]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slab.c
mm/swapfile.c: delete the "last_in_cluster < scan_base" loop in the body of scan_swap...
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175 static bool pfmemalloc_active __read_mostly;
176
177 /*
178 * struct array_cache
179 *
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189 struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 spinlock_t lock;
195 void *entry[]; /*
196 * Must have this definition in here for the proper
197 * alignment of array_cache. Also simplifies accessing
198 * the entries.
199 *
200 * Entries should not be directly dereferenced as
201 * entries belonging to slabs marked pfmemalloc will
202 * have the lower bits set SLAB_OBJ_PFMEMALLOC
203 */
204 };
205
206 #define SLAB_OBJ_PFMEMALLOC 1
207 static inline bool is_obj_pfmemalloc(void *objp)
208 {
209 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
210 }
211
212 static inline void set_obj_pfmemalloc(void **objp)
213 {
214 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
215 return;
216 }
217
218 static inline void clear_obj_pfmemalloc(void **objp)
219 {
220 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
221 }
222
223 /*
224 * bootstrap: The caches do not work without cpuarrays anymore, but the
225 * cpuarrays are allocated from the generic caches...
226 */
227 #define BOOT_CPUCACHE_ENTRIES 1
228 struct arraycache_init {
229 struct array_cache cache;
230 void *entries[BOOT_CPUCACHE_ENTRIES];
231 };
232
233 /*
234 * Need this for bootstrapping a per node allocator.
235 */
236 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
237 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
238 #define CACHE_CACHE 0
239 #define SIZE_AC MAX_NUMNODES
240 #define SIZE_NODE (2 * MAX_NUMNODES)
241
242 static int drain_freelist(struct kmem_cache *cache,
243 struct kmem_cache_node *n, int tofree);
244 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
245 int node);
246 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
247 static void cache_reap(struct work_struct *unused);
248
249 static int slab_early_init = 1;
250
251 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
252 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
253
254 static void kmem_cache_node_init(struct kmem_cache_node *parent)
255 {
256 INIT_LIST_HEAD(&parent->slabs_full);
257 INIT_LIST_HEAD(&parent->slabs_partial);
258 INIT_LIST_HEAD(&parent->slabs_free);
259 parent->shared = NULL;
260 parent->alien = NULL;
261 parent->colour_next = 0;
262 spin_lock_init(&parent->list_lock);
263 parent->free_objects = 0;
264 parent->free_touched = 0;
265 }
266
267 #define MAKE_LIST(cachep, listp, slab, nodeid) \
268 do { \
269 INIT_LIST_HEAD(listp); \
270 list_splice(&(cachep->node[nodeid]->slab), listp); \
271 } while (0)
272
273 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
274 do { \
275 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
276 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
277 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
278 } while (0)
279
280 #define CFLGS_OFF_SLAB (0x80000000UL)
281 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
282
283 #define BATCHREFILL_LIMIT 16
284 /*
285 * Optimization question: fewer reaps means less probability for unnessary
286 * cpucache drain/refill cycles.
287 *
288 * OTOH the cpuarrays can contain lots of objects,
289 * which could lock up otherwise freeable slabs.
290 */
291 #define REAPTIMEOUT_AC (2*HZ)
292 #define REAPTIMEOUT_NODE (4*HZ)
293
294 #if STATS
295 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
296 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
297 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
298 #define STATS_INC_GROWN(x) ((x)->grown++)
299 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
300 #define STATS_SET_HIGH(x) \
301 do { \
302 if ((x)->num_active > (x)->high_mark) \
303 (x)->high_mark = (x)->num_active; \
304 } while (0)
305 #define STATS_INC_ERR(x) ((x)->errors++)
306 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
307 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
308 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
309 #define STATS_SET_FREEABLE(x, i) \
310 do { \
311 if ((x)->max_freeable < i) \
312 (x)->max_freeable = i; \
313 } while (0)
314 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
315 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
316 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
317 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
318 #else
319 #define STATS_INC_ACTIVE(x) do { } while (0)
320 #define STATS_DEC_ACTIVE(x) do { } while (0)
321 #define STATS_INC_ALLOCED(x) do { } while (0)
322 #define STATS_INC_GROWN(x) do { } while (0)
323 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
324 #define STATS_SET_HIGH(x) do { } while (0)
325 #define STATS_INC_ERR(x) do { } while (0)
326 #define STATS_INC_NODEALLOCS(x) do { } while (0)
327 #define STATS_INC_NODEFREES(x) do { } while (0)
328 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
329 #define STATS_SET_FREEABLE(x, i) do { } while (0)
330 #define STATS_INC_ALLOCHIT(x) do { } while (0)
331 #define STATS_INC_ALLOCMISS(x) do { } while (0)
332 #define STATS_INC_FREEHIT(x) do { } while (0)
333 #define STATS_INC_FREEMISS(x) do { } while (0)
334 #endif
335
336 #if DEBUG
337
338 /*
339 * memory layout of objects:
340 * 0 : objp
341 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
342 * the end of an object is aligned with the end of the real
343 * allocation. Catches writes behind the end of the allocation.
344 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
345 * redzone word.
346 * cachep->obj_offset: The real object.
347 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
348 * cachep->size - 1* BYTES_PER_WORD: last caller address
349 * [BYTES_PER_WORD long]
350 */
351 static int obj_offset(struct kmem_cache *cachep)
352 {
353 return cachep->obj_offset;
354 }
355
356 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
357 {
358 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
359 return (unsigned long long*) (objp + obj_offset(cachep) -
360 sizeof(unsigned long long));
361 }
362
363 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
364 {
365 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
366 if (cachep->flags & SLAB_STORE_USER)
367 return (unsigned long long *)(objp + cachep->size -
368 sizeof(unsigned long long) -
369 REDZONE_ALIGN);
370 return (unsigned long long *) (objp + cachep->size -
371 sizeof(unsigned long long));
372 }
373
374 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
375 {
376 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
377 return (void **)(objp + cachep->size - BYTES_PER_WORD);
378 }
379
380 #else
381
382 #define obj_offset(x) 0
383 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
384 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
385 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
386
387 #endif
388
389 /*
390 * Do not go above this order unless 0 objects fit into the slab or
391 * overridden on the command line.
392 */
393 #define SLAB_MAX_ORDER_HI 1
394 #define SLAB_MAX_ORDER_LO 0
395 static int slab_max_order = SLAB_MAX_ORDER_LO;
396 static bool slab_max_order_set __initdata;
397
398 static inline struct kmem_cache *virt_to_cache(const void *obj)
399 {
400 struct page *page = virt_to_head_page(obj);
401 return page->slab_cache;
402 }
403
404 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
405 unsigned int idx)
406 {
407 return page->s_mem + cache->size * idx;
408 }
409
410 /*
411 * We want to avoid an expensive divide : (offset / cache->size)
412 * Using the fact that size is a constant for a particular cache,
413 * we can replace (offset / cache->size) by
414 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
415 */
416 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
417 const struct page *page, void *obj)
418 {
419 u32 offset = (obj - page->s_mem);
420 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
421 }
422
423 static struct arraycache_init initarray_generic =
424 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
425
426 /* internal cache of cache description objs */
427 static struct kmem_cache kmem_cache_boot = {
428 .batchcount = 1,
429 .limit = BOOT_CPUCACHE_ENTRIES,
430 .shared = 1,
431 .size = sizeof(struct kmem_cache),
432 .name = "kmem_cache",
433 };
434
435 #define BAD_ALIEN_MAGIC 0x01020304ul
436
437 #ifdef CONFIG_LOCKDEP
438
439 /*
440 * Slab sometimes uses the kmalloc slabs to store the slab headers
441 * for other slabs "off slab".
442 * The locking for this is tricky in that it nests within the locks
443 * of all other slabs in a few places; to deal with this special
444 * locking we put on-slab caches into a separate lock-class.
445 *
446 * We set lock class for alien array caches which are up during init.
447 * The lock annotation will be lost if all cpus of a node goes down and
448 * then comes back up during hotplug
449 */
450 static struct lock_class_key on_slab_l3_key;
451 static struct lock_class_key on_slab_alc_key;
452
453 static struct lock_class_key debugobj_l3_key;
454 static struct lock_class_key debugobj_alc_key;
455
456 static void slab_set_lock_classes(struct kmem_cache *cachep,
457 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
458 int q)
459 {
460 struct array_cache **alc;
461 struct kmem_cache_node *n;
462 int r;
463
464 n = cachep->node[q];
465 if (!n)
466 return;
467
468 lockdep_set_class(&n->list_lock, l3_key);
469 alc = n->alien;
470 /*
471 * FIXME: This check for BAD_ALIEN_MAGIC
472 * should go away when common slab code is taught to
473 * work even without alien caches.
474 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
475 * for alloc_alien_cache,
476 */
477 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
478 return;
479 for_each_node(r) {
480 if (alc[r])
481 lockdep_set_class(&alc[r]->lock, alc_key);
482 }
483 }
484
485 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
486 {
487 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
488 }
489
490 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
491 {
492 int node;
493
494 for_each_online_node(node)
495 slab_set_debugobj_lock_classes_node(cachep, node);
496 }
497
498 static void init_node_lock_keys(int q)
499 {
500 int i;
501
502 if (slab_state < UP)
503 return;
504
505 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
506 struct kmem_cache_node *n;
507 struct kmem_cache *cache = kmalloc_caches[i];
508
509 if (!cache)
510 continue;
511
512 n = cache->node[q];
513 if (!n || OFF_SLAB(cache))
514 continue;
515
516 slab_set_lock_classes(cache, &on_slab_l3_key,
517 &on_slab_alc_key, q);
518 }
519 }
520
521 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
522 {
523 if (!cachep->node[q])
524 return;
525
526 slab_set_lock_classes(cachep, &on_slab_l3_key,
527 &on_slab_alc_key, q);
528 }
529
530 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
531 {
532 int node;
533
534 VM_BUG_ON(OFF_SLAB(cachep));
535 for_each_node(node)
536 on_slab_lock_classes_node(cachep, node);
537 }
538
539 static inline void init_lock_keys(void)
540 {
541 int node;
542
543 for_each_node(node)
544 init_node_lock_keys(node);
545 }
546 #else
547 static void init_node_lock_keys(int q)
548 {
549 }
550
551 static inline void init_lock_keys(void)
552 {
553 }
554
555 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
556 {
557 }
558
559 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
560 {
561 }
562
563 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
564 {
565 }
566
567 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
568 {
569 }
570 #endif
571
572 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
573
574 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
575 {
576 return cachep->array[smp_processor_id()];
577 }
578
579 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
580 size_t idx_size, size_t align)
581 {
582 int nr_objs;
583 size_t freelist_size;
584
585 /*
586 * Ignore padding for the initial guess. The padding
587 * is at most @align-1 bytes, and @buffer_size is at
588 * least @align. In the worst case, this result will
589 * be one greater than the number of objects that fit
590 * into the memory allocation when taking the padding
591 * into account.
592 */
593 nr_objs = slab_size / (buffer_size + idx_size);
594
595 /*
596 * This calculated number will be either the right
597 * amount, or one greater than what we want.
598 */
599 freelist_size = slab_size - nr_objs * buffer_size;
600 if (freelist_size < ALIGN(nr_objs * idx_size, align))
601 nr_objs--;
602
603 return nr_objs;
604 }
605
606 /*
607 * Calculate the number of objects and left-over bytes for a given buffer size.
608 */
609 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
610 size_t align, int flags, size_t *left_over,
611 unsigned int *num)
612 {
613 int nr_objs;
614 size_t mgmt_size;
615 size_t slab_size = PAGE_SIZE << gfporder;
616
617 /*
618 * The slab management structure can be either off the slab or
619 * on it. For the latter case, the memory allocated for a
620 * slab is used for:
621 *
622 * - One unsigned int for each object
623 * - Padding to respect alignment of @align
624 * - @buffer_size bytes for each object
625 *
626 * If the slab management structure is off the slab, then the
627 * alignment will already be calculated into the size. Because
628 * the slabs are all pages aligned, the objects will be at the
629 * correct alignment when allocated.
630 */
631 if (flags & CFLGS_OFF_SLAB) {
632 mgmt_size = 0;
633 nr_objs = slab_size / buffer_size;
634
635 } else {
636 nr_objs = calculate_nr_objs(slab_size, buffer_size,
637 sizeof(freelist_idx_t), align);
638 mgmt_size = ALIGN(nr_objs * sizeof(freelist_idx_t), align);
639 }
640 *num = nr_objs;
641 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
642 }
643
644 #if DEBUG
645 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
646
647 static void __slab_error(const char *function, struct kmem_cache *cachep,
648 char *msg)
649 {
650 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
651 function, cachep->name, msg);
652 dump_stack();
653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654 }
655 #endif
656
657 /*
658 * By default on NUMA we use alien caches to stage the freeing of
659 * objects allocated from other nodes. This causes massive memory
660 * inefficiencies when using fake NUMA setup to split memory into a
661 * large number of small nodes, so it can be disabled on the command
662 * line
663 */
664
665 static int use_alien_caches __read_mostly = 1;
666 static int __init noaliencache_setup(char *s)
667 {
668 use_alien_caches = 0;
669 return 1;
670 }
671 __setup("noaliencache", noaliencache_setup);
672
673 static int __init slab_max_order_setup(char *str)
674 {
675 get_option(&str, &slab_max_order);
676 slab_max_order = slab_max_order < 0 ? 0 :
677 min(slab_max_order, MAX_ORDER - 1);
678 slab_max_order_set = true;
679
680 return 1;
681 }
682 __setup("slab_max_order=", slab_max_order_setup);
683
684 #ifdef CONFIG_NUMA
685 /*
686 * Special reaping functions for NUMA systems called from cache_reap().
687 * These take care of doing round robin flushing of alien caches (containing
688 * objects freed on different nodes from which they were allocated) and the
689 * flushing of remote pcps by calling drain_node_pages.
690 */
691 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
692
693 static void init_reap_node(int cpu)
694 {
695 int node;
696
697 node = next_node(cpu_to_mem(cpu), node_online_map);
698 if (node == MAX_NUMNODES)
699 node = first_node(node_online_map);
700
701 per_cpu(slab_reap_node, cpu) = node;
702 }
703
704 static void next_reap_node(void)
705 {
706 int node = __this_cpu_read(slab_reap_node);
707
708 node = next_node(node, node_online_map);
709 if (unlikely(node >= MAX_NUMNODES))
710 node = first_node(node_online_map);
711 __this_cpu_write(slab_reap_node, node);
712 }
713
714 #else
715 #define init_reap_node(cpu) do { } while (0)
716 #define next_reap_node(void) do { } while (0)
717 #endif
718
719 /*
720 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
721 * via the workqueue/eventd.
722 * Add the CPU number into the expiration time to minimize the possibility of
723 * the CPUs getting into lockstep and contending for the global cache chain
724 * lock.
725 */
726 static void start_cpu_timer(int cpu)
727 {
728 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
729
730 /*
731 * When this gets called from do_initcalls via cpucache_init(),
732 * init_workqueues() has already run, so keventd will be setup
733 * at that time.
734 */
735 if (keventd_up() && reap_work->work.func == NULL) {
736 init_reap_node(cpu);
737 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
738 schedule_delayed_work_on(cpu, reap_work,
739 __round_jiffies_relative(HZ, cpu));
740 }
741 }
742
743 static struct array_cache *alloc_arraycache(int node, int entries,
744 int batchcount, gfp_t gfp)
745 {
746 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
747 struct array_cache *nc = NULL;
748
749 nc = kmalloc_node(memsize, gfp, node);
750 /*
751 * The array_cache structures contain pointers to free object.
