]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/slab.c
d3f68543f9f4e3fcb403192357d8d18056b75b03
[mirror_ubuntu-zesty-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/seq_file.h>
98 #include <linux/notifier.h>
99 #include <linux/kallsyms.h>
100 #include <linux/cpu.h>
101 #include <linux/sysctl.h>
102 #include <linux/module.h>
103 #include <linux/rcupdate.h>
104 #include <linux/string.h>
105 #include <linux/nodemask.h>
106 #include <linux/mempolicy.h>
107 #include <linux/mutex.h>
108
109 #include <asm/uaccess.h>
110 #include <asm/cacheflush.h>
111 #include <asm/tlbflush.h>
112 #include <asm/page.h>
113
114 /*
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
118 *
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 */
124
125 #ifdef CONFIG_DEBUG_SLAB
126 #define DEBUG 1
127 #define STATS 1
128 #define FORCED_DEBUG 1
129 #else
130 #define DEBUG 0
131 #define STATS 0
132 #define FORCED_DEBUG 0
133 #endif
134
135 /* Shouldn't this be in a header file somewhere? */
136 #define BYTES_PER_WORD sizeof(void *)
137
138 #ifndef cache_line_size
139 #define cache_line_size() L1_CACHE_BYTES
140 #endif
141
142 #ifndef ARCH_KMALLOC_MINALIGN
143 /*
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
150 */
151 #define ARCH_KMALLOC_MINALIGN 0
152 #endif
153
154 #ifndef ARCH_SLAB_MINALIGN
155 /*
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
161 */
162 #define ARCH_SLAB_MINALIGN 0
163 #endif
164
165 #ifndef ARCH_KMALLOC_FLAGS
166 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167 #endif
168
169 /* Legal flag mask for kmem_cache_create(). */
170 #if DEBUG
171 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177 #else
178 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182 #endif
183
184 /*
185 * kmem_bufctl_t:
186 *
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
189 *
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
201 */
202
203 typedef unsigned int kmem_bufctl_t;
204 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
207
208 /* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
210 */
211 static unsigned long offslab_limit;
212
213 /*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228
229 /*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245 struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
249 };
250
251 /*
252 * struct array_cache
253 *
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
275 };
276
277 /* bootstrap: The caches do not work without cpuarrays anymore,
278 * but the cpuarrays are allocated from the generic caches...
279 */
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init {
282 struct array_cache cache;
283 void *entries[BOOT_CPUCACHE_ENTRIES];
284 };
285
286 /*
287 * The slab lists for all objects.
288 */
289 struct kmem_list3 {
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned long next_reap;
295 int free_touched;
296 unsigned int free_limit;
297 unsigned int colour_next; /* Per-node cache coloring */
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
301 };
302
303 /*
304 * Need this for bootstrapping a per node allocator.
305 */
306 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308 #define CACHE_CACHE 0
309 #define SIZE_AC 1
310 #define SIZE_L3 (1 + MAX_NUMNODES)
311
312 /*
313 * This function must be completely optimized away if
314 * a constant is passed to it. Mostly the same as
315 * what is in linux/slab.h except it returns an
316 * index.
317 */
318 static __always_inline int index_of(const size_t size)
319 {
320 extern void __bad_size(void);
321
322 if (__builtin_constant_p(size)) {
323 int i = 0;
324
325 #define CACHE(x) \
326 if (size <=x) \
327 return i; \
328 else \
329 i++;
330 #include "linux/kmalloc_sizes.h"
331 #undef CACHE
332 __bad_size();
333 } else
334 __bad_size();
335 return 0;
336 }
337
338 #define INDEX_AC index_of(sizeof(struct arraycache_init))
339 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
340
341 static void kmem_list3_init(struct kmem_list3 *parent)
342 {
343 INIT_LIST_HEAD(&parent->slabs_full);
344 INIT_LIST_HEAD(&parent->slabs_partial);
345 INIT_LIST_HEAD(&parent->slabs_free);
346 parent->shared = NULL;
347 parent->alien = NULL;
348 parent->colour_next = 0;
349 spin_lock_init(&parent->list_lock);
350 parent->free_objects = 0;
351 parent->free_touched = 0;
352 }
353
354 #define MAKE_LIST(cachep, listp, slab, nodeid) \
355 do { \
356 INIT_LIST_HEAD(listp); \
357 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
358 } while (0)
359
360 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
361 do { \
362 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
365 } while (0)
366
367 /*
368 * struct kmem_cache
369 *
370 * manages a cache.
371 */
372
373 struct kmem_cache {
374 /* 1) per-cpu data, touched during every alloc/free */
375 struct array_cache *array[NR_CPUS];
376 unsigned int batchcount;
377 unsigned int limit;
378 unsigned int shared;
379 unsigned int buffer_size;
380 /* 2) touched by every alloc & free from the backend */
381 struct kmem_list3 *nodelists[MAX_NUMNODES];
382 unsigned int flags; /* constant flags */
383 unsigned int num; /* # of objs per slab */
384 spinlock_t spinlock;
385
386 /* 3) cache_grow/shrink */
387 /* order of pgs per slab (2^n) */
388 unsigned int gfporder;
389
390 /* force GFP flags, e.g. GFP_DMA */
391 gfp_t gfpflags;
392
393 size_t colour; /* cache colouring range */
394 unsigned int colour_off; /* colour offset */
395 struct kmem_cache *slabp_cache;
396 unsigned int slab_size;
397 unsigned int dflags; /* dynamic flags */
398
399 /* constructor func */
400 void (*ctor) (void *, struct kmem_cache *, unsigned long);
401
402 /* de-constructor func */
403 void (*dtor) (void *, struct kmem_cache *, unsigned long);
404
405 /* 4) cache creation/removal */
406 const char *name;
407 struct list_head next;
408
409 /* 5) statistics */
410 #if STATS
411 unsigned long num_active;
412 unsigned long num_allocations;
413 unsigned long high_mark;
414 unsigned long grown;
415 unsigned long reaped;
416 unsigned long errors;
417 unsigned long max_freeable;
418 unsigned long node_allocs;
419 unsigned long node_frees;
420 atomic_t allochit;
421 atomic_t allocmiss;
422 atomic_t freehit;
423 atomic_t freemiss;
424 #endif
425 #if DEBUG
426 /*
427 * If debugging is enabled, then the allocator can add additional
428 * fields and/or padding to every object. buffer_size contains the total
429 * object size including these internal fields, the following two
430 * variables contain the offset to the user object and its size.
431 */
432 int obj_offset;
433 int obj_size;
434 #endif
435 };
436
437 #define CFLGS_OFF_SLAB (0x80000000UL)
438 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
439
440 #define BATCHREFILL_LIMIT 16
441 /* Optimization question: fewer reaps means less
442 * probability for unnessary cpucache drain/refill cycles.
443 *
444 * OTOH the cpuarrays can contain lots of objects,
445 * which could lock up otherwise freeable slabs.
446 */
447 #define REAPTIMEOUT_CPUC (2*HZ)
448 #define REAPTIMEOUT_LIST3 (4*HZ)
449
450 #if STATS
451 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
452 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
453 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
454 #define STATS_INC_GROWN(x) ((x)->grown++)
455 #define STATS_INC_REAPED(x) ((x)->reaped++)
456 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
457 (x)->high_mark = (x)->num_active; \
458 } while (0)
459 #define STATS_INC_ERR(x) ((x)->errors++)
460 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
461 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
462 #define STATS_SET_FREEABLE(x, i) \
463 do { if ((x)->max_freeable < i) \
464 (x)->max_freeable = i; \
465 } while (0)
466
467 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
468 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
469 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
470 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
471 #else
472 #define STATS_INC_ACTIVE(x) do { } while (0)
473 #define STATS_DEC_ACTIVE(x) do { } while (0)
474 #define STATS_INC_ALLOCED(x) do { } while (0)
475 #define STATS_INC_GROWN(x) do { } while (0)
476 #define STATS_INC_REAPED(x) do { } while (0)
477 #define STATS_SET_HIGH(x) do { } while (0)
478 #define STATS_INC_ERR(x) do { } while (0)
479 #define STATS_INC_NODEALLOCS(x) do { } while (0)
480 #define STATS_INC_NODEFREES(x) do { } while (0)
481 #define STATS_SET_FREEABLE(x, i) \
482 do { } while (0)
483
484 #define STATS_INC_ALLOCHIT(x) do { } while (0)
485 #define STATS_INC_ALLOCMISS(x) do { } while (0)
486 #define STATS_INC_FREEHIT(x) do { } while (0)
487 #define STATS_INC_FREEMISS(x) do { } while (0)
488 #endif
489
490 #if DEBUG
491 /* Magic nums for obj red zoning.
