]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/slab.c
Merge tag 'for-linus-20180204' of git://git.kernel.dk/linux-block
[mirror_ubuntu-hirsute-kernel.git] / mm / slab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 #include "slab.h"
132
133 /*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143 #ifdef CONFIG_DEBUG_SLAB
144 #define DEBUG 1
145 #define STATS 1
146 #define FORCED_DEBUG 1
147 #else
148 #define DEBUG 0
149 #define STATS 0
150 #define FORCED_DEBUG 0
151 #endif
152
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172 /*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184 struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194 };
195
196 struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199 };
200
201 /*
202 * Need this for bootstrapping a per node allocator.
203 */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
208
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222 static int slab_early_init = 1;
223
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239 }
240
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259 #define BATCHREFILL_LIMIT 16
260 /*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
269
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
311
312 #if DEBUG
313
314 /*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 return cachep->obj_offset;
330 }
331
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337 }
338
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348 }
349
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355
356 #else
357
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363 #endif
364
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 return atomic_read(&cachep->store_user_clean) == 1;
370 }
371
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 atomic_set(&cachep->store_user_clean, 1);
375 }
376
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
381 }
382
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385
386 #endif
387
388 /*
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
391 */
392 #define SLAB_MAX_ORDER_HI 1
393 #define SLAB_MAX_ORDER_LO 0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
401 }
402
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 unsigned int idx)
405 {
406 return page->s_mem + cache->size * idx;
407 }
408
409 /*
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416 const struct page *page, void *obj)
417 {
418 u32 offset = (obj - page->s_mem);
419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 }
421
422 #define BOOT_CPUCACHE_ENTRIES 1
423 /* internal cache of cache description objs */
424 static struct kmem_cache kmem_cache_boot = {
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
428 .size = sizeof(struct kmem_cache),
429 .name = "kmem_cache",
430 };
431
432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
433
434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
435 {
436 return this_cpu_ptr(cachep->cpu_cache);
437 }
438
439 /*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 slab_flags_t flags, size_t *left_over)
444 {
445 unsigned int num;
446 size_t slab_size = PAGE_SIZE << gfporder;
447
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
453 * - @buffer_size bytes for each object
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466 num = slab_size / buffer_size;
467 *left_over = slab_size % buffer_size;
468 } else {
469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
472 }
473
474 return num;
475 }
476
477 #if DEBUG
478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479
480 static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
482 {
483 pr_err("slab error in %s(): cache `%s': %s\n",
484 function, cachep->name, msg);
485 dump_stack();
486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
487 }
488 #endif
489
490 /*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498 static int use_alien_caches __read_mostly = 1;
499 static int __init noaliencache_setup(char *s)
500 {
501 use_alien_caches = 0;
502 return 1;
503 }
504 __setup("noaliencache", noaliencache_setup);
505
506 static int __init slab_max_order_setup(char *str)
507 {
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514 }
515 __setup("slab_max_order=", slab_max_order_setup);
516
517 #ifdef CONFIG_NUMA
518 /*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
524 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525
526 static void init_reap_node(int cpu)
527 {
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
530 }
531
532 static void next_reap_node(void)
533 {
534 int node = __this_cpu_read(slab_reap_node);
535
536 node = next_node_in(node, node_online_map);
537 __this_cpu_write(slab_reap_node, node);
538 }
539
540 #else
541 #define init_reap_node(cpu) do { } while (0)
542 #define next_reap_node(void) do { } while (0)
543 #endif
544
545 /*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
552 static void start_cpu_timer(int cpu)
553 {
554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555
556 if (reap_work->work.func == NULL) {
557 init_reap_node(cpu);
558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
561 }
562 }
563
564 static void init_arraycache(struct array_cache *ac, int limit, int batch)
565 {
566 /*
567 * The array_cache structures contain pointers to free object.
568 * However, when such objects are allocated or transferred to another
569 * cache the pointers are not cleared and they could be counted as
570 * valid references during a kmemleak scan. Therefore, kmemleak must
571 * not scan such objects.
572 */
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
579 }
580 }
581
582 static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584 {
585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
591 }
592
593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
595 {
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
599
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
602
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
606
607 slabs_destroy(cachep, &list);
608 }
609
610 /*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616 static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618 {
619 /* Figure out how many entries to transfer */
620 int nr = min3(from->avail, max, to->limit - to->avail);
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
630 return nr;
631 }
632
633 #ifndef CONFIG_NUMA
634
635 #define drain_alien_cache(cachep, alien) do { } while (0)
636 #define reap_alien(cachep, n) do { } while (0)
637
638 static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
640 {
641 return NULL;
642 }
643
644 static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 {
646 }
647
648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649 {
650 return 0;
651 }
652
653 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655 {
656 return NULL;
657 }
658
659 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 gfp_t flags, int nodeid)
661 {
662 return NULL;
663 }
664
665 static inline gfp_t gfp_exact_node(gfp_t flags)
666 {
667 return flags & ~__GFP_NOFAIL;
668 }
669
670 #else /* CONFIG_NUMA */
671
672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674
675 static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677 {
678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 init_arraycache(&alc->ac, entries, batch);
683 spin_lock_init(&alc->lock);
684 return alc;
685 }
686
687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688 {
689 struct alien_cache **alc_ptr;
690 size_t memsize = sizeof(void *) * nr_node_ids;
691 int i;
692
693 if (limit > 1)
694 limit = 12;
695 alc_ptr = kzalloc_node(memsize, gfp, node);
696 if (!alc_ptr)
697 return NULL;
698
699 for_each_node(i) {
700 if (i == node || !node_online(i))
701 continue;
702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 if (!alc_ptr[i]) {
704 for (i--; i >= 0; i--)
705 kfree(alc_ptr[i]);
706 kfree(alc_ptr);
707 return NULL;
708 }
709 }
710 return alc_ptr;
711 }
712
713 static void free_alien_cache(struct alien_cache **alc_ptr)
714 {
715 int i;
716
717 if (!alc_ptr)
718 return;
719 for_each_node(i)
720 kfree(alc_ptr[i]);
721 kfree(alc_ptr);
722 }
723
724 static void __drain_alien_cache(struct kmem_cache *cachep,
725 struct array_cache *ac, int node,
726 struct list_head *list)
727 {
728 struct kmem_cache_node *n = get_node(cachep, node);
729
730 if (ac->avail) {
731 spin_lock(&n->list_lock);
732 /*
733 * Stuff objects into the remote nodes shared array first.
734 * That way we could avoid the overhead of putting the objects
735 * into the free lists and getting them back later.
736 */
737 if (n->shared)
738 transfer_objects(n->shared, ac, ac->limit);
739
740 free_block(cachep, ac->entry, ac->avail, node, list);
741 ac->avail = 0;
742 spin_unlock(&n->list_lock);
743 }
744 }
745
746 /*
747 * Called from cache_reap() to regularly drain alien caches round robin.
748 */
749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750 {
751 int node = __this_cpu_read(slab_reap_node);
752
753 if (n->alien) {
754 struct alien_cache *alc = n->alien[node];
755 struct array_cache *ac;
756
757 if (alc) {
758 ac = &alc->ac;
759 if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 LIST_HEAD(list);
761
762 __drain_alien_cache(cachep, ac, node, &list);
763 spin_unlock_irq(&alc->lock);
764 slabs_destroy(cachep, &list);
765 }
766 }
767 }
768 }
769
770 static void drain_alien_cache(struct kmem_cache *cachep,
771 struct alien_cache **alien)
772 {
773 int i = 0;
774 struct alien_cache *alc;
775 struct array_cache *ac;
776 unsigned long flags;
777
778 for_each_online_node(i) {
779 alc = alien[i];
780 if (alc) {
781 LIST_HEAD(list);
782
783 ac = &alc->ac;
784 spin_lock_irqsave(&alc->lock, flags);
785 __drain_alien_cache(cachep, ac, i, &list);
786 spin_unlock_irqrestore(&alc->lock, flags);
787 slabs_destroy(cachep, &list);
788 }
789 }
790 }
791
792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 int node, int page_node)
794 {
795 struct kmem_cache_node *n;
796 struct alien_cache *alien = NULL;
797 struct array_cache *ac;
798 LIST_HEAD(list);
799
800 n = get_node(cachep, node);
801 STATS_INC_NODEFREES(cachep);
802 if (n->alien && n->alien[page_node]) {
803 alien = n->alien[page_node];
804 ac = &alien->ac;
805 spin_lock(&alien->lock);
806 if (unlikely(ac->avail == ac->limit)) {
807 STATS_INC_ACOVERFLOW(cachep);
808 __drain_alien_cache(cachep, ac, page_node, &list);
809 }
810 ac->entry[ac->avail++] = objp;
811 spin_unlock(&alien->lock);
812 slabs_destroy(cachep, &list);
813 } else {
814 n = get_node(cachep, page_node);
815 spin_lock(&n->list_lock);
816 free_block(cachep, &objp, 1, page_node, &list);
817 spin_unlock(&n->list_lock);
818 slabs_destroy(cachep, &list);
819 }
820 return 1;
821 }
822
823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824 {
825 int page_node = page_to_nid(virt_to_page(objp));
826 int node = numa_mem_id();
827 /*
828 * Make sure we are not freeing a object from another node to the array
829 * cache on this cpu.
830 */
831 if (likely(node == page_node))
832 return 0;
833
834 return __cache_free_alien(cachep, objp, node, page_node);
835 }
836
837 /*
838 * Construct gfp mask to allocate from a specific node but do not reclaim or
839 * warn about failures.
840 */
841 static inline gfp_t gfp_exact_node(gfp_t flags)
842 {
843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
844 }
845 #endif
846
847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848 {
849 struct kmem_cache_node *n;
850
851 /*
852 * Set up the kmem_cache_node for cpu before we can
853 * begin anything. Make sure some other cpu on this
854 * node has not already allocated this
855 */
856 n = get_node(cachep, node);
857 if (n) {
858 spin_lock_irq(&n->list_lock);
859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 cachep->num;
861 spin_unlock_irq(&n->list_lock);
862
863 return 0;
864 }
865
866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 if (!n)
868 return -ENOMEM;
869
870 kmem_cache_node_init(n);
871 n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873
874 n->free_limit =
875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876
877 /*
878 * The kmem_cache_nodes don't come and go as CPUs
879 * come and go. slab_mutex is sufficient
880 * protection here.
881 */
882 cachep->node[node] = n;
883
884 return 0;
885 }
886
887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888 /*
889 * Allocates and initializes node for a node on each slab cache, used for
890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
891 * will be allocated off-node since memory is not yet online for the new node.
892 * When hotplugging memory or a cpu, existing node are not replaced if
893 * already in use.
894 *
895 * Must hold slab_mutex.
896 */
897 static int init_cache_node_node(int node)
898 {
899 int ret;
900 struct kmem_cache *cachep;
901
902 list_for_each_entry(cachep, &slab_caches, list) {
903 ret = init_cache_node(cachep, node, GFP_KERNEL);
904 if (ret)
905 return ret;
906 }
907
908 return 0;
909 }
910 #endif
911
912 static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914 {
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
961 /*
962 * To protect lockless access to n->shared during irq disabled context.
963 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 * guaranteed to be valid until irq is re-enabled, because it will be
965 * freed after synchronize_sched().
966 */
967 if (old_shared && force_change)
968 synchronize_sched();
969
970 fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976 }
977
978 #ifdef CONFIG_SMP
979
980 static void cpuup_canceled(long cpu)
981 {
982 struct kmem_cache *cachep;
983 struct kmem_cache_node *n = NULL;
984 int node = cpu_to_mem(cpu);
985 const struct cpumask *mask = cpumask_of_node(node);
986
987 list_for_each_entry(cachep, &slab_caches, list) {
988 struct array_cache *nc;
989 struct array_cache *shared;
990 struct alien_cache **alien;
991 LIST_HEAD(list);
992
993 n = get_node(cachep, node);
994 if (!n)
995 continue;
996
997 spin_lock_irq(&n->list_lock);
998
999 /* Free limit for this kmem_cache_node */
1000 n->free_limit -= cachep->batchcount;
1001
1002 /* cpu is dead; no one can alloc from it. */
1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 if (nc) {
1005 free_block(cachep, nc->entry, nc->avail, node, &list);
1006 nc->avail = 0;
1007 }
1008
1009 if (!cpumask_empty(mask)) {
1010 spin_unlock_irq(&n->list_lock);
1011 goto free_slab;
1012 }
1013
1014 shared = n->shared;
1015 if (shared) {
1016 free_block(cachep, shared->entry,
1017 shared->avail, node, &list);
1018 n->shared = NULL;
1019 }
1020
1021 alien = n->alien;
1022 n->alien = NULL;
1023
1024 spin_unlock_irq(&n->list_lock);
1025
1026 kfree(shared);
1027 if (alien) {
1028 drain_alien_cache(cachep, alien);
1029 free_alien_cache(alien);
1030 }
1031
1032 free_slab:
1033 slabs_destroy(cachep, &list);
1034 }
1035 /*
1036 * In the previous loop, all the objects were freed to
1037 * the respective cache's slabs, now we can go ahead and
1038 * shrink each nodelist to its limit.
1039 */
1040 list_for_each_entry(cachep, &slab_caches, list) {
1041 n = get_node(cachep, node);
1042 if (!n)
1043 continue;
1044 drain_freelist(cachep, n, INT_MAX);
1045 }
1046 }
1047
1048 static int cpuup_prepare(long cpu)
1049 {
1050 struct kmem_cache *cachep;
1051 int node = cpu_to_mem(cpu);
1052 int err;
1053
1054 /*
1055 * We need to do this right in the beginning since
1056 * alloc_arraycache's are going to use this list.
