]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slab.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * struct array_cache
173 *
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183 struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
188 void *entry[]; /*
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
192 */
193 };
194
195 struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198 };
199
200 /*
201 * Need this for bootstrapping a per node allocator.
202 */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
207
208 static int drain_freelist(struct kmem_cache *cache,
209 struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215
216 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 void **list);
218 static inline void fixup_slab_list(struct kmem_cache *cachep,
219 struct kmem_cache_node *n, struct page *page,
220 void **list);
221 static int slab_early_init = 1;
222
223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
224
225 static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 {
227 INIT_LIST_HEAD(&parent->slabs_full);
228 INIT_LIST_HEAD(&parent->slabs_partial);
229 INIT_LIST_HEAD(&parent->slabs_free);
230 parent->total_slabs = 0;
231 parent->free_slabs = 0;
232 parent->shared = NULL;
233 parent->alien = NULL;
234 parent->colour_next = 0;
235 spin_lock_init(&parent->list_lock);
236 parent->free_objects = 0;
237 parent->free_touched = 0;
238 }
239
240 #define MAKE_LIST(cachep, listp, slab, nodeid) \
241 do { \
242 INIT_LIST_HEAD(listp); \
243 list_splice(&get_node(cachep, nodeid)->slab, listp); \
244 } while (0)
245
246 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
247 do { \
248 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
249 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
251 } while (0)
252
253 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
254 #define CFLGS_OFF_SLAB (0x80000000UL)
255 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
256 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
257
258 #define BATCHREFILL_LIMIT 16
259 /*
260 * Optimization question: fewer reaps means less probability for unnessary
261 * cpucache drain/refill cycles.
262 *
263 * OTOH the cpuarrays can contain lots of objects,
264 * which could lock up otherwise freeable slabs.
265 */
266 #define REAPTIMEOUT_AC (2*HZ)
267 #define REAPTIMEOUT_NODE (4*HZ)
268
269 #if STATS
270 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
271 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
272 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
273 #define STATS_INC_GROWN(x) ((x)->grown++)
274 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
275 #define STATS_SET_HIGH(x) \
276 do { \
277 if ((x)->num_active > (x)->high_mark) \
278 (x)->high_mark = (x)->num_active; \
279 } while (0)
280 #define STATS_INC_ERR(x) ((x)->errors++)
281 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
282 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
283 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
284 #define STATS_SET_FREEABLE(x, i) \
285 do { \
286 if ((x)->max_freeable < i) \
287 (x)->max_freeable = i; \
288 } while (0)
289 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
290 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
291 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
292 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
293 #else
294 #define STATS_INC_ACTIVE(x) do { } while (0)
295 #define STATS_DEC_ACTIVE(x) do { } while (0)
296 #define STATS_INC_ALLOCED(x) do { } while (0)
297 #define STATS_INC_GROWN(x) do { } while (0)
298 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
299 #define STATS_SET_HIGH(x) do { } while (0)
300 #define STATS_INC_ERR(x) do { } while (0)
301 #define STATS_INC_NODEALLOCS(x) do { } while (0)
302 #define STATS_INC_NODEFREES(x) do { } while (0)
303 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
304 #define STATS_SET_FREEABLE(x, i) do { } while (0)
305 #define STATS_INC_ALLOCHIT(x) do { } while (0)
306 #define STATS_INC_ALLOCMISS(x) do { } while (0)
307 #define STATS_INC_FREEHIT(x) do { } while (0)
308 #define STATS_INC_FREEMISS(x) do { } while (0)
309 #endif
310
311 #if DEBUG
312
313 /*
314 * memory layout of objects:
315 * 0 : objp
316 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
317 * the end of an object is aligned with the end of the real
318 * allocation. Catches writes behind the end of the allocation.
319 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
320 * redzone word.
321 * cachep->obj_offset: The real object.
322 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
323 * cachep->size - 1* BYTES_PER_WORD: last caller address
324 * [BYTES_PER_WORD long]
325 */
326 static int obj_offset(struct kmem_cache *cachep)
327 {
328 return cachep->obj_offset;
329 }
330
331 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
332 {
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 return (unsigned long long*) (objp + obj_offset(cachep) -
335 sizeof(unsigned long long));
336 }
337
338 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
339 {
340 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
341 if (cachep->flags & SLAB_STORE_USER)
342 return (unsigned long long *)(objp + cachep->size -
343 sizeof(unsigned long long) -
344 REDZONE_ALIGN);
345 return (unsigned long long *) (objp + cachep->size -
346 sizeof(unsigned long long));
347 }
348
349 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
350 {
351 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
352 return (void **)(objp + cachep->size - BYTES_PER_WORD);
353 }
354
355 #else
356
357 #define obj_offset(x) 0
358 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
359 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
361
362 #endif
363
364 #ifdef CONFIG_DEBUG_SLAB_LEAK
365
366 static inline bool is_store_user_clean(struct kmem_cache *cachep)
367 {
368 return atomic_read(&cachep->store_user_clean) == 1;
369 }
370
371 static inline void set_store_user_clean(struct kmem_cache *cachep)
372 {
373 atomic_set(&cachep->store_user_clean, 1);
374 }
375
376 static inline void set_store_user_dirty(struct kmem_cache *cachep)
377 {
378 if (is_store_user_clean(cachep))
379 atomic_set(&cachep->store_user_clean, 0);
380 }
381
382 #else
383 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
384
385 #endif
386
387 /*
388 * Do not go above this order unless 0 objects fit into the slab or
389 * overridden on the command line.
390 */
391 #define SLAB_MAX_ORDER_HI 1
392 #define SLAB_MAX_ORDER_LO 0
393 static int slab_max_order = SLAB_MAX_ORDER_LO;
394 static bool slab_max_order_set __initdata;
395
396 static inline struct kmem_cache *virt_to_cache(const void *obj)
397 {
398 struct page *page = virt_to_head_page(obj);
399 return page->slab_cache;
400 }
401
402 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
403 unsigned int idx)
404 {
405 return page->s_mem + cache->size * idx;
406 }
407
408 /*
409 * We want to avoid an expensive divide : (offset / cache->size)
410 * Using the fact that size is a constant for a particular cache,
411 * we can replace (offset / cache->size) by
412 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
413 */
414 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
415 const struct page *page, void *obj)
416 {
417 u32 offset = (obj - page->s_mem);
418 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
419 }
420
421 #define BOOT_CPUCACHE_ENTRIES 1
422 /* internal cache of cache description objs */
423 static struct kmem_cache kmem_cache_boot = {
424 .batchcount = 1,
425 .limit = BOOT_CPUCACHE_ENTRIES,
426 .shared = 1,
427 .size = sizeof(struct kmem_cache),
428 .name = "kmem_cache",
429 };
430
431 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
432
433 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
434 {
435 return this_cpu_ptr(cachep->cpu_cache);
436 }
437
438 /*
439 * Calculate the number of objects and left-over bytes for a given buffer size.
440 */
441 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
442 unsigned long flags, size_t *left_over)
443 {
444 unsigned int num;
445 size_t slab_size = PAGE_SIZE << gfporder;
446
447 /*
448 * The slab management structure can be either off the slab or
449 * on it. For the latter case, the memory allocated for a
450 * slab is used for:
451 *
452 * - @buffer_size bytes for each object
453 * - One freelist_idx_t for each object
454 *
455 * We don't need to consider alignment of freelist because
456 * freelist will be at the end of slab page. The objects will be
457 * at the correct alignment.
458 *
459 * If the slab management structure is off the slab, then the
460 * alignment will already be calculated into the size. Because
461 * the slabs are all pages aligned, the objects will be at the
462 * correct alignment when allocated.
463 */
464 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
465 num = slab_size / buffer_size;
466 *left_over = slab_size % buffer_size;
467 } else {
468 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
469 *left_over = slab_size %
470 (buffer_size + sizeof(freelist_idx_t));
471 }
472
473 return num;
474 }
475
476 #if DEBUG
477 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
478
479 static void __slab_error(const char *function, struct kmem_cache *cachep,
480 char *msg)
481 {
482 pr_err("slab error in %s(): cache `%s': %s\n",
483 function, cachep->name, msg);
484 dump_stack();
485 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
486 }
487 #endif
488
489 /*
490 * By default on NUMA we use alien caches to stage the freeing of
491 * objects allocated from other nodes. This causes massive memory
492 * inefficiencies when using fake NUMA setup to split memory into a
493 * large number of small nodes, so it can be disabled on the command
494 * line
495 */
496
497 static int use_alien_caches __read_mostly = 1;
498 static int __init noaliencache_setup(char *s)
499 {
500 use_alien_caches = 0;
501 return 1;
502 }
503 __setup("noaliencache", noaliencache_setup);
504
505 static int __init slab_max_order_setup(char *str)
506 {
507 get_option(&str, &slab_max_order);
508 slab_max_order = slab_max_order < 0 ? 0 :
509 min(slab_max_order, MAX_ORDER - 1);
510 slab_max_order_set = true;
511
512 return 1;
513 }
514 __setup("slab_max_order=", slab_max_order_setup);
515
516 #ifdef CONFIG_NUMA
517 /*
518 * Special reaping functions for NUMA systems called from cache_reap().
519 * These take care of doing round robin flushing of alien caches (containing
520 * objects freed on different nodes from which they were allocated) and the
521 * flushing of remote pcps by calling drain_node_pages.
522 */
523 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
524
525 static void init_reap_node(int cpu)
526 {
527 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
528 node_online_map);
529 }
530
531 static void next_reap_node(void)
532 {
533 int node = __this_cpu_read(slab_reap_node);
534
535 node = next_node_in(node, node_online_map);
536 __this_cpu_write(slab_reap_node, node);
537 }
538
539 #else
540 #define init_reap_node(cpu) do { } while (0)
541 #define next_reap_node(void) do { } while (0)
542 #endif
543
544 /*
545 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
546 * via the workqueue/eventd.
547 * Add the CPU number into the expiration time to minimize the possibility of
548 * the CPUs getting into lockstep and contending for the global cache chain
549 * lock.
550 */
551 static void start_cpu_timer(int cpu)
552 {
553 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
554
555 if (reap_work->work.func == NULL) {
556 init_reap_node(cpu);
557 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
558 schedule_delayed_work_on(cpu, reap_work,
559 __round_jiffies_relative(HZ, cpu));
560 }
561 }
562
563 static void init_arraycache(struct array_cache *ac, int limit, int batch)
564 {
565 /*
566 * The array_cache structures contain pointers to free object.
567 * However, when such objects are allocated or transferred to another
568 * cache the pointers are not cleared and they could be counted as
569 * valid references during a kmemleak scan. Therefore, kmemleak must
570 * not scan such objects.
571 */
572 kmemleak_no_scan(ac);
573 if (ac) {
574 ac->avail = 0;
575 ac->limit = limit;
576 ac->batchcount = batch;
577 ac->touched = 0;
578 }
579 }
580
581 static struct array_cache *alloc_arraycache(int node, int entries,
582 int batchcount, gfp_t gfp)
583 {
584 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
585 struct array_cache *ac = NULL;
586
587 ac = kmalloc_node(memsize, gfp, node);
588 init_arraycache(ac, entries, batchcount);
589 return ac;
590 }
591
592 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
593 struct page *page, void *objp)
594 {
595 struct kmem_cache_node *n;
596 int page_node;
597 LIST_HEAD(list);
598
599 page_node = page_to_nid(page);
600 n = get_node(cachep, page_node);
601
602 spin_lock(&n->list_lock);
603 free_block(cachep, &objp, 1, page_node, &list);
604 spin_unlock(&n->list_lock);
605
606 slabs_destroy(cachep, &list);
607 }
608
609 /*
610 * Transfer objects in one arraycache to another.
611 * Locking must be handled by the caller.
612 *
613 * Return the number of entries transferred.
614 */
615 static int transfer_objects(struct array_cache *to,
616 struct array_cache *from, unsigned int max)
617 {
618 /* Figure out how many entries to transfer */
619 int nr = min3(from->avail, max, to->limit - to->avail);
620
621 if (!nr)
622 return 0;
623
624 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
625 sizeof(void *) *nr);
626
627 from->avail -= nr;
628 to->avail += nr;
629 return nr;
630 }
631
632 #ifndef CONFIG_NUMA
633
634 #define drain_alien_cache(cachep, alien) do { } while (0)
635 #define reap_alien(cachep, n) do { } while (0)
636
637 static inline struct alien_cache **alloc_alien_cache(int node,
638 int limit, gfp_t gfp)
639 {
640 return NULL;
641 }
642
643 static inline void free_alien_cache(struct alien_cache **ac_ptr)
644 {
645 }
646
647 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
648 {
649 return 0;
650 }
651
652 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
653 gfp_t flags)
654 {
655 return NULL;
656 }
657
658 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
659 gfp_t flags, int nodeid)
660 {
661 return NULL;
662 }
663
664 static inline gfp_t gfp_exact_node(gfp_t flags)
665 {
666 return flags & ~__GFP_NOFAIL;
667 }
668
669 #else /* CONFIG_NUMA */
670
671 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
672 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
673
674 static struct alien_cache *__alloc_alien_cache(int node, int entries,
675 int batch, gfp_t gfp)
676 {
677 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
678 struct alien_cache *alc = NULL;
679
680 alc = kmalloc_node(memsize, gfp, node);
681 init_arraycache(&alc->ac, entries, batch);
682 spin_lock_init(&alc->lock);
683 return alc;
684 }
685
686 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
687 {
688 struct alien_cache **alc_ptr;
689 size_t memsize = sizeof(void *) * nr_node_ids;
690 int i;
691
692 if (limit > 1)
693 limit = 12;
694 alc_ptr = kzalloc_node(memsize, gfp, node);
695 if (!alc_ptr)
696 return NULL;
697
698 for_each_node(i) {
699 if (i == node || !node_online(i))
700 continue;
701 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
702 if (!alc_ptr[i]) {
703 for (i--; i >= 0; i--)
704 kfree(alc_ptr[i]);
705 kfree(alc_ptr);
706 return NULL;
707 }
708 }
709 return alc_ptr;
710 }
711
712 static void free_alien_cache(struct alien_cache **alc_ptr)
713 {
714 int i;
715
716 if (!alc_ptr)
717 return;
718 for_each_node(i)
719 kfree(alc_ptr[i]);
720 kfree(alc_ptr);
721 }
722
723 static void __drain_alien_cache(struct kmem_cache *cachep,
724 struct array_cache *ac, int node,
725 struct list_head *list)
726 {
727 struct kmem_cache_node *n = get_node(cachep, node);
728
729 if (ac->avail) {
730 spin_lock(&n->list_lock);
731 /*
732 * Stuff objects into the remote nodes shared array first.
733 * That way we could avoid the overhead of putting the objects
734 * into the free lists and getting them back later.
735 */
736 if (n->shared)
737 transfer_objects(n->shared, ac, ac->limit);
738
739 free_block(cachep, ac->entry, ac->avail, node, list);
740 ac->avail = 0;
741 spin_unlock(&n->list_lock);
742 }
743 }
744
745 /*
746 * Called from cache_reap() to regularly drain alien caches round robin.