492 * Placed in the first word before and the first word after an obj.
493 */
494 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
495 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
496
497 /* ...and for poisoning */
498 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
499 #define POISON_FREE 0x6b /* for use-after-free poisoning */
500 #define POISON_END 0xa5 /* end-byte of poisoning */
501
502 /* memory layout of objects:
503 * 0 : objp
504 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
505 * the end of an object is aligned with the end of the real
506 * allocation. Catches writes behind the end of the allocation.
507 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
508 * redzone word.
509 * cachep->obj_offset: The real object.
510 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
511 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
512 */
513 static int obj_offset(struct kmem_cache *cachep)
514 {
515 return cachep->obj_offset;
516 }
517
518 static int obj_size(struct kmem_cache *cachep)
519 {
520 return cachep->obj_size;
521 }
522
523 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
524 {
525 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
526 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
527 }
528
529 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
530 {
531 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
532 if (cachep->flags & SLAB_STORE_USER)
533 return (unsigned long *)(objp + cachep->buffer_size -
534 2 * BYTES_PER_WORD);
535 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
536 }
537
538 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
539 {
540 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
541 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
542 }
543
544 #else
545
546 #define obj_offset(x) 0
547 #define obj_size(cachep) (cachep->buffer_size)
548 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
549 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
550 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
551
552 #endif
553
554 /*
555 * Maximum size of an obj (in 2^order pages)
556 * and absolute limit for the gfp order.
557 */
558 #if defined(CONFIG_LARGE_ALLOCS)
559 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
560 #define MAX_GFP_ORDER 13 /* up to 32Mb */
561 #elif defined(CONFIG_MMU)
562 #define MAX_OBJ_ORDER 5 /* 32 pages */
563 #define MAX_GFP_ORDER 5 /* 32 pages */
564 #else
565 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
566 #define MAX_GFP_ORDER 8 /* up to 1Mb */
567 #endif
568
569 /*
570 * Do not go above this order unless 0 objects fit into the slab.
571 */
572 #define BREAK_GFP_ORDER_HI 1
573 #define BREAK_GFP_ORDER_LO 0
574 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
575
576 /* Functions for storing/retrieving the cachep and or slab from the
577 * global 'mem_map'. These are used to find the slab an obj belongs to.
578 * With kfree(), these are used to find the cache which an obj belongs to.
579 */
580 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
581 {
582 page->lru.next = (struct list_head *)cache;
583 }
584
585 static inline struct kmem_cache *page_get_cache(struct page *page)
586 {
587 return (struct kmem_cache *)page->lru.next;
588 }
589
590 static inline void page_set_slab(struct page *page, struct slab *slab)
591 {
592 page->lru.prev = (struct list_head *)slab;
593 }
594
595 static inline struct slab *page_get_slab(struct page *page)
596 {
597 return (struct slab *)page->lru.prev;
598 }
599
600 static inline struct kmem_cache *virt_to_cache(const void *obj)
601 {
602 struct page *page = virt_to_page(obj);
603 return page_get_cache(page);
604 }
605
606 static inline struct slab *virt_to_slab(const void *obj)
607 {
608 struct page *page = virt_to_page(obj);
609 return page_get_slab(page);
610 }
611
612 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
613 struct cache_sizes malloc_sizes[] = {
614 #define CACHE(x) { .cs_size = (x) },
615 #include <linux/kmalloc_sizes.h>
616 CACHE(ULONG_MAX)
617 #undef CACHE
618 };
619 EXPORT_SYMBOL(malloc_sizes);
620
621 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
622 struct cache_names {
623 char *name;
624 char *name_dma;
625 };
626
627 static struct cache_names __initdata cache_names[] = {
628 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
629 #include <linux/kmalloc_sizes.h>
630 {NULL,}
631 #undef CACHE
632 };
633
634 static struct arraycache_init initarray_cache __initdata =
635 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
636 static struct arraycache_init initarray_generic =
637 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
638
639 /* internal cache of cache description objs */
640 static struct kmem_cache cache_cache = {
641 .batchcount = 1,
642 .limit = BOOT_CPUCACHE_ENTRIES,
643 .shared = 1,
644 .buffer_size = sizeof(struct kmem_cache),
645 .flags = SLAB_NO_REAP,
646 .spinlock = SPIN_LOCK_UNLOCKED,
647 .name = "kmem_cache",
648 #if DEBUG
649 .obj_size = sizeof(struct kmem_cache),
650 #endif
651 };
652
653 /* Guard access to the cache-chain. */
654 static DEFINE_MUTEX(cache_chain_mutex);
655 static struct list_head cache_chain;
656
657 /*
658 * vm_enough_memory() looks at this to determine how many
659 * slab-allocated pages are possibly freeable under pressure
660 *
661 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
662 */
663 atomic_t slab_reclaim_pages;
664
665 /*
666 * chicken and egg problem: delay the per-cpu array allocation
667 * until the general caches are up.
668 */
669 static enum {
670 NONE,
671 PARTIAL_AC,
672 PARTIAL_L3,
673 FULL
674 } g_cpucache_up;
675
676 static DEFINE_PER_CPU(struct work_struct, reap_work);
677
678 static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
679 static void enable_cpucache(struct kmem_cache *cachep);
680 static void cache_reap(void *unused);
681 static int __node_shrink(struct kmem_cache *cachep, int node);
682
683 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
684 {
685 return cachep->array[smp_processor_id()];
686 }
687
688 static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
689 {
690 struct cache_sizes *csizep = malloc_sizes;
691
692 #if DEBUG
693 /* This happens if someone tries to call
694 * kmem_cache_create(), or __kmalloc(), before
695 * the generic caches are initialized.
696 */
697 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
698 #endif
699 while (size > csizep->cs_size)
700 csizep++;
701
702 /*
703 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
704 * has cs_{dma,}cachep==NULL. Thus no special case
705 * for large kmalloc calls required.
706 */
707 if (unlikely(gfpflags & GFP_DMA))
708 return csizep->cs_dmacachep;
709 return csizep->cs_cachep;
710 }
711
712 struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
713 {
714 return __find_general_cachep(size, gfpflags);
715 }
716 EXPORT_SYMBOL(kmem_find_general_cachep);
717
718 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
719 {
720 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
721 }
722
723 /* Calculate the number of objects and left-over bytes for a given
724 buffer size. */
725 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
726 size_t align, int flags, size_t *left_over,
727 unsigned int *num)
728 {
729 int nr_objs;
730 size_t mgmt_size;
731 size_t slab_size = PAGE_SIZE << gfporder;
732
733 /*
734 * The slab management structure can be either off the slab or
735 * on it. For the latter case, the memory allocated for a
736 * slab is used for:
737 *
738 * - The struct slab
739 * - One kmem_bufctl_t for each object
740 * - Padding to respect alignment of @align
741 * - @buffer_size bytes for each object
742 *
743 * If the slab management structure is off the slab, then the
744 * alignment will already be calculated into the size. Because
745 * the slabs are all pages aligned, the objects will be at the
746 * correct alignment when allocated.
747 */
748 if (flags & CFLGS_OFF_SLAB) {
749 mgmt_size = 0;
750 nr_objs = slab_size / buffer_size;
751
752 if (nr_objs > SLAB_LIMIT)
753 nr_objs = SLAB_LIMIT;
754 } else {
755 /*
756 * Ignore padding for the initial guess. The padding
757 * is at most @align-1 bytes, and @buffer_size is at
758 * least @align. In the worst case, this result will
759 * be one greater than the number of objects that fit
760 * into the memory allocation when taking the padding
761 * into account.
