3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
131 #define FORCED_DEBUG 1
135 #define FORCED_DEBUG 0
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
142 #ifndef cache_line_size
143 #define cache_line_size() L1_CACHE_BYTES
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
159 #ifndef ARCH_SLAB_MINALIGN
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
167 #define ARCH_SLAB_MINALIGN 0
170 #ifndef ARCH_KMALLOC_FLAGS
171 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
174 /* Legal flag mask for kmem_cache_create(). */
176 # define CREATE_MASK (SLAB_RED_ZONE | \
177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
192 * Bufctl's are used for linking objs within a slab
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 typedef unsigned int kmem_bufctl_t
;
209 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
211 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 struct list_head list
;
223 unsigned long colouroff
;
224 void *s_mem
; /* including colour offset */
225 unsigned int inuse
; /* num of objs active in slab */
227 unsigned short nodeid
;
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
244 * We assume struct slab_rcu can overlay struct slab when destroying.
247 struct rcu_head head
;
248 struct kmem_cache
*cachep
;
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
260 * The limit is stored in the per-cpu structure to reduce the data cache
267 unsigned int batchcount
;
268 unsigned int touched
;
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
274 * [0] is for gcc 2.95. It should really be [].
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
282 #define BOOT_CPUCACHE_ENTRIES 1
283 struct arraycache_init
{
284 struct array_cache cache
;
285 void *entries
[BOOT_CPUCACHE_ENTRIES
];
289 * The slab lists for all objects.
292 struct list_head slabs_partial
; /* partial list first, better asm code */
293 struct list_head slabs_full
;
294 struct list_head slabs_free
;
295 unsigned long free_objects
;
296 unsigned int free_limit
;
297 unsigned int colour_next
; /* Per-node cache coloring */
298 spinlock_t list_lock
;
299 struct array_cache
*shared
; /* shared per node */
300 struct array_cache
**alien
; /* on other nodes */
301 unsigned long next_reap
; /* updated without locking */
302 int free_touched
; /* updated without locking */
306 * Need this for bootstrapping a per node allocator.
308 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
309 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
310 #define CACHE_CACHE 0
312 #define SIZE_L3 (1 + MAX_NUMNODES)
314 static int drain_freelist(struct kmem_cache
*cache
,
315 struct kmem_list3
*l3
, int tofree
);
316 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
318 static int enable_cpucache(struct kmem_cache
*cachep
);
319 static void cache_reap(struct work_struct
*unused
);
322 * This function must be completely optimized away if a constant is passed to
323 * it. Mostly the same as what is in linux/slab.h except it returns an index.
325 static __always_inline
int index_of(const size_t size
)
327 extern void __bad_size(void);
329 if (__builtin_constant_p(size
)) {
337 #include "linux/kmalloc_sizes.h"
345 static int slab_early_init
= 1;
347 #define INDEX_AC index_of(sizeof(struct arraycache_init))
348 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
350 static void kmem_list3_init(struct kmem_list3
*parent
)
352 INIT_LIST_HEAD(&parent
->slabs_full
);
353 INIT_LIST_HEAD(&parent
->slabs_partial
);
354 INIT_LIST_HEAD(&parent
->slabs_free
);
355 parent
->shared
= NULL
;
356 parent
->alien
= NULL
;
357 parent
->colour_next
= 0;
358 spin_lock_init(&parent
->list_lock
);
359 parent
->free_objects
= 0;
360 parent
->free_touched
= 0;
363 #define MAKE_LIST(cachep, listp, slab, nodeid) \
365 INIT_LIST_HEAD(listp); \
366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
369 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
383 /* 1) per-cpu data, touched during every alloc/free */
384 struct array_cache
*array
[NR_CPUS
];
385 /* 2) Cache tunables. Protected by cache_chain_mutex */
386 unsigned int batchcount
;
390 unsigned int buffer_size
;
391 u32 reciprocal_buffer_size
;
392 /* 3) touched by every alloc & free from the backend */
394 unsigned int flags
; /* constant flags */
395 unsigned int num
; /* # of objs per slab */
397 /* 4) cache_grow/shrink */
398 /* order of pgs per slab (2^n) */
399 unsigned int gfporder
;
401 /* force GFP flags, e.g. GFP_DMA */
404 size_t colour
; /* cache colouring range */
405 unsigned int colour_off
; /* colour offset */
406 struct kmem_cache
*slabp_cache
;
407 unsigned int slab_size
;
408 unsigned int dflags
; /* dynamic flags */
410 /* constructor func */
411 void (*ctor
) (void *, struct kmem_cache
*, unsigned long);
413 /* 5) cache creation/removal */
415 struct list_head next
;
419 unsigned long num_active
;
420 unsigned long num_allocations
;
421 unsigned long high_mark
;
423 unsigned long reaped
;
424 unsigned long errors
;
425 unsigned long max_freeable
;
426 unsigned long node_allocs
;
427 unsigned long node_frees
;
428 unsigned long node_overflow
;
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
445 * We put nodelists[] at the end of kmem_cache, because we want to size
446 * this array to nr_node_ids slots instead of MAX_NUMNODES
447 * (see kmem_cache_init())
448 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
449 * is statically defined, so we reserve the max number of nodes.
451 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
453 * Do not add fields after nodelists[]
457 #define CFLGS_OFF_SLAB (0x80000000UL)
458 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
460 #define BATCHREFILL_LIMIT 16
462 * Optimization question: fewer reaps means less probability for unnessary
463 * cpucache drain/refill cycles.
465 * OTOH the cpuarrays can contain lots of objects,
466 * which could lock up otherwise freeable slabs.
468 #define REAPTIMEOUT_CPUC (2*HZ)
469 #define REAPTIMEOUT_LIST3 (4*HZ)
472 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
473 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
474 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
475 #define STATS_INC_GROWN(x) ((x)->grown++)
476 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
477 #define STATS_SET_HIGH(x) \
479 if ((x)->num_active > (x)->high_mark) \
480 (x)->high_mark = (x)->num_active; \
482 #define STATS_INC_ERR(x) ((x)->errors++)
483 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
484 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
485 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
486 #define STATS_SET_FREEABLE(x, i) \
488 if ((x)->max_freeable < i) \
489 (x)->max_freeable = i; \
491 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
492 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
493 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
494 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
496 #define STATS_INC_ACTIVE(x) do { } while (0)
497 #define STATS_DEC_ACTIVE(x) do { } while (0)
498 #define STATS_INC_ALLOCED(x) do { } while (0)
499 #define STATS_INC_GROWN(x) do { } while (0)
500 #define STATS_ADD_REAPED(x,y) do { } while (0)
501 #define STATS_SET_HIGH(x) do { } while (0)
502 #define STATS_INC_ERR(x) do { } while (0)
503 #define STATS_INC_NODEALLOCS(x) do { } while (0)
504 #define STATS_INC_NODEFREES(x) do { } while (0)
505 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
506 #define STATS_SET_FREEABLE(x, i) do { } while (0)
507 #define STATS_INC_ALLOCHIT(x) do { } while (0)
508 #define STATS_INC_ALLOCMISS(x) do { } while (0)
509 #define STATS_INC_FREEHIT(x) do { } while (0)
510 #define STATS_INC_FREEMISS(x) do { } while (0)
516 * memory layout of objects:
518 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
519 * the end of an object is aligned with the end of the real
520 * allocation. Catches writes behind the end of the allocation.
521 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
523 * cachep->obj_offset: The real object.
524 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
525 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
526 * [BYTES_PER_WORD long]
528 static int obj_offset(struct kmem_cache
*cachep
)
530 return cachep
->obj_offset
;
533 static int obj_size(struct kmem_cache
*cachep
)
535 return cachep
->obj_size
;
538 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
540 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
541 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
542 sizeof(unsigned long long));
545 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
547 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
548 if (cachep
->flags
& SLAB_STORE_USER
)
549 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
550 sizeof(unsigned long long) -
552 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
553 sizeof(unsigned long long));
556 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
558 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
559 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
564 #define obj_offset(x) 0
565 #define obj_size(cachep) (cachep->buffer_size)
566 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
568 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
573 * Do not go above this order unless 0 objects fit into the slab.
575 #define BREAK_GFP_ORDER_HI 1
576 #define BREAK_GFP_ORDER_LO 0
577 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
580 * Functions for storing/retrieving the cachep and or slab from the page
581 * allocator. These are used to find the slab an obj belongs to. With kfree(),
582 * these are used to find the cache which an obj belongs to.
584 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
586 page
->lru
.next
= (struct list_head
*)cache
;
589 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
591 page
= compound_head(page
);
592 BUG_ON(!PageSlab(page
));
593 return (struct kmem_cache
*)page
->lru
.next
;
596 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
598 page
->lru
.prev
= (struct list_head
*)slab
;
601 static inline struct slab
*page_get_slab(struct page
*page
)
603 BUG_ON(!PageSlab(page
));
604 return (struct slab
*)page
->lru
.prev
;
607 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
609 struct page
*page
= virt_to_head_page(obj
);
610 return page_get_cache(page
);
613 static inline struct slab
*virt_to_slab(const void *obj
)
615 struct page
*page
= virt_to_head_page(obj
);
616 return page_get_slab(page
);
619 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
622 return slab
->s_mem
+ cache
->buffer_size
* idx
;
626 * We want to avoid an expensive divide : (offset / cache->buffer_size)
627 * Using the fact that buffer_size is a constant for a particular cache,
628 * we can replace (offset / cache->buffer_size) by
629 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
631 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
632 const struct slab
*slab
, void *obj
)
634 u32 offset
= (obj
- slab
->s_mem
);
635 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
639 * These are the default caches for kmalloc. Custom caches can have other sizes.
641 struct cache_sizes malloc_sizes
[] = {
642 #define CACHE(x) { .cs_size = (x) },
643 #include <linux/kmalloc_sizes.h>
647 EXPORT_SYMBOL(malloc_sizes
);
649 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
655 static struct cache_names __initdata cache_names
[] = {
656 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
657 #include <linux/kmalloc_sizes.h>
662 static struct arraycache_init initarray_cache __initdata
=
663 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
664 static struct arraycache_init initarray_generic
=
665 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
667 /* internal cache of cache description objs */
668 static struct kmem_cache cache_cache
= {
670 .limit
= BOOT_CPUCACHE_ENTRIES
,
672 .buffer_size
= sizeof(struct kmem_cache
),
673 .name
= "kmem_cache",
676 #define BAD_ALIEN_MAGIC 0x01020304ul
678 #ifdef CONFIG_LOCKDEP
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
691 static struct lock_class_key on_slab_l3_key
;
692 static struct lock_class_key on_slab_alc_key
;
694 static inline void init_lock_keys(void)
698 struct cache_sizes
*s
= malloc_sizes
;
700 while (s
->cs_size
!= ULONG_MAX
) {
702 struct array_cache
**alc
;
704 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
705 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
707 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
716 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
720 lockdep_set_class(&alc
[r
]->lock
,
728 static inline void init_lock_keys(void)
734 * 1. Guard access to the cache-chain.
735 * 2. Protect sanity of cpu_online_map against cpu hotplug events
737 static DEFINE_MUTEX(cache_chain_mutex
);
738 static struct list_head cache_chain
;
741 * chicken and egg problem: delay the per-cpu array allocation
742 * until the general caches are up.
752 * used by boot code to determine if it can use slab based allocator
754 int slab_is_available(void)
756 return g_cpucache_up
== FULL
;
759 static DEFINE_PER_CPU(struct delayed_work
, reap_work
);
761 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
763 return cachep
->array
[smp_processor_id()];
766 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
769 struct cache_sizes
*csizep
= malloc_sizes
;
772 /* This happens if someone tries to call
773 * kmem_cache_create(), or __kmalloc(), before
774 * the generic caches are initialized.