1057 * kmalloc_node allows us to add the slab to the right
1058 * kmem_cache_node and not this cpu's kmem_cache_node
1059 */
1060 err = init_cache_node_node(node);
1061 if (err < 0)
1062 goto bad;
1063
1064 /*
1065 * Now we can go ahead with allocating the shared arrays and
1066 * array caches
1067 */
1068 list_for_each_entry(cachep, &slab_caches, list) {
1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 if (err)
1071 goto bad;
1072 }
1073
1074 return 0;
1075 bad:
1076 cpuup_canceled(cpu);
1077 return -ENOMEM;
1078 }
1079
1080 int slab_prepare_cpu(unsigned int cpu)
1081 {
1082 int err;
1083
1084 mutex_lock(&slab_mutex);
1085 err = cpuup_prepare(cpu);
1086 mutex_unlock(&slab_mutex);
1087 return err;
1088 }
1089
1090 /*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down. The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100 int slab_dead_cpu(unsigned int cpu)
1101 {
1102 mutex_lock(&slab_mutex);
1103 cpuup_canceled(cpu);
1104 mutex_unlock(&slab_mutex);
1105 return 0;
1106 }
1107 #endif
1108
1109 static int slab_online_cpu(unsigned int cpu)
1110 {
1111 start_cpu_timer(cpu);
1112 return 0;
1113 }
1114
1115 static int slab_offline_cpu(unsigned int cpu)
1116 {
1117 /*
1118 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 * that if cache_reap() is invoked it cannot do anything
1120 * expensive but will only modify reap_work and reschedule the
1121 * timer.
1122 */
1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 /* Now the cache_reaper is guaranteed to be not running. */
1125 per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 return 0;
1127 }
1128
1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130 /*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
1135 * Must hold slab_mutex.
1136 */
1137 static int __meminit drain_cache_node_node(int node)
1138 {
1139 struct kmem_cache *cachep;
1140 int ret = 0;
1141
1142 list_for_each_entry(cachep, &slab_caches, list) {
1143 struct kmem_cache_node *n;
1144
1145 n = get_node(cachep, node);
1146 if (!n)
1147 continue;
1148
1149 drain_freelist(cachep, n, INT_MAX);
1150
1151 if (!list_empty(&n->slabs_full) ||
1152 !list_empty(&n->slabs_partial)) {
1153 ret = -EBUSY;
1154 break;
1155 }
1156 }
1157 return ret;
1158 }
1159
1160 static int __meminit slab_memory_callback(struct notifier_block *self,
1161 unsigned long action, void *arg)
1162 {
1163 struct memory_notify *mnb = arg;
1164 int ret = 0;
1165 int nid;
1166
1167 nid = mnb->status_change_nid;
1168 if (nid < 0)
1169 goto out;
1170
1171 switch (action) {
1172 case MEM_GOING_ONLINE:
1173 mutex_lock(&slab_mutex);
1174 ret = init_cache_node_node(nid);
1175 mutex_unlock(&slab_mutex);
1176 break;
1177 case MEM_GOING_OFFLINE:
1178 mutex_lock(&slab_mutex);
1179 ret = drain_cache_node_node(nid);
1180 mutex_unlock(&slab_mutex);
1181 break;
1182 case MEM_ONLINE:
1183 case MEM_OFFLINE:
1184 case MEM_CANCEL_ONLINE:
1185 case MEM_CANCEL_OFFLINE:
1186 break;
1187 }
1188 out:
1189 return notifier_from_errno(ret);
1190 }
1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
1193 /*
1194 * swap the static kmem_cache_node with kmalloced memory
1195 */
1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197 int nodeid)
1198 {
1199 struct kmem_cache_node *ptr;
1200
1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 BUG_ON(!ptr);
1203
1204 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205 /*
1206 * Do not assume that spinlocks can be initialized via memcpy:
1207 */
1208 spin_lock_init(&ptr->list_lock);
1209
1210 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211 cachep->node[nodeid] = ptr;
1212 }
1213
1214 /*
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
1217 */
1218 static void __init set_up_node(struct kmem_cache *cachep, int index)
1219 {
1220 int node;
1221
1222 for_each_online_node(node) {
1223 cachep->node[node] = &init_kmem_cache_node[index + node];
1224 cachep->node[node]->next_reap = jiffies +
1225 REAPTIMEOUT_NODE +
1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 }
1228 }
1229
1230 /*
1231 * Initialisation. Called after the page allocator have been initialised and
1232 * before smp_init().
1233 */
1234 void __init kmem_cache_init(void)
1235 {
1236 int i;
1237
1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239 sizeof(struct rcu_head));
1240 kmem_cache = &kmem_cache_boot;
1241
1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243 use_alien_caches = 0;
1244
1245 for (i = 0; i < NUM_INIT_LISTS; i++)
1246 kmem_cache_node_init(&init_kmem_cache_node[i]);
1247
1248 /*
1249 * Fragmentation resistance on low memory - only use bigger
1250 * page orders on machines with more than 32MB of memory if
1251 * not overridden on the command line.
1252 */
1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254 slab_max_order = SLAB_MAX_ORDER_HI;
1255
1256 /* Bootstrap is tricky, because several objects are allocated
1257 * from caches that do not exist yet:
1258 * 1) initialize the kmem_cache cache: it contains the struct
1259 * kmem_cache structures of all caches, except kmem_cache itself:
1260 * kmem_cache is statically allocated.
1261 * Initially an __init data area is used for the head array and the
1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1263 * array at the end of the bootstrap.
1264 * 2) Create the first kmalloc cache.
1265 * The struct kmem_cache for the new cache is allocated normally.
1266 * An __init data area is used for the head array.
1267 * 3) Create the remaining kmalloc caches, with minimally sized
1268 * head arrays.
1269 * 4) Replace the __init data head arrays for kmem_cache and the first
1270 * kmalloc cache with kmalloc allocated arrays.
1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272 * the other cache's with kmalloc allocated memory.
1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1274 */
1275
1276 /* 1) create the kmem_cache */
1277
1278 /*
1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1280 */
1281 create_boot_cache(kmem_cache, "kmem_cache",
1282 offsetof(struct kmem_cache, node) +
1283 nr_node_ids * sizeof(struct kmem_cache_node *),
1284 SLAB_HWCACHE_ALIGN, 0, 0);
1285 list_add(&kmem_cache->list, &slab_caches);
1286 slab_state = PARTIAL;
1287
1288 /*
1289 * Initialize the caches that provide memory for the kmem_cache_node
1290 * structures first. Without this, further allocations will bug.
1291 */
1292 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1293 kmalloc_info[INDEX_NODE].name,
1294 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1295 0, kmalloc_size(INDEX_NODE));
1296 slab_state = PARTIAL_NODE;
1297 setup_kmalloc_cache_index_table();
1298
1299 slab_early_init = 0;
1300
1301 /* 5) Replace the bootstrap kmem_cache_node */
1302 {
1303 int nid;
1304
1305 for_each_online_node(nid) {
1306 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1307
1308 init_list(kmalloc_caches[INDEX_NODE],
1309 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1310 }
1311 }
1312
1313 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1314 }
1315
1316 void __init kmem_cache_init_late(void)
1317 {
1318 struct kmem_cache *cachep;
1319
1320 /* 6) resize the head arrays to their final sizes */
1321 mutex_lock(&slab_mutex);
1322 list_for_each_entry(cachep, &slab_caches, list)
1323 if (enable_cpucache(cachep, GFP_NOWAIT))
1324 BUG();
1325 mutex_unlock(&slab_mutex);
1326
1327 /* Done! */
1328 slab_state = FULL;
1329
1330 #ifdef CONFIG_NUMA
1331 /*
1332 * Register a memory hotplug callback that initializes and frees
1333 * node.
1334 */
1335 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1336 #endif
1337
1338 /*
1339 * The reap timers are started later, with a module init call: That part
1340 * of the kernel is not yet operational.
1341 */
1342 }
1343
1344 static int __init cpucache_init(void)
1345 {
1346 int ret;
1347
1348 /*
1349 * Register the timers that return unneeded pages to the page allocator
1350 */
1351 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1352 slab_online_cpu, slab_offline_cpu);
1353 WARN_ON(ret < 0);
1354
1355 return 0;
1356 }
1357 __initcall(cpucache_init);
1358
1359 static noinline void
1360 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1361 {
1362 #if DEBUG
1363 struct kmem_cache_node *n;
1364 unsigned long flags;
1365 int node;
1366 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1367 DEFAULT_RATELIMIT_BURST);
1368
1369 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1370 return;
1371
1372 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1373 nodeid, gfpflags, &gfpflags);
1374 pr_warn(" cache: %s, object size: %d, order: %d\n",
1375 cachep->name, cachep->size, cachep->gfporder);
1376
1377 for_each_kmem_cache_node(cachep, node, n) {
1378 unsigned long total_slabs, free_slabs, free_objs;
1379
1380 spin_lock_irqsave(&n->list_lock, flags);
1381 total_slabs = n->total_slabs;
1382 free_slabs = n->free_slabs;
1383 free_objs = n->free_objects;
1384 spin_unlock_irqrestore(&n->list_lock, flags);
1385
1386 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1387 node, total_slabs - free_slabs, total_slabs,
1388 (total_slabs * cachep->num) - free_objs,
1389 total_slabs * cachep->num);
1390 }
1391 #endif
1392 }
1393
1394 /*
1395 * Interface to system's page allocator. No need to hold the
1396 * kmem_cache_node ->list_lock.
1397 *
1398 * If we requested dmaable memory, we will get it. Even if we
1399 * did not request dmaable memory, we might get it, but that
1400 * would be relatively rare and ignorable.
1401 */
1402 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1403 int nodeid)
1404 {
1405 struct page *page;
1406 int nr_pages;
1407
1408 flags |= cachep->allocflags;
1409
1410 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1411 if (!page) {
1412 slab_out_of_memory(cachep, flags, nodeid);
1413 return NULL;
1414 }
1415
1416 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1417 __free_pages(page, cachep->gfporder);
1418 return NULL;
1419 }
1420
1421 nr_pages = (1 << cachep->gfporder);
1422 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1423 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1424 else
1425 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1426
1427 __SetPageSlab(page);
1428 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1429 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1430 SetPageSlabPfmemalloc(page);
1431
1432 return page;
1433 }
1434
1435 /*
1436 * Interface to system's page release.
1437 */
1438 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1439 {
1440 int order = cachep->gfporder;
1441 unsigned long nr_freed = (1 << order);
1442
1443 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1444 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1445 else
1446 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1447
1448 BUG_ON(!PageSlab(page));
1449 __ClearPageSlabPfmemalloc(page);
1450 __ClearPageSlab(page);
1451 page_mapcount_reset(page);
1452 page->mapping = NULL;
1453
1454 if (current->reclaim_state)
1455 current->reclaim_state->reclaimed_slab += nr_freed;
1456 memcg_uncharge_slab(page, order, cachep);
1457 __free_pages(page, order);
1458 }
1459
1460 static void kmem_rcu_free(struct rcu_head *head)
1461 {
1462 struct kmem_cache *cachep;
1463 struct page *page;
1464
1465 page = container_of(head, struct page, rcu_head);
1466 cachep = page->slab_cache;
1467
1468 kmem_freepages(cachep, page);
1469 }
1470
1471 #if DEBUG
1472 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1473 {
1474 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1475 (cachep->size % PAGE_SIZE) == 0)
1476 return true;
1477
1478 return false;
1479 }
1480
1481 #ifdef CONFIG_DEBUG_PAGEALLOC
1482 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1483 unsigned long caller)
1484 {
1485 int size = cachep->object_size;
1486
1487 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1488
1489 if (size < 5 * sizeof(unsigned long))
1490 return;
1491
1492 *addr++ = 0x12345678;
1493 *addr++ = caller;
1494 *addr++ = smp_processor_id();
1495 size -= 3 * sizeof(unsigned long);
1496 {
1497 unsigned long *sptr = &caller;
1498 unsigned long svalue;
1499
1500 while (!kstack_end(sptr)) {
1501 svalue = *sptr++;
1502 if (kernel_text_address(svalue)) {
1503 *addr++ = svalue;
1504 size -= sizeof(unsigned long);
1505 if (size <= sizeof(unsigned long))
1506 break;
1507 }
1508 }
1509
1510 }
1511 *addr++ = 0x87654321;
1512 }
1513
1514 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1515 int map, unsigned long caller)
1516 {
1517 if (!is_debug_pagealloc_cache(cachep))
1518 return;
1519
1520 if (caller)
1521 store_stackinfo(cachep, objp, caller);
1522
1523 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1524 }
1525
1526 #else
1527 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1528 int map, unsigned long caller) {}
1529
1530 #endif
1531
1532 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1533 {
1534 int size = cachep->object_size;
1535 addr = &((char *)addr)[obj_offset(cachep)];
1536
1537 memset(addr, val, size);
1538 *(unsigned char *)(addr + size - 1) = POISON_END;
1539 }
1540
1541 static void dump_line(char *data, int offset, int limit)
1542 {
1543 int i;
1544 unsigned char error = 0;
1545 int bad_count = 0;
1546
1547 pr_err("%03x: ", offset);
1548 for (i = 0; i < limit; i++) {
1549 if (data[offset + i] != POISON_FREE) {
1550 error = data[offset + i];
1551 bad_count++;
1552 }
1553 }
1554 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1555 &data[offset], limit, 1);
1556
1557 if (bad_count == 1) {
1558 error ^= POISON_FREE;
1559 if (!(error & (error - 1))) {
1560 pr_err("Single bit error detected. Probably bad RAM.\n");
1561 #ifdef CONFIG_X86
1562 pr_err("Run memtest86+ or a similar memory test tool.\n");
1563 #else
1564 pr_err("Run a memory test tool.\n");
1565 #endif
1566 }
1567 }
1568 }
1569 #endif
1570
1571 #if DEBUG
1572
1573 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1574 {
1575 int i, size;
1576 char *realobj;
1577
1578 if (cachep->flags & SLAB_RED_ZONE) {
1579 pr_err("Redzone: 0x%llx/0x%llx\n",
1580 *dbg_redzone1(cachep, objp),
1581 *dbg_redzone2(cachep, objp));
1582 }
1583
1584 if (cachep->flags & SLAB_STORE_USER)
1585 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1586 realobj = (char *)objp + obj_offset(cachep);
1587 size = cachep->object_size;
1588 for (i = 0; i < size && lines; i += 16, lines--) {
1589 int limit;
1590 limit = 16;
1591 if (i + limit > size)
1592 limit = size - i;
1593 dump_line(realobj, i, limit);
1594 }
1595 }
1596
1597 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1598 {
1599 char *realobj;
1600 int size, i;
1601 int lines = 0;
1602
1603 if (is_debug_pagealloc_cache(cachep))
1604 return;
1605
1606 realobj = (char *)objp + obj_offset(cachep);
1607 size = cachep->object_size;
1608
1609 for (i = 0; i < size; i++) {
1610 char exp = POISON_FREE;
1611 if (i == size - 1)
1612 exp = POISON_END;
1613 if (realobj[i] != exp) {
1614 int limit;
1615 /* Mismatch ! */
1616 /* Print header */
1617 if (lines == 0) {
1618 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1619 print_tainted(), cachep->name,
1620 realobj, size);
1621 print_objinfo(cachep, objp, 0);
1622 }
1623 /* Hexdump the affected line */
1624 i = (i / 16) * 16;
1625 limit = 16;
1626 if (i + limit > size)
1627 limit = size - i;
1628 dump_line(realobj, i, limit);
1629 i += 16;
1630 lines++;
1631 /* Limit to 5 lines */
1632 if (lines > 5)
1633 break;
1634 }
1635 }
1636 if (lines != 0) {
1637 /* Print some data about the neighboring objects, if they
1638 * exist:
1639 */
1640 struct page *page = virt_to_head_page(objp);
1641 unsigned int objnr;
1642
1643 objnr = obj_to_index(cachep, page, objp);
1644 if (objnr) {
1645 objp = index_to_obj(cachep, page, objnr - 1);
1646 realobj = (char *)objp + obj_offset(cachep);
1647 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1648 print_objinfo(cachep, objp, 2);
1649 }
1650 if (objnr + 1 < cachep->num) {
1651 objp = index_to_obj(cachep, page, objnr + 1);
1652 realobj = (char *)objp + obj_offset(cachep);
1653 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1654 print_objinfo(cachep, objp, 2);
1655 }
1656 }
1657 }
1658 #endif
1659
1660 #if DEBUG
1661 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1662 struct page *page)
1663 {
1664 int i;
1665
1666 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1667 poison_obj(cachep, page->freelist - obj_offset(cachep),
1668 POISON_FREE);
1669 }
1670
1671 for (i = 0; i < cachep->num; i++) {
1672 void *objp = index_to_obj(cachep, page, i);
1673
1674 if (cachep->flags & SLAB_POISON) {
1675 check_poison_obj(cachep, objp);
1676 slab_kernel_map(cachep, objp, 1, 0);
1677 }
1678 if (cachep->flags & SLAB_RED_ZONE) {
1679 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1680 slab_error(cachep, "start of a freed object was overwritten");
1681 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1682 slab_error(cachep, "end of a freed object was overwritten");
1683 }
1684 }
1685 }
1686 #else
1687 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1688 struct page *page)
1689 {
1690 }
1691 #endif
1692
1693 /**
1694 * slab_destroy - destroy and release all objects in a slab
1695 * @cachep: cache pointer being destroyed
1696 * @page: page pointer being destroyed
1697 *
1698 * Destroy all the objs in a slab page, and release the mem back to the system.