762 */
763 nr_objs = (slab_size - sizeof(struct slab)) /
764 (buffer_size + sizeof(kmem_bufctl_t));
765
766 /*
767 * This calculated number will be either the right
768 * amount, or one greater than what we want.
769 */
770 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
771 > slab_size)
772 nr_objs--;
773
774 if (nr_objs > SLAB_LIMIT)
775 nr_objs = SLAB_LIMIT;
776
777 mgmt_size = slab_mgmt_size(nr_objs, align);
778 }
779 *num = nr_objs;
780 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
781 }
782
783 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
784
785 static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
786 {
787 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
788 function, cachep->name, msg);
789 dump_stack();
790 }
791
792 /*
793 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
794 * via the workqueue/eventd.
795 * Add the CPU number into the expiration time to minimize the possibility of
796 * the CPUs getting into lockstep and contending for the global cache chain
797 * lock.
798 */
799 static void __devinit start_cpu_timer(int cpu)
800 {
801 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
802
803 /*
804 * When this gets called from do_initcalls via cpucache_init(),
805 * init_workqueues() has already run, so keventd will be setup
806 * at that time.
807 */
808 if (keventd_up() && reap_work->func == NULL) {
809 INIT_WORK(reap_work, cache_reap, NULL);
810 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
811 }
812 }
813
814 static struct array_cache *alloc_arraycache(int node, int entries,
815 int batchcount)
816 {
817 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
818 struct array_cache *nc = NULL;
819
820 nc = kmalloc_node(memsize, GFP_KERNEL, node);
821 if (nc) {
822 nc->avail = 0;
823 nc->limit = entries;
824 nc->batchcount = batchcount;
825 nc->touched = 0;
826 spin_lock_init(&nc->lock);
827 }
828 return nc;
829 }
830
831 #ifdef CONFIG_NUMA
832 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
833
834 static struct array_cache **alloc_alien_cache(int node, int limit)
835 {
836 struct array_cache **ac_ptr;
837 int memsize = sizeof(void *) * MAX_NUMNODES;
838 int i;
839
840 if (limit > 1)
841 limit = 12;
842 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
843 if (ac_ptr) {
844 for_each_node(i) {
845 if (i == node || !node_online(i)) {
846 ac_ptr[i] = NULL;
847 continue;
848 }
849 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
850 if (!ac_ptr[i]) {
851 for (i--; i <= 0; i--)
852 kfree(ac_ptr[i]);
853 kfree(ac_ptr);
854 return NULL;
855 }
856 }
857 }
858 return ac_ptr;
859 }
860
861 static void free_alien_cache(struct array_cache **ac_ptr)
862 {
863 int i;
864
865 if (!ac_ptr)
866 return;
867
868 for_each_node(i)
869 kfree(ac_ptr[i]);
870
871 kfree(ac_ptr);
872 }
873
874 static void __drain_alien_cache(struct kmem_cache *cachep,
875 struct array_cache *ac, int node)
876 {
877 struct kmem_list3 *rl3 = cachep->nodelists[node];
878
879 if (ac->avail) {
880 spin_lock(&rl3->list_lock);
881 free_block(cachep, ac->entry, ac->avail, node);
882 ac->avail = 0;
883 spin_unlock(&rl3->list_lock);
884 }
885 }
886
887 static void drain_alien_cache(struct kmem_cache *cachep, struct kmem_list3 *l3)
888 {
889 int i = 0;
890 struct array_cache *ac;
891 unsigned long flags;
892
893 for_each_online_node(i) {
894 ac = l3->alien[i];
895 if (ac) {
896 spin_lock_irqsave(&ac->lock, flags);
897 __drain_alien_cache(cachep, ac, i);
898 spin_unlock_irqrestore(&ac->lock, flags);
899 }
900 }
901 }
902 #else
903 #define alloc_alien_cache(node, limit) do { } while (0)
904 #define free_alien_cache(ac_ptr) do { } while (0)
905 #define drain_alien_cache(cachep, l3) do { } while (0)
906 #endif
907
908 static int __devinit cpuup_callback(struct notifier_block *nfb,
909 unsigned long action, void *hcpu)
910 {
911 long cpu = (long)hcpu;
912 struct kmem_cache *cachep;
913 struct kmem_list3 *l3 = NULL;
914 int node = cpu_to_node(cpu);
915 int memsize = sizeof(struct kmem_list3);
916
917 switch (action) {
918 case CPU_UP_PREPARE:
919 mutex_lock(&cache_chain_mutex);
920 /* we need to do this right in the beginning since
921 * alloc_arraycache's are going to use this list.
922 * kmalloc_node allows us to add the slab to the right
923 * kmem_list3 and not this cpu's kmem_list3
924 */
925
926 list_for_each_entry(cachep, &cache_chain, next) {
927 /* setup the size64 kmemlist for cpu before we can
928 * begin anything. Make sure some other cpu on this
929 * node has not already allocated this
930 */
931 if (!cachep->nodelists[node]) {
932 if (!(l3 = kmalloc_node(memsize,
933 GFP_KERNEL, node)))
934 goto bad;
935 kmem_list3_init(l3);
936 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
937 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
938
939 cachep->nodelists[node] = l3;
940 }
941
942 spin_lock_irq(&cachep->nodelists[node]->list_lock);
943 cachep->nodelists[node]->free_limit =
944 (1 + nr_cpus_node(node)) *
945 cachep->batchcount + cachep->num;
946 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
947 }
948
949 /* Now we can go ahead with allocating the shared array's
950 & array cache's */
951 list_for_each_entry(cachep, &cache_chain, next) {
952 struct array_cache *nc;
953
954 nc = alloc_arraycache(node, cachep->limit,
955 cachep->batchcount);
956 if (!nc)
957 goto bad;
958 cachep->array[cpu] = nc;
959
960 l3 = cachep->nodelists[node];
961 BUG_ON(!l3);
962 if (!l3->shared) {
963 if (!(nc = alloc_arraycache(node,
964 cachep->shared *
965 cachep->batchcount,
966 0xbaadf00d)))
967 goto bad;
968
969 /* we are serialised from CPU_DEAD or
970 CPU_UP_CANCELLED by the cpucontrol lock */
971 l3->shared = nc;
972 }
973 }
974 mutex_unlock(&cache_chain_mutex);
975 break;
976 case CPU_ONLINE:
977 start_cpu_timer(cpu);
978 break;
979 #ifdef CONFIG_HOTPLUG_CPU
980 case CPU_DEAD:
981 /* fall thru */
982 case CPU_UP_CANCELED:
983 mutex_lock(&cache_chain_mutex);
984
985 list_for_each_entry(cachep, &cache_chain, next) {
986 struct array_cache *nc;
987 cpumask_t mask;
988
989 mask = node_to_cpumask(node);
990 spin_lock(&cachep->spinlock);
991 /* cpu is dead; no one can alloc from it. */
992 nc = cachep->array[cpu];
993 cachep->array[cpu] = NULL;
994 l3 = cachep->nodelists[node];
995
996 if (!l3)
997 goto unlock_cache;
998
999 spin_lock_irq(&l3->list_lock);
1000
1001 /* Free limit for this kmem_list3 */
1002 l3->free_limit -= cachep->batchcount;
1003 if (nc)
1004 free_block(cachep, nc->entry, nc->avail, node);
1005
1006 if (!cpus_empty(mask)) {
1007 spin_unlock_irq(&l3->list_lock);
1008 goto unlock_cache;
1009 }
1010
1011 if (l3->shared) {
1012 free_block(cachep, l3->shared->entry,
1013 l3->shared->avail, node);
1014 kfree(l3->shared);
1015 l3->shared = NULL;
1016 }
1017 if (l3->alien) {
1018 drain_alien_cache(cachep, l3);
1019 free_alien_cache(l3->alien);
1020 l3->alien = NULL;
1021 }
1022
1023 /* free slabs belonging to this node */
1024 if (__node_shrink(cachep, node)) {
1025 cachep->nodelists[node] = NULL;
1026 spin_unlock_irq(&l3->list_lock);
1027 kfree(l3);
1028 } else {
1029 spin_unlock_irq(&l3->list_lock);
1030 }
1031 unlock_cache:
1032 spin_unlock(&cachep->spinlock);
1033 kfree(nc);
1034 }
1035 mutex_unlock(&cache_chain_mutex);
1036 break;
1037 #endif
1038 }
1039 return NOTIFY_OK;
1040 bad:
1041 mutex_unlock(&cache_chain_mutex);
1042 return NOTIFY_BAD;
1043 }
1044
1045 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1046
1047 /*
1048 * swap the static kmem_list3 with kmalloced memory
1049 */
1050 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
1051 {
1052 struct kmem_list3 *ptr;
1053
1054 BUG_ON(cachep->nodelists[nodeid] != list);
1055 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1056 BUG_ON(!ptr);
1057
1058 local_irq_disable();
1059 memcpy(ptr, list, sizeof(struct kmem_list3));
1060 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1061 cachep->nodelists[nodeid] = ptr;
1062 local_irq_enable();
1063 }
1064
1065 /* Initialisation.