752 * However, when such objects are allocated or transferred to another
753 * cache the pointers are not cleared and they could be counted as
754 * valid references during a kmemleak scan. Therefore, kmemleak must
755 * not scan such objects.
756 */
757 kmemleak_no_scan(nc);
758 if (nc) {
759 nc->avail = 0;
760 nc->limit = entries;
761 nc->batchcount = batchcount;
762 nc->touched = 0;
763 spin_lock_init(&nc->lock);
764 }
765 return nc;
766 }
767
768 static inline bool is_slab_pfmemalloc(struct page *page)
769 {
770 return PageSlabPfmemalloc(page);
771 }
772
773 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
774 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
775 struct array_cache *ac)
776 {
777 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
778 struct page *page;
779 unsigned long flags;
780
781 if (!pfmemalloc_active)
782 return;
783
784 spin_lock_irqsave(&n->list_lock, flags);
785 list_for_each_entry(page, &n->slabs_full, lru)
786 if (is_slab_pfmemalloc(page))
787 goto out;
788
789 list_for_each_entry(page, &n->slabs_partial, lru)
790 if (is_slab_pfmemalloc(page))
791 goto out;
792
793 list_for_each_entry(page, &n->slabs_free, lru)
794 if (is_slab_pfmemalloc(page))
795 goto out;
796
797 pfmemalloc_active = false;
798 out:
799 spin_unlock_irqrestore(&n->list_lock, flags);
800 }
801
802 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
803 gfp_t flags, bool force_refill)
804 {
805 int i;
806 void *objp = ac->entry[--ac->avail];
807
808 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
809 if (unlikely(is_obj_pfmemalloc(objp))) {
810 struct kmem_cache_node *n;
811
812 if (gfp_pfmemalloc_allowed(flags)) {
813 clear_obj_pfmemalloc(&objp);
814 return objp;
815 }
816
817 /* The caller cannot use PFMEMALLOC objects, find another one */
818 for (i = 0; i < ac->avail; i++) {
819 /* If a !PFMEMALLOC object is found, swap them */
820 if (!is_obj_pfmemalloc(ac->entry[i])) {
821 objp = ac->entry[i];
822 ac->entry[i] = ac->entry[ac->avail];
823 ac->entry[ac->avail] = objp;
824 return objp;
825 }
826 }
827
828 /*
829 * If there are empty slabs on the slabs_free list and we are
830 * being forced to refill the cache, mark this one !pfmemalloc.
831 */
832 n = cachep->node[numa_mem_id()];
833 if (!list_empty(&n->slabs_free) && force_refill) {
834 struct page *page = virt_to_head_page(objp);
835 ClearPageSlabPfmemalloc(page);
836 clear_obj_pfmemalloc(&objp);
837 recheck_pfmemalloc_active(cachep, ac);
838 return objp;
839 }
840
841 /* No !PFMEMALLOC objects available */
842 ac->avail++;
843 objp = NULL;
844 }
845
846 return objp;
847 }
848
849 static inline void *ac_get_obj(struct kmem_cache *cachep,
850 struct array_cache *ac, gfp_t flags, bool force_refill)
851 {
852 void *objp;
853
854 if (unlikely(sk_memalloc_socks()))
855 objp = __ac_get_obj(cachep, ac, flags, force_refill);
856 else
857 objp = ac->entry[--ac->avail];
858
859 return objp;
860 }
861
862 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
863 void *objp)
864 {
865 if (unlikely(pfmemalloc_active)) {
866 /* Some pfmemalloc slabs exist, check if this is one */
867 struct page *page = virt_to_head_page(objp);
868 if (PageSlabPfmemalloc(page))
869 set_obj_pfmemalloc(&objp);
870 }
871
872 return objp;
873 }
874
875 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
876 void *objp)
877 {
878 if (unlikely(sk_memalloc_socks()))
879 objp = __ac_put_obj(cachep, ac, objp);
880
881 ac->entry[ac->avail++] = objp;
882 }
883
884 /*
885 * Transfer objects in one arraycache to another.
886 * Locking must be handled by the caller.
887 *
888 * Return the number of entries transferred.
889 */
890 static int transfer_objects(struct array_cache *to,
891 struct array_cache *from, unsigned int max)
892 {
893 /* Figure out how many entries to transfer */
894 int nr = min3(from->avail, max, to->limit - to->avail);
895
896 if (!nr)
897 return 0;
898
899 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
900 sizeof(void *) *nr);
901
902 from->avail -= nr;
903 to->avail += nr;
904 return nr;
905 }
906
907 #ifndef CONFIG_NUMA
908
909 #define drain_alien_cache(cachep, alien) do { } while (0)
910 #define reap_alien(cachep, n) do { } while (0)
911
912 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
913 {
914 return (struct array_cache **)BAD_ALIEN_MAGIC;
915 }
916
917 static inline void free_alien_cache(struct array_cache **ac_ptr)
918 {
919 }
920
921 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
922 {
923 return 0;
924 }
925
926 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
927 gfp_t flags)
928 {
929 return NULL;
930 }
931
932 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
933 gfp_t flags, int nodeid)
934 {
935 return NULL;
936 }
937
938 #else /* CONFIG_NUMA */
939
940 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
941 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
942
943 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
944 {
945 struct array_cache **ac_ptr;
946 int memsize = sizeof(void *) * nr_node_ids;
947 int i;
948
949 if (limit > 1)
950 limit = 12;
951 ac_ptr = kzalloc_node(memsize, gfp, node);
952 if (ac_ptr) {
953 for_each_node(i) {
954 if (i == node || !node_online(i))
955 continue;
956 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
957 if (!ac_ptr[i]) {
958 for (i--; i >= 0; i--)
959 kfree(ac_ptr[i]);
960 kfree(ac_ptr);
961 return NULL;
962 }
963 }
964 }
965 return ac_ptr;
966 }
967
968 static void free_alien_cache(struct array_cache **ac_ptr)
969 {
970 int i;
971
972 if (!ac_ptr)
973 return;
974 for_each_node(i)
975 kfree(ac_ptr[i]);
976 kfree(ac_ptr);
977 }
978
979 static void __drain_alien_cache(struct kmem_cache *cachep,
980 struct array_cache *ac, int node)
981 {
982 struct kmem_cache_node *n = cachep->node[node];
983
984 if (ac->avail) {
985 spin_lock(&n->list_lock);
986 /*
987 * Stuff objects into the remote nodes shared array first.
988 * That way we could avoid the overhead of putting the objects
989 * into the free lists and getting them back later.
990 */
991 if (n->shared)
992 transfer_objects(n->shared, ac, ac->limit);
993
994 free_block(cachep, ac->entry, ac->avail, node);
995 ac->avail = 0;
996 spin_unlock(&n->list_lock);
997 }
998 }
999
1000 /*
1001 * Called from cache_reap() to regularly drain alien caches round robin.
1002 */
1003 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1004 {
1005 int node = __this_cpu_read(slab_reap_node);
1006
1007 if (n->alien) {
1008 struct array_cache *ac = n->alien[node];
1009
1010 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1011 __drain_alien_cache(cachep, ac, node);
1012 spin_unlock_irq(&ac->lock);
1013 }
1014 }
1015 }
1016
1017 static void drain_alien_cache(struct kmem_cache *cachep,
1018 struct array_cache **alien)
1019 {
1020 int i = 0;
1021 struct array_cache *ac;
1022 unsigned long flags;
1023
1024 for_each_online_node(i) {
1025 ac = alien[i];
1026 if (ac) {
1027 spin_lock_irqsave(&ac->lock, flags);
1028 __drain_alien_cache(cachep, ac, i);
1029 spin_unlock_irqrestore(&ac->lock, flags);
1030 }
1031 }
1032 }
1033
1034 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1035 {
1036 int nodeid = page_to_nid(virt_to_page(objp));
1037 struct kmem_cache_node *n;
1038 struct array_cache *alien = NULL;
1039 int node;
1040
1041 node = numa_mem_id();
1042
1043 /*
1044 * Make sure we are not freeing a object from another node to the array
1045 * cache on this cpu.
1046 */
1047 if (likely(nodeid == node))
1048 return 0;
1049
1050 n = cachep->node[node];
1051 STATS_INC_NODEFREES(cachep);
1052 if (n->alien && n->alien[nodeid]) {
1053 alien = n->alien[nodeid];
1054 spin_lock(&alien->lock);
1055 if (unlikely(alien->avail == alien->limit)) {
1056 STATS_INC_ACOVERFLOW(cachep);
1057 __drain_alien_cache(cachep, alien, nodeid);
1058 }
1059 ac_put_obj(cachep, alien, objp);
1060 spin_unlock(&alien->lock);
1061 } else {
1062 spin_lock(&(cachep->node[nodeid])->list_lock);
1063 free_block(cachep, &objp, 1, nodeid);
1064 spin_unlock(&(cachep->node[nodeid])->list_lock);
1065 }
1066 return 1;
1067 }
1068 #endif
1069
1070 /*
1071 * Allocates and initializes node for a node on each slab cache, used for
1072 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1073 * will be allocated off-node since memory is not yet online for the new node.
1074 * When hotplugging memory or a cpu, existing node are not replaced if
1075 * already in use.
1076 *
1077 * Must hold slab_mutex.
1078 */
1079 static int init_cache_node_node(int node)
1080 {
1081 struct kmem_cache *cachep;
1082 struct kmem_cache_node *n;
1083 const int memsize = sizeof(struct kmem_cache_node);
1084
1085 list_for_each_entry(cachep, &slab_caches, list) {
1086 /*
1087 * Set up the kmem_cache_node for cpu before we can
1088 * begin anything. Make sure some other cpu on this
1089 * node has not already allocated this
1090 */
1091 if (!cachep->node[node]) {
1092 n = kmalloc_node(memsize, GFP_KERNEL, node);
1093 if (!n)
1094 return -ENOMEM;
1095 kmem_cache_node_init(n);
1096 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1097 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1098
1099 /*
1100 * The kmem_cache_nodes don't come and go as CPUs
1101 * come and go. slab_mutex is sufficient
1102 * protection here.
1103 */
1104 cachep->node[node] = n;
1105 }
1106
1107 spin_lock_irq(&cachep->node[node]->list_lock);
1108 cachep->node[node]->free_limit =
1109 (1 + nr_cpus_node(node)) *
1110 cachep->batchcount + cachep->num;
1111 spin_unlock_irq(&cachep->node[node]->list_lock);
1112 }
1113 return 0;
1114 }
1115
1116 static inline int slabs_tofree(struct kmem_cache *cachep,
1117 struct kmem_cache_node *n)
1118 {
1119 return (n->free_objects + cachep->num - 1) / cachep->num;
1120 }
1121
1122 static void cpuup_canceled(long cpu)
1123 {
1124 struct kmem_cache *cachep;
1125 struct kmem_cache_node *n = NULL;
1126 int node = cpu_to_mem(cpu);
1127 const struct cpumask *mask = cpumask_of_node(node);
1128
1129 list_for_each_entry(cachep, &slab_caches, list) {
1130 struct array_cache *nc;
1131 struct array_cache *shared;
1132 struct array_cache **alien;
1133
1134 /* cpu is dead; no one can alloc from it. */
1135 nc = cachep->array[cpu];
1136 cachep->array[cpu] = NULL;
1137 n = cachep->node[node];
1138
1139 if (!n)
1140 goto free_array_cache;
1141
1142 spin_lock_irq(&n->list_lock);
1143
1144 /* Free limit for this kmem_cache_node */
1145 n->free_limit -= cachep->batchcount;
1146 if (nc)
1147 free_block(cachep, nc->entry, nc->avail, node);
1148
1149 if (!cpumask_empty(mask)) {
1150 spin_unlock_irq(&n->list_lock);
1151 goto free_array_cache;
1152 }
1153
1154 shared = n->shared;
1155 if (shared) {
1156 free_block(cachep, shared->entry,
1157 shared->avail, node);
1158 n->shared = NULL;
1159 }
1160
1161 alien = n->alien;
1162 n->alien = NULL;
1163
1164 spin_unlock_irq(&n->list_lock);
1165
1166 kfree(shared);
1167 if (alien) {
1168 drain_alien_cache(cachep, alien);
1169 free_alien_cache(alien);
1170 }
1171 free_array_cache:
1172 kfree(nc);
1173 }
1174 /*
1175 * In the previous loop, all the objects were freed to
1176 * the respective cache's slabs, now we can go ahead and
1177 * shrink each nodelist to its limit.
1178 */
1179 list_for_each_entry(cachep, &slab_caches, list) {
1180 n = cachep->node[node];
1181 if (!n)
1182 continue;
1183 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1184 }
1185 }
1186
1187 static int cpuup_prepare(long cpu)
1188 {
1189 struct kmem_cache *cachep;
1190 struct kmem_cache_node *n = NULL;
1191 int node = cpu_to_mem(cpu);
1192 int err;
1193
1194 /*
1195 * We need to do this right in the beginning since
1196 * alloc_arraycache's are going to use this list.
1197 * kmalloc_node allows us to add the slab to the right
1198 * kmem_cache_node and not this cpu's kmem_cache_node
1199 */
1200 err = init_cache_node_node(node);
1201 if (err < 0)
1202 goto bad;
1203
1204 /*
1205 * Now we can go ahead with allocating the shared arrays and
1206 * array caches
1207 */
1208 list_for_each_entry(cachep, &slab_caches, list) {
1209 struct array_cache *nc;
1210 struct array_cache *shared = NULL;
1211 struct array_cache **alien = NULL;
1212
1213 nc = alloc_arraycache(node, cachep->limit,
1214 cachep->batchcount, GFP_KERNEL);
1215 if (!nc)
1216 goto bad;
1217 if (cachep->shared) {
1218 shared = alloc_arraycache(node,
1219 cachep->shared * cachep->batchcount,
1220 0xbaadf00d, GFP_KERNEL);
1221 if (!shared) {
1222 kfree(nc);
1223 goto bad;
1224 }
1225 }
1226 if (use_alien_caches) {
1227 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1228 if (!alien) {
1229 kfree(shared);
1230 kfree(nc);
1231 goto bad;
1232 }
1233 }
1234 cachep->array[cpu] = nc;
1235 n = cachep->node[node];
1236 BUG_ON(!n);
1237
1238 spin_lock_irq(&n->list_lock);
1239 if (!n->shared) {
1240 /*
1241 * We are serialised from CPU_DEAD or
1242 * CPU_UP_CANCELLED by the cpucontrol lock
1243 */
1244 n->shared = shared;
1245 shared = NULL;
1246 }
1247 #ifdef CONFIG_NUMA
1248 if (!n->alien) {
1249 n->alien = alien;
1250 alien = NULL;
1251 }
1252 #endif
1253 spin_unlock_irq(&n->list_lock);
1254 kfree(shared);
1255 free_alien_cache(alien);
1256 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1257 slab_set_debugobj_lock_classes_node(cachep, node);
1258 else if (!OFF_SLAB(cachep) &&
1259 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1260 on_slab_lock_classes_node(cachep, node);
1261 }
1262 init_node_lock_keys(node);
1263
1264 return 0;
1265 bad:
1266 cpuup_canceled(cpu);
1267 return -ENOMEM;
1268 }
1269
1270 static int cpuup_callback(struct notifier_block *nfb,
1271 unsigned long action, void *hcpu)
1272 {
1273 long cpu = (long)hcpu;
1274 int err = 0;
1275
1276 switch (action) {
1277 case CPU_UP_PREPARE:
1278 case CPU_UP_PREPARE_FROZEN:
1279 mutex_lock(&slab_mutex);
1280 err = cpuup_prepare(cpu);
1281 mutex_unlock(&slab_mutex);
1282 break;
1283 case CPU_ONLINE:
1284 case CPU_ONLINE_FROZEN:
1285 start_cpu_timer(cpu);
1286 break;
1287 #ifdef CONFIG_HOTPLUG_CPU
1288 case CPU_DOWN_PREPARE:
1289 case CPU_DOWN_PREPARE_FROZEN:
1290 /*
1291 * Shutdown cache reaper. Note that the slab_mutex is
1292 * held so that if cache_reap() is invoked it cannot do
1293 * anything expensive but will only modify reap_work
1294 * and reschedule the timer.