1699 * Before calling the slab page must have been unlinked from the cache. The
1700 * kmem_cache_node ->list_lock is not held/needed.
1701 */
1702 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1703 {
1704 void *freelist;
1705
1706 freelist = page->freelist;
1707 slab_destroy_debugcheck(cachep, page);
1708 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1709 call_rcu(&page->rcu_head, kmem_rcu_free);
1710 else
1711 kmem_freepages(cachep, page);
1712
1713 /*
1714 * From now on, we don't use freelist
1715 * although actual page can be freed in rcu context
1716 */
1717 if (OFF_SLAB(cachep))
1718 kmem_cache_free(cachep->freelist_cache, freelist);
1719 }
1720
1721 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1722 {
1723 struct page *page, *n;
1724
1725 list_for_each_entry_safe(page, n, list, lru) {
1726 list_del(&page->lru);
1727 slab_destroy(cachep, page);
1728 }
1729 }
1730
1731 /**
1732 * calculate_slab_order - calculate size (page order) of slabs
1733 * @cachep: pointer to the cache that is being created
1734 * @size: size of objects to be created in this cache.
1735 * @flags: slab allocation flags
1736 *
1737 * Also calculates the number of objects per slab.
1738 *
1739 * This could be made much more intelligent. For now, try to avoid using
1740 * high order pages for slabs. When the gfp() functions are more friendly
1741 * towards high-order requests, this should be changed.
1742 */
1743 static size_t calculate_slab_order(struct kmem_cache *cachep,
1744 size_t size, slab_flags_t flags)
1745 {
1746 size_t left_over = 0;
1747 int gfporder;
1748
1749 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1750 unsigned int num;
1751 size_t remainder;
1752
1753 num = cache_estimate(gfporder, size, flags, &remainder);
1754 if (!num)
1755 continue;
1756
1757 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1758 if (num > SLAB_OBJ_MAX_NUM)
1759 break;
1760
1761 if (flags & CFLGS_OFF_SLAB) {
1762 struct kmem_cache *freelist_cache;
1763 size_t freelist_size;
1764
1765 freelist_size = num * sizeof(freelist_idx_t);
1766 freelist_cache = kmalloc_slab(freelist_size, 0u);
1767 if (!freelist_cache)
1768 continue;
1769
1770 /*
1771 * Needed to avoid possible looping condition
1772 * in cache_grow_begin()
1773 */
1774 if (OFF_SLAB(freelist_cache))
1775 continue;
1776
1777 /* check if off slab has enough benefit */
1778 if (freelist_cache->size > cachep->size / 2)
1779 continue;
1780 }
1781
1782 /* Found something acceptable - save it away */
1783 cachep->num = num;
1784 cachep->gfporder = gfporder;
1785 left_over = remainder;
1786
1787 /*
1788 * A VFS-reclaimable slab tends to have most allocations
1789 * as GFP_NOFS and we really don't want to have to be allocating
1790 * higher-order pages when we are unable to shrink dcache.
1791 */
1792 if (flags & SLAB_RECLAIM_ACCOUNT)
1793 break;
1794
1795 /*
1796 * Large number of objects is good, but very large slabs are
1797 * currently bad for the gfp()s.
1798 */
1799 if (gfporder >= slab_max_order)
1800 break;
1801
1802 /*
1803 * Acceptable internal fragmentation?
1804 */
1805 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1806 break;
1807 }
1808 return left_over;
1809 }
1810
1811 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1812 struct kmem_cache *cachep, int entries, int batchcount)
1813 {
1814 int cpu;
1815 size_t size;
1816 struct array_cache __percpu *cpu_cache;
1817
1818 size = sizeof(void *) * entries + sizeof(struct array_cache);
1819 cpu_cache = __alloc_percpu(size, sizeof(void *));
1820
1821 if (!cpu_cache)
1822 return NULL;
1823
1824 for_each_possible_cpu(cpu) {
1825 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1826 entries, batchcount);
1827 }
1828
1829 return cpu_cache;
1830 }
1831
1832 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1833 {
1834 if (slab_state >= FULL)
1835 return enable_cpucache(cachep, gfp);
1836
1837 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1838 if (!cachep->cpu_cache)
1839 return 1;
1840
1841 if (slab_state == DOWN) {
1842 /* Creation of first cache (kmem_cache). */
1843 set_up_node(kmem_cache, CACHE_CACHE);
1844 } else if (slab_state == PARTIAL) {
1845 /* For kmem_cache_node */
1846 set_up_node(cachep, SIZE_NODE);
1847 } else {
1848 int node;
1849
1850 for_each_online_node(node) {
1851 cachep->node[node] = kmalloc_node(
1852 sizeof(struct kmem_cache_node), gfp, node);
1853 BUG_ON(!cachep->node[node]);
1854 kmem_cache_node_init(cachep->node[node]);
1855 }
1856 }
1857
1858 cachep->node[numa_mem_id()]->next_reap =
1859 jiffies + REAPTIMEOUT_NODE +
1860 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1861
1862 cpu_cache_get(cachep)->avail = 0;
1863 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1864 cpu_cache_get(cachep)->batchcount = 1;
1865 cpu_cache_get(cachep)->touched = 0;
1866 cachep->batchcount = 1;
1867 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1868 return 0;
1869 }
1870
1871 slab_flags_t kmem_cache_flags(unsigned long object_size,
1872 slab_flags_t flags, const char *name,
1873 void (*ctor)(void *))
1874 {
1875 return flags;
1876 }
1877
1878 struct kmem_cache *
1879 __kmem_cache_alias(const char *name, size_t size, size_t align,
1880 slab_flags_t flags, void (*ctor)(void *))
1881 {
1882 struct kmem_cache *cachep;
1883
1884 cachep = find_mergeable(size, align, flags, name, ctor);
1885 if (cachep) {
1886 cachep->refcount++;
1887
1888 /*
1889 * Adjust the object sizes so that we clear
1890 * the complete object on kzalloc.
1891 */
1892 cachep->object_size = max_t(int, cachep->object_size, size);
1893 }
1894 return cachep;
1895 }
1896
1897 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1898 size_t size, slab_flags_t flags)
1899 {
1900 size_t left;
1901
1902 cachep->num = 0;
1903
1904 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1905 return false;
1906
1907 left = calculate_slab_order(cachep, size,
1908 flags | CFLGS_OBJFREELIST_SLAB);
1909 if (!cachep->num)
1910 return false;
1911
1912 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1913 return false;
1914
1915 cachep->colour = left / cachep->colour_off;
1916
1917 return true;
1918 }
1919
1920 static bool set_off_slab_cache(struct kmem_cache *cachep,
1921 size_t size, slab_flags_t flags)
1922 {
1923 size_t left;
1924
1925 cachep->num = 0;
1926
1927 /*
1928 * Always use on-slab management when SLAB_NOLEAKTRACE
1929 * to avoid recursive calls into kmemleak.
1930 */
1931 if (flags & SLAB_NOLEAKTRACE)
1932 return false;
1933
1934 /*
1935 * Size is large, assume best to place the slab management obj
1936 * off-slab (should allow better packing of objs).
1937 */
1938 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1939 if (!cachep->num)
1940 return false;
1941
1942 /*
1943 * If the slab has been placed off-slab, and we have enough space then
1944 * move it on-slab. This is at the expense of any extra colouring.
1945 */
1946 if (left >= cachep->num * sizeof(freelist_idx_t))
1947 return false;
1948
1949 cachep->colour = left / cachep->colour_off;
1950
1951 return true;
1952 }
1953
1954 static bool set_on_slab_cache(struct kmem_cache *cachep,
1955 size_t size, slab_flags_t flags)
1956 {
1957 size_t left;
1958
1959 cachep->num = 0;
1960
1961 left = calculate_slab_order(cachep, size, flags);
1962 if (!cachep->num)
1963 return false;
1964
1965 cachep->colour = left / cachep->colour_off;
1966
1967 return true;
1968 }
1969
1970 /**
1971 * __kmem_cache_create - Create a cache.
1972 * @cachep: cache management descriptor
1973 * @flags: SLAB flags
1974 *
1975 * Returns a ptr to the cache on success, NULL on failure.
1976 * Cannot be called within a int, but can be interrupted.
1977 * The @ctor is run when new pages are allocated by the cache.
1978 *
1979 * The flags are
1980 *
1981 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1982 * to catch references to uninitialised memory.
1983 *
1984 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1985 * for buffer overruns.
1986 *
1987 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1988 * cacheline. This can be beneficial if you're counting cycles as closely
1989 * as davem.
1990 */
1991 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1992 {
1993 size_t ralign = BYTES_PER_WORD;
1994 gfp_t gfp;
1995 int err;
1996 size_t size = cachep->size;
1997
1998 #if DEBUG
1999 #if FORCED_DEBUG
2000 /*
2001 * Enable redzoning and last user accounting, except for caches with
2002 * large objects, if the increased size would increase the object size
2003 * above the next power of two: caches with object sizes just above a
2004 * power of two have a significant amount of internal fragmentation.
2005 */
2006 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2007 2 * sizeof(unsigned long long)))
2008 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2009 if (!(flags & SLAB_TYPESAFE_BY_RCU))
2010 flags |= SLAB_POISON;
2011 #endif
2012 #endif
2013
2014 /*
2015 * Check that size is in terms of words. This is needed to avoid
2016 * unaligned accesses for some archs when redzoning is used, and makes
2017 * sure any on-slab bufctl's are also correctly aligned.
2018 */
2019 size = ALIGN(size, BYTES_PER_WORD);
2020
2021 if (flags & SLAB_RED_ZONE) {
2022 ralign = REDZONE_ALIGN;
2023 /* If redzoning, ensure that the second redzone is suitably
2024 * aligned, by adjusting the object size accordingly. */
2025 size = ALIGN(size, REDZONE_ALIGN);
2026 }
2027
2028 /* 3) caller mandated alignment */
2029 if (ralign < cachep->align) {
2030 ralign = cachep->align;
2031 }
2032 /* disable debug if necessary */
2033 if (ralign > __alignof__(unsigned long long))
2034 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2035 /*
2036 * 4) Store it.
2037 */
2038 cachep->align = ralign;
2039 cachep->colour_off = cache_line_size();
2040 /* Offset must be a multiple of the alignment. */
2041 if (cachep->colour_off < cachep->align)
2042 cachep->colour_off = cachep->align;
2043
2044 if (slab_is_available())
2045 gfp = GFP_KERNEL;
2046 else
2047 gfp = GFP_NOWAIT;
2048
2049 #if DEBUG
2050
2051 /*
2052 * Both debugging options require word-alignment which is calculated
2053 * into align above.
2054 */
2055 if (flags & SLAB_RED_ZONE) {
2056 /* add space for red zone words */
2057 cachep->obj_offset += sizeof(unsigned long long);
2058 size += 2 * sizeof(unsigned long long);
2059 }
2060 if (flags & SLAB_STORE_USER) {
2061 /* user store requires one word storage behind the end of
2062 * the real object. But if the second red zone needs to be
2063 * aligned to 64 bits, we must allow that much space.