1066 * Called after the gfp() functions have been enabled, and before smp_init().
1067 */
1068 void __init kmem_cache_init(void)
1069 {
1070 size_t left_over;
1071 struct cache_sizes *sizes;
1072 struct cache_names *names;
1073 int i;
1074
1075 for (i = 0; i < NUM_INIT_LISTS; i++) {
1076 kmem_list3_init(&initkmem_list3[i]);
1077 if (i < MAX_NUMNODES)
1078 cache_cache.nodelists[i] = NULL;
1079 }
1080
1081 /*
1082 * Fragmentation resistance on low memory - only use bigger
1083 * page orders on machines with more than 32MB of memory.
1084 */
1085 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1086 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1087
1088 /* Bootstrap is tricky, because several objects are allocated
1089 * from caches that do not exist yet:
1090 * 1) initialize the cache_cache cache: it contains the struct kmem_cache
1091 * structures of all caches, except cache_cache itself: cache_cache
1092 * is statically allocated.
1093 * Initially an __init data area is used for the head array and the
1094 * kmem_list3 structures, it's replaced with a kmalloc allocated
1095 * array at the end of the bootstrap.
1096 * 2) Create the first kmalloc cache.
1097 * The struct kmem_cache for the new cache is allocated normally.
1098 * An __init data area is used for the head array.
1099 * 3) Create the remaining kmalloc caches, with minimally sized
1100 * head arrays.
1101 * 4) Replace the __init data head arrays for cache_cache and the first
1102 * kmalloc cache with kmalloc allocated arrays.
1103 * 5) Replace the __init data for kmem_list3 for cache_cache and
1104 * the other cache's with kmalloc allocated memory.
1105 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1106 */
1107
1108 /* 1) create the cache_cache */
1109 INIT_LIST_HEAD(&cache_chain);
1110 list_add(&cache_cache.next, &cache_chain);
1111 cache_cache.colour_off = cache_line_size();
1112 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1113 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1114
1115 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
1116
1117 cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0,
1118 &left_over, &cache_cache.num);
1119 if (!cache_cache.num)
1120 BUG();
1121
1122 cache_cache.colour = left_over / cache_cache.colour_off;
1123 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1124 sizeof(struct slab), cache_line_size());
1125
1126 /* 2+3) create the kmalloc caches */
1127 sizes = malloc_sizes;
1128 names = cache_names;
1129
1130 /* Initialize the caches that provide memory for the array cache
1131 * and the kmem_list3 structures first.
1132 * Without this, further allocations will bug
1133 */
1134
1135 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1136 sizes[INDEX_AC].cs_size,
1137 ARCH_KMALLOC_MINALIGN,
1138 (ARCH_KMALLOC_FLAGS |
1139 SLAB_PANIC), NULL, NULL);
1140
1141 if (INDEX_AC != INDEX_L3)
1142 sizes[INDEX_L3].cs_cachep =
1143 kmem_cache_create(names[INDEX_L3].name,
1144 sizes[INDEX_L3].cs_size,
1145 ARCH_KMALLOC_MINALIGN,
1146 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
1147 NULL);
1148
1149 while (sizes->cs_size != ULONG_MAX) {
1150 /*
1151 * For performance, all the general caches are L1 aligned.
1152 * This should be particularly beneficial on SMP boxes, as it
1153 * eliminates "false sharing".
1154 * Note for systems short on memory removing the alignment will
1155 * allow tighter packing of the smaller caches.
1156 */
1157 if (!sizes->cs_cachep)
1158 sizes->cs_cachep = kmem_cache_create(names->name,
1159 sizes->cs_size,
1160 ARCH_KMALLOC_MINALIGN,
1161 (ARCH_KMALLOC_FLAGS
1162 | SLAB_PANIC),
1163 NULL, NULL);
1164
1165 /* Inc off-slab bufctl limit until the ceiling is hit. */
1166 if (!(OFF_SLAB(sizes->cs_cachep))) {
1167 offslab_limit = sizes->cs_size - sizeof(struct slab);
1168 offslab_limit /= sizeof(kmem_bufctl_t);
1169 }
1170
1171 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1172 sizes->cs_size,
1173 ARCH_KMALLOC_MINALIGN,
1174 (ARCH_KMALLOC_FLAGS |
1175 SLAB_CACHE_DMA |
1176 SLAB_PANIC), NULL,
1177 NULL);
1178
1179 sizes++;
1180 names++;
1181 }
1182 /* 4) Replace the bootstrap head arrays */
1183 {
1184 void *ptr;
1185
1186 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1187
1188 local_irq_disable();
1189 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1190 memcpy(ptr, cpu_cache_get(&cache_cache),
1191 sizeof(struct arraycache_init));
1192 cache_cache.array[smp_processor_id()] = ptr;
1193 local_irq_enable();
1194
1195 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1196
1197 local_irq_disable();
1198 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1199 != &initarray_generic.cache);
1200 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1201 sizeof(struct arraycache_init));
1202 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1203 ptr;
1204 local_irq_enable();
1205 }
1206 /* 5) Replace the bootstrap kmem_list3's */
1207 {
1208 int node;
1209 /* Replace the static kmem_list3 structures for the boot cpu */
1210 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1211 numa_node_id());
1212
1213 for_each_online_node(node) {
1214 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1215 &initkmem_list3[SIZE_AC + node], node);
1216
1217 if (INDEX_AC != INDEX_L3) {
1218 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1219 &initkmem_list3[SIZE_L3 + node],
1220 node);
1221 }
1222 }
1223 }
1224
1225 /* 6) resize the head arrays to their final sizes */
1226 {
1227 struct kmem_cache *cachep;
1228 mutex_lock(&cache_chain_mutex);
1229 list_for_each_entry(cachep, &cache_chain, next)
1230 enable_cpucache(cachep);
1231 mutex_unlock(&cache_chain_mutex);
1232 }
1233
1234 /* Done! */
1235 g_cpucache_up = FULL;
1236
1237 /* Register a cpu startup notifier callback
1238 * that initializes cpu_cache_get for all new cpus
1239 */
1240 register_cpu_notifier(&cpucache_notifier);
1241
1242 /* The reap timers are started later, with a module init call:
1243 * That part of the kernel is not yet operational.
1244 */
1245 }
1246
1247 static int __init cpucache_init(void)
1248 {
1249 int cpu;
1250
1251 /*
1252 * Register the timers that return unneeded
1253 * pages to gfp.
1254 */
1255 for_each_online_cpu(cpu)
1256 start_cpu_timer(cpu);
1257
1258 return 0;
1259 }
1260
1261 __initcall(cpucache_init);
1262
1263 /*
1264 * Interface to system's page allocator. No need to hold the cache-lock.
1265 *
1266 * If we requested dmaable memory, we will get it. Even if we
1267 * did not request dmaable memory, we might get it, but that
1268 * would be relatively rare and ignorable.