747 */
748 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
749 {
750 int node = __this_cpu_read(slab_reap_node);
751
752 if (n->alien) {
753 struct alien_cache *alc = n->alien[node];
754 struct array_cache *ac;
755
756 if (alc) {
757 ac = &alc->ac;
758 if (ac->avail && spin_trylock_irq(&alc->lock)) {
759 LIST_HEAD(list);
760
761 __drain_alien_cache(cachep, ac, node, &list);
762 spin_unlock_irq(&alc->lock);
763 slabs_destroy(cachep, &list);
764 }
765 }
766 }
767 }
768
769 static void drain_alien_cache(struct kmem_cache *cachep,
770 struct alien_cache **alien)
771 {
772 int i = 0;
773 struct alien_cache *alc;
774 struct array_cache *ac;
775 unsigned long flags;
776
777 for_each_online_node(i) {
778 alc = alien[i];
779 if (alc) {
780 LIST_HEAD(list);
781
782 ac = &alc->ac;
783 spin_lock_irqsave(&alc->lock, flags);
784 __drain_alien_cache(cachep, ac, i, &list);
785 spin_unlock_irqrestore(&alc->lock, flags);
786 slabs_destroy(cachep, &list);
787 }
788 }
789 }
790
791 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
792 int node, int page_node)
793 {
794 struct kmem_cache_node *n;
795 struct alien_cache *alien = NULL;
796 struct array_cache *ac;
797 LIST_HEAD(list);
798
799 n = get_node(cachep, node);
800 STATS_INC_NODEFREES(cachep);
801 if (n->alien && n->alien[page_node]) {
802 alien = n->alien[page_node];
803 ac = &alien->ac;
804 spin_lock(&alien->lock);
805 if (unlikely(ac->avail == ac->limit)) {
806 STATS_INC_ACOVERFLOW(cachep);
807 __drain_alien_cache(cachep, ac, page_node, &list);
808 }
809 ac->entry[ac->avail++] = objp;
810 spin_unlock(&alien->lock);
811 slabs_destroy(cachep, &list);
812 } else {
813 n = get_node(cachep, page_node);
814 spin_lock(&n->list_lock);
815 free_block(cachep, &objp, 1, page_node, &list);
816 spin_unlock(&n->list_lock);
817 slabs_destroy(cachep, &list);
818 }
819 return 1;
820 }
821
822 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
823 {
824 int page_node = page_to_nid(virt_to_page(objp));
825 int node = numa_mem_id();
826 /*
827 * Make sure we are not freeing a object from another node to the array
828 * cache on this cpu.
829 */
830 if (likely(node == page_node))
831 return 0;
832
833 return __cache_free_alien(cachep, objp, node, page_node);
834 }
835
836 /*
837 * Construct gfp mask to allocate from a specific node but do not reclaim or
838 * warn about failures.
839 */
840 static inline gfp_t gfp_exact_node(gfp_t flags)
841 {
842 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
843 }
844 #endif
845
846 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
847 {
848 struct kmem_cache_node *n;
849
850 /*
851 * Set up the kmem_cache_node for cpu before we can
852 * begin anything. Make sure some other cpu on this
853 * node has not already allocated this
854 */
855 n = get_node(cachep, node);
856 if (n) {
857 spin_lock_irq(&n->list_lock);
858 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
859 cachep->num;
860 spin_unlock_irq(&n->list_lock);
861
862 return 0;
863 }
864
865 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
866 if (!n)
867 return -ENOMEM;
868
869 kmem_cache_node_init(n);
870 n->next_reap = jiffies + REAPTIMEOUT_NODE +
871 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
872
873 n->free_limit =
874 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
875
876 /*
877 * The kmem_cache_nodes don't come and go as CPUs
878 * come and go. slab_mutex is sufficient
879 * protection here.
880 */
881 cachep->node[node] = n;
882
883 return 0;
884 }
885
886 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
887 /*
888 * Allocates and initializes node for a node on each slab cache, used for
889 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
890 * will be allocated off-node since memory is not yet online for the new node.
891 * When hotplugging memory or a cpu, existing node are not replaced if
892 * already in use.
893 *
894 * Must hold slab_mutex.
895 */
896 static int init_cache_node_node(int node)
897 {
898 int ret;
899 struct kmem_cache *cachep;
900
901 list_for_each_entry(cachep, &slab_caches, list) {
902 ret = init_cache_node(cachep, node, GFP_KERNEL);
903 if (ret)
904 return ret;
905 }
906
907 return 0;
908 }
909 #endif
910
911 static int setup_kmem_cache_node(struct kmem_cache *cachep,
912 int node, gfp_t gfp, bool force_change)
913 {
914 int ret = -ENOMEM;
915 struct kmem_cache_node *n;
916 struct array_cache *old_shared = NULL;
917 struct array_cache *new_shared = NULL;
918 struct alien_cache **new_alien = NULL;
919 LIST_HEAD(list);
920
921 if (use_alien_caches) {
922 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
923 if (!new_alien)
924 goto fail;
925 }
926
927 if (cachep->shared) {
928 new_shared = alloc_arraycache(node,
929 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
930 if (!new_shared)
931 goto fail;
932 }
933
934 ret = init_cache_node(cachep, node, gfp);
935 if (ret)
936 goto fail;
937
938 n = get_node(cachep, node);
939 spin_lock_irq(&n->list_lock);
940 if (n->shared && force_change) {
941 free_block(cachep, n->shared->entry,
942 n->shared->avail, node, &list);
943 n->shared->avail = 0;
944 }
945
946 if (!n->shared || force_change) {
947 old_shared = n->shared;
948 n->shared = new_shared;
949 new_shared = NULL;
950 }
951
952 if (!n->alien) {
953 n->alien = new_alien;
954 new_alien = NULL;
955 }
956
957 spin_unlock_irq(&n->list_lock);
958 slabs_destroy(cachep, &list);
959
960 /*
961 * To protect lockless access to n->shared during irq disabled context.
962 * If n->shared isn't NULL in irq disabled context, accessing to it is
963 * guaranteed to be valid until irq is re-enabled, because it will be
964 * freed after synchronize_sched().
965 */
966 if (old_shared && force_change)
967 synchronize_sched();
968
969 fail:
970 kfree(old_shared);
971 kfree(new_shared);
972 free_alien_cache(new_alien);
973
974 return ret;
975 }
976
977 #ifdef CONFIG_SMP
978
979 static void cpuup_canceled(long cpu)
980 {
981 struct kmem_cache *cachep;
982 struct kmem_cache_node *n = NULL;
983 int node = cpu_to_mem(cpu);
984 const struct cpumask *mask = cpumask_of_node(node);
985
986 list_for_each_entry(cachep, &slab_caches, list) {
987 struct array_cache *nc;
988 struct array_cache *shared;
989 struct alien_cache **alien;
990 LIST_HEAD(list);
991
992 n = get_node(cachep, node);
993 if (!n)
994 continue;
995
996 spin_lock_irq(&n->list_lock);
997
998 /* Free limit for this kmem_cache_node */
999 n->free_limit -= cachep->batchcount;
1000
1001 /* cpu is dead; no one can alloc from it. */
1002 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1003 if (nc) {
1004 free_block(cachep, nc->entry, nc->avail, node, &list);
1005 nc->avail = 0;
1006 }
1007
1008 if (!cpumask_empty(mask)) {
1009 spin_unlock_irq(&n->list_lock);
1010 goto free_slab;
1011 }
1012
1013 shared = n->shared;
1014 if (shared) {
1015 free_block(cachep, shared->entry,
1016 shared->avail, node, &list);
1017 n->shared = NULL;
1018 }
1019
1020 alien = n->alien;
1021 n->alien = NULL;
1022
1023 spin_unlock_irq(&n->list_lock);
1024
1025 kfree(shared);
1026 if (alien) {
1027 drain_alien_cache(cachep, alien);
1028 free_alien_cache(alien);
1029 }
1030
1031 free_slab:
1032 slabs_destroy(cachep, &list);
1033 }
1034 /*
1035 * In the previous loop, all the objects were freed to
1036 * the respective cache's slabs, now we can go ahead and
1037 * shrink each nodelist to its limit.
1038 */
1039 list_for_each_entry(cachep, &slab_caches, list) {
1040 n = get_node(cachep, node);
1041 if (!n)
1042 continue;
1043 drain_freelist(cachep, n, INT_MAX);
1044 }
1045 }
1046
1047 static int cpuup_prepare(long cpu)
1048 {
1049 struct kmem_cache *cachep;
1050 int node = cpu_to_mem(cpu);
1051 int err;
1052
1053 /*
1054 * We need to do this right in the beginning since
1055 * alloc_arraycache's are going to use this list.
1056 * kmalloc_node allows us to add the slab to the right
1057 * kmem_cache_node and not this cpu's kmem_cache_node
1058 */
1059 err = init_cache_node_node(node);
1060 if (err < 0)
1061 goto bad;
1062
1063 /*
1064 * Now we can go ahead with allocating the shared arrays and
1065 * array caches
1066 */
1067 list_for_each_entry(cachep, &slab_caches, list) {
1068 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1069 if (err)
1070 goto bad;
1071 }
1072
1073 return 0;
1074 bad:
1075 cpuup_canceled(cpu);
1076 return -ENOMEM;
1077 }
1078
1079 int slab_prepare_cpu(unsigned int cpu)
1080 {
1081 int err;
1082
1083 mutex_lock(&slab_mutex);
1084 err = cpuup_prepare(cpu);
1085 mutex_unlock(&slab_mutex);
1086 return err;
1087 }
1088
1089 /*
1090 * This is called for a failed online attempt and for a successful
1091 * offline.
1092 *
1093 * Even if all the cpus of a node are down, we don't free the
1094 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1095 * a kmalloc allocation from another cpu for memory from the node of
1096 * the cpu going down. The list3 structure is usually allocated from
1097 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1098 */
1099 int slab_dead_cpu(unsigned int cpu)
1100 {
1101 mutex_lock(&slab_mutex);
1102 cpuup_canceled(cpu);
1103 mutex_unlock(&slab_mutex);
1104 return 0;
1105 }
1106 #endif
1107
1108 static int slab_online_cpu(unsigned int cpu)
1109 {
1110 start_cpu_timer(cpu);
1111 return 0;
1112 }
1113
1114 static int slab_offline_cpu(unsigned int cpu)
1115 {
1116 /*
1117 * Shutdown cache reaper. Note that the slab_mutex is held so
1118 * that if cache_reap() is invoked it cannot do anything
1119 * expensive but will only modify reap_work and reschedule the
1120 * timer.
1121 */
1122 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1123 /* Now the cache_reaper is guaranteed to be not running. */
1124 per_cpu(slab_reap_work, cpu).work.func = NULL;
1125 return 0;
1126 }
1127
1128 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1129 /*
1130 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1131 * Returns -EBUSY if all objects cannot be drained so that the node is not
1132 * removed.
1133 *
1134 * Must hold slab_mutex.
1135 */
1136 static int __meminit drain_cache_node_node(int node)
1137 {
1138 struct kmem_cache *cachep;
1139 int ret = 0;
1140
1141 list_for_each_entry(cachep, &slab_caches, list) {
1142 struct kmem_cache_node *n;
1143
1144 n = get_node(cachep, node);
1145 if (!n)
1146 continue;
1147
1148 drain_freelist(cachep, n, INT_MAX);
1149
1150 if (!list_empty(&n->slabs_full) ||
1151 !list_empty(&n->slabs_partial)) {
1152 ret = -EBUSY;
1153 break;
1154 }
1155 }
1156 return ret;
1157 }
1158
1159 static int __meminit slab_memory_callback(struct notifier_block *self,
1160 unsigned long action, void *arg)
1161 {
1162 struct memory_notify *mnb = arg;
1163 int ret = 0;
1164 int nid;
1165
1166 nid = mnb->status_change_nid;
1167 if (nid < 0)
1168 goto out;
1169
1170 switch (action) {
1171 case MEM_GOING_ONLINE:
1172 mutex_lock(&slab_mutex);
1173 ret = init_cache_node_node(nid);
1174 mutex_unlock(&slab_mutex);
1175 break;
1176 case MEM_GOING_OFFLINE:
1177 mutex_lock(&slab_mutex);
1178 ret = drain_cache_node_node(nid);
1179 mutex_unlock(&slab_mutex);
1180 break;
1181 case MEM_ONLINE:
1182 case MEM_OFFLINE:
1183 case MEM_CANCEL_ONLINE:
1184 case MEM_CANCEL_OFFLINE:
1185 break;
1186 }
1187 out:
1188 return notifier_from_errno(ret);
1189 }
1190 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1191
1192 /*
1193 * swap the static kmem_cache_node with kmalloced memory
1194 */
1195 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1196 int nodeid)
1197 {
1198 struct kmem_cache_node *ptr;
1199
1200 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1201 BUG_ON(!ptr);
1202
1203 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1204 /*
1205 * Do not assume that spinlocks can be initialized via memcpy:
1206 */
1207 spin_lock_init(&ptr->list_lock);
1208
1209 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1210 cachep->node[nodeid] = ptr;
1211 }
1212
1213 /*
1214 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1215 * size of kmem_cache_node.
1216 */
1217 static void __init set_up_node(struct kmem_cache *cachep, int index)
1218 {
1219 int node;
1220
1221 for_each_online_node(node) {
1222 cachep->node[node] = &init_kmem_cache_node[index + node];
1223 cachep->node[node]->next_reap = jiffies +
1224 REAPTIMEOUT_NODE +
1225 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1226 }
1227 }
1228
1229 /*
1230 * Initialisation. Called after the page allocator have been initialised and
1231 * before smp_init().
1232 */
1233 void __init kmem_cache_init(void)
1234 {
1235 int i;
1236
1237 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1238 sizeof(struct rcu_head));
1239 kmem_cache = &kmem_cache_boot;
1240
1241 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1242 use_alien_caches = 0;
1243
1244 for (i = 0; i < NUM_INIT_LISTS; i++)
1245 kmem_cache_node_init(&init_kmem_cache_node[i]);
1246
1247 /*
1248 * Fragmentation resistance on low memory - only use bigger
1249 * page orders on machines with more than 32MB of memory if
1250 * not overridden on the command line.
1251 */
1252 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1253 slab_max_order = SLAB_MAX_ORDER_HI;
1254
1255 /* Bootstrap is tricky, because several objects are allocated
1256 * from caches that do not exist yet:
1257 * 1) initialize the kmem_cache cache: it contains the struct
1258 * kmem_cache structures of all caches, except kmem_cache itself:
1259 * kmem_cache is statically allocated.
1260 * Initially an __init data area is used for the head array and the
1261 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1262 * array at the end of the bootstrap.
1263 * 2) Create the first kmalloc cache.
1264 * The struct kmem_cache for the new cache is allocated normally.
1265 * An __init data area is used for the head array.
1266 * 3) Create the remaining kmalloc caches, with minimally sized
1267 * head arrays.
1268 * 4) Replace the __init data head arrays for kmem_cache and the first
1269 * kmalloc cache with kmalloc allocated arrays.
1270 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1271 * the other cache's with kmalloc allocated memory.
1272 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1273 */
1274
1275 /* 1) create the kmem_cache */
1276
1277 /*
1278 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1279 */
1280 create_boot_cache(kmem_cache, "kmem_cache",
1281 offsetof(struct kmem_cache, node) +
1282 nr_node_ids * sizeof(struct kmem_cache_node *),
1283 SLAB_HWCACHE_ALIGN);
1284 list_add(&kmem_cache->list, &slab_caches);
1285 slab_state = PARTIAL;
1286
1287 /*
1288 * Initialize the caches that provide memory for the kmem_cache_node
1289 * structures first. Without this, further allocations will bug.
