]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/slab.c
a94cf0fea8a2deffab0eabe95ad051e3d9b5b306
[mirror_ubuntu-jammy-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
109
110 #include <asm/uaccess.h>
111 #include <asm/cacheflush.h>
112 #include <asm/tlbflush.h>
113 #include <asm/page.h>
114
115 /*
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126 #ifdef CONFIG_DEBUG_SLAB
127 #define DEBUG 1
128 #define STATS 1
129 #define FORCED_DEBUG 1
130 #else
131 #define DEBUG 0
132 #define STATS 0
133 #define FORCED_DEBUG 0
134 #endif
135
136 /* Shouldn't this be in a header file somewhere? */
137 #define BYTES_PER_WORD sizeof(void *)
138
139 #ifndef cache_line_size
140 #define cache_line_size() L1_CACHE_BYTES
141 #endif
142
143 #ifndef ARCH_KMALLOC_MINALIGN
144 /*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152 #define ARCH_KMALLOC_MINALIGN 0
153 #endif
154
155 #ifndef ARCH_SLAB_MINALIGN
156 /*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163 #define ARCH_SLAB_MINALIGN 0
164 #endif
165
166 #ifndef ARCH_KMALLOC_FLAGS
167 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168 #endif
169
170 /* Legal flag mask for kmem_cache_create(). */
171 #if DEBUG
172 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174 SLAB_CACHE_DMA | \
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
178 #else
179 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183 #endif
184
185 /*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
204 typedef unsigned int kmem_bufctl_t;
205 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
207 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
209
210 /*
211 * struct slab
212 *
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
216 */
217 struct slab {
218 struct list_head list;
219 unsigned long colouroff;
220 void *s_mem; /* including colour offset */
221 unsigned int inuse; /* num of objs active in slab */
222 kmem_bufctl_t free;
223 unsigned short nodeid;
224 };
225
226 /*
227 * struct slab_rcu
228 *
229 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
230 * arrange for kmem_freepages to be called via RCU. This is useful if
231 * we need to approach a kernel structure obliquely, from its address
232 * obtained without the usual locking. We can lock the structure to
233 * stabilize it and check it's still at the given address, only if we
234 * can be sure that the memory has not been meanwhile reused for some
235 * other kind of object (which our subsystem's lock might corrupt).
236 *
237 * rcu_read_lock before reading the address, then rcu_read_unlock after
238 * taking the spinlock within the structure expected at that address.
239 *
240 * We assume struct slab_rcu can overlay struct slab when destroying.
241 */
242 struct slab_rcu {
243 struct rcu_head head;
244 struct kmem_cache *cachep;
245 void *addr;
246 };
247
248 /*
249 * struct array_cache
250 *
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260 struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
265 spinlock_t lock;
266 void *entry[0]; /*
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
270 * [0] is for gcc 2.95. It should really be [].
271 */
272 };
273
274 /*
275 * bootstrap: The caches do not work without cpuarrays anymore, but the
276 * cpuarrays are allocated from the generic caches...
277 */
278 #define BOOT_CPUCACHE_ENTRIES 1
279 struct arraycache_init {
280 struct array_cache cache;
281 void *entries[BOOT_CPUCACHE_ENTRIES];
282 };
283
284 /*
285 * The slab lists for all objects.
286 */
287 struct kmem_list3 {
288 struct list_head slabs_partial; /* partial list first, better asm code */
289 struct list_head slabs_full;
290 struct list_head slabs_free;
291 unsigned long free_objects;
292 unsigned int free_limit;
293 unsigned int colour_next; /* Per-node cache coloring */
294 spinlock_t list_lock;
295 struct array_cache *shared; /* shared per node */
296 struct array_cache **alien; /* on other nodes */
297 unsigned long next_reap; /* updated without locking */
298 int free_touched; /* updated without locking */
299 };
300
301 /*
302 * Need this for bootstrapping a per node allocator.
303 */
304 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
305 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
306 #define CACHE_CACHE 0
307 #define SIZE_AC 1
308 #define SIZE_L3 (1 + MAX_NUMNODES)
309
310 /*
311 * This function must be completely optimized away if a constant is passed to
312 * it. Mostly the same as what is in linux/slab.h except it returns an index.
313 */
314 static __always_inline int index_of(const size_t size)
315 {
316 extern void __bad_size(void);
317
318 if (__builtin_constant_p(size)) {
319 int i = 0;
320
321 #define CACHE(x) \
322 if (size <=x) \
323 return i; \
324 else \
325 i++;
326 #include "linux/kmalloc_sizes.h"
327 #undef CACHE
328 __bad_size();
329 } else
330 __bad_size();
331 return 0;
332 }
333
334 #define INDEX_AC index_of(sizeof(struct arraycache_init))
335 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
336
337 static void kmem_list3_init(struct kmem_list3 *parent)
338 {
339 INIT_LIST_HEAD(&parent->slabs_full);
340 INIT_LIST_HEAD(&parent->slabs_partial);
341 INIT_LIST_HEAD(&parent->slabs_free);
342 parent->shared = NULL;
343 parent->alien = NULL;
344 parent->colour_next = 0;
345 spin_lock_init(&parent->list_lock);
346 parent->free_objects = 0;
347 parent->free_touched = 0;
348 }
349
350 #define MAKE_LIST(cachep, listp, slab, nodeid) \
351 do { \
352 INIT_LIST_HEAD(listp); \
353 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
354 } while (0)
355
356 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
357 do { \
358 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
359 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
360 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
361 } while (0)
362
363 /*
364 * struct kmem_cache
365 *
366 * manages a cache.
367 */
368
369 struct kmem_cache {
370 /* 1) per-cpu data, touched during every alloc/free */
371 struct array_cache *array[NR_CPUS];
372 /* 2) Cache tunables. Protected by cache_chain_mutex */
373 unsigned int batchcount;
374 unsigned int limit;
375 unsigned int shared;
376
377 unsigned int buffer_size;
378 /* 3) touched by every alloc & free from the backend */
379 struct kmem_list3 *nodelists[MAX_NUMNODES];
380
381 unsigned int flags; /* constant flags */
382 unsigned int num; /* # of objs per slab */
383
384 /* 4) cache_grow/shrink */
385 /* order of pgs per slab (2^n) */
386 unsigned int gfporder;
387
388 /* force GFP flags, e.g. GFP_DMA */
389 gfp_t gfpflags;
390
391 size_t colour; /* cache colouring range */
392 unsigned int colour_off; /* colour offset */
393 struct kmem_cache *slabp_cache;
394 unsigned int slab_size;
395 unsigned int dflags; /* dynamic flags */
396
397 /* constructor func */
398 void (*ctor) (void *, struct kmem_cache *, unsigned long);
399
400 /* de-constructor func */
401 void (*dtor) (void *, struct kmem_cache *, unsigned long);
402
403 /* 5) cache creation/removal */
404 const char *name;
405 struct list_head next;
406
407 /* 6) statistics */
408 #if STATS
409 unsigned long num_active;
410 unsigned long num_allocations;
411 unsigned long high_mark;
412 unsigned long grown;
413 unsigned long reaped;
414 unsigned long errors;
415 unsigned long max_freeable;
416 unsigned long node_allocs;
417 unsigned long node_frees;
418 unsigned long node_overflow;
419 atomic_t allochit;
420 atomic_t allocmiss;
421 atomic_t freehit;
422 atomic_t freemiss;
423 #endif
424 #if DEBUG
425 /*
426 * If debugging is enabled, then the allocator can add additional
427 * fields and/or padding to every object. buffer_size contains the total
428 * object size including these internal fields, the following two
429 * variables contain the offset to the user object and its size.
430 */
431 int obj_offset;
432 int obj_size;
433 #endif
434 };
435
436 #define CFLGS_OFF_SLAB (0x80000000UL)
437 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
438
439 #define BATCHREFILL_LIMIT 16
440 /*
441 * Optimization question: fewer reaps means less probability for unnessary
442 * cpucache drain/refill cycles.
443 *
444 * OTOH the cpuarrays can contain lots of objects,
445 * which could lock up otherwise freeable slabs.
446 */
447 #define REAPTIMEOUT_CPUC (2*HZ)
448 #define REAPTIMEOUT_LIST3 (4*HZ)
449
450 #if STATS
451 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
452 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
453 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
454 #define STATS_INC_GROWN(x) ((x)->grown++)
455 #define STATS_INC_REAPED(x) ((x)->reaped++)
456 #define STATS_SET_HIGH(x) \
457 do { \
458 if ((x)->num_active > (x)->high_mark) \
459 (x)->high_mark = (x)->num_active; \
460 } while (0)
461 #define STATS_INC_ERR(x) ((x)->errors++)
462 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
463 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
464 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
465 #define STATS_SET_FREEABLE(x, i) \
466 do { \
467 if ((x)->max_freeable < i) \
468 (x)->max_freeable = i; \
469 } while (0)
470 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
471 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
472 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
473 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
474 #else
475 #define STATS_INC_ACTIVE(x) do { } while (0)
476 #define STATS_DEC_ACTIVE(x) do { } while (0)
477 #define STATS_INC_ALLOCED(x) do { } while (0)
478 #define STATS_INC_GROWN(x) do { } while (0)
479 #define STATS_INC_REAPED(x) do { } while (0)
480 #define STATS_SET_HIGH(x) do { } while (0)
481 #define STATS_INC_ERR(x) do { } while (0)
482 #define STATS_INC_NODEALLOCS(x) do { } while (0)
483 #define STATS_INC_NODEFREES(x) do { } while (0)
484 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
485 #define STATS_SET_FREEABLE(x, i) do { } while (0)
486 #define STATS_INC_ALLOCHIT(x) do { } while (0)
487 #define STATS_INC_ALLOCMISS(x) do { } while (0)
488 #define STATS_INC_FREEHIT(x) do { } while (0)
489 #define STATS_INC_FREEMISS(x) do { } while (0)
490 #endif
491
492 #if DEBUG
493 /*
494 * Magic nums for obj red zoning.
495 * Placed in the first word before and the first word after an obj.
496 */
497 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
498 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
499
500 /* ...and for poisoning */
501 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
502 #define POISON_FREE 0x6b /* for use-after-free poisoning */
503 #define POISON_END 0xa5 /* end-byte of poisoning */
504
505 /*
506 * memory layout of objects:
507 * 0 : objp
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
512 * redzone word.
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
517 */
518 static int obj_offset(struct kmem_cache *cachep)
519 {
520 return cachep->obj_offset;
521 }
522
523 static int obj_size(struct kmem_cache *cachep)
524 {
525 return cachep->obj_size;
526 }
527
528 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
529 {
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
532 }
533
534 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
535 {
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
538 return (unsigned long *)(objp + cachep->buffer_size -
539 2 * BYTES_PER_WORD);
540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
541 }
542
543 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
544 {
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
547 }
548
549 #else
550
551 #define obj_offset(x) 0
552 #define obj_size(cachep) (cachep->buffer_size)
553 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557 #endif
558
559 /*
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
562 */
563 #if defined(CONFIG_LARGE_ALLOCS)
564 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
565 #define MAX_GFP_ORDER 13 /* up to 32Mb */
566 #elif defined(CONFIG_MMU)
567 #define MAX_OBJ_ORDER 5 /* 32 pages */
568 #define MAX_GFP_ORDER 5 /* 32 pages */
569 #else
570 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
571 #define MAX_GFP_ORDER 8 /* up to 1Mb */
572 #endif
573
574 /*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577 #define BREAK_GFP_ORDER_HI 1
578 #define BREAK_GFP_ORDER_LO 0
579 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
581 /*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
585 */
586 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587 {
588 page->lru.next = (struct list_head *)cache;
589 }
590
591 static inline struct kmem_cache *page_get_cache(struct page *page)
592 {
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
595 return (struct kmem_cache *)page->lru.next;
596 }
597
598 static inline void page_set_slab(struct page *page, struct slab *slab)
599 {
600 page->lru.prev = (struct list_head *)slab;
601 }
602
603 static inline struct slab *page_get_slab(struct page *page)
604 {
605 if (unlikely(PageCompound(page)))
606 page = (struct page *)page_private(page);
607 return (struct slab *)page->lru.prev;
608 }
609
610 static inline struct kmem_cache *virt_to_cache(const void *obj)
611 {
612 struct page *page = virt_to_page(obj);
613 return page_get_cache(page);
614 }
615
616 static inline struct slab *virt_to_slab(const void *obj)
617 {
618 struct page *page = virt_to_page(obj);
619 return page_get_slab(page);
620 }
621
622 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
623 unsigned int idx)
624 {
625 return slab->s_mem + cache->buffer_size * idx;
626 }
627
628 static inline unsigned int obj_to_index(struct kmem_cache *cache,
629 struct slab *slab, void *obj)
630 {
631 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
632 }
633
634 /*
635 * These are the default caches for kmalloc. Custom caches can have other sizes.
636 */
637 struct cache_sizes malloc_sizes[] = {
638 #define CACHE(x) { .cs_size = (x) },
639 #include <linux/kmalloc_sizes.h>
640 CACHE(ULONG_MAX)
641 #undef CACHE
642 };
643 EXPORT_SYMBOL(malloc_sizes);
644
645 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
646 struct cache_names {
647 char *name;
648 char *name_dma;
649 };
650
651 static struct cache_names __initdata cache_names[] = {
652 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
653 #include <linux/kmalloc_sizes.h>
654 {NULL,}
655 #undef CACHE
656 };
657
658 static struct arraycache_init initarray_cache __initdata =
659 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
660 static struct arraycache_init initarray_generic =
661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662
663 /* internal cache of cache description objs */
664 static struct kmem_cache cache_cache = {
665 .batchcount = 1,
666 .limit = BOOT_CPUCACHE_ENTRIES,
667 .shared = 1,
668 .buffer_size = sizeof(struct kmem_cache),
669 .name = "kmem_cache",
670 #if DEBUG
671 .obj_size = sizeof(struct kmem_cache),
672 #endif
673 };
674
675 /* Guard access to the cache-chain. */
676 static DEFINE_MUTEX(cache_chain_mutex);
677 static struct list_head cache_chain;
678
679 /*
680 * vm_enough_memory() looks at this to determine how many slab-allocated pages
681 * are possibly freeable under pressure
682 *
683 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
684 */
685 atomic_t slab_reclaim_pages;
686
687 /*
688 * chicken and egg problem: delay the per-cpu array allocation
689 * until the general caches are up.
690 */
691 static enum {
692 NONE,
693 PARTIAL_AC,
694 PARTIAL_L3,
695 FULL
696 } g_cpucache_up;
697
698 /*
699 * used by boot code to determine if it can use slab based allocator
700 */
701 int slab_is_available(void)
702 {
703 return g_cpucache_up == FULL;
704 }
705
706 static DEFINE_PER_CPU(struct work_struct, reap_work);
707
708 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
709 int node);
710 static void enable_cpucache(struct kmem_cache *cachep);
711 static void cache_reap(void *unused);
712 static int __node_shrink(struct kmem_cache *cachep, int node);
713
714 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
715 {
716 return cachep->array[smp_processor_id()];
717 }
718
719 static inline struct kmem_cache *__find_general_cachep(size_t size,
720 gfp_t gfpflags)
721 {
722 struct cache_sizes *csizep = malloc_sizes;
723
724 #if DEBUG
725 /* This happens if someone tries to call
726 * kmem_cache_create(), or __kmalloc(), before
727 * the generic caches are initialized.