1269 */
1270 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1271 {
1272 struct page *page;
1273 void *addr;
1274 int i;
1275
1276 flags |= cachep->gfpflags;
1277 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1278 if (!page)
1279 return NULL;
1280 addr = page_address(page);
1281
1282 i = (1 << cachep->gfporder);
1283 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1284 atomic_add(i, &slab_reclaim_pages);
1285 add_page_state(nr_slab, i);
1286 while (i--) {
1287 SetPageSlab(page);
1288 page++;
1289 }
1290 return addr;
1291 }
1292
1293 /*
1294 * Interface to system's page release.
1295 */
1296 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1297 {
1298 unsigned long i = (1 << cachep->gfporder);
1299 struct page *page = virt_to_page(addr);
1300 const unsigned long nr_freed = i;
1301
1302 while (i--) {
1303 if (!TestClearPageSlab(page))
1304 BUG();
1305 page++;
1306 }
1307 sub_page_state(nr_slab, nr_freed);
1308 if (current->reclaim_state)
1309 current->reclaim_state->reclaimed_slab += nr_freed;
1310 free_pages((unsigned long)addr, cachep->gfporder);
1311 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1312 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1313 }
1314
1315 static void kmem_rcu_free(struct rcu_head *head)
1316 {
1317 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1318 struct kmem_cache *cachep = slab_rcu->cachep;
1319
1320 kmem_freepages(cachep, slab_rcu->addr);
1321 if (OFF_SLAB(cachep))
1322 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1323 }
1324
1325 #if DEBUG
1326
1327 #ifdef CONFIG_DEBUG_PAGEALLOC
1328 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1329 unsigned long caller)
1330 {
1331 int size = obj_size(cachep);
1332
1333 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1334
1335 if (size < 5 * sizeof(unsigned long))
1336 return;
1337
1338 *addr++ = 0x12345678;
1339 *addr++ = caller;
1340 *addr++ = smp_processor_id();
1341 size -= 3 * sizeof(unsigned long);
1342 {
1343 unsigned long *sptr = &caller;
1344 unsigned long svalue;
1345
1346 while (!kstack_end(sptr)) {
1347 svalue = *sptr++;
1348 if (kernel_text_address(svalue)) {
1349 *addr++ = svalue;
1350 size -= sizeof(unsigned long);
1351 if (size <= sizeof(unsigned long))
1352 break;
1353 }
1354 }
1355
1356 }
1357 *addr++ = 0x87654321;
1358 }
1359 #endif
1360
1361 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1362 {
1363 int size = obj_size(cachep);
1364 addr = &((char *)addr)[obj_offset(cachep)];
1365
1366 memset(addr, val, size);
1367 *(unsigned char *)(addr + size - 1) = POISON_END;
1368 }
1369
1370 static void dump_line(char *data, int offset, int limit)
1371 {
1372 int i;
1373 printk(KERN_ERR "%03x:", offset);
1374 for (i = 0; i < limit; i++) {
1375 printk(" %02x", (unsigned char)data[offset + i]);
1376 }
1377 printk("\n");
1378 }
1379 #endif
1380
1381 #if DEBUG
1382
1383 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1384 {
1385 int i, size;
1386 char *realobj;
1387
1388 if (cachep->flags & SLAB_RED_ZONE) {
1389 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1390 *dbg_redzone1(cachep, objp),
1391 *dbg_redzone2(cachep, objp));
1392 }
1393
1394 if (cachep->flags & SLAB_STORE_USER) {
1395 printk(KERN_ERR "Last user: [<%p>]",
1396 *dbg_userword(cachep, objp));
1397 print_symbol("(%s)",
1398 (unsigned long)*dbg_userword(cachep, objp));
1399 printk("\n");
1400 }
1401 realobj = (char *)objp + obj_offset(cachep);
1402 size = obj_size(cachep);
1403 for (i = 0; i < size && lines; i += 16, lines--) {
1404 int limit;
1405 limit = 16;
1406 if (i + limit > size)
1407 limit = size - i;
1408 dump_line(realobj, i, limit);
1409 }
1410 }
1411
1412 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1413 {
1414 char *realobj;
1415 int size, i;
1416 int lines = 0;
1417
1418 realobj = (char *)objp + obj_offset(cachep);
1419 size = obj_size(cachep);
1420
1421 for (i = 0; i < size; i++) {
1422 char exp = POISON_FREE;
1423 if (i == size - 1)
1424 exp = POISON_END;
1425 if (realobj[i] != exp) {
1426 int limit;
1427 /* Mismatch ! */
1428 /* Print header */
1429 if (lines == 0) {
1430 printk(KERN_ERR
1431 "Slab corruption: start=%p, len=%d\n",
1432 realobj, size);
1433 print_objinfo(cachep, objp, 0);
1434 }
1435 /* Hexdump the affected line */
1436 i = (i / 16) * 16;
1437 limit = 16;
1438 if (i + limit > size)
1439 limit = size - i;
1440 dump_line(realobj, i, limit);
1441 i += 16;
1442 lines++;
1443 /* Limit to 5 lines */
1444 if (lines > 5)
1445 break;
1446 }
1447 }
1448 if (lines != 0) {
1449 /* Print some data about the neighboring objects, if they
1450 * exist:
1451 */
1452 struct slab *slabp = virt_to_slab(objp);
1453 int objnr;
1454
1455 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
1456 if (objnr) {
1457 objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
1458 realobj = (char *)objp + obj_offset(cachep);
1459 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1460 realobj, size);
1461 print_objinfo(cachep, objp, 2);
1462 }
1463 if (objnr + 1 < cachep->num) {
1464 objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
1465 realobj = (char *)objp + obj_offset(cachep);
1466 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1467 realobj, size);
1468 print_objinfo(cachep, objp, 2);
1469 }
1470 }
1471 }
1472 #endif
1473
1474 #if DEBUG
1475 /**
1476 * slab_destroy_objs - call the registered destructor for each object in
1477 * a slab that is to be destroyed.
1478 */
1479 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1480 {
1481 int i;
1482 for (i = 0; i < cachep->num; i++) {
1483 void *objp = slabp->s_mem + cachep->buffer_size * i;
1484
1485 if (cachep->flags & SLAB_POISON) {
1486 #ifdef CONFIG_DEBUG_PAGEALLOC
1487 if ((cachep->buffer_size % PAGE_SIZE) == 0
1488 && OFF_SLAB(cachep))
1489 kernel_map_pages(virt_to_page(objp),
1490 cachep->buffer_size / PAGE_SIZE,
1491 1);
1492 else
1493 check_poison_obj(cachep, objp);
1494 #else
1495 check_poison_obj(cachep, objp);
1496 #endif
1497 }
1498 if (cachep->flags & SLAB_RED_ZONE) {
1499 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1500 slab_error(cachep, "start of a freed object "
1501 "was overwritten");
1502 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1503 slab_error(cachep, "end of a freed object "
1504 "was overwritten");
1505 }
1506 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1507 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1508 }
1509 }
1510 #else
1511 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1512 {
1513 if (cachep->dtor) {
1514 int i;
1515 for (i = 0; i < cachep->num; i++) {
1516 void *objp = slabp->s_mem + cachep->buffer_size * i;
1517 (cachep->dtor) (objp, cachep, 0);
1518 }
1519 }
1520 }
1521 #endif
1522
1523 /**
1524 * Destroy all the objs in a slab, and release the mem back to the system.
1525 * Before calling the slab must have been unlinked from the cache.
1526 * The cache-lock is not held/needed.
1527 */
1528 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1529 {
1530 void *addr = slabp->s_mem - slabp->colouroff;
1531
1532 slab_destroy_objs(cachep, slabp);
1533 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1534 struct slab_rcu *slab_rcu;
1535
1536 slab_rcu = (struct slab_rcu *)slabp;
1537 slab_rcu->cachep = cachep;
1538 slab_rcu->addr = addr;
1539 call_rcu(&slab_rcu->head, kmem_rcu_free);
1540 } else {
1541 kmem_freepages(cachep, addr);
1542 if (OFF_SLAB(cachep))
1543 kmem_cache_free(cachep->slabp_cache, slabp);
1544 }
1545 }
1546
1547 /* For setting up all the kmem_list3s for cache whose buffer_size is same
1548 as size of kmem_list3. */
1549 static void set_up_list3s(struct kmem_cache *cachep, int index)
1550 {
1551 int node;
1552
1553 for_each_online_node(node) {
1554 cachep->nodelists[node] = &initkmem_list3[index + node];
1555 cachep->nodelists[node]->next_reap = jiffies +
1556 REAPTIMEOUT_LIST3 +
1557 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1558 }
1559 }
1560
1561 /**
1562 * calculate_slab_order - calculate size (page order) of slabs
1563 * @cachep: pointer to the cache that is being created
1564 * @size: size of objects to be created in this cache.