1295 */
1296 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1297 /* Now the cache_reaper is guaranteed to be not running. */
1298 per_cpu(slab_reap_work, cpu).work.func = NULL;
1299 break;
1300 case CPU_DOWN_FAILED:
1301 case CPU_DOWN_FAILED_FROZEN:
1302 start_cpu_timer(cpu);
1303 break;
1304 case CPU_DEAD:
1305 case CPU_DEAD_FROZEN:
1306 /*
1307 * Even if all the cpus of a node are down, we don't free the
1308 * kmem_cache_node of any cache. This to avoid a race between
1309 * cpu_down, and a kmalloc allocation from another cpu for
1310 * memory from the node of the cpu going down. The node
1311 * structure is usually allocated from kmem_cache_create() and
1312 * gets destroyed at kmem_cache_destroy().
1313 */
1314 /* fall through */
1315 #endif
1316 case CPU_UP_CANCELED:
1317 case CPU_UP_CANCELED_FROZEN:
1318 mutex_lock(&slab_mutex);
1319 cpuup_canceled(cpu);
1320 mutex_unlock(&slab_mutex);
1321 break;
1322 }
1323 return notifier_from_errno(err);
1324 }
1325
1326 static struct notifier_block cpucache_notifier = {
1327 &cpuup_callback, NULL, 0
1328 };
1329
1330 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1331 /*
1332 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1333 * Returns -EBUSY if all objects cannot be drained so that the node is not
1334 * removed.
1335 *
1336 * Must hold slab_mutex.
1337 */
1338 static int __meminit drain_cache_node_node(int node)
1339 {
1340 struct kmem_cache *cachep;
1341 int ret = 0;
1342
1343 list_for_each_entry(cachep, &slab_caches, list) {
1344 struct kmem_cache_node *n;
1345
1346 n = cachep->node[node];
1347 if (!n)
1348 continue;
1349
1350 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1351
1352 if (!list_empty(&n->slabs_full) ||
1353 !list_empty(&n->slabs_partial)) {
1354 ret = -EBUSY;
1355 break;
1356 }
1357 }
1358 return ret;
1359 }
1360
1361 static int __meminit slab_memory_callback(struct notifier_block *self,
1362 unsigned long action, void *arg)
1363 {
1364 struct memory_notify *mnb = arg;
1365 int ret = 0;
1366 int nid;
1367
1368 nid = mnb->status_change_nid;
1369 if (nid < 0)
1370 goto out;
1371
1372 switch (action) {
1373 case MEM_GOING_ONLINE:
1374 mutex_lock(&slab_mutex);
1375 ret = init_cache_node_node(nid);
1376 mutex_unlock(&slab_mutex);
1377 break;
1378 case MEM_GOING_OFFLINE:
1379 mutex_lock(&slab_mutex);
1380 ret = drain_cache_node_node(nid);
1381 mutex_unlock(&slab_mutex);
1382 break;
1383 case MEM_ONLINE:
1384 case MEM_OFFLINE:
1385 case MEM_CANCEL_ONLINE:
1386 case MEM_CANCEL_OFFLINE:
1387 break;
1388 }
1389 out:
1390 return notifier_from_errno(ret);
1391 }
1392 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1393
1394 /*
1395 * swap the static kmem_cache_node with kmalloced memory
1396 */
1397 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1398 int nodeid)
1399 {
1400 struct kmem_cache_node *ptr;
1401
1402 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1403 BUG_ON(!ptr);
1404
1405 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1406 /*
1407 * Do not assume that spinlocks can be initialized via memcpy:
1408 */
1409 spin_lock_init(&ptr->list_lock);
1410
1411 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1412 cachep->node[nodeid] = ptr;
1413 }
1414
1415 /*
1416 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1417 * size of kmem_cache_node.
1418 */
1419 static void __init set_up_node(struct kmem_cache *cachep, int index)
1420 {
1421 int node;
1422
1423 for_each_online_node(node) {
1424 cachep->node[node] = &init_kmem_cache_node[index + node];
1425 cachep->node[node]->next_reap = jiffies +
1426 REAPTIMEOUT_NODE +
1427 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1428 }
1429 }
1430
1431 /*
1432 * The memory after the last cpu cache pointer is used for the
1433 * the node pointer.
1434 */
1435 static void setup_node_pointer(struct kmem_cache *cachep)
1436 {
1437 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1438 }
1439
1440 /*
1441 * Initialisation. Called after the page allocator have been initialised and
1442 * before smp_init().
1443 */
1444 void __init kmem_cache_init(void)
1445 {
1446 int i;
1447
1448 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1449 sizeof(struct rcu_head));
1450 kmem_cache = &kmem_cache_boot;
1451 setup_node_pointer(kmem_cache);
1452
1453 if (num_possible_nodes() == 1)
1454 use_alien_caches = 0;
1455
1456 for (i = 0; i < NUM_INIT_LISTS; i++)
1457 kmem_cache_node_init(&init_kmem_cache_node[i]);
1458
1459 set_up_node(kmem_cache, CACHE_CACHE);
1460
1461 /*
1462 * Fragmentation resistance on low memory - only use bigger
1463 * page orders on machines with more than 32MB of memory if
1464 * not overridden on the command line.
1465 */
1466 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1467 slab_max_order = SLAB_MAX_ORDER_HI;
1468
1469 /* Bootstrap is tricky, because several objects are allocated
1470 * from caches that do not exist yet:
1471 * 1) initialize the kmem_cache cache: it contains the struct
1472 * kmem_cache structures of all caches, except kmem_cache itself:
1473 * kmem_cache is statically allocated.
1474 * Initially an __init data area is used for the head array and the
1475 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1476 * array at the end of the bootstrap.
1477 * 2) Create the first kmalloc cache.
1478 * The struct kmem_cache for the new cache is allocated normally.
1479 * An __init data area is used for the head array.
1480 * 3) Create the remaining kmalloc caches, with minimally sized
1481 * head arrays.
1482 * 4) Replace the __init data head arrays for kmem_cache and the first
1483 * kmalloc cache with kmalloc allocated arrays.
1484 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1485 * the other cache's with kmalloc allocated memory.
1486 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1487 */
1488
1489 /* 1) create the kmem_cache */
1490
1491 /*
1492 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1493 */
1494 create_boot_cache(kmem_cache, "kmem_cache",
1495 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1496 nr_node_ids * sizeof(struct kmem_cache_node *),
1497 SLAB_HWCACHE_ALIGN);
1498 list_add(&kmem_cache->list, &slab_caches);
1499
1500 /* 2+3) create the kmalloc caches */
1501
1502 /*
1503 * Initialize the caches that provide memory for the array cache and the
1504 * kmem_cache_node structures first. Without this, further allocations will
1505 * bug.
1506 */
1507
1508 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1509 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1510
1511 if (INDEX_AC != INDEX_NODE)
1512 kmalloc_caches[INDEX_NODE] =
1513 create_kmalloc_cache("kmalloc-node",
1514 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1515
1516 slab_early_init = 0;
1517
1518 /* 4) Replace the bootstrap head arrays */
1519 {
1520 struct array_cache *ptr;
1521
1522 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1523
1524 memcpy(ptr, cpu_cache_get(kmem_cache),
1525 sizeof(struct arraycache_init));
1526 /*
1527 * Do not assume that spinlocks can be initialized via memcpy:
1528 */
1529 spin_lock_init(&ptr->lock);
1530
1531 kmem_cache->array[smp_processor_id()] = ptr;
1532
1533 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1534
1535 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1536 != &initarray_generic.cache);
1537 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1538 sizeof(struct arraycache_init));
1539 /*
1540 * Do not assume that spinlocks can be initialized via memcpy:
1541 */
1542 spin_lock_init(&ptr->lock);
1543
1544 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1545 }
1546 /* 5) Replace the bootstrap kmem_cache_node */
1547 {
1548 int nid;
1549
1550 for_each_online_node(nid) {
1551 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1552
1553 init_list(kmalloc_caches[INDEX_AC],
1554 &init_kmem_cache_node[SIZE_AC + nid], nid);
1555
1556 if (INDEX_AC != INDEX_NODE) {
1557 init_list(kmalloc_caches[INDEX_NODE],
1558 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1559 }
1560 }
1561 }
1562
1563 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1564 }
1565
1566 void __init kmem_cache_init_late(void)
1567 {
1568 struct kmem_cache *cachep;
1569
1570 slab_state = UP;
1571
1572 /* 6) resize the head arrays to their final sizes */
1573 mutex_lock(&slab_mutex);
1574 list_for_each_entry(cachep, &slab_caches, list)
1575 if (enable_cpucache(cachep, GFP_NOWAIT))
1576 BUG();
1577 mutex_unlock(&slab_mutex);
1578
1579 /* Annotate slab for lockdep -- annotate the malloc caches */
1580 init_lock_keys();
1581
1582 /* Done! */
1583 slab_state = FULL;
1584
1585 /*
1586 * Register a cpu startup notifier callback that initializes
1587 * cpu_cache_get for all new cpus
1588 */
1589 register_cpu_notifier(&cpucache_notifier);
1590
1591 #ifdef CONFIG_NUMA
1592 /*
1593 * Register a memory hotplug callback that initializes and frees
1594 * node.
1595 */
1596 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1597 #endif
1598
1599 /*
1600 * The reap timers are started later, with a module init call: That part
1601 * of the kernel is not yet operational.
1602 */
1603 }
1604
1605 static int __init cpucache_init(void)
1606 {
1607 int cpu;
1608
1609 /*
1610 * Register the timers that return unneeded pages to the page allocator
1611 */
1612 for_each_online_cpu(cpu)
1613 start_cpu_timer(cpu);
1614
1615 /* Done! */
1616 slab_state = FULL;
1617 return 0;
1618 }
1619 __initcall(cpucache_init);
1620
1621 static noinline void
1622 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1623 {
1624 #if DEBUG
1625 struct kmem_cache_node *n;
1626 struct page *page;
1627 unsigned long flags;
1628 int node;
1629 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1630 DEFAULT_RATELIMIT_BURST);
1631
1632 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1633 return;
1634
1635 printk(KERN_WARNING
1636 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1637 nodeid, gfpflags);
1638 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1639 cachep->name, cachep->size, cachep->gfporder);
1640
1641 for_each_online_node(node) {
1642 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1643 unsigned long active_slabs = 0, num_slabs = 0;
1644
1645 n = cachep->node[node];
1646 if (!n)
1647 continue;
1648
1649 spin_lock_irqsave(&n->list_lock, flags);
1650 list_for_each_entry(page, &n->slabs_full, lru) {
1651 active_objs += cachep->num;
1652 active_slabs++;
1653 }
1654 list_for_each_entry(page, &n->slabs_partial, lru) {
1655 active_objs += page->active;
1656 active_slabs++;
1657 }
1658 list_for_each_entry(page, &n->slabs_free, lru)
1659 num_slabs++;
1660
1661 free_objects += n->free_objects;
1662 spin_unlock_irqrestore(&n->list_lock, flags);
1663
1664 num_slabs += active_slabs;
1665 num_objs = num_slabs * cachep->num;
1666 printk(KERN_WARNING
1667 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1668 node, active_slabs, num_slabs, active_objs, num_objs,
1669 free_objects);
1670 }
1671 #endif
1672 }
1673
1674 /*
1675 * Interface to system's page allocator. No need to hold the cache-lock.
1676 *
1677 * If we requested dmaable memory, we will get it. Even if we
1678 * did not request dmaable memory, we might get it, but that
1679 * would be relatively rare and ignorable.
1680 */
1681 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1682 int nodeid)
1683 {
1684 struct page *page;
1685 int nr_pages;
1686
1687 flags |= cachep->allocflags;
1688 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1689 flags |= __GFP_RECLAIMABLE;
1690
1691 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1692 return NULL;
1693
1694 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1695 if (!page) {
1696 memcg_uncharge_slab(cachep, cachep->gfporder);
1697 slab_out_of_memory(cachep, flags, nodeid);
1698 return NULL;
1699 }
1700
1701 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1702 if (unlikely(page->pfmemalloc))
1703 pfmemalloc_active = true;
1704
1705 nr_pages = (1 << cachep->gfporder);
1706 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1707 add_zone_page_state(page_zone(page),
1708 NR_SLAB_RECLAIMABLE, nr_pages);
1709 else
1710 add_zone_page_state(page_zone(page),
1711 NR_SLAB_UNRECLAIMABLE, nr_pages);
1712 __SetPageSlab(page);
1713 if (page->pfmemalloc)
1714 SetPageSlabPfmemalloc(page);
1715
1716 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1717 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1718
1719 if (cachep->ctor)
1720 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1721 else
1722 kmemcheck_mark_unallocated_pages(page, nr_pages);
1723 }
1724
1725 return page;
1726 }
1727
1728 /*
1729 * Interface to system's page release.