2064 */
2065 if (flags & SLAB_RED_ZONE)
2066 size += REDZONE_ALIGN;
2067 else
2068 size += BYTES_PER_WORD;
2069 }
2070 #endif
2071
2072 kasan_cache_create(cachep, &size, &flags);
2073
2074 size = ALIGN(size, cachep->align);
2075 /*
2076 * We should restrict the number of objects in a slab to implement
2077 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2078 */
2079 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2080 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2081
2082 #if DEBUG
2083 /*
2084 * To activate debug pagealloc, off-slab management is necessary
2085 * requirement. In early phase of initialization, small sized slab
2086 * doesn't get initialized so it would not be possible. So, we need
2087 * to check size >= 256. It guarantees that all necessary small
2088 * sized slab is initialized in current slab initialization sequence.
2089 */
2090 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2091 size >= 256 && cachep->object_size > cache_line_size()) {
2092 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2093 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2094
2095 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2096 flags |= CFLGS_OFF_SLAB;
2097 cachep->obj_offset += tmp_size - size;
2098 size = tmp_size;
2099 goto done;
2100 }
2101 }
2102 }
2103 #endif
2104
2105 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2106 flags |= CFLGS_OBJFREELIST_SLAB;
2107 goto done;
2108 }
2109
2110 if (set_off_slab_cache(cachep, size, flags)) {
2111 flags |= CFLGS_OFF_SLAB;
2112 goto done;
2113 }
2114
2115 if (set_on_slab_cache(cachep, size, flags))
2116 goto done;
2117
2118 return -E2BIG;
2119
2120 done:
2121 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2122 cachep->flags = flags;
2123 cachep->allocflags = __GFP_COMP;
2124 if (flags & SLAB_CACHE_DMA)
2125 cachep->allocflags |= GFP_DMA;
2126 if (flags & SLAB_RECLAIM_ACCOUNT)
2127 cachep->allocflags |= __GFP_RECLAIMABLE;
2128 cachep->size = size;
2129 cachep->reciprocal_buffer_size = reciprocal_value(size);
2130
2131 #if DEBUG
2132 /*
2133 * If we're going to use the generic kernel_map_pages()
2134 * poisoning, then it's going to smash the contents of
2135 * the redzone and userword anyhow, so switch them off.
2136 */
2137 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2138 (cachep->flags & SLAB_POISON) &&
2139 is_debug_pagealloc_cache(cachep))
2140 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2141 #endif
2142
2143 if (OFF_SLAB(cachep)) {
2144 cachep->freelist_cache =
2145 kmalloc_slab(cachep->freelist_size, 0u);
2146 }
2147
2148 err = setup_cpu_cache(cachep, gfp);
2149 if (err) {
2150 __kmem_cache_release(cachep);
2151 return err;
2152 }
2153
2154 return 0;
2155 }
2156
2157 #if DEBUG
2158 static void check_irq_off(void)
2159 {
2160 BUG_ON(!irqs_disabled());
2161 }
2162
2163 static void check_irq_on(void)
2164 {
2165 BUG_ON(irqs_disabled());
2166 }
2167
2168 static void check_mutex_acquired(void)
2169 {
2170 BUG_ON(!mutex_is_locked(&slab_mutex));
2171 }
2172
2173 static void check_spinlock_acquired(struct kmem_cache *cachep)
2174 {
2175 #ifdef CONFIG_SMP
2176 check_irq_off();
2177 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2178 #endif
2179 }
2180
2181 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2182 {
2183 #ifdef CONFIG_SMP
2184 check_irq_off();
2185 assert_spin_locked(&get_node(cachep, node)->list_lock);
2186 #endif
2187 }
2188
2189 #else
2190 #define check_irq_off() do { } while(0)
2191 #define check_irq_on() do { } while(0)
2192 #define check_mutex_acquired() do { } while(0)
2193 #define check_spinlock_acquired(x) do { } while(0)
2194 #define check_spinlock_acquired_node(x, y) do { } while(0)
2195 #endif
2196
2197 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2198 int node, bool free_all, struct list_head *list)
2199 {
2200 int tofree;
2201
2202 if (!ac || !ac->avail)
2203 return;
2204
2205 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2206 if (tofree > ac->avail)
2207 tofree = (ac->avail + 1) / 2;
2208
2209 free_block(cachep, ac->entry, tofree, node, list);
2210 ac->avail -= tofree;
2211 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2212 }
2213
2214 static void do_drain(void *arg)
2215 {
2216 struct kmem_cache *cachep = arg;
2217 struct array_cache *ac;
2218 int node = numa_mem_id();
2219 struct kmem_cache_node *n;
2220 LIST_HEAD(list);
2221
2222 check_irq_off();
2223 ac = cpu_cache_get(cachep);
2224 n = get_node(cachep, node);
2225 spin_lock(&n->list_lock);
2226 free_block(cachep, ac->entry, ac->avail, node, &list);
2227 spin_unlock(&n->list_lock);
2228 slabs_destroy(cachep, &list);
2229 ac->avail = 0;
2230 }
2231
2232 static void drain_cpu_caches(struct kmem_cache *cachep)
2233 {
2234 struct kmem_cache_node *n;
2235 int node;
2236 LIST_HEAD(list);
2237
2238 on_each_cpu(do_drain, cachep, 1);
2239 check_irq_on();
2240 for_each_kmem_cache_node(cachep, node, n)
2241 if (n->alien)
2242 drain_alien_cache(cachep, n->alien);
2243
2244 for_each_kmem_cache_node(cachep, node, n) {
2245 spin_lock_irq(&n->list_lock);
2246 drain_array_locked(cachep, n->shared, node, true, &list);
2247 spin_unlock_irq(&n->list_lock);
2248
2249 slabs_destroy(cachep, &list);
2250 }
2251 }
2252
2253 /*
2254 * Remove slabs from the list of free slabs.
2255 * Specify the number of slabs to drain in tofree.
2256 *
2257 * Returns the actual number of slabs released.
2258 */
2259 static int drain_freelist(struct kmem_cache *cache,
2260 struct kmem_cache_node *n, int tofree)
2261 {
2262 struct list_head *p;
2263 int nr_freed;
2264 struct page *page;
2265
2266 nr_freed = 0;
2267 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2268
2269 spin_lock_irq(&n->list_lock);
2270 p = n->slabs_free.prev;
2271 if (p == &n->slabs_free) {
2272 spin_unlock_irq(&n->list_lock);
2273 goto out;
2274 }
2275
2276 page = list_entry(p, struct page, lru);
2277 list_del(&page->lru);
2278 n->free_slabs--;
2279 n->total_slabs--;
2280 /*
2281 * Safe to drop the lock. The slab is no longer linked
2282 * to the cache.
2283 */
2284 n->free_objects -= cache->num;
2285 spin_unlock_irq(&n->list_lock);
2286 slab_destroy(cache, page);
2287 nr_freed++;
2288 }
2289 out:
2290 return nr_freed;
2291 }
2292
2293 int __kmem_cache_shrink(struct kmem_cache *cachep)
2294 {
2295 int ret = 0;
2296 int node;
2297 struct kmem_cache_node *n;
2298
2299 drain_cpu_caches(cachep);
2300
2301 check_irq_on();
2302 for_each_kmem_cache_node(cachep, node, n) {
2303 drain_freelist(cachep, n, INT_MAX);
2304
2305 ret += !list_empty(&n->slabs_full) ||
2306 !list_empty(&n->slabs_partial);
2307 }
2308 return (ret ? 1 : 0);
2309 }
2310
2311 #ifdef CONFIG_MEMCG
2312 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2313 {
2314 __kmem_cache_shrink(cachep);
2315 }
2316 #endif
2317
2318 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2319 {
2320 return __kmem_cache_shrink(cachep);
2321 }
2322
2323 void __kmem_cache_release(struct kmem_cache *cachep)
2324 {
2325 int i;
2326 struct kmem_cache_node *n;
2327
2328 cache_random_seq_destroy(cachep);
2329
2330 free_percpu(cachep->cpu_cache);
2331
2332 /* NUMA: free the node structures */
2333 for_each_kmem_cache_node(cachep, i, n) {
2334 kfree(n->shared);
2335 free_alien_cache(n->alien);
2336 kfree(n);
2337 cachep->node[i] = NULL;
2338 }
2339 }
2340
2341 /*
2342 * Get the memory for a slab management obj.
2343 *
2344 * For a slab cache when the slab descriptor is off-slab, the
2345 * slab descriptor can't come from the same cache which is being created,
2346 * Because if it is the case, that means we defer the creation of
2347 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2348 * And we eventually call down to __kmem_cache_create(), which
2349 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2350 * This is a "chicken-and-egg" problem.
2351 *
2352 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2353 * which are all initialized during kmem_cache_init().
2354 */
2355 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2356 struct page *page, int colour_off,
2357 gfp_t local_flags, int nodeid)
2358 {
2359 void *freelist;
2360 void *addr = page_address(page);
2361
2362 page->s_mem = addr + colour_off;
2363 page->active = 0;
2364
2365 if (OBJFREELIST_SLAB(cachep))
2366 freelist = NULL;
2367 else if (OFF_SLAB(cachep)) {
2368 /* Slab management obj is off-slab. */
2369 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2370 local_flags, nodeid);
2371 if (!freelist)
2372 return NULL;
2373 } else {
2374 /* We will use last bytes at the slab for freelist */
2375 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2376 cachep->freelist_size;
2377 }
2378
2379 return freelist;
2380 }
2381
2382 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2383 {
2384 return ((freelist_idx_t *)page->freelist)[idx];
2385 }
2386
2387 static inline void set_free_obj(struct page *page,
2388 unsigned int idx, freelist_idx_t val)
2389 {
2390 ((freelist_idx_t *)(page->freelist))[idx] = val;
2391 }
2392
2393 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2394 {
2395 #if DEBUG
2396 int i;
2397
2398 for (i = 0; i < cachep->num; i++) {
2399 void *objp = index_to_obj(cachep, page, i);
2400
2401 if (cachep->flags & SLAB_STORE_USER)
2402 *dbg_userword(cachep, objp) = NULL;
2403
2404 if (cachep->flags & SLAB_RED_ZONE) {
2405 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2406 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2407 }
2408 /*
2409 * Constructors are not allowed to allocate memory from the same
2410 * cache which they are a constructor for. Otherwise, deadlock.
2411 * They must also be threaded.
2412 */
2413 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2414 kasan_unpoison_object_data(cachep,
2415 objp + obj_offset(cachep));
2416 cachep->ctor(objp + obj_offset(cachep));
2417 kasan_poison_object_data(
2418 cachep, objp + obj_offset(cachep));
2419 }
2420
2421 if (cachep->flags & SLAB_RED_ZONE) {
2422 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2423 slab_error(cachep, "constructor overwrote the end of an object");
2424 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2425 slab_error(cachep, "constructor overwrote the start of an object");
2426 }
2427 /* need to poison the objs? */
2428 if (cachep->flags & SLAB_POISON) {
2429 poison_obj(cachep, objp, POISON_FREE);
2430 slab_kernel_map(cachep, objp, 0, 0);
2431 }
2432 }
2433 #endif
2434 }
2435
2436 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2437 /* Hold information during a freelist initialization */
2438 union freelist_init_state {
2439 struct {
2440 unsigned int pos;
2441 unsigned int *list;
2442 unsigned int count;
2443 };
2444 struct rnd_state rnd_state;
2445 };
2446
2447 /*
2448 * Initialize the state based on the randomization methode available.
2449 * return true if the pre-computed list is available, false otherwize.
2450 */
2451 static bool freelist_state_initialize(union freelist_init_state *state,
2452 struct kmem_cache *cachep,
2453 unsigned int count)
2454 {
2455 bool ret;
2456 unsigned int rand;
2457
2458 /* Use best entropy available to define a random shift */
2459 rand = get_random_int();
2460
2461 /* Use a random state if the pre-computed list is not available */
2462 if (!cachep->random_seq) {
2463 prandom_seed_state(&state->rnd_state, rand);
2464 ret = false;
2465 } else {
2466 state->list = cachep->random_seq;
2467 state->count = count;
2468 state->pos = rand % count;
2469 ret = true;
2470 }
2471 return ret;
2472 }
2473
2474 /* Get the next entry on the list and randomize it using a random shift */
2475 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2476 {
2477 if (state->pos >= state->count)
2478 state->pos = 0;
2479 return state->list[state->pos++];
2480 }
2481
2482 /* Swap two freelist entries */
2483 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2484 {
2485 swap(((freelist_idx_t *)page->freelist)[a],
2486 ((freelist_idx_t *)page->freelist)[b]);
2487 }
2488
2489 /*
2490 * Shuffle the freelist initialization state based on pre-computed lists.
2491 * return true if the list was successfully shuffled, false otherwise.
2492 */
2493 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2494 {
2495 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2496 union freelist_init_state state;
2497 bool precomputed;
2498
2499 if (count < 2)
2500 return false;
2501
2502 precomputed = freelist_state_initialize(&state, cachep, count);
2503
2504 /* Take a random entry as the objfreelist */
2505 if (OBJFREELIST_SLAB(cachep)) {
2506 if (!precomputed)
2507 objfreelist = count - 1;
2508 else
2509 objfreelist = next_random_slot(&state);
2510 page->freelist = index_to_obj(cachep, page, objfreelist) +
2511 obj_offset(cachep);
2512 count--;
2513 }
2514
2515 /*
2516 * On early boot, generate the list dynamically.
2517 * Later use a pre-computed list for speed.