728 */
729 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
730 #endif
731 while (size > csizep->cs_size)
732 csizep++;
733
734 /*
735 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
736 * has cs_{dma,}cachep==NULL. Thus no special case
737 * for large kmalloc calls required.
738 */
739 if (unlikely(gfpflags & GFP_DMA))
740 return csizep->cs_dmacachep;
741 return csizep->cs_cachep;
742 }
743
744 struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
745 {
746 return __find_general_cachep(size, gfpflags);
747 }
748 EXPORT_SYMBOL(kmem_find_general_cachep);
749
750 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
751 {
752 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
753 }
754
755 /*
756 * Calculate the number of objects and left-over bytes for a given buffer size.
757 */
758 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
759 size_t align, int flags, size_t *left_over,
760 unsigned int *num)
761 {
762 int nr_objs;
763 size_t mgmt_size;
764 size_t slab_size = PAGE_SIZE << gfporder;
765
766 /*
767 * The slab management structure can be either off the slab or
768 * on it. For the latter case, the memory allocated for a
769 * slab is used for:
770 *
771 * - The struct slab
772 * - One kmem_bufctl_t for each object
773 * - Padding to respect alignment of @align
774 * - @buffer_size bytes for each object
775 *
776 * If the slab management structure is off the slab, then the
777 * alignment will already be calculated into the size. Because
778 * the slabs are all pages aligned, the objects will be at the
779 * correct alignment when allocated.
780 */
781 if (flags & CFLGS_OFF_SLAB) {
782 mgmt_size = 0;
783 nr_objs = slab_size / buffer_size;
784
785 if (nr_objs > SLAB_LIMIT)
786 nr_objs = SLAB_LIMIT;
787 } else {
788 /*
789 * Ignore padding for the initial guess. The padding
790 * is at most @align-1 bytes, and @buffer_size is at
791 * least @align. In the worst case, this result will
792 * be one greater than the number of objects that fit
793 * into the memory allocation when taking the padding
794 * into account.
795 */
796 nr_objs = (slab_size - sizeof(struct slab)) /
797 (buffer_size + sizeof(kmem_bufctl_t));
798
799 /*
800 * This calculated number will be either the right
801 * amount, or one greater than what we want.
802 */
803 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
804 > slab_size)
805 nr_objs--;
806
807 if (nr_objs > SLAB_LIMIT)
808 nr_objs = SLAB_LIMIT;
809
810 mgmt_size = slab_mgmt_size(nr_objs, align);
811 }
812 *num = nr_objs;
813 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
814 }
815
816 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
817
818 static void __slab_error(const char *function, struct kmem_cache *cachep,
819 char *msg)
820 {
821 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
822 function, cachep->name, msg);
823 dump_stack();
824 }
825
826 #ifdef CONFIG_NUMA
827 /*
828 * Special reaping functions for NUMA systems called from cache_reap().
829 * These take care of doing round robin flushing of alien caches (containing
830 * objects freed on different nodes from which they were allocated) and the
831 * flushing of remote pcps by calling drain_node_pages.
832 */
833 static DEFINE_PER_CPU(unsigned long, reap_node);
834
835 static void init_reap_node(int cpu)
836 {
837 int node;
838
839 node = next_node(cpu_to_node(cpu), node_online_map);
840 if (node == MAX_NUMNODES)
841 node = first_node(node_online_map);
842
843 __get_cpu_var(reap_node) = node;
844 }
845
846 static void next_reap_node(void)
847 {
848 int node = __get_cpu_var(reap_node);
849
850 /*
851 * Also drain per cpu pages on remote zones
852 */
853 if (node != numa_node_id())
854 drain_node_pages(node);
855
856 node = next_node(node, node_online_map);
857 if (unlikely(node >= MAX_NUMNODES))
858 node = first_node(node_online_map);
859 __get_cpu_var(reap_node) = node;
860 }
861
862 #else
863 #define init_reap_node(cpu) do { } while (0)
864 #define next_reap_node(void) do { } while (0)
865 #endif
866
867 /*
868 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
869 * via the workqueue/eventd.
870 * Add the CPU number into the expiration time to minimize the possibility of
871 * the CPUs getting into lockstep and contending for the global cache chain
872 * lock.
873 */
874 static void __devinit start_cpu_timer(int cpu)
875 {
876 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
877
878 /*
879 * When this gets called from do_initcalls via cpucache_init(),
880 * init_workqueues() has already run, so keventd will be setup
881 * at that time.
882 */
883 if (keventd_up() && reap_work->func == NULL) {
884 init_reap_node(cpu);
885 INIT_WORK(reap_work, cache_reap, NULL);
886 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
887 }
888 }
889
890 static struct array_cache *alloc_arraycache(int node, int entries,
891 int batchcount)
892 {
893 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
894 struct array_cache *nc = NULL;
895
896 nc = kmalloc_node(memsize, GFP_KERNEL, node);
897 if (nc) {
898 nc->avail = 0;
899 nc->limit = entries;
900 nc->batchcount = batchcount;
901 nc->touched = 0;
902 spin_lock_init(&nc->lock);
903 }
904 return nc;
905 }
906
907 /*
908 * Transfer objects in one arraycache to another.
909 * Locking must be handled by the caller.
910 *
911 * Return the number of entries transferred.
912 */
913 static int transfer_objects(struct array_cache *to,
914 struct array_cache *from, unsigned int max)
915 {
916 /* Figure out how many entries to transfer */
917 int nr = min(min(from->avail, max), to->limit - to->avail);
918
919 if (!nr)
920 return 0;
921
922 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
923 sizeof(void *) *nr);
924
925 from->avail -= nr;
926 to->avail += nr;
927 to->touched = 1;
928 return nr;
929 }
930
931 #ifdef CONFIG_NUMA
932 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
933 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
934
935 static struct array_cache **alloc_alien_cache(int node, int limit)
936 {
937 struct array_cache **ac_ptr;
938 int memsize = sizeof(void *) * MAX_NUMNODES;
939 int i;
940
941 if (limit > 1)
942 limit = 12;
943 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
944 if (ac_ptr) {
945 for_each_node(i) {
946 if (i == node || !node_online(i)) {
947 ac_ptr[i] = NULL;
948 continue;
949 }
950 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
951 if (!ac_ptr[i]) {
952 for (i--; i <= 0; i--)
953 kfree(ac_ptr[i]);
954 kfree(ac_ptr);
955 return NULL;
956 }
957 }
958 }
959 return ac_ptr;
960 }
961
962 static void free_alien_cache(struct array_cache **ac_ptr)
963 {
964 int i;
965
966 if (!ac_ptr)
967 return;
968 for_each_node(i)
969 kfree(ac_ptr[i]);
970 kfree(ac_ptr);
971 }
972
973 static void __drain_alien_cache(struct kmem_cache *cachep,
974 struct array_cache *ac, int node)
975 {
976 struct kmem_list3 *rl3 = cachep->nodelists[node];
977
978 if (ac->avail) {
979 spin_lock(&rl3->list_lock);
980 /*
981 * Stuff objects into the remote nodes shared array first.
982 * That way we could avoid the overhead of putting the objects
983 * into the free lists and getting them back later.
984 */
985 if (rl3->shared)
986 transfer_objects(rl3->shared, ac, ac->limit);
987
988 free_block(cachep, ac->entry, ac->avail, node);
989 ac->avail = 0;
990 spin_unlock(&rl3->list_lock);
991 }
992 }
993
994 /*
995 * Called from cache_reap() to regularly drain alien caches round robin.
996 */
997 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
998 {
999 int node = __get_cpu_var(reap_node);
1000
1001 if (l3->alien) {
1002 struct array_cache *ac = l3->alien[node];
1003
1004 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1005 __drain_alien_cache(cachep, ac, node);
1006 spin_unlock_irq(&ac->lock);
1007 }
1008 }
1009 }
1010
1011 static void drain_alien_cache(struct kmem_cache *cachep,
1012 struct array_cache **alien)
1013 {
1014 int i = 0;
1015 struct array_cache *ac;
1016 unsigned long flags;
1017
1018 for_each_online_node(i) {
1019 ac = alien[i];
1020 if (ac) {
1021 spin_lock_irqsave(&ac->lock, flags);
1022 __drain_alien_cache(cachep, ac, i);
1023 spin_unlock_irqrestore(&ac->lock, flags);
1024 }
1025 }
1026 }
1027
1028 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1029 {
1030 struct slab *slabp = virt_to_slab(objp);
1031 int nodeid = slabp->nodeid;
1032 struct kmem_list3 *l3;
1033 struct array_cache *alien = NULL;
1034
1035 /*
1036 * Make sure we are not freeing a object from another node to the array
1037 * cache on this cpu.
1038 */
1039 if (likely(slabp->nodeid == numa_node_id()))
1040 return 0;
1041
1042 l3 = cachep->nodelists[numa_node_id()];
1043 STATS_INC_NODEFREES(cachep);
1044 if (l3->alien && l3->alien[nodeid]) {
1045 alien = l3->alien[nodeid];
1046 spin_lock(&alien->lock);
1047 if (unlikely(alien->avail == alien->limit)) {
1048 STATS_INC_ACOVERFLOW(cachep);
1049 __drain_alien_cache(cachep, alien, nodeid);
1050 }
1051 alien->entry[alien->avail++] = objp;
1052 spin_unlock(&alien->lock);
1053 } else {
1054 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1055 free_block(cachep, &objp, 1, nodeid);
1056 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1057 }
1058 return 1;
1059 }
1060
1061 #else
1062
1063 #define drain_alien_cache(cachep, alien) do { } while (0)
1064 #define reap_alien(cachep, l3) do { } while (0)
1065
1066 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1067 {
1068 return (struct array_cache **) 0x01020304ul;
1069 }
1070
1071 static inline void free_alien_cache(struct array_cache **ac_ptr)
1072 {
1073 }
1074
1075 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1076 {
1077 return 0;
1078 }
1079
1080 #endif
1081
1082 static int cpuup_callback(struct notifier_block *nfb,
1083 unsigned long action, void *hcpu)
1084 {
1085 long cpu = (long)hcpu;
1086 struct kmem_cache *cachep;
1087 struct kmem_list3 *l3 = NULL;
1088 int node = cpu_to_node(cpu);
1089 int memsize = sizeof(struct kmem_list3);
1090
1091 switch (action) {
1092 case CPU_UP_PREPARE:
1093 mutex_lock(&cache_chain_mutex);
1094 /*
1095 * We need to do this right in the beginning since
1096 * alloc_arraycache's are going to use this list.
1097 * kmalloc_node allows us to add the slab to the right
1098 * kmem_list3 and not this cpu's kmem_list3
1099 */
1100
1101 list_for_each_entry(cachep, &cache_chain, next) {
1102 /*
1103 * Set up the size64 kmemlist for cpu before we can
1104 * begin anything. Make sure some other cpu on this
1105 * node has not already allocated this
1106 */
1107 if (!cachep->nodelists[node]) {
1108 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1109 if (!l3)
1110 goto bad;
1111 kmem_list3_init(l3);
1112 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1113 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1114
1115 /*
1116 * The l3s don't come and go as CPUs come and
1117 * go. cache_chain_mutex is sufficient
1118 * protection here.
1119 */
1120 cachep->nodelists[node] = l3;
1121 }
1122
1123 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1124 cachep->nodelists[node]->free_limit =
1125 (1 + nr_cpus_node(node)) *
1126 cachep->batchcount + cachep->num;
1127 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1128 }
1129
1130 /*
1131 * Now we can go ahead with allocating the shared arrays and
1132 * array caches
1133 */
1134 list_for_each_entry(cachep, &cache_chain, next) {
1135 struct array_cache *nc;
1136 struct array_cache *shared;
1137 struct array_cache **alien;
1138
1139 nc = alloc_arraycache(node, cachep->limit,
1140 cachep->batchcount);
1141 if (!nc)
1142 goto bad;
1143 shared = alloc_arraycache(node,
1144 cachep->shared * cachep->batchcount,
1145 0xbaadf00d);
1146 if (!shared)
1147 goto bad;
1148
1149 alien = alloc_alien_cache(node, cachep->limit);
1150 if (!alien)
1151 goto bad;
1152 cachep->array[cpu] = nc;
1153 l3 = cachep->nodelists[node];
1154 BUG_ON(!l3);
1155
1156 spin_lock_irq(&l3->list_lock);
1157 if (!l3->shared) {
1158 /*
1159 * We are serialised from CPU_DEAD or
1160 * CPU_UP_CANCELLED by the cpucontrol lock
1161 */
1162 l3->shared = shared;
1163 shared = NULL;
1164 }
1165 #ifdef CONFIG_NUMA
1166 if (!l3->alien) {
1167 l3->alien = alien;
1168 alien = NULL;
1169 }
1170 #endif
1171 spin_unlock_irq(&l3->list_lock);
1172 kfree(shared);
1173 free_alien_cache(alien);
1174 }
1175 mutex_unlock(&cache_chain_mutex);
1176 break;
1177 case CPU_ONLINE:
1178 start_cpu_timer(cpu);
1179 break;
1180 #ifdef CONFIG_HOTPLUG_CPU
1181 case CPU_DEAD:
1182 /*
1183 * Even if all the cpus of a node are down, we don't free the
1184 * kmem_list3 of any cache. This to avoid a race between
1185 * cpu_down, and a kmalloc allocation from another cpu for
1186 * memory from the node of the cpu going down. The list3
1187 * structure is usually allocated from kmem_cache_create() and
1188 * gets destroyed at kmem_cache_destroy().
1189 */
1190 /* fall thru */
1191 case CPU_UP_CANCELED:
1192 mutex_lock(&cache_chain_mutex);
1193 list_for_each_entry(cachep, &cache_chain, next) {
1194 struct array_cache *nc;
1195 struct array_cache *shared;
1196 struct array_cache **alien;
1197 cpumask_t mask;
1198
1199 mask = node_to_cpumask(node);
1200 /* cpu is dead; no one can alloc from it. */
1201 nc = cachep->array[cpu];
1202 cachep->array[cpu] = NULL;
1203 l3 = cachep->nodelists[node];
1204
1205 if (!l3)
1206 goto free_array_cache;
1207
1208 spin_lock_irq(&l3->list_lock);
1209
1210 /* Free limit for this kmem_list3 */
1211 l3->free_limit -= cachep->batchcount;
1212 if (nc)
1213 free_block(cachep, nc->entry, nc->avail, node);
1214
1215 if (!cpus_empty(mask)) {
1216 spin_unlock_irq(&l3->list_lock);
1217 goto free_array_cache;
1218 }
1219
1220 shared = l3->shared;
1221 if (shared) {
1222 free_block(cachep, l3->shared->entry,
1223 l3->shared->avail, node);
1224 l3->shared = NULL;
1225 }
1226
1227 alien = l3->alien;
1228 l3->alien = NULL;
1229
1230 spin_unlock_irq(&l3->list_lock);
1231
1232 kfree(shared);
1233 if (alien) {
1234 drain_alien_cache(cachep, alien);
1235 free_alien_cache(alien);
1236 }
1237 free_array_cache:
1238 kfree(nc);
1239 }
1240 /*
1241 * In the previous loop, all the objects were freed to
1242 * the respective cache's slabs, now we can go ahead and
1243 * shrink each nodelist to its limit.