1730 */
1731 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1732 {
1733 const unsigned long nr_freed = (1 << cachep->gfporder);
1734
1735 kmemcheck_free_shadow(page, cachep->gfporder);
1736
1737 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1738 sub_zone_page_state(page_zone(page),
1739 NR_SLAB_RECLAIMABLE, nr_freed);
1740 else
1741 sub_zone_page_state(page_zone(page),
1742 NR_SLAB_UNRECLAIMABLE, nr_freed);
1743
1744 BUG_ON(!PageSlab(page));
1745 __ClearPageSlabPfmemalloc(page);
1746 __ClearPageSlab(page);
1747 page_mapcount_reset(page);
1748 page->mapping = NULL;
1749
1750 if (current->reclaim_state)
1751 current->reclaim_state->reclaimed_slab += nr_freed;
1752 __free_pages(page, cachep->gfporder);
1753 memcg_uncharge_slab(cachep, cachep->gfporder);
1754 }
1755
1756 static void kmem_rcu_free(struct rcu_head *head)
1757 {
1758 struct kmem_cache *cachep;
1759 struct page *page;
1760
1761 page = container_of(head, struct page, rcu_head);
1762 cachep = page->slab_cache;
1763
1764 kmem_freepages(cachep, page);
1765 }
1766
1767 #if DEBUG
1768
1769 #ifdef CONFIG_DEBUG_PAGEALLOC
1770 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1771 unsigned long caller)
1772 {
1773 int size = cachep->object_size;
1774
1775 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1776
1777 if (size < 5 * sizeof(unsigned long))
1778 return;
1779
1780 *addr++ = 0x12345678;
1781 *addr++ = caller;
1782 *addr++ = smp_processor_id();
1783 size -= 3 * sizeof(unsigned long);
1784 {
1785 unsigned long *sptr = &caller;
1786 unsigned long svalue;
1787
1788 while (!kstack_end(sptr)) {
1789 svalue = *sptr++;
1790 if (kernel_text_address(svalue)) {
1791 *addr++ = svalue;
1792 size -= sizeof(unsigned long);
1793 if (size <= sizeof(unsigned long))
1794 break;
1795 }
1796 }
1797
1798 }
1799 *addr++ = 0x87654321;
1800 }
1801 #endif
1802
1803 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1804 {
1805 int size = cachep->object_size;
1806 addr = &((char *)addr)[obj_offset(cachep)];
1807
1808 memset(addr, val, size);
1809 *(unsigned char *)(addr + size - 1) = POISON_END;
1810 }
1811
1812 static void dump_line(char *data, int offset, int limit)
1813 {
1814 int i;
1815 unsigned char error = 0;
1816 int bad_count = 0;
1817
1818 printk(KERN_ERR "%03x: ", offset);
1819 for (i = 0; i < limit; i++) {
1820 if (data[offset + i] != POISON_FREE) {
1821 error = data[offset + i];
1822 bad_count++;
1823 }
1824 }
1825 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1826 &data[offset], limit, 1);
1827
1828 if (bad_count == 1) {
1829 error ^= POISON_FREE;
1830 if (!(error & (error - 1))) {
1831 printk(KERN_ERR "Single bit error detected. Probably "
1832 "bad RAM.\n");
1833 #ifdef CONFIG_X86
1834 printk(KERN_ERR "Run memtest86+ or a similar memory "
1835 "test tool.\n");
1836 #else
1837 printk(KERN_ERR "Run a memory test tool.\n");
1838 #endif
1839 }
1840 }
1841 }
1842 #endif
1843
1844 #if DEBUG
1845
1846 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1847 {
1848 int i, size;
1849 char *realobj;
1850
1851 if (cachep->flags & SLAB_RED_ZONE) {
1852 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1853 *dbg_redzone1(cachep, objp),
1854 *dbg_redzone2(cachep, objp));
1855 }
1856
1857 if (cachep->flags & SLAB_STORE_USER) {
1858 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1859 *dbg_userword(cachep, objp),
1860 *dbg_userword(cachep, objp));
1861 }
1862 realobj = (char *)objp + obj_offset(cachep);
1863 size = cachep->object_size;
1864 for (i = 0; i < size && lines; i += 16, lines--) {
1865 int limit;
1866 limit = 16;
1867 if (i + limit > size)
1868 limit = size - i;
1869 dump_line(realobj, i, limit);
1870 }
1871 }
1872
1873 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1874 {
1875 char *realobj;
1876 int size, i;
1877 int lines = 0;
1878
1879 realobj = (char *)objp + obj_offset(cachep);
1880 size = cachep->object_size;
1881
1882 for (i = 0; i < size; i++) {
1883 char exp = POISON_FREE;
1884 if (i == size - 1)
1885 exp = POISON_END;
1886 if (realobj[i] != exp) {
1887 int limit;
1888 /* Mismatch ! */
1889 /* Print header */
1890 if (lines == 0) {
1891 printk(KERN_ERR
1892 "Slab corruption (%s): %s start=%p, len=%d\n",
1893 print_tainted(), cachep->name, realobj, size);
1894 print_objinfo(cachep, objp, 0);
1895 }
1896 /* Hexdump the affected line */
1897 i = (i / 16) * 16;
1898 limit = 16;
1899 if (i + limit > size)
1900 limit = size - i;
1901 dump_line(realobj, i, limit);
1902 i += 16;
1903 lines++;
1904 /* Limit to 5 lines */
1905 if (lines > 5)
1906 break;
1907 }
1908 }
1909 if (lines != 0) {
1910 /* Print some data about the neighboring objects, if they
1911 * exist:
1912 */
1913 struct page *page = virt_to_head_page(objp);
1914 unsigned int objnr;
1915
1916 objnr = obj_to_index(cachep, page, objp);
1917 if (objnr) {
1918 objp = index_to_obj(cachep, page, objnr - 1);
1919 realobj = (char *)objp + obj_offset(cachep);
1920 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1921 realobj, size);
1922 print_objinfo(cachep, objp, 2);
1923 }
1924 if (objnr + 1 < cachep->num) {
1925 objp = index_to_obj(cachep, page, objnr + 1);
1926 realobj = (char *)objp + obj_offset(cachep);
1927 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1928 realobj, size);
1929 print_objinfo(cachep, objp, 2);
1930 }
1931 }
1932 }
1933 #endif
1934
1935 #if DEBUG
1936 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1937 struct page *page)
1938 {
1939 int i;
1940 for (i = 0; i < cachep->num; i++) {
1941 void *objp = index_to_obj(cachep, page, i);
1942
1943 if (cachep->flags & SLAB_POISON) {
1944 #ifdef CONFIG_DEBUG_PAGEALLOC
1945 if (cachep->size % PAGE_SIZE == 0 &&
1946 OFF_SLAB(cachep))
1947 kernel_map_pages(virt_to_page(objp),
1948 cachep->size / PAGE_SIZE, 1);
1949 else
1950 check_poison_obj(cachep, objp);
1951 #else
1952 check_poison_obj(cachep, objp);
1953 #endif
1954 }
1955 if (cachep->flags & SLAB_RED_ZONE) {
1956 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1957 slab_error(cachep, "start of a freed object "
1958 "was overwritten");
1959 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1960 slab_error(cachep, "end of a freed object "
1961 "was overwritten");
1962 }
1963 }
1964 }
1965 #else
1966 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1967 struct page *page)
1968 {
1969 }
1970 #endif
1971
1972 /**
1973 * slab_destroy - destroy and release all objects in a slab
1974 * @cachep: cache pointer being destroyed
1975 * @page: page pointer being destroyed
1976 *
1977 * Destroy all the objs in a slab, and release the mem back to the system.
1978 * Before calling the slab must have been unlinked from the cache. The
1979 * cache-lock is not held/needed.
1980 */
1981 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1982 {
1983 void *freelist;
1984
1985 freelist = page->freelist;
1986 slab_destroy_debugcheck(cachep, page);
1987 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1988 struct rcu_head *head;
1989
1990 /*
1991 * RCU free overloads the RCU head over the LRU.
1992 * slab_page has been overloeaded over the LRU,
1993 * however it is not used from now on so that
1994 * we can use it safely.
1995 */
1996 head = (void *)&page->rcu_head;
1997 call_rcu(head, kmem_rcu_free);
1998
1999 } else {
2000 kmem_freepages(cachep, page);
2001 }
2002
2003 /*
2004 * From now on, we don't use freelist
2005 * although actual page can be freed in rcu context
2006 */
2007 if (OFF_SLAB(cachep))
2008 kmem_cache_free(cachep->freelist_cache, freelist);
2009 }
2010
2011 /**
2012 * calculate_slab_order - calculate size (page order) of slabs
2013 * @cachep: pointer to the cache that is being created
2014 * @size: size of objects to be created in this cache.
2015 * @align: required alignment for the objects.
2016 * @flags: slab allocation flags
2017 *
2018 * Also calculates the number of objects per slab.
2019 *
2020 * This could be made much more intelligent. For now, try to avoid using
2021 * high order pages for slabs. When the gfp() functions are more friendly
2022 * towards high-order requests, this should be changed.
2023 */
2024 static size_t calculate_slab_order(struct kmem_cache *cachep,
2025 size_t size, size_t align, unsigned long flags)
2026 {
2027 unsigned long offslab_limit;
2028 size_t left_over = 0;
2029 int gfporder;
2030
2031 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2032 unsigned int num;
2033 size_t remainder;
2034
2035 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2036 if (!num)
2037 continue;
2038
2039 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
2040 if (num > SLAB_OBJ_MAX_NUM)
2041 break;
2042
2043 if (flags & CFLGS_OFF_SLAB) {
2044 /*
2045 * Max number of objs-per-slab for caches which
2046 * use off-slab slabs. Needed to avoid a possible
2047 * looping condition in cache_grow().
2048 */
2049 offslab_limit = size;
2050 offslab_limit /= sizeof(freelist_idx_t);
2051
2052 if (num > offslab_limit)
2053 break;
2054 }
2055
2056 /* Found something acceptable - save it away */
2057 cachep->num = num;
2058 cachep->gfporder = gfporder;
2059 left_over = remainder;
2060
2061 /*
2062 * A VFS-reclaimable slab tends to have most allocations
2063 * as GFP_NOFS and we really don't want to have to be allocating
2064 * higher-order pages when we are unable to shrink dcache.
2065 */
2066 if (flags & SLAB_RECLAIM_ACCOUNT)
2067 break;
2068
2069 /*
2070 * Large number of objects is good, but very large slabs are
2071 * currently bad for the gfp()s.
2072 */
2073 if (gfporder >= slab_max_order)
2074 break;
2075
2076 /*
2077 * Acceptable internal fragmentation?
2078 */
2079 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2080 break;
2081 }
2082 return left_over;
2083 }
2084
2085 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2086 {
2087 if (slab_state >= FULL)
2088 return enable_cpucache(cachep, gfp);
2089
2090 if (slab_state == DOWN) {
2091 /*
2092 * Note: Creation of first cache (kmem_cache).
2093 * The setup_node is taken care
2094 * of by the caller of __kmem_cache_create
2095 */
2096 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2097 slab_state = PARTIAL;
2098 } else if (slab_state == PARTIAL) {
2099 /*
2100 * Note: the second kmem_cache_create must create the cache
2101 * that's used by kmalloc(24), otherwise the creation of
2102 * further caches will BUG().
2103 */
2104 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2105
2106 /*
2107 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2108 * the second cache, then we need to set up all its node/,
2109 * otherwise the creation of further caches will BUG().
2110 */
2111 set_up_node(cachep, SIZE_AC);
2112 if (INDEX_AC == INDEX_NODE)
2113 slab_state = PARTIAL_NODE;
2114 else
2115 slab_state = PARTIAL_ARRAYCACHE;
2116 } else {
2117 /* Remaining boot caches */
2118 cachep->array[smp_processor_id()] =
2119 kmalloc(sizeof(struct arraycache_init), gfp);
2120
2121 if (slab_state == PARTIAL_ARRAYCACHE) {
2122 set_up_node(cachep, SIZE_NODE);
2123 slab_state = PARTIAL_NODE;
2124 } else {
2125 int node;
2126 for_each_online_node(node) {
2127 cachep->node[node] =
2128 kmalloc_node(sizeof(struct kmem_cache_node),
2129 gfp, node);
2130 BUG_ON(!cachep->node[node]);
2131 kmem_cache_node_init(cachep->node[node]);
2132 }
2133 }
2134 }
2135 cachep->node[numa_mem_id()]->next_reap =
2136 jiffies + REAPTIMEOUT_NODE +
2137 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2138
2139 cpu_cache_get(cachep)->avail = 0;
2140 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2141 cpu_cache_get(cachep)->batchcount = 1;
2142 cpu_cache_get(cachep)->touched = 0;
2143 cachep->batchcount = 1;
2144 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2145 return 0;
2146 }
2147
2148 /**
2149 * __kmem_cache_create - Create a cache.
2150 * @cachep: cache management descriptor
2151 * @flags: SLAB flags
2152 *
2153 * Returns a ptr to the cache on success, NULL on failure.
2154 * Cannot be called within a int, but can be interrupted.
2155 * The @ctor is run when new pages are allocated by the cache.
2156 *
2157 * The flags are
2158 *
2159 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2160 * to catch references to uninitialised memory.
2161 *
2162 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2163 * for buffer overruns.
2164 *
2165 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2166 * cacheline. This can be beneficial if you're counting cycles as closely
2167 * as davem.
2168 */
2169 int
2170 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2171 {
2172 size_t left_over, freelist_size, ralign;
2173 gfp_t gfp;
2174 int err;
2175 size_t size = cachep->size;
2176
2177 #if DEBUG
2178 #if FORCED_DEBUG
2179 /*
2180 * Enable redzoning and last user accounting, except for caches with
2181 * large objects, if the increased size would increase the object size
2182 * above the next power of two: caches with object sizes just above a
2183 * power of two have a significant amount of internal fragmentation.
2184 */
2185 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2186 2 * sizeof(unsigned long long)))
2187 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2188 if (!(flags & SLAB_DESTROY_BY_RCU))
2189 flags |= SLAB_POISON;
2190 #endif
2191 if (flags & SLAB_DESTROY_BY_RCU)
2192 BUG_ON(flags & SLAB_POISON);
2193 #endif
2194
2195 /*
2196 * Check that size is in terms of words. This is needed to avoid
2197 * unaligned accesses for some archs when redzoning is used, and makes
2198 * sure any on-slab bufctl's are also correctly aligned.
2199 */
2200 if (size & (BYTES_PER_WORD - 1)) {
2201 size += (BYTES_PER_WORD - 1);
2202 size &= ~(BYTES_PER_WORD - 1);
2203 }
2204
2205 /*
2206 * Redzoning and user store require word alignment or possibly larger.
2207 * Note this will be overridden by architecture or caller mandated
2208 * alignment if either is greater than BYTES_PER_WORD.
2209 */
2210 if (flags & SLAB_STORE_USER)
2211 ralign = BYTES_PER_WORD;
2212
2213 if (flags & SLAB_RED_ZONE) {
2214 ralign = REDZONE_ALIGN;
2215 /* If redzoning, ensure that the second redzone is suitably
2216 * aligned, by adjusting the object size accordingly. */
2217 size += REDZONE_ALIGN - 1;
2218 size &= ~(REDZONE_ALIGN - 1);
2219 }
2220
2221 /* 3) caller mandated alignment */
2222 if (ralign < cachep->align) {
2223 ralign = cachep->align;
2224 }
2225 /* disable debug if necessary */
2226 if (ralign > __alignof__(unsigned long long))
2227 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2228 /*
2229 * 4) Store it.
2230 */
2231 cachep->align = ralign;
2232
2233 if (slab_is_available())
2234 gfp = GFP_KERNEL;
2235 else
2236 gfp = GFP_NOWAIT;
2237
2238 setup_node_pointer(cachep);
2239 #if DEBUG
2240
2241 /*
2242 * Both debugging options require word-alignment which is calculated
2243 * into align above.
2244 */
2245 if (flags & SLAB_RED_ZONE) {
2246 /* add space for red zone words */
2247 cachep->obj_offset += sizeof(unsigned long long);
2248 size += 2 * sizeof(unsigned long long);
2249 }
2250 if (flags & SLAB_STORE_USER) {
2251 /* user store requires one word storage behind the end of
2252 * the real object. But if the second red zone needs to be
2253 * aligned to 64 bits, we must allow that much space.
2254 */
2255 if (flags & SLAB_RED_ZONE)
2256 size += REDZONE_ALIGN;
2257 else
2258 size += BYTES_PER_WORD;
2259 }
2260 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2261 if (size >= kmalloc_size(INDEX_NODE + 1)
2262 && cachep->object_size > cache_line_size()
2263 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2264 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2265 size = PAGE_SIZE;
2266 }
2267 #endif
2268 #endif
2269
2270 /*
2271 * Determine if the slab management is 'on' or 'off' slab.