776 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
779 return ZERO_SIZE_PTR
;
781 while (size
> csizep
->cs_size
)
785 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
786 * has cs_{dma,}cachep==NULL. Thus no special case
787 * for large kmalloc calls required.
789 #ifdef CONFIG_ZONE_DMA
790 if (unlikely(gfpflags
& GFP_DMA
))
791 return csizep
->cs_dmacachep
;
793 return csizep
->cs_cachep
;
796 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
798 return __find_general_cachep(size
, gfpflags
);
801 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
803 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
807 * Calculate the number of objects and left-over bytes for a given buffer size.
809 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
810 size_t align
, int flags
, size_t *left_over
,
815 size_t slab_size
= PAGE_SIZE
<< gfporder
;
818 * The slab management structure can be either off the slab or
819 * on it. For the latter case, the memory allocated for a
823 * - One kmem_bufctl_t for each object
824 * - Padding to respect alignment of @align
825 * - @buffer_size bytes for each object
827 * If the slab management structure is off the slab, then the
828 * alignment will already be calculated into the size. Because
829 * the slabs are all pages aligned, the objects will be at the
830 * correct alignment when allocated.
832 if (flags
& CFLGS_OFF_SLAB
) {
834 nr_objs
= slab_size
/ buffer_size
;
836 if (nr_objs
> SLAB_LIMIT
)
837 nr_objs
= SLAB_LIMIT
;
840 * Ignore padding for the initial guess. The padding
841 * is at most @align-1 bytes, and @buffer_size is at
842 * least @align. In the worst case, this result will
843 * be one greater than the number of objects that fit
844 * into the memory allocation when taking the padding
847 nr_objs
= (slab_size
- sizeof(struct slab
)) /
848 (buffer_size
+ sizeof(kmem_bufctl_t
));
851 * This calculated number will be either the right
852 * amount, or one greater than what we want.
854 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
858 if (nr_objs
> SLAB_LIMIT
)
859 nr_objs
= SLAB_LIMIT
;
861 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
864 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
867 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
869 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
872 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
873 function
, cachep
->name
, msg
);
878 * By default on NUMA we use alien caches to stage the freeing of
879 * objects allocated from other nodes. This causes massive memory
880 * inefficiencies when using fake NUMA setup to split memory into a
881 * large number of small nodes, so it can be disabled on the command
885 static int use_alien_caches __read_mostly
= 1;
886 static int __init
noaliencache_setup(char *s
)
888 use_alien_caches
= 0;
891 __setup("noaliencache", noaliencache_setup
);
895 * Special reaping functions for NUMA systems called from cache_reap().
896 * These take care of doing round robin flushing of alien caches (containing
897 * objects freed on different nodes from which they were allocated) and the
898 * flushing of remote pcps by calling drain_node_pages.
900 static DEFINE_PER_CPU(unsigned long, reap_node
);
902 static void init_reap_node(int cpu
)
906 node
= next_node(cpu_to_node(cpu
), node_online_map
);
907 if (node
== MAX_NUMNODES
)
908 node
= first_node(node_online_map
);
910 per_cpu(reap_node
, cpu
) = node
;
913 static void next_reap_node(void)
915 int node
= __get_cpu_var(reap_node
);
917 node
= next_node(node
, node_online_map
);
918 if (unlikely(node
>= MAX_NUMNODES
))
919 node
= first_node(node_online_map
);
920 __get_cpu_var(reap_node
) = node
;
924 #define init_reap_node(cpu) do { } while (0)
925 #define next_reap_node(void) do { } while (0)
929 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
930 * via the workqueue/eventd.
931 * Add the CPU number into the expiration time to minimize the possibility of
932 * the CPUs getting into lockstep and contending for the global cache chain
935 static void __cpuinit
start_cpu_timer(int cpu
)
937 struct delayed_work
*reap_work
= &per_cpu(reap_work
, cpu
);
940 * When this gets called from do_initcalls via cpucache_init(),
941 * init_workqueues() has already run, so keventd will be setup
944 if (keventd_up() && reap_work
->work
.func
== NULL
) {
946 INIT_DELAYED_WORK(reap_work
, cache_reap
);
947 schedule_delayed_work_on(cpu
, reap_work
,
948 __round_jiffies_relative(HZ
, cpu
));
952 static struct array_cache
*alloc_arraycache(int node
, int entries
,
955 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
956 struct array_cache
*nc
= NULL
;
958 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
962 nc
->batchcount
= batchcount
;
964 spin_lock_init(&nc
->lock
);
970 * Transfer objects in one arraycache to another.
971 * Locking must be handled by the caller.
973 * Return the number of entries transferred.
975 static int transfer_objects(struct array_cache
*to
,
976 struct array_cache
*from
, unsigned int max
)
978 /* Figure out how many entries to transfer */
979 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
984 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
995 #define drain_alien_cache(cachep, alien) do { } while (0)
996 #define reap_alien(cachep, l3) do { } while (0)
998 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
1000 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1003 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1007 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1012 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1018 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1019 gfp_t flags
, int nodeid
)
1024 #else /* CONFIG_NUMA */
1026 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1027 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1029 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
1031 struct array_cache
**ac_ptr
;
1032 int memsize
= sizeof(void *) * nr_node_ids
;
1037 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1040 if (i
== node
|| !node_online(i
)) {
1044 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
1046 for (i
--; i
<= 0; i
--)
1056 static void free_alien_cache(struct array_cache
**ac_ptr
)
1067 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1068 struct array_cache
*ac
, int node
)
1070 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1073 spin_lock(&rl3
->list_lock
);
1075 * Stuff objects into the remote nodes shared array first.
1076 * That way we could avoid the overhead of putting the objects
1077 * into the free lists and getting them back later.
1080 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1082 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1084 spin_unlock(&rl3
->list_lock
);
1089 * Called from cache_reap() to regularly drain alien caches round robin.
1091 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1093 int node
= __get_cpu_var(reap_node
);
1096 struct array_cache
*ac
= l3
->alien
[node
];
1098 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1099 __drain_alien_cache(cachep
, ac
, node
);
1100 spin_unlock_irq(&ac
->lock
);
1105 static void drain_alien_cache(struct kmem_cache
*cachep
,
1106 struct array_cache
**alien
)
1109 struct array_cache
*ac
;
1110 unsigned long flags
;
1112 for_each_online_node(i
) {
1115 spin_lock_irqsave(&ac
->lock
, flags
);
1116 __drain_alien_cache(cachep
, ac
, i
);
1117 spin_unlock_irqrestore(&ac
->lock
, flags
);
1122 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1124 struct slab
*slabp
= virt_to_slab(objp
);
1125 int nodeid
= slabp
->nodeid
;
1126 struct kmem_list3
*l3
;
1127 struct array_cache
*alien
= NULL
;
1130 node
= numa_node_id();
1133 * Make sure we are not freeing a object from another node to the array
1134 * cache on this cpu.
1136 if (likely(slabp
->nodeid
== node
))
1139 l3
= cachep
->nodelists
[node
];
1140 STATS_INC_NODEFREES(cachep
);
1141 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1142 alien
= l3
->alien
[nodeid
];
1143 spin_lock(&alien
->lock
);
1144 if (unlikely(alien
->avail
== alien
->limit
)) {
1145 STATS_INC_ACOVERFLOW(cachep
);
1146 __drain_alien_cache(cachep
, alien
, nodeid
);
1148 alien
->entry
[alien
->avail
++] = objp
;
1149 spin_unlock(&alien
->lock
);
1151 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1152 free_block(cachep
, &objp
, 1, nodeid
);
1153 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1159 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1160 unsigned long action
, void *hcpu
)
1162 long cpu
= (long)hcpu
;
1163 struct kmem_cache
*cachep
;
1164 struct kmem_list3
*l3
= NULL
;
1165 int node
= cpu_to_node(cpu
);
1166 const int memsize
= sizeof(struct kmem_list3
);
1169 case CPU_LOCK_ACQUIRE
:
1170 mutex_lock(&cache_chain_mutex
);
1172 case CPU_UP_PREPARE
:
1173 case CPU_UP_PREPARE_FROZEN
:
1175 * We need to do this right in the beginning since
1176 * alloc_arraycache's are going to use this list.
1177 * kmalloc_node allows us to add the slab to the right
1178 * kmem_list3 and not this cpu's kmem_list3
1181 list_for_each_entry(cachep
, &cache_chain
, next
) {
1183 * Set up the size64 kmemlist for cpu before we can
1184 * begin anything. Make sure some other cpu on this
1185 * node has not already allocated this
1187 if (!cachep
->nodelists
[node
]) {
1188 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1191 kmem_list3_init(l3
);
1192 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1193 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1196 * The l3s don't come and go as CPUs come and
1197 * go. cache_chain_mutex is sufficient
1200 cachep
->nodelists
[node
] = l3
;
1203 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1204 cachep
->nodelists
[node
]->free_limit
=
1205 (1 + nr_cpus_node(node
)) *
1206 cachep
->batchcount
+ cachep
->num
;
1207 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1211 * Now we can go ahead with allocating the shared arrays and
1214 list_for_each_entry(cachep
, &cache_chain
, next
) {
1215 struct array_cache
*nc
;
1216 struct array_cache
*shared
= NULL
;
1217 struct array_cache
**alien
= NULL
;
1219 nc
= alloc_arraycache(node
, cachep
->limit
,
1220 cachep
->batchcount
);
1223 if (cachep
->shared
) {
1224 shared
= alloc_arraycache(node
,
1225 cachep
->shared
* cachep
->batchcount
,
1230 if (use_alien_caches
) {
1231 alien
= alloc_alien_cache(node
, cachep
->limit
);
1235 cachep
->array
[cpu
] = nc
;
1236 l3
= cachep
->nodelists
[node
];
1239 spin_lock_irq(&l3
->list_lock
);
1242 * We are serialised from CPU_DEAD or
1243 * CPU_UP_CANCELLED by the cpucontrol lock
1245 l3
->shared
= shared
;
1254 spin_unlock_irq(&l3
->list_lock
);
1256 free_alien_cache(alien
);
1260 case CPU_ONLINE_FROZEN
:
1261 start_cpu_timer(cpu
);
1263 #ifdef CONFIG_HOTPLUG_CPU
1264 case CPU_DOWN_PREPARE
:
1265 case CPU_DOWN_PREPARE_FROZEN
:
1267 * Shutdown cache reaper. Note that the cache_chain_mutex is
1268 * held so that if cache_reap() is invoked it cannot do
1269 * anything expensive but will only modify reap_work
1270 * and reschedule the timer.
1272 cancel_rearming_delayed_work(&per_cpu(reap_work
, cpu
));
1273 /* Now the cache_reaper is guaranteed to be not running. */
1274 per_cpu(reap_work
, cpu
).work
.func
= NULL
;
1276 case CPU_DOWN_FAILED
:
1277 case CPU_DOWN_FAILED_FROZEN
:
1278 start_cpu_timer(cpu
);
1281 case CPU_DEAD_FROZEN
:
1283 * Even if all the cpus of a node are down, we don't free the
1284 * kmem_list3 of any cache. This to avoid a race between
1285 * cpu_down, and a kmalloc allocation from another cpu for
1286 * memory from the node of the cpu going down. The list3
1287 * structure is usually allocated from kmem_cache_create() and
1288 * gets destroyed at kmem_cache_destroy().