1290 */
1291 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1292 kmalloc_info[INDEX_NODE].name,
1293 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1294 slab_state = PARTIAL_NODE;
1295 setup_kmalloc_cache_index_table();
1296
1297 slab_early_init = 0;
1298
1299 /* 5) Replace the bootstrap kmem_cache_node */
1300 {
1301 int nid;
1302
1303 for_each_online_node(nid) {
1304 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1305
1306 init_list(kmalloc_caches[INDEX_NODE],
1307 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1308 }
1309 }
1310
1311 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1312 }
1313
1314 void __init kmem_cache_init_late(void)
1315 {
1316 struct kmem_cache *cachep;
1317
1318 slab_state = UP;
1319
1320 /* 6) resize the head arrays to their final sizes */
1321 mutex_lock(&slab_mutex);
1322 list_for_each_entry(cachep, &slab_caches, list)
1323 if (enable_cpucache(cachep, GFP_NOWAIT))
1324 BUG();
1325 mutex_unlock(&slab_mutex);
1326
1327 /* Done! */
1328 slab_state = FULL;
1329
1330 #ifdef CONFIG_NUMA
1331 /*
1332 * Register a memory hotplug callback that initializes and frees
1333 * node.
1334 */
1335 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1336 #endif
1337
1338 /*
1339 * The reap timers are started later, with a module init call: That part
1340 * of the kernel is not yet operational.
1341 */
1342 }
1343
1344 static int __init cpucache_init(void)
1345 {
1346 int ret;
1347
1348 /*
1349 * Register the timers that return unneeded pages to the page allocator
1350 */
1351 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1352 slab_online_cpu, slab_offline_cpu);
1353 WARN_ON(ret < 0);
1354
1355 /* Done! */
1356 slab_state = FULL;
1357 return 0;
1358 }
1359 __initcall(cpucache_init);
1360
1361 static noinline void
1362 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1363 {
1364 #if DEBUG
1365 struct kmem_cache_node *n;
1366 unsigned long flags;
1367 int node;
1368 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1369 DEFAULT_RATELIMIT_BURST);
1370
1371 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1372 return;
1373
1374 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1375 nodeid, gfpflags, &gfpflags);
1376 pr_warn(" cache: %s, object size: %d, order: %d\n",
1377 cachep->name, cachep->size, cachep->gfporder);
1378
1379 for_each_kmem_cache_node(cachep, node, n) {
1380 unsigned long total_slabs, free_slabs, free_objs;
1381
1382 spin_lock_irqsave(&n->list_lock, flags);
1383 total_slabs = n->total_slabs;
1384 free_slabs = n->free_slabs;
1385 free_objs = n->free_objects;
1386 spin_unlock_irqrestore(&n->list_lock, flags);
1387
1388 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1389 node, total_slabs - free_slabs, total_slabs,
1390 (total_slabs * cachep->num) - free_objs,
1391 total_slabs * cachep->num);
1392 }
1393 #endif
1394 }
1395
1396 /*
1397 * Interface to system's page allocator. No need to hold the
1398 * kmem_cache_node ->list_lock.
1399 *
1400 * If we requested dmaable memory, we will get it. Even if we
1401 * did not request dmaable memory, we might get it, but that
1402 * would be relatively rare and ignorable.
1403 */
1404 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1405 int nodeid)
1406 {
1407 struct page *page;
1408 int nr_pages;
1409
1410 flags |= cachep->allocflags;
1411 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1412 flags |= __GFP_RECLAIMABLE;
1413
1414 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1415 if (!page) {
1416 slab_out_of_memory(cachep, flags, nodeid);
1417 return NULL;
1418 }
1419
1420 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1421 __free_pages(page, cachep->gfporder);
1422 return NULL;
1423 }
1424
1425 nr_pages = (1 << cachep->gfporder);
1426 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1427 add_zone_page_state(page_zone(page),
1428 NR_SLAB_RECLAIMABLE, nr_pages);
1429 else
1430 add_zone_page_state(page_zone(page),
1431 NR_SLAB_UNRECLAIMABLE, nr_pages);
1432
1433 __SetPageSlab(page);
1434 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1435 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1436 SetPageSlabPfmemalloc(page);
1437
1438 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1439 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1440
1441 if (cachep->ctor)
1442 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1443 else
1444 kmemcheck_mark_unallocated_pages(page, nr_pages);
1445 }
1446
1447 return page;
1448 }
1449
1450 /*
1451 * Interface to system's page release.
1452 */
1453 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1454 {
1455 int order = cachep->gfporder;
1456 unsigned long nr_freed = (1 << order);
1457
1458 kmemcheck_free_shadow(page, order);
1459
1460 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1461 sub_zone_page_state(page_zone(page),
1462 NR_SLAB_RECLAIMABLE, nr_freed);
1463 else
1464 sub_zone_page_state(page_zone(page),
1465 NR_SLAB_UNRECLAIMABLE, nr_freed);
1466
1467 BUG_ON(!PageSlab(page));
1468 __ClearPageSlabPfmemalloc(page);
1469 __ClearPageSlab(page);
1470 page_mapcount_reset(page);
1471 page->mapping = NULL;
1472
1473 if (current->reclaim_state)
1474 current->reclaim_state->reclaimed_slab += nr_freed;
1475 memcg_uncharge_slab(page, order, cachep);
1476 __free_pages(page, order);
1477 }
1478
1479 static void kmem_rcu_free(struct rcu_head *head)
1480 {
1481 struct kmem_cache *cachep;
1482 struct page *page;
1483
1484 page = container_of(head, struct page, rcu_head);
1485 cachep = page->slab_cache;
1486
1487 kmem_freepages(cachep, page);
1488 }
1489
1490 #if DEBUG
1491 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1492 {
1493 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1494 (cachep->size % PAGE_SIZE) == 0)
1495 return true;
1496
1497 return false;
1498 }
1499
1500 #ifdef CONFIG_DEBUG_PAGEALLOC
1501 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1502 unsigned long caller)
1503 {
1504 int size = cachep->object_size;
1505
1506 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1507
1508 if (size < 5 * sizeof(unsigned long))
1509 return;
1510
1511 *addr++ = 0x12345678;
1512 *addr++ = caller;
1513 *addr++ = smp_processor_id();
1514 size -= 3 * sizeof(unsigned long);
1515 {
1516 unsigned long *sptr = &caller;
1517 unsigned long svalue;
1518
1519 while (!kstack_end(sptr)) {
1520 svalue = *sptr++;
1521 if (kernel_text_address(svalue)) {
1522 *addr++ = svalue;
1523 size -= sizeof(unsigned long);
1524 if (size <= sizeof(unsigned long))
1525 break;
1526 }
1527 }
1528
1529 }
1530 *addr++ = 0x87654321;
1531 }
1532
1533 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1534 int map, unsigned long caller)
1535 {
1536 if (!is_debug_pagealloc_cache(cachep))
1537 return;
1538
1539 if (caller)
1540 store_stackinfo(cachep, objp, caller);
1541
1542 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1543 }
1544
1545 #else
1546 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1547 int map, unsigned long caller) {}
1548
1549 #endif
1550
1551 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1552 {
1553 int size = cachep->object_size;
1554 addr = &((char *)addr)[obj_offset(cachep)];
1555
1556 memset(addr, val, size);
1557 *(unsigned char *)(addr + size - 1) = POISON_END;
1558 }
1559
1560 static void dump_line(char *data, int offset, int limit)
1561 {
1562 int i;
1563 unsigned char error = 0;
1564 int bad_count = 0;
1565
1566 pr_err("%03x: ", offset);
1567 for (i = 0; i < limit; i++) {
1568 if (data[offset + i] != POISON_FREE) {
1569 error = data[offset + i];
1570 bad_count++;
1571 }
1572 }
1573 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1574 &data[offset], limit, 1);
1575
1576 if (bad_count == 1) {
1577 error ^= POISON_FREE;
1578 if (!(error & (error - 1))) {
1579 pr_err("Single bit error detected. Probably bad RAM.\n");
1580 #ifdef CONFIG_X86
1581 pr_err("Run memtest86+ or a similar memory test tool.\n");
1582 #else
1583 pr_err("Run a memory test tool.\n");
1584 #endif
1585 }
1586 }
1587 }
1588 #endif
1589
1590 #if DEBUG
1591
1592 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1593 {
1594 int i, size;
1595 char *realobj;
1596
1597 if (cachep->flags & SLAB_RED_ZONE) {
1598 pr_err("Redzone: 0x%llx/0x%llx\n",
1599 *dbg_redzone1(cachep, objp),
1600 *dbg_redzone2(cachep, objp));
1601 }
1602
1603 if (cachep->flags & SLAB_STORE_USER) {
1604 pr_err("Last user: [<%p>](%pSR)\n",
1605 *dbg_userword(cachep, objp),
1606 *dbg_userword(cachep, objp));
1607 }
1608 realobj = (char *)objp + obj_offset(cachep);
1609 size = cachep->object_size;
1610 for (i = 0; i < size && lines; i += 16, lines--) {
1611 int limit;
1612 limit = 16;
1613 if (i + limit > size)
1614 limit = size - i;
1615 dump_line(realobj, i, limit);
1616 }
1617 }
1618
1619 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1620 {
1621 char *realobj;
1622 int size, i;
1623 int lines = 0;
1624
1625 if (is_debug_pagealloc_cache(cachep))
1626 return;
1627
1628 realobj = (char *)objp + obj_offset(cachep);
1629 size = cachep->object_size;
1630
1631 for (i = 0; i < size; i++) {
1632 char exp = POISON_FREE;
1633 if (i == size - 1)
1634 exp = POISON_END;
1635 if (realobj[i] != exp) {
1636 int limit;
1637 /* Mismatch ! */
1638 /* Print header */
1639 if (lines == 0) {
1640 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1641 print_tainted(), cachep->name,
1642 realobj, size);
1643 print_objinfo(cachep, objp, 0);
1644 }
1645 /* Hexdump the affected line */
1646 i = (i / 16) * 16;
1647 limit = 16;
1648 if (i + limit > size)
1649 limit = size - i;
1650 dump_line(realobj, i, limit);
1651 i += 16;
1652 lines++;
1653 /* Limit to 5 lines */
1654 if (lines > 5)
1655 break;
1656 }
1657 }
1658 if (lines != 0) {
1659 /* Print some data about the neighboring objects, if they
1660 * exist:
1661 */
1662 struct page *page = virt_to_head_page(objp);
1663 unsigned int objnr;
1664
1665 objnr = obj_to_index(cachep, page, objp);
1666 if (objnr) {
1667 objp = index_to_obj(cachep, page, objnr - 1);
1668 realobj = (char *)objp + obj_offset(cachep);
1669 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1670 print_objinfo(cachep, objp, 2);
1671 }
1672 if (objnr + 1 < cachep->num) {
1673 objp = index_to_obj(cachep, page, objnr + 1);
1674 realobj = (char *)objp + obj_offset(cachep);
1675 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1676 print_objinfo(cachep, objp, 2);
1677 }
1678 }
1679 }
1680 #endif
1681
1682 #if DEBUG
1683 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1684 struct page *page)
1685 {
1686 int i;
1687
1688 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1689 poison_obj(cachep, page->freelist - obj_offset(cachep),
1690 POISON_FREE);
1691 }
1692
1693 for (i = 0; i < cachep->num; i++) {
1694 void *objp = index_to_obj(cachep, page, i);
1695
1696 if (cachep->flags & SLAB_POISON) {
1697 check_poison_obj(cachep, objp);
1698 slab_kernel_map(cachep, objp, 1, 0);
1699 }
1700 if (cachep->flags & SLAB_RED_ZONE) {
1701 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1702 slab_error(cachep, "start of a freed object was overwritten");
1703 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1704 slab_error(cachep, "end of a freed object was overwritten");
1705 }
1706 }
1707 }
1708 #else
1709 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1710 struct page *page)
1711 {
1712 }
1713 #endif
1714
1715 /**
1716 * slab_destroy - destroy and release all objects in a slab
1717 * @cachep: cache pointer being destroyed
1718 * @page: page pointer being destroyed
1719 *
1720 * Destroy all the objs in a slab page, and release the mem back to the system.
1721 * Before calling the slab page must have been unlinked from the cache. The
1722 * kmem_cache_node ->list_lock is not held/needed.
1723 */
1724 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1725 {
1726 void *freelist;
1727
1728 freelist = page->freelist;
1729 slab_destroy_debugcheck(cachep, page);
1730 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1731 call_rcu(&page->rcu_head, kmem_rcu_free);
1732 else
1733 kmem_freepages(cachep, page);
1734
1735 /*
1736 * From now on, we don't use freelist
1737 * although actual page can be freed in rcu context
1738 */
1739 if (OFF_SLAB(cachep))
1740 kmem_cache_free(cachep->freelist_cache, freelist);
1741 }
1742
1743 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1744 {
1745 struct page *page, *n;
1746
1747 list_for_each_entry_safe(page, n, list, lru) {
1748 list_del(&page->lru);
1749 slab_destroy(cachep, page);
1750 }
1751 }
1752
1753 /**
1754 * calculate_slab_order - calculate size (page order) of slabs
1755 * @cachep: pointer to the cache that is being created
1756 * @size: size of objects to be created in this cache.
1757 * @flags: slab allocation flags
1758 *
1759 * Also calculates the number of objects per slab.
1760 *
1761 * This could be made much more intelligent. For now, try to avoid using
1762 * high order pages for slabs. When the gfp() functions are more friendly
1763 * towards high-order requests, this should be changed.
1764 */
1765 static size_t calculate_slab_order(struct kmem_cache *cachep,
1766 size_t size, unsigned long flags)
1767 {
1768 size_t left_over = 0;
1769 int gfporder;
1770
1771 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1772 unsigned int num;
1773 size_t remainder;
1774
1775 num = cache_estimate(gfporder, size, flags, &remainder);
1776 if (!num)
1777 continue;
1778
1779 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1780 if (num > SLAB_OBJ_MAX_NUM)
1781 break;
1782
1783 if (flags & CFLGS_OFF_SLAB) {
1784 struct kmem_cache *freelist_cache;
1785 size_t freelist_size;
1786
1787 freelist_size = num * sizeof(freelist_idx_t);
1788 freelist_cache = kmalloc_slab(freelist_size, 0u);
1789 if (!freelist_cache)
1790 continue;
1791
1792 /*
1793 * Needed to avoid possible looping condition
1794 * in cache_grow_begin()
1795 */
1796 if (OFF_SLAB(freelist_cache))
1797 continue;
1798
1799 /* check if off slab has enough benefit */
1800 if (freelist_cache->size > cachep->size / 2)
1801 continue;
1802 }
1803
1804 /* Found something acceptable - save it away */
1805 cachep->num = num;
1806 cachep->gfporder = gfporder;
1807 left_over = remainder;
1808
1809 /*
1810 * A VFS-reclaimable slab tends to have most allocations
1811 * as GFP_NOFS and we really don't want to have to be allocating
1812 * higher-order pages when we are unable to shrink dcache.
1813 */
1814 if (flags & SLAB_RECLAIM_ACCOUNT)
1815 break;
1816
1817 /*
1818 * Large number of objects is good, but very large slabs are
1819 * currently bad for the gfp()s.
1820 */
1821 if (gfporder >= slab_max_order)
1822 break;
1823
1824 /*
1825 * Acceptable internal fragmentation?