2272 * (bootstrapping cannot cope with offslab caches so don't do
2273 * it too early on. Always use on-slab management when
2274 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2275 */
2276 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2277 !(flags & SLAB_NOLEAKTRACE))
2278 /*
2279 * Size is large, assume best to place the slab management obj
2280 * off-slab (should allow better packing of objs).
2281 */
2282 flags |= CFLGS_OFF_SLAB;
2283
2284 size = ALIGN(size, cachep->align);
2285 /*
2286 * We should restrict the number of objects in a slab to implement
2287 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2288 */
2289 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2290 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2291
2292 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2293
2294 if (!cachep->num)
2295 return -E2BIG;
2296
2297 freelist_size =
2298 ALIGN(cachep->num * sizeof(freelist_idx_t), cachep->align);
2299
2300 /*
2301 * If the slab has been placed off-slab, and we have enough space then
2302 * move it on-slab. This is at the expense of any extra colouring.
2303 */
2304 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2305 flags &= ~CFLGS_OFF_SLAB;
2306 left_over -= freelist_size;
2307 }
2308
2309 if (flags & CFLGS_OFF_SLAB) {
2310 /* really off slab. No need for manual alignment */
2311 freelist_size = cachep->num * sizeof(freelist_idx_t);
2312
2313 #ifdef CONFIG_PAGE_POISONING
2314 /* If we're going to use the generic kernel_map_pages()
2315 * poisoning, then it's going to smash the contents of
2316 * the redzone and userword anyhow, so switch them off.
2317 */
2318 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2319 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2320 #endif
2321 }
2322
2323 cachep->colour_off = cache_line_size();
2324 /* Offset must be a multiple of the alignment. */
2325 if (cachep->colour_off < cachep->align)
2326 cachep->colour_off = cachep->align;
2327 cachep->colour = left_over / cachep->colour_off;
2328 cachep->freelist_size = freelist_size;
2329 cachep->flags = flags;
2330 cachep->allocflags = __GFP_COMP;
2331 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2332 cachep->allocflags |= GFP_DMA;
2333 cachep->size = size;
2334 cachep->reciprocal_buffer_size = reciprocal_value(size);
2335
2336 if (flags & CFLGS_OFF_SLAB) {
2337 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2338 /*
2339 * This is a possibility for one of the kmalloc_{dma,}_caches.
2340 * But since we go off slab only for object size greater than
2341 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2342 * in ascending order,this should not happen at all.
2343 * But leave a BUG_ON for some lucky dude.
2344 */
2345 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2346 }
2347
2348 err = setup_cpu_cache(cachep, gfp);
2349 if (err) {
2350 __kmem_cache_shutdown(cachep);
2351 return err;
2352 }
2353
2354 if (flags & SLAB_DEBUG_OBJECTS) {
2355 /*
2356 * Would deadlock through slab_destroy()->call_rcu()->
2357 * debug_object_activate()->kmem_cache_alloc().
2358 */
2359 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2360
2361 slab_set_debugobj_lock_classes(cachep);
2362 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2363 on_slab_lock_classes(cachep);
2364
2365 return 0;
2366 }
2367
2368 #if DEBUG
2369 static void check_irq_off(void)
2370 {
2371 BUG_ON(!irqs_disabled());
2372 }
2373
2374 static void check_irq_on(void)
2375 {
2376 BUG_ON(irqs_disabled());
2377 }
2378
2379 static void check_spinlock_acquired(struct kmem_cache *cachep)
2380 {
2381 #ifdef CONFIG_SMP
2382 check_irq_off();
2383 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2384 #endif
2385 }
2386
2387 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2388 {
2389 #ifdef CONFIG_SMP
2390 check_irq_off();
2391 assert_spin_locked(&cachep->node[node]->list_lock);
2392 #endif
2393 }
2394
2395 #else
2396 #define check_irq_off() do { } while(0)
2397 #define check_irq_on() do { } while(0)
2398 #define check_spinlock_acquired(x) do { } while(0)
2399 #define check_spinlock_acquired_node(x, y) do { } while(0)
2400 #endif
2401
2402 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2403 struct array_cache *ac,
2404 int force, int node);
2405
2406 static void do_drain(void *arg)
2407 {
2408 struct kmem_cache *cachep = arg;
2409 struct array_cache *ac;
2410 int node = numa_mem_id();
2411
2412 check_irq_off();
2413 ac = cpu_cache_get(cachep);
2414 spin_lock(&cachep->node[node]->list_lock);
2415 free_block(cachep, ac->entry, ac->avail, node);
2416 spin_unlock(&cachep->node[node]->list_lock);
2417 ac->avail = 0;
2418 }
2419
2420 static void drain_cpu_caches(struct kmem_cache *cachep)
2421 {
2422 struct kmem_cache_node *n;
2423 int node;
2424
2425 on_each_cpu(do_drain, cachep, 1);
2426 check_irq_on();
2427 for_each_online_node(node) {
2428 n = cachep->node[node];
2429 if (n && n->alien)
2430 drain_alien_cache(cachep, n->alien);
2431 }
2432
2433 for_each_online_node(node) {
2434 n = cachep->node[node];
2435 if (n)
2436 drain_array(cachep, n, n->shared, 1, node);
2437 }
2438 }
2439
2440 /*
2441 * Remove slabs from the list of free slabs.
2442 * Specify the number of slabs to drain in tofree.
2443 *
2444 * Returns the actual number of slabs released.
2445 */
2446 static int drain_freelist(struct kmem_cache *cache,
2447 struct kmem_cache_node *n, int tofree)
2448 {
2449 struct list_head *p;
2450 int nr_freed;
2451 struct page *page;
2452
2453 nr_freed = 0;
2454 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2455
2456 spin_lock_irq(&n->list_lock);
2457 p = n->slabs_free.prev;
2458 if (p == &n->slabs_free) {
2459 spin_unlock_irq(&n->list_lock);
2460 goto out;
2461 }
2462
2463 page = list_entry(p, struct page, lru);
2464 #if DEBUG
2465 BUG_ON(page->active);
2466 #endif
2467 list_del(&page->lru);
2468 /*
2469 * Safe to drop the lock. The slab is no longer linked
2470 * to the cache.
2471 */
2472 n->free_objects -= cache->num;
2473 spin_unlock_irq(&n->list_lock);
2474 slab_destroy(cache, page);
2475 nr_freed++;
2476 }
2477 out:
2478 return nr_freed;
2479 }
2480
2481 int __kmem_cache_shrink(struct kmem_cache *cachep)
2482 {
2483 int ret = 0, i = 0;
2484 struct kmem_cache_node *n;
2485
2486 drain_cpu_caches(cachep);
2487
2488 check_irq_on();
2489 for_each_online_node(i) {
2490 n = cachep->node[i];
2491 if (!n)
2492 continue;
2493
2494 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2495
2496 ret += !list_empty(&n->slabs_full) ||
2497 !list_empty(&n->slabs_partial);
2498 }
2499 return (ret ? 1 : 0);
2500 }
2501
2502 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2503 {
2504 int i;
2505 struct kmem_cache_node *n;
2506 int rc = __kmem_cache_shrink(cachep);
2507
2508 if (rc)
2509 return rc;
2510
2511 for_each_online_cpu(i)
2512 kfree(cachep->array[i]);
2513
2514 /* NUMA: free the node structures */
2515 for_each_online_node(i) {
2516 n = cachep->node[i];
2517 if (n) {
2518 kfree(n->shared);
2519 free_alien_cache(n->alien);
2520 kfree(n);
2521 }
2522 }
2523 return 0;
2524 }
2525
2526 /*
2527 * Get the memory for a slab management obj.
2528 *
2529 * For a slab cache when the slab descriptor is off-slab, the
2530 * slab descriptor can't come from the same cache which is being created,
2531 * Because if it is the case, that means we defer the creation of
2532 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2533 * And we eventually call down to __kmem_cache_create(), which
2534 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2535 * This is a "chicken-and-egg" problem.
2536 *
2537 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2538 * which are all initialized during kmem_cache_init().
2539 */
2540 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2541 struct page *page, int colour_off,
2542 gfp_t local_flags, int nodeid)
2543 {
2544 void *freelist;
2545 void *addr = page_address(page);
2546
2547 if (OFF_SLAB(cachep)) {
2548 /* Slab management obj is off-slab. */
2549 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2550 local_flags, nodeid);
2551 if (!freelist)
2552 return NULL;
2553 } else {
2554 freelist = addr + colour_off;
2555 colour_off += cachep->freelist_size;
2556 }
2557 page->active = 0;
2558 page->s_mem = addr + colour_off;
2559 return freelist;
2560 }
2561
2562 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2563 {
2564 return ((freelist_idx_t *)page->freelist)[idx];
2565 }
2566
2567 static inline void set_free_obj(struct page *page,
2568 unsigned int idx, freelist_idx_t val)
2569 {
2570 ((freelist_idx_t *)(page->freelist))[idx] = val;
2571 }
2572
2573 static void cache_init_objs(struct kmem_cache *cachep,
2574 struct page *page)
2575 {
2576 int i;
2577
2578 for (i = 0; i < cachep->num; i++) {
2579 void *objp = index_to_obj(cachep, page, i);
2580 #if DEBUG
2581 /* need to poison the objs? */
2582 if (cachep->flags & SLAB_POISON)
2583 poison_obj(cachep, objp, POISON_FREE);
2584 if (cachep->flags & SLAB_STORE_USER)
2585 *dbg_userword(cachep, objp) = NULL;
2586
2587 if (cachep->flags & SLAB_RED_ZONE) {
2588 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2589 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2590 }
2591 /*
2592 * Constructors are not allowed to allocate memory from the same
2593 * cache which they are a constructor for. Otherwise, deadlock.
2594 * They must also be threaded.
2595 */
2596 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2597 cachep->ctor(objp + obj_offset(cachep));
2598
2599 if (cachep->flags & SLAB_RED_ZONE) {
2600 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2601 slab_error(cachep, "constructor overwrote the"
2602 " end of an object");
2603 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2604 slab_error(cachep, "constructor overwrote the"
2605 " start of an object");
2606 }
2607 if ((cachep->size % PAGE_SIZE) == 0 &&
2608 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2609 kernel_map_pages(virt_to_page(objp),
2610 cachep->size / PAGE_SIZE, 0);
2611 #else
2612 if (cachep->ctor)
2613 cachep->ctor(objp);
2614 #endif
2615 set_free_obj(page, i, i);
2616 }
2617 }
2618
2619 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2620 {
2621 if (CONFIG_ZONE_DMA_FLAG) {
2622 if (flags & GFP_DMA)
2623 BUG_ON(!(cachep->allocflags & GFP_DMA));
2624 else
2625 BUG_ON(cachep->allocflags & GFP_DMA);
2626 }
2627 }
2628
2629 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2630 int nodeid)
2631 {
2632 void *objp;
2633
2634 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2635 page->active++;
2636 #if DEBUG
2637 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2638 #endif
2639
2640 return objp;
2641 }
2642
2643 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2644 void *objp, int nodeid)
2645 {
2646 unsigned int objnr = obj_to_index(cachep, page, objp);
2647 #if DEBUG
2648 unsigned int i;
2649
2650 /* Verify that the slab belongs to the intended node */
2651 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2652
2653 /* Verify double free bug */
2654 for (i = page->active; i < cachep->num; i++) {
2655 if (get_free_obj(page, i) == objnr) {
2656 printk(KERN_ERR "slab: double free detected in cache "
2657 "'%s', objp %p\n", cachep->name, objp);
2658 BUG();
2659 }
2660 }
2661 #endif
2662 page->active--;
2663 set_free_obj(page, page->active, objnr);
2664 }
2665
2666 /*
2667 * Map pages beginning at addr to the given cache and slab. This is required
2668 * for the slab allocator to be able to lookup the cache and slab of a
2669 * virtual address for kfree, ksize, and slab debugging.
2670 */
2671 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2672 void *freelist)
2673 {
2674 page->slab_cache = cache;
2675 page->freelist = freelist;
2676 }
2677
2678 /*
2679 * Grow (by 1) the number of slabs within a cache. This is called by
2680 * kmem_cache_alloc() when there are no active objs left in a cache.
2681 */
2682 static int cache_grow(struct kmem_cache *cachep,
2683 gfp_t flags, int nodeid, struct page *page)
2684 {
2685 void *freelist;
2686 size_t offset;
2687 gfp_t local_flags;
2688 struct kmem_cache_node *n;
2689
2690 /*
2691 * Be lazy and only check for valid flags here, keeping it out of the
2692 * critical path in kmem_cache_alloc().
2693 */
2694 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2695 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2696
2697 /* Take the node list lock to change the colour_next on this node */
2698 check_irq_off();
2699 n = cachep->node[nodeid];
2700 spin_lock(&n->list_lock);
2701
2702 /* Get colour for the slab, and cal the next value. */
2703 offset = n->colour_next;
2704 n->colour_next++;
2705 if (n->colour_next >= cachep->colour)
2706 n->colour_next = 0;
2707 spin_unlock(&n->list_lock);
2708
2709 offset *= cachep->colour_off;
2710
2711 if (local_flags & __GFP_WAIT)
2712 local_irq_enable();
2713
2714 /*
2715 * The test for missing atomic flag is performed here, rather than
2716 * the more obvious place, simply to reduce the critical path length
2717 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2718 * will eventually be caught here (where it matters).
2719 */
2720 kmem_flagcheck(cachep, flags);
2721
2722 /*
2723 * Get mem for the objs. Attempt to allocate a physical page from
2724 * 'nodeid'.
2725 */
2726 if (!page)
2727 page = kmem_getpages(cachep, local_flags, nodeid);
2728 if (!page)
2729 goto failed;
2730
2731 /* Get slab management. */
2732 freelist = alloc_slabmgmt(cachep, page, offset,
2733 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2734 if (!freelist)
2735 goto opps1;
2736
2737 slab_map_pages(cachep, page, freelist);
2738
2739 cache_init_objs(cachep, page);
2740
2741 if (local_flags & __GFP_WAIT)
2742 local_irq_disable();
2743 check_irq_off();
2744 spin_lock(&n->list_lock);
2745
2746 /* Make slab active. */
2747 list_add_tail(&page->lru, &(n->slabs_free));
2748 STATS_INC_GROWN(cachep);
2749 n->free_objects += cachep->num;
2750 spin_unlock(&n->list_lock);
2751 return 1;
2752 opps1:
2753 kmem_freepages(cachep, page);
2754 failed:
2755 if (local_flags & __GFP_WAIT)
2756 local_irq_disable();
2757 return 0;
2758 }
2759
2760 #if DEBUG
2761
2762 /*
2763 * Perform extra freeing checks:
2764 * - detect bad pointers.
2765 * - POISON/RED_ZONE checking
2766 */
2767 static void kfree_debugcheck(const void *objp)
2768 {
2769 if (!virt_addr_valid(objp)) {
2770 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2771 (unsigned long)objp);
2772 BUG();
2773 }
2774 }
2775
2776 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2777 {
2778 unsigned long long redzone1, redzone2;
2779
2780 redzone1 = *dbg_redzone1(cache, obj);
2781 redzone2 = *dbg_redzone2(cache, obj);
2782
2783 /*
2784 * Redzone is ok.