1292 case CPU_UP_CANCELED
:
1293 case CPU_UP_CANCELED_FROZEN
:
1294 list_for_each_entry(cachep
, &cache_chain
, next
) {
1295 struct array_cache
*nc
;
1296 struct array_cache
*shared
;
1297 struct array_cache
**alien
;
1300 mask
= node_to_cpumask(node
);
1301 /* cpu is dead; no one can alloc from it. */
1302 nc
= cachep
->array
[cpu
];
1303 cachep
->array
[cpu
] = NULL
;
1304 l3
= cachep
->nodelists
[node
];
1307 goto free_array_cache
;
1309 spin_lock_irq(&l3
->list_lock
);
1311 /* Free limit for this kmem_list3 */
1312 l3
->free_limit
-= cachep
->batchcount
;
1314 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1316 if (!cpus_empty(mask
)) {
1317 spin_unlock_irq(&l3
->list_lock
);
1318 goto free_array_cache
;
1321 shared
= l3
->shared
;
1323 free_block(cachep
, shared
->entry
,
1324 shared
->avail
, node
);
1331 spin_unlock_irq(&l3
->list_lock
);
1335 drain_alien_cache(cachep
, alien
);
1336 free_alien_cache(alien
);
1342 * In the previous loop, all the objects were freed to
1343 * the respective cache's slabs, now we can go ahead and
1344 * shrink each nodelist to its limit.
1346 list_for_each_entry(cachep
, &cache_chain
, next
) {
1347 l3
= cachep
->nodelists
[node
];
1350 drain_freelist(cachep
, l3
, l3
->free_objects
);
1353 case CPU_LOCK_RELEASE
:
1354 mutex_unlock(&cache_chain_mutex
);
1362 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1363 &cpuup_callback
, NULL
, 0
1367 * swap the static kmem_list3 with kmalloced memory
1369 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1372 struct kmem_list3
*ptr
;
1374 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1377 local_irq_disable();
1378 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1380 * Do not assume that spinlocks can be initialized via memcpy:
1382 spin_lock_init(&ptr
->list_lock
);
1384 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1385 cachep
->nodelists
[nodeid
] = ptr
;
1390 * Initialisation. Called after the page allocator have been initialised and
1391 * before smp_init().
1393 void __init
kmem_cache_init(void)
1396 struct cache_sizes
*sizes
;
1397 struct cache_names
*names
;
1402 if (num_possible_nodes() == 1)
1403 use_alien_caches
= 0;
1405 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1406 kmem_list3_init(&initkmem_list3
[i
]);
1407 if (i
< MAX_NUMNODES
)
1408 cache_cache
.nodelists
[i
] = NULL
;
1412 * Fragmentation resistance on low memory - only use bigger
1413 * page orders on machines with more than 32MB of memory.
1415 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1416 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1418 /* Bootstrap is tricky, because several objects are allocated
1419 * from caches that do not exist yet:
1420 * 1) initialize the cache_cache cache: it contains the struct
1421 * kmem_cache structures of all caches, except cache_cache itself:
1422 * cache_cache is statically allocated.
1423 * Initially an __init data area is used for the head array and the
1424 * kmem_list3 structures, it's replaced with a kmalloc allocated
1425 * array at the end of the bootstrap.
1426 * 2) Create the first kmalloc cache.
1427 * The struct kmem_cache for the new cache is allocated normally.
1428 * An __init data area is used for the head array.
1429 * 3) Create the remaining kmalloc caches, with minimally sized
1431 * 4) Replace the __init data head arrays for cache_cache and the first
1432 * kmalloc cache with kmalloc allocated arrays.
1433 * 5) Replace the __init data for kmem_list3 for cache_cache and
1434 * the other cache's with kmalloc allocated memory.
1435 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1438 node
= numa_node_id();
1440 /* 1) create the cache_cache */
1441 INIT_LIST_HEAD(&cache_chain
);
1442 list_add(&cache_cache
.next
, &cache_chain
);
1443 cache_cache
.colour_off
= cache_line_size();
1444 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1445 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
];
1448 * struct kmem_cache size depends on nr_node_ids, which
1449 * can be less than MAX_NUMNODES.
1451 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1452 nr_node_ids
* sizeof(struct kmem_list3
*);
1454 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1456 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1458 cache_cache
.reciprocal_buffer_size
=
1459 reciprocal_value(cache_cache
.buffer_size
);
1461 for (order
= 0; order
< MAX_ORDER
; order
++) {
1462 cache_estimate(order
, cache_cache
.buffer_size
,
1463 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1464 if (cache_cache
.num
)
1467 BUG_ON(!cache_cache
.num
);
1468 cache_cache
.gfporder
= order
;
1469 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1470 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1471 sizeof(struct slab
), cache_line_size());
1473 /* 2+3) create the kmalloc caches */
1474 sizes
= malloc_sizes
;
1475 names
= cache_names
;
1478 * Initialize the caches that provide memory for the array cache and the
1479 * kmem_list3 structures first. Without this, further allocations will
1483 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1484 sizes
[INDEX_AC
].cs_size
,
1485 ARCH_KMALLOC_MINALIGN
,
1486 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1489 if (INDEX_AC
!= INDEX_L3
) {
1490 sizes
[INDEX_L3
].cs_cachep
=
1491 kmem_cache_create(names
[INDEX_L3
].name
,
1492 sizes
[INDEX_L3
].cs_size
,
1493 ARCH_KMALLOC_MINALIGN
,
1494 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1498 slab_early_init
= 0;
1500 while (sizes
->cs_size
!= ULONG_MAX
) {
1502 * For performance, all the general caches are L1 aligned.
1503 * This should be particularly beneficial on SMP boxes, as it
1504 * eliminates "false sharing".
1505 * Note for systems short on memory removing the alignment will
1506 * allow tighter packing of the smaller caches.
1508 if (!sizes
->cs_cachep
) {
1509 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1511 ARCH_KMALLOC_MINALIGN
,
1512 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1515 #ifdef CONFIG_ZONE_DMA
1516 sizes
->cs_dmacachep
= kmem_cache_create(
1519 ARCH_KMALLOC_MINALIGN
,
1520 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1527 /* 4) Replace the bootstrap head arrays */
1529 struct array_cache
*ptr
;
1531 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1533 local_irq_disable();
1534 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1535 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1536 sizeof(struct arraycache_init
));
1538 * Do not assume that spinlocks can be initialized via memcpy:
1540 spin_lock_init(&ptr
->lock
);
1542 cache_cache
.array
[smp_processor_id()] = ptr
;
1545 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1547 local_irq_disable();
1548 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1549 != &initarray_generic
.cache
);
1550 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1551 sizeof(struct arraycache_init
));
1553 * Do not assume that spinlocks can be initialized via memcpy:
1555 spin_lock_init(&ptr
->lock
);
1557 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1561 /* 5) Replace the bootstrap kmem_list3's */
1565 /* Replace the static kmem_list3 structures for the boot cpu */
1566 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
], node
);
1568 for_each_online_node(nid
) {
1569 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1570 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1572 if (INDEX_AC
!= INDEX_L3
) {
1573 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1574 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1579 /* 6) resize the head arrays to their final sizes */
1581 struct kmem_cache
*cachep
;
1582 mutex_lock(&cache_chain_mutex
);
1583 list_for_each_entry(cachep
, &cache_chain
, next
)
1584 if (enable_cpucache(cachep
))
1586 mutex_unlock(&cache_chain_mutex
);
1589 /* Annotate slab for lockdep -- annotate the malloc caches */
1594 g_cpucache_up
= FULL
;
1597 * Register a cpu startup notifier callback that initializes
1598 * cpu_cache_get for all new cpus
1600 register_cpu_notifier(&cpucache_notifier
);
1603 * The reap timers are started later, with a module init call: That part
1604 * of the kernel is not yet operational.
1608 static int __init
cpucache_init(void)
1613 * Register the timers that return unneeded pages to the page allocator
1615 for_each_online_cpu(cpu
)
1616 start_cpu_timer(cpu
);
1619 __initcall(cpucache_init
);
1622 * Interface to system's page allocator. No need to hold the cache-lock.
1624 * If we requested dmaable memory, we will get it. Even if we
1625 * did not request dmaable memory, we might get it, but that
1626 * would be relatively rare and ignorable.
1628 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1636 * Nommu uses slab's for process anonymous memory allocations, and thus
1637 * requires __GFP_COMP to properly refcount higher order allocations
1639 flags
|= __GFP_COMP
;
1642 flags
|= cachep
->gfpflags
;
1644 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1648 nr_pages
= (1 << cachep
->gfporder
);
1649 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1650 add_zone_page_state(page_zone(page
),
1651 NR_SLAB_RECLAIMABLE
, nr_pages
);
1653 add_zone_page_state(page_zone(page
),
1654 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1655 for (i
= 0; i
< nr_pages
; i
++)
1656 __SetPageSlab(page
+ i
);
1657 return page_address(page
);
1661 * Interface to system's page release.
1663 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1665 unsigned long i
= (1 << cachep
->gfporder
);
1666 struct page
*page
= virt_to_page(addr
);
1667 const unsigned long nr_freed
= i
;
1669 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1670 sub_zone_page_state(page_zone(page
),
1671 NR_SLAB_RECLAIMABLE
, nr_freed
);
1673 sub_zone_page_state(page_zone(page
),
1674 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1676 BUG_ON(!PageSlab(page
));
1677 __ClearPageSlab(page
);
1680 if (current
->reclaim_state
)
1681 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1682 free_pages((unsigned long)addr
, cachep
->gfporder
);
1685 static void kmem_rcu_free(struct rcu_head
*head
)
1687 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1688 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1690 kmem_freepages(cachep
, slab_rcu
->addr
);
1691 if (OFF_SLAB(cachep
))
1692 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1697 #ifdef CONFIG_DEBUG_PAGEALLOC
1698 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1699 unsigned long caller
)
1701 int size
= obj_size(cachep
);
1703 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1705 if (size
< 5 * sizeof(unsigned long))
1708 *addr
++ = 0x12345678;
1710 *addr
++ = smp_processor_id();
1711 size
-= 3 * sizeof(unsigned long);
1713 unsigned long *sptr
= &caller
;
1714 unsigned long svalue
;
1716 while (!kstack_end(sptr
)) {
1718 if (kernel_text_address(svalue
)) {
1720 size
-= sizeof(unsigned long);
1721 if (size
<= sizeof(unsigned long))
1727 *addr
++ = 0x87654321;
1731 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1733 int size
= obj_size(cachep
);
1734 addr
= &((char *)addr
)[obj_offset(cachep
)];
1736 memset(addr
, val
, size
);
1737 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1740 static void dump_line(char *data
, int offset
, int limit
)
1743 unsigned char error
= 0;
1746 printk(KERN_ERR
"%03x:", offset
);
1747 for (i
= 0; i
< limit
; i
++) {
1748 if (data
[offset
+ i
] != POISON_FREE
) {
1749 error
= data
[offset
+ i
];
1752 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1756 if (bad_count
== 1) {
1757 error
^= POISON_FREE
;
1758 if (!(error
& (error
- 1))) {
1759 printk(KERN_ERR
"Single bit error detected. Probably "
1762 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1765 printk(KERN_ERR
"Run a memory test tool.\n");
1774 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1779 if (cachep
->flags
& SLAB_RED_ZONE
) {
1780 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1781 *dbg_redzone1(cachep
, objp
),
1782 *dbg_redzone2(cachep
, objp
));
1785 if (cachep
->flags
& SLAB_STORE_USER
) {
1786 printk(KERN_ERR
"Last user: [<%p>]",
1787 *dbg_userword(cachep
, objp
));
1788 print_symbol("(%s)",
1789 (unsigned long)*dbg_userword(cachep
, objp
));
1792 realobj
= (char *)objp
+ obj_offset(cachep
);
1793 size
= obj_size(cachep
);
1794 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1797 if (i
+ limit
> size
)
1799 dump_line(realobj
, i
, limit
);
1803 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1809 realobj
= (char *)objp
+ obj_offset(cachep
);
1810 size
= obj_size(cachep
);
1812 for (i
= 0; i
< size
; i
++) {
1813 char exp
= POISON_FREE
;
1816 if (realobj
[i
] != exp
) {
1822 "Slab corruption: %s start=%p, len=%d\n",
1823 cachep
->name
, realobj
, size
);
1824 print_objinfo(cachep
, objp
, 0);
1826 /* Hexdump the affected line */
1829 if (i
+ limit
> size
)
1831 dump_line(realobj
, i
, limit
);
1834 /* Limit to 5 lines */
1840 /* Print some data about the neighboring objects, if they
1843 struct slab
*slabp
= virt_to_slab(objp
);
1846 objnr
= obj_to_index(cachep
, slabp
, objp
);
1848 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1849 realobj
= (char *)objp
+ obj_offset(cachep
);
1850 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1852 print_objinfo(cachep
, objp
, 2);
1854 if (objnr
+ 1 < cachep
->num
) {
1855 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1856 realobj
= (char *)objp
+ obj_offset(cachep
);
1857 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1859 print_objinfo(cachep
, objp
, 2);
1867 * slab_destroy_objs - destroy a slab and its objects
1868 * @cachep: cache pointer being destroyed
1869 * @slabp: slab pointer being destroyed
1871 * Call the registered destructor for each object in a slab that is being
1874 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1877 for (i
= 0; i
< cachep
->num
; i
++) {
1878 void *objp
= index_to_obj(cachep
, slabp
, i
);
1880 if (cachep
->flags
& SLAB_POISON
) {
1881 #ifdef CONFIG_DEBUG_PAGEALLOC
1882 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1884 kernel_map_pages(virt_to_page(objp
),
1885 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1887 check_poison_obj(cachep
, objp
);
1889 check_poison_obj(cachep
, objp
);
1892 if (cachep
->flags
& SLAB_RED_ZONE
) {
1893 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1894 slab_error(cachep
, "start of a freed object "
1896 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1897 slab_error(cachep
, "end of a freed object "
1903 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1909 * slab_destroy - destroy and release all objects in a slab
1910 * @cachep: cache pointer being destroyed
1911 * @slabp: slab pointer being destroyed
1913 * Destroy all the objs in a slab, and release the mem back to the system.
