 l = i;
4414 } else {
4415 p = q + 2;
4416 l -= i + 1;
4417 }
4418 }
4419 if (++n[1] == n[0])
4420 return 0;
4421 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4422 p[0] = v;
4423 p[1] = 1;
4424 return 1;
4425 }
4426
4427 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4428 {
4429 void *p;
4430 int i;
4431 if (n[0] == n[1])
4432 return;
4433 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4434 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4435 continue;
4436 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4437 return;
4438 }
4439 }
4440
4441 static void show_symbol(struct seq_file *m, unsigned long address)
4442 {
4443 #ifdef CONFIG_KALLSYMS
4444 unsigned long offset, size;
4445 char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
4446
4447 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4448 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4449 if (modname[0])
4450 seq_printf(m, " [%s]", modname);
4451 return;
4452 }
4453 #endif
4454 seq_printf(m, "%p", (void *)address);
4455 }
4456
4457 static int leaks_show(struct seq_file *m, void *p)
4458 {
4459 struct kmem_cache *cachep = p;
4460 struct slab *slabp;
4461 struct kmem_list3 *l3;
4462 const char *name;
4463 unsigned long *n = m->private;
4464 int node;
4465 int i;
4466
4467 if (!(cachep->flags & SLAB_STORE_USER))
4468 return 0;
4469 if (!(cachep->flags & SLAB_RED_ZONE))
4470 return 0;
4471
4472 /* OK, we can do it */
4473
4474 n[1] = 0;
4475
4476 for_each_online_node(node) {
4477 l3 = cachep->nodelists[node];
4478 if (!l3)
4479 continue;
4480
4481 check_irq_on();
4482 spin_lock_irq(&l3->list_lock);
4483
4484 list_for_each_entry(slabp, &l3->slabs_full, list)
4485 handle_slab(n, cachep, slabp);
4486 list_for_each_entry(slabp, &l3->slabs_partial, list)
4487 handle_slab(n, cachep, slabp);
4488 spin_unlock_irq(&l3->list_lock);
4489 }
4490 name = cachep->name;
4491 if (n[0] == n[1]) {
4492 /* Increase the buffer size */
4493 mutex_unlock(&cache_chain_mutex);
4494 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4495 if (!m->private) {
4496 /* Too bad, we are really out */
4497 m->private = n;
4498 mutex_lock(&cache_chain_mutex);
4499 return -ENOMEM;
4500 }
4501 *(unsigned long *)m->private = n[0] * 2;
4502 kfree(n);
4503 mutex_lock(&cache_chain_mutex);
4504 /* Now make sure this entry will be retried */
4505 m->count = m->size;
4506 return 0;
4507 }
4508 for (i = 0; i < n[1]; i++) {
4509 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4510 show_symbol(m, n[2*i+2]);
4511 seq_putc(m, '\n');
4512 }
4513
4514 return 0;
4515 }
4516
4517 const struct seq_operations slabstats_op = {
4518 .start = leaks_start,
4519 .next = s_next,
4520 .stop = s_stop,
4521 .show = leaks_show,
4522 };
4523 #endif
4524 #endif
4525
4526 /**
4527 * ksize - get the actual amount of memory allocated for a given object
4528 * @objp: Pointer to the object
4529 *
4530 * kmalloc may internally round up allocations and return more memory
4531 * than requested. ksize() can be used to determine the actual amount of
4532 * memory allocated. The caller may use this additional memory, even though
4533 * a smaller amount of memory was initially specified with the kmalloc call.
4534 * The caller must guarantee that objp points to a valid object previously
4535 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4536 * must not be freed during the duration of the call.
4537 */
4538 size_t ksize(const void *objp)
4539 {
4540 if (unlikely(objp == NULL))
4541 return 0;
4542
4543 return obj_size(virt_to_cache(objp));
4544 }