2785 */
2786 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2787 return;
2788
2789 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2790 slab_error(cache, "double free detected");
2791 else
2792 slab_error(cache, "memory outside object was overwritten");
2793
2794 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2795 obj, redzone1, redzone2);
2796 }
2797
2798 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2799 unsigned long caller)
2800 {
2801 unsigned int objnr;
2802 struct page *page;
2803
2804 BUG_ON(virt_to_cache(objp) != cachep);
2805
2806 objp -= obj_offset(cachep);
2807 kfree_debugcheck(objp);
2808 page = virt_to_head_page(objp);
2809
2810 if (cachep->flags & SLAB_RED_ZONE) {
2811 verify_redzone_free(cachep, objp);
2812 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2813 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2814 }
2815 if (cachep->flags & SLAB_STORE_USER)
2816 *dbg_userword(cachep, objp) = (void *)caller;
2817
2818 objnr = obj_to_index(cachep, page, objp);
2819
2820 BUG_ON(objnr >= cachep->num);
2821 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2822
2823 if (cachep->flags & SLAB_POISON) {
2824 #ifdef CONFIG_DEBUG_PAGEALLOC
2825 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2826 store_stackinfo(cachep, objp, caller);
2827 kernel_map_pages(virt_to_page(objp),
2828 cachep->size / PAGE_SIZE, 0);
2829 } else {
2830 poison_obj(cachep, objp, POISON_FREE);
2831 }
2832 #else
2833 poison_obj(cachep, objp, POISON_FREE);
2834 #endif
2835 }
2836 return objp;
2837 }
2838
2839 #else
2840 #define kfree_debugcheck(x) do { } while(0)
2841 #define cache_free_debugcheck(x,objp,z) (objp)
2842 #endif
2843
2844 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2845 bool force_refill)
2846 {
2847 int batchcount;
2848 struct kmem_cache_node *n;
2849 struct array_cache *ac;
2850 int node;
2851
2852 check_irq_off();
2853 node = numa_mem_id();
2854 if (unlikely(force_refill))
2855 goto force_grow;
2856 retry:
2857 ac = cpu_cache_get(cachep);
2858 batchcount = ac->batchcount;
2859 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2860 /*
2861 * If there was little recent activity on this cache, then
2862 * perform only a partial refill. Otherwise we could generate
2863 * refill bouncing.
2864 */
2865 batchcount = BATCHREFILL_LIMIT;
2866 }
2867 n = cachep->node[node];
2868
2869 BUG_ON(ac->avail > 0 || !n);
2870 spin_lock(&n->list_lock);
2871
2872 /* See if we can refill from the shared array */
2873 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2874 n->shared->touched = 1;
2875 goto alloc_done;
2876 }
2877
2878 while (batchcount > 0) {
2879 struct list_head *entry;
2880 struct page *page;
2881 /* Get slab alloc is to come from. */
2882 entry = n->slabs_partial.next;
2883 if (entry == &n->slabs_partial) {
2884 n->free_touched = 1;
2885 entry = n->slabs_free.next;
2886 if (entry == &n->slabs_free)
2887 goto must_grow;
2888 }
2889
2890 page = list_entry(entry, struct page, lru);
2891 check_spinlock_acquired(cachep);
2892
2893 /*
2894 * The slab was either on partial or free list so
2895 * there must be at least one object available for
2896 * allocation.
2897 */
2898 BUG_ON(page->active >= cachep->num);
2899
2900 while (page->active < cachep->num && batchcount--) {
2901 STATS_INC_ALLOCED(cachep);
2902 STATS_INC_ACTIVE(cachep);
2903 STATS_SET_HIGH(cachep);
2904
2905 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2906 node));
2907 }
2908
2909 /* move slabp to correct slabp list: */
2910 list_del(&page->lru);
2911 if (page->active == cachep->num)
2912 list_add(&page->lru, &n->slabs_full);
2913 else
2914 list_add(&page->lru, &n->slabs_partial);
2915 }
2916
2917 must_grow:
2918 n->free_objects -= ac->avail;
2919 alloc_done:
2920 spin_unlock(&n->list_lock);
2921
2922 if (unlikely(!ac->avail)) {
2923 int x;
2924 force_grow:
2925 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2926
2927 /* cache_grow can reenable interrupts, then ac could change. */
2928 ac = cpu_cache_get(cachep);
2929 node = numa_mem_id();
2930
2931 /* no objects in sight? abort */
2932 if (!x && (ac->avail == 0 || force_refill))
2933 return NULL;
2934
2935 if (!ac->avail) /* objects refilled by interrupt? */
2936 goto retry;
2937 }
2938 ac->touched = 1;
2939
2940 return ac_get_obj(cachep, ac, flags, force_refill);
2941 }
2942
2943 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2944 gfp_t flags)
2945 {
2946 might_sleep_if(flags & __GFP_WAIT);
2947 #if DEBUG
2948 kmem_flagcheck(cachep, flags);
2949 #endif
2950 }
2951
2952 #if DEBUG
2953 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2954 gfp_t flags, void *objp, unsigned long caller)
2955 {
2956 if (!objp)
2957 return objp;
2958 if (cachep->flags & SLAB_POISON) {
2959 #ifdef CONFIG_DEBUG_PAGEALLOC
2960 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2961 kernel_map_pages(virt_to_page(objp),
2962 cachep->size / PAGE_SIZE, 1);
2963 else
2964 check_poison_obj(cachep, objp);
2965 #else
2966 check_poison_obj(cachep, objp);
2967 #endif
2968 poison_obj(cachep, objp, POISON_INUSE);
2969 }
2970 if (cachep->flags & SLAB_STORE_USER)
2971 *dbg_userword(cachep, objp) = (void *)caller;
2972
2973 if (cachep->flags & SLAB_RED_ZONE) {
2974 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2975 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2976 slab_error(cachep, "double free, or memory outside"
2977 " object was overwritten");
2978 printk(KERN_ERR
2979 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2980 objp, *dbg_redzone1(cachep, objp),
2981 *dbg_redzone2(cachep, objp));
2982 }
2983 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2984 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2985 }
2986 objp += obj_offset(cachep);
2987 if (cachep->ctor && cachep->flags & SLAB_POISON)
2988 cachep->ctor(objp);
2989 if (ARCH_SLAB_MINALIGN &&
2990 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2991 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2992 objp, (int)ARCH_SLAB_MINALIGN);
2993 }
2994 return objp;
2995 }
2996 #else
2997 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2998 #endif
2999
3000 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3001 {
3002 if (cachep == kmem_cache)
3003 return false;
3004
3005 return should_failslab(cachep->object_size, flags, cachep->flags);
3006 }
3007
3008 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3009 {
3010 void *objp;
3011 struct array_cache *ac;
3012 bool force_refill = false;
3013
3014 check_irq_off();
3015
3016 ac = cpu_cache_get(cachep);
3017 if (likely(ac->avail)) {
3018 ac->touched = 1;
3019 objp = ac_get_obj(cachep, ac, flags, false);
3020
3021 /*
3022 * Allow for the possibility all avail objects are not allowed
3023 * by the current flags
3024 */
3025 if (objp) {
3026 STATS_INC_ALLOCHIT(cachep);
3027 goto out;
3028 }
3029 force_refill = true;
3030 }
3031
3032 STATS_INC_ALLOCMISS(cachep);
3033 objp = cache_alloc_refill(cachep, flags, force_refill);
3034 /*
3035 * the 'ac' may be updated by cache_alloc_refill(),
3036 * and kmemleak_erase() requires its correct value.
3037 */
3038 ac = cpu_cache_get(cachep);
3039
3040 out:
3041 /*
3042 * To avoid a false negative, if an object that is in one of the
3043 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3044 * treat the array pointers as a reference to the object.
3045 */
3046 if (objp)
3047 kmemleak_erase(&ac->entry[ac->avail]);
3048 return objp;
3049 }
3050
3051 #ifdef CONFIG_NUMA
3052 /*
3053 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
3054 *
3055 * If we are in_interrupt, then process context, including cpusets and
3056 * mempolicy, may not apply and should not be used for allocation policy.
3057 */
3058 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3059 {
3060 int nid_alloc, nid_here;
3061
3062 if (in_interrupt() || (flags & __GFP_THISNODE))
3063 return NULL;
3064 nid_alloc = nid_here = numa_mem_id();
3065 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3066 nid_alloc = cpuset_slab_spread_node();
3067 else if (current->mempolicy)
3068 nid_alloc = mempolicy_slab_node();
3069 if (nid_alloc != nid_here)
3070 return ____cache_alloc_node(cachep, flags, nid_alloc);
3071 return NULL;
3072 }
3073
3074 /*
3075 * Fallback function if there was no memory available and no objects on a
3076 * certain node and fall back is permitted. First we scan all the
3077 * available node for available objects. If that fails then we
3078 * perform an allocation without specifying a node. This allows the page
3079 * allocator to do its reclaim / fallback magic. We then insert the
3080 * slab into the proper nodelist and then allocate from it.
3081 */
3082 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3083 {
3084 struct zonelist *zonelist;
3085 gfp_t local_flags;
3086 struct zoneref *z;
3087 struct zone *zone;
3088 enum zone_type high_zoneidx = gfp_zone(flags);
3089 void *obj = NULL;
3090 int nid;
3091 unsigned int cpuset_mems_cookie;
3092
3093 if (flags & __GFP_THISNODE)
3094 return NULL;
3095
3096 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3097
3098 retry_cpuset:
3099 cpuset_mems_cookie = read_mems_allowed_begin();
3100 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3101
3102 retry:
3103 /*
3104 * Look through allowed nodes for objects available
3105 * from existing per node queues.
3106 */
3107 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3108 nid = zone_to_nid(zone);
3109
3110 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3111 cache->node[nid] &&
3112 cache->node[nid]->free_objects) {
3113 obj = ____cache_alloc_node(cache,
3114 flags | GFP_THISNODE, nid);
3115 if (obj)
3116 break;
3117 }
3118 }
3119
3120 if (!obj) {
3121 /*
3122 * This allocation will be performed within the constraints
3123 * of the current cpuset / memory policy requirements.
3124 * We may trigger various forms of reclaim on the allowed
3125 * set and go into memory reserves if necessary.
3126 */
3127 struct page *page;
3128
3129 if (local_flags & __GFP_WAIT)
3130 local_irq_enable();
3131 kmem_flagcheck(cache, flags);
3132 page = kmem_getpages(cache, local_flags, numa_mem_id());
3133 if (local_flags & __GFP_WAIT)
3134 local_irq_disable();
3135 if (page) {
3136 /*
3137 * Insert into the appropriate per node queues
3138 */
3139 nid = page_to_nid(page);
3140 if (cache_grow(cache, flags, nid, page)) {
3141 obj = ____cache_alloc_node(cache,
3142 flags | GFP_THISNODE, nid);
3143 if (!obj)
3144 /*
3145 * Another processor may allocate the
3146 * objects in the slab since we are
3147 * not holding any locks.
3148 */
3149 goto retry;
3150 } else {
3151 /* cache_grow already freed obj */
3152 obj = NULL;
3153 }
3154 }
3155 }
3156
3157 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3158 goto retry_cpuset;
3159 return obj;
3160 }
3161
3162 /*
3163 * A interface to enable slab creation on nodeid
3164 */
3165 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3166 int nodeid)
3167 {
3168 struct list_head *entry;
3169 struct page *page;
3170 struct kmem_cache_node *n;
3171 void *obj;
3172 int x;
3173
3174 VM_BUG_ON(nodeid > num_online_nodes());
3175 n = cachep->node[nodeid];
3176 BUG_ON(!n);
3177
3178 retry:
3179 check_irq_off();
3180 spin_lock(&n->list_lock);
3181 entry = n->slabs_partial.next;
3182 if (entry == &n->slabs_partial) {
3183 n->free_touched = 1;
3184 entry = n->slabs_free.next;
3185 if (entry == &n->slabs_free)
3186 goto must_grow;
3187 }
3188
3189 page = list_entry(entry, struct page, lru);
3190 check_spinlock_acquired_node(cachep, nodeid);
3191
3192 STATS_INC_NODEALLOCS(cachep);
3193 STATS_INC_ACTIVE(cachep);
3194 STATS_SET_HIGH(cachep);
3195
3196 BUG_ON(page->active == cachep->num);
3197
3198 obj = slab_get_obj(cachep, page, nodeid);
3199 n->free_objects--;
3200 /* move slabp to correct slabp list: */
3201 list_del(&page->lru);
3202
3203 if (page->active == cachep->num)
3204 list_add(&page->lru, &n->slabs_full);
3205 else
3206 list_add(&page->lru, &n->slabs_partial);
3207
3208 spin_unlock(&n->list_lock);
3209 goto done;
3210
3211 must_grow:
3212 spin_unlock(&n->list_lock);
3213 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3214 if (x)
3215 goto retry;
3216
3217 return fallback_alloc(cachep, flags);
3218
3219 done:
3220 return obj;
3221 }
3222
3223 static __always_inline void *
3224 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3225 unsigned long caller)
3226 {
3227 unsigned long save_flags;
3228 void *ptr;
3229 int slab_node = numa_mem_id();
3230
3231 flags &= gfp_allowed_mask;
3232
3233 lockdep_trace_alloc(flags);
3234
3235 if (slab_should_failslab(cachep, flags))
3236 return NULL;
3237
3238 cachep = memcg_kmem_get_cache(cachep, flags);
3239
3240 cache_alloc_debugcheck_before(cachep, flags);
3241 local_irq_save(save_flags);
3242
3243 if (nodeid == NUMA_NO_NODE)
3244 nodeid = slab_node;
3245
3246 if (unlikely(!cachep->node[nodeid])) {
3247 /* Node not bootstrapped yet */
3248 ptr = fallback_alloc(cachep, flags);
3249 goto out;
3250 }
3251
3252 if (nodeid == slab_node) {
3253 /*
3254 * Use the locally cached objects if possible.
3255 * However ____cache_alloc does not allow fallback
3256 * to other nodes. It may fail while we still have
3257 * objects on other nodes available.
3258 */
3259 ptr = ____cache_alloc(cachep, flags);
3260 if (ptr)
3261 goto out;
3262 }
3263 /* ___cache_alloc_node can fall back to other nodes */
3264 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3265 out:
3266 local_irq_restore(save_flags);
3267 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3268 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3269 flags);
3270
3271 if (likely(ptr)) {
3272 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3273 if (unlikely(flags & __GFP_ZERO))
3274 memset(ptr, 0, cachep->object_size);
3275 }
3276
3277 return ptr;
3278 }
3279
3280 static __always_inline void *
3281 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3282 {
3283 void *objp;
3284
3285 if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3286 objp = alternate_node_alloc(cache, flags);
3287 if (objp)
3288 goto out;
3289 }
3290 objp = ____cache_alloc(cache, flags);
3291
3292 /*
3293 * We may just have run out of memory on the local node.