1914 * Before calling the slab must have been unlinked from the cache. The
1915 * cache-lock is not held/needed.
1917 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1919 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1921 slab_destroy_objs(cachep
, slabp
);
1922 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1923 struct slab_rcu
*slab_rcu
;
1925 slab_rcu
= (struct slab_rcu
*)slabp
;
1926 slab_rcu
->cachep
= cachep
;
1927 slab_rcu
->addr
= addr
;
1928 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1930 kmem_freepages(cachep
, addr
);
1931 if (OFF_SLAB(cachep
))
1932 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1937 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1938 * size of kmem_list3.
1940 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1944 for_each_online_node(node
) {
1945 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1946 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1948 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1952 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1955 struct kmem_list3
*l3
;
1957 for_each_online_cpu(i
)
1958 kfree(cachep
->array
[i
]);
1960 /* NUMA: free the list3 structures */
1961 for_each_online_node(i
) {
1962 l3
= cachep
->nodelists
[i
];
1965 free_alien_cache(l3
->alien
);
1969 kmem_cache_free(&cache_cache
, cachep
);
1974 * calculate_slab_order - calculate size (page order) of slabs
1975 * @cachep: pointer to the cache that is being created
1976 * @size: size of objects to be created in this cache.
1977 * @align: required alignment for the objects.
1978 * @flags: slab allocation flags
1980 * Also calculates the number of objects per slab.
1982 * This could be made much more intelligent. For now, try to avoid using
1983 * high order pages for slabs. When the gfp() functions are more friendly
1984 * towards high-order requests, this should be changed.
1986 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1987 size_t size
, size_t align
, unsigned long flags
)
1989 unsigned long offslab_limit
;
1990 size_t left_over
= 0;
1993 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
1997 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2001 if (flags
& CFLGS_OFF_SLAB
) {
2003 * Max number of objs-per-slab for caches which
2004 * use off-slab slabs. Needed to avoid a possible
2005 * looping condition in cache_grow().
2007 offslab_limit
= size
- sizeof(struct slab
);
2008 offslab_limit
/= sizeof(kmem_bufctl_t
);
2010 if (num
> offslab_limit
)
2014 /* Found something acceptable - save it away */
2016 cachep
->gfporder
= gfporder
;
2017 left_over
= remainder
;
2020 * A VFS-reclaimable slab tends to have most allocations
2021 * as GFP_NOFS and we really don't want to have to be allocating
2022 * higher-order pages when we are unable to shrink dcache.
2024 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2028 * Large number of objects is good, but very large slabs are
2029 * currently bad for the gfp()s.
2031 if (gfporder
>= slab_break_gfp_order
)
2035 * Acceptable internal fragmentation?
2037 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2043 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
)
2045 if (g_cpucache_up
== FULL
)
2046 return enable_cpucache(cachep
);
2048 if (g_cpucache_up
== NONE
) {
2050 * Note: the first kmem_cache_create must create the cache
2051 * that's used by kmalloc(24), otherwise the creation of
2052 * further caches will BUG().
2054 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2057 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2058 * the first cache, then we need to set up all its list3s,
2059 * otherwise the creation of further caches will BUG().
2061 set_up_list3s(cachep
, SIZE_AC
);
2062 if (INDEX_AC
== INDEX_L3
)
2063 g_cpucache_up
= PARTIAL_L3
;
2065 g_cpucache_up
= PARTIAL_AC
;
2067 cachep
->array
[smp_processor_id()] =
2068 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
2070 if (g_cpucache_up
== PARTIAL_AC
) {
2071 set_up_list3s(cachep
, SIZE_L3
);
2072 g_cpucache_up
= PARTIAL_L3
;
2075 for_each_online_node(node
) {
2076 cachep
->nodelists
[node
] =
2077 kmalloc_node(sizeof(struct kmem_list3
),
2079 BUG_ON(!cachep
->nodelists
[node
]);
2080 kmem_list3_init(cachep
->nodelists
[node
]);
2084 cachep
->nodelists
[numa_node_id()]->next_reap
=
2085 jiffies
+ REAPTIMEOUT_LIST3
+
2086 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2088 cpu_cache_get(cachep
)->avail
= 0;
2089 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2090 cpu_cache_get(cachep
)->batchcount
= 1;
2091 cpu_cache_get(cachep
)->touched
= 0;
2092 cachep
->batchcount
= 1;
2093 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2098 * kmem_cache_create - Create a cache.
2099 * @name: A string which is used in /proc/slabinfo to identify this cache.
2100 * @size: The size of objects to be created in this cache.
2101 * @align: The required alignment for the objects.
2102 * @flags: SLAB flags
2103 * @ctor: A constructor for the objects.
2105 * Returns a ptr to the cache on success, NULL on failure.
2106 * Cannot be called within a int, but can be interrupted.
2107 * The @ctor is run when new pages are allocated by the cache.
2109 * @name must be valid until the cache is destroyed. This implies that
2110 * the module calling this has to destroy the cache before getting unloaded.
2114 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2115 * to catch references to uninitialised memory.
2117 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2118 * for buffer overruns.
2120 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2121 * cacheline. This can be beneficial if you're counting cycles as closely
2125 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2126 unsigned long flags
,
2127 void (*ctor
)(void*, struct kmem_cache
*, unsigned long))
2129 size_t left_over
, slab_size
, ralign
;
2130 struct kmem_cache
*cachep
= NULL
, *pc
;
2133 * Sanity checks... these are all serious usage bugs.
2135 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2136 size
> KMALLOC_MAX_SIZE
) {
2137 printk(KERN_ERR
"%s: Early error in slab %s\n", __FUNCTION__
,
2143 * We use cache_chain_mutex to ensure a consistent view of
2144 * cpu_online_map as well. Please see cpuup_callback
2146 mutex_lock(&cache_chain_mutex
);
2148 list_for_each_entry(pc
, &cache_chain
, next
) {
2153 * This happens when the module gets unloaded and doesn't
2154 * destroy its slab cache and no-one else reuses the vmalloc
2155 * area of the module. Print a warning.
2157 res
= probe_kernel_address(pc
->name
, tmp
);
2160 "SLAB: cache with size %d has lost its name\n",
2165 if (!strcmp(pc
->name
, name
)) {
2167 "kmem_cache_create: duplicate cache %s\n", name
);
2174 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2177 * Enable redzoning and last user accounting, except for caches with
2178 * large objects, if the increased size would increase the object size
2179 * above the next power of two: caches with object sizes just above a
2180 * power of two have a significant amount of internal fragmentation.
2182 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2183 2 * sizeof(unsigned long long)))
2184 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2185 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2186 flags
|= SLAB_POISON
;
2188 if (flags
& SLAB_DESTROY_BY_RCU
)
2189 BUG_ON(flags
& SLAB_POISON
);
2192 * Always checks flags, a caller might be expecting debug support which
2195 BUG_ON(flags
& ~CREATE_MASK
);
2198 * Check that size is in terms of words. This is needed to avoid
2199 * unaligned accesses for some archs when redzoning is used, and makes
2200 * sure any on-slab bufctl's are also correctly aligned.
2202 if (size
& (BYTES_PER_WORD
- 1)) {
2203 size
+= (BYTES_PER_WORD
- 1);
2204 size
&= ~(BYTES_PER_WORD
- 1);
2207 /* calculate the final buffer alignment: */
2209 /* 1) arch recommendation: can be overridden for debug */
2210 if (flags
& SLAB_HWCACHE_ALIGN
) {
2212 * Default alignment: as specified by the arch code. Except if
2213 * an object is really small, then squeeze multiple objects into
2216 ralign
= cache_line_size();
2217 while (size
<= ralign
/ 2)
2220 ralign
= BYTES_PER_WORD
;
2224 * Redzoning and user store require word alignment or possibly larger.
2225 * Note this will be overridden by architecture or caller mandated
2226 * alignment if either is greater than BYTES_PER_WORD.
2228 if (flags
& SLAB_STORE_USER
)
2229 ralign
= BYTES_PER_WORD
;
2231 if (flags
& SLAB_RED_ZONE
) {
2232 ralign
= REDZONE_ALIGN
;
2233 /* If redzoning, ensure that the second redzone is suitably
2234 * aligned, by adjusting the object size accordingly. */
2235 size
+= REDZONE_ALIGN
- 1;
2236 size
&= ~(REDZONE_ALIGN
- 1);
2239 /* 2) arch mandated alignment */
2240 if (ralign
< ARCH_SLAB_MINALIGN
) {
2241 ralign
= ARCH_SLAB_MINALIGN
;
2243 /* 3) caller mandated alignment */
2244 if (ralign
< align
) {
2247 /* disable debug if necessary */
2248 if (ralign
> __alignof__(unsigned long long))
2249 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2255 /* Get cache's description obj. */
2256 cachep
= kmem_cache_zalloc(&cache_cache
, GFP_KERNEL
);
2261 cachep
->obj_size
= size
;
2264 * Both debugging options require word-alignment which is calculated
2267 if (flags
& SLAB_RED_ZONE
) {
2268 /* add space for red zone words */
2269 cachep
->obj_offset
+= sizeof(unsigned long long);
2270 size
+= 2 * sizeof(unsigned long long);
2272 if (flags
& SLAB_STORE_USER
) {
2273 /* user store requires one word storage behind the end of
2274 * the real object. But if the second red zone needs to be
2275 * aligned to 64 bits, we must allow that much space.
2277 if (flags
& SLAB_RED_ZONE
)
2278 size
+= REDZONE_ALIGN
;
2280 size
+= BYTES_PER_WORD
;
2282 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2283 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2284 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2285 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2292 * Determine if the slab management is 'on' or 'off' slab.
2293 * (bootstrapping cannot cope with offslab caches so don't do
2296 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2298 * Size is large, assume best to place the slab management obj
2299 * off-slab (should allow better packing of objs).
2301 flags
|= CFLGS_OFF_SLAB
;
2303 size
= ALIGN(size
, align
);
2305 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2309 "kmem_cache_create: couldn't create cache %s.\n", name
);
2310 kmem_cache_free(&cache_cache
, cachep
);
2314 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2315 + sizeof(struct slab
), align
);
2318 * If the slab has been placed off-slab, and we have enough space then
2319 * move it on-slab. This is at the expense of any extra colouring.