1244 */
1245 list_for_each_entry(cachep, &cache_chain, next) {
1246 l3 = cachep->nodelists[node];
1247 if (!l3)
1248 continue;
1249 spin_lock_irq(&l3->list_lock);
1250 /* free slabs belonging to this node */
1251 __node_shrink(cachep, node);
1252 spin_unlock_irq(&l3->list_lock);
1253 }
1254 mutex_unlock(&cache_chain_mutex);
1255 break;
1256 #endif
1257 }
1258 return NOTIFY_OK;
1259 bad:
1260 mutex_unlock(&cache_chain_mutex);
1261 return NOTIFY_BAD;
1262 }
1263
1264 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1265
1266 /*
1267 * swap the static kmem_list3 with kmalloced memory
1268 */
1269 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1270 int nodeid)
1271 {
1272 struct kmem_list3 *ptr;
1273
1274 BUG_ON(cachep->nodelists[nodeid] != list);
1275 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1276 BUG_ON(!ptr);
1277
1278 local_irq_disable();
1279 memcpy(ptr, list, sizeof(struct kmem_list3));
1280 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1281 cachep->nodelists[nodeid] = ptr;
1282 local_irq_enable();
1283 }
1284
1285 /*
1286 * Initialisation. Called after the page allocator have been initialised and
1287 * before smp_init().
1288 */
1289 void __init kmem_cache_init(void)
1290 {
1291 size_t left_over;
1292 struct cache_sizes *sizes;
1293 struct cache_names *names;
1294 int i;
1295 int order;
1296
1297 for (i = 0; i < NUM_INIT_LISTS; i++) {
1298 kmem_list3_init(&initkmem_list3[i]);
1299 if (i < MAX_NUMNODES)
1300 cache_cache.nodelists[i] = NULL;
1301 }
1302
1303 /*
1304 * Fragmentation resistance on low memory - only use bigger
1305 * page orders on machines with more than 32MB of memory.
1306 */
1307 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1308 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1309
1310 /* Bootstrap is tricky, because several objects are allocated
1311 * from caches that do not exist yet:
1312 * 1) initialize the cache_cache cache: it contains the struct
1313 * kmem_cache structures of all caches, except cache_cache itself:
1314 * cache_cache is statically allocated.
1315 * Initially an __init data area is used for the head array and the
1316 * kmem_list3 structures, it's replaced with a kmalloc allocated
1317 * array at the end of the bootstrap.
1318 * 2) Create the first kmalloc cache.
1319 * The struct kmem_cache for the new cache is allocated normally.
1320 * An __init data area is used for the head array.
1321 * 3) Create the remaining kmalloc caches, with minimally sized
1322 * head arrays.
1323 * 4) Replace the __init data head arrays for cache_cache and the first
1324 * kmalloc cache with kmalloc allocated arrays.
1325 * 5) Replace the __init data for kmem_list3 for cache_cache and
1326 * the other cache's with kmalloc allocated memory.
1327 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1328 */
1329
1330 /* 1) create the cache_cache */
1331 INIT_LIST_HEAD(&cache_chain);
1332 list_add(&cache_cache.next, &cache_chain);
1333 cache_cache.colour_off = cache_line_size();
1334 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1335 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1336
1337 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1338 cache_line_size());
1339
1340 for (order = 0; order < MAX_ORDER; order++) {
1341 cache_estimate(order, cache_cache.buffer_size,
1342 cache_line_size(), 0, &left_over, &cache_cache.num);
1343 if (cache_cache.num)
1344 break;
1345 }
1346 BUG_ON(!cache_cache.num);
1347 cache_cache.gfporder = order;
1348 cache_cache.colour = left_over / cache_cache.colour_off;
1349 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1350 sizeof(struct slab), cache_line_size());
1351
1352 /* 2+3) create the kmalloc caches */
1353 sizes = malloc_sizes;
1354 names = cache_names;
1355
1356 /*
1357 * Initialize the caches that provide memory for the array cache and the
1358 * kmem_list3 structures first. Without this, further allocations will
1359 * bug.
1360 */
1361
1362 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1363 sizes[INDEX_AC].cs_size,
1364 ARCH_KMALLOC_MINALIGN,
1365 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1366 NULL, NULL);
1367
1368 if (INDEX_AC != INDEX_L3) {
1369 sizes[INDEX_L3].cs_cachep =
1370 kmem_cache_create(names[INDEX_L3].name,
1371 sizes[INDEX_L3].cs_size,
1372 ARCH_KMALLOC_MINALIGN,
1373 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1374 NULL, NULL);
1375 }
1376
1377 while (sizes->cs_size != ULONG_MAX) {
1378 /*
1379 * For performance, all the general caches are L1 aligned.
1380 * This should be particularly beneficial on SMP boxes, as it
1381 * eliminates "false sharing".
1382 * Note for systems short on memory removing the alignment will
1383 * allow tighter packing of the smaller caches.
1384 */
1385 if (!sizes->cs_cachep) {
1386 sizes->cs_cachep = kmem_cache_create(names->name,
1387 sizes->cs_size,
1388 ARCH_KMALLOC_MINALIGN,
1389 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1390 NULL, NULL);
1391 }
1392
1393 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1394 sizes->cs_size,
1395 ARCH_KMALLOC_MINALIGN,
1396 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1397 SLAB_PANIC,
1398 NULL, NULL);
1399 sizes++;
1400 names++;
1401 }
1402 /* 4) Replace the bootstrap head arrays */
1403 {
1404 void *ptr;
1405
1406 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1407
1408 local_irq_disable();
1409 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1410 memcpy(ptr, cpu_cache_get(&cache_cache),
1411 sizeof(struct arraycache_init));
1412 cache_cache.array[smp_processor_id()] = ptr;
1413 local_irq_enable();
1414
1415 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1416
1417 local_irq_disable();
1418 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1419 != &initarray_generic.cache);
1420 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1421 sizeof(struct arraycache_init));
1422 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1423 ptr;
1424 local_irq_enable();
1425 }
1426 /* 5) Replace the bootstrap kmem_list3's */
1427 {
1428 int node;
1429 /* Replace the static kmem_list3 structures for the boot cpu */
1430 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1431 numa_node_id());
1432
1433 for_each_online_node(node) {
1434 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1435 &initkmem_list3[SIZE_AC + node], node);
1436
1437 if (INDEX_AC != INDEX_L3) {
1438 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1439 &initkmem_list3[SIZE_L3 + node],
1440 node);
1441 }
1442 }
1443 }
1444
1445 /* 6) resize the head arrays to their final sizes */
1446 {
1447 struct kmem_cache *cachep;
1448 mutex_lock(&cache_chain_mutex);
1449 list_for_each_entry(cachep, &cache_chain, next)
1450 enable_cpucache(cachep);
1451 mutex_unlock(&cache_chain_mutex);
1452 }
1453
1454 /* Done! */
1455 g_cpucache_up = FULL;
1456
1457 /*
1458 * Register a cpu startup notifier callback that initializes
1459 * cpu_cache_get for all new cpus
1460 */
1461 register_cpu_notifier(&cpucache_notifier);
1462
1463 /*
1464 * The reap timers are started later, with a module init call: That part
1465 * of the kernel is not yet operational.
1466 */
1467 }
1468
1469 static int __init cpucache_init(void)
1470 {
1471 int cpu;
1472
1473 /*
1474 * Register the timers that return unneeded pages to the page allocator
1475 */
1476 for_each_online_cpu(cpu)
1477 start_cpu_timer(cpu);
1478 return 0;
1479 }
1480 __initcall(cpucache_init);
1481
1482 /*
1483 * Interface to system's page allocator. No need to hold the cache-lock.
1484 *
1485 * If we requested dmaable memory, we will get it. Even if we
1486 * did not request dmaable memory, we might get it, but that
1487 * would be relatively rare and ignorable.
1488 */
1489 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1490 {
1491 struct page *page;
1492 void *addr;
1493 int i;
1494
1495 flags |= cachep->gfpflags;
1496 #ifndef CONFIG_MMU
1497 /* nommu uses slab's for process anonymous memory allocations, so
1498 * requires __GFP_COMP to properly refcount higher order allocations"
1499 */
1500 page = alloc_pages_node(nodeid, (flags | __GFP_COMP), cachep->gfporder);
1501 #else
1502 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1503 #endif
1504 if (!page)
1505 return NULL;
1506 addr = page_address(page);
1507
1508 i = (1 << cachep->gfporder);
1509 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1510 atomic_add(i, &slab_reclaim_pages);
1511 add_page_state(nr_slab, i);
1512 while (i--) {
1513 __SetPageSlab(page);
1514 page++;
1515 }
1516 return addr;
1517 }
1518
1519 /*
1520 * Interface to system's page release.
1521 */
1522 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1523 {
1524 unsigned long i = (1 << cachep->gfporder);
1525 struct page *page = virt_to_page(addr);
1526 const unsigned long nr_freed = i;
1527
1528 while (i--) {
1529 BUG_ON(!PageSlab(page));
1530 __ClearPageSlab(page);
1531 page++;
1532 }
1533 sub_page_state(nr_slab, nr_freed);
1534 if (current->reclaim_state)
1535 current->reclaim_state->reclaimed_slab += nr_freed;
1536 free_pages((unsigned long)addr, cachep->gfporder);
1537 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1538 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1539 }
1540
1541 static void kmem_rcu_free(struct rcu_head *head)
1542 {
1543 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1544 struct kmem_cache *cachep = slab_rcu->cachep;
1545
1546 kmem_freepages(cachep, slab_rcu->addr);
1547 if (OFF_SLAB(cachep))
1548 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1549 }
1550
1551 #if DEBUG
1552
1553 #ifdef CONFIG_DEBUG_PAGEALLOC
1554 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1555 unsigned long caller)
1556 {
1557 int size = obj_size(cachep);
1558
1559 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1560
1561 if (size < 5 * sizeof(unsigned long))
1562 return;
1563
1564 *addr++ = 0x12345678;
1565 *addr++ = caller;
1566 *addr++ = smp_processor_id();
1567 size -= 3 * sizeof(unsigned long);
1568 {
1569 unsigned long *sptr = &caller;
1570 unsigned long svalue;
1571
1572 while (!kstack_end(sptr)) {
1573 svalue = *sptr++;
1574 if (kernel_text_address(svalue)) {
1575 *addr++ = svalue;
1576 size -= sizeof(unsigned long);
1577 if (size <= sizeof(unsigned long))
1578 break;
1579 }
1580 }
1581
1582 }
1583 *addr++ = 0x87654321;
1584 }
1585 #endif
1586
1587 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1588 {
1589 int size = obj_size(cachep);
1590 addr = &((char *)addr)[obj_offset(cachep)];
1591
1592 memset(addr, val, size);
1593 *(unsigned char *)(addr + size - 1) = POISON_END;
1594 }
1595
1596 static void dump_line(char *data, int offset, int limit)
1597 {
1598 int i;
1599 printk(KERN_ERR "%03x:", offset);
1600 for (i = 0; i < limit; i++)
1601 printk(" %02x", (unsigned char)data[offset + i]);
1602 printk("\n");
1603 }
1604 #endif
1605
1606 #if DEBUG
1607
1608 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1609 {
1610 int i, size;
1611 char *realobj;
1612
1613 if (cachep->flags & SLAB_RED_ZONE) {
1614 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1615 *dbg_redzone1(cachep, objp),
1616 *dbg_redzone2(cachep, objp));
1617 }
1618
1619 if (cachep->flags & SLAB_STORE_USER) {
1620 printk(KERN_ERR "Last user: [<%p>]",
1621 *dbg_userword(cachep, objp));
1622 print_symbol("(%s)",
1623 (unsigned long)*dbg_userword(cachep, objp));
1624 printk("\n");
1625 }
1626 realobj = (char *)objp + obj_offset(cachep);
1627 size = obj_size(cachep);
1628 for (i = 0; i < size && lines; i += 16, lines--) {
1629 int limit;
1630 limit = 16;
1631 if (i + limit > size)
1632 limit = size - i;
1633 dump_line(realobj, i, limit);
1634 }
1635 }
1636
1637 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1638 {
1639 char *realobj;
1640 int size, i;
1641 int lines = 0;
1642
1643 realobj = (char *)objp + obj_offset(cachep);
1644 size = obj_size(cachep);
1645
1646 for (i = 0; i < size; i++) {
1647 char exp = POISON_FREE;
1648 if (i == size - 1)
1649 exp = POISON_END;
1650 if (realobj[i] != exp) {
1651 int limit;
1652 /* Mismatch ! */
1653 /* Print header */
1654 if (lines == 0) {
1655 printk(KERN_ERR
1656 "Slab corruption: start=%p, len=%d\n",
1657 realobj, size);
1658 print_objinfo(cachep, objp, 0);
1659 }
1660 /* Hexdump the affected line */
1661 i = (i / 16) * 16;
1662 limit = 16;
1663 if (i + limit > size)
1664 limit = size - i;
1665 dump_line(realobj, i, limit);
1666 i += 16;
1667 lines++;
1668 /* Limit to 5 lines */
1669 if (lines > 5)
1670 break;
1671 }
1672 }
1673 if (lines != 0) {
1674 /* Print some data about the neighboring objects, if they
1675 * exist:
1676 */
1677 struct slab *slabp = virt_to_slab(objp);
1678 unsigned int objnr;
1679
1680 objnr = obj_to_index(cachep, slabp, objp);
1681 if (objnr) {
1682 objp = index_to_obj(cachep, slabp, objnr - 1);
1683 realobj = (char *)objp + obj_offset(cachep);
1684 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1685 realobj, size);
1686 print_objinfo(cachep, objp, 2);
1687 }
1688 if (objnr + 1 < cachep->num) {
1689 objp = index_to_obj(cachep, slabp, objnr + 1);
1690 realobj = (char *)objp + obj_offset(cachep);
1691 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1692 realobj, size);
1693 print_objinfo(cachep, objp, 2);
1694 }
1695 }
1696 }
1697 #endif
1698
1699 #if DEBUG
1700 /**
1701 * slab_destroy_objs - destroy a slab and its objects
1702 * @cachep: cache pointer being destroyed
1703 * @slabp: slab pointer being destroyed
1704 *
1705 * Call the registered destructor for each object in a slab that is being
1706 * destroyed.