1826 */
1827 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1828 break;
1829 }
1830 return left_over;
1831 }
1832
1833 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1834 struct kmem_cache *cachep, int entries, int batchcount)
1835 {
1836 int cpu;
1837 size_t size;
1838 struct array_cache __percpu *cpu_cache;
1839
1840 size = sizeof(void *) * entries + sizeof(struct array_cache);
1841 cpu_cache = __alloc_percpu(size, sizeof(void *));
1842
1843 if (!cpu_cache)
1844 return NULL;
1845
1846 for_each_possible_cpu(cpu) {
1847 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1848 entries, batchcount);
1849 }
1850
1851 return cpu_cache;
1852 }
1853
1854 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1855 {
1856 if (slab_state >= FULL)
1857 return enable_cpucache(cachep, gfp);
1858
1859 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1860 if (!cachep->cpu_cache)
1861 return 1;
1862
1863 if (slab_state == DOWN) {
1864 /* Creation of first cache (kmem_cache). */
1865 set_up_node(kmem_cache, CACHE_CACHE);
1866 } else if (slab_state == PARTIAL) {
1867 /* For kmem_cache_node */
1868 set_up_node(cachep, SIZE_NODE);
1869 } else {
1870 int node;
1871
1872 for_each_online_node(node) {
1873 cachep->node[node] = kmalloc_node(
1874 sizeof(struct kmem_cache_node), gfp, node);
1875 BUG_ON(!cachep->node[node]);
1876 kmem_cache_node_init(cachep->node[node]);
1877 }
1878 }
1879
1880 cachep->node[numa_mem_id()]->next_reap =
1881 jiffies + REAPTIMEOUT_NODE +
1882 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1883
1884 cpu_cache_get(cachep)->avail = 0;
1885 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1886 cpu_cache_get(cachep)->batchcount = 1;
1887 cpu_cache_get(cachep)->touched = 0;
1888 cachep->batchcount = 1;
1889 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1890 return 0;
1891 }
1892
1893 unsigned long kmem_cache_flags(unsigned long object_size,
1894 unsigned long flags, const char *name,
1895 void (*ctor)(void *))
1896 {
1897 return flags;
1898 }
1899
1900 struct kmem_cache *
1901 __kmem_cache_alias(const char *name, size_t size, size_t align,
1902 unsigned long flags, void (*ctor)(void *))
1903 {
1904 struct kmem_cache *cachep;
1905
1906 cachep = find_mergeable(size, align, flags, name, ctor);
1907 if (cachep) {
1908 cachep->refcount++;
1909
1910 /*
1911 * Adjust the object sizes so that we clear
1912 * the complete object on kzalloc.
1913 */
1914 cachep->object_size = max_t(int, cachep->object_size, size);
1915 }
1916 return cachep;
1917 }
1918
1919 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1920 size_t size, unsigned long flags)
1921 {
1922 size_t left;
1923
1924 cachep->num = 0;
1925
1926 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1927 return false;
1928
1929 left = calculate_slab_order(cachep, size,
1930 flags | CFLGS_OBJFREELIST_SLAB);
1931 if (!cachep->num)
1932 return false;
1933
1934 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1935 return false;
1936
1937 cachep->colour = left / cachep->colour_off;
1938
1939 return true;
1940 }
1941
1942 static bool set_off_slab_cache(struct kmem_cache *cachep,
1943 size_t size, unsigned long flags)
1944 {
1945 size_t left;
1946
1947 cachep->num = 0;
1948
1949 /*
1950 * Always use on-slab management when SLAB_NOLEAKTRACE
1951 * to avoid recursive calls into kmemleak.
1952 */
1953 if (flags & SLAB_NOLEAKTRACE)
1954 return false;
1955
1956 /*
1957 * Size is large, assume best to place the slab management obj
1958 * off-slab (should allow better packing of objs).
1959 */
1960 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1961 if (!cachep->num)
1962 return false;
1963
1964 /*
1965 * If the slab has been placed off-slab, and we have enough space then
1966 * move it on-slab. This is at the expense of any extra colouring.
1967 */
1968 if (left >= cachep->num * sizeof(freelist_idx_t))
1969 return false;
1970
1971 cachep->colour = left / cachep->colour_off;
1972
1973 return true;
1974 }
1975
1976 static bool set_on_slab_cache(struct kmem_cache *cachep,
1977 size_t size, unsigned long flags)
1978 {
1979 size_t left;
1980
1981 cachep->num = 0;
1982
1983 left = calculate_slab_order(cachep, size, flags);
1984 if (!cachep->num)
1985 return false;
1986
1987 cachep->colour = left / cachep->colour_off;
1988
1989 return true;
1990 }
1991
1992 /**
1993 * __kmem_cache_create - Create a cache.
1994 * @cachep: cache management descriptor
1995 * @flags: SLAB flags
1996 *
1997 * Returns a ptr to the cache on success, NULL on failure.
1998 * Cannot be called within a int, but can be interrupted.
1999 * The @ctor is run when new pages are allocated by the cache.
2000 *
2001 * The flags are
2002 *
2003 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2004 * to catch references to uninitialised memory.
2005 *
2006 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2007 * for buffer overruns.
2008 *
2009 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2010 * cacheline. This can be beneficial if you're counting cycles as closely
2011 * as davem.
2012 */
2013 int
2014 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2015 {
2016 size_t ralign = BYTES_PER_WORD;
2017 gfp_t gfp;
2018 int err;
2019 size_t size = cachep->size;
2020
2021 #if DEBUG
2022 #if FORCED_DEBUG
2023 /*
2024 * Enable redzoning and last user accounting, except for caches with
2025 * large objects, if the increased size would increase the object size
2026 * above the next power of two: caches with object sizes just above a
2027 * power of two have a significant amount of internal fragmentation.
2028 */
2029 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2030 2 * sizeof(unsigned long long)))
2031 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2032 if (!(flags & SLAB_DESTROY_BY_RCU))
2033 flags |= SLAB_POISON;
2034 #endif
2035 #endif
2036
2037 /*
2038 * Check that size is in terms of words. This is needed to avoid
2039 * unaligned accesses for some archs when redzoning is used, and makes
2040 * sure any on-slab bufctl's are also correctly aligned.
2041 */
2042 if (size & (BYTES_PER_WORD - 1)) {
2043 size += (BYTES_PER_WORD - 1);
2044 size &= ~(BYTES_PER_WORD - 1);
2045 }
2046
2047 if (flags & SLAB_RED_ZONE) {
2048 ralign = REDZONE_ALIGN;
2049 /* If redzoning, ensure that the second redzone is suitably
2050 * aligned, by adjusting the object size accordingly. */
2051 size += REDZONE_ALIGN - 1;
2052 size &= ~(REDZONE_ALIGN - 1);
2053 }
2054
2055 /* 3) caller mandated alignment */
2056 if (ralign < cachep->align) {
2057 ralign = cachep->align;
2058 }
2059 /* disable debug if necessary */
2060 if (ralign > __alignof__(unsigned long long))
2061 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2062 /*
2063 * 4) Store it.
2064 */
2065 cachep->align = ralign;
2066 cachep->colour_off = cache_line_size();
2067 /* Offset must be a multiple of the alignment. */
2068 if (cachep->colour_off < cachep->align)
2069 cachep->colour_off = cachep->align;
2070
2071 if (slab_is_available())
2072 gfp = GFP_KERNEL;
2073 else
2074 gfp = GFP_NOWAIT;
2075
2076 #if DEBUG
2077
2078 /*
2079 * Both debugging options require word-alignment which is calculated
2080 * into align above.
2081 */
2082 if (flags & SLAB_RED_ZONE) {
2083 /* add space for red zone words */
2084 cachep->obj_offset += sizeof(unsigned long long);
2085 size += 2 * sizeof(unsigned long long);
2086 }
2087 if (flags & SLAB_STORE_USER) {
2088 /* user store requires one word storage behind the end of
2089 * the real object. But if the second red zone needs to be
2090 * aligned to 64 bits, we must allow that much space.
2091 */
2092 if (flags & SLAB_RED_ZONE)
2093 size += REDZONE_ALIGN;
2094 else
2095 size += BYTES_PER_WORD;
2096 }
2097 #endif
2098
2099 kasan_cache_create(cachep, &size, &flags);
2100
2101 size = ALIGN(size, cachep->align);
2102 /*
2103 * We should restrict the number of objects in a slab to implement
2104 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2105 */
2106 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2107 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2108
2109 #if DEBUG
2110 /*
2111 * To activate debug pagealloc, off-slab management is necessary
2112 * requirement. In early phase of initialization, small sized slab
2113 * doesn't get initialized so it would not be possible. So, we need
2114 * to check size >= 256. It guarantees that all necessary small
2115 * sized slab is initialized in current slab initialization sequence.
2116 */
2117 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2118 size >= 256 && cachep->object_size > cache_line_size()) {
2119 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2120 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2121
2122 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2123 flags |= CFLGS_OFF_SLAB;
2124 cachep->obj_offset += tmp_size - size;
2125 size = tmp_size;
2126 goto done;
2127 }
2128 }
2129 }
2130 #endif
2131
2132 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2133 flags |= CFLGS_OBJFREELIST_SLAB;
2134 goto done;
2135 }
2136
2137 if (set_off_slab_cache(cachep, size, flags)) {
2138 flags |= CFLGS_OFF_SLAB;
2139 goto done;
2140 }
2141
2142 if (set_on_slab_cache(cachep, size, flags))
2143 goto done;
2144
2145 return -E2BIG;
2146
2147 done:
2148 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2149 cachep->flags = flags;
2150 cachep->allocflags = __GFP_COMP;
2151 if (flags & SLAB_CACHE_DMA)
2152 cachep->allocflags |= GFP_DMA;
2153 cachep->size = size;
2154 cachep->reciprocal_buffer_size = reciprocal_value(size);
2155
2156 #if DEBUG
2157 /*
2158 * If we're going to use the generic kernel_map_pages()
2159 * poisoning, then it's going to smash the contents of
2160 * the redzone and userword anyhow, so switch them off.
2161 */
2162 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2163 (cachep->flags & SLAB_POISON) &&
2164 is_debug_pagealloc_cache(cachep))
2165 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2166 #endif
2167
2168 if (OFF_SLAB(cachep)) {
2169 cachep->freelist_cache =
2170 kmalloc_slab(cachep->freelist_size, 0u);
2171 }
2172
2173 err = setup_cpu_cache(cachep, gfp);
2174 if (err) {
2175 __kmem_cache_release(cachep);
2176 return err;
2177 }
2178
2179 return 0;
2180 }
2181
2182 #if DEBUG
2183 static void check_irq_off(void)
2184 {
2185 BUG_ON(!irqs_disabled());
2186 }
2187
2188 static void check_irq_on(void)
2189 {
2190 BUG_ON(irqs_disabled());
2191 }
2192
2193 static void check_mutex_acquired(void)
2194 {
2195 BUG_ON(!mutex_is_locked(&slab_mutex));
2196 }
2197
2198 static void check_spinlock_acquired(struct kmem_cache *cachep)
2199 {
2200 #ifdef CONFIG_SMP
2201 check_irq_off();
2202 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2203 #endif
2204 }
2205
2206 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2207 {
2208 #ifdef CONFIG_SMP
2209 check_irq_off();
2210 assert_spin_locked(&get_node(cachep, node)->list_lock);
2211 #endif
2212 }
2213
2214 #else
2215 #define check_irq_off() do { } while(0)
2216 #define check_irq_on() do { } while(0)
2217 #define check_mutex_acquired() do { } while(0)
2218 #define check_spinlock_acquired(x) do { } while(0)
2219 #define check_spinlock_acquired_node(x, y) do { } while(0)
2220 #endif
2221
2222 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2223 int node, bool free_all, struct list_head *list)
2224 {
2225 int tofree;
2226
2227 if (!ac || !ac->avail)
2228 return;
2229
2230 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2231 if (tofree > ac->avail)
2232 tofree = (ac->avail + 1) / 2;
2233
2234 free_block(cachep, ac->entry, tofree, node, list);
2235 ac->avail -= tofree;
2236 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2237 }
2238
2239 static void do_drain(void *arg)
2240 {
2241 struct kmem_cache *cachep = arg;
2242 struct array_cache *ac;
2243 int node = numa_mem_id();
2244 struct kmem_cache_node *n;
2245 LIST_HEAD(list);
2246
2247 check_irq_off();
2248 ac = cpu_cache_get(cachep);
2249 n = get_node(cachep, node);
2250 spin_lock(&n->list_lock);
2251 free_block(cachep, ac->entry, ac->avail, node, &list);
2252 spin_unlock(&n->list_lock);
2253 slabs_destroy(cachep, &list);
2254 ac->avail = 0;
2255 }
2256
2257 static void drain_cpu_caches(struct kmem_cache *cachep)
2258 {
2259 struct kmem_cache_node *n;
2260 int node;
2261 LIST_HEAD(list);
2262
2263 on_each_cpu(do_drain, cachep, 1);
2264 check_irq_on();
2265 for_each_kmem_cache_node(cachep, node, n)
2266 if (n->alien)
2267 drain_alien_cache(cachep, n->alien);
2268
2269 for_each_kmem_cache_node(cachep, node, n) {
2270 spin_lock_irq(&n->list_lock);
2271 drain_array_locked(cachep, n->shared, node, true, &list);
2272 spin_unlock_irq(&n->list_lock);
2273
2274 slabs_destroy(cachep, &list);
2275 }
2276 }
2277
2278 /*
2279 * Remove slabs from the list of free slabs.
2280 * Specify the number of slabs to drain in tofree.
2281 *
2282 * Returns the actual number of slabs released.
2283 */
2284 static int drain_freelist(struct kmem_cache *cache,
2285 struct kmem_cache_node *n, int tofree)
2286 {
2287 struct list_head *p;
2288 int nr_freed;
2289 struct page *page;
2290
2291 nr_freed = 0;
2292 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2293
2294 spin_lock_irq(&n->list_lock);
2295 p = n->slabs_free.prev;
2296 if (p == &n->slabs_free) {
2297 spin_unlock_irq(&n->list_lock);
2298 goto out;
2299 }
2300
2301 page = list_entry(p, struct page, lru);
2302 list_del(&page->lru);
2303 n->free_slabs--;
2304 n->total_slabs--;
2305 /*
2306 * Safe to drop the lock. The slab is no longer linked
2307 * to the cache.
2308 */
2309 n->free_objects -= cache->num;
2310 spin_unlock_irq(&n->list_lock);
2311 slab_destroy(cache, page);
2312 nr_freed++;
2313 }
2314 out:
2315 return nr_freed;
2316 }
2317
2318 int __kmem_cache_shrink(struct kmem_cache *cachep)
2319 {
2320 int ret = 0;
2321 int node;
2322 struct kmem_cache_node *n;
2323
2324 drain_cpu_caches(cachep);
2325
2326 check_irq_on();
2327 for_each_kmem_cache_node(cachep, node, n) {
2328 drain_freelist(cachep, n, INT_MAX);
2329
2330 ret += !list_empty(&n->slabs_full) ||
2331 !list_empty(&n->slabs_partial);
2332 }
2333 return (ret ? 1 : 0);
2334 }
2335
2336 #ifdef CONFIG_MEMCG
2337 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2338 {
2339 __kmem_cache_shrink(cachep);
2340 }
2341 #endif
2342
2343 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2344 {
2345 return __kmem_cache_shrink(cachep);
2346 }
2347
2348 void __kmem_cache_release(struct kmem_cache *cachep)
2349 {
2350 int i;
2351 struct kmem_cache_node *n;
2352
2353 cache_random_seq_destroy(cachep);
2354
2355 free_percpu(cachep->cpu_cache);
2356
2357 /* NUMA: free the node structures */
2358 for_each_kmem_cache_node(cachep, i, n) {
2359 kfree(n->shared);
2360 free_alien_cache(n->alien);
2361 kfree(n);
2362 cachep->node[i] = NULL;
2363 }
2364 }
2365
2366 /*
2367 * Get the memory for a slab management obj.