3294 * ____cache_alloc_node() knows how to locate memory on other nodes
3295 */
3296 if (!objp)
3297 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3298
3299 out:
3300 return objp;
3301 }
3302 #else
3303
3304 static __always_inline void *
3305 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3306 {
3307 return ____cache_alloc(cachep, flags);
3308 }
3309
3310 #endif /* CONFIG_NUMA */
3311
3312 static __always_inline void *
3313 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3314 {
3315 unsigned long save_flags;
3316 void *objp;
3317
3318 flags &= gfp_allowed_mask;
3319
3320 lockdep_trace_alloc(flags);
3321
3322 if (slab_should_failslab(cachep, flags))
3323 return NULL;
3324
3325 cachep = memcg_kmem_get_cache(cachep, flags);
3326
3327 cache_alloc_debugcheck_before(cachep, flags);
3328 local_irq_save(save_flags);
3329 objp = __do_cache_alloc(cachep, flags);
3330 local_irq_restore(save_flags);
3331 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3332 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3333 flags);
3334 prefetchw(objp);
3335
3336 if (likely(objp)) {
3337 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3338 if (unlikely(flags & __GFP_ZERO))
3339 memset(objp, 0, cachep->object_size);
3340 }
3341
3342 return objp;
3343 }
3344
3345 /*
3346 * Caller needs to acquire correct kmem_cache_node's list_lock
3347 */
3348 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3349 int node)
3350 {
3351 int i;
3352 struct kmem_cache_node *n;
3353
3354 for (i = 0; i < nr_objects; i++) {
3355 void *objp;
3356 struct page *page;
3357
3358 clear_obj_pfmemalloc(&objpp[i]);
3359 objp = objpp[i];
3360
3361 page = virt_to_head_page(objp);
3362 n = cachep->node[node];
3363 list_del(&page->lru);
3364 check_spinlock_acquired_node(cachep, node);
3365 slab_put_obj(cachep, page, objp, node);
3366 STATS_DEC_ACTIVE(cachep);
3367 n->free_objects++;
3368
3369 /* fixup slab chains */
3370 if (page->active == 0) {
3371 if (n->free_objects > n->free_limit) {
3372 n->free_objects -= cachep->num;
3373 /* No need to drop any previously held
3374 * lock here, even if we have a off-slab slab
3375 * descriptor it is guaranteed to come from
3376 * a different cache, refer to comments before
3377 * alloc_slabmgmt.
3378 */
3379 slab_destroy(cachep, page);
3380 } else {
3381 list_add(&page->lru, &n->slabs_free);
3382 }
3383 } else {
3384 /* Unconditionally move a slab to the end of the
3385 * partial list on free - maximum time for the
3386 * other objects to be freed, too.
3387 */
3388 list_add_tail(&page->lru, &n->slabs_partial);
3389 }
3390 }
3391 }
3392
3393 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3394 {
3395 int batchcount;
3396 struct kmem_cache_node *n;
3397 int node = numa_mem_id();
3398
3399 batchcount = ac->batchcount;
3400 #if DEBUG
3401 BUG_ON(!batchcount || batchcount > ac->avail);
3402 #endif
3403 check_irq_off();
3404 n = cachep->node[node];
3405 spin_lock(&n->list_lock);
3406 if (n->shared) {
3407 struct array_cache *shared_array = n->shared;
3408 int max = shared_array->limit - shared_array->avail;
3409 if (max) {
3410 if (batchcount > max)
3411 batchcount = max;
3412 memcpy(&(shared_array->entry[shared_array->avail]),
3413 ac->entry, sizeof(void *) * batchcount);
3414 shared_array->avail += batchcount;
3415 goto free_done;
3416 }
3417 }
3418
3419 free_block(cachep, ac->entry, batchcount, node);
3420 free_done:
3421 #if STATS
3422 {
3423 int i = 0;
3424 struct list_head *p;
3425
3426 p = n->slabs_free.next;
3427 while (p != &(n->slabs_free)) {
3428 struct page *page;
3429
3430 page = list_entry(p, struct page, lru);
3431 BUG_ON(page->active);
3432
3433 i++;
3434 p = p->next;
3435 }
3436 STATS_SET_FREEABLE(cachep, i);
3437 }
3438 #endif
3439 spin_unlock(&n->list_lock);
3440 ac->avail -= batchcount;
3441 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3442 }
3443
3444 /*
3445 * Release an obj back to its cache. If the obj has a constructed state, it must
3446 * be in this state _before_ it is released. Called with disabled ints.
3447 */
3448 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3449 unsigned long caller)
3450 {
3451 struct array_cache *ac = cpu_cache_get(cachep);
3452
3453 check_irq_off();
3454 kmemleak_free_recursive(objp, cachep->flags);
3455 objp = cache_free_debugcheck(cachep, objp, caller);
3456
3457 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3458
3459 /*
3460 * Skip calling cache_free_alien() when the platform is not numa.
3461 * This will avoid cache misses that happen while accessing slabp (which
3462 * is per page memory reference) to get nodeid. Instead use a global
3463 * variable to skip the call, which is mostly likely to be present in
3464 * the cache.
3465 */
3466 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3467 return;
3468
3469 if (likely(ac->avail < ac->limit)) {
3470 STATS_INC_FREEHIT(cachep);
3471 } else {
3472 STATS_INC_FREEMISS(cachep);
3473 cache_flusharray(cachep, ac);
3474 }
3475
3476 ac_put_obj(cachep, ac, objp);
3477 }
3478
3479 /**
3480 * kmem_cache_alloc - Allocate an object
3481 * @cachep: The cache to allocate from.
3482 * @flags: See kmalloc().
3483 *
3484 * Allocate an object from this cache. The flags are only relevant
3485 * if the cache has no available objects.
3486 */
3487 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3488 {
3489 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3490
3491 trace_kmem_cache_alloc(_RET_IP_, ret,
3492 cachep->object_size, cachep->size, flags);
3493
3494 return ret;
3495 }
3496 EXPORT_SYMBOL(kmem_cache_alloc);
3497
3498 #ifdef CONFIG_TRACING
3499 void *
3500 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3501 {
3502 void *ret;
3503
3504 ret = slab_alloc(cachep, flags, _RET_IP_);
3505
3506 trace_kmalloc(_RET_IP_, ret,
3507 size, cachep->size, flags);
3508 return ret;
3509 }
3510 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3511 #endif
3512
3513 #ifdef CONFIG_NUMA
3514 /**
3515 * kmem_cache_alloc_node - Allocate an object on the specified node
3516 * @cachep: The cache to allocate from.
3517 * @flags: See kmalloc().
3518 * @nodeid: node number of the target node.
3519 *
3520 * Identical to kmem_cache_alloc but it will allocate memory on the given
3521 * node, which can improve the performance for cpu bound structures.
3522 *
3523 * Fallback to other node is possible if __GFP_THISNODE is not set.
3524 */
3525 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3526 {
3527 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3528
3529 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3530 cachep->object_size, cachep->size,
3531 flags, nodeid);
3532
3533 return ret;
3534 }
3535 EXPORT_SYMBOL(kmem_cache_alloc_node);
3536
3537 #ifdef CONFIG_TRACING
3538 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3539 gfp_t flags,
3540 int nodeid,
3541 size_t size)
3542 {
3543 void *ret;
3544
3545 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3546
3547 trace_kmalloc_node(_RET_IP_, ret,
3548 size, cachep->size,
3549 flags, nodeid);
3550 return ret;
3551 }
3552 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3553 #endif
3554
3555 static __always_inline void *
3556 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3557 {
3558 struct kmem_cache *cachep;
3559
3560 cachep = kmalloc_slab(size, flags);
3561 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3562 return cachep;
3563 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3564 }
3565
3566 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3567 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3568 {
3569 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3570 }
3571 EXPORT_SYMBOL(__kmalloc_node);
3572
3573 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3574 int node, unsigned long caller)
3575 {
3576 return __do_kmalloc_node(size, flags, node, caller);
3577 }
3578 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3579 #else
3580 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3581 {
3582 return __do_kmalloc_node(size, flags, node, 0);
3583 }
3584 EXPORT_SYMBOL(__kmalloc_node);
3585 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3586 #endif /* CONFIG_NUMA */
3587
3588 /**
3589 * __do_kmalloc - allocate memory
3590 * @size: how many bytes of memory are required.
3591 * @flags: the type of memory to allocate (see kmalloc).
3592 * @caller: function caller for debug tracking of the caller
3593 */
3594 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3595 unsigned long caller)
3596 {
3597 struct kmem_cache *cachep;
3598 void *ret;
3599
3600 cachep = kmalloc_slab(size, flags);
3601 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3602 return cachep;
3603 ret = slab_alloc(cachep, flags, caller);
3604
3605 trace_kmalloc(caller, ret,
3606 size, cachep->size, flags);
3607
3608 return ret;
3609 }
3610
3611
3612 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3613 void *__kmalloc(size_t size, gfp_t flags)
3614 {
3615 return __do_kmalloc(size, flags, _RET_IP_);
3616 }
3617 EXPORT_SYMBOL(__kmalloc);
3618
3619 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3620 {
3621 return __do_kmalloc(size, flags, caller);
3622 }
3623 EXPORT_SYMBOL(__kmalloc_track_caller);
3624
3625 #else
3626 void *__kmalloc(size_t size, gfp_t flags)
3627 {
3628 return __do_kmalloc(size, flags, 0);
3629 }
3630 EXPORT_SYMBOL(__kmalloc);
3631 #endif
3632
3633 /**
3634 * kmem_cache_free - Deallocate an object
3635 * @cachep: The cache the allocation was from.
3636 * @objp: The previously allocated object.
3637 *
3638 * Free an object which was previously allocated from this
3639 * cache.
3640 */
3641 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3642 {
3643 unsigned long flags;
3644 cachep = cache_from_obj(cachep, objp);
3645 if (!cachep)
3646 return;
3647
3648 local_irq_save(flags);
3649 debug_check_no_locks_freed(objp, cachep->object_size);
3650 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3651 debug_check_no_obj_freed(objp, cachep->object_size);
3652 __cache_free(cachep, objp, _RET_IP_);
3653 local_irq_restore(flags);
3654
3655 trace_kmem_cache_free(_RET_IP_, objp);
3656 }
3657 EXPORT_SYMBOL(kmem_cache_free);
3658
3659 /**
3660 * kfree - free previously allocated memory
3661 * @objp: pointer returned by kmalloc.
3662 *
3663 * If @objp is NULL, no operation is performed.
3664 *
3665 * Don't free memory not originally allocated by kmalloc()
3666 * or you will run into trouble.
3667 */
3668 void kfree(const void *objp)
3669 {
3670 struct kmem_cache *c;
3671 unsigned long flags;
3672
3673 trace_kfree(_RET_IP_, objp);
3674
3675 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3676 return;
3677 local_irq_save(flags);
3678 kfree_debugcheck(objp);
3679 c = virt_to_cache(objp);
3680 debug_check_no_locks_freed(objp, c->object_size);
3681
3682 debug_check_no_obj_freed(objp, c->object_size);
3683 __cache_free(c, (void *)objp, _RET_IP_);
3684 local_irq_restore(flags);
3685 }
3686 EXPORT_SYMBOL(kfree);
3687
3688 /*
3689 * This initializes kmem_cache_node or resizes various caches for all nodes.
3690 */
3691 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3692 {
3693 int node;
3694 struct kmem_cache_node *n;
3695 struct array_cache *new_shared;
3696 struct array_cache **new_alien = NULL;
3697
3698 for_each_online_node(node) {
3699
3700 if (use_alien_caches) {
3701 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3702 if (!new_alien)
3703 goto fail;
3704 }
3705
3706 new_shared = NULL;
3707 if (cachep->shared) {
3708 new_shared = alloc_arraycache(node,
3709 cachep->shared*cachep->batchcount,
3710 0xbaadf00d, gfp);
3711 if (!new_shared) {
3712 free_alien_cache(new_alien);
3713 goto fail;
3714 }
3715 }
3716
3717 n = cachep->node[node];
3718 if (n) {
3719 struct array_cache *shared = n->shared;
3720
3721 spin_lock_irq(&n->list_lock);
3722
3723 if (shared)
3724 free_block(cachep, shared->entry,
3725 shared->avail, node);
3726
3727 n->shared = new_shared;
3728 if (!n->alien) {
3729 n->alien = new_alien;
3730 new_alien = NULL;
3731 }
3732 n->free_limit = (1 + nr_cpus_node(node)) *
3733 cachep->batchcount + cachep->num;
3734 spin_unlock_irq(&n->list_lock);
3735 kfree(shared);
3736 free_alien_cache(new_alien);
3737 continue;
3738 }
3739 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3740 if (!n) {
3741 free_alien_cache(new_alien);
3742 kfree(new_shared);
3743 goto fail;
3744 }
3745
3746 kmem_cache_node_init(n);
3747 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3748 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3749 n->shared = new_shared;
3750 n->alien = new_alien;
3751 n->free_limit = (1 + nr_cpus_node(node)) *
3752 cachep->batchcount + cachep->num;
3753 cachep->node[node] = n;
3754 }
3755 return 0;
3756
3757 fail:
3758 if (!cachep->list.next) {
3759 /* Cache is not active yet. Roll back what we did */
3760 node--;
3761 while (node >= 0) {
3762 if (cachep->node[node]) {
3763 n = cachep->node[node];
3764
3765 kfree(n->shared);
3766 free_alien_cache(n->alien);
3767 kfree(n);
3768 cachep->node[node] = NULL;
3769 }
3770 node--;
3771 }
3772 }
3773 return -ENOMEM;
3774 }
3775
3776 struct ccupdate_struct {
3777 struct kmem_cache *cachep;
3778 struct array_cache *new[0];
3779 };
3780
3781 static void do_ccupdate_local(void *info)
3782 {
3783 struct ccupdate_struct *new = info;
3784 struct array_cache *old;
3785
3786 check_irq_off();
3787 old = cpu_cache_get(new->cachep);
3788
3789 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3790 new->new[smp_processor_id()] = old;
3791 }
3792
3793 /* Always called with the slab_mutex held */
3794 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3795 int batchcount, int shared, gfp_t gfp)
3796 {
3797 struct ccupdate_struct *new;
3798 int i;
3799
3800 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3801 gfp);
3802 if (!new)
3803 return -ENOMEM;
3804
3805 for_each_online_cpu(i) {
3806 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3807 batchcount, gfp);
3808 if (!new->new[i]) {
3809 for (i--; i >= 0; i--)
3810 kfree(new->new[i]);
3811 kfree(new);
3812 return -ENOMEM;
3813 }
3814 }
3815 new->cachep = cachep;
3816
3817 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3818
3819 check_irq_on();
3820 cachep->batchcount = batchcount;
3821 cachep->limit = limit;
3822 cachep->shared = shared;
3823
3824 for_each_online_cpu(i) {
3825 struct array_cache *ccold = new->new[i];
3826 if (!ccold)
3827 continue;
3828 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3829 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3830 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3831 kfree(ccold);
3832 }
3833 kfree(new);
3834 return alloc_kmem_cache_node(cachep, gfp);
3835 }
3836
3837 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3838 int batchcount, int shared, gfp_t gfp)
3839 {
3840 int ret;
3841 struct kmem_cache *c = NULL;
3842 int i = 0;
3843
3844 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3845
3846 if (slab_state < FULL)
3847 return ret;
3848
3849 if ((ret < 0) || !is_root_cache(cachep))
3850 return ret;
3851
3852 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3853 for_each_memcg_cache_index(i) {
3854 c = cache_from_memcg_idx(cachep, i);
3855 if (c)
3856 /* return value determined by the parent cache only */
3857 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3858 }
3859
3860 return ret;
3861 }
3862
3863 /* Called with slab_mutex held always */
3864 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3865 {
3866 int err;
3867 int limit = 0;
3868 int shared = 0;
3869 int batchcount = 0;
3870
3871 if (!is_root_cache(cachep)) {
3872 struct kmem_cache *root = memcg_root_cache(cachep);
3873 limit = root->limit;
3874 shared = root->shared;
3875 batchcount = root->batchcount;
3876 }
3877
3878 if (limit && shared && batchcount)
3879 goto skip_setup;
3880 /*
3881 * The head array serves three purposes:
3882 * - create a LIFO ordering, i.e. return objects that are cache-warm
3883 * - reduce the number of spinlock operations.