1707 */
1708 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1709 {
1710 int i;
1711 for (i = 0; i < cachep->num; i++) {
1712 void *objp = index_to_obj(cachep, slabp, i);
1713
1714 if (cachep->flags & SLAB_POISON) {
1715 #ifdef CONFIG_DEBUG_PAGEALLOC
1716 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1717 OFF_SLAB(cachep))
1718 kernel_map_pages(virt_to_page(objp),
1719 cachep->buffer_size / PAGE_SIZE, 1);
1720 else
1721 check_poison_obj(cachep, objp);
1722 #else
1723 check_poison_obj(cachep, objp);
1724 #endif
1725 }
1726 if (cachep->flags & SLAB_RED_ZONE) {
1727 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1728 slab_error(cachep, "start of a freed object "
1729 "was overwritten");
1730 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1731 slab_error(cachep, "end of a freed object "
1732 "was overwritten");
1733 }
1734 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1735 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1736 }
1737 }
1738 #else
1739 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1740 {
1741 if (cachep->dtor) {
1742 int i;
1743 for (i = 0; i < cachep->num; i++) {
1744 void *objp = index_to_obj(cachep, slabp, i);
1745 (cachep->dtor) (objp, cachep, 0);
1746 }
1747 }
1748 }
1749 #endif
1750
1751 /**
1752 * slab_destroy - destroy and release all objects in a slab
1753 * @cachep: cache pointer being destroyed
1754 * @slabp: slab pointer being destroyed
1755 *
1756 * Destroy all the objs in a slab, and release the mem back to the system.
1757 * Before calling the slab must have been unlinked from the cache. The
1758 * cache-lock is not held/needed.
1759 */
1760 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1761 {
1762 void *addr = slabp->s_mem - slabp->colouroff;
1763
1764 slab_destroy_objs(cachep, slabp);
1765 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1766 struct slab_rcu *slab_rcu;
1767
1768 slab_rcu = (struct slab_rcu *)slabp;
1769 slab_rcu->cachep = cachep;
1770 slab_rcu->addr = addr;
1771 call_rcu(&slab_rcu->head, kmem_rcu_free);
1772 } else {
1773 kmem_freepages(cachep, addr);
1774 if (OFF_SLAB(cachep))
1775 kmem_cache_free(cachep->slabp_cache, slabp);
1776 }
1777 }
1778
1779 /*
1780 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1781 * size of kmem_list3.
1782 */
1783 static void set_up_list3s(struct kmem_cache *cachep, int index)
1784 {
1785 int node;
1786
1787 for_each_online_node(node) {
1788 cachep->nodelists[node] = &initkmem_list3[index + node];
1789 cachep->nodelists[node]->next_reap = jiffies +
1790 REAPTIMEOUT_LIST3 +
1791 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1792 }
1793 }
1794
1795 /**
1796 * calculate_slab_order - calculate size (page order) of slabs
1797 * @cachep: pointer to the cache that is being created
1798 * @size: size of objects to be created in this cache.
1799 * @align: required alignment for the objects.
1800 * @flags: slab allocation flags
1801 *
1802 * Also calculates the number of objects per slab.
1803 *
1804 * This could be made much more intelligent. For now, try to avoid using
1805 * high order pages for slabs. When the gfp() functions are more friendly
1806 * towards high-order requests, this should be changed.
1807 */
1808 static size_t calculate_slab_order(struct kmem_cache *cachep,
1809 size_t size, size_t align, unsigned long flags)
1810 {
1811 unsigned long offslab_limit;
1812 size_t left_over = 0;
1813 int gfporder;
1814
1815 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1816 unsigned int num;
1817 size_t remainder;
1818
1819 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1820 if (!num)
1821 continue;
1822
1823 if (flags & CFLGS_OFF_SLAB) {
1824 /*
1825 * Max number of objs-per-slab for caches which
1826 * use off-slab slabs. Needed to avoid a possible
1827 * looping condition in cache_grow().
1828 */
1829 offslab_limit = size - sizeof(struct slab);
1830 offslab_limit /= sizeof(kmem_bufctl_t);
1831
1832 if (num > offslab_limit)
1833 break;
1834 }
1835
1836 /* Found something acceptable - save it away */
1837 cachep->num = num;
1838 cachep->gfporder = gfporder;
1839 left_over = remainder;
1840
1841 /*
1842 * A VFS-reclaimable slab tends to have most allocations
1843 * as GFP_NOFS and we really don't want to have to be allocating
1844 * higher-order pages when we are unable to shrink dcache.
1845 */
1846 if (flags & SLAB_RECLAIM_ACCOUNT)
1847 break;
1848
1849 /*
1850 * Large number of objects is good, but very large slabs are
1851 * currently bad for the gfp()s.
1852 */
1853 if (gfporder >= slab_break_gfp_order)
1854 break;
1855
1856 /*
1857 * Acceptable internal fragmentation?
1858 */
1859 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1860 break;
1861 }
1862 return left_over;
1863 }
1864
1865 static void setup_cpu_cache(struct kmem_cache *cachep)
1866 {
1867 if (g_cpucache_up == FULL) {
1868 enable_cpucache(cachep);
1869 return;
1870 }
1871 if (g_cpucache_up == NONE) {
1872 /*
1873 * Note: the first kmem_cache_create must create the cache
1874 * that's used by kmalloc(24), otherwise the creation of
1875 * further caches will BUG().
1876 */
1877 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1878
1879 /*
1880 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1881 * the first cache, then we need to set up all its list3s,
1882 * otherwise the creation of further caches will BUG().
1883 */
1884 set_up_list3s(cachep, SIZE_AC);
1885 if (INDEX_AC == INDEX_L3)
1886 g_cpucache_up = PARTIAL_L3;
1887 else
1888 g_cpucache_up = PARTIAL_AC;
1889 } else {
1890 cachep->array[smp_processor_id()] =
1891 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1892
1893 if (g_cpucache_up == PARTIAL_AC) {
1894 set_up_list3s(cachep, SIZE_L3);
1895 g_cpucache_up = PARTIAL_L3;
1896 } else {
1897 int node;
1898 for_each_online_node(node) {
1899 cachep->nodelists[node] =
1900 kmalloc_node(sizeof(struct kmem_list3),
1901 GFP_KERNEL, node);
1902 BUG_ON(!cachep->nodelists[node]);
1903 kmem_list3_init(cachep->nodelists[node]);
1904 }
1905 }
1906 }
1907 cachep->nodelists[numa_node_id()]->next_reap =
1908 jiffies + REAPTIMEOUT_LIST3 +
1909 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1910
1911 cpu_cache_get(cachep)->avail = 0;
1912 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1913 cpu_cache_get(cachep)->batchcount = 1;
1914 cpu_cache_get(cachep)->touched = 0;
1915 cachep->batchcount = 1;
1916 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1917 }
1918
1919 /**
1920 * kmem_cache_create - Create a cache.
1921 * @name: A string which is used in /proc/slabinfo to identify this cache.
1922 * @size: The size of objects to be created in this cache.
1923 * @align: The required alignment for the objects.
1924 * @flags: SLAB flags
1925 * @ctor: A constructor for the objects.
1926 * @dtor: A destructor for the objects.
1927 *
1928 * Returns a ptr to the cache on success, NULL on failure.
1929 * Cannot be called within a int, but can be interrupted.
1930 * The @ctor is run when new pages are allocated by the cache
1931 * and the @dtor is run before the pages are handed back.
1932 *
1933 * @name must be valid until the cache is destroyed. This implies that
1934 * the module calling this has to destroy the cache before getting unloaded.
1935 *
1936 * The flags are
1937 *
1938 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1939 * to catch references to uninitialised memory.
1940 *
1941 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1942 * for buffer overruns.
1943 *
1944 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1945 * cacheline. This can be beneficial if you're counting cycles as closely
1946 * as davem.
1947 */
1948 struct kmem_cache *
1949 kmem_cache_create (const char *name, size_t size, size_t align,
1950 unsigned long flags,
1951 void (*ctor)(void*, struct kmem_cache *, unsigned long),
1952 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1953 {
1954 size_t left_over, slab_size, ralign;
1955 struct kmem_cache *cachep = NULL;
1956 struct list_head *p;
1957
1958 /*
1959 * Sanity checks... these are all serious usage bugs.
1960 */
1961 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1962 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1963 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1964 name);
1965 BUG();
1966 }
1967
1968 /*
1969 * Prevent CPUs from coming and going.
1970 * lock_cpu_hotplug() nests outside cache_chain_mutex
1971 */
1972 lock_cpu_hotplug();
1973
1974 mutex_lock(&cache_chain_mutex);
1975
1976 list_for_each(p, &cache_chain) {
1977 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1978 mm_segment_t old_fs = get_fs();
1979 char tmp;
1980 int res;
1981
1982 /*
1983 * This happens when the module gets unloaded and doesn't
1984 * destroy its slab cache and no-one else reuses the vmalloc
1985 * area of the module. Print a warning.
1986 */
1987 set_fs(KERNEL_DS);
1988 res = __get_user(tmp, pc->name);
1989 set_fs(old_fs);
1990 if (res) {
1991 printk("SLAB: cache with size %d has lost its name\n",
1992 pc->buffer_size);
1993 continue;
1994 }
1995
1996 if (!strcmp(pc->name, name)) {
1997 printk("kmem_cache_create: duplicate cache %s\n", name);
1998 dump_stack();
1999 goto oops;
2000 }
2001 }
2002
2003 #if DEBUG
2004 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2005 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2006 /* No constructor, but inital state check requested */
2007 printk(KERN_ERR "%s: No con, but init state check "
2008 "requested - %s\n", __FUNCTION__, name);
2009 flags &= ~SLAB_DEBUG_INITIAL;
2010 }
2011 #if FORCED_DEBUG
2012 /*
2013 * Enable redzoning and last user accounting, except for caches with
2014 * large objects, if the increased size would increase the object size
2015 * above the next power of two: caches with object sizes just above a
2016 * power of two have a significant amount of internal fragmentation.
2017 */
2018 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2019 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2020 if (!(flags & SLAB_DESTROY_BY_RCU))
2021 flags |= SLAB_POISON;
2022 #endif
2023 if (flags & SLAB_DESTROY_BY_RCU)
2024 BUG_ON(flags & SLAB_POISON);
2025 #endif
2026 if (flags & SLAB_DESTROY_BY_RCU)
2027 BUG_ON(dtor);
2028
2029 /*
2030 * Always checks flags, a caller might be expecting debug support which
2031 * isn't available.
2032 */
2033 BUG_ON(flags & ~CREATE_MASK);
2034
2035 /*
2036 * Check that size is in terms of words. This is needed to avoid
2037 * unaligned accesses for some archs when redzoning is used, and makes
2038 * sure any on-slab bufctl's are also correctly aligned.
2039 */
2040 if (size & (BYTES_PER_WORD - 1)) {
2041 size += (BYTES_PER_WORD - 1);
2042 size &= ~(BYTES_PER_WORD - 1);
2043 }
2044
2045 /* calculate the final buffer alignment: */
2046
2047 /* 1) arch recommendation: can be overridden for debug */
2048 if (flags & SLAB_HWCACHE_ALIGN) {
2049 /*
2050 * Default alignment: as specified by the arch code. Except if
2051 * an object is really small, then squeeze multiple objects into
2052 * one cacheline.
2053 */
2054 ralign = cache_line_size();
2055 while (size <= ralign / 2)
2056 ralign /= 2;
2057 } else {
2058 ralign = BYTES_PER_WORD;
2059 }
2060 /* 2) arch mandated alignment: disables debug if necessary */
2061 if (ralign < ARCH_SLAB_MINALIGN) {
2062 ralign = ARCH_SLAB_MINALIGN;
2063 if (ralign > BYTES_PER_WORD)
2064 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2065 }
2066 /* 3) caller mandated alignment: disables debug if necessary */
2067 if (ralign < align) {
2068 ralign = align;
2069 if (ralign > BYTES_PER_WORD)
2070 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2071 }
2072 /*
2073 * 4) Store it. Note that the debug code below can reduce
2074 * the alignment to BYTES_PER_WORD.
2075 */
2076 align = ralign;
2077
2078 /* Get cache's description obj. */
2079 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2080 if (!cachep)
2081 goto oops;
2082
2083 #if DEBUG
2084 cachep->obj_size = size;
2085
2086 if (flags & SLAB_RED_ZONE) {
2087 /* redzoning only works with word aligned caches */
2088 align = BYTES_PER_WORD;
2089
2090 /* add space for red zone words */
2091 cachep->obj_offset += BYTES_PER_WORD;
2092 size += 2 * BYTES_PER_WORD;
2093 }
2094 if (flags & SLAB_STORE_USER) {
2095 /* user store requires word alignment and
2096 * one word storage behind the end of the real
2097 * object.
2098 */
2099 align = BYTES_PER_WORD;
2100 size += BYTES_PER_WORD;
2101 }
2102 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2103 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2104 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2105 cachep->obj_offset += PAGE_SIZE - size;
2106 size = PAGE_SIZE;
2107 }
2108 #endif
2109 #endif
2110
2111 /* Determine if the slab management is 'on' or 'off' slab. */
2112 if (size >= (PAGE_SIZE >> 3))
2113 /*
2114 * Size is large, assume best to place the slab management obj
2115 * off-slab (should allow better packing of objs).
2116 */
2117 flags |= CFLGS_OFF_SLAB;
2118
2119 size = ALIGN(size, align);
2120
2121 left_over = calculate_slab_order(cachep, size, align, flags);
2122
2123 if (!cachep->num) {
2124 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2125 kmem_cache_free(&cache_cache, cachep);
2126 cachep = NULL;
2127 goto oops;
2128 }
2129 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2130 + sizeof(struct slab), align);
2131
2132 /*
2133 * If the slab has been placed off-slab, and we have enough space then
2134 * move it on-slab. This is at the expense of any extra colouring.