1565 * @align: required alignment for the objects.
1566 * @flags: slab allocation flags
1567 *
1568 * Also calculates the number of objects per slab.
1569 *
1570 * This could be made much more intelligent. For now, try to avoid using
1571 * high order pages for slabs. When the gfp() functions are more friendly
1572 * towards high-order requests, this should be changed.
1573 */
1574 static inline size_t calculate_slab_order(struct kmem_cache *cachep,
1575 size_t size, size_t align, unsigned long flags)
1576 {
1577 size_t left_over = 0;
1578
1579 for (;; cachep->gfporder++) {
1580 unsigned int num;
1581 size_t remainder;
1582
1583 if (cachep->gfporder > MAX_GFP_ORDER) {
1584 cachep->num = 0;
1585 break;
1586 }
1587
1588 cache_estimate(cachep->gfporder, size, align, flags,
1589 &remainder, &num);
1590 if (!num)
1591 continue;
1592 /* More than offslab_limit objects will cause problems */
1593 if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
1594 break;
1595
1596 cachep->num = num;
1597 left_over = remainder;
1598
1599 /*
1600 * Large number of objects is good, but very large slabs are
1601 * currently bad for the gfp()s.
1602 */
1603 if (cachep->gfporder >= slab_break_gfp_order)
1604 break;
1605
1606 if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
1607 /* Acceptable internal fragmentation */
1608 break;
1609 }
1610 return left_over;
1611 }
1612
1613 /**
1614 * kmem_cache_create - Create a cache.
1615 * @name: A string which is used in /proc/slabinfo to identify this cache.
1616 * @size: The size of objects to be created in this cache.
1617 * @align: The required alignment for the objects.
1618 * @flags: SLAB flags
1619 * @ctor: A constructor for the objects.
1620 * @dtor: A destructor for the objects.
1621 *
1622 * Returns a ptr to the cache on success, NULL on failure.
1623 * Cannot be called within a int, but can be interrupted.
1624 * The @ctor is run when new pages are allocated by the cache
1625 * and the @dtor is run before the pages are handed back.
1626 *
1627 * @name must be valid until the cache is destroyed. This implies that
1628 * the module calling this has to destroy the cache before getting
1629 * unloaded.
1630 *
1631 * The flags are
1632 *
1633 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1634 * to catch references to uninitialised memory.
1635 *
1636 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1637 * for buffer overruns.
1638 *
1639 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1640 * memory pressure.
1641 *
1642 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1643 * cacheline. This can be beneficial if you're counting cycles as closely
1644 * as davem.
1645 */
1646 struct kmem_cache *
1647 kmem_cache_create (const char *name, size_t size, size_t align,
1648 unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
1649 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1650 {
1651 size_t left_over, slab_size, ralign;
1652 struct kmem_cache *cachep = NULL;
1653 struct list_head *p;
1654
1655 /*
1656 * Sanity checks... these are all serious usage bugs.
1657 */
1658 if ((!name) ||
1659 in_interrupt() ||
1660 (size < BYTES_PER_WORD) ||
1661 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1662 printk(KERN_ERR "%s: Early error in slab %s\n",
1663 __FUNCTION__, name);
1664 BUG();
1665 }
1666
1667 mutex_lock(&cache_chain_mutex);
1668
1669 list_for_each(p, &cache_chain) {
1670 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1671 mm_segment_t old_fs = get_fs();
1672 char tmp;
1673 int res;
1674
1675 /*
1676 * This happens when the module gets unloaded and doesn't
1677 * destroy its slab cache and no-one else reuses the vmalloc
1678 * area of the module. Print a warning.
1679 */
1680 set_fs(KERNEL_DS);
1681 res = __get_user(tmp, pc->name);
1682 set_fs(old_fs);
1683 if (res) {
1684 printk("SLAB: cache with size %d has lost its name\n",
1685 pc->buffer_size);
1686 continue;
1687 }
1688
1689 if (!strcmp(pc->name, name)) {
1690 printk("kmem_cache_create: duplicate cache %s\n", name);
1691 dump_stack();
1692 goto oops;
1693 }
1694 }
1695
1696 #if DEBUG
1697 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1698 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1699 /* No constructor, but inital state check requested */
1700 printk(KERN_ERR "%s: No con, but init state check "
1701 "requested - %s\n", __FUNCTION__, name);
1702 flags &= ~SLAB_DEBUG_INITIAL;
1703 }
1704 #if FORCED_DEBUG
1705 /*
1706 * Enable redzoning and last user accounting, except for caches with
1707 * large objects, if the increased size would increase the object size
1708 * above the next power of two: caches with object sizes just above a
1709 * power of two have a significant amount of internal fragmentation.
1710 */
1711 if ((size < 4096
1712 || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1713 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1714 if (!(flags & SLAB_DESTROY_BY_RCU))
1715 flags |= SLAB_POISON;
1716 #endif
1717 if (flags & SLAB_DESTROY_BY_RCU)
1718 BUG_ON(flags & SLAB_POISON);
1719 #endif
1720 if (flags & SLAB_DESTROY_BY_RCU)
1721 BUG_ON(dtor);
1722
1723 /*
1724 * Always checks flags, a caller might be expecting debug
1725 * support which isn't available.
1726 */
1727 if (flags & ~CREATE_MASK)
1728 BUG();
1729
1730 /* Check that size is in terms of words. This is needed to avoid
1731 * unaligned accesses for some archs when redzoning is used, and makes
1732 * sure any on-slab bufctl's are also correctly aligned.
1733 */
1734 if (size & (BYTES_PER_WORD - 1)) {
1735 size += (BYTES_PER_WORD - 1);
1736 size &= ~(BYTES_PER_WORD - 1);
1737 }
1738
1739 /* calculate out the final buffer alignment: */
1740 /* 1) arch recommendation: can be overridden for debug */
1741 if (flags & SLAB_HWCACHE_ALIGN) {
1742 /* Default alignment: as specified by the arch code.
1743 * Except if an object is really small, then squeeze multiple
1744 * objects into one cacheline.
1745 */
1746 ralign = cache_line_size();
1747 while (size <= ralign / 2)
1748 ralign /= 2;
1749 } else {
1750 ralign = BYTES_PER_WORD;
1751 }
1752 /* 2) arch mandated alignment: disables debug if necessary */
1753 if (ralign < ARCH_SLAB_MINALIGN) {
1754 ralign = ARCH_SLAB_MINALIGN;
1755 if (ralign > BYTES_PER_WORD)
1756 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1757 }
1758 /* 3) caller mandated alignment: disables debug if necessary */
1759 if (ralign < align) {
1760 ralign = align;
1761 if (ralign > BYTES_PER_WORD)
1762 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1763 }
1764 /* 4) Store it. Note that the debug code below can reduce
1765 * the alignment to BYTES_PER_WORD.
1766 */
1767 align = ralign;
1768
1769 /* Get cache's description obj. */
1770 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1771 if (!cachep)
1772 goto oops;
1773 memset(cachep, 0, sizeof(struct kmem_cache));
1774
1775 #if DEBUG
1776 cachep->obj_size = size;
1777
1778 if (flags & SLAB_RED_ZONE) {
1779 /* redzoning only works with word aligned caches */
1780 align = BYTES_PER_WORD;
1781
1782 /* add space for red zone words */
1783 cachep->obj_offset += BYTES_PER_WORD;
1784 size += 2 * BYTES_PER_WORD;
1785 }
1786 if (flags & SLAB_STORE_USER) {
1787 /* user store requires word alignment and
1788 * one word storage behind the end of the real
1789 * object.