2368 *
2369 * For a slab cache when the slab descriptor is off-slab, the
2370 * slab descriptor can't come from the same cache which is being created,
2371 * Because if it is the case, that means we defer the creation of
2372 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2373 * And we eventually call down to __kmem_cache_create(), which
2374 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2375 * This is a "chicken-and-egg" problem.
2376 *
2377 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2378 * which are all initialized during kmem_cache_init().
2379 */
2380 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2381 struct page *page, int colour_off,
2382 gfp_t local_flags, int nodeid)
2383 {
2384 void *freelist;
2385 void *addr = page_address(page);
2386
2387 page->s_mem = addr + colour_off;
2388 page->active = 0;
2389
2390 if (OBJFREELIST_SLAB(cachep))
2391 freelist = NULL;
2392 else if (OFF_SLAB(cachep)) {
2393 /* Slab management obj is off-slab. */
2394 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2395 local_flags, nodeid);
2396 if (!freelist)
2397 return NULL;
2398 } else {
2399 /* We will use last bytes at the slab for freelist */
2400 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2401 cachep->freelist_size;
2402 }
2403
2404 return freelist;
2405 }
2406
2407 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2408 {
2409 return ((freelist_idx_t *)page->freelist)[idx];
2410 }
2411
2412 static inline void set_free_obj(struct page *page,
2413 unsigned int idx, freelist_idx_t val)
2414 {
2415 ((freelist_idx_t *)(page->freelist))[idx] = val;
2416 }
2417
2418 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2419 {
2420 #if DEBUG
2421 int i;
2422
2423 for (i = 0; i < cachep->num; i++) {
2424 void *objp = index_to_obj(cachep, page, i);
2425
2426 if (cachep->flags & SLAB_STORE_USER)
2427 *dbg_userword(cachep, objp) = NULL;
2428
2429 if (cachep->flags & SLAB_RED_ZONE) {
2430 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2431 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2432 }
2433 /*
2434 * Constructors are not allowed to allocate memory from the same
2435 * cache which they are a constructor for. Otherwise, deadlock.
2436 * They must also be threaded.
2437 */
2438 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2439 kasan_unpoison_object_data(cachep,
2440 objp + obj_offset(cachep));
2441 cachep->ctor(objp + obj_offset(cachep));
2442 kasan_poison_object_data(
2443 cachep, objp + obj_offset(cachep));
2444 }
2445
2446 if (cachep->flags & SLAB_RED_ZONE) {
2447 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2448 slab_error(cachep, "constructor overwrote the end of an object");
2449 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2450 slab_error(cachep, "constructor overwrote the start of an object");
2451 }
2452 /* need to poison the objs? */
2453 if (cachep->flags & SLAB_POISON) {
2454 poison_obj(cachep, objp, POISON_FREE);
2455 slab_kernel_map(cachep, objp, 0, 0);
2456 }
2457 }
2458 #endif
2459 }
2460
2461 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2462 /* Hold information during a freelist initialization */
2463 union freelist_init_state {
2464 struct {
2465 unsigned int pos;
2466 unsigned int *list;
2467 unsigned int count;
2468 };
2469 struct rnd_state rnd_state;
2470 };
2471
2472 /*
2473 * Initialize the state based on the randomization methode available.
2474 * return true if the pre-computed list is available, false otherwize.
2475 */
2476 static bool freelist_state_initialize(union freelist_init_state *state,
2477 struct kmem_cache *cachep,
2478 unsigned int count)
2479 {
2480 bool ret;
2481 unsigned int rand;
2482
2483 /* Use best entropy available to define a random shift */
2484 rand = get_random_int();
2485
2486 /* Use a random state if the pre-computed list is not available */
2487 if (!cachep->random_seq) {
2488 prandom_seed_state(&state->rnd_state, rand);
2489 ret = false;
2490 } else {
2491 state->list = cachep->random_seq;
2492 state->count = count;
2493 state->pos = rand % count;
2494 ret = true;
2495 }
2496 return ret;
2497 }
2498
2499 /* Get the next entry on the list and randomize it using a random shift */
2500 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2501 {
2502 if (state->pos >= state->count)
2503 state->pos = 0;
2504 return state->list[state->pos++];
2505 }
2506
2507 /* Swap two freelist entries */
2508 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2509 {
2510 swap(((freelist_idx_t *)page->freelist)[a],
2511 ((freelist_idx_t *)page->freelist)[b]);
2512 }
2513
2514 /*
2515 * Shuffle the freelist initialization state based on pre-computed lists.
2516 * return true if the list was successfully shuffled, false otherwise.
2517 */
2518 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2519 {
2520 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2521 union freelist_init_state state;
2522 bool precomputed;
2523
2524 if (count < 2)
2525 return false;
2526
2527 precomputed = freelist_state_initialize(&state, cachep, count);
2528
2529 /* Take a random entry as the objfreelist */
2530 if (OBJFREELIST_SLAB(cachep)) {
2531 if (!precomputed)
2532 objfreelist = count - 1;
2533 else
2534 objfreelist = next_random_slot(&state);
2535 page->freelist = index_to_obj(cachep, page, objfreelist) +
2536 obj_offset(cachep);
2537 count--;
2538 }
2539
2540 /*
2541 * On early boot, generate the list dynamically.
2542 * Later use a pre-computed list for speed.
2543 */
2544 if (!precomputed) {
2545 for (i = 0; i < count; i++)
2546 set_free_obj(page, i, i);
2547
2548 /* Fisher-Yates shuffle */
2549 for (i = count - 1; i > 0; i--) {
2550 rand = prandom_u32_state(&state.rnd_state);
2551 rand %= (i + 1);
2552 swap_free_obj(page, i, rand);
2553 }
2554 } else {
2555 for (i = 0; i < count; i++)
2556 set_free_obj(page, i, next_random_slot(&state));
2557 }
2558
2559 if (OBJFREELIST_SLAB(cachep))
2560 set_free_obj(page, cachep->num - 1, objfreelist);
2561
2562 return true;
2563 }
2564 #else
2565 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2566 struct page *page)
2567 {
2568 return false;
2569 }
2570 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2571
2572 static void cache_init_objs(struct kmem_cache *cachep,
2573 struct page *page)
2574 {
2575 int i;
2576 void *objp;
2577 bool shuffled;
2578
2579 cache_init_objs_debug(cachep, page);
2580
2581 /* Try to randomize the freelist if enabled */
2582 shuffled = shuffle_freelist(cachep, page);
2583
2584 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2585 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2586 obj_offset(cachep);
2587 }
2588
2589 for (i = 0; i < cachep->num; i++) {
2590 objp = index_to_obj(cachep, page, i);
2591 kasan_init_slab_obj(cachep, objp);
2592
2593 /* constructor could break poison info */
2594 if (DEBUG == 0 && cachep->ctor) {
2595 kasan_unpoison_object_data(cachep, objp);
2596 cachep->ctor(objp);
2597 kasan_poison_object_data(cachep, objp);
2598 }
2599
2600 if (!shuffled)
2601 set_free_obj(page, i, i);
2602 }
2603 }
2604
2605 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2606 {
2607 void *objp;
2608
2609 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2610 page->active++;
2611
2612 #if DEBUG
2613 if (cachep->flags & SLAB_STORE_USER)
2614 set_store_user_dirty(cachep);
2615 #endif
2616
2617 return objp;
2618 }
2619
2620 static void slab_put_obj(struct kmem_cache *cachep,
2621 struct page *page, void *objp)
2622 {
2623 unsigned int objnr = obj_to_index(cachep, page, objp);
2624 #if DEBUG
2625 unsigned int i;
2626
2627 /* Verify double free bug */
2628 for (i = page->active; i < cachep->num; i++) {
2629 if (get_free_obj(page, i) == objnr) {
2630 pr_err("slab: double free detected in cache '%s', objp %p\n",
2631 cachep->name, objp);
2632 BUG();
2633 }
2634 }
2635 #endif
2636 page->active--;
2637 if (!page->freelist)
2638 page->freelist = objp + obj_offset(cachep);
2639
2640 set_free_obj(page, page->active, objnr);
2641 }
2642
2643 /*
2644 * Map pages beginning at addr to the given cache and slab. This is required
2645 * for the slab allocator to be able to lookup the cache and slab of a
2646 * virtual address for kfree, ksize, and slab debugging.
2647 */
2648 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2649 void *freelist)
2650 {
2651 page->slab_cache = cache;
2652 page->freelist = freelist;
2653 }
2654
2655 /*
2656 * Grow (by 1) the number of slabs within a cache. This is called by
2657 * kmem_cache_alloc() when there are no active objs left in a cache.
2658 */
2659 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2660 gfp_t flags, int nodeid)
2661 {
2662 void *freelist;
2663 size_t offset;
2664 gfp_t local_flags;
2665 int page_node;
2666 struct kmem_cache_node *n;
2667 struct page *page;
2668
2669 /*
2670 * Be lazy and only check for valid flags here, keeping it out of the
2671 * critical path in kmem_cache_alloc().
2672 */
2673 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2674 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2675 flags &= ~GFP_SLAB_BUG_MASK;
2676 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2677 invalid_mask, &invalid_mask, flags, &flags);
2678 dump_stack();
2679 }
2680 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2681
2682 check_irq_off();
2683 if (gfpflags_allow_blocking(local_flags))
2684 local_irq_enable();
2685
2686 /*
2687 * Get mem for the objs. Attempt to allocate a physical page from
2688 * 'nodeid'.
2689 */
2690 page = kmem_getpages(cachep, local_flags, nodeid);
2691 if (!page)
2692 goto failed;
2693
2694 page_node = page_to_nid(page);
2695 n = get_node(cachep, page_node);
2696
2697 /* Get colour for the slab, and cal the next value. */
2698 n->colour_next++;
2699 if (n->colour_next >= cachep->colour)
2700 n->colour_next = 0;
2701
2702 offset = n->colour_next;
2703 if (offset >= cachep->colour)
2704 offset = 0;
2705
2706 offset *= cachep->colour_off;
2707
2708 /* Get slab management. */
2709 freelist = alloc_slabmgmt(cachep, page, offset,
2710 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2711 if (OFF_SLAB(cachep) && !freelist)
2712 goto opps1;
2713
2714 slab_map_pages(cachep, page, freelist);
2715
2716 kasan_poison_slab(page);
2717 cache_init_objs(cachep, page);
2718
2719 if (gfpflags_allow_blocking(local_flags))
2720 local_irq_disable();
2721
2722 return page;
2723
2724 opps1:
2725 kmem_freepages(cachep, page);
2726 failed:
2727 if (gfpflags_allow_blocking(local_flags))
2728 local_irq_disable();
2729 return NULL;
2730 }
2731
2732 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2733 {
2734 struct kmem_cache_node *n;
2735 void *list = NULL;
2736
2737 check_irq_off();
2738
2739 if (!page)
2740 return;
2741
2742 INIT_LIST_HEAD(&page->lru);
2743 n = get_node(cachep, page_to_nid(page));
2744
2745 spin_lock(&n->list_lock);
2746 n->total_slabs++;
2747 if (!page->active) {
2748 list_add_tail(&page->lru, &(n->slabs_free));
2749 n->free_slabs++;
2750 } else
2751 fixup_slab_list(cachep, n, page, &list);
2752
2753 STATS_INC_GROWN(cachep);
2754 n->free_objects += cachep->num - page->active;
2755 spin_unlock(&n->list_lock);
2756
2757 fixup_objfreelist_debug(cachep, &list);
2758 }
2759
2760 #if DEBUG
2761
2762 /*
2763 * Perform extra freeing checks:
2764 * - detect bad pointers.
2765 * - POISON/RED_ZONE checking
2766 */
2767 static void kfree_debugcheck(const void *objp)
2768 {
2769 if (!virt_addr_valid(objp)) {
2770 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2771 (unsigned long)objp);
2772 BUG();
2773 }
2774 }
2775
2776 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2777 {
2778 unsigned long long redzone1, redzone2;
2779
2780 redzone1 = *dbg_redzone1(cache, obj);
2781 redzone2 = *dbg_redzone2(cache, obj);
2782
2783 /*
2784 * Redzone is ok.
2785 */
2786 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2787 return;
2788
2789 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2790 slab_error(cache, "double free detected");
2791 else
2792 slab_error(cache, "memory outside object was overwritten");
2793
2794 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2795 obj, redzone1, redzone2);
2796 }
2797
2798 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2799 unsigned long caller)
2800 {
2801 unsigned int objnr;
2802 struct page *page;
2803
2804 BUG_ON(virt_to_cache(objp) != cachep);
2805
2806 objp -= obj_offset(cachep);
2807 kfree_debugcheck(objp);
2808 page = virt_to_head_page(objp);
2809
2810 if (cachep->flags & SLAB_RED_ZONE) {
2811 verify_redzone_free(cachep, objp);
2812 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2813 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2814 }
2815 if (cachep->flags & SLAB_STORE_USER) {
2816 set_store_user_dirty(cachep);
2817 *dbg_userword(cachep, objp) = (void *)caller;
2818 }
2819
2820 objnr = obj_to_index(cachep, page, objp);
2821
2822 BUG_ON(objnr >= cachep->num);
2823 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2824
2825 if (cachep->flags & SLAB_POISON) {
2826 poison_obj(cachep, objp, POISON_FREE);
2827 slab_kernel_map(cachep, objp, 0, caller);
2828 }
2829 return objp;
2830 }
2831
2832 #else
2833 #define kfree_debugcheck(x) do { } while(0)
2834 #define cache_free_debugcheck(x,objp,z) (objp)
2835 #endif
2836
2837 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2838 void **list)
2839 {
2840 #if DEBUG
2841 void *next = *list;
2842 void *objp;
2843
2844 while (next) {
2845 objp = next - obj_offset(cachep);
2846 next = *(void **)next;
2847 poison_obj(cachep, objp, POISON_FREE);
2848 }
2849 #endif
2850 }
2851
2852 static inline void fixup_slab_list(struct kmem_cache *cachep,
2853 struct kmem_cache_node *n, struct page *page,
2854 void **list)
2855 {
2856 /* move slabp to correct slabp list: */
2857 list_del(&page->lru);
2858 if (page->active == cachep->num) {
2859 list_add(&page->lru, &n->slabs_full);
2860 if (OBJFREELIST_SLAB(cachep)) {
2861 #if DEBUG
2862 /* Poisoning will be done without holding the lock */
2863 if (cachep->flags & SLAB_POISON) {
2864 void **objp = page->freelist;
2865
2866 *objp = *list;
2867 *list = objp;
2868 }
2869 #endif
2870 page->freelist = NULL;
2871 }
2872 } else
2873 list_add(&page->lru, &n->slabs_partial);
2874 }
2875
2876 /* Try to find non-pfmemalloc slab if needed */
2877 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2878 struct page *page, bool pfmemalloc)
2879 {
2880 if (!page)
2881 return NULL;
2882
2883 if (pfmemalloc)
2884 return page;
2885
2886 if (!PageSlabPfmemalloc(page))
2887 return page;
2888
2889 /* No need to keep pfmemalloc slab if we have enough free objects */
2890 if (n->free_objects > n->free_limit) {
2891 ClearPageSlabPfmemalloc(page);
2892 return page;
2893 }
2894
2895 /* Move pfmemalloc slab to the end of list to speed up next search */
2896 list_del(&page->lru);
2897 if (!page->active) {
2898 list_add_tail(&page->lru, &n->slabs_free);
2899 n->free_slabs++;
2900 } else
2901 list_add_tail(&page->lru, &n->slabs_partial);
2902
2903 list_for_each_entry(page, &n->slabs_partial, lru) {
2904 if (!PageSlabPfmemalloc(page))
2905 return page;
2906 }
2907
2908 n->free_touched = 1;
2909 list_for_each_entry(page, &n->slabs_free, lru) {
2910 if (!PageSlabPfmemalloc(page)) {
2911 n->free_slabs--;
2912 return page;
2913 }
2914 }
2915
2916 return NULL;
2917 }
2918
2919 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2920 {
2921 struct page *page;
2922
2923 assert_spin_locked(&n->list_lock);
2924 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2925 if (!page) {
2926 n->free_touched = 1;
2927 page = list_first_entry_or_null(&n->slabs_free, struct page,
2928 lru);
2929 if (page)
2930 n->free_slabs--;
2931 }
2932
2933 if (sk_memalloc_socks())
2934 page = get_valid_first_slab(n, page, pfmemalloc);
2935
2936 return page;
2937 }
2938
2939 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2940 struct kmem_cache_node *n, gfp_t flags)
2941 {
2942 struct page *page;
2943 void *obj;
2944 void *list = NULL;
2945
2946 if (!gfp_pfmemalloc_allowed(flags))
2947 return NULL;
2948
2949 spin_lock(&n->list_lock);
2950 page = get_first_slab(n, true);
2951 if (!page) {
2952 spin_unlock(&n->list_lock);
2953 return NULL;
2954 }
2955
2956 obj = slab_get_obj(cachep, page);
2957 n->free_objects--;
2958
2959 fixup_slab_list(cachep, n, page, &list);
2960
2961 spin_unlock(&n->list_lock);
2962 fixup_objfreelist_debug(cachep, &list);
2963
2964 return obj;
2965 }
2966
2967 /*
2968 * Slab list should be fixed up by fixup_slab_list() for existing slab
2969 * or cache_grow_end() for new slab
2970 */
2971 static __always_inline int alloc_block(struct kmem_cache *cachep,
2972 struct array_cache *ac, struct page *page, int batchcount)
2973 {
2974 /*
2975 * There must be at least one object available for
2976 * allocation.