3884 * - reduce the number of linked list operations on the slab and
3885 * bufctl chains: array operations are cheaper.
3886 * The numbers are guessed, we should auto-tune as described by
3887 * Bonwick.
3888 */
3889 if (cachep->size > 131072)
3890 limit = 1;
3891 else if (cachep->size > PAGE_SIZE)
3892 limit = 8;
3893 else if (cachep->size > 1024)
3894 limit = 24;
3895 else if (cachep->size > 256)
3896 limit = 54;
3897 else
3898 limit = 120;
3899
3900 /*
3901 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3902 * allocation behaviour: Most allocs on one cpu, most free operations
3903 * on another cpu. For these cases, an efficient object passing between
3904 * cpus is necessary. This is provided by a shared array. The array
3905 * replaces Bonwick's magazine layer.
3906 * On uniprocessor, it's functionally equivalent (but less efficient)
3907 * to a larger limit. Thus disabled by default.
3908 */
3909 shared = 0;
3910 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3911 shared = 8;
3912
3913 #if DEBUG
3914 /*
3915 * With debugging enabled, large batchcount lead to excessively long
3916 * periods with disabled local interrupts. Limit the batchcount
3917 */
3918 if (limit > 32)
3919 limit = 32;
3920 #endif
3921 batchcount = (limit + 1) / 2;
3922 skip_setup:
3923 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3924 if (err)
3925 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3926 cachep->name, -err);
3927 return err;
3928 }
3929
3930 /*
3931 * Drain an array if it contains any elements taking the node lock only if
3932 * necessary. Note that the node listlock also protects the array_cache
3933 * if drain_array() is used on the shared array.
3934 */
3935 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3936 struct array_cache *ac, int force, int node)
3937 {
3938 int tofree;
3939
3940 if (!ac || !ac->avail)
3941 return;
3942 if (ac->touched && !force) {
3943 ac->touched = 0;
3944 } else {
3945 spin_lock_irq(&n->list_lock);
3946 if (ac->avail) {
3947 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3948 if (tofree > ac->avail)
3949 tofree = (ac->avail + 1) / 2;
3950 free_block(cachep, ac->entry, tofree, node);
3951 ac->avail -= tofree;
3952 memmove(ac->entry, &(ac->entry[tofree]),
3953 sizeof(void *) * ac->avail);
3954 }
3955 spin_unlock_irq(&n->list_lock);
3956 }
3957 }
3958
3959 /**
3960 * cache_reap - Reclaim memory from caches.
3961 * @w: work descriptor
3962 *
3963 * Called from workqueue/eventd every few seconds.
3964 * Purpose:
3965 * - clear the per-cpu caches for this CPU.
3966 * - return freeable pages to the main free memory pool.
3967 *
3968 * If we cannot acquire the cache chain mutex then just give up - we'll try
3969 * again on the next iteration.
3970 */
3971 static void cache_reap(struct work_struct *w)
3972 {
3973 struct kmem_cache *searchp;
3974 struct kmem_cache_node *n;
3975 int node = numa_mem_id();
3976 struct delayed_work *work = to_delayed_work(w);
3977
3978 if (!mutex_trylock(&slab_mutex))
3979 /* Give up. Setup the next iteration. */
3980 goto out;
3981
3982 list_for_each_entry(searchp, &slab_caches, list) {
3983 check_irq_on();
3984
3985 /*
3986 * We only take the node lock if absolutely necessary and we
3987 * have established with reasonable certainty that
3988 * we can do some work if the lock was obtained.
3989 */
3990 n = searchp->node[node];
3991
3992 reap_alien(searchp, n);
3993
3994 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3995
3996 /*
3997 * These are racy checks but it does not matter
3998 * if we skip one check or scan twice.
3999 */
4000 if (time_after(n->next_reap, jiffies))
4001 goto next;
4002
4003 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4004
4005 drain_array(searchp, n, n->shared, 0, node);
4006
4007 if (n->free_touched)
4008 n->free_touched = 0;
4009 else {
4010 int freed;
4011
4012 freed = drain_freelist(searchp, n, (n->free_limit +
4013 5 * searchp->num - 1) / (5 * searchp->num));
4014 STATS_ADD_REAPED(searchp, freed);
4015 }
4016 next:
4017 cond_resched();
4018 }
4019 check_irq_on();
4020 mutex_unlock(&slab_mutex);
4021 next_reap_node();
4022 out:
4023 /* Set up the next iteration */
4024 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4025 }
4026
4027 #ifdef CONFIG_SLABINFO
4028 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4029 {
4030 struct page *page;
4031 unsigned long active_objs;
4032 unsigned long num_objs;
4033 unsigned long active_slabs = 0;
4034 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4035 const char *name;
4036 char *error = NULL;
4037 int node;
4038 struct kmem_cache_node *n;
4039
4040 active_objs = 0;
4041 num_slabs = 0;
4042 for_each_online_node(node) {
4043 n = cachep->node[node];
4044 if (!n)
4045 continue;
4046
4047 check_irq_on();
4048 spin_lock_irq(&n->list_lock);
4049
4050 list_for_each_entry(page, &n->slabs_full, lru) {
4051 if (page->active != cachep->num && !error)
4052 error = "slabs_full accounting error";
4053 active_objs += cachep->num;
4054 active_slabs++;
4055 }
4056 list_for_each_entry(page, &n->slabs_partial, lru) {
4057 if (page->active == cachep->num && !error)
4058 error = "slabs_partial accounting error";
4059 if (!page->active && !error)
4060 error = "slabs_partial accounting error";
4061 active_objs += page->active;
4062 active_slabs++;
4063 }
4064 list_for_each_entry(page, &n->slabs_free, lru) {
4065 if (page->active && !error)
4066 error = "slabs_free accounting error";
4067 num_slabs++;
4068 }
4069 free_objects += n->free_objects;
4070 if (n->shared)
4071 shared_avail += n->shared->avail;
4072
4073 spin_unlock_irq(&n->list_lock);
4074 }
4075 num_slabs += active_slabs;
4076 num_objs = num_slabs * cachep->num;
4077 if (num_objs - active_objs != free_objects && !error)
4078 error = "free_objects accounting error";
4079
4080 name = cachep->name;
4081 if (error)
4082 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4083
4084 sinfo->active_objs = active_objs;
4085 sinfo->num_objs = num_objs;
4086 sinfo->active_slabs = active_slabs;
4087 sinfo->num_slabs = num_slabs;
4088 sinfo->shared_avail = shared_avail;
4089 sinfo->limit = cachep->limit;
4090 sinfo->batchcount = cachep->batchcount;
4091 sinfo->shared = cachep->shared;
4092 sinfo->objects_per_slab = cachep->num;
4093 sinfo->cache_order = cachep->gfporder;
4094 }
4095
4096 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4097 {
4098 #if STATS
4099 { /* node stats */
4100 unsigned long high = cachep->high_mark;
4101 unsigned long allocs = cachep->num_allocations;
4102 unsigned long grown = cachep->grown;
4103 unsigned long reaped = cachep->reaped;
4104 unsigned long errors = cachep->errors;
4105 unsigned long max_freeable = cachep->max_freeable;
4106 unsigned long node_allocs = cachep->node_allocs;
4107 unsigned long node_frees = cachep->node_frees;
4108 unsigned long overflows = cachep->node_overflow;
4109
4110 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4111 "%4lu %4lu %4lu %4lu %4lu",
4112 allocs, high, grown,
4113 reaped, errors, max_freeable, node_allocs,
4114 node_frees, overflows);
4115 }
4116 /* cpu stats */
4117 {
4118 unsigned long allochit = atomic_read(&cachep->allochit);
4119 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4120 unsigned long freehit = atomic_read(&cachep->freehit);
4121 unsigned long freemiss = atomic_read(&cachep->freemiss);
4122
4123 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4124 allochit, allocmiss, freehit, freemiss);
4125 }
4126 #endif
4127 }
4128
4129 #define MAX_SLABINFO_WRITE 128
4130 /**
4131 * slabinfo_write - Tuning for the slab allocator
4132 * @file: unused
4133 * @buffer: user buffer
4134 * @count: data length
4135 * @ppos: unused
4136 */
4137 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4138 size_t count, loff_t *ppos)
4139 {
4140 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4141 int limit, batchcount, shared, res;
4142 struct kmem_cache *cachep;
4143
4144 if (count > MAX_SLABINFO_WRITE)
4145 return -EINVAL;
4146 if (copy_from_user(&kbuf, buffer, count))
4147 return -EFAULT;
4148 kbuf[MAX_SLABINFO_WRITE] = '\0';
4149
4150 tmp = strchr(kbuf, ' ');
4151 if (!tmp)
4152 return -EINVAL;
4153 *tmp = '\0';
4154 tmp++;
4155 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4156 return -EINVAL;
4157
4158 /* Find the cache in the chain of caches. */
4159 mutex_lock(&slab_mutex);
4160 res = -EINVAL;
4161 list_for_each_entry(cachep, &slab_caches, list) {
4162 if (!strcmp(cachep->name, kbuf)) {
4163 if (limit < 1 || batchcount < 1 ||
4164 batchcount > limit || shared < 0) {
4165 res = 0;
4166 } else {
4167 res = do_tune_cpucache(cachep, limit,
4168 batchcount, shared,
4169 GFP_KERNEL);
4170 }
4171 break;
4172 }
4173 }
4174 mutex_unlock(&slab_mutex);
4175 if (res >= 0)
4176 res = count;
4177 return res;
4178 }
4179
4180 #ifdef CONFIG_DEBUG_SLAB_LEAK
4181
4182 static void *leaks_start(struct seq_file *m, loff_t *pos)
4183 {
4184 mutex_lock(&slab_mutex);
4185 return seq_list_start(&slab_caches, *pos);
4186 }
4187
4188 static inline int add_caller(unsigned long *n, unsigned long v)
4189 {
4190 unsigned long *p;
4191 int l;
4192 if (!v)
4193 return 1;
4194 l = n[1];
4195 p = n + 2;
4196 while (l) {
4197 int i = l/2;
4198 unsigned long *q = p + 2 * i;
4199 if (*q == v) {
4200 q[1]++;
4201 return 1;
4202 }
4203 if (*q > v) {
4204 l = i;
4205 } else {
4206 p = q + 2;
4207 l -= i + 1;
4208 }
4209 }
4210 if (++n[1] == n[0])
4211 return 0;
4212 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4213 p[0] = v;
4214 p[1] = 1;
4215 return 1;
4216 }
4217
4218 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4219 struct page *page)
4220 {
4221 void *p;
4222 int i, j;
4223
4224 if (n[0] == n[1])
4225 return;
4226 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4227 bool active = true;
4228
4229 for (j = page->active; j < c->num; j++) {
4230 /* Skip freed item */
4231 if (get_free_obj(page, j) == i) {
4232 active = false;
4233 break;
4234 }
4235 }
4236 if (!active)
4237 continue;
4238
4239 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4240 return;
4241 }
4242 }
4243
4244 static void show_symbol(struct seq_file *m, unsigned long address)
4245 {
4246 #ifdef CONFIG_KALLSYMS
4247 unsigned long offset, size;
4248 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4249
4250 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4251 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4252 if (modname[0])
4253 seq_printf(m, " [%s]", modname);
4254 return;
4255 }
4256 #endif
4257 seq_printf(m, "%p", (void *)address);
4258 }
4259
4260 static int leaks_show(struct seq_file *m, void *p)
4261 {
4262 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4263 struct page *page;
4264 struct kmem_cache_node *n;
4265 const char *name;
4266 unsigned long *x = m->private;
4267 int node;
4268 int i;
4269
4270 if (!(cachep->flags & SLAB_STORE_USER))
4271 return 0;
4272 if (!(cachep->flags & SLAB_RED_ZONE))
4273 return 0;
4274
4275 /* OK, we can do it */
4276
4277 x[1] = 0;
4278
4279 for_each_online_node(node) {
4280 n = cachep->node[node];
4281 if (!n)
4282 continue;
4283
4284 check_irq_on();
4285 spin_lock_irq(&n->list_lock);
4286
4287 list_for_each_entry(page, &n->slabs_full, lru)
4288 handle_slab(x, cachep, page);
4289 list_for_each_entry(page, &n->slabs_partial, lru)
4290 handle_slab(x, cachep, page);
4291 spin_unlock_irq(&n->list_lock);
4292 }
4293 name = cachep->name;
4294 if (x[0] == x[1]) {
4295 /* Increase the buffer size */
4296 mutex_unlock(&slab_mutex);
4297 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4298 if (!m->private) {
4299 /* Too bad, we are really out */
4300 m->private = x;
4301 mutex_lock(&slab_mutex);
4302 return -ENOMEM;
4303 }
4304 *(unsigned long *)m->private = x[0] * 2;
4305 kfree(x);
4306 mutex_lock(&slab_mutex);
4307 /* Now make sure this entry will be retried */
4308 m->count = m->size;
4309 return 0;
4310 }
4311 for (i = 0; i < x[1]; i++) {
4312 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4313 show_symbol(m, x[2*i+2]);
4314 seq_putc(m, '\n');
4315 }
4316
4317 return 0;
4318 }
4319
4320 static const struct seq_operations slabstats_op = {
4321 .start = leaks_start,
4322 .next = slab_next,
4323 .stop = slab_stop,
4324 .show = leaks_show,
4325 };
4326
4327 static int slabstats_open(struct inode *inode, struct file *file)
4328 {
4329 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4330 int ret = -ENOMEM;
4331 if (n) {
4332 ret = seq_open(file, &slabstats_op);
4333 if (!ret) {
4334 struct seq_file *m = file->private_data;
4335 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4336 m->private = n;
4337 n = NULL;
4338 }
4339 kfree(n);
4340 }
4341 return ret;
4342 }
4343
4344 static const struct file_operations proc_slabstats_operations = {
4345 .open = slabstats_open,
4346 .read = seq_read,
4347 .llseek = seq_lseek,
4348 .release = seq_release_private,
4349 };
4350 #endif
4351
4352 static int __init slab_proc_init(void)
4353 {
4354 #ifdef CONFIG_DEBUG_SLAB_LEAK
4355 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4356 #endif
4357 return 0;
4358 }
4359 module_init(slab_proc_init);
4360 #endif
4361
4362 /**
4363 * ksize - get the actual amount of memory allocated for a given object
4364 * @objp: Pointer to the object
4365 *
4366 * kmalloc may internally round up allocations and return more memory
4367 * than requested. ksize() can be used to determine the actual amount of
4368 * memory allocated. The caller may use this additional memory, even though
4369 * a smaller amount of memory was initially specified with the kmalloc call.
4370 * The caller must guarantee that objp points to a valid object previously
4371 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4372 * must not be freed during the duration of the call.
4373 */
4374 size_t ksize(const void *objp)
4375 {
4376 BUG_ON(!objp);
4377 if (unlikely(objp == ZERO_SIZE_PTR))
4378 return 0;
4379
4380 return virt_to_cache(objp)->object_size;
4381 }
4382 EXPORT_SYMBOL(ksize);