2321 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2322 flags
&= ~CFLGS_OFF_SLAB
;
2323 left_over
-= slab_size
;
2326 if (flags
& CFLGS_OFF_SLAB
) {
2327 /* really off slab. No need for manual alignment */
2329 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2332 cachep
->colour_off
= cache_line_size();
2333 /* Offset must be a multiple of the alignment. */
2334 if (cachep
->colour_off
< align
)
2335 cachep
->colour_off
= align
;
2336 cachep
->colour
= left_over
/ cachep
->colour_off
;
2337 cachep
->slab_size
= slab_size
;
2338 cachep
->flags
= flags
;
2339 cachep
->gfpflags
= 0;
2340 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2341 cachep
->gfpflags
|= GFP_DMA
;
2342 cachep
->buffer_size
= size
;
2343 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2345 if (flags
& CFLGS_OFF_SLAB
) {
2346 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2348 * This is a possibility for one of the malloc_sizes caches.
2349 * But since we go off slab only for object size greater than
2350 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2351 * this should not happen at all.
2352 * But leave a BUG_ON for some lucky dude.
2354 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2356 cachep
->ctor
= ctor
;
2357 cachep
->name
= name
;
2359 if (setup_cpu_cache(cachep
)) {
2360 __kmem_cache_destroy(cachep
);
2365 /* cache setup completed, link it into the list */
2366 list_add(&cachep
->next
, &cache_chain
);
2368 if (!cachep
&& (flags
& SLAB_PANIC
))
2369 panic("kmem_cache_create(): failed to create slab `%s'\n",
2371 mutex_unlock(&cache_chain_mutex
);
2374 EXPORT_SYMBOL(kmem_cache_create
);
2377 static void check_irq_off(void)
2379 BUG_ON(!irqs_disabled());
2382 static void check_irq_on(void)
2384 BUG_ON(irqs_disabled());
2387 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2391 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2395 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2399 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2404 #define check_irq_off() do { } while(0)
2405 #define check_irq_on() do { } while(0)
2406 #define check_spinlock_acquired(x) do { } while(0)
2407 #define check_spinlock_acquired_node(x, y) do { } while(0)
2410 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2411 struct array_cache
*ac
,
2412 int force
, int node
);
2414 static void do_drain(void *arg
)
2416 struct kmem_cache
*cachep
= arg
;
2417 struct array_cache
*ac
;
2418 int node
= numa_node_id();
2421 ac
= cpu_cache_get(cachep
);
2422 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2423 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2424 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2428 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2430 struct kmem_list3
*l3
;
2433 on_each_cpu(do_drain
, cachep
, 1, 1);
2435 for_each_online_node(node
) {
2436 l3
= cachep
->nodelists
[node
];
2437 if (l3
&& l3
->alien
)
2438 drain_alien_cache(cachep
, l3
->alien
);
2441 for_each_online_node(node
) {
2442 l3
= cachep
->nodelists
[node
];
2444 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2449 * Remove slabs from the list of free slabs.
2450 * Specify the number of slabs to drain in tofree.
2452 * Returns the actual number of slabs released.
2454 static int drain_freelist(struct kmem_cache
*cache
,
2455 struct kmem_list3
*l3
, int tofree
)
2457 struct list_head
*p
;
2462 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2464 spin_lock_irq(&l3
->list_lock
);
2465 p
= l3
->slabs_free
.prev
;
2466 if (p
== &l3
->slabs_free
) {
2467 spin_unlock_irq(&l3
->list_lock
);
2471 slabp
= list_entry(p
, struct slab
, list
);
2473 BUG_ON(slabp
->inuse
);
2475 list_del(&slabp
->list
);
2477 * Safe to drop the lock. The slab is no longer linked
2480 l3
->free_objects
-= cache
->num
;
2481 spin_unlock_irq(&l3
->list_lock
);
2482 slab_destroy(cache
, slabp
);
2489 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2490 static int __cache_shrink(struct kmem_cache
*cachep
)
2493 struct kmem_list3
*l3
;
2495 drain_cpu_caches(cachep
);
2498 for_each_online_node(i
) {
2499 l3
= cachep
->nodelists
[i
];
2503 drain_freelist(cachep
, l3
, l3
->free_objects
);
2505 ret
+= !list_empty(&l3
->slabs_full
) ||
2506 !list_empty(&l3
->slabs_partial
);
2508 return (ret
? 1 : 0);
2512 * kmem_cache_shrink - Shrink a cache.
2513 * @cachep: The cache to shrink.
2515 * Releases as many slabs as possible for a cache.
2516 * To help debugging, a zero exit status indicates all slabs were released.
2518 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2521 BUG_ON(!cachep
|| in_interrupt());
2523 mutex_lock(&cache_chain_mutex
);
2524 ret
= __cache_shrink(cachep
);
2525 mutex_unlock(&cache_chain_mutex
);
2528 EXPORT_SYMBOL(kmem_cache_shrink
);
2531 * kmem_cache_destroy - delete a cache
2532 * @cachep: the cache to destroy
2534 * Remove a &struct kmem_cache object from the slab cache.
2536 * It is expected this function will be called by a module when it is
2537 * unloaded. This will remove the cache completely, and avoid a duplicate
2538 * cache being allocated each time a module is loaded and unloaded, if the
2539 * module doesn't have persistent in-kernel storage across loads and unloads.
2541 * The cache must be empty before calling this function.
2543 * The caller must guarantee that noone will allocate memory from the cache
2544 * during the kmem_cache_destroy().
2546 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2548 BUG_ON(!cachep
|| in_interrupt());
2550 /* Find the cache in the chain of caches. */
2551 mutex_lock(&cache_chain_mutex
);
2553 * the chain is never empty, cache_cache is never destroyed
2555 list_del(&cachep
->next
);
2556 if (__cache_shrink(cachep
)) {
2557 slab_error(cachep
, "Can't free all objects");
2558 list_add(&cachep
->next
, &cache_chain
);
2559 mutex_unlock(&cache_chain_mutex
);
2563 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2566 __kmem_cache_destroy(cachep
);
2567 mutex_unlock(&cache_chain_mutex
);
2569 EXPORT_SYMBOL(kmem_cache_destroy
);
2572 * Get the memory for a slab management obj.
2573 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2574 * always come from malloc_sizes caches. The slab descriptor cannot
2575 * come from the same cache which is getting created because,
2576 * when we are searching for an appropriate cache for these
2577 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2578 * If we are creating a malloc_sizes cache here it would not be visible to
2579 * kmem_find_general_cachep till the initialization is complete.
2580 * Hence we cannot have slabp_cache same as the original cache.
2582 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2583 int colour_off
, gfp_t local_flags
,
2588 if (OFF_SLAB(cachep
)) {
2589 /* Slab management obj is off-slab. */
2590 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2591 local_flags
& ~GFP_THISNODE
, nodeid
);
2595 slabp
= objp
+ colour_off
;
2596 colour_off
+= cachep
->slab_size
;
2599 slabp
->colouroff
= colour_off
;
2600 slabp
->s_mem
= objp
+ colour_off
;
2601 slabp
->nodeid
= nodeid
;
2605 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2607 return (kmem_bufctl_t
*) (slabp
+ 1);
2610 static void cache_init_objs(struct kmem_cache
*cachep
,
2615 for (i
= 0; i
< cachep
->num
; i
++) {
2616 void *objp
= index_to_obj(cachep
, slabp
, i
);
2618 /* need to poison the objs? */
2619 if (cachep
->flags
& SLAB_POISON
)
2620 poison_obj(cachep
, objp
, POISON_FREE
);
2621 if (cachep
->flags
& SLAB_STORE_USER
)
2622 *dbg_userword(cachep
, objp
) = NULL
;
2624 if (cachep
->flags
& SLAB_RED_ZONE
) {
2625 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2626 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2629 * Constructors are not allowed to allocate memory from the same
2630 * cache which they are a constructor for. Otherwise, deadlock.
2631 * They must also be threaded.
2633 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2634 cachep
->ctor(objp
+ obj_offset(cachep
), cachep
,
2637 if (cachep
->flags
& SLAB_RED_ZONE
) {
2638 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2639 slab_error(cachep
, "constructor overwrote the"
2640 " end of an object");
2641 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2642 slab_error(cachep
, "constructor overwrote the"
2643 " start of an object");
2645 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2646 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2647 kernel_map_pages(virt_to_page(objp
),
2648 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2651 cachep
->ctor(objp
, cachep
, 0);
2653 slab_bufctl(slabp
)[i
] = i
+ 1;
2655 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2659 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2661 if (CONFIG_ZONE_DMA_FLAG
) {
2662 if (flags
& GFP_DMA
)
2663 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2665 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2669 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2672 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2676 next
= slab_bufctl(slabp
)[slabp
->free
];
2678 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2679 WARN_ON(slabp
->nodeid
!= nodeid
);
2686 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2687 void *objp
, int nodeid
)
2689 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2692 /* Verify that the slab belongs to the intended node */
2693 WARN_ON(slabp
->nodeid
!= nodeid
);
2695 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2696 printk(KERN_ERR
"slab: double free detected in cache "
2697 "'%s', objp %p\n", cachep
->name
, objp
);
2701 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2702 slabp
->free
= objnr
;
2707 * Map pages beginning at addr to the given cache and slab. This is required
2708 * for the slab allocator to be able to lookup the cache and slab of a
2709 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2711 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2717 page
= virt_to_page(addr
);
2720 if (likely(!PageCompound(page
)))
2721 nr_pages
<<= cache
->gfporder
;
2724 page_set_cache(page
, cache
);
2725 page_set_slab(page
, slab
);
2727 } while (--nr_pages
);
2731 * Grow (by 1) the number of slabs within a cache. This is called by
2732 * kmem_cache_alloc() when there are no active objs left in a cache.
2734 static int cache_grow(struct kmem_cache
*cachep
,
2735 gfp_t flags
, int nodeid
, void *objp
)
2740 struct kmem_list3
*l3
;
2743 * Be lazy and only check for valid flags here, keeping it out of the
2744 * critical path in kmem_cache_alloc().
2746 BUG_ON(flags
& ~(GFP_DMA
| __GFP_ZERO
| GFP_LEVEL_MASK
));
2748 local_flags
= (flags
& GFP_LEVEL_MASK
);
2749 /* Take the l3 list lock to change the colour_next on this node */
2751 l3
= cachep
->nodelists
[nodeid
];
2752 spin_lock(&l3
->list_lock
);
2754 /* Get colour for the slab, and cal the next value. */
2755 offset
= l3
->colour_next
;
2757 if (l3
->colour_next
>= cachep
->colour
)
2758 l3
->colour_next
= 0;
2759 spin_unlock(&l3
->list_lock
);
2761 offset
*= cachep
->colour_off
;
2763 if (local_flags
& __GFP_WAIT
)
2767 * The test for missing atomic flag is performed here, rather than
2768 * the more obvious place, simply to reduce the critical path length
2769 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2770 * will eventually be caught here (where it matters).
2772 kmem_flagcheck(cachep
, flags
);
2775 * Get mem for the objs. Attempt to allocate a physical page from
2779 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2783 /* Get slab management. */
2784 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2785 local_flags
& ~GFP_THISNODE
, nodeid
);
2789 slabp
->nodeid
= nodeid
;
2790 slab_map_pages(cachep
, slabp
, objp
);
2792 cache_init_objs(cachep
, slabp
);
2794 if (local_flags
& __GFP_WAIT
)
2795 local_irq_disable();
2797 spin_lock(&l3
->list_lock
);
2799 /* Make slab active. */
2800 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2801 STATS_INC_GROWN(cachep
);
2802 l3
->free_objects
+= cachep
->num
;
2803 spin_unlock(&l3
->list_lock
);
2806 kmem_freepages(cachep
, objp
);
2808 if (local_flags
& __GFP_WAIT
)
2809 local_irq_disable();
2816 * Perform extra freeing checks:
2817 * - detect bad pointers.