2135 */
2136 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2137 flags &= ~CFLGS_OFF_SLAB;
2138 left_over -= slab_size;
2139 }
2140
2141 if (flags & CFLGS_OFF_SLAB) {
2142 /* really off slab. No need for manual alignment */
2143 slab_size =
2144 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2145 }
2146
2147 cachep->colour_off = cache_line_size();
2148 /* Offset must be a multiple of the alignment. */
2149 if (cachep->colour_off < align)
2150 cachep->colour_off = align;
2151 cachep->colour = left_over / cachep->colour_off;
2152 cachep->slab_size = slab_size;
2153 cachep->flags = flags;
2154 cachep->gfpflags = 0;
2155 if (flags & SLAB_CACHE_DMA)
2156 cachep->gfpflags |= GFP_DMA;
2157 cachep->buffer_size = size;
2158
2159 if (flags & CFLGS_OFF_SLAB)
2160 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2161 cachep->ctor = ctor;
2162 cachep->dtor = dtor;
2163 cachep->name = name;
2164
2165
2166 setup_cpu_cache(cachep);
2167
2168 /* cache setup completed, link it into the list */
2169 list_add(&cachep->next, &cache_chain);
2170 oops:
2171 if (!cachep && (flags & SLAB_PANIC))
2172 panic("kmem_cache_create(): failed to create slab `%s'\n",
2173 name);
2174 mutex_unlock(&cache_chain_mutex);
2175 unlock_cpu_hotplug();
2176 return cachep;
2177 }
2178 EXPORT_SYMBOL(kmem_cache_create);
2179
2180 #if DEBUG
2181 static void check_irq_off(void)
2182 {
2183 BUG_ON(!irqs_disabled());
2184 }
2185
2186 static void check_irq_on(void)
2187 {
2188 BUG_ON(irqs_disabled());
2189 }
2190
2191 static void check_spinlock_acquired(struct kmem_cache *cachep)
2192 {
2193 #ifdef CONFIG_SMP
2194 check_irq_off();
2195 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2196 #endif
2197 }
2198
2199 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2200 {
2201 #ifdef CONFIG_SMP
2202 check_irq_off();
2203 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2204 #endif
2205 }
2206
2207 #else
2208 #define check_irq_off() do { } while(0)
2209 #define check_irq_on() do { } while(0)
2210 #define check_spinlock_acquired(x) do { } while(0)
2211 #define check_spinlock_acquired_node(x, y) do { } while(0)
2212 #endif
2213
2214 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2215 struct array_cache *ac,
2216 int force, int node);
2217
2218 static void do_drain(void *arg)
2219 {
2220 struct kmem_cache *cachep = arg;
2221 struct array_cache *ac;
2222 int node = numa_node_id();
2223
2224 check_irq_off();
2225 ac = cpu_cache_get(cachep);
2226 spin_lock(&cachep->nodelists[node]->list_lock);
2227 free_block(cachep, ac->entry, ac->avail, node);
2228 spin_unlock(&cachep->nodelists[node]->list_lock);
2229 ac->avail = 0;
2230 }
2231
2232 static void drain_cpu_caches(struct kmem_cache *cachep)
2233 {
2234 struct kmem_list3 *l3;
2235 int node;
2236
2237 on_each_cpu(do_drain, cachep, 1, 1);
2238 check_irq_on();
2239 for_each_online_node(node) {
2240 l3 = cachep->nodelists[node];
2241 if (l3 && l3->alien)
2242 drain_alien_cache(cachep, l3->alien);
2243 }
2244
2245 for_each_online_node(node) {
2246 l3 = cachep->nodelists[node];
2247 if (l3)
2248 drain_array(cachep, l3, l3->shared, 1, node);
2249 }
2250 }
2251
2252 static int __node_shrink(struct kmem_cache *cachep, int node)
2253 {
2254 struct slab *slabp;
2255 struct kmem_list3 *l3 = cachep->nodelists[node];
2256 int ret;
2257
2258 for (;;) {
2259 struct list_head *p;
2260
2261 p = l3->slabs_free.prev;
2262 if (p == &l3->slabs_free)
2263 break;
2264
2265 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2266 #if DEBUG
2267 BUG_ON(slabp->inuse);
2268 #endif
2269 list_del(&slabp->list);
2270
2271 l3->free_objects -= cachep->num;
2272 spin_unlock_irq(&l3->list_lock);
2273 slab_destroy(cachep, slabp);
2274 spin_lock_irq(&l3->list_lock);
2275 }
2276 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2277 return ret;
2278 }
2279
2280 static int __cache_shrink(struct kmem_cache *cachep)
2281 {
2282 int ret = 0, i = 0;
2283 struct kmem_list3 *l3;
2284
2285 drain_cpu_caches(cachep);
2286
2287 check_irq_on();
2288 for_each_online_node(i) {
2289 l3 = cachep->nodelists[i];
2290 if (l3) {
2291 spin_lock_irq(&l3->list_lock);
2292 ret += __node_shrink(cachep, i);
2293 spin_unlock_irq(&l3->list_lock);
2294 }
2295 }
2296 return (ret ? 1 : 0);
2297 }
2298
2299 /**
2300 * kmem_cache_shrink - Shrink a cache.
2301 * @cachep: The cache to shrink.
2302 *
2303 * Releases as many slabs as possible for a cache.
2304 * To help debugging, a zero exit status indicates all slabs were released.
2305 */
2306 int kmem_cache_shrink(struct kmem_cache *cachep)
2307 {
2308 BUG_ON(!cachep || in_interrupt());
2309
2310 return __cache_shrink(cachep);
2311 }
2312 EXPORT_SYMBOL(kmem_cache_shrink);
2313
2314 /**
2315 * kmem_cache_destroy - delete a cache
2316 * @cachep: the cache to destroy
2317 *
2318 * Remove a struct kmem_cache object from the slab cache.
2319 * Returns 0 on success.
2320 *
2321 * It is expected this function will be called by a module when it is
2322 * unloaded. This will remove the cache completely, and avoid a duplicate
2323 * cache being allocated each time a module is loaded and unloaded, if the
2324 * module doesn't have persistent in-kernel storage across loads and unloads.
2325 *
2326 * The cache must be empty before calling this function.
2327 *
2328 * The caller must guarantee that noone will allocate memory from the cache
2329 * during the kmem_cache_destroy().
2330 */
2331 int kmem_cache_destroy(struct kmem_cache *cachep)
2332 {
2333 int i;
2334 struct kmem_list3 *l3;
2335
2336 BUG_ON(!cachep || in_interrupt());
2337
2338 /* Don't let CPUs to come and go */
2339 lock_cpu_hotplug();
2340
2341 /* Find the cache in the chain of caches. */
2342 mutex_lock(&cache_chain_mutex);
2343 /*
2344 * the chain is never empty, cache_cache is never destroyed
2345 */
2346 list_del(&cachep->next);
2347 mutex_unlock(&cache_chain_mutex);
2348
2349 if (__cache_shrink(cachep)) {
2350 slab_error(cachep, "Can't free all objects");
2351 mutex_lock(&cache_chain_mutex);
2352 list_add(&cachep->next, &cache_chain);
2353 mutex_unlock(&cache_chain_mutex);
2354 unlock_cpu_hotplug();
2355 return 1;
2356 }
2357
2358 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2359 synchronize_rcu();
2360
2361 for_each_online_cpu(i)
2362 kfree(cachep->array[i]);
2363
2364 /* NUMA: free the list3 structures */
2365 for_each_online_node(i) {
2366 l3 = cachep->nodelists[i];
2367 if (l3) {
2368 kfree(l3->shared);
2369 free_alien_cache(l3->alien);
2370 kfree(l3);
2371 }
2372 }
2373 kmem_cache_free(&cache_cache, cachep);
2374 unlock_cpu_hotplug();
2375 return 0;
2376 }
2377 EXPORT_SYMBOL(kmem_cache_destroy);
2378
2379 /* Get the memory for a slab management obj. */
2380 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2381 int colour_off, gfp_t local_flags,
2382 int nodeid)
2383 {
2384 struct slab *slabp;
2385
2386 if (OFF_SLAB(cachep)) {
2387 /* Slab management obj is off-slab. */
2388 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2389 local_flags, nodeid);
2390 if (!slabp)
2391 return NULL;
2392 } else {
2393 slabp = objp + colour_off;
2394 colour_off += cachep->slab_size;
2395 }
2396 slabp->inuse = 0;
2397 slabp->colouroff = colour_off;
2398 slabp->s_mem = objp + colour_off;
2399 slabp->nodeid = nodeid;
2400 return slabp;
2401 }
2402
2403 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2404 {
2405 return (kmem_bufctl_t *) (slabp + 1);
2406 }
2407
2408 static void cache_init_objs(struct kmem_cache *cachep,
2409 struct slab *slabp, unsigned long ctor_flags)
2410 {
2411 int i;
2412
2413 for (i = 0; i < cachep->num; i++) {
2414 void *objp = index_to_obj(cachep, slabp, i);
2415 #if DEBUG
2416 /* need to poison the objs? */
2417 if (cachep->flags & SLAB_POISON)
2418 poison_obj(cachep, objp, POISON_FREE);
2419 if (cachep->flags & SLAB_STORE_USER)
2420 *dbg_userword(cachep, objp) = NULL;
2421
2422 if (cachep->flags & SLAB_RED_ZONE) {
2423 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2424 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2425 }
2426 /*
2427 * Constructors are not allowed to allocate memory from the same
2428 * cache which they are a constructor for. Otherwise, deadlock.
2429 * They must also be threaded.
2430 */
2431 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2432 cachep->ctor(objp + obj_offset(cachep), cachep,
2433 ctor_flags);
2434
2435 if (cachep->flags & SLAB_RED_ZONE) {
2436 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2437 slab_error(cachep, "constructor overwrote the"
2438 " end of an object");
2439 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2440 slab_error(cachep, "constructor overwrote the"
2441 " start of an object");
2442 }
2443 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2444 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2445 kernel_map_pages(virt_to_page(objp),
2446 cachep->buffer_size / PAGE_SIZE, 0);
2447 #else
2448 if (cachep->ctor)
2449 cachep->ctor(objp, cachep, ctor_flags);
2450 #endif
2451 slab_bufctl(slabp)[i] = i + 1;
2452 }
2453 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2454 slabp->free = 0;
2455 }
2456
2457 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2458 {
2459 if (flags & SLAB_DMA)
2460 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2461 else
2462 BUG_ON(cachep->gfpflags & GFP_DMA);
2463 }
2464
2465 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2466 int nodeid)
2467 {
2468 void *objp = index_to_obj(cachep, slabp, slabp->free);
2469 kmem_bufctl_t next;
2470
2471 slabp->inuse++;
2472 next = slab_bufctl(slabp)[slabp->free];
2473 #if DEBUG
2474 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2475 WARN_ON(slabp->nodeid != nodeid);
2476 #endif
2477 slabp->free = next;
2478
2479 return objp;
2480 }
2481
2482 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2483 void *objp, int nodeid)
2484 {
2485 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2486
2487 #if DEBUG
2488 /* Verify that the slab belongs to the intended node */
2489 WARN_ON(slabp->nodeid != nodeid);
2490
2491 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2492 printk(KERN_ERR "slab: double free detected in cache "
2493 "'%s', objp %p\n", cachep->name, objp);
2494 BUG();
2495 }
2496 #endif
2497 slab_bufctl(slabp)[objnr] = slabp->free;
2498 slabp->free = objnr;
2499 slabp->inuse--;
2500 }
2501
2502 /*
2503 * Map pages beginning at addr to the given cache and slab. This is required
2504 * for the slab allocator to be able to lookup the cache and slab of a
2505 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2506 */
2507 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2508 void *addr)
2509 {
2510 int nr_pages;
2511 struct page *page;
2512
2513 page = virt_to_page(addr);
2514
2515 nr_pages = 1;
2516 if (likely(!PageCompound(page)))
2517 nr_pages <<= cache->gfporder;
2518
2519 do {
2520 page_set_cache(page, cache);
2521 page_set_slab(page, slab);
2522 page++;
2523 } while (--nr_pages);
2524 }
2525
2526 /*
2527 * Grow (by 1) the number of slabs within a cache. This is called by
2528 * kmem_cache_alloc() when there are no active objs left in a cache.
2529 */
2530 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2531 {
2532 struct slab *slabp;
2533 void *objp;
2534 size_t offset;
2535 gfp_t local_flags;
2536 unsigned long ctor_flags;
2537 struct kmem_list3 *l3;
2538
2539 /*
2540 * Be lazy and only check for valid flags here, keeping it out of the
2541 * critical path in kmem_cache_alloc().
2542 */
2543 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2544 if (flags & SLAB_NO_GROW)
2545 return 0;
2546
2547 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2548 local_flags = (flags & SLAB_LEVEL_MASK);
2549 if (!(local_flags & __GFP_WAIT))
2550 /*
2551 * Not allowed to sleep. Need to tell a constructor about
2552 * this - it might need to know...
2553 */
2554 ctor_flags |= SLAB_CTOR_ATOMIC;
2555
2556 /* Take the l3 list lock to change the colour_next on this node */
2557 check_irq_off();
2558 l3 = cachep->nodelists[nodeid];
2559 spin_lock(&l3->list_lock);
2560
2561 /* Get colour for the slab, and cal the next value. */
2562 offset = l3->colour_next;
2563 l3->colour_next++;
2564 if (l3->colour_next >= cachep->colour)
2565 l3->colour_next = 0;
2566 spin_unlock(&l3->list_lock);
2567
2568 offset *= cachep->colour_off;
2569
2570 if (local_flags & __GFP_WAIT)
2571 local_irq_enable();
2572
2573 /*
2574 * The test for missing atomic flag is performed here, rather than
2575 * the more obvious place, simply to reduce the critical path length
2576 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2577 * will eventually be caught here (where it matters).
2578 */
2579 kmem_flagcheck(cachep, flags);
2580
2581 /*
2582 * Get mem for the objs. Attempt to allocate a physical page from
2583 * 'nodeid'.
2584 */
2585 objp = kmem_getpages(cachep, flags, nodeid);
2586 if (!objp)
2587 goto failed;
2588
2589 /* Get slab management. */
2590 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2591 if (!slabp)
2592 goto opps1;
2593
2594 slabp->nodeid = nodeid;
2595 slab_map_pages(cachep, slabp, objp);
2596
2597 cache_init_objs(cachep, slabp, ctor_flags);
2598
2599 if (local_flags & __GFP_WAIT)
2600 local_irq_disable();
2601 check_irq_off();
2602 spin_lock(&l3->list_lock);
2603
2604 /* Make slab active. */
2605 list_add_tail(&slabp->list, &(l3->slabs_free));
2606 STATS_INC_GROWN(cachep);
2607 l3->free_objects += cachep->num;
2608 spin_unlock(&l3->list_lock);
2609 return 1;
2610 opps1:
2611 kmem_freepages(cachep, objp);
2612 failed:
2613 if (local_flags & __GFP_WAIT)
2614 local_irq_disable();
2615 return 0;
2616 }
2617
2618 #if DEBUG
2619
2620 /*
2621 * Perform extra freeing checks:
2622 * - detect bad pointers.
2623 * - POISON/RED_ZONE checking
2624 * - destructor calls, for caches with POISON+dtor
2625 */
2626 static void kfree_debugcheck(const void *objp)
2627 {
2628 struct page *page;
2629
2630 if (!virt_addr_valid(objp)) {
2631 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2632 (unsigned long)objp);
2633 BUG();
2634 }
2635 page = virt_to_page(objp);
2636 if (!PageSlab(page)) {
2637 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2638 (unsigned long)objp);
2639 BUG();
2640 }
2641 }
2642
2643 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2644 void *caller)
2645 {
2646 struct page *page;
2647 unsigned int objnr;
2648 struct slab *slabp;
2649
2650 objp -= obj_offset(cachep);
2651 kfree_debugcheck(objp);
2652 page = virt_to_page(objp);
2653
2654 if (page_get_cache(page) != cachep) {
2655 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2656 "cache %p, got %p\n",
2657 page_get_cache(page), cachep);
2658 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2659 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2660 page_get_cache(page)->name);
2661 WARN_ON(1);
2662 }
2663 slabp = page_get_slab(page);
2664
2665 if (cachep->flags & SLAB_RED_ZONE) {
2666 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2667 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2668 slab_error(cachep, "double free, or memory outside"
2669 " object was overwritten");
2670 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2671 "redzone 2:0x%lx.\n",
2672 objp, *dbg_redzone1(cachep, objp),
2673 *dbg_redzone2(cachep, objp));
2674 }
2675 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2676 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2677 }
2678 if (cachep->flags & SLAB_STORE_USER)
2679 *dbg_userword(cachep, objp) = caller;
2680
2681 objnr = obj_to_index(cachep, slabp, objp);
2682
2683 BUG_ON(objnr >= cachep->num);
2684 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2685
2686 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2687 /*
2688 * Need to call the slab's constructor so the caller can
2689 * perform a verify of its state (debugging). Called without
2690 * the cache-lock held.