2518 */
2519 if (!precomputed) {
2520 for (i = 0; i < count; i++)
2521 set_free_obj(page, i, i);
2522
2523 /* Fisher-Yates shuffle */
2524 for (i = count - 1; i > 0; i--) {
2525 rand = prandom_u32_state(&state.rnd_state);
2526 rand %= (i + 1);
2527 swap_free_obj(page, i, rand);
2528 }
2529 } else {
2530 for (i = 0; i < count; i++)
2531 set_free_obj(page, i, next_random_slot(&state));
2532 }
2533
2534 if (OBJFREELIST_SLAB(cachep))
2535 set_free_obj(page, cachep->num - 1, objfreelist);
2536
2537 return true;
2538 }
2539 #else
2540 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2541 struct page *page)
2542 {
2543 return false;
2544 }
2545 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2546
2547 static void cache_init_objs(struct kmem_cache *cachep,
2548 struct page *page)
2549 {
2550 int i;
2551 void *objp;
2552 bool shuffled;
2553
2554 cache_init_objs_debug(cachep, page);
2555
2556 /* Try to randomize the freelist if enabled */
2557 shuffled = shuffle_freelist(cachep, page);
2558
2559 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2560 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2561 obj_offset(cachep);
2562 }
2563
2564 for (i = 0; i < cachep->num; i++) {
2565 objp = index_to_obj(cachep, page, i);
2566 kasan_init_slab_obj(cachep, objp);
2567
2568 /* constructor could break poison info */
2569 if (DEBUG == 0 && cachep->ctor) {
2570 kasan_unpoison_object_data(cachep, objp);
2571 cachep->ctor(objp);
2572 kasan_poison_object_data(cachep, objp);
2573 }
2574
2575 if (!shuffled)
2576 set_free_obj(page, i, i);
2577 }
2578 }
2579
2580 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2581 {
2582 void *objp;
2583
2584 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2585 page->active++;
2586
2587 #if DEBUG
2588 if (cachep->flags & SLAB_STORE_USER)
2589 set_store_user_dirty(cachep);
2590 #endif
2591
2592 return objp;
2593 }
2594
2595 static void slab_put_obj(struct kmem_cache *cachep,
2596 struct page *page, void *objp)
2597 {
2598 unsigned int objnr = obj_to_index(cachep, page, objp);
2599 #if DEBUG
2600 unsigned int i;
2601
2602 /* Verify double free bug */
2603 for (i = page->active; i < cachep->num; i++) {
2604 if (get_free_obj(page, i) == objnr) {
2605 pr_err("slab: double free detected in cache '%s', objp %px\n",
2606 cachep->name, objp);
2607 BUG();
2608 }
2609 }
2610 #endif
2611 page->active--;
2612 if (!page->freelist)
2613 page->freelist = objp + obj_offset(cachep);
2614
2615 set_free_obj(page, page->active, objnr);
2616 }
2617
2618 /*
2619 * Map pages beginning at addr to the given cache and slab. This is required
2620 * for the slab allocator to be able to lookup the cache and slab of a
2621 * virtual address for kfree, ksize, and slab debugging.
2622 */
2623 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2624 void *freelist)
2625 {
2626 page->slab_cache = cache;
2627 page->freelist = freelist;
2628 }
2629
2630 /*
2631 * Grow (by 1) the number of slabs within a cache. This is called by
2632 * kmem_cache_alloc() when there are no active objs left in a cache.
2633 */
2634 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2635 gfp_t flags, int nodeid)
2636 {
2637 void *freelist;
2638 size_t offset;
2639 gfp_t local_flags;
2640 int page_node;
2641 struct kmem_cache_node *n;
2642 struct page *page;
2643
2644 /*
2645 * Be lazy and only check for valid flags here, keeping it out of the
2646 * critical path in kmem_cache_alloc().
2647 */
2648 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2649 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2650 flags &= ~GFP_SLAB_BUG_MASK;
2651 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2652 invalid_mask, &invalid_mask, flags, &flags);
2653 dump_stack();
2654 }
2655 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2656
2657 check_irq_off();
2658 if (gfpflags_allow_blocking(local_flags))
2659 local_irq_enable();
2660
2661 /*
2662 * Get mem for the objs. Attempt to allocate a physical page from
2663 * 'nodeid'.
2664 */
2665 page = kmem_getpages(cachep, local_flags, nodeid);
2666 if (!page)
2667 goto failed;
2668
2669 page_node = page_to_nid(page);
2670 n = get_node(cachep, page_node);
2671
2672 /* Get colour for the slab, and cal the next value. */
2673 n->colour_next++;
2674 if (n->colour_next >= cachep->colour)
2675 n->colour_next = 0;
2676
2677 offset = n->colour_next;
2678 if (offset >= cachep->colour)
2679 offset = 0;
2680
2681 offset *= cachep->colour_off;
2682
2683 /* Get slab management. */
2684 freelist = alloc_slabmgmt(cachep, page, offset,
2685 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2686 if (OFF_SLAB(cachep) && !freelist)
2687 goto opps1;
2688
2689 slab_map_pages(cachep, page, freelist);
2690
2691 kasan_poison_slab(page);
2692 cache_init_objs(cachep, page);
2693
2694 if (gfpflags_allow_blocking(local_flags))
2695 local_irq_disable();
2696
2697 return page;
2698
2699 opps1:
2700 kmem_freepages(cachep, page);
2701 failed:
2702 if (gfpflags_allow_blocking(local_flags))
2703 local_irq_disable();
2704 return NULL;
2705 }
2706
2707 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2708 {
2709 struct kmem_cache_node *n;
2710 void *list = NULL;
2711
2712 check_irq_off();
2713
2714 if (!page)
2715 return;
2716
2717 INIT_LIST_HEAD(&page->lru);
2718 n = get_node(cachep, page_to_nid(page));
2719
2720 spin_lock(&n->list_lock);
2721 n->total_slabs++;
2722 if (!page->active) {
2723 list_add_tail(&page->lru, &(n->slabs_free));
2724 n->free_slabs++;
2725 } else
2726 fixup_slab_list(cachep, n, page, &list);
2727
2728 STATS_INC_GROWN(cachep);
2729 n->free_objects += cachep->num - page->active;
2730 spin_unlock(&n->list_lock);
2731
2732 fixup_objfreelist_debug(cachep, &list);
2733 }
2734
2735 #if DEBUG
2736
2737 /*
2738 * Perform extra freeing checks:
2739 * - detect bad pointers.
2740 * - POISON/RED_ZONE checking
2741 */
2742 static void kfree_debugcheck(const void *objp)
2743 {
2744 if (!virt_addr_valid(objp)) {
2745 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2746 (unsigned long)objp);
2747 BUG();
2748 }
2749 }
2750
2751 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2752 {
2753 unsigned long long redzone1, redzone2;
2754
2755 redzone1 = *dbg_redzone1(cache, obj);
2756 redzone2 = *dbg_redzone2(cache, obj);
2757
2758 /*
2759 * Redzone is ok.
2760 */
2761 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2762 return;
2763
2764 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2765 slab_error(cache, "double free detected");
2766 else
2767 slab_error(cache, "memory outside object was overwritten");
2768
2769 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2770 obj, redzone1, redzone2);
2771 }
2772
2773 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2774 unsigned long caller)
2775 {
2776 unsigned int objnr;
2777 struct page *page;
2778
2779 BUG_ON(virt_to_cache(objp) != cachep);
2780
2781 objp -= obj_offset(cachep);
2782 kfree_debugcheck(objp);
2783 page = virt_to_head_page(objp);
2784
2785 if (cachep->flags & SLAB_RED_ZONE) {
2786 verify_redzone_free(cachep, objp);
2787 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2788 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2789 }
2790 if (cachep->flags & SLAB_STORE_USER) {
2791 set_store_user_dirty(cachep);
2792 *dbg_userword(cachep, objp) = (void *)caller;
2793 }
2794
2795 objnr = obj_to_index(cachep, page, objp);
2796
2797 BUG_ON(objnr >= cachep->num);
2798 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2799
2800 if (cachep->flags & SLAB_POISON) {
2801 poison_obj(cachep, objp, POISON_FREE);
2802 slab_kernel_map(cachep, objp, 0, caller);
2803 }
2804 return objp;
2805 }
2806
2807 #else
2808 #define kfree_debugcheck(x) do { } while(0)
2809 #define cache_free_debugcheck(x,objp,z) (objp)
2810 #endif
2811
2812 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2813 void **list)
2814 {
2815 #if DEBUG
2816 void *next = *list;
2817 void *objp;
2818
2819 while (next) {
2820 objp = next - obj_offset(cachep);
2821 next = *(void **)next;
2822 poison_obj(cachep, objp, POISON_FREE);
2823 }
2824 #endif
2825 }
2826
2827 static inline void fixup_slab_list(struct kmem_cache *cachep,
2828 struct kmem_cache_node *n, struct page *page,
2829 void **list)
2830 {
2831 /* move slabp to correct slabp list: */
2832 list_del(&page->lru);
2833 if (page->active == cachep->num) {
2834 list_add(&page->lru, &n->slabs_full);
2835 if (OBJFREELIST_SLAB(cachep)) {
2836 #if DEBUG
2837 /* Poisoning will be done without holding the lock */
2838 if (cachep->flags & SLAB_POISON) {
2839 void **objp = page->freelist;
2840
2841 *objp = *list;
2842 *list = objp;
2843 }
2844 #endif
2845 page->freelist = NULL;
2846 }
2847 } else
2848 list_add(&page->lru, &n->slabs_partial);
2849 }
2850
2851 /* Try to find non-pfmemalloc slab if needed */
2852 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2853 struct page *page, bool pfmemalloc)
2854 {
2855 if (!page)
2856 return NULL;
2857
2858 if (pfmemalloc)
2859 return page;
2860
2861 if (!PageSlabPfmemalloc(page))
2862 return page;
2863
2864 /* No need to keep pfmemalloc slab if we have enough free objects */
2865 if (n->free_objects > n->free_limit) {
2866 ClearPageSlabPfmemalloc(page);
2867 return page;
2868 }
2869
2870 /* Move pfmemalloc slab to the end of list to speed up next search */
2871 list_del(&page->lru);
2872 if (!page->active) {
2873 list_add_tail(&page->lru, &n->slabs_free);
2874 n->free_slabs++;
2875 } else
2876 list_add_tail(&page->lru, &n->slabs_partial);
2877
2878 list_for_each_entry(page, &n->slabs_partial, lru) {
2879 if (!PageSlabPfmemalloc(page))
2880 return page;
2881 }
2882
2883 n->free_touched = 1;
2884 list_for_each_entry(page, &n->slabs_free, lru) {
2885 if (!PageSlabPfmemalloc(page)) {
2886 n->free_slabs--;
2887 return page;
2888 }
2889 }
2890
2891 return NULL;
2892 }
2893
2894 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2895 {
2896 struct page *page;
2897
2898 assert_spin_locked(&n->list_lock);
2899 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2900 if (!page) {
2901 n->free_touched = 1;
2902 page = list_first_entry_or_null(&n->slabs_free, struct page,
2903 lru);
2904 if (page)
2905 n->free_slabs--;
2906 }
2907
2908 if (sk_memalloc_socks())
2909 page = get_valid_first_slab(n, page, pfmemalloc);
2910
2911 return page;
2912 }
2913
2914 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2915 struct kmem_cache_node *n, gfp_t flags)
2916 {
2917 struct page *page;
2918 void *obj;
2919 void *list = NULL;
2920
2921 if (!gfp_pfmemalloc_allowed(flags))
2922 return NULL;
2923
2924 spin_lock(&n->list_lock);
2925 page = get_first_slab(n, true);
2926 if (!page) {
2927 spin_unlock(&n->list_lock);
2928 return NULL;
2929 }
2930
2931 obj = slab_get_obj(cachep, page);
2932 n->free_objects--;
2933
2934 fixup_slab_list(cachep, n, page, &list);
2935
2936 spin_unlock(&n->list_lock);
2937 fixup_objfreelist_debug(cachep, &list);
2938
2939 return obj;
2940 }
2941
2942 /*
2943 * Slab list should be fixed up by fixup_slab_list() for existing slab
2944 * or cache_grow_end() for new slab
2945 */
2946 static __always_inline int alloc_block(struct kmem_cache *cachep,
2947 struct array_cache *ac, struct page *page, int batchcount)
2948 {
2949 /*
2950 * There must be at least one object available for
2951 * allocation.
2952 */
2953 BUG_ON(page->active >= cachep->num);
2954
2955 while (page->active < cachep->num && batchcount--) {
2956 STATS_INC_ALLOCED(cachep);
2957 STATS_INC_ACTIVE(cachep);
2958 STATS_SET_HIGH(cachep);
2959
2960 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2961 }
2962
2963 return batchcount;
2964 }
2965
2966 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2967 {
2968 int batchcount;
2969 struct kmem_cache_node *n;
2970 struct array_cache *ac, *shared;
2971 int node;
2972 void *list = NULL;
2973 struct page *page;
2974
2975 check_irq_off();
2976 node = numa_mem_id();
2977
2978 ac = cpu_cache_get(cachep);
2979 batchcount = ac->batchcount;
2980 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2981 /*
2982 * If there was little recent activity on this cache, then
2983 * perform only a partial refill. Otherwise we could generate
2984 * refill bouncing.
2985 */
2986 batchcount = BATCHREFILL_LIMIT;
2987 }
2988 n = get_node(cachep, node);
2989
2990 BUG_ON(ac->avail > 0 || !n);
2991 shared = READ_ONCE(n->shared);
2992 if (!n->free_objects && (!shared || !shared->avail))
2993 goto direct_grow;
2994
2995 spin_lock(&n->list_lock);
2996 shared = READ_ONCE(n->shared);
2997
2998 /* See if we can refill from the shared array */
2999 if (shared && transfer_objects(ac, shared, batchcount)) {
3000 shared->touched = 1;
3001 goto alloc_done;
3002 }
3003
3004 while (batchcount > 0) {
3005 /* Get slab alloc is to come from. */
3006 page = get_first_slab(n, false);
3007 if (!page)
3008 goto must_grow;
3009
3010 check_spinlock_acquired(cachep);
3011
3012 batchcount = alloc_block(cachep, ac, page, batchcount);
3013 fixup_slab_list(cachep, n, page, &list);
3014 }
3015
3016 must_grow:
3017 n->free_objects -= ac->avail;
3018 alloc_done:
3019 spin_unlock(&n->list_lock);
3020 fixup_objfreelist_debug(cachep, &list);
3021
3022 direct_grow:
3023 if (unlikely(!ac->avail)) {
3024 /* Check if we can use obj in pfmemalloc slab */
3025 if (sk_memalloc_socks()) {
3026 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3027
3028 if (obj)
3029 return obj;
3030 }
3031
3032 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3033
3034 /*
3035 * cache_grow_begin() can reenable interrupts,
3036 * then ac could change.