2977 */
2978 BUG_ON(page->active >= cachep->num);
2979
2980 while (page->active < cachep->num && batchcount--) {
2981 STATS_INC_ALLOCED(cachep);
2982 STATS_INC_ACTIVE(cachep);
2983 STATS_SET_HIGH(cachep);
2984
2985 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2986 }
2987
2988 return batchcount;
2989 }
2990
2991 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2992 {
2993 int batchcount;
2994 struct kmem_cache_node *n;
2995 struct array_cache *ac, *shared;
2996 int node;
2997 void *list = NULL;
2998 struct page *page;
2999
3000 check_irq_off();
3001 node = numa_mem_id();
3002
3003 ac = cpu_cache_get(cachep);
3004 batchcount = ac->batchcount;
3005 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3006 /*
3007 * If there was little recent activity on this cache, then
3008 * perform only a partial refill. Otherwise we could generate
3009 * refill bouncing.
3010 */
3011 batchcount = BATCHREFILL_LIMIT;
3012 }
3013 n = get_node(cachep, node);
3014
3015 BUG_ON(ac->avail > 0 || !n);
3016 shared = READ_ONCE(n->shared);
3017 if (!n->free_objects && (!shared || !shared->avail))
3018 goto direct_grow;
3019
3020 spin_lock(&n->list_lock);
3021 shared = READ_ONCE(n->shared);
3022
3023 /* See if we can refill from the shared array */
3024 if (shared && transfer_objects(ac, shared, batchcount)) {
3025 shared->touched = 1;
3026 goto alloc_done;
3027 }
3028
3029 while (batchcount > 0) {
3030 /* Get slab alloc is to come from. */
3031 page = get_first_slab(n, false);
3032 if (!page)
3033 goto must_grow;
3034
3035 check_spinlock_acquired(cachep);
3036
3037 batchcount = alloc_block(cachep, ac, page, batchcount);
3038 fixup_slab_list(cachep, n, page, &list);
3039 }
3040
3041 must_grow:
3042 n->free_objects -= ac->avail;
3043 alloc_done:
3044 spin_unlock(&n->list_lock);
3045 fixup_objfreelist_debug(cachep, &list);
3046
3047 direct_grow:
3048 if (unlikely(!ac->avail)) {
3049 /* Check if we can use obj in pfmemalloc slab */
3050 if (sk_memalloc_socks()) {
3051 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3052
3053 if (obj)
3054 return obj;
3055 }
3056
3057 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3058
3059 /*
3060 * cache_grow_begin() can reenable interrupts,
3061 * then ac could change.
3062 */
3063 ac = cpu_cache_get(cachep);
3064 if (!ac->avail && page)
3065 alloc_block(cachep, ac, page, batchcount);
3066 cache_grow_end(cachep, page);
3067
3068 if (!ac->avail)
3069 return NULL;
3070 }
3071 ac->touched = 1;
3072
3073 return ac->entry[--ac->avail];
3074 }
3075
3076 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3077 gfp_t flags)
3078 {
3079 might_sleep_if(gfpflags_allow_blocking(flags));
3080 }
3081
3082 #if DEBUG
3083 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3084 gfp_t flags, void *objp, unsigned long caller)
3085 {
3086 if (!objp)
3087 return objp;
3088 if (cachep->flags & SLAB_POISON) {
3089 check_poison_obj(cachep, objp);
3090 slab_kernel_map(cachep, objp, 1, 0);
3091 poison_obj(cachep, objp, POISON_INUSE);
3092 }
3093 if (cachep->flags & SLAB_STORE_USER)
3094 *dbg_userword(cachep, objp) = (void *)caller;
3095
3096 if (cachep->flags & SLAB_RED_ZONE) {
3097 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3098 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3099 slab_error(cachep, "double free, or memory outside object was overwritten");
3100 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3101 objp, *dbg_redzone1(cachep, objp),
3102 *dbg_redzone2(cachep, objp));
3103 }
3104 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3105 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3106 }
3107
3108 objp += obj_offset(cachep);
3109 if (cachep->ctor && cachep->flags & SLAB_POISON)
3110 cachep->ctor(objp);
3111 if (ARCH_SLAB_MINALIGN &&
3112 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3113 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3114 objp, (int)ARCH_SLAB_MINALIGN);
3115 }
3116 return objp;
3117 }
3118 #else
3119 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3120 #endif
3121
3122 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3123 {
3124 void *objp;
3125 struct array_cache *ac;
3126
3127 check_irq_off();
3128
3129 ac = cpu_cache_get(cachep);
3130 if (likely(ac->avail)) {
3131 ac->touched = 1;
3132 objp = ac->entry[--ac->avail];
3133
3134 STATS_INC_ALLOCHIT(cachep);
3135 goto out;
3136 }
3137
3138 STATS_INC_ALLOCMISS(cachep);
3139 objp = cache_alloc_refill(cachep, flags);
3140 /*
3141 * the 'ac' may be updated by cache_alloc_refill(),
3142 * and kmemleak_erase() requires its correct value.
3143 */
3144 ac = cpu_cache_get(cachep);
3145
3146 out:
3147 /*
3148 * To avoid a false negative, if an object that is in one of the
3149 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3150 * treat the array pointers as a reference to the object.
3151 */
3152 if (objp)
3153 kmemleak_erase(&ac->entry[ac->avail]);
3154 return objp;
3155 }
3156
3157 #ifdef CONFIG_NUMA
3158 /*
3159 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3160 *
3161 * If we are in_interrupt, then process context, including cpusets and
3162 * mempolicy, may not apply and should not be used for allocation policy.
3163 */
3164 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3165 {
3166 int nid_alloc, nid_here;
3167
3168 if (in_interrupt() || (flags & __GFP_THISNODE))
3169 return NULL;
3170 nid_alloc = nid_here = numa_mem_id();
3171 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3172 nid_alloc = cpuset_slab_spread_node();
3173 else if (current->mempolicy)
3174 nid_alloc = mempolicy_slab_node();
3175 if (nid_alloc != nid_here)
3176 return ____cache_alloc_node(cachep, flags, nid_alloc);
3177 return NULL;
3178 }
3179
3180 /*
3181 * Fallback function if there was no memory available and no objects on a
3182 * certain node and fall back is permitted. First we scan all the
3183 * available node for available objects. If that fails then we
3184 * perform an allocation without specifying a node. This allows the page
3185 * allocator to do its reclaim / fallback magic. We then insert the
3186 * slab into the proper nodelist and then allocate from it.
3187 */
3188 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3189 {
3190 struct zonelist *zonelist;
3191 struct zoneref *z;
3192 struct zone *zone;
3193 enum zone_type high_zoneidx = gfp_zone(flags);
3194 void *obj = NULL;
3195 struct page *page;
3196 int nid;
3197 unsigned int cpuset_mems_cookie;
3198
3199 if (flags & __GFP_THISNODE)
3200 return NULL;
3201
3202 retry_cpuset:
3203 cpuset_mems_cookie = read_mems_allowed_begin();
3204 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3205
3206 retry:
3207 /*
3208 * Look through allowed nodes for objects available
3209 * from existing per node queues.
3210 */
3211 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3212 nid = zone_to_nid(zone);
3213
3214 if (cpuset_zone_allowed(zone, flags) &&
3215 get_node(cache, nid) &&
3216 get_node(cache, nid)->free_objects) {
3217 obj = ____cache_alloc_node(cache,
3218 gfp_exact_node(flags), nid);
3219 if (obj)
3220 break;
3221 }
3222 }
3223
3224 if (!obj) {
3225 /*
3226 * This allocation will be performed within the constraints
3227 * of the current cpuset / memory policy requirements.
3228 * We may trigger various forms of reclaim on the allowed
3229 * set and go into memory reserves if necessary.
3230 */
3231 page = cache_grow_begin(cache, flags, numa_mem_id());
3232 cache_grow_end(cache, page);
3233 if (page) {
3234 nid = page_to_nid(page);
3235 obj = ____cache_alloc_node(cache,
3236 gfp_exact_node(flags), nid);
3237
3238 /*
3239 * Another processor may allocate the objects in
3240 * the slab since we are not holding any locks.
3241 */
3242 if (!obj)
3243 goto retry;
3244 }
3245 }
3246
3247 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3248 goto retry_cpuset;
3249 return obj;
3250 }
3251
3252 /*
3253 * A interface to enable slab creation on nodeid
3254 */
3255 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3256 int nodeid)
3257 {
3258 struct page *page;
3259 struct kmem_cache_node *n;
3260 void *obj = NULL;
3261 void *list = NULL;
3262
3263 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3264 n = get_node(cachep, nodeid);
3265 BUG_ON(!n);
3266
3267 check_irq_off();
3268 spin_lock(&n->list_lock);
3269 page = get_first_slab(n, false);
3270 if (!page)
3271 goto must_grow;
3272
3273 check_spinlock_acquired_node(cachep, nodeid);
3274
3275 STATS_INC_NODEALLOCS(cachep);
3276 STATS_INC_ACTIVE(cachep);
3277 STATS_SET_HIGH(cachep);
3278
3279 BUG_ON(page->active == cachep->num);
3280
3281 obj = slab_get_obj(cachep, page);
3282 n->free_objects--;
3283
3284 fixup_slab_list(cachep, n, page, &list);
3285
3286 spin_unlock(&n->list_lock);
3287 fixup_objfreelist_debug(cachep, &list);
3288 return obj;
3289
3290 must_grow:
3291 spin_unlock(&n->list_lock);
3292 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3293 if (page) {
3294 /* This slab isn't counted yet so don't update free_objects */
3295 obj = slab_get_obj(cachep, page);
3296 }
3297 cache_grow_end(cachep, page);
3298
3299 return obj ? obj : fallback_alloc(cachep, flags);
3300 }
3301
3302 static __always_inline void *
3303 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3304 unsigned long caller)
3305 {
3306 unsigned long save_flags;
3307 void *ptr;
3308 int slab_node = numa_mem_id();
3309
3310 flags &= gfp_allowed_mask;
3311 cachep = slab_pre_alloc_hook(cachep, flags);
3312 if (unlikely(!cachep))
3313 return NULL;
3314
3315 cache_alloc_debugcheck_before(cachep, flags);
3316 local_irq_save(save_flags);
3317
3318 if (nodeid == NUMA_NO_NODE)
3319 nodeid = slab_node;
3320
3321 if (unlikely(!get_node(cachep, nodeid))) {
3322 /* Node not bootstrapped yet */
3323 ptr = fallback_alloc(cachep, flags);
3324 goto out;
3325 }
3326
3327 if (nodeid == slab_node) {
3328 /*
3329 * Use the locally cached objects if possible.
3330 * However ____cache_alloc does not allow fallback
3331 * to other nodes. It may fail while we still have
3332 * objects on other nodes available.
3333 */
3334 ptr = ____cache_alloc(cachep, flags);
3335 if (ptr)
3336 goto out;
3337 }
3338 /* ___cache_alloc_node can fall back to other nodes */
3339 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3340 out:
3341 local_irq_restore(save_flags);
3342 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3343
3344 if (unlikely(flags & __GFP_ZERO) && ptr)
3345 memset(ptr, 0, cachep->object_size);
3346
3347 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3348 return ptr;
3349 }
3350
3351 static __always_inline void *
3352 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3353 {
3354 void *objp;
3355
3356 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3357 objp = alternate_node_alloc(cache, flags);
3358 if (objp)
3359 goto out;
3360 }
3361 objp = ____cache_alloc(cache, flags);
3362
3363 /*
3364 * We may just have run out of memory on the local node.
3365 * ____cache_alloc_node() knows how to locate memory on other nodes
3366 */
3367 if (!objp)
3368 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3369
3370 out:
3371 return objp;
3372 }
3373 #else
3374
3375 static __always_inline void *
3376 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3377 {
3378 return ____cache_alloc(cachep, flags);
3379 }
3380
3381 #endif /* CONFIG_NUMA */
3382
3383 static __always_inline void *
3384 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3385 {
3386 unsigned long save_flags;
3387 void *objp;
3388
3389 flags &= gfp_allowed_mask;
3390 cachep = slab_pre_alloc_hook(cachep, flags);
3391 if (unlikely(!cachep))
3392 return NULL;
3393
3394 cache_alloc_debugcheck_before(cachep, flags);
3395 local_irq_save(save_flags);
3396 objp = __do_cache_alloc(cachep, flags);
3397 local_irq_restore(save_flags);
3398 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3399 prefetchw(objp);
3400
3401 if (unlikely(flags & __GFP_ZERO) && objp)
3402 memset(objp, 0, cachep->object_size);
3403
3404 slab_post_alloc_hook(cachep, flags, 1, &objp);
3405 return objp;
3406 }
3407
3408 /*
3409 * Caller needs to acquire correct kmem_cache_node's list_lock
3410 * @list: List of detached free slabs should be freed by caller
3411 */
3412 static void free_block(struct kmem_cache *cachep, void **objpp,
3413 int nr_objects, int node, struct list_head *list)
3414 {
3415 int i;
3416 struct kmem_cache_node *n = get_node(cachep, node);
3417 struct page *page;
3418
3419 n->free_objects += nr_objects;
3420
3421 for (i = 0; i < nr_objects; i++) {
3422 void *objp;
3423 struct page *page;
3424
3425 objp = objpp[i];
3426
3427 page = virt_to_head_page(objp);
3428 list_del(&page->lru);
3429 check_spinlock_acquired_node(cachep, node);
3430 slab_put_obj(cachep, page, objp);
3431 STATS_DEC_ACTIVE(cachep);
3432
3433 /* fixup slab chains */
3434 if (page->active == 0) {
3435 list_add(&page->lru, &n->slabs_free);
3436 n->free_slabs++;
3437 } else {
3438 /* Unconditionally move a slab to the end of the
3439 * partial list on free - maximum time for the
3440 * other objects to be freed, too.