1790 */
1791 align = BYTES_PER_WORD;
1792 size += BYTES_PER_WORD;
1793 }
1794 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1795 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1796 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
1797 cachep->obj_offset += PAGE_SIZE - size;
1798 size = PAGE_SIZE;
1799 }
1800 #endif
1801 #endif
1802
1803 /* Determine if the slab management is 'on' or 'off' slab. */
1804 if (size >= (PAGE_SIZE >> 3))
1805 /*
1806 * Size is large, assume best to place the slab management obj
1807 * off-slab (should allow better packing of objs).
1808 */
1809 flags |= CFLGS_OFF_SLAB;
1810
1811 size = ALIGN(size, align);
1812
1813 if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1814 /*
1815 * A VFS-reclaimable slab tends to have most allocations
1816 * as GFP_NOFS and we really don't want to have to be allocating
1817 * higher-order pages when we are unable to shrink dcache.
1818 */
1819 cachep->gfporder = 0;
1820 cache_estimate(cachep->gfporder, size, align, flags,
1821 &left_over, &cachep->num);
1822 } else
1823 left_over = calculate_slab_order(cachep, size, align, flags);
1824
1825 if (!cachep->num) {
1826 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1827 kmem_cache_free(&cache_cache, cachep);
1828 cachep = NULL;
1829 goto oops;
1830 }
1831 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
1832 + sizeof(struct slab), align);
1833
1834 /*
1835 * If the slab has been placed off-slab, and we have enough space then
1836 * move it on-slab. This is at the expense of any extra colouring.
1837 */
1838 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1839 flags &= ~CFLGS_OFF_SLAB;
1840 left_over -= slab_size;
1841 }
1842
1843 if (flags & CFLGS_OFF_SLAB) {
1844 /* really off slab. No need for manual alignment */
1845 slab_size =
1846 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1847 }
1848
1849 cachep->colour_off = cache_line_size();
1850 /* Offset must be a multiple of the alignment. */
1851 if (cachep->colour_off < align)
1852 cachep->colour_off = align;
1853 cachep->colour = left_over / cachep->colour_off;
1854 cachep->slab_size = slab_size;
1855 cachep->flags = flags;
1856 cachep->gfpflags = 0;
1857 if (flags & SLAB_CACHE_DMA)
1858 cachep->gfpflags |= GFP_DMA;
1859 spin_lock_init(&cachep->spinlock);
1860 cachep->buffer_size = size;
1861
1862 if (flags & CFLGS_OFF_SLAB)
1863 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1864 cachep->ctor = ctor;
1865 cachep->dtor = dtor;
1866 cachep->name = name;
1867
1868 /* Don't let CPUs to come and go */
1869 lock_cpu_hotplug();
1870
1871 if (g_cpucache_up == FULL) {
1872 enable_cpucache(cachep);
1873 } else {
1874 if (g_cpucache_up == NONE) {
1875 /* Note: the first kmem_cache_create must create
1876 * the cache that's used by kmalloc(24), otherwise
1877 * the creation of further caches will BUG().
1878 */
1879 cachep->array[smp_processor_id()] =
1880 &initarray_generic.cache;
1881
1882 /* If the cache that's used by
1883 * kmalloc(sizeof(kmem_list3)) is the first cache,
1884 * then we need to set up all its list3s, otherwise
1885 * the creation of further caches will BUG().
1886 */
1887 set_up_list3s(cachep, SIZE_AC);
1888 if (INDEX_AC == INDEX_L3)
1889 g_cpucache_up = PARTIAL_L3;
1890 else
1891 g_cpucache_up = PARTIAL_AC;
1892 } else {
1893 cachep->array[smp_processor_id()] =
1894 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1895
1896 if (g_cpucache_up == PARTIAL_AC) {
1897 set_up_list3s(cachep, SIZE_L3);
1898 g_cpucache_up = PARTIAL_L3;
1899 } else {
1900 int node;
1901 for_each_online_node(node) {
1902
1903 cachep->nodelists[node] =
1904 kmalloc_node(sizeof
1905 (struct kmem_list3),
1906 GFP_KERNEL, node);
1907 BUG_ON(!cachep->nodelists[node]);
1908 kmem_list3_init(cachep->
1909 nodelists[node]);
1910 }
1911 }
1912 }
1913 cachep->nodelists[numa_node_id()]->next_reap =
1914 jiffies + REAPTIMEOUT_LIST3 +
1915 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1916
1917 BUG_ON(!cpu_cache_get(cachep));
1918 cpu_cache_get(cachep)->avail = 0;
1919 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1920 cpu_cache_get(cachep)->batchcount = 1;
1921 cpu_cache_get(cachep)->touched = 0;
1922 cachep->batchcount = 1;
1923 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1924 }
1925
1926 /* cache setup completed, link it into the list */
1927 list_add(&cachep->next, &cache_chain);
1928 unlock_cpu_hotplug();
1929 oops:
1930 if (!cachep && (flags & SLAB_PANIC))
1931 panic("kmem_cache_create(): failed to create slab `%s'\n",
1932 name);
1933 mutex_unlock(&cache_chain_mutex);
1934 return cachep;
1935 }
1936 EXPORT_SYMBOL(kmem_cache_create);
1937
1938 #if DEBUG
1939 static void check_irq_off(void)
1940 {
1941 BUG_ON(!irqs_disabled());
1942 }
1943
1944 static void check_irq_on(void)
1945 {
1946 BUG_ON(irqs_disabled());
1947 }
1948
1949 static void check_spinlock_acquired(struct kmem_cache *cachep)
1950 {
1951 #ifdef CONFIG_SMP
1952 check_irq_off();
1953 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1954 #endif
1955 }
1956
1957 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
1958 {
1959 #ifdef CONFIG_SMP
1960 check_irq_off();
1961 assert_spin_locked(&cachep->nodelists[node]->list_lock);
1962 #endif
1963 }
1964
1965 #else
1966 #define check_irq_off() do { } while(0)
1967 #define check_irq_on() do { } while(0)
1968 #define check_spinlock_acquired(x) do { } while(0)
1969 #define check_spinlock_acquired_node(x, y) do { } while(0)
1970 #endif
1971
1972 /*
1973 * Waits for all CPUs to execute func().
1974 */
1975 static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
1976 {
1977 check_irq_on();
1978 preempt_disable();
1979
1980 local_irq_disable();
1981 func(arg);
1982 local_irq_enable();
1983
1984 if (smp_call_function(func, arg, 1, 1))
1985 BUG();
1986
1987 preempt_enable();
1988 }
1989
1990 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
1991 int force, int node);
1992
1993 static void do_drain(void *arg)
1994 {
1995 struct kmem_cache *cachep = (struct kmem_cache *) arg;
1996 struct array_cache *ac;
1997 int node = numa_node_id();
1998
1999 check_irq_off();
2000 ac = cpu_cache_get(cachep);
2001 spin_lock(&cachep->nodelists[node]->list_lock);
2002 free_block(cachep, ac->entry, ac->avail, node);
2003 spin_unlock(&cachep->nodelists[node]->list_lock);
2004 ac->avail = 0;
2005 }
2006
2007 static void drain_cpu_caches(struct kmem_cache *cachep)
2008 {
2009 struct kmem_list3 *l3;
2010 int node;
2011
2012 smp_call_function_all_cpus(do_drain, cachep);
2013 check_irq_on();
2014 spin_lock(&cachep->spinlock);
2015 for_each_online_node(node) {
2016 l3 = cachep->nodelists[node];
2017 if (l3) {
2018 spin_lock_irq(&l3->list_lock);
2019 drain_array_locked(cachep, l3->shared, 1, node);
2020 spin_unlock_irq(&l3->list_lock);
2021 if (l3->alien)
2022 drain_alien_cache(cachep, l3);
2023 }
2024 }
2025 spin_unlock(&cachep->spinlock);
2026 }
2027
2028 static int __node_shrink(struct kmem_cache *cachep, int node)
2029 {
2030 struct slab *slabp;
2031 struct kmem_list3 *l3 = cachep->nodelists[node];
2032 int ret;
2033
2034 for (;;) {
2035 struct list_head *p;
2036
2037 p = l3->slabs_free.prev;
2038 if (p == &l3->slabs_free)
2039 break;
2040
2041 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2042 #if DEBUG
2043 if (slabp->inuse)
2044 BUG();
2045 #endif
2046 list_del(&slabp->list);
2047
2048 l3->free_objects -= cachep->num;
2049 spin_unlock_irq(&l3->list_lock);
2050 slab_destroy(cachep, slabp);
2051 spin_lock_irq(&l3->list_lock);
2052 }
2053 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2054 return ret;
2055 }
2056
2057 static int __cache_shrink(struct kmem_cache *cachep)
2058 {
2059 int ret = 0, i = 0;
2060 struct kmem_list3 *l3;
2061
2062 drain_cpu_caches(cachep);
2063
2064 check_irq_on();
2065 for_each_online_node(i) {
2066 l3 = cachep->nodelists[i];
2067 if (l3) {
2068 spin_lock_irq(&l3->list_lock);
2069 ret += __node_shrink(cachep, i);
2070 spin_unlock_irq(&l3->list_lock);
2071 }
2072 }
2073 return (ret ? 1 : 0);
2074 }
2075
2076 /**
2077 * kmem_cache_shrink - Shrink a cache.