2818 * - POISON/RED_ZONE checking
2820 static void kfree_debugcheck(const void *objp
)
2822 if (!virt_addr_valid(objp
)) {
2823 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2824 (unsigned long)objp
);
2829 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2831 unsigned long long redzone1
, redzone2
;
2833 redzone1
= *dbg_redzone1(cache
, obj
);
2834 redzone2
= *dbg_redzone2(cache
, obj
);
2839 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2842 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2843 slab_error(cache
, "double free detected");
2845 slab_error(cache
, "memory outside object was overwritten");
2847 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2848 obj
, redzone1
, redzone2
);
2851 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2858 objp
-= obj_offset(cachep
);
2859 kfree_debugcheck(objp
);
2860 page
= virt_to_head_page(objp
);
2862 slabp
= page_get_slab(page
);
2864 if (cachep
->flags
& SLAB_RED_ZONE
) {
2865 verify_redzone_free(cachep
, objp
);
2866 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2867 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2869 if (cachep
->flags
& SLAB_STORE_USER
)
2870 *dbg_userword(cachep
, objp
) = caller
;
2872 objnr
= obj_to_index(cachep
, slabp
, objp
);
2874 BUG_ON(objnr
>= cachep
->num
);
2875 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2877 #ifdef CONFIG_DEBUG_SLAB_LEAK
2878 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2880 if (cachep
->flags
& SLAB_POISON
) {
2881 #ifdef CONFIG_DEBUG_PAGEALLOC
2882 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2883 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2884 kernel_map_pages(virt_to_page(objp
),
2885 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2887 poison_obj(cachep
, objp
, POISON_FREE
);
2890 poison_obj(cachep
, objp
, POISON_FREE
);
2896 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2901 /* Check slab's freelist to see if this obj is there. */
2902 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2904 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2907 if (entries
!= cachep
->num
- slabp
->inuse
) {
2909 printk(KERN_ERR
"slab: Internal list corruption detected in "
2910 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2911 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2913 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2916 printk("\n%03x:", i
);
2917 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2924 #define kfree_debugcheck(x) do { } while(0)
2925 #define cache_free_debugcheck(x,objp,z) (objp)
2926 #define check_slabp(x,y) do { } while(0)
2929 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2932 struct kmem_list3
*l3
;
2933 struct array_cache
*ac
;
2936 node
= numa_node_id();
2939 ac
= cpu_cache_get(cachep
);
2941 batchcount
= ac
->batchcount
;
2942 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2944 * If there was little recent activity on this cache, then
2945 * perform only a partial refill. Otherwise we could generate
2948 batchcount
= BATCHREFILL_LIMIT
;
2950 l3
= cachep
->nodelists
[node
];
2952 BUG_ON(ac
->avail
> 0 || !l3
);
2953 spin_lock(&l3
->list_lock
);
2955 /* See if we can refill from the shared array */
2956 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2959 while (batchcount
> 0) {
2960 struct list_head
*entry
;
2962 /* Get slab alloc is to come from. */
2963 entry
= l3
->slabs_partial
.next
;
2964 if (entry
== &l3
->slabs_partial
) {
2965 l3
->free_touched
= 1;
2966 entry
= l3
->slabs_free
.next
;
2967 if (entry
== &l3
->slabs_free
)
2971 slabp
= list_entry(entry
, struct slab
, list
);
2972 check_slabp(cachep
, slabp
);
2973 check_spinlock_acquired(cachep
);
2976 * The slab was either on partial or free list so
2977 * there must be at least one object available for
2980 BUG_ON(slabp
->inuse
< 0 || slabp
->inuse
>= cachep
->num
);
2982 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2983 STATS_INC_ALLOCED(cachep
);
2984 STATS_INC_ACTIVE(cachep
);
2985 STATS_SET_HIGH(cachep
);
2987 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
2990 check_slabp(cachep
, slabp
);
2992 /* move slabp to correct slabp list: */
2993 list_del(&slabp
->list
);
2994 if (slabp
->free
== BUFCTL_END
)
2995 list_add(&slabp
->list
, &l3
->slabs_full
);
2997 list_add(&slabp
->list
, &l3
->slabs_partial
);
3001 l3
->free_objects
-= ac
->avail
;
3003 spin_unlock(&l3
->list_lock
);
3005 if (unlikely(!ac
->avail
)) {
3007 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3009 /* cache_grow can reenable interrupts, then ac could change. */
3010 ac
= cpu_cache_get(cachep
);
3011 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3014 if (!ac
->avail
) /* objects refilled by interrupt? */
3018 return ac
->entry
[--ac
->avail
];
3021 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3024 might_sleep_if(flags
& __GFP_WAIT
);
3026 kmem_flagcheck(cachep
, flags
);
3031 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3032 gfp_t flags
, void *objp
, void *caller
)
3036 if (cachep
->flags
& SLAB_POISON
) {
3037 #ifdef CONFIG_DEBUG_PAGEALLOC
3038 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3039 kernel_map_pages(virt_to_page(objp
),
3040 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3042 check_poison_obj(cachep
, objp
);
3044 check_poison_obj(cachep
, objp
);
3046 poison_obj(cachep
, objp
, POISON_INUSE
);
3048 if (cachep
->flags
& SLAB_STORE_USER
)
3049 *dbg_userword(cachep
, objp
) = caller
;
3051 if (cachep
->flags
& SLAB_RED_ZONE
) {
3052 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3053 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3054 slab_error(cachep
, "double free, or memory outside"
3055 " object was overwritten");
3057 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3058 objp
, *dbg_redzone1(cachep
, objp
),
3059 *dbg_redzone2(cachep
, objp
));
3061 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3062 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3064 #ifdef CONFIG_DEBUG_SLAB_LEAK
3069 slabp
= page_get_slab(virt_to_head_page(objp
));
3070 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3071 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3074 objp
+= obj_offset(cachep
);
3075 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3076 cachep
->ctor(objp
, cachep
, 0);
3077 #if ARCH_SLAB_MINALIGN
3078 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3079 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3080 objp
, ARCH_SLAB_MINALIGN
);
3086 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3089 #ifdef CONFIG_FAILSLAB
3091 static struct failslab_attr
{
3093 struct fault_attr attr
;
3095 u32 ignore_gfp_wait
;
3096 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3097 struct dentry
*ignore_gfp_wait_file
;
3101 .attr
= FAULT_ATTR_INITIALIZER
,
3102 .ignore_gfp_wait
= 1,
3105 static int __init
setup_failslab(char *str
)
3107 return setup_fault_attr(&failslab
.attr
, str
);
3109 __setup("failslab=", setup_failslab
);
3111 static int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3113 if (cachep
== &cache_cache
)
3115 if (flags
& __GFP_NOFAIL
)
3117 if (failslab
.ignore_gfp_wait
&& (flags
& __GFP_WAIT
))
3120 return should_fail(&failslab
.attr
, obj_size(cachep
));
3123 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3125 static int __init
failslab_debugfs(void)
3127 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
3131 err
= init_fault_attr_dentries(&failslab
.attr
, "failslab");
3134 dir
= failslab
.attr
.dentries
.dir
;
3136 failslab
.ignore_gfp_wait_file
=
3137 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3138 &failslab
.ignore_gfp_wait
);
3140 if (!failslab
.ignore_gfp_wait_file
) {
3142 debugfs_remove(failslab
.ignore_gfp_wait_file
);
3143 cleanup_fault_attr_dentries(&failslab
.attr
);
3149 late_initcall(failslab_debugfs
);
3151 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3153 #else /* CONFIG_FAILSLAB */
3155 static inline int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3160 #endif /* CONFIG_FAILSLAB */
3162 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3165 struct array_cache
*ac
;
3169 ac
= cpu_cache_get(cachep
);
3170 if (likely(ac
->avail
)) {
3171 STATS_INC_ALLOCHIT(cachep
);
3173 objp
= ac
->entry
[--ac
->avail
];
3175 STATS_INC_ALLOCMISS(cachep
);
3176 objp
= cache_alloc_refill(cachep
, flags
);
3183 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3185 * If we are in_interrupt, then process context, including cpusets and
3186 * mempolicy, may not apply and should not be used for allocation policy.
3188 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3190 int nid_alloc
, nid_here
;
3192 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3194 nid_alloc
= nid_here
= numa_node_id();
3195 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3196 nid_alloc
= cpuset_mem_spread_node();
3197 else if (current
->mempolicy
)
3198 nid_alloc
= slab_node(current
->mempolicy
);
3199 if (nid_alloc
!= nid_here
)
3200 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3205 * Fallback function if there was no memory available and no objects on a
3206 * certain node and fall back is permitted. First we scan all the
3207 * available nodelists for available objects. If that fails then we
3208 * perform an allocation without specifying a node. This allows the page
3209 * allocator to do its reclaim / fallback magic. We then insert the
3210 * slab into the proper nodelist and then allocate from it.
3212 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3214 struct zonelist
*zonelist
;
3220 if (flags
& __GFP_THISNODE
)
3223 zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
3224 ->node_zonelists
[gfp_zone(flags
)];
3225 local_flags
= (flags
& GFP_LEVEL_MASK
);
3229 * Look through allowed nodes for objects available
3230 * from existing per node queues.
3232 for (z
= zonelist
->zones
; *z
&& !obj
; z
++) {
3233 nid
= zone_to_nid(*z
);
3235 if (cpuset_zone_allowed_hardwall(*z
, flags
) &&
3236 cache
->nodelists
[nid
] &&
3237 cache
->nodelists
[nid
]->free_objects
)
3238 obj
= ____cache_alloc_node(cache
,
3239 flags
| GFP_THISNODE
, nid
);
3244 * This allocation will be performed within the constraints
3245 * of the current cpuset / memory policy requirements.
3246 * We may trigger various forms of reclaim on the allowed
3247 * set and go into memory reserves if necessary.
3249 if (local_flags
& __GFP_WAIT
)
3251 kmem_flagcheck(cache
, flags
);
3252 obj
= kmem_getpages(cache
, flags
, -1);
3253 if (local_flags
& __GFP_WAIT
)
3254 local_irq_disable();
3257 * Insert into the appropriate per node queues
3259 nid
= page_to_nid(virt_to_page(obj
));
3260 if (cache_grow(cache
, flags
, nid
, obj
)) {
3261 obj
= ____cache_alloc_node(cache
,
3262 flags
| GFP_THISNODE
, nid
);
3265 * Another processor may allocate the
3266 * objects in the slab since we are
3267 * not holding any locks.
3271 /* cache_grow already freed obj */
3280 * A interface to enable slab creation on nodeid
3282 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3285 struct list_head
*entry
;
3287 struct kmem_list3
*l3
;
3291 l3
= cachep
->nodelists
[nodeid
];
3296 spin_lock(&l3
->list_lock
);
3297 entry
= l3
->slabs_partial
.next
;
3298 if (entry
== &l3
->slabs_partial
) {
3299 l3
->free_touched
= 1;
3300 entry
= l3
->slabs_free
.next
;
3301 if (entry
== &l3
->slabs_free
)
3305 slabp
= list_entry(entry
, struct slab
, list
);
3306 check_spinlock_acquired_node(cachep
, nodeid
);
3307 check_slabp(cachep
, slabp
);
3309 STATS_INC_NODEALLOCS(cachep
);
3310 STATS_INC_ACTIVE(cachep
);
3311 STATS_SET_HIGH(cachep
);
3313 BUG_ON(slabp
->inuse
== cachep
->num
);
3315 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3316 check_slabp(cachep
, slabp
);
3318 /* move slabp to correct slabp list: */
3319 list_del(&slabp
->list
);
3321 if (slabp
->free
== BUFCTL_END
)
3322 list_add(&slabp
->list
, &l3
->slabs_full
);
3324 list_add(&slabp
->list
, &l3
->slabs_partial
);
3326 spin_unlock(&l3
->list_lock
);
3330 spin_unlock(&l3
->list_lock
);
3331 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3335 return fallback_alloc(cachep
, flags
);
3342 * kmem_cache_alloc_node - Allocate an object on the specified node
3343 * @cachep: The cache to allocate from.