3441 */
3442 list_add_tail(&page->lru, &n->slabs_partial);
3443 }
3444 }
3445
3446 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3447 n->free_objects -= cachep->num;
3448
3449 page = list_last_entry(&n->slabs_free, struct page, lru);
3450 list_move(&page->lru, list);
3451 n->free_slabs--;
3452 n->total_slabs--;
3453 }
3454 }
3455
3456 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3457 {
3458 int batchcount;
3459 struct kmem_cache_node *n;
3460 int node = numa_mem_id();
3461 LIST_HEAD(list);
3462
3463 batchcount = ac->batchcount;
3464
3465 check_irq_off();
3466 n = get_node(cachep, node);
3467 spin_lock(&n->list_lock);
3468 if (n->shared) {
3469 struct array_cache *shared_array = n->shared;
3470 int max = shared_array->limit - shared_array->avail;
3471 if (max) {
3472 if (batchcount > max)
3473 batchcount = max;
3474 memcpy(&(shared_array->entry[shared_array->avail]),
3475 ac->entry, sizeof(void *) * batchcount);
3476 shared_array->avail += batchcount;
3477 goto free_done;
3478 }
3479 }
3480
3481 free_block(cachep, ac->entry, batchcount, node, &list);
3482 free_done:
3483 #if STATS
3484 {
3485 int i = 0;
3486 struct page *page;
3487
3488 list_for_each_entry(page, &n->slabs_free, lru) {
3489 BUG_ON(page->active);
3490
3491 i++;
3492 }
3493 STATS_SET_FREEABLE(cachep, i);
3494 }
3495 #endif
3496 spin_unlock(&n->list_lock);
3497 slabs_destroy(cachep, &list);
3498 ac->avail -= batchcount;
3499 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3500 }
3501
3502 /*
3503 * Release an obj back to its cache. If the obj has a constructed state, it must
3504 * be in this state _before_ it is released. Called with disabled ints.
3505 */
3506 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3507 unsigned long caller)
3508 {
3509 /* Put the object into the quarantine, don't touch it for now. */
3510 if (kasan_slab_free(cachep, objp))
3511 return;
3512
3513 ___cache_free(cachep, objp, caller);
3514 }
3515
3516 void ___cache_free(struct kmem_cache *cachep, void *objp,
3517 unsigned long caller)
3518 {
3519 struct array_cache *ac = cpu_cache_get(cachep);
3520
3521 check_irq_off();
3522 kmemleak_free_recursive(objp, cachep->flags);
3523 objp = cache_free_debugcheck(cachep, objp, caller);
3524
3525 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3526
3527 /*
3528 * Skip calling cache_free_alien() when the platform is not numa.
3529 * This will avoid cache misses that happen while accessing slabp (which
3530 * is per page memory reference) to get nodeid. Instead use a global
3531 * variable to skip the call, which is mostly likely to be present in
3532 * the cache.
3533 */
3534 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3535 return;
3536
3537 if (ac->avail < ac->limit) {
3538 STATS_INC_FREEHIT(cachep);
3539 } else {
3540 STATS_INC_FREEMISS(cachep);
3541 cache_flusharray(cachep, ac);
3542 }
3543
3544 if (sk_memalloc_socks()) {
3545 struct page *page = virt_to_head_page(objp);
3546
3547 if (unlikely(PageSlabPfmemalloc(page))) {
3548 cache_free_pfmemalloc(cachep, page, objp);
3549 return;
3550 }
3551 }
3552
3553 ac->entry[ac->avail++] = objp;
3554 }
3555
3556 /**
3557 * kmem_cache_alloc - Allocate an object
3558 * @cachep: The cache to allocate from.
3559 * @flags: See kmalloc().
3560 *
3561 * Allocate an object from this cache. The flags are only relevant
3562 * if the cache has no available objects.
3563 */
3564 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3565 {
3566 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3567
3568 kasan_slab_alloc(cachep, ret, flags);
3569 trace_kmem_cache_alloc(_RET_IP_, ret,
3570 cachep->object_size, cachep->size, flags);
3571
3572 return ret;
3573 }
3574 EXPORT_SYMBOL(kmem_cache_alloc);
3575
3576 static __always_inline void
3577 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3578 size_t size, void **p, unsigned long caller)
3579 {
3580 size_t i;
3581
3582 for (i = 0; i < size; i++)
3583 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3584 }
3585
3586 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3587 void **p)
3588 {
3589 size_t i;
3590
3591 s = slab_pre_alloc_hook(s, flags);
3592 if (!s)
3593 return 0;
3594
3595 cache_alloc_debugcheck_before(s, flags);
3596
3597 local_irq_disable();
3598 for (i = 0; i < size; i++) {
3599 void *objp = __do_cache_alloc(s, flags);
3600
3601 if (unlikely(!objp))
3602 goto error;
3603 p[i] = objp;
3604 }
3605 local_irq_enable();
3606
3607 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3608
3609 /* Clear memory outside IRQ disabled section */
3610 if (unlikely(flags & __GFP_ZERO))
3611 for (i = 0; i < size; i++)
3612 memset(p[i], 0, s->object_size);
3613
3614 slab_post_alloc_hook(s, flags, size, p);
3615 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3616 return size;
3617 error:
3618 local_irq_enable();
3619 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3620 slab_post_alloc_hook(s, flags, i, p);
3621 __kmem_cache_free_bulk(s, i, p);
3622 return 0;
3623 }
3624 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3625
3626 #ifdef CONFIG_TRACING
3627 void *
3628 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3629 {
3630 void *ret;
3631
3632 ret = slab_alloc(cachep, flags, _RET_IP_);
3633
3634 kasan_kmalloc(cachep, ret, size, flags);
3635 trace_kmalloc(_RET_IP_, ret,
3636 size, cachep->size, flags);
3637 return ret;
3638 }
3639 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3640 #endif
3641
3642 #ifdef CONFIG_NUMA
3643 /**
3644 * kmem_cache_alloc_node - Allocate an object on the specified node
3645 * @cachep: The cache to allocate from.
3646 * @flags: See kmalloc().
3647 * @nodeid: node number of the target node.
3648 *
3649 * Identical to kmem_cache_alloc but it will allocate memory on the given
3650 * node, which can improve the performance for cpu bound structures.
3651 *
3652 * Fallback to other node is possible if __GFP_THISNODE is not set.
3653 */
3654 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3655 {
3656 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3657
3658 kasan_slab_alloc(cachep, ret, flags);
3659 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3660 cachep->object_size, cachep->size,
3661 flags, nodeid);
3662
3663 return ret;
3664 }
3665 EXPORT_SYMBOL(kmem_cache_alloc_node);
3666
3667 #ifdef CONFIG_TRACING
3668 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3669 gfp_t flags,
3670 int nodeid,
3671 size_t size)
3672 {
3673 void *ret;
3674
3675 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3676
3677 kasan_kmalloc(cachep, ret, size, flags);
3678 trace_kmalloc_node(_RET_IP_, ret,
3679 size, cachep->size,
3680 flags, nodeid);
3681 return ret;
3682 }
3683 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3684 #endif
3685
3686 static __always_inline void *
3687 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3688 {
3689 struct kmem_cache *cachep;
3690 void *ret;
3691
3692 cachep = kmalloc_slab(size, flags);
3693 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3694 return cachep;
3695 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3696 kasan_kmalloc(cachep, ret, size, flags);
3697
3698 return ret;
3699 }
3700
3701 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3702 {
3703 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3704 }
3705 EXPORT_SYMBOL(__kmalloc_node);
3706
3707 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3708 int node, unsigned long caller)
3709 {
3710 return __do_kmalloc_node(size, flags, node, caller);
3711 }
3712 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3713 #endif /* CONFIG_NUMA */
3714
3715 /**
3716 * __do_kmalloc - allocate memory
3717 * @size: how many bytes of memory are required.
3718 * @flags: the type of memory to allocate (see kmalloc).
3719 * @caller: function caller for debug tracking of the caller
3720 */
3721 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3722 unsigned long caller)
3723 {
3724 struct kmem_cache *cachep;
3725 void *ret;
3726
3727 cachep = kmalloc_slab(size, flags);
3728 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3729 return cachep;
3730 ret = slab_alloc(cachep, flags, caller);
3731
3732 kasan_kmalloc(cachep, ret, size, flags);
3733 trace_kmalloc(caller, ret,
3734 size, cachep->size, flags);
3735
3736 return ret;
3737 }
3738
3739 void *__kmalloc(size_t size, gfp_t flags)
3740 {
3741 return __do_kmalloc(size, flags, _RET_IP_);
3742 }
3743 EXPORT_SYMBOL(__kmalloc);
3744
3745 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3746 {
3747 return __do_kmalloc(size, flags, caller);
3748 }
3749 EXPORT_SYMBOL(__kmalloc_track_caller);
3750
3751 /**
3752 * kmem_cache_free - Deallocate an object
3753 * @cachep: The cache the allocation was from.
3754 * @objp: The previously allocated object.
3755 *
3756 * Free an object which was previously allocated from this
3757 * cache.
3758 */
3759 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3760 {
3761 unsigned long flags;
3762 cachep = cache_from_obj(cachep, objp);
3763 if (!cachep)
3764 return;
3765
3766 local_irq_save(flags);
3767 debug_check_no_locks_freed(objp, cachep->object_size);
3768 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3769 debug_check_no_obj_freed(objp, cachep->object_size);
3770 __cache_free(cachep, objp, _RET_IP_);
3771 local_irq_restore(flags);
3772
3773 trace_kmem_cache_free(_RET_IP_, objp);
3774 }
3775 EXPORT_SYMBOL(kmem_cache_free);
3776
3777 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3778 {
3779 struct kmem_cache *s;
3780 size_t i;
3781
3782 local_irq_disable();
3783 for (i = 0; i < size; i++) {
3784 void *objp = p[i];
3785
3786 if (!orig_s) /* called via kfree_bulk */
3787 s = virt_to_cache(objp);
3788 else
3789 s = cache_from_obj(orig_s, objp);
3790
3791 debug_check_no_locks_freed(objp, s->object_size);
3792 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3793 debug_check_no_obj_freed(objp, s->object_size);
3794
3795 __cache_free(s, objp, _RET_IP_);
3796 }
3797 local_irq_enable();
3798
3799 /* FIXME: add tracing */
3800 }
3801 EXPORT_SYMBOL(kmem_cache_free_bulk);
3802
3803 /**
3804 * kfree - free previously allocated memory
3805 * @objp: pointer returned by kmalloc.
3806 *
3807 * If @objp is NULL, no operation is performed.
3808 *
3809 * Don't free memory not originally allocated by kmalloc()
3810 * or you will run into trouble.
3811 */
3812 void kfree(const void *objp)
3813 {
3814 struct kmem_cache *c;
3815 unsigned long flags;
3816
3817 trace_kfree(_RET_IP_, objp);
3818
3819 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3820 return;
3821 local_irq_save(flags);
3822 kfree_debugcheck(objp);
3823 c = virt_to_cache(objp);
3824 debug_check_no_locks_freed(objp, c->object_size);
3825
3826 debug_check_no_obj_freed(objp, c->object_size);
3827 __cache_free(c, (void *)objp, _RET_IP_);
3828 local_irq_restore(flags);
3829 }
3830 EXPORT_SYMBOL(kfree);
3831
3832 /*
3833 * This initializes kmem_cache_node or resizes various caches for all nodes.
3834 */
3835 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3836 {
3837 int ret;
3838 int node;
3839 struct kmem_cache_node *n;
3840
3841 for_each_online_node(node) {
3842 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3843 if (ret)
3844 goto fail;
3845
3846 }
3847
3848 return 0;
3849
3850 fail:
3851 if (!cachep->list.next) {
3852 /* Cache is not active yet. Roll back what we did */
3853 node--;
3854 while (node >= 0) {
3855 n = get_node(cachep, node);
3856 if (n) {
3857 kfree(n->shared);
3858 free_alien_cache(n->alien);
3859 kfree(n);
3860 cachep->node[node] = NULL;
3861 }
3862 node--;
3863 }
3864 }
3865 return -ENOMEM;
3866 }
3867
3868 /* Always called with the slab_mutex held */
3869 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3870 int batchcount, int shared, gfp_t gfp)
3871 {
3872 struct array_cache __percpu *cpu_cache, *prev;
3873 int cpu;
3874
3875 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3876 if (!cpu_cache)
3877 return -ENOMEM;
3878
3879 prev = cachep->cpu_cache;
3880 cachep->cpu_cache = cpu_cache;
3881 kick_all_cpus_sync();
3882
3883 check_irq_on();
3884 cachep->batchcount = batchcount;
3885 cachep->limit = limit;
3886 cachep->shared = shared;
3887
3888 if (!prev)
3889 goto setup_node;
3890
3891 for_each_online_cpu(cpu) {
3892 LIST_HEAD(list);
3893 int node;
3894 struct kmem_cache_node *n;
3895 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3896
3897 node = cpu_to_mem(cpu);
3898 n = get_node(cachep, node);
3899 spin_lock_irq(&n->list_lock);
3900 free_block(cachep, ac->entry, ac->avail, node, &list);
3901 spin_unlock_irq(&n->list_lock);
3902 slabs_destroy(cachep, &list);
3903 }
3904 free_percpu(prev);
3905
3906 setup_node:
3907 return setup_kmem_cache_nodes(cachep, gfp);
3908 }
3909
3910 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3911 int batchcount, int shared, gfp_t gfp)
3912 {
3913 int ret;
3914 struct kmem_cache *c;
3915
3916 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3917
3918 if (slab_state < FULL)
3919 return ret;
3920
3921 if ((ret < 0) || !is_root_cache(cachep))
3922 return ret;
3923
3924 lockdep_assert_held(&slab_mutex);
3925 for_each_memcg_cache(c, cachep) {
3926 /* return value determined by the root cache only */
3927 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3928 }
3929
3930 return ret;
3931 }
3932
3933 /* Called with slab_mutex held always */
3934 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3935 {
3936 int err;
3937 int limit = 0;
3938 int shared = 0;
3939 int batchcount = 0;
3940
3941 err = cache_random_seq_create(cachep, cachep->num, gfp);
3942 if (err)
3943 goto end;
3944
3945 if (!is_root_cache(cachep)) {
3946 struct kmem_cache *root = memcg_root_cache(cachep);
3947 limit = root->limit;
3948 shared = root->shared;
3949 batchcount = root->batchcount;
3950 }
3951
3952 if (limit && shared && batchcount)
3953 goto skip_setup;
3954 /*
3955 * The head array serves three purposes:
3956 * - create a LIFO ordering, i.e. return objects that are cache-warm
3957 * - reduce the number of spinlock operations.