2691 */
2692 cachep->ctor(objp + obj_offset(cachep),
2693 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2694 }
2695 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2696 /* we want to cache poison the object,
2697 * call the destruction callback
2698 */
2699 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2700 }
2701 #ifdef CONFIG_DEBUG_SLAB_LEAK
2702 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2703 #endif
2704 if (cachep->flags & SLAB_POISON) {
2705 #ifdef CONFIG_DEBUG_PAGEALLOC
2706 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2707 store_stackinfo(cachep, objp, (unsigned long)caller);
2708 kernel_map_pages(virt_to_page(objp),
2709 cachep->buffer_size / PAGE_SIZE, 0);
2710 } else {
2711 poison_obj(cachep, objp, POISON_FREE);
2712 }
2713 #else
2714 poison_obj(cachep, objp, POISON_FREE);
2715 #endif
2716 }
2717 return objp;
2718 }
2719
2720 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2721 {
2722 kmem_bufctl_t i;
2723 int entries = 0;
2724
2725 /* Check slab's freelist to see if this obj is there. */
2726 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2727 entries++;
2728 if (entries > cachep->num || i >= cachep->num)
2729 goto bad;
2730 }
2731 if (entries != cachep->num - slabp->inuse) {
2732 bad:
2733 printk(KERN_ERR "slab: Internal list corruption detected in "
2734 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2735 cachep->name, cachep->num, slabp, slabp->inuse);
2736 for (i = 0;
2737 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2738 i++) {
2739 if (i % 16 == 0)
2740 printk("\n%03x:", i);
2741 printk(" %02x", ((unsigned char *)slabp)[i]);
2742 }
2743 printk("\n");
2744 BUG();
2745 }
2746 }
2747 #else
2748 #define kfree_debugcheck(x) do { } while(0)
2749 #define cache_free_debugcheck(x,objp,z) (objp)
2750 #define check_slabp(x,y) do { } while(0)
2751 #endif
2752
2753 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2754 {
2755 int batchcount;
2756 struct kmem_list3 *l3;
2757 struct array_cache *ac;
2758
2759 check_irq_off();
2760 ac = cpu_cache_get(cachep);
2761 retry:
2762 batchcount = ac->batchcount;
2763 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2764 /*
2765 * If there was little recent activity on this cache, then
2766 * perform only a partial refill. Otherwise we could generate
2767 * refill bouncing.
2768 */
2769 batchcount = BATCHREFILL_LIMIT;
2770 }
2771 l3 = cachep->nodelists[numa_node_id()];
2772
2773 BUG_ON(ac->avail > 0 || !l3);
2774 spin_lock(&l3->list_lock);
2775
2776 /* See if we can refill from the shared array */
2777 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2778 goto alloc_done;
2779
2780 while (batchcount > 0) {
2781 struct list_head *entry;
2782 struct slab *slabp;
2783 /* Get slab alloc is to come from. */
2784 entry = l3->slabs_partial.next;
2785 if (entry == &l3->slabs_partial) {
2786 l3->free_touched = 1;
2787 entry = l3->slabs_free.next;
2788 if (entry == &l3->slabs_free)
2789 goto must_grow;
2790 }
2791
2792 slabp = list_entry(entry, struct slab, list);
2793 check_slabp(cachep, slabp);
2794 check_spinlock_acquired(cachep);
2795 while (slabp->inuse < cachep->num && batchcount--) {
2796 STATS_INC_ALLOCED(cachep);
2797 STATS_INC_ACTIVE(cachep);
2798 STATS_SET_HIGH(cachep);
2799
2800 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2801 numa_node_id());
2802 }
2803 check_slabp(cachep, slabp);
2804
2805 /* move slabp to correct slabp list: */
2806 list_del(&slabp->list);
2807 if (slabp->free == BUFCTL_END)
2808 list_add(&slabp->list, &l3->slabs_full);
2809 else
2810 list_add(&slabp->list, &l3->slabs_partial);
2811 }
2812
2813 must_grow:
2814 l3->free_objects -= ac->avail;
2815 alloc_done:
2816 spin_unlock(&l3->list_lock);
2817
2818 if (unlikely(!ac->avail)) {
2819 int x;
2820 x = cache_grow(cachep, flags, numa_node_id());
2821
2822 /* cache_grow can reenable interrupts, then ac could change. */
2823 ac = cpu_cache_get(cachep);
2824 if (!x && ac->avail == 0) /* no objects in sight? abort */
2825 return NULL;
2826
2827 if (!ac->avail) /* objects refilled by interrupt? */
2828 goto retry;
2829 }
2830 ac->touched = 1;
2831 return ac->entry[--ac->avail];
2832 }
2833
2834 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2835 gfp_t flags)
2836 {
2837 might_sleep_if(flags & __GFP_WAIT);
2838 #if DEBUG
2839 kmem_flagcheck(cachep, flags);
2840 #endif
2841 }
2842
2843 #if DEBUG
2844 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2845 gfp_t flags, void *objp, void *caller)
2846 {
2847 if (!objp)
2848 return objp;
2849 if (cachep->flags & SLAB_POISON) {
2850 #ifdef CONFIG_DEBUG_PAGEALLOC
2851 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2852 kernel_map_pages(virt_to_page(objp),
2853 cachep->buffer_size / PAGE_SIZE, 1);
2854 else
2855 check_poison_obj(cachep, objp);
2856 #else
2857 check_poison_obj(cachep, objp);
2858 #endif
2859 poison_obj(cachep, objp, POISON_INUSE);
2860 }
2861 if (cachep->flags & SLAB_STORE_USER)
2862 *dbg_userword(cachep, objp) = caller;
2863
2864 if (cachep->flags & SLAB_RED_ZONE) {
2865 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2866 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2867 slab_error(cachep, "double free, or memory outside"
2868 " object was overwritten");
2869 printk(KERN_ERR
2870 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2871 objp, *dbg_redzone1(cachep, objp),
2872 *dbg_redzone2(cachep, objp));
2873 }
2874 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2875 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2876 }
2877 #ifdef CONFIG_DEBUG_SLAB_LEAK
2878 {
2879 struct slab *slabp;
2880 unsigned objnr;
2881
2882 slabp = page_get_slab(virt_to_page(objp));
2883 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2884 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2885 }
2886 #endif
2887 objp += obj_offset(cachep);
2888 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2889 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2890
2891 if (!(flags & __GFP_WAIT))
2892 ctor_flags |= SLAB_CTOR_ATOMIC;
2893
2894 cachep->ctor(objp, cachep, ctor_flags);
2895 }
2896 return objp;
2897 }
2898 #else
2899 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2900 #endif
2901
2902 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2903 {
2904 void *objp;
2905 struct array_cache *ac;
2906
2907 #ifdef CONFIG_NUMA
2908 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2909 objp = alternate_node_alloc(cachep, flags);
2910 if (objp != NULL)
2911 return objp;
2912 }
2913 #endif
2914
2915 check_irq_off();
2916 ac = cpu_cache_get(cachep);
2917 if (likely(ac->avail)) {
2918 STATS_INC_ALLOCHIT(cachep);
2919 ac->touched = 1;
2920 objp = ac->entry[--ac->avail];
2921 } else {
2922 STATS_INC_ALLOCMISS(cachep);
2923 objp = cache_alloc_refill(cachep, flags);
2924 }
2925 return objp;
2926 }
2927
2928 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2929 gfp_t flags, void *caller)
2930 {
2931 unsigned long save_flags;
2932 void *objp;
2933
2934 cache_alloc_debugcheck_before(cachep, flags);
2935
2936 local_irq_save(save_flags);
2937 objp = ____cache_alloc(cachep, flags);
2938 local_irq_restore(save_flags);
2939 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2940 caller);
2941 prefetchw(objp);
2942 return objp;
2943 }
2944
2945 #ifdef CONFIG_NUMA
2946 /*
2947 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2948 *
2949 * If we are in_interrupt, then process context, including cpusets and
2950 * mempolicy, may not apply and should not be used for allocation policy.
2951 */
2952 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2953 {
2954 int nid_alloc, nid_here;
2955
2956 if (in_interrupt())
2957 return NULL;
2958 nid_alloc = nid_here = numa_node_id();
2959 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2960 nid_alloc = cpuset_mem_spread_node();
2961 else if (current->mempolicy)
2962 nid_alloc = slab_node(current->mempolicy);
2963 if (nid_alloc != nid_here)
2964 return __cache_alloc_node(cachep, flags, nid_alloc);
2965 return NULL;
2966 }
2967
2968 /*
2969 * A interface to enable slab creation on nodeid
2970 */
2971 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2972 int nodeid)
2973 {
2974 struct list_head *entry;
2975 struct slab *slabp;
2976 struct kmem_list3 *l3;
2977 void *obj;
2978 int x;
2979
2980 l3 = cachep->nodelists[nodeid];
2981 BUG_ON(!l3);
2982
2983 retry:
2984 check_irq_off();
2985 spin_lock(&l3->list_lock);
2986 entry = l3->slabs_partial.next;
2987 if (entry == &l3->slabs_partial) {
2988 l3->free_touched = 1;
2989 entry = l3->slabs_free.next;
2990 if (entry == &l3->slabs_free)
2991 goto must_grow;
2992 }
2993
2994 slabp = list_entry(entry, struct slab, list);
2995 check_spinlock_acquired_node(cachep, nodeid);
2996 check_slabp(cachep, slabp);
2997
2998 STATS_INC_NODEALLOCS(cachep);
2999 STATS_INC_ACTIVE(cachep);
3000 STATS_SET_HIGH(cachep);
3001
3002 BUG_ON(slabp->inuse == cachep->num);
3003
3004 obj = slab_get_obj(cachep, slabp, nodeid);
3005 check_slabp(cachep, slabp);
3006 l3->free_objects--;
3007 /* move slabp to correct slabp list: */
3008 list_del(&slabp->list);
3009
3010 if (slabp->free == BUFCTL_END)
3011 list_add(&slabp->list, &l3->slabs_full);
3012 else
3013 list_add(&slabp->list, &l3->slabs_partial);
3014
3015 spin_unlock(&l3->list_lock);
3016 goto done;
3017
3018 must_grow:
3019 spin_unlock(&l3->list_lock);
3020 x = cache_grow(cachep, flags, nodeid);
3021
3022 if (!x)
3023 return NULL;
3024
3025 goto retry;
3026 done:
3027 return obj;
3028 }
3029 #endif
3030
3031 /*
3032 * Caller needs to acquire correct kmem_list's list_lock
3033 */
3034 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3035 int node)
3036 {
3037 int i;
3038 struct kmem_list3 *l3;
3039
3040 for (i = 0; i < nr_objects; i++) {
3041 void *objp = objpp[i];
3042 struct slab *slabp;
3043
3044 slabp = virt_to_slab(objp);
3045 l3 = cachep->nodelists[node];
3046 list_del(&slabp->list);
3047 check_spinlock_acquired_node(cachep, node);
3048 check_slabp(cachep, slabp);
3049 slab_put_obj(cachep, slabp, objp, node);
3050 STATS_DEC_ACTIVE(cachep);
3051 l3->free_objects++;
3052 check_slabp(cachep, slabp);
3053
3054 /* fixup slab chains */
3055 if (slabp->inuse == 0) {
3056 if (l3->free_objects > l3->free_limit) {
3057 l3->free_objects -= cachep->num;
3058 slab_destroy(cachep, slabp);
3059 } else {
3060 list_add(&slabp->list, &l3->slabs_free);
3061 }
3062 } else {
3063 /* Unconditionally move a slab to the end of the
3064 * partial list on free - maximum time for the
3065 * other objects to be freed, too.
3066 */
3067 list_add_tail(&slabp->list, &l3->slabs_partial);
3068 }
3069 }
3070 }
3071
3072 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3073 {
3074 int batchcount;
3075 struct kmem_list3 *l3;
3076 int node = numa_node_id();
3077
3078 batchcount = ac->batchcount;
3079 #if DEBUG
3080 BUG_ON(!batchcount || batchcount > ac->avail);
3081 #endif
3082 check_irq_off();
3083 l3 = cachep->nodelists[node];
3084 spin_lock(&l3->list_lock);
3085 if (l3->shared) {
3086 struct array_cache *shared_array = l3->shared;
3087 int max = shared_array->limit - shared_array->avail;
3088 if (max) {
3089 if (batchcount > max)
3090 batchcount = max;
3091 memcpy(&(shared_array->entry[shared_array->avail]),
3092 ac->entry, sizeof(void *) * batchcount);
3093 shared_array->avail += batchcount;
3094 goto free_done;
3095 }
3096 }
3097
3098 free_block(cachep, ac->entry, batchcount, node);
3099 free_done:
3100 #if STATS
3101 {
3102 int i = 0;
3103 struct list_head *p;
3104
3105 p = l3->slabs_free.next;
3106 while (p != &(l3->slabs_free)) {
3107 struct slab *slabp;
3108
3109 slabp = list_entry(p, struct slab, list);
3110 BUG_ON(slabp->inuse);
3111
3112 i++;
3113 p = p->next;
3114 }
3115 STATS_SET_FREEABLE(cachep, i);
3116 }
3117 #endif
3118 spin_unlock(&l3->list_lock);
3119 ac->avail -= batchcount;
3120 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3121 }
3122
3123 /*
3124 * Release an obj back to its cache. If the obj has a constructed state, it must
3125 * be in this state _before_ it is released. Called with disabled ints.
3126 */
3127 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3128 {
3129 struct array_cache *ac = cpu_cache_get(cachep);
3130
3131 check_irq_off();
3132 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3133
3134 if (cache_free_alien(cachep, objp))
3135 return;
3136
3137 if (likely(ac->avail < ac->limit)) {
3138 STATS_INC_FREEHIT(cachep);
3139 ac->entry[ac->avail++] = objp;
3140 return;
3141 } else {
3142 STATS_INC_FREEMISS(cachep);
3143 cache_flusharray(cachep, ac);
3144 ac->entry[ac->avail++] = objp;
3145 }
3146 }
3147
3148 /**
3149 * kmem_cache_alloc - Allocate an object
3150 * @cachep: The cache to allocate from.
3151 * @flags: See kmalloc().
3152 *
3153 * Allocate an object from this cache. The flags are only relevant
3154 * if the cache has no available objects.
3155 */
3156 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3157 {
3158 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3159 }
3160 EXPORT_SYMBOL(kmem_cache_alloc);
3161
3162 /**
3163 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3164 * @cache: The cache to allocate from.
3165 * @flags: See kmalloc().
3166 *
3167 * Allocate an object from this cache and set the allocated memory to zero.
3168 * The flags are only relevant if the cache has no available objects.
3169 */
3170 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3171 {
3172 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3173 if (ret)
3174 memset(ret, 0, obj_size(cache));
3175 return ret;
3176 }
3177 EXPORT_SYMBOL(kmem_cache_zalloc);
3178
3179 /**
3180 * kmem_ptr_validate - check if an untrusted pointer might
3181 * be a slab entry.