3037 */
3038 ac = cpu_cache_get(cachep);
3039 if (!ac->avail && page)
3040 alloc_block(cachep, ac, page, batchcount);
3041 cache_grow_end(cachep, page);
3042
3043 if (!ac->avail)
3044 return NULL;
3045 }
3046 ac->touched = 1;
3047
3048 return ac->entry[--ac->avail];
3049 }
3050
3051 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3052 gfp_t flags)
3053 {
3054 might_sleep_if(gfpflags_allow_blocking(flags));
3055 }
3056
3057 #if DEBUG
3058 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3059 gfp_t flags, void *objp, unsigned long caller)
3060 {
3061 if (!objp)
3062 return objp;
3063 if (cachep->flags & SLAB_POISON) {
3064 check_poison_obj(cachep, objp);
3065 slab_kernel_map(cachep, objp, 1, 0);
3066 poison_obj(cachep, objp, POISON_INUSE);
3067 }
3068 if (cachep->flags & SLAB_STORE_USER)
3069 *dbg_userword(cachep, objp) = (void *)caller;
3070
3071 if (cachep->flags & SLAB_RED_ZONE) {
3072 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3073 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3074 slab_error(cachep, "double free, or memory outside object was overwritten");
3075 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3076 objp, *dbg_redzone1(cachep, objp),
3077 *dbg_redzone2(cachep, objp));
3078 }
3079 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3080 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3081 }
3082
3083 objp += obj_offset(cachep);
3084 if (cachep->ctor && cachep->flags & SLAB_POISON)
3085 cachep->ctor(objp);
3086 if (ARCH_SLAB_MINALIGN &&
3087 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3088 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3089 objp, (int)ARCH_SLAB_MINALIGN);
3090 }
3091 return objp;
3092 }
3093 #else
3094 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3095 #endif
3096
3097 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3098 {
3099 void *objp;
3100 struct array_cache *ac;
3101
3102 check_irq_off();
3103
3104 ac = cpu_cache_get(cachep);
3105 if (likely(ac->avail)) {
3106 ac->touched = 1;
3107 objp = ac->entry[--ac->avail];
3108
3109 STATS_INC_ALLOCHIT(cachep);
3110 goto out;
3111 }
3112
3113 STATS_INC_ALLOCMISS(cachep);
3114 objp = cache_alloc_refill(cachep, flags);
3115 /*
3116 * the 'ac' may be updated by cache_alloc_refill(),
3117 * and kmemleak_erase() requires its correct value.
3118 */
3119 ac = cpu_cache_get(cachep);
3120
3121 out:
3122 /*
3123 * To avoid a false negative, if an object that is in one of the
3124 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3125 * treat the array pointers as a reference to the object.
3126 */
3127 if (objp)
3128 kmemleak_erase(&ac->entry[ac->avail]);
3129 return objp;
3130 }
3131
3132 #ifdef CONFIG_NUMA
3133 /*
3134 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3135 *
3136 * If we are in_interrupt, then process context, including cpusets and
3137 * mempolicy, may not apply and should not be used for allocation policy.
3138 */
3139 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3140 {
3141 int nid_alloc, nid_here;
3142
3143 if (in_interrupt() || (flags & __GFP_THISNODE))
3144 return NULL;
3145 nid_alloc = nid_here = numa_mem_id();
3146 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3147 nid_alloc = cpuset_slab_spread_node();
3148 else if (current->mempolicy)
3149 nid_alloc = mempolicy_slab_node();
3150 if (nid_alloc != nid_here)
3151 return ____cache_alloc_node(cachep, flags, nid_alloc);
3152 return NULL;
3153 }
3154
3155 /*
3156 * Fallback function if there was no memory available and no objects on a
3157 * certain node and fall back is permitted. First we scan all the
3158 * available node for available objects. If that fails then we
3159 * perform an allocation without specifying a node. This allows the page
3160 * allocator to do its reclaim / fallback magic. We then insert the
3161 * slab into the proper nodelist and then allocate from it.
3162 */
3163 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3164 {
3165 struct zonelist *zonelist;
3166 struct zoneref *z;
3167 struct zone *zone;
3168 enum zone_type high_zoneidx = gfp_zone(flags);
3169 void *obj = NULL;
3170 struct page *page;
3171 int nid;
3172 unsigned int cpuset_mems_cookie;
3173
3174 if (flags & __GFP_THISNODE)
3175 return NULL;
3176
3177 retry_cpuset:
3178 cpuset_mems_cookie = read_mems_allowed_begin();
3179 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3180
3181 retry:
3182 /*
3183 * Look through allowed nodes for objects available
3184 * from existing per node queues.
3185 */
3186 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3187 nid = zone_to_nid(zone);
3188
3189 if (cpuset_zone_allowed(zone, flags) &&
3190 get_node(cache, nid) &&
3191 get_node(cache, nid)->free_objects) {
3192 obj = ____cache_alloc_node(cache,
3193 gfp_exact_node(flags), nid);
3194 if (obj)
3195 break;
3196 }
3197 }
3198
3199 if (!obj) {
3200 /*
3201 * This allocation will be performed within the constraints
3202 * of the current cpuset / memory policy requirements.
3203 * We may trigger various forms of reclaim on the allowed
3204 * set and go into memory reserves if necessary.
3205 */
3206 page = cache_grow_begin(cache, flags, numa_mem_id());
3207 cache_grow_end(cache, page);
3208 if (page) {
3209 nid = page_to_nid(page);
3210 obj = ____cache_alloc_node(cache,
3211 gfp_exact_node(flags), nid);
3212
3213 /*
3214 * Another processor may allocate the objects in
3215 * the slab since we are not holding any locks.
3216 */
3217 if (!obj)
3218 goto retry;
3219 }
3220 }
3221
3222 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3223 goto retry_cpuset;
3224 return obj;
3225 }
3226
3227 /*
3228 * A interface to enable slab creation on nodeid
3229 */
3230 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3231 int nodeid)
3232 {
3233 struct page *page;
3234 struct kmem_cache_node *n;
3235 void *obj = NULL;
3236 void *list = NULL;
3237
3238 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3239 n = get_node(cachep, nodeid);
3240 BUG_ON(!n);
3241
3242 check_irq_off();
3243 spin_lock(&n->list_lock);
3244 page = get_first_slab(n, false);
3245 if (!page)
3246 goto must_grow;
3247
3248 check_spinlock_acquired_node(cachep, nodeid);
3249
3250 STATS_INC_NODEALLOCS(cachep);
3251 STATS_INC_ACTIVE(cachep);
3252 STATS_SET_HIGH(cachep);
3253
3254 BUG_ON(page->active == cachep->num);
3255
3256 obj = slab_get_obj(cachep, page);
3257 n->free_objects--;
3258
3259 fixup_slab_list(cachep, n, page, &list);
3260
3261 spin_unlock(&n->list_lock);
3262 fixup_objfreelist_debug(cachep, &list);
3263 return obj;
3264
3265 must_grow:
3266 spin_unlock(&n->list_lock);
3267 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3268 if (page) {
3269 /* This slab isn't counted yet so don't update free_objects */
3270 obj = slab_get_obj(cachep, page);
3271 }
3272 cache_grow_end(cachep, page);
3273
3274 return obj ? obj : fallback_alloc(cachep, flags);
3275 }
3276
3277 static __always_inline void *
3278 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3279 unsigned long caller)
3280 {
3281 unsigned long save_flags;
3282 void *ptr;
3283 int slab_node = numa_mem_id();
3284
3285 flags &= gfp_allowed_mask;
3286 cachep = slab_pre_alloc_hook(cachep, flags);
3287 if (unlikely(!cachep))
3288 return NULL;
3289
3290 cache_alloc_debugcheck_before(cachep, flags);
3291 local_irq_save(save_flags);
3292
3293 if (nodeid == NUMA_NO_NODE)
3294 nodeid = slab_node;
3295
3296 if (unlikely(!get_node(cachep, nodeid))) {
3297 /* Node not bootstrapped yet */
3298 ptr = fallback_alloc(cachep, flags);
3299 goto out;
3300 }
3301
3302 if (nodeid == slab_node) {
3303 /*
3304 * Use the locally cached objects if possible.
3305 * However ____cache_alloc does not allow fallback
3306 * to other nodes. It may fail while we still have
3307 * objects on other nodes available.
3308 */
3309 ptr = ____cache_alloc(cachep, flags);
3310 if (ptr)
3311 goto out;
3312 }
3313 /* ___cache_alloc_node can fall back to other nodes */
3314 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3315 out:
3316 local_irq_restore(save_flags);
3317 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3318
3319 if (unlikely(flags & __GFP_ZERO) && ptr)
3320 memset(ptr, 0, cachep->object_size);
3321
3322 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3323 return ptr;
3324 }
3325
3326 static __always_inline void *
3327 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3328 {
3329 void *objp;
3330
3331 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3332 objp = alternate_node_alloc(cache, flags);
3333 if (objp)
3334 goto out;
3335 }
3336 objp = ____cache_alloc(cache, flags);
3337
3338 /*
3339 * We may just have run out of memory on the local node.
3340 * ____cache_alloc_node() knows how to locate memory on other nodes
3341 */
3342 if (!objp)
3343 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3344
3345 out:
3346 return objp;
3347 }
3348 #else
3349
3350 static __always_inline void *
3351 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3352 {
3353 return ____cache_alloc(cachep, flags);
3354 }
3355
3356 #endif /* CONFIG_NUMA */
3357
3358 static __always_inline void *
3359 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3360 {
3361 unsigned long save_flags;
3362 void *objp;
3363
3364 flags &= gfp_allowed_mask;
3365 cachep = slab_pre_alloc_hook(cachep, flags);
3366 if (unlikely(!cachep))
3367 return NULL;
3368
3369 cache_alloc_debugcheck_before(cachep, flags);
3370 local_irq_save(save_flags);
3371 objp = __do_cache_alloc(cachep, flags);
3372 local_irq_restore(save_flags);
3373 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3374 prefetchw(objp);
3375
3376 if (unlikely(flags & __GFP_ZERO) && objp)
3377 memset(objp, 0, cachep->object_size);
3378
3379 slab_post_alloc_hook(cachep, flags, 1, &objp);
3380 return objp;
3381 }
3382
3383 /*
3384 * Caller needs to acquire correct kmem_cache_node's list_lock
3385 * @list: List of detached free slabs should be freed by caller
3386 */
3387 static void free_block(struct kmem_cache *cachep, void **objpp,
3388 int nr_objects, int node, struct list_head *list)
3389 {
3390 int i;
3391 struct kmem_cache_node *n = get_node(cachep, node);
3392 struct page *page;
3393
3394 n->free_objects += nr_objects;
3395
3396 for (i = 0; i < nr_objects; i++) {
3397 void *objp;
3398 struct page *page;
3399
3400 objp = objpp[i];
3401
3402 page = virt_to_head_page(objp);
3403 list_del(&page->lru);
3404 check_spinlock_acquired_node(cachep, node);
3405 slab_put_obj(cachep, page, objp);
3406 STATS_DEC_ACTIVE(cachep);
3407
3408 /* fixup slab chains */
3409 if (page->active == 0) {
3410 list_add(&page->lru, &n->slabs_free);
3411 n->free_slabs++;
3412 } else {
3413 /* Unconditionally move a slab to the end of the
3414 * partial list on free - maximum time for the
3415 * other objects to be freed, too.
3416 */
3417 list_add_tail(&page->lru, &n->slabs_partial);
3418 }
3419 }
3420
3421 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3422 n->free_objects -= cachep->num;
3423
3424 page = list_last_entry(&n->slabs_free, struct page, lru);
3425 list_move(&page->lru, list);
3426 n->free_slabs--;
3427 n->total_slabs--;
3428 }
3429 }
3430
3431 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3432 {
3433 int batchcount;
3434 struct kmem_cache_node *n;
3435 int node = numa_mem_id();
3436 LIST_HEAD(list);
3437
3438 batchcount = ac->batchcount;
3439
3440 check_irq_off();
3441 n = get_node(cachep, node);
3442 spin_lock(&n->list_lock);
3443 if (n->shared) {
3444 struct array_cache *shared_array = n->shared;
3445 int max = shared_array->limit - shared_array->avail;
3446 if (max) {
3447 if (batchcount > max)
3448 batchcount = max;
3449 memcpy(&(shared_array->entry[shared_array->avail]),
3450 ac->entry, sizeof(void *) * batchcount);
3451 shared_array->avail += batchcount;
3452 goto free_done;
3453 }
3454 }
3455
3456 free_block(cachep, ac->entry, batchcount, node, &list);
3457 free_done:
3458 #if STATS
3459 {
3460 int i = 0;
3461 struct page *page;
3462
3463 list_for_each_entry(page, &n->slabs_free, lru) {
3464 BUG_ON(page->active);
3465
3466 i++;
3467 }
3468 STATS_SET_FREEABLE(cachep, i);
3469 }
3470 #endif
3471 spin_unlock(&n->list_lock);
3472 slabs_destroy(cachep, &list);
3473 ac->avail -= batchcount;
3474 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3475 }
3476
3477 /*
3478 * Release an obj back to its cache. If the obj has a constructed state, it must
3479 * be in this state _before_ it is released. Called with disabled ints.
3480 */
3481 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3482 unsigned long caller)
3483 {
3484 /* Put the object into the quarantine, don't touch it for now. */
3485 if (kasan_slab_free(cachep, objp))
3486 return;
3487
3488 ___cache_free(cachep, objp, caller);
3489 }
3490
3491 void ___cache_free(struct kmem_cache *cachep, void *objp,
3492 unsigned long caller)
3493 {
3494 struct array_cache *ac = cpu_cache_get(cachep);
3495
3496 check_irq_off();
3497 kmemleak_free_recursive(objp, cachep->flags);
3498 objp = cache_free_debugcheck(cachep, objp, caller);
3499
3500 /*
3501 * Skip calling cache_free_alien() when the platform is not numa.