3958 * - reduce the number of linked list operations on the slab and
3959 * bufctl chains: array operations are cheaper.
3960 * The numbers are guessed, we should auto-tune as described by
3961 * Bonwick.
3962 */
3963 if (cachep->size > 131072)
3964 limit = 1;
3965 else if (cachep->size > PAGE_SIZE)
3966 limit = 8;
3967 else if (cachep->size > 1024)
3968 limit = 24;
3969 else if (cachep->size > 256)
3970 limit = 54;
3971 else
3972 limit = 120;
3973
3974 /*
3975 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3976 * allocation behaviour: Most allocs on one cpu, most free operations
3977 * on another cpu. For these cases, an efficient object passing between
3978 * cpus is necessary. This is provided by a shared array. The array
3979 * replaces Bonwick's magazine layer.
3980 * On uniprocessor, it's functionally equivalent (but less efficient)
3981 * to a larger limit. Thus disabled by default.
3982 */
3983 shared = 0;
3984 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3985 shared = 8;
3986
3987 #if DEBUG
3988 /*
3989 * With debugging enabled, large batchcount lead to excessively long
3990 * periods with disabled local interrupts. Limit the batchcount
3991 */
3992 if (limit > 32)
3993 limit = 32;
3994 #endif
3995 batchcount = (limit + 1) / 2;
3996 skip_setup:
3997 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3998 end:
3999 if (err)
4000 pr_err("enable_cpucache failed for %s, error %d\n",
4001 cachep->name, -err);
4002 return err;
4003 }
4004
4005 /*
4006 * Drain an array if it contains any elements taking the node lock only if
4007 * necessary. Note that the node listlock also protects the array_cache
4008 * if drain_array() is used on the shared array.
4009 */
4010 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4011 struct array_cache *ac, int node)
4012 {
4013 LIST_HEAD(list);
4014
4015 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4016 check_mutex_acquired();
4017
4018 if (!ac || !ac->avail)
4019 return;
4020
4021 if (ac->touched) {
4022 ac->touched = 0;
4023 return;
4024 }
4025
4026 spin_lock_irq(&n->list_lock);
4027 drain_array_locked(cachep, ac, node, false, &list);
4028 spin_unlock_irq(&n->list_lock);
4029
4030 slabs_destroy(cachep, &list);
4031 }
4032
4033 /**
4034 * cache_reap - Reclaim memory from caches.
4035 * @w: work descriptor
4036 *
4037 * Called from workqueue/eventd every few seconds.
4038 * Purpose:
4039 * - clear the per-cpu caches for this CPU.
4040 * - return freeable pages to the main free memory pool.
4041 *
4042 * If we cannot acquire the cache chain mutex then just give up - we'll try
4043 * again on the next iteration.
4044 */
4045 static void cache_reap(struct work_struct *w)
4046 {
4047 struct kmem_cache *searchp;
4048 struct kmem_cache_node *n;
4049 int node = numa_mem_id();
4050 struct delayed_work *work = to_delayed_work(w);
4051
4052 if (!mutex_trylock(&slab_mutex))
4053 /* Give up. Setup the next iteration. */
4054 goto out;
4055
4056 list_for_each_entry(searchp, &slab_caches, list) {
4057 check_irq_on();
4058
4059 /*
4060 * We only take the node lock if absolutely necessary and we
4061 * have established with reasonable certainty that
4062 * we can do some work if the lock was obtained.
4063 */
4064 n = get_node(searchp, node);
4065
4066 reap_alien(searchp, n);
4067
4068 drain_array(searchp, n, cpu_cache_get(searchp), node);
4069
4070 /*
4071 * These are racy checks but it does not matter
4072 * if we skip one check or scan twice.
4073 */
4074 if (time_after(n->next_reap, jiffies))
4075 goto next;
4076
4077 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4078
4079 drain_array(searchp, n, n->shared, node);
4080
4081 if (n->free_touched)
4082 n->free_touched = 0;
4083 else {
4084 int freed;
4085
4086 freed = drain_freelist(searchp, n, (n->free_limit +
4087 5 * searchp->num - 1) / (5 * searchp->num));
4088 STATS_ADD_REAPED(searchp, freed);
4089 }
4090 next:
4091 cond_resched();
4092 }
4093 check_irq_on();
4094 mutex_unlock(&slab_mutex);
4095 next_reap_node();
4096 out:
4097 /* Set up the next iteration */
4098 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4099 }
4100
4101 #ifdef CONFIG_SLABINFO
4102 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4103 {
4104 unsigned long active_objs, num_objs, active_slabs;
4105 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4106 unsigned long free_slabs = 0;
4107 int node;
4108 struct kmem_cache_node *n;
4109
4110 for_each_kmem_cache_node(cachep, node, n) {
4111 check_irq_on();
4112 spin_lock_irq(&n->list_lock);
4113
4114 total_slabs += n->total_slabs;
4115 free_slabs += n->free_slabs;
4116 free_objs += n->free_objects;
4117
4118 if (n->shared)
4119 shared_avail += n->shared->avail;
4120
4121 spin_unlock_irq(&n->list_lock);
4122 }
4123 num_objs = total_slabs * cachep->num;
4124 active_slabs = total_slabs - free_slabs;
4125 active_objs = num_objs - free_objs;
4126
4127 sinfo->active_objs = active_objs;
4128 sinfo->num_objs = num_objs;
4129 sinfo->active_slabs = active_slabs;
4130 sinfo->num_slabs = total_slabs;
4131 sinfo->shared_avail = shared_avail;
4132 sinfo->limit = cachep->limit;
4133 sinfo->batchcount = cachep->batchcount;
4134 sinfo->shared = cachep->shared;
4135 sinfo->objects_per_slab = cachep->num;
4136 sinfo->cache_order = cachep->gfporder;
4137 }
4138
4139 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4140 {
4141 #if STATS
4142 { /* node stats */
4143 unsigned long high = cachep->high_mark;
4144 unsigned long allocs = cachep->num_allocations;
4145 unsigned long grown = cachep->grown;
4146 unsigned long reaped = cachep->reaped;
4147 unsigned long errors = cachep->errors;
4148 unsigned long max_freeable = cachep->max_freeable;
4149 unsigned long node_allocs = cachep->node_allocs;
4150 unsigned long node_frees = cachep->node_frees;
4151 unsigned long overflows = cachep->node_overflow;
4152
4153 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4154 allocs, high, grown,
4155 reaped, errors, max_freeable, node_allocs,
4156 node_frees, overflows);
4157 }
4158 /* cpu stats */
4159 {
4160 unsigned long allochit = atomic_read(&cachep->allochit);
4161 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4162 unsigned long freehit = atomic_read(&cachep->freehit);
4163 unsigned long freemiss = atomic_read(&cachep->freemiss);
4164
4165 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4166 allochit, allocmiss, freehit, freemiss);
4167 }
4168 #endif
4169 }
4170
4171 #define MAX_SLABINFO_WRITE 128
4172 /**
4173 * slabinfo_write - Tuning for the slab allocator
4174 * @file: unused
4175 * @buffer: user buffer
4176 * @count: data length
4177 * @ppos: unused
4178 */
4179 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4180 size_t count, loff_t *ppos)
4181 {
4182 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4183 int limit, batchcount, shared, res;
4184 struct kmem_cache *cachep;
4185
4186 if (count > MAX_SLABINFO_WRITE)
4187 return -EINVAL;
4188 if (copy_from_user(&kbuf, buffer, count))
4189 return -EFAULT;
4190 kbuf[MAX_SLABINFO_WRITE] = '\0';
4191
4192 tmp = strchr(kbuf, ' ');
4193 if (!tmp)
4194 return -EINVAL;
4195 *tmp = '\0';
4196 tmp++;
4197 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4198 return -EINVAL;
4199
4200 /* Find the cache in the chain of caches. */
4201 mutex_lock(&slab_mutex);
4202 res = -EINVAL;
4203 list_for_each_entry(cachep, &slab_caches, list) {
4204 if (!strcmp(cachep->name, kbuf)) {
4205 if (limit < 1 || batchcount < 1 ||
4206 batchcount > limit || shared < 0) {
4207 res = 0;
4208 } else {
4209 res = do_tune_cpucache(cachep, limit,
4210 batchcount, shared,
4211 GFP_KERNEL);
4212 }
4213 break;
4214 }
4215 }
4216 mutex_unlock(&slab_mutex);
4217 if (res >= 0)
4218 res = count;
4219 return res;
4220 }
4221
4222 #ifdef CONFIG_DEBUG_SLAB_LEAK
4223
4224 static inline int add_caller(unsigned long *n, unsigned long v)
4225 {
4226 unsigned long *p;
4227 int l;
4228 if (!v)
4229 return 1;
4230 l = n[1];
4231 p = n + 2;
4232 while (l) {
4233 int i = l/2;
4234 unsigned long *q = p + 2 * i;
4235 if (*q == v) {
4236 q[1]++;
4237 return 1;
4238 }
4239 if (*q > v) {
4240 l = i;
4241 } else {
4242 p = q + 2;
4243 l -= i + 1;
4244 }
4245 }
4246 if (++n[1] == n[0])
4247 return 0;
4248 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4249 p[0] = v;
4250 p[1] = 1;
4251 return 1;
4252 }
4253
4254 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4255 struct page *page)
4256 {
4257 void *p;
4258 int i, j;
4259 unsigned long v;
4260
4261 if (n[0] == n[1])
4262 return;
4263 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4264 bool active = true;
4265
4266 for (j = page->active; j < c->num; j++) {
4267 if (get_free_obj(page, j) == i) {
4268 active = false;
4269 break;
4270 }
4271 }
4272
4273 if (!active)
4274 continue;
4275
4276 /*
4277 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4278 * mapping is established when actual object allocation and
4279 * we could mistakenly access the unmapped object in the cpu
4280 * cache.
4281 */
4282 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4283 continue;
4284
4285 if (!add_caller(n, v))
4286 return;
4287 }
4288 }
4289
4290 static void show_symbol(struct seq_file *m, unsigned long address)
4291 {
4292 #ifdef CONFIG_KALLSYMS
4293 unsigned long offset, size;
4294 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4295
4296 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4297 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4298 if (modname[0])
4299 seq_printf(m, " [%s]", modname);
4300 return;
4301 }
4302 #endif
4303 seq_printf(m, "%p", (void *)address);
4304 }
4305
4306 static int leaks_show(struct seq_file *m, void *p)
4307 {
4308 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4309 struct page *page;
4310 struct kmem_cache_node *n;
4311 const char *name;
4312 unsigned long *x = m->private;
4313 int node;
4314 int i;
4315
4316 if (!(cachep->flags & SLAB_STORE_USER))
4317 return 0;
4318 if (!(cachep->flags & SLAB_RED_ZONE))
4319 return 0;
4320
4321 /*
4322 * Set store_user_clean and start to grab stored user information
4323 * for all objects on this cache. If some alloc/free requests comes
4324 * during the processing, information would be wrong so restart
4325 * whole processing.
4326 */
4327 do {
4328 set_store_user_clean(cachep);
4329 drain_cpu_caches(cachep);
4330
4331 x[1] = 0;
4332
4333 for_each_kmem_cache_node(cachep, node, n) {
4334
4335 check_irq_on();
4336 spin_lock_irq(&n->list_lock);
4337
4338 list_for_each_entry(page, &n->slabs_full, lru)
4339 handle_slab(x, cachep, page);
4340 list_for_each_entry(page, &n->slabs_partial, lru)
4341 handle_slab(x, cachep, page);
4342 spin_unlock_irq(&n->list_lock);
4343 }
4344 } while (!is_store_user_clean(cachep));
4345
4346 name = cachep->name;
4347 if (x[0] == x[1]) {
4348 /* Increase the buffer size */
4349 mutex_unlock(&slab_mutex);
4350 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4351 if (!m->private) {
4352 /* Too bad, we are really out */
4353 m->private = x;
4354 mutex_lock(&slab_mutex);
4355 return -ENOMEM;
4356 }
4357 *(unsigned long *)m->private = x[0] * 2;
4358 kfree(x);
4359 mutex_lock(&slab_mutex);
4360 /* Now make sure this entry will be retried */
4361 m->count = m->size;
4362 return 0;
4363 }
4364 for (i = 0; i < x[1]; i++) {
4365 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4366 show_symbol(m, x[2*i+2]);
4367 seq_putc(m, '\n');
4368 }
4369
4370 return 0;
4371 }
4372
4373 static const struct seq_operations slabstats_op = {
4374 .start = slab_start,
4375 .next = slab_next,
4376 .stop = slab_stop,
4377 .show = leaks_show,
4378 };
4379
4380 static int slabstats_open(struct inode *inode, struct file *file)
4381 {
4382 unsigned long *n;
4383
4384 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4385 if (!n)
4386 return -ENOMEM;
4387
4388 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4389
4390 return 0;
4391 }
4392
4393 static const struct file_operations proc_slabstats_operations = {
4394 .open = slabstats_open,
4395 .read = seq_read,
4396 .llseek = seq_lseek,
4397 .release = seq_release_private,
4398 };
4399 #endif
4400
4401 static int __init slab_proc_init(void)
4402 {
4403 #ifdef CONFIG_DEBUG_SLAB_LEAK
4404 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4405 #endif
4406 return 0;
4407 }
4408 module_init(slab_proc_init);
4409 #endif
4410
4411 #ifdef CONFIG_HARDENED_USERCOPY
4412 /*
4413 * Rejects objects that are incorrectly sized.
4414 *
4415 * Returns NULL if check passes, otherwise const char * to name of cache
4416 * to indicate an error.
4417 */
4418 const char *__check_heap_object(const void *ptr, unsigned long n,
4419 struct page *page)
4420 {
4421 struct kmem_cache *cachep;
4422 unsigned int objnr;
4423 unsigned long offset;
4424
4425 /* Find and validate object. */
4426 cachep = page->slab_cache;
4427 objnr = obj_to_index(cachep, page, (void *)ptr);
4428 BUG_ON(objnr >= cachep->num);
4429
4430 /* Find offset within object. */
4431 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4432
4433 /* Allow address range falling entirely within object size. */
4434 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4435 return NULL;
4436
4437 return cachep->name;
4438 }
4439 #endif /* CONFIG_HARDENED_USERCOPY */
4440
4441 /**
4442 * ksize - get the actual amount of memory allocated for a given object
4443 * @objp: Pointer to the object
4444 *
4445 * kmalloc may internally round up allocations and return more memory
4446 * than requested. ksize() can be used to determine the actual amount of
4447 * memory allocated. The caller may use this additional memory, even though
4448 * a smaller amount of memory was initially specified with the kmalloc call.
4449 * The caller must guarantee that objp points to a valid object previously
4450 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4451 * must not be freed during the duration of the call.
4452 */
4453 size_t ksize(const void *objp)
4454 {
4455 size_t size;
4456
4457 BUG_ON(!objp);
4458 if (unlikely(objp == ZERO_SIZE_PTR))
4459 return 0;
4460
4461 size = virt_to_cache(objp)->object_size;
4462 /* We assume that ksize callers could use the whole allocated area,
4463 * so we need to unpoison this area.
4464 */
4465 kasan_unpoison_shadow(objp, size);
4466
4467 return size;
4468 }
4469 EXPORT_SYMBOL(ksize);