3344 * @flags: See kmalloc().
3345 * @nodeid: node number of the target node.
3346 * @caller: return address of caller, used for debug information
3348 * Identical to kmem_cache_alloc but it will allocate memory on the given
3349 * node, which can improve the performance for cpu bound structures.
3351 * Fallback to other node is possible if __GFP_THISNODE is not set.
3353 static __always_inline
void *
3354 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3357 unsigned long save_flags
;
3360 if (should_failslab(cachep
, flags
))
3363 cache_alloc_debugcheck_before(cachep
, flags
);
3364 local_irq_save(save_flags
);
3366 if (unlikely(nodeid
== -1))
3367 nodeid
= numa_node_id();
3369 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3370 /* Node not bootstrapped yet */
3371 ptr
= fallback_alloc(cachep
, flags
);
3375 if (nodeid
== numa_node_id()) {
3377 * Use the locally cached objects if possible.
3378 * However ____cache_alloc does not allow fallback
3379 * to other nodes. It may fail while we still have
3380 * objects on other nodes available.
3382 ptr
= ____cache_alloc(cachep
, flags
);
3386 /* ___cache_alloc_node can fall back to other nodes */
3387 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3389 local_irq_restore(save_flags
);
3390 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3392 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3393 memset(ptr
, 0, obj_size(cachep
));
3398 static __always_inline
void *
3399 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3403 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3404 objp
= alternate_node_alloc(cache
, flags
);
3408 objp
= ____cache_alloc(cache
, flags
);
3411 * We may just have run out of memory on the local node.
3412 * ____cache_alloc_node() knows how to locate memory on other nodes
3415 objp
= ____cache_alloc_node(cache
, flags
, numa_node_id());
3422 static __always_inline
void *
3423 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3425 return ____cache_alloc(cachep
, flags
);
3428 #endif /* CONFIG_NUMA */
3430 static __always_inline
void *
3431 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3433 unsigned long save_flags
;
3436 if (should_failslab(cachep
, flags
))
3439 cache_alloc_debugcheck_before(cachep
, flags
);
3440 local_irq_save(save_flags
);
3441 objp
= __do_cache_alloc(cachep
, flags
);
3442 local_irq_restore(save_flags
);
3443 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3446 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3447 memset(objp
, 0, obj_size(cachep
));
3453 * Caller needs to acquire correct kmem_list's list_lock
3455 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3459 struct kmem_list3
*l3
;
3461 for (i
= 0; i
< nr_objects
; i
++) {
3462 void *objp
= objpp
[i
];
3465 slabp
= virt_to_slab(objp
);
3466 l3
= cachep
->nodelists
[node
];
3467 list_del(&slabp
->list
);
3468 check_spinlock_acquired_node(cachep
, node
);
3469 check_slabp(cachep
, slabp
);
3470 slab_put_obj(cachep
, slabp
, objp
, node
);
3471 STATS_DEC_ACTIVE(cachep
);
3473 check_slabp(cachep
, slabp
);
3475 /* fixup slab chains */
3476 if (slabp
->inuse
== 0) {
3477 if (l3
->free_objects
> l3
->free_limit
) {
3478 l3
->free_objects
-= cachep
->num
;
3479 /* No need to drop any previously held
3480 * lock here, even if we have a off-slab slab
3481 * descriptor it is guaranteed to come from
3482 * a different cache, refer to comments before
3485 slab_destroy(cachep
, slabp
);
3487 list_add(&slabp
->list
, &l3
->slabs_free
);
3490 /* Unconditionally move a slab to the end of the
3491 * partial list on free - maximum time for the
3492 * other objects to be freed, too.
3494 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3499 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3502 struct kmem_list3
*l3
;
3503 int node
= numa_node_id();
3505 batchcount
= ac
->batchcount
;
3507 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3510 l3
= cachep
->nodelists
[node
];
3511 spin_lock(&l3
->list_lock
);
3513 struct array_cache
*shared_array
= l3
->shared
;
3514 int max
= shared_array
->limit
- shared_array
->avail
;
3516 if (batchcount
> max
)
3518 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3519 ac
->entry
, sizeof(void *) * batchcount
);
3520 shared_array
->avail
+= batchcount
;
3525 free_block(cachep
, ac
->entry
, batchcount
, node
);
3530 struct list_head
*p
;
3532 p
= l3
->slabs_free
.next
;
3533 while (p
!= &(l3
->slabs_free
)) {
3536 slabp
= list_entry(p
, struct slab
, list
);
3537 BUG_ON(slabp
->inuse
);
3542 STATS_SET_FREEABLE(cachep
, i
);
3545 spin_unlock(&l3
->list_lock
);
3546 ac
->avail
-= batchcount
;
3547 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3551 * Release an obj back to its cache. If the obj has a constructed state, it must
3552 * be in this state _before_ it is released. Called with disabled ints.
3554 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3556 struct array_cache
*ac
= cpu_cache_get(cachep
);
3559 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3561 if (cache_free_alien(cachep
, objp
))
3564 if (likely(ac
->avail
< ac
->limit
)) {
3565 STATS_INC_FREEHIT(cachep
);
3566 ac
->entry
[ac
->avail
++] = objp
;
3569 STATS_INC_FREEMISS(cachep
);
3570 cache_flusharray(cachep
, ac
);
3571 ac
->entry
[ac
->avail
++] = objp
;
3576 * kmem_cache_alloc - Allocate an object
3577 * @cachep: The cache to allocate from.
3578 * @flags: See kmalloc().
3580 * Allocate an object from this cache. The flags are only relevant
3581 * if the cache has no available objects.
3583 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3585 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3587 EXPORT_SYMBOL(kmem_cache_alloc
);
3590 * kmem_ptr_validate - check if an untrusted pointer might
3592 * @cachep: the cache we're checking against
3593 * @ptr: pointer to validate
3595 * This verifies that the untrusted pointer looks sane:
3596 * it is _not_ a guarantee that the pointer is actually
3597 * part of the slab cache in question, but it at least
3598 * validates that the pointer can be dereferenced and
3599 * looks half-way sane.
3601 * Currently only used for dentry validation.
3603 int kmem_ptr_validate(struct kmem_cache
*cachep
, const void *ptr
)
3605 unsigned long addr
= (unsigned long)ptr
;
3606 unsigned long min_addr
= PAGE_OFFSET
;
3607 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3608 unsigned long size
= cachep
->buffer_size
;
3611 if (unlikely(addr
< min_addr
))
3613 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3615 if (unlikely(addr
& align_mask
))
3617 if (unlikely(!kern_addr_valid(addr
)))
3619 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3621 page
= virt_to_page(ptr
);
3622 if (unlikely(!PageSlab(page
)))
3624 if (unlikely(page_get_cache(page
) != cachep
))
3632 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3634 return __cache_alloc_node(cachep
, flags
, nodeid
,
3635 __builtin_return_address(0));
3637 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3639 static __always_inline
void *
3640 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3642 struct kmem_cache
*cachep
;
3644 cachep
= kmem_find_general_cachep(size
, flags
);
3645 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3647 return kmem_cache_alloc_node(cachep
, flags
, node
);
3650 #ifdef CONFIG_DEBUG_SLAB
3651 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3653 return __do_kmalloc_node(size
, flags
, node
,
3654 __builtin_return_address(0));
3656 EXPORT_SYMBOL(__kmalloc_node
);
3658 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3659 int node
, void *caller
)
3661 return __do_kmalloc_node(size
, flags
, node
, caller
);
3663 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3665 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3667 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3669 EXPORT_SYMBOL(__kmalloc_node
);
3670 #endif /* CONFIG_DEBUG_SLAB */
3671 #endif /* CONFIG_NUMA */
3674 * __do_kmalloc - allocate memory
3675 * @size: how many bytes of memory are required.
3676 * @flags: the type of memory to allocate (see kmalloc).
3677 * @caller: function caller for debug tracking of the caller
3679 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3682 struct kmem_cache
*cachep
;
3684 /* If you want to save a few bytes .text space: replace
3686 * Then kmalloc uses the uninlined functions instead of the inline
3689 cachep
= __find_general_cachep(size
, flags
);
3690 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3692 return __cache_alloc(cachep
, flags
, caller
);
3696 #ifdef CONFIG_DEBUG_SLAB
3697 void *__kmalloc(size_t size
, gfp_t flags
)
3699 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3701 EXPORT_SYMBOL(__kmalloc
);
3703 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3705 return __do_kmalloc(size
, flags
, caller
);
3707 EXPORT_SYMBOL(__kmalloc_track_caller
);
3710 void *__kmalloc(size_t size
, gfp_t flags
)
3712 return __do_kmalloc(size
, flags
, NULL
);
3714 EXPORT_SYMBOL(__kmalloc
);
3718 * kmem_cache_free - Deallocate an object
3719 * @cachep: The cache the allocation was from.
3720 * @objp: The previously allocated object.
3722 * Free an object which was previously allocated from this
3725 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3727 unsigned long flags
;
3729 BUG_ON(virt_to_cache(objp
) != cachep
);
3731 local_irq_save(flags
);
3732 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3733 __cache_free(cachep
, objp
);
3734 local_irq_restore(flags
);
3736 EXPORT_SYMBOL(kmem_cache_free
);
3739 * kfree - free previously allocated memory
3740 * @objp: pointer returned by kmalloc.
3742 * If @objp is NULL, no operation is performed.
3744 * Don't free memory not originally allocated by kmalloc()
3745 * or you will run into trouble.
3747 void kfree(const void *objp
)
3749 struct kmem_cache
*c
;
3750 unsigned long flags
;
3752 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3754 local_irq_save(flags
);
3755 kfree_debugcheck(objp
);
3756 c
= virt_to_cache(objp
);
3757 debug_check_no_locks_freed(objp
, obj_size(c
));
3758 __cache_free(c
, (void *)objp
);
3759 local_irq_restore(flags
);
3761 EXPORT_SYMBOL(kfree
);
3763 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3765 return obj_size(cachep
);
3767 EXPORT_SYMBOL(kmem_cache_size
);
3769 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3771 return cachep
->name
;
3773 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3776 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3778 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3781 struct kmem_list3
*l3
;
3782 struct array_cache
*new_shared
;
3783 struct array_cache
**new_alien
= NULL
;
3785 for_each_online_node(node
) {
3787 if (use_alien_caches
) {
3788 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3794 if (cachep
->shared
) {
3795 new_shared
= alloc_arraycache(node
,
3796 cachep
->shared
*cachep
->batchcount
,
3799 free_alien_cache(new_alien
);
3804 l3
= cachep
->nodelists
[node
];
3806 struct array_cache
*shared
= l3
->shared
;
3808 spin_lock_irq(&l3
->list_lock
);
3811 free_block(cachep
, shared
->entry
,
3812 shared
->avail
, node
);
3814 l3
->shared
= new_shared
;
3816 l3
->alien
= new_alien
;
3819 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3820 cachep
->batchcount
+ cachep
->num
;
3821 spin_unlock_irq(&l3
->list_lock
);
3823 free_alien_cache(new_alien
);
3826 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3828 free_alien_cache(new_alien
);
3833 kmem_list3_init(l3
);
3834 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3835 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3836 l3
->shared
= new_shared
;
3837 l3
->alien
= new_alien
;
3838 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3839 cachep
->batchcount
+ cachep
->num
;
3840 cachep
->nodelists
[node
] = l3
;
3845 if (!cachep
->next
.next
) {
3846 /* Cache is not active yet. Roll back what we did */
3849 if (cachep
->nodelists
[node
]) {
3850 l3
= cachep
->nodelists
[node
];
3853 free_alien_cache(l3
->alien
);
3855 cachep
->nodelists
[node
] = NULL
;
3863 struct ccupdate_struct
{
3864 struct kmem_cache
*cachep
;
3865 struct array_cache
*new[NR_CPUS
];
3868 static void do_ccupdate_local(void *info
)
3870 struct ccupdate_struct
*new = info
;
3871 struct array_cache
*old
;
3874 old
= cpu_cache_get(new->cachep
);
3876 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3877 new->new[smp_processor_id()] = old
;
3880 /* Always called with the cache_chain_mutex held */
3881 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3882 int batchcount
, int shared
)
3884 struct ccupdate_struct
*new;
3887 new = kzalloc(sizeof(*new), GFP_KERNEL
);
3891 for_each_online_cpu(i
) {
3892 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3895 for (i
--; i
>= 0; i
--)
3901 new->cachep
= cachep
;
3903 on_each_cpu(do_ccupdate_local
, (void *)new, 1, 1);
3906 cachep
->batchcount
= batchcount
;
3907 cachep
->limit
= limit
;
3908 cachep
->shared
= shared
;
3910 for_each_online_cpu(i
) {
3911 struct array_cache
*ccold
= new->new[i
];
3914 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3915 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3916 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3920 return alloc_kmemlist(cachep
);
3923 /* Called with cache_chain_mutex held always */
3924 static int enable_cpucache(struct kmem_cache
*cachep
)
3930 * The head array serves three purposes:
3931 * - create a LIFO ordering, i.e. return objects that are cache-warm
3932 * - reduce the number of spinlock operations.