3502 * This will avoid cache misses that happen while accessing slabp (which
3503 * is per page memory reference) to get nodeid. Instead use a global
3504 * variable to skip the call, which is mostly likely to be present in
3505 * the cache.
3506 */
3507 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3508 return;
3509
3510 if (ac->avail < ac->limit) {
3511 STATS_INC_FREEHIT(cachep);
3512 } else {
3513 STATS_INC_FREEMISS(cachep);
3514 cache_flusharray(cachep, ac);
3515 }
3516
3517 if (sk_memalloc_socks()) {
3518 struct page *page = virt_to_head_page(objp);
3519
3520 if (unlikely(PageSlabPfmemalloc(page))) {
3521 cache_free_pfmemalloc(cachep, page, objp);
3522 return;
3523 }
3524 }
3525
3526 ac->entry[ac->avail++] = objp;
3527 }
3528
3529 /**
3530 * kmem_cache_alloc - Allocate an object
3531 * @cachep: The cache to allocate from.
3532 * @flags: See kmalloc().
3533 *
3534 * Allocate an object from this cache. The flags are only relevant
3535 * if the cache has no available objects.
3536 */
3537 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3538 {
3539 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3540
3541 kasan_slab_alloc(cachep, ret, flags);
3542 trace_kmem_cache_alloc(_RET_IP_, ret,
3543 cachep->object_size, cachep->size, flags);
3544
3545 return ret;
3546 }
3547 EXPORT_SYMBOL(kmem_cache_alloc);
3548
3549 static __always_inline void
3550 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3551 size_t size, void **p, unsigned long caller)
3552 {
3553 size_t i;
3554
3555 for (i = 0; i < size; i++)
3556 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3557 }
3558
3559 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3560 void **p)
3561 {
3562 size_t i;
3563
3564 s = slab_pre_alloc_hook(s, flags);
3565 if (!s)
3566 return 0;
3567
3568 cache_alloc_debugcheck_before(s, flags);
3569
3570 local_irq_disable();
3571 for (i = 0; i < size; i++) {
3572 void *objp = __do_cache_alloc(s, flags);
3573
3574 if (unlikely(!objp))
3575 goto error;
3576 p[i] = objp;
3577 }
3578 local_irq_enable();
3579
3580 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3581
3582 /* Clear memory outside IRQ disabled section */
3583 if (unlikely(flags & __GFP_ZERO))
3584 for (i = 0; i < size; i++)
3585 memset(p[i], 0, s->object_size);
3586
3587 slab_post_alloc_hook(s, flags, size, p);
3588 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3589 return size;
3590 error:
3591 local_irq_enable();
3592 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3593 slab_post_alloc_hook(s, flags, i, p);
3594 __kmem_cache_free_bulk(s, i, p);
3595 return 0;
3596 }
3597 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3598
3599 #ifdef CONFIG_TRACING
3600 void *
3601 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3602 {
3603 void *ret;
3604
3605 ret = slab_alloc(cachep, flags, _RET_IP_);
3606
3607 kasan_kmalloc(cachep, ret, size, flags);
3608 trace_kmalloc(_RET_IP_, ret,
3609 size, cachep->size, flags);
3610 return ret;
3611 }
3612 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3613 #endif
3614
3615 #ifdef CONFIG_NUMA
3616 /**
3617 * kmem_cache_alloc_node - Allocate an object on the specified node
3618 * @cachep: The cache to allocate from.
3619 * @flags: See kmalloc().
3620 * @nodeid: node number of the target node.
3621 *
3622 * Identical to kmem_cache_alloc but it will allocate memory on the given
3623 * node, which can improve the performance for cpu bound structures.
3624 *
3625 * Fallback to other node is possible if __GFP_THISNODE is not set.
3626 */
3627 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3628 {
3629 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3630
3631 kasan_slab_alloc(cachep, ret, flags);
3632 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3633 cachep->object_size, cachep->size,
3634 flags, nodeid);
3635
3636 return ret;
3637 }
3638 EXPORT_SYMBOL(kmem_cache_alloc_node);
3639
3640 #ifdef CONFIG_TRACING
3641 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3642 gfp_t flags,
3643 int nodeid,
3644 size_t size)
3645 {
3646 void *ret;
3647
3648 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3649
3650 kasan_kmalloc(cachep, ret, size, flags);
3651 trace_kmalloc_node(_RET_IP_, ret,
3652 size, cachep->size,
3653 flags, nodeid);
3654 return ret;
3655 }
3656 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3657 #endif
3658
3659 static __always_inline void *
3660 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3661 {
3662 struct kmem_cache *cachep;
3663 void *ret;
3664
3665 cachep = kmalloc_slab(size, flags);
3666 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3667 return cachep;
3668 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3669 kasan_kmalloc(cachep, ret, size, flags);
3670
3671 return ret;
3672 }
3673
3674 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3675 {
3676 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3677 }
3678 EXPORT_SYMBOL(__kmalloc_node);
3679
3680 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3681 int node, unsigned long caller)
3682 {
3683 return __do_kmalloc_node(size, flags, node, caller);
3684 }
3685 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3686 #endif /* CONFIG_NUMA */
3687
3688 /**
3689 * __do_kmalloc - allocate memory
3690 * @size: how many bytes of memory are required.
3691 * @flags: the type of memory to allocate (see kmalloc).
3692 * @caller: function caller for debug tracking of the caller
3693 */
3694 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3695 unsigned long caller)
3696 {
3697 struct kmem_cache *cachep;
3698 void *ret;
3699
3700 cachep = kmalloc_slab(size, flags);
3701 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3702 return cachep;
3703 ret = slab_alloc(cachep, flags, caller);
3704
3705 kasan_kmalloc(cachep, ret, size, flags);
3706 trace_kmalloc(caller, ret,
3707 size, cachep->size, flags);
3708
3709 return ret;
3710 }
3711
3712 void *__kmalloc(size_t size, gfp_t flags)
3713 {
3714 return __do_kmalloc(size, flags, _RET_IP_);
3715 }
3716 EXPORT_SYMBOL(__kmalloc);
3717
3718 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3719 {
3720 return __do_kmalloc(size, flags, caller);
3721 }
3722 EXPORT_SYMBOL(__kmalloc_track_caller);
3723
3724 /**
3725 * kmem_cache_free - Deallocate an object
3726 * @cachep: The cache the allocation was from.
3727 * @objp: The previously allocated object.
3728 *
3729 * Free an object which was previously allocated from this
3730 * cache.
3731 */
3732 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3733 {
3734 unsigned long flags;
3735 cachep = cache_from_obj(cachep, objp);
3736 if (!cachep)
3737 return;
3738
3739 local_irq_save(flags);
3740 debug_check_no_locks_freed(objp, cachep->object_size);
3741 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3742 debug_check_no_obj_freed(objp, cachep->object_size);
3743 __cache_free(cachep, objp, _RET_IP_);
3744 local_irq_restore(flags);
3745
3746 trace_kmem_cache_free(_RET_IP_, objp);
3747 }
3748 EXPORT_SYMBOL(kmem_cache_free);
3749
3750 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3751 {
3752 struct kmem_cache *s;
3753 size_t i;
3754
3755 local_irq_disable();
3756 for (i = 0; i < size; i++) {
3757 void *objp = p[i];
3758
3759 if (!orig_s) /* called via kfree_bulk */
3760 s = virt_to_cache(objp);
3761 else
3762 s = cache_from_obj(orig_s, objp);
3763
3764 debug_check_no_locks_freed(objp, s->object_size);
3765 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3766 debug_check_no_obj_freed(objp, s->object_size);
3767
3768 __cache_free(s, objp, _RET_IP_);
3769 }
3770 local_irq_enable();
3771
3772 /* FIXME: add tracing */
3773 }
3774 EXPORT_SYMBOL(kmem_cache_free_bulk);
3775
3776 /**
3777 * kfree - free previously allocated memory
3778 * @objp: pointer returned by kmalloc.
3779 *
3780 * If @objp is NULL, no operation is performed.
3781 *
3782 * Don't free memory not originally allocated by kmalloc()
3783 * or you will run into trouble.
3784 */
3785 void kfree(const void *objp)
3786 {
3787 struct kmem_cache *c;
3788 unsigned long flags;
3789
3790 trace_kfree(_RET_IP_, objp);
3791
3792 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3793 return;
3794 local_irq_save(flags);
3795 kfree_debugcheck(objp);
3796 c = virt_to_cache(objp);
3797 debug_check_no_locks_freed(objp, c->object_size);
3798
3799 debug_check_no_obj_freed(objp, c->object_size);
3800 __cache_free(c, (void *)objp, _RET_IP_);
3801 local_irq_restore(flags);
3802 }
3803 EXPORT_SYMBOL(kfree);
3804
3805 /*
3806 * This initializes kmem_cache_node or resizes various caches for all nodes.
3807 */
3808 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3809 {
3810 int ret;
3811 int node;
3812 struct kmem_cache_node *n;
3813
3814 for_each_online_node(node) {
3815 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3816 if (ret)
3817 goto fail;
3818
3819 }
3820
3821 return 0;
3822
3823 fail:
3824 if (!cachep->list.next) {
3825 /* Cache is not active yet. Roll back what we did */
3826 node--;
3827 while (node >= 0) {
3828 n = get_node(cachep, node);
3829 if (n) {
3830 kfree(n->shared);
3831 free_alien_cache(n->alien);
3832 kfree(n);
3833 cachep->node[node] = NULL;
3834 }
3835 node--;
3836 }
3837 }
3838 return -ENOMEM;
3839 }
3840
3841 /* Always called with the slab_mutex held */
3842 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3843 int batchcount, int shared, gfp_t gfp)
3844 {
3845 struct array_cache __percpu *cpu_cache, *prev;
3846 int cpu;
3847
3848 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3849 if (!cpu_cache)
3850 return -ENOMEM;
3851
3852 prev = cachep->cpu_cache;
3853 cachep->cpu_cache = cpu_cache;
3854 /*
3855 * Without a previous cpu_cache there's no need to synchronize remote
3856 * cpus, so skip the IPIs.
3857 */
3858 if (prev)
3859 kick_all_cpus_sync();
3860
3861 check_irq_on();
3862 cachep->batchcount = batchcount;
3863 cachep->limit = limit;
3864 cachep->shared = shared;
3865
3866 if (!prev)
3867 goto setup_node;
3868
3869 for_each_online_cpu(cpu) {
3870 LIST_HEAD(list);
3871 int node;
3872 struct kmem_cache_node *n;
3873 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3874
3875 node = cpu_to_mem(cpu);
3876 n = get_node(cachep, node);
3877 spin_lock_irq(&n->list_lock);
3878 free_block(cachep, ac->entry, ac->avail, node, &list);
3879 spin_unlock_irq(&n->list_lock);
3880 slabs_destroy(cachep, &list);
3881 }
3882 free_percpu(prev);
3883
3884 setup_node:
3885 return setup_kmem_cache_nodes(cachep, gfp);
3886 }
3887
3888 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3889 int batchcount, int shared, gfp_t gfp)
3890 {
3891 int ret;
3892 struct kmem_cache *c;
3893
3894 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3895
3896 if (slab_state < FULL)
3897 return ret;
3898
3899 if ((ret < 0) || !is_root_cache(cachep))
3900 return ret;
3901
3902 lockdep_assert_held(&slab_mutex);
3903 for_each_memcg_cache(c, cachep) {
3904 /* return value determined by the root cache only */
3905 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3906 }
3907
3908 return ret;
3909 }
3910
3911 /* Called with slab_mutex held always */
3912 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3913 {
3914 int err;
3915 int limit = 0;
3916 int shared = 0;
3917 int batchcount = 0;
3918
3919 err = cache_random_seq_create(cachep, cachep->num, gfp);
3920 if (err)
3921 goto end;
3922
3923 if (!is_root_cache(cachep)) {
3924 struct kmem_cache *root = memcg_root_cache(cachep);
3925 limit = root->limit;
3926 shared = root->shared;
3927 batchcount = root->batchcount;
3928 }
3929
3930 if (limit && shared && batchcount)
3931 goto skip_setup;
3932 /*
3933 * The head array serves three purposes:
3934 * - create a LIFO ordering, i.e. return objects that are cache-warm
3935 * - reduce the number of spinlock operations.
3936 * - reduce the number of linked list operations on the slab and
3937 * bufctl chains: array operations are cheaper.
3938 * The numbers are guessed, we should auto-tune as described by
3939 * Bonwick.
3940 */
3941 if (cachep->size > 131072)
3942 limit = 1;
3943 else if (cachep->size > PAGE_SIZE)
3944 limit = 8;
3945 else if (cachep->size > 1024)
3946 limit = 24;
3947 else if (cachep->size > 256)
3948 limit = 54;
3949 else
3950 limit = 120;
3951
3952 /*
3953 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3954 * allocation behaviour: Most allocs on one cpu, most free operations
3955 * on another cpu. For these cases, an efficient object passing between
3956 * cpus is necessary. This is provided by a shared array. The array
3957 * replaces Bonwick's magazine layer.
3958 * On uniprocessor, it's functionally equivalent (but less efficient)
3959 * to a larger limit. Thus disabled by default.
3960 */
3961 shared = 0;
3962 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3963 shared = 8;
3964
3965 #if DEBUG
3966 /*
3967 * With debugging enabled, large batchcount lead to excessively long
3968 * periods with disabled local interrupts. Limit the batchcount
3969 */
3970 if (limit > 32)
3971 limit = 32;
3972 #endif
3973 batchcount = (limit + 1) / 2;
3974 skip_setup:
3975 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3976 end:
3977 if (err)
3978 pr_err("enable_cpucache failed for %s, error %d\n",
3979 cachep->name, -err);
3980 return err;
3981 }
3982
3983 /*
3984 * Drain an array if it contains any elements taking the node lock only if
3985 * necessary. Note that the node listlock also protects the array_cache
3986 * if drain_array() is used on the shared array.