3182 * @cachep: the cache we're checking against
3183 * @ptr: pointer to validate
3184 *
3185 * This verifies that the untrusted pointer looks sane:
3186 * it is _not_ a guarantee that the pointer is actually
3187 * part of the slab cache in question, but it at least
3188 * validates that the pointer can be dereferenced and
3189 * looks half-way sane.
3190 *
3191 * Currently only used for dentry validation.
3192 */
3193 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3194 {
3195 unsigned long addr = (unsigned long)ptr;
3196 unsigned long min_addr = PAGE_OFFSET;
3197 unsigned long align_mask = BYTES_PER_WORD - 1;
3198 unsigned long size = cachep->buffer_size;
3199 struct page *page;
3200
3201 if (unlikely(addr < min_addr))
3202 goto out;
3203 if (unlikely(addr > (unsigned long)high_memory - size))
3204 goto out;
3205 if (unlikely(addr & align_mask))
3206 goto out;
3207 if (unlikely(!kern_addr_valid(addr)))
3208 goto out;
3209 if (unlikely(!kern_addr_valid(addr + size - 1)))
3210 goto out;
3211 page = virt_to_page(ptr);
3212 if (unlikely(!PageSlab(page)))
3213 goto out;
3214 if (unlikely(page_get_cache(page) != cachep))
3215 goto out;
3216 return 1;
3217 out:
3218 return 0;
3219 }
3220
3221 #ifdef CONFIG_NUMA
3222 /**
3223 * kmem_cache_alloc_node - Allocate an object on the specified node
3224 * @cachep: The cache to allocate from.
3225 * @flags: See kmalloc().
3226 * @nodeid: node number of the target node.
3227 *
3228 * Identical to kmem_cache_alloc, except that this function is slow
3229 * and can sleep. And it will allocate memory on the given node, which
3230 * can improve the performance for cpu bound structures.
3231 * New and improved: it will now make sure that the object gets
3232 * put on the correct node list so that there is no false sharing.
3233 */
3234 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3235 {
3236 unsigned long save_flags;
3237 void *ptr;
3238
3239 cache_alloc_debugcheck_before(cachep, flags);
3240 local_irq_save(save_flags);
3241
3242 if (nodeid == -1 || nodeid == numa_node_id() ||
3243 !cachep->nodelists[nodeid])
3244 ptr = ____cache_alloc(cachep, flags);
3245 else
3246 ptr = __cache_alloc_node(cachep, flags, nodeid);
3247 local_irq_restore(save_flags);
3248
3249 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3250 __builtin_return_address(0));
3251
3252 return ptr;
3253 }
3254 EXPORT_SYMBOL(kmem_cache_alloc_node);
3255
3256 void *kmalloc_node(size_t size, gfp_t flags, int node)
3257 {
3258 struct kmem_cache *cachep;
3259
3260 cachep = kmem_find_general_cachep(size, flags);
3261 if (unlikely(cachep == NULL))
3262 return NULL;
3263 return kmem_cache_alloc_node(cachep, flags, node);
3264 }
3265 EXPORT_SYMBOL(kmalloc_node);
3266 #endif
3267
3268 /**
3269 * kmalloc - allocate memory
3270 * @size: how many bytes of memory are required.
3271 * @flags: the type of memory to allocate.
3272 * @caller: function caller for debug tracking of the caller
3273 *
3274 * kmalloc is the normal method of allocating memory
3275 * in the kernel.
3276 *
3277 * The @flags argument may be one of:
3278 *
3279 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3280 *
3281 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3282 *
3283 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3284 *
3285 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3286 * must be suitable for DMA. This can mean different things on different
3287 * platforms. For example, on i386, it means that the memory must come
3288 * from the first 16MB.
3289 */
3290 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3291 void *caller)
3292 {
3293 struct kmem_cache *cachep;
3294
3295 /* If you want to save a few bytes .text space: replace
3296 * __ with kmem_.
3297 * Then kmalloc uses the uninlined functions instead of the inline
3298 * functions.
3299 */
3300 cachep = __find_general_cachep(size, flags);
3301 if (unlikely(cachep == NULL))
3302 return NULL;
3303 return __cache_alloc(cachep, flags, caller);
3304 }
3305
3306
3307 void *__kmalloc(size_t size, gfp_t flags)
3308 {
3309 #ifndef CONFIG_DEBUG_SLAB
3310 return __do_kmalloc(size, flags, NULL);
3311 #else
3312 return __do_kmalloc(size, flags, __builtin_return_address(0));
3313 #endif
3314 }
3315 EXPORT_SYMBOL(__kmalloc);
3316
3317 #ifdef CONFIG_DEBUG_SLAB
3318 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3319 {
3320 return __do_kmalloc(size, flags, caller);
3321 }
3322 EXPORT_SYMBOL(__kmalloc_track_caller);
3323 #endif
3324
3325 #ifdef CONFIG_SMP
3326 /**
3327 * __alloc_percpu - allocate one copy of the object for every present
3328 * cpu in the system, zeroing them.
3329 * Objects should be dereferenced using the per_cpu_ptr macro only.
3330 *
3331 * @size: how many bytes of memory are required.
3332 */
3333 void *__alloc_percpu(size_t size)
3334 {
3335 int i;
3336 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3337
3338 if (!pdata)
3339 return NULL;
3340
3341 /*
3342 * Cannot use for_each_online_cpu since a cpu may come online
3343 * and we have no way of figuring out how to fix the array
3344 * that we have allocated then....
3345 */
3346 for_each_possible_cpu(i) {
3347 int node = cpu_to_node(i);
3348
3349 if (node_online(node))
3350 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3351 else
3352 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3353
3354 if (!pdata->ptrs[i])
3355 goto unwind_oom;
3356 memset(pdata->ptrs[i], 0, size);
3357 }
3358
3359 /* Catch derefs w/o wrappers */
3360 return (void *)(~(unsigned long)pdata);
3361
3362 unwind_oom:
3363 while (--i >= 0) {
3364 if (!cpu_possible(i))
3365 continue;
3366 kfree(pdata->ptrs[i]);
3367 }
3368 kfree(pdata);
3369 return NULL;
3370 }
3371 EXPORT_SYMBOL(__alloc_percpu);
3372 #endif
3373
3374 /**
3375 * kmem_cache_free - Deallocate an object
3376 * @cachep: The cache the allocation was from.
3377 * @objp: The previously allocated object.
3378 *
3379 * Free an object which was previously allocated from this
3380 * cache.
3381 */
3382 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3383 {
3384 unsigned long flags;
3385
3386 local_irq_save(flags);
3387 __cache_free(cachep, objp);
3388 local_irq_restore(flags);
3389 }
3390 EXPORT_SYMBOL(kmem_cache_free);
3391
3392 /**
3393 * kfree - free previously allocated memory
3394 * @objp: pointer returned by kmalloc.
3395 *
3396 * If @objp is NULL, no operation is performed.
3397 *
3398 * Don't free memory not originally allocated by kmalloc()
3399 * or you will run into trouble.
3400 */
3401 void kfree(const void *objp)
3402 {
3403 struct kmem_cache *c;
3404 unsigned long flags;
3405
3406 if (unlikely(!objp))
3407 return;
3408 local_irq_save(flags);
3409 kfree_debugcheck(objp);
3410 c = virt_to_cache(objp);
3411 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3412 __cache_free(c, (void *)objp);
3413 local_irq_restore(flags);
3414 }
3415 EXPORT_SYMBOL(kfree);
3416
3417 #ifdef CONFIG_SMP
3418 /**
3419 * free_percpu - free previously allocated percpu memory
3420 * @objp: pointer returned by alloc_percpu.
3421 *
3422 * Don't free memory not originally allocated by alloc_percpu()
3423 * The complemented objp is to check for that.
3424 */
3425 void free_percpu(const void *objp)
3426 {
3427 int i;
3428 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3429
3430 /*
3431 * We allocate for all cpus so we cannot use for online cpu here.
3432 */
3433 for_each_possible_cpu(i)
3434 kfree(p->ptrs[i]);
3435 kfree(p);
3436 }
3437 EXPORT_SYMBOL(free_percpu);
3438 #endif
3439
3440 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3441 {
3442 return obj_size(cachep);
3443 }
3444 EXPORT_SYMBOL(kmem_cache_size);
3445
3446 const char *kmem_cache_name(struct kmem_cache *cachep)
3447 {
3448 return cachep->name;
3449 }
3450 EXPORT_SYMBOL_GPL(kmem_cache_name);
3451
3452 /*
3453 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3454 */
3455 static int alloc_kmemlist(struct kmem_cache *cachep)
3456 {
3457 int node;
3458 struct kmem_list3 *l3;
3459 struct array_cache *new_shared;
3460 struct array_cache **new_alien;
3461
3462 for_each_online_node(node) {
3463
3464 new_alien = alloc_alien_cache(node, cachep->limit);
3465 if (!new_alien)
3466 goto fail;
3467
3468 new_shared = alloc_arraycache(node,
3469 cachep->shared*cachep->batchcount,
3470 0xbaadf00d);
3471 if (!new_shared) {
3472 free_alien_cache(new_alien);
3473 goto fail;
3474 }
3475
3476 l3 = cachep->nodelists[node];
3477 if (l3) {
3478 struct array_cache *shared = l3->shared;
3479
3480 spin_lock_irq(&l3->list_lock);
3481
3482 if (shared)
3483 free_block(cachep, shared->entry,
3484 shared->avail, node);
3485
3486 l3->shared = new_shared;
3487 if (!l3->alien) {
3488 l3->alien = new_alien;
3489 new_alien = NULL;
3490 }
3491 l3->free_limit = (1 + nr_cpus_node(node)) *
3492 cachep->batchcount + cachep->num;
3493 spin_unlock_irq(&l3->list_lock);
3494 kfree(shared);
3495 free_alien_cache(new_alien);
3496 continue;
3497 }
3498 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3499 if (!l3) {
3500 free_alien_cache(new_alien);
3501 kfree(new_shared);
3502 goto fail;
3503 }
3504
3505 kmem_list3_init(l3);
3506 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3507 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3508 l3->shared = new_shared;
3509 l3->alien = new_alien;
3510 l3->free_limit = (1 + nr_cpus_node(node)) *
3511 cachep->batchcount + cachep->num;
3512 cachep->nodelists[node] = l3;
3513 }
3514 return 0;
3515
3516 fail:
3517 if (!cachep->next.next) {
3518 /* Cache is not active yet. Roll back what we did */
3519 node--;
3520 while (node >= 0) {
3521 if (cachep->nodelists[node]) {
3522 l3 = cachep->nodelists[node];
3523
3524 kfree(l3->shared);
3525 free_alien_cache(l3->alien);
3526 kfree(l3);
3527 cachep->nodelists[node] = NULL;
3528 }
3529 node--;
3530 }
3531 }
3532 return -ENOMEM;
3533 }
3534
3535 struct ccupdate_struct {
3536 struct kmem_cache *cachep;
3537 struct array_cache *new[NR_CPUS];
3538 };
3539
3540 static void do_ccupdate_local(void *info)
3541 {
3542 struct ccupdate_struct *new = info;
3543 struct array_cache *old;
3544
3545 check_irq_off();
3546 old = cpu_cache_get(new->cachep);
3547
3548 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3549 new->new[smp_processor_id()] = old;
3550 }
3551
3552 /* Always called with the cache_chain_mutex held */
3553 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3554 int batchcount, int shared)
3555 {
3556 struct ccupdate_struct new;
3557 int i, err;
3558
3559 memset(&new.new, 0, sizeof(new.new));
3560 for_each_online_cpu(i) {
3561 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3562 batchcount);
3563 if (!new.new[i]) {
3564 for (i--; i >= 0; i--)
3565 kfree(new.new[i]);
3566 return -ENOMEM;
3567 }
3568 }
3569 new.cachep = cachep;
3570
3571 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3572
3573 check_irq_on();
3574 cachep->batchcount = batchcount;
3575 cachep->limit = limit;
3576 cachep->shared = shared;
3577
3578 for_each_online_cpu(i) {
3579 struct array_cache *ccold = new.new[i];
3580 if (!ccold)
3581 continue;
3582 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3583 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3584 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3585 kfree(ccold);
3586 }
3587
3588 err = alloc_kmemlist(cachep);
3589 if (err) {
3590 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3591 cachep->name, -err);
3592 BUG();
3593 }
3594 return 0;
3595 }
3596
3597 /* Called with cache_chain_mutex held always */
3598 static void enable_cpucache(struct kmem_cache *cachep)
3599 {
3600 int err;
3601 int limit, shared;
3602
3603 /*
3604 * The head array serves three purposes:
3605 * - create a LIFO ordering, i.e. return objects that are cache-warm
3606 * - reduce the number of spinlock operations.
3607 * - reduce the number of linked list operations on the slab and
3608 * bufctl chains: array operations are cheaper.
3609 * The numbers are guessed, we should auto-tune as described by
3610 * Bonwick.
3611 */
3612 if (cachep->buffer_size > 131072)
3613 limit = 1;
3614 else if (cachep->buffer_size > PAGE_SIZE)
3615 limit = 8;
3616 else if (cachep->buffer_size > 1024)
3617 limit = 24;
3618 else if (cachep->buffer_size > 256)
3619 limit = 54;
3620 else
3621 limit = 120;
3622
3623 /*
3624 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3625 * allocation behaviour: Most allocs on one cpu, most free operations
3626 * on another cpu. For these cases, an efficient object passing between
3627 * cpus is necessary. This is provided by a shared array. The array
3628 * replaces Bonwick's magazine layer.
3629 * On uniprocessor, it's functionally equivalent (but less efficient)
3630 * to a larger limit. Thus disabled by default.
3631 */
3632 shared = 0;
3633 #ifdef CONFIG_SMP
3634 if (cachep->buffer_size <= PAGE_SIZE)
3635 shared = 8;
3636 #endif
3637
3638 #if DEBUG
3639 /*
3640 * With debugging enabled, large batchcount lead to excessively long
3641 * periods with disabled local interrupts. Limit the batchcount
3642 */
3643 if (limit > 32)
3644 limit = 32;
3645 #endif
3646 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3647 if (err)
3648 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3649 cachep->name, -err);
3650 }
3651
3652 /*
3653 * Drain an array if it contains any elements taking the l3 lock only if
3654 * necessary. Note that the l3 listlock also protects the array_cache
3655 * if drain_array() is used on the shared array.
3656 */
3657 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3658 struct array_cache *ac, int force, int node)
3659 {
3660 int tofree;
3661
3662 if (!ac || !ac->avail)
3663 return;
3664 if (ac->touched && !force) {
3665 ac->touched = 0;
3666 } else {
3667 spin_lock_irq(&l3->list_lock);
3668 if (ac->avail) {
3669 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3670 if (tofree > ac->avail)
3671 tofree = (ac->avail + 1) / 2;
3672 free_block(cachep, ac->entry, tofree, node);
3673 ac->avail -= tofree;
3674 memmove(ac->entry, &(ac->entry[tofree]),
3675 sizeof(void *) * ac->avail);
3676 }
3677 spin_unlock_irq(&l3->list_lock);
3678 }
3679 }
3680
3681 /**
3682 * cache_reap - Reclaim memory from caches.