3933 * - reduce the number of linked list operations on the slab and
3934 * bufctl chains: array operations are cheaper.
3935 * The numbers are guessed, we should auto-tune as described by
3938 if (cachep
->buffer_size
> 131072)
3940 else if (cachep
->buffer_size
> PAGE_SIZE
)
3942 else if (cachep
->buffer_size
> 1024)
3944 else if (cachep
->buffer_size
> 256)
3950 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3951 * allocation behaviour: Most allocs on one cpu, most free operations
3952 * on another cpu. For these cases, an efficient object passing between
3953 * cpus is necessary. This is provided by a shared array. The array
3954 * replaces Bonwick's magazine layer.
3955 * On uniprocessor, it's functionally equivalent (but less efficient)
3956 * to a larger limit. Thus disabled by default.
3959 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3964 * With debugging enabled, large batchcount lead to excessively long
3965 * periods with disabled local interrupts. Limit the batchcount
3970 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
3972 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3973 cachep
->name
, -err
);
3978 * Drain an array if it contains any elements taking the l3 lock only if
3979 * necessary. Note that the l3 listlock also protects the array_cache
3980 * if drain_array() is used on the shared array.
3982 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
3983 struct array_cache
*ac
, int force
, int node
)
3987 if (!ac
|| !ac
->avail
)
3989 if (ac
->touched
&& !force
) {
3992 spin_lock_irq(&l3
->list_lock
);
3994 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
3995 if (tofree
> ac
->avail
)
3996 tofree
= (ac
->avail
+ 1) / 2;
3997 free_block(cachep
, ac
->entry
, tofree
, node
);
3998 ac
->avail
-= tofree
;
3999 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4000 sizeof(void *) * ac
->avail
);
4002 spin_unlock_irq(&l3
->list_lock
);
4007 * cache_reap - Reclaim memory from caches.
4008 * @w: work descriptor
4010 * Called from workqueue/eventd every few seconds.
4012 * - clear the per-cpu caches for this CPU.
4013 * - return freeable pages to the main free memory pool.
4015 * If we cannot acquire the cache chain mutex then just give up - we'll try
4016 * again on the next iteration.
4018 static void cache_reap(struct work_struct
*w
)
4020 struct kmem_cache
*searchp
;
4021 struct kmem_list3
*l3
;
4022 int node
= numa_node_id();
4023 struct delayed_work
*work
=
4024 container_of(w
, struct delayed_work
, work
);
4026 if (!mutex_trylock(&cache_chain_mutex
))
4027 /* Give up. Setup the next iteration. */
4030 list_for_each_entry(searchp
, &cache_chain
, next
) {
4034 * We only take the l3 lock if absolutely necessary and we
4035 * have established with reasonable certainty that
4036 * we can do some work if the lock was obtained.
4038 l3
= searchp
->nodelists
[node
];
4040 reap_alien(searchp
, l3
);
4042 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4045 * These are racy checks but it does not matter
4046 * if we skip one check or scan twice.
4048 if (time_after(l3
->next_reap
, jiffies
))
4051 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4053 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4055 if (l3
->free_touched
)
4056 l3
->free_touched
= 0;
4060 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4061 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4062 STATS_ADD_REAPED(searchp
, freed
);
4068 mutex_unlock(&cache_chain_mutex
);
4071 /* Set up the next iteration */
4072 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4075 #ifdef CONFIG_PROC_FS
4077 static void print_slabinfo_header(struct seq_file
*m
)
4080 * Output format version, so at least we can change it
4081 * without _too_ many complaints.
4084 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4086 seq_puts(m
, "slabinfo - version: 2.1\n");
4088 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4089 "<objperslab> <pagesperslab>");
4090 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4091 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4093 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4094 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4095 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4100 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4104 mutex_lock(&cache_chain_mutex
);
4106 print_slabinfo_header(m
);
4108 return seq_list_start(&cache_chain
, *pos
);
4111 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4113 return seq_list_next(p
, &cache_chain
, pos
);
4116 static void s_stop(struct seq_file
*m
, void *p
)
4118 mutex_unlock(&cache_chain_mutex
);
4121 static int s_show(struct seq_file
*m
, void *p
)
4123 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4125 unsigned long active_objs
;
4126 unsigned long num_objs
;
4127 unsigned long active_slabs
= 0;
4128 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4132 struct kmem_list3
*l3
;
4136 for_each_online_node(node
) {
4137 l3
= cachep
->nodelists
[node
];
4142 spin_lock_irq(&l3
->list_lock
);
4144 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4145 if (slabp
->inuse
!= cachep
->num
&& !error
)
4146 error
= "slabs_full accounting error";
4147 active_objs
+= cachep
->num
;
4150 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4151 if (slabp
->inuse
== cachep
->num
&& !error
)
4152 error
= "slabs_partial inuse accounting error";
4153 if (!slabp
->inuse
&& !error
)
4154 error
= "slabs_partial/inuse accounting error";
4155 active_objs
+= slabp
->inuse
;
4158 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4159 if (slabp
->inuse
&& !error
)
4160 error
= "slabs_free/inuse accounting error";
4163 free_objects
+= l3
->free_objects
;
4165 shared_avail
+= l3
->shared
->avail
;
4167 spin_unlock_irq(&l3
->list_lock
);
4169 num_slabs
+= active_slabs
;
4170 num_objs
= num_slabs
* cachep
->num
;
4171 if (num_objs
- active_objs
!= free_objects
&& !error
)
4172 error
= "free_objects accounting error";
4174 name
= cachep
->name
;
4176 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4178 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4179 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4180 cachep
->num
, (1 << cachep
->gfporder
));
4181 seq_printf(m
, " : tunables %4u %4u %4u",
4182 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4183 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4184 active_slabs
, num_slabs
, shared_avail
);
4187 unsigned long high
= cachep
->high_mark
;
4188 unsigned long allocs
= cachep
->num_allocations
;
4189 unsigned long grown
= cachep
->grown
;
4190 unsigned long reaped
= cachep
->reaped
;
4191 unsigned long errors
= cachep
->errors
;
4192 unsigned long max_freeable
= cachep
->max_freeable
;
4193 unsigned long node_allocs
= cachep
->node_allocs
;
4194 unsigned long node_frees
= cachep
->node_frees
;
4195 unsigned long overflows
= cachep
->node_overflow
;
4197 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
4198 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
4199 reaped
, errors
, max_freeable
, node_allocs
,
4200 node_frees
, overflows
);
4204 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4205 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4206 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4207 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4209 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4210 allochit
, allocmiss
, freehit
, freemiss
);
4218 * slabinfo_op - iterator that generates /proc/slabinfo
4227 * num-pages-per-slab
4228 * + further values on SMP and with statistics enabled
4231 const struct seq_operations slabinfo_op
= {
4238 #define MAX_SLABINFO_WRITE 128
4240 * slabinfo_write - Tuning for the slab allocator
4242 * @buffer: user buffer
4243 * @count: data length
4246 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4247 size_t count
, loff_t
*ppos
)
4249 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4250 int limit
, batchcount
, shared
, res
;
4251 struct kmem_cache
*cachep
;
4253 if (count
> MAX_SLABINFO_WRITE
)
4255 if (copy_from_user(&kbuf
, buffer
, count
))
4257 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4259 tmp
= strchr(kbuf
, ' ');
4264 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4267 /* Find the cache in the chain of caches. */
4268 mutex_lock(&cache_chain_mutex
);
4270 list_for_each_entry(cachep
, &cache_chain
, next
) {
4271 if (!strcmp(cachep
->name
, kbuf
)) {
4272 if (limit
< 1 || batchcount
< 1 ||
4273 batchcount
> limit
|| shared
< 0) {
4276 res
= do_tune_cpucache(cachep
, limit
,
4277 batchcount
, shared
);
4282 mutex_unlock(&cache_chain_mutex
);
4288 #ifdef CONFIG_DEBUG_SLAB_LEAK
4290 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4292 mutex_lock(&cache_chain_mutex
);
4293 return seq_list_start(&cache_chain
, *pos
);
4296 static inline int add_caller(unsigned long *n
, unsigned long v
)
4306 unsigned long *q
= p
+ 2 * i
;
4320 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4326 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4332 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4333 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4335 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4340 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4342 #ifdef CONFIG_KALLSYMS
4343 unsigned long offset
, size
;
4344 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4346 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4347 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4349 seq_printf(m
, " [%s]", modname
);
4353 seq_printf(m
, "%p", (void *)address
);
4356 static int leaks_show(struct seq_file
*m
, void *p
)
4358 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4360 struct kmem_list3
*l3
;
4362 unsigned long *n
= m
->private;
4366 if (!(cachep
->flags
& SLAB_STORE_USER
))
4368 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4371 /* OK, we can do it */
4375 for_each_online_node(node
) {
4376 l3
= cachep
->nodelists
[node
];
4381 spin_lock_irq(&l3
->list_lock
);
4383 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4384 handle_slab(n
, cachep
, slabp
);
4385 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4386 handle_slab(n
, cachep
, slabp
);
4387 spin_unlock_irq(&l3
->list_lock
);
4389 name
= cachep
->name
;
4391 /* Increase the buffer size */
4392 mutex_unlock(&cache_chain_mutex
);
4393 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4395 /* Too bad, we are really out */
4397 mutex_lock(&cache_chain_mutex
);
4400 *(unsigned long *)m
->private = n
[0] * 2;
4402 mutex_lock(&cache_chain_mutex
);
4403 /* Now make sure this entry will be retried */
4407 for (i
= 0; i
< n
[1]; i
++) {
4408 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4409 show_symbol(m
, n
[2*i
+2]);
4416 const struct seq_operations slabstats_op
= {
4417 .start
= leaks_start
,
4426 * ksize - get the actual amount of memory allocated for a given object
4427 * @objp: Pointer to the object
4429 * kmalloc may internally round up allocations and return more memory
4430 * than requested. ksize() can be used to determine the actual amount of
4431 * memory allocated. The caller may use this additional memory, even though
4432 * a smaller amount of memory was initially specified with the kmalloc call.
4433 * The caller must guarantee that objp points to a valid object previously
4434 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4435 * must not be freed during the duration of the call.
4437 size_t ksize(const void *objp
)
4439 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
4442 return obj_size(virt_to_cache(objp
));