3987 */
3988 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3989 struct array_cache *ac, int node)
3990 {
3991 LIST_HEAD(list);
3992
3993 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3994 check_mutex_acquired();
3995
3996 if (!ac || !ac->avail)
3997 return;
3998
3999 if (ac->touched) {
4000 ac->touched = 0;
4001 return;
4002 }
4003
4004 spin_lock_irq(&n->list_lock);
4005 drain_array_locked(cachep, ac, node, false, &list);
4006 spin_unlock_irq(&n->list_lock);
4007
4008 slabs_destroy(cachep, &list);
4009 }
4010
4011 /**
4012 * cache_reap - Reclaim memory from caches.
4013 * @w: work descriptor
4014 *
4015 * Called from workqueue/eventd every few seconds.
4016 * Purpose:
4017 * - clear the per-cpu caches for this CPU.
4018 * - return freeable pages to the main free memory pool.
4019 *
4020 * If we cannot acquire the cache chain mutex then just give up - we'll try
4021 * again on the next iteration.
4022 */
4023 static void cache_reap(struct work_struct *w)
4024 {
4025 struct kmem_cache *searchp;
4026 struct kmem_cache_node *n;
4027 int node = numa_mem_id();
4028 struct delayed_work *work = to_delayed_work(w);
4029
4030 if (!mutex_trylock(&slab_mutex))
4031 /* Give up. Setup the next iteration. */
4032 goto out;
4033
4034 list_for_each_entry(searchp, &slab_caches, list) {
4035 check_irq_on();
4036
4037 /*
4038 * We only take the node lock if absolutely necessary and we
4039 * have established with reasonable certainty that
4040 * we can do some work if the lock was obtained.
4041 */
4042 n = get_node(searchp, node);
4043
4044 reap_alien(searchp, n);
4045
4046 drain_array(searchp, n, cpu_cache_get(searchp), node);
4047
4048 /*
4049 * These are racy checks but it does not matter
4050 * if we skip one check or scan twice.
4051 */
4052 if (time_after(n->next_reap, jiffies))
4053 goto next;
4054
4055 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4056
4057 drain_array(searchp, n, n->shared, node);
4058
4059 if (n->free_touched)
4060 n->free_touched = 0;
4061 else {
4062 int freed;
4063
4064 freed = drain_freelist(searchp, n, (n->free_limit +
4065 5 * searchp->num - 1) / (5 * searchp->num));
4066 STATS_ADD_REAPED(searchp, freed);
4067 }
4068 next:
4069 cond_resched();
4070 }
4071 check_irq_on();
4072 mutex_unlock(&slab_mutex);
4073 next_reap_node();
4074 out:
4075 /* Set up the next iteration */
4076 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4077 }
4078
4079 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4080 {
4081 unsigned long active_objs, num_objs, active_slabs;
4082 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4083 unsigned long free_slabs = 0;
4084 int node;
4085 struct kmem_cache_node *n;
4086
4087 for_each_kmem_cache_node(cachep, node, n) {
4088 check_irq_on();
4089 spin_lock_irq(&n->list_lock);
4090
4091 total_slabs += n->total_slabs;
4092 free_slabs += n->free_slabs;
4093 free_objs += n->free_objects;
4094
4095 if (n->shared)
4096 shared_avail += n->shared->avail;
4097
4098 spin_unlock_irq(&n->list_lock);
4099 }
4100 num_objs = total_slabs * cachep->num;
4101 active_slabs = total_slabs - free_slabs;
4102 active_objs = num_objs - free_objs;
4103
4104 sinfo->active_objs = active_objs;
4105 sinfo->num_objs = num_objs;
4106 sinfo->active_slabs = active_slabs;
4107 sinfo->num_slabs = total_slabs;
4108 sinfo->shared_avail = shared_avail;
4109 sinfo->limit = cachep->limit;
4110 sinfo->batchcount = cachep->batchcount;
4111 sinfo->shared = cachep->shared;
4112 sinfo->objects_per_slab = cachep->num;
4113 sinfo->cache_order = cachep->gfporder;
4114 }
4115
4116 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4117 {
4118 #if STATS
4119 { /* node stats */
4120 unsigned long high = cachep->high_mark;
4121 unsigned long allocs = cachep->num_allocations;
4122 unsigned long grown = cachep->grown;
4123 unsigned long reaped = cachep->reaped;
4124 unsigned long errors = cachep->errors;
4125 unsigned long max_freeable = cachep->max_freeable;
4126 unsigned long node_allocs = cachep->node_allocs;
4127 unsigned long node_frees = cachep->node_frees;
4128 unsigned long overflows = cachep->node_overflow;
4129
4130 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4131 allocs, high, grown,
4132 reaped, errors, max_freeable, node_allocs,
4133 node_frees, overflows);
4134 }
4135 /* cpu stats */
4136 {
4137 unsigned long allochit = atomic_read(&cachep->allochit);
4138 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4139 unsigned long freehit = atomic_read(&cachep->freehit);
4140 unsigned long freemiss = atomic_read(&cachep->freemiss);
4141
4142 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4143 allochit, allocmiss, freehit, freemiss);
4144 }
4145 #endif
4146 }
4147
4148 #define MAX_SLABINFO_WRITE 128
4149 /**
4150 * slabinfo_write - Tuning for the slab allocator
4151 * @file: unused
4152 * @buffer: user buffer
4153 * @count: data length
4154 * @ppos: unused
4155 */
4156 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4157 size_t count, loff_t *ppos)
4158 {
4159 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4160 int limit, batchcount, shared, res;
4161 struct kmem_cache *cachep;
4162
4163 if (count > MAX_SLABINFO_WRITE)
4164 return -EINVAL;
4165 if (copy_from_user(&kbuf, buffer, count))
4166 return -EFAULT;
4167 kbuf[MAX_SLABINFO_WRITE] = '\0';
4168
4169 tmp = strchr(kbuf, ' ');
4170 if (!tmp)
4171 return -EINVAL;
4172 *tmp = '\0';
4173 tmp++;
4174 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4175 return -EINVAL;
4176
4177 /* Find the cache in the chain of caches. */
4178 mutex_lock(&slab_mutex);
4179 res = -EINVAL;
4180 list_for_each_entry(cachep, &slab_caches, list) {
4181 if (!strcmp(cachep->name, kbuf)) {
4182 if (limit < 1 || batchcount < 1 ||
4183 batchcount > limit || shared < 0) {
4184 res = 0;
4185 } else {
4186 res = do_tune_cpucache(cachep, limit,
4187 batchcount, shared,
4188 GFP_KERNEL);
4189 }
4190 break;
4191 }
4192 }
4193 mutex_unlock(&slab_mutex);
4194 if (res >= 0)
4195 res = count;
4196 return res;
4197 }
4198
4199 #ifdef CONFIG_DEBUG_SLAB_LEAK
4200
4201 static inline int add_caller(unsigned long *n, unsigned long v)
4202 {
4203 unsigned long *p;
4204 int l;
4205 if (!v)
4206 return 1;
4207 l = n[1];
4208 p = n + 2;
4209 while (l) {
4210 int i = l/2;
4211 unsigned long *q = p + 2 * i;
4212 if (*q == v) {
4213 q[1]++;
4214 return 1;
4215 }
4216 if (*q > v) {
4217 l = i;
4218 } else {
4219 p = q + 2;
4220 l -= i + 1;
4221 }
4222 }
4223 if (++n[1] == n[0])
4224 return 0;
4225 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4226 p[0] = v;
4227 p[1] = 1;
4228 return 1;
4229 }
4230
4231 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4232 struct page *page)
4233 {
4234 void *p;
4235 int i, j;
4236 unsigned long v;
4237
4238 if (n[0] == n[1])
4239 return;
4240 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4241 bool active = true;
4242
4243 for (j = page->active; j < c->num; j++) {
4244 if (get_free_obj(page, j) == i) {
4245 active = false;
4246 break;
4247 }
4248 }
4249
4250 if (!active)
4251 continue;
4252
4253 /*
4254 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4255 * mapping is established when actual object allocation and
4256 * we could mistakenly access the unmapped object in the cpu
4257 * cache.
4258 */
4259 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4260 continue;
4261
4262 if (!add_caller(n, v))
4263 return;
4264 }
4265 }
4266
4267 static void show_symbol(struct seq_file *m, unsigned long address)
4268 {
4269 #ifdef CONFIG_KALLSYMS
4270 unsigned long offset, size;
4271 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4272
4273 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4274 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4275 if (modname[0])
4276 seq_printf(m, " [%s]", modname);
4277 return;
4278 }
4279 #endif
4280 seq_printf(m, "%px", (void *)address);
4281 }
4282
4283 static int leaks_show(struct seq_file *m, void *p)
4284 {
4285 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4286 struct page *page;
4287 struct kmem_cache_node *n;
4288 const char *name;
4289 unsigned long *x = m->private;
4290 int node;
4291 int i;
4292
4293 if (!(cachep->flags & SLAB_STORE_USER))
4294 return 0;
4295 if (!(cachep->flags & SLAB_RED_ZONE))
4296 return 0;
4297
4298 /*
4299 * Set store_user_clean and start to grab stored user information
4300 * for all objects on this cache. If some alloc/free requests comes
4301 * during the processing, information would be wrong so restart
4302 * whole processing.
4303 */
4304 do {
4305 set_store_user_clean(cachep);
4306 drain_cpu_caches(cachep);
4307
4308 x[1] = 0;
4309
4310 for_each_kmem_cache_node(cachep, node, n) {
4311
4312 check_irq_on();
4313 spin_lock_irq(&n->list_lock);
4314
4315 list_for_each_entry(page, &n->slabs_full, lru)
4316 handle_slab(x, cachep, page);
4317 list_for_each_entry(page, &n->slabs_partial, lru)
4318 handle_slab(x, cachep, page);
4319 spin_unlock_irq(&n->list_lock);
4320 }
4321 } while (!is_store_user_clean(cachep));
4322
4323 name = cachep->name;
4324 if (x[0] == x[1]) {
4325 /* Increase the buffer size */
4326 mutex_unlock(&slab_mutex);
4327 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4328 if (!m->private) {
4329 /* Too bad, we are really out */
4330 m->private = x;
4331 mutex_lock(&slab_mutex);
4332 return -ENOMEM;
4333 }
4334 *(unsigned long *)m->private = x[0] * 2;
4335 kfree(x);
4336 mutex_lock(&slab_mutex);
4337 /* Now make sure this entry will be retried */
4338 m->count = m->size;
4339 return 0;
4340 }
4341 for (i = 0; i < x[1]; i++) {
4342 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4343 show_symbol(m, x[2*i+2]);
4344 seq_putc(m, '\n');
4345 }
4346
4347 return 0;
4348 }
4349
4350 static const struct seq_operations slabstats_op = {
4351 .start = slab_start,
4352 .next = slab_next,
4353 .stop = slab_stop,
4354 .show = leaks_show,
4355 };
4356
4357 static int slabstats_open(struct inode *inode, struct file *file)
4358 {
4359 unsigned long *n;
4360
4361 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4362 if (!n)
4363 return -ENOMEM;
4364
4365 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4366
4367 return 0;
4368 }
4369
4370 static const struct file_operations proc_slabstats_operations = {
4371 .open = slabstats_open,
4372 .read = seq_read,
4373 .llseek = seq_lseek,
4374 .release = seq_release_private,
4375 };
4376 #endif
4377
4378 static int __init slab_proc_init(void)
4379 {
4380 #ifdef CONFIG_DEBUG_SLAB_LEAK
4381 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4382 #endif
4383 return 0;
4384 }
4385 module_init(slab_proc_init);
4386
4387 #ifdef CONFIG_HARDENED_USERCOPY
4388 /*
4389 * Rejects incorrectly sized objects and objects that are to be copied
4390 * to/from userspace but do not fall entirely within the containing slab
4391 * cache's usercopy region.
4392 *
4393 * Returns NULL if check passes, otherwise const char * to name of cache
4394 * to indicate an error.
4395 */
4396 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4397 bool to_user)
4398 {
4399 struct kmem_cache *cachep;
4400 unsigned int objnr;
4401 unsigned long offset;
4402
4403 /* Find and validate object. */
4404 cachep = page->slab_cache;
4405 objnr = obj_to_index(cachep, page, (void *)ptr);
4406 BUG_ON(objnr >= cachep->num);
4407
4408 /* Find offset within object. */
4409 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4410
4411 /* Allow address range falling entirely within usercopy region. */
4412 if (offset >= cachep->useroffset &&
4413 offset - cachep->useroffset <= cachep->usersize &&
4414 n <= cachep->useroffset - offset + cachep->usersize)
4415 return;
4416
4417 /*
4418 * If the copy is still within the allocated object, produce
4419 * a warning instead of rejecting the copy. This is intended
4420 * to be a temporary method to find any missing usercopy
4421 * whitelists.
4422 */
4423 if (usercopy_fallback &&
4424 offset <= cachep->object_size &&
4425 n <= cachep->object_size - offset) {
4426 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4427 return;
4428 }
4429
4430 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4431 }
4432 #endif /* CONFIG_HARDENED_USERCOPY */
4433
4434 /**
4435 * ksize - get the actual amount of memory allocated for a given object
4436 * @objp: Pointer to the object
4437 *
4438 * kmalloc may internally round up allocations and return more memory
4439 * than requested. ksize() can be used to determine the actual amount of
4440 * memory allocated. The caller may use this additional memory, even though
4441 * a smaller amount of memory was initially specified with the kmalloc call.
4442 * The caller must guarantee that objp points to a valid object previously
4443 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4444 * must not be freed during the duration of the call.
4445 */
4446 size_t ksize(const void *objp)
4447 {
4448 size_t size;
4449
4450 BUG_ON(!objp);
4451 if (unlikely(objp == ZERO_SIZE_PTR))
4452 return 0;
4453
4454 size = virt_to_cache(objp)->object_size;
4455 /* We assume that ksize callers could use the whole allocated area,
4456 * so we need to unpoison this area.
4457 */
4458 kasan_unpoison_shadow(objp, size);
4459
4460 return size;
4461 }
4462 EXPORT_SYMBOL(ksize);