3683 * @unused: unused parameter
3684 *
3685 * Called from workqueue/eventd every few seconds.
3686 * Purpose:
3687 * - clear the per-cpu caches for this CPU.
3688 * - return freeable pages to the main free memory pool.
3689 *
3690 * If we cannot acquire the cache chain mutex then just give up - we'll try
3691 * again on the next iteration.
3692 */
3693 static void cache_reap(void *unused)
3694 {
3695 struct list_head *walk;
3696 struct kmem_list3 *l3;
3697 int node = numa_node_id();
3698
3699 if (!mutex_trylock(&cache_chain_mutex)) {
3700 /* Give up. Setup the next iteration. */
3701 schedule_delayed_work(&__get_cpu_var(reap_work),
3702 REAPTIMEOUT_CPUC);
3703 return;
3704 }
3705
3706 list_for_each(walk, &cache_chain) {
3707 struct kmem_cache *searchp;
3708 struct list_head *p;
3709 int tofree;
3710 struct slab *slabp;
3711
3712 searchp = list_entry(walk, struct kmem_cache, next);
3713 check_irq_on();
3714
3715 /*
3716 * We only take the l3 lock if absolutely necessary and we
3717 * have established with reasonable certainty that
3718 * we can do some work if the lock was obtained.
3719 */
3720 l3 = searchp->nodelists[node];
3721
3722 reap_alien(searchp, l3);
3723
3724 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3725
3726 /*
3727 * These are racy checks but it does not matter
3728 * if we skip one check or scan twice.
3729 */
3730 if (time_after(l3->next_reap, jiffies))
3731 goto next;
3732
3733 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3734
3735 drain_array(searchp, l3, l3->shared, 0, node);
3736
3737 if (l3->free_touched) {
3738 l3->free_touched = 0;
3739 goto next;
3740 }
3741
3742 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3743 (5 * searchp->num);
3744 do {
3745 /*
3746 * Do not lock if there are no free blocks.
3747 */
3748 if (list_empty(&l3->slabs_free))
3749 break;
3750
3751 spin_lock_irq(&l3->list_lock);
3752 p = l3->slabs_free.next;
3753 if (p == &(l3->slabs_free)) {
3754 spin_unlock_irq(&l3->list_lock);
3755 break;
3756 }
3757
3758 slabp = list_entry(p, struct slab, list);
3759 BUG_ON(slabp->inuse);
3760 list_del(&slabp->list);
3761 STATS_INC_REAPED(searchp);
3762
3763 /*
3764 * Safe to drop the lock. The slab is no longer linked
3765 * to the cache. searchp cannot disappear, we hold
3766 * cache_chain_lock
3767 */
3768 l3->free_objects -= searchp->num;
3769 spin_unlock_irq(&l3->list_lock);
3770 slab_destroy(searchp, slabp);
3771 } while (--tofree > 0);
3772 next:
3773 cond_resched();
3774 }
3775 check_irq_on();
3776 mutex_unlock(&cache_chain_mutex);
3777 next_reap_node();
3778 /* Set up the next iteration */
3779 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3780 }
3781
3782 #ifdef CONFIG_PROC_FS
3783
3784 static void print_slabinfo_header(struct seq_file *m)
3785 {
3786 /*
3787 * Output format version, so at least we can change it
3788 * without _too_ many complaints.
3789 */
3790 #if STATS
3791 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3792 #else
3793 seq_puts(m, "slabinfo - version: 2.1\n");
3794 #endif
3795 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3796 "<objperslab> <pagesperslab>");
3797 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3798 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3799 #if STATS
3800 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3801 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3802 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3803 #endif
3804 seq_putc(m, '\n');
3805 }
3806
3807 static void *s_start(struct seq_file *m, loff_t *pos)
3808 {
3809 loff_t n = *pos;
3810 struct list_head *p;
3811
3812 mutex_lock(&cache_chain_mutex);
3813 if (!n)
3814 print_slabinfo_header(m);
3815 p = cache_chain.next;
3816 while (n--) {
3817 p = p->next;
3818 if (p == &cache_chain)
3819 return NULL;
3820 }
3821 return list_entry(p, struct kmem_cache, next);
3822 }
3823
3824 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3825 {
3826 struct kmem_cache *cachep = p;
3827 ++*pos;
3828 return cachep->next.next == &cache_chain ?
3829 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3830 }
3831
3832 static void s_stop(struct seq_file *m, void *p)
3833 {
3834 mutex_unlock(&cache_chain_mutex);
3835 }
3836
3837 static int s_show(struct seq_file *m, void *p)
3838 {
3839 struct kmem_cache *cachep = p;
3840 struct list_head *q;
3841 struct slab *slabp;
3842 unsigned long active_objs;
3843 unsigned long num_objs;
3844 unsigned long active_slabs = 0;
3845 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3846 const char *name;
3847 char *error = NULL;
3848 int node;
3849 struct kmem_list3 *l3;
3850
3851 active_objs = 0;
3852 num_slabs = 0;
3853 for_each_online_node(node) {
3854 l3 = cachep->nodelists[node];
3855 if (!l3)
3856 continue;
3857
3858 check_irq_on();
3859 spin_lock_irq(&l3->list_lock);
3860
3861 list_for_each(q, &l3->slabs_full) {
3862 slabp = list_entry(q, struct slab, list);
3863 if (slabp->inuse != cachep->num && !error)
3864 error = "slabs_full accounting error";
3865 active_objs += cachep->num;
3866 active_slabs++;
3867 }
3868 list_for_each(q, &l3->slabs_partial) {
3869 slabp = list_entry(q, struct slab, list);
3870 if (slabp->inuse == cachep->num && !error)
3871 error = "slabs_partial inuse accounting error";
3872 if (!slabp->inuse && !error)
3873 error = "slabs_partial/inuse accounting error";
3874 active_objs += slabp->inuse;
3875 active_slabs++;
3876 }
3877 list_for_each(q, &l3->slabs_free) {
3878 slabp = list_entry(q, struct slab, list);
3879 if (slabp->inuse && !error)
3880 error = "slabs_free/inuse accounting error";
3881 num_slabs++;
3882 }
3883 free_objects += l3->free_objects;
3884 if (l3->shared)
3885 shared_avail += l3->shared->avail;
3886
3887 spin_unlock_irq(&l3->list_lock);
3888 }
3889 num_slabs += active_slabs;
3890 num_objs = num_slabs * cachep->num;
3891 if (num_objs - active_objs != free_objects && !error)
3892 error = "free_objects accounting error";
3893
3894 name = cachep->name;
3895 if (error)
3896 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3897
3898 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3899 name, active_objs, num_objs, cachep->buffer_size,
3900 cachep->num, (1 << cachep->gfporder));
3901 seq_printf(m, " : tunables %4u %4u %4u",
3902 cachep->limit, cachep->batchcount, cachep->shared);
3903 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3904 active_slabs, num_slabs, shared_avail);
3905 #if STATS
3906 { /* list3 stats */
3907 unsigned long high = cachep->high_mark;
3908 unsigned long allocs = cachep->num_allocations;
3909 unsigned long grown = cachep->grown;
3910 unsigned long reaped = cachep->reaped;
3911 unsigned long errors = cachep->errors;
3912 unsigned long max_freeable = cachep->max_freeable;
3913 unsigned long node_allocs = cachep->node_allocs;
3914 unsigned long node_frees = cachep->node_frees;
3915 unsigned long overflows = cachep->node_overflow;
3916
3917 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3918 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
3919 reaped, errors, max_freeable, node_allocs,
3920 node_frees, overflows);
3921 }
3922 /* cpu stats */
3923 {
3924 unsigned long allochit = atomic_read(&cachep->allochit);
3925 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3926 unsigned long freehit = atomic_read(&cachep->freehit);
3927 unsigned long freemiss = atomic_read(&cachep->freemiss);
3928
3929 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3930 allochit, allocmiss, freehit, freemiss);
3931 }
3932 #endif
3933 seq_putc(m, '\n');
3934 return 0;
3935 }
3936
3937 /*
3938 * slabinfo_op - iterator that generates /proc/slabinfo
3939 *
3940 * Output layout:
3941 * cache-name
3942 * num-active-objs
3943 * total-objs
3944 * object size
3945 * num-active-slabs
3946 * total-slabs
3947 * num-pages-per-slab
3948 * + further values on SMP and with statistics enabled
3949 */
3950
3951 struct seq_operations slabinfo_op = {
3952 .start = s_start,
3953 .next = s_next,
3954 .stop = s_stop,
3955 .show = s_show,
3956 };
3957
3958 #define MAX_SLABINFO_WRITE 128
3959 /**
3960 * slabinfo_write - Tuning for the slab allocator
3961 * @file: unused
3962 * @buffer: user buffer
3963 * @count: data length
3964 * @ppos: unused
3965 */
3966 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3967 size_t count, loff_t *ppos)
3968 {
3969 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3970 int limit, batchcount, shared, res;
3971 struct list_head *p;
3972
3973 if (count > MAX_SLABINFO_WRITE)
3974 return -EINVAL;
3975 if (copy_from_user(&kbuf, buffer, count))
3976 return -EFAULT;
3977 kbuf[MAX_SLABINFO_WRITE] = '\0';
3978
3979 tmp = strchr(kbuf, ' ');
3980 if (!tmp)
3981 return -EINVAL;
3982 *tmp = '\0';
3983 tmp++;
3984 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3985 return -EINVAL;
3986
3987 /* Find the cache in the chain of caches. */
3988 mutex_lock(&cache_chain_mutex);
3989 res = -EINVAL;
3990 list_for_each(p, &cache_chain) {
3991 struct kmem_cache *cachep;
3992
3993 cachep = list_entry(p, struct kmem_cache, next);
3994 if (!strcmp(cachep->name, kbuf)) {
3995 if (limit < 1 || batchcount < 1 ||
3996 batchcount > limit || shared < 0) {
3997 res = 0;
3998 } else {
3999 res = do_tune_cpucache(cachep, limit,
4000 batchcount, shared);
4001 }
4002 break;
4003 }
4004 }
4005 mutex_unlock(&cache_chain_mutex);
4006 if (res >= 0)
4007 res = count;
4008 return res;
4009 }
4010
4011 #ifdef CONFIG_DEBUG_SLAB_LEAK
4012
4013 static void *leaks_start(struct seq_file *m, loff_t *pos)
4014 {
4015 loff_t n = *pos;
4016 struct list_head *p;
4017
4018 mutex_lock(&cache_chain_mutex);
4019 p = cache_chain.next;
4020 while (n--) {
4021 p = p->next;
4022 if (p == &cache_chain)
4023 return NULL;
4024 }
4025 return list_entry(p, struct kmem_cache, next);
4026 }
4027
4028 static inline int add_caller(unsigned long *n, unsigned long v)
4029 {
4030 unsigned long *p;
4031 int l;
4032 if (!v)
4033 return 1;
4034 l = n[1];
4035 p = n + 2;
4036 while (l) {
4037 int i = l/2;
4038 unsigned long *q = p + 2 * i;
4039 if (*q == v) {
4040 q[1]++;
4041 return 1;
4042 }
4043 if (*q > v) {
4044 l = i;
4045 } else {
4046 p = q + 2;
4047 l -= i + 1;
4048 }
4049 }
4050 if (++n[1] == n[0])
4051 return 0;
4052 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4053 p[0] = v;
4054 p[1] = 1;
4055 return 1;
4056 }
4057
4058 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4059 {
4060 void *p;
4061 int i;
4062 if (n[0] == n[1])
4063 return;
4064 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4065 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4066 continue;
4067 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4068 return;
4069 }
4070 }
4071
4072 static void show_symbol(struct seq_file *m, unsigned long address)
4073 {
4074 #ifdef CONFIG_KALLSYMS
4075 char *modname;
4076 const char *name;
4077 unsigned long offset, size;
4078 char namebuf[KSYM_NAME_LEN+1];
4079
4080 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4081
4082 if (name) {
4083 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4084 if (modname)
4085 seq_printf(m, " [%s]", modname);
4086 return;
4087 }
4088 #endif
4089 seq_printf(m, "%p", (void *)address);
4090 }
4091
4092 static int leaks_show(struct seq_file *m, void *p)
4093 {
4094 struct kmem_cache *cachep = p;
4095 struct list_head *q;
4096 struct slab *slabp;
4097 struct kmem_list3 *l3;
4098 const char *name;
4099 unsigned long *n = m->private;
4100 int node;
4101 int i;
4102
4103 if (!(cachep->flags & SLAB_STORE_USER))
4104 return 0;
4105 if (!(cachep->flags & SLAB_RED_ZONE))
4106 return 0;
4107
4108 /* OK, we can do it */
4109
4110 n[1] = 0;
4111
4112 for_each_online_node(node) {
4113 l3 = cachep->nodelists[node];
4114 if (!l3)
4115 continue;
4116
4117 check_irq_on();
4118 spin_lock_irq(&l3->list_lock);
4119
4120 list_for_each(q, &l3->slabs_full) {
4121 slabp = list_entry(q, struct slab, list);
4122 handle_slab(n, cachep, slabp);
4123 }
4124 list_for_each(q, &l3->slabs_partial) {
4125 slabp = list_entry(q, struct slab, list);
4126 handle_slab(n, cachep, slabp);
4127 }
4128 spin_unlock_irq(&l3->list_lock);
4129 }
4130 name = cachep->name;
4131 if (n[0] == n[1]) {
4132 /* Increase the buffer size */
4133 mutex_unlock(&cache_chain_mutex);
4134 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4135 if (!m->private) {
4136 /* Too bad, we are really out */
4137 m->private = n;
4138 mutex_lock(&cache_chain_mutex);
4139 return -ENOMEM;
4140 }
4141 *(unsigned long *)m->private = n[0] * 2;
4142 kfree(n);
4143 mutex_lock(&cache_chain_mutex);
4144 /* Now make sure this entry will be retried */
4145 m->count = m->size;
4146 return 0;
4147 }
4148 for (i = 0; i < n[1]; i++) {
4149 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4150 show_symbol(m, n[2*i+2]);
4151 seq_putc(m, '\n');
4152 }
4153 return 0;
4154 }
4155
4156 struct seq_operations slabstats_op = {
4157 .start = leaks_start,
4158 .next = s_next,
4159 .stop = s_stop,
4160 .show = leaks_show,
4161 };
4162 #endif
4163 #endif
4164
4165 /**
4166 * ksize - get the actual amount of memory allocated for a given object
4167 * @objp: Pointer to the object
4168 *
4169 * kmalloc may internally round up allocations and return more memory
4170 * than requested. ksize() can be used to determine the actual amount of
4171 * memory allocated. The caller may use this additional memory, even though
4172 * a smaller amount of memory was initially specified with the kmalloc call.
4173 * The caller must guarantee that objp points to a valid object previously
4174 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4175 * must not be freed during the duration of the call.
4176 */
4177 unsigned int ksize(const void *objp)
4178 {
4179 if (unlikely(objp == NULL))
4180 return 0;
4181
4182 return obj_size(virt_to_cache(objp));
4183 }