2078 * @cachep: The cache to shrink.
2079 *
2080 * Releases as many slabs as possible for a cache.
2081 * To help debugging, a zero exit status indicates all slabs were released.
2082 */
2083 int kmem_cache_shrink(struct kmem_cache *cachep)
2084 {
2085 if (!cachep || in_interrupt())
2086 BUG();
2087
2088 return __cache_shrink(cachep);
2089 }
2090 EXPORT_SYMBOL(kmem_cache_shrink);
2091
2092 /**
2093 * kmem_cache_destroy - delete a cache
2094 * @cachep: the cache to destroy
2095 *
2096 * Remove a struct kmem_cache object from the slab cache.
2097 * Returns 0 on success.
2098 *
2099 * It is expected this function will be called by a module when it is
2100 * unloaded. This will remove the cache completely, and avoid a duplicate
2101 * cache being allocated each time a module is loaded and unloaded, if the
2102 * module doesn't have persistent in-kernel storage across loads and unloads.
2103 *
2104 * The cache must be empty before calling this function.
2105 *
2106 * The caller must guarantee that noone will allocate memory from the cache
2107 * during the kmem_cache_destroy().
2108 */
2109 int kmem_cache_destroy(struct kmem_cache *cachep)
2110 {
2111 int i;
2112 struct kmem_list3 *l3;
2113
2114 if (!cachep || in_interrupt())
2115 BUG();
2116
2117 /* Don't let CPUs to come and go */
2118 lock_cpu_hotplug();
2119
2120 /* Find the cache in the chain of caches. */
2121 mutex_lock(&cache_chain_mutex);
2122 /*
2123 * the chain is never empty, cache_cache is never destroyed
2124 */
2125 list_del(&cachep->next);
2126 mutex_unlock(&cache_chain_mutex);
2127
2128 if (__cache_shrink(cachep)) {
2129 slab_error(cachep, "Can't free all objects");
2130 mutex_lock(&cache_chain_mutex);
2131 list_add(&cachep->next, &cache_chain);
2132 mutex_unlock(&cache_chain_mutex);
2133 unlock_cpu_hotplug();
2134 return 1;
2135 }
2136
2137 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2138 synchronize_rcu();
2139
2140 for_each_online_cpu(i)
2141 kfree(cachep->array[i]);
2142
2143 /* NUMA: free the list3 structures */
2144 for_each_online_node(i) {
2145 if ((l3 = cachep->nodelists[i])) {
2146 kfree(l3->shared);
2147 free_alien_cache(l3->alien);
2148 kfree(l3);
2149 }
2150 }
2151 kmem_cache_free(&cache_cache, cachep);
2152
2153 unlock_cpu_hotplug();
2154
2155 return 0;
2156 }
2157 EXPORT_SYMBOL(kmem_cache_destroy);
2158
2159 /* Get the memory for a slab management obj. */
2160 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2161 int colour_off, gfp_t local_flags)
2162 {
2163 struct slab *slabp;
2164
2165 if (OFF_SLAB(cachep)) {
2166 /* Slab management obj is off-slab. */
2167 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2168 if (!slabp)
2169 return NULL;
2170 } else {
2171 slabp = objp + colour_off;
2172 colour_off += cachep->slab_size;
2173 }
2174 slabp->inuse = 0;
2175 slabp->colouroff = colour_off;
2176 slabp->s_mem = objp + colour_off;
2177
2178 return slabp;
2179 }
2180
2181 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2182 {
2183 return (kmem_bufctl_t *) (slabp + 1);
2184 }
2185
2186 static void cache_init_objs(struct kmem_cache *cachep,
2187 struct slab *slabp, unsigned long ctor_flags)
2188 {
2189 int i;
2190
2191 for (i = 0; i < cachep->num; i++) {
2192 void *objp = slabp->s_mem + cachep->buffer_size * i;
2193 #if DEBUG
2194 /* need to poison the objs? */
2195 if (cachep->flags & SLAB_POISON)
2196 poison_obj(cachep, objp, POISON_FREE);
2197 if (cachep->flags & SLAB_STORE_USER)
2198 *dbg_userword(cachep, objp) = NULL;
2199
2200 if (cachep->flags & SLAB_RED_ZONE) {
2201 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2202 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2203 }
2204 /*
2205 * Constructors are not allowed to allocate memory from
2206 * the same cache which they are a constructor for.
2207 * Otherwise, deadlock. They must also be threaded.
2208 */
2209 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2210 cachep->ctor(objp + obj_offset(cachep), cachep,
2211 ctor_flags);
2212
2213 if (cachep->flags & SLAB_RED_ZONE) {
2214 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2215 slab_error(cachep, "constructor overwrote the"
2216 " end of an object");
2217 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2218 slab_error(cachep, "constructor overwrote the"
2219 " start of an object");
2220 }
2221 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
2222 && cachep->flags & SLAB_POISON)
2223 kernel_map_pages(virt_to_page(objp),
2224 cachep->buffer_size / PAGE_SIZE, 0);
2225 #else
2226 if (cachep->ctor)
2227 cachep->ctor(objp, cachep, ctor_flags);
2228 #endif
2229 slab_bufctl(slabp)[i] = i + 1;
2230 }
2231 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2232 slabp->free = 0;
2233 }
2234
2235 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2236 {
2237 if (flags & SLAB_DMA) {
2238 if (!(cachep->gfpflags & GFP_DMA))
2239 BUG();
2240 } else {
2241 if (cachep->gfpflags & GFP_DMA)
2242 BUG();
2243 }
2244 }
2245
2246 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
2247 {
2248 void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size);
2249 kmem_bufctl_t next;
2250
2251 slabp->inuse++;
2252 next = slab_bufctl(slabp)[slabp->free];
2253 #if DEBUG
2254 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2255 WARN_ON(slabp->nodeid != nodeid);
2256 #endif
2257 slabp->free = next;
2258
2259 return objp;
2260 }
2261
2262 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
2263 int nodeid)
2264 {
2265 unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size;
2266
2267 #if DEBUG
2268 /* Verify that the slab belongs to the intended node */
2269 WARN_ON(slabp->nodeid != nodeid);
2270
2271 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2272 printk(KERN_ERR "slab: double free detected in cache "
2273 "'%s', objp %p\n", cachep->name, objp);
2274 BUG();
2275 }
2276 #endif
2277 slab_bufctl(slabp)[objnr] = slabp->free;
2278 slabp->free = objnr;
2279 slabp->inuse--;
2280 }
2281
2282 static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
2283 {
2284 int i;
2285 struct page *page;
2286
2287 /* Nasty!!!!!! I hope this is OK. */
2288 i = 1 << cachep->gfporder;
2289 page = virt_to_page(objp);
2290 do {
2291 page_set_cache(page, cachep);
2292 page_set_slab(page, slabp);
2293 page++;
2294 } while (--i);
2295 }
2296
2297 /*
2298 * Grow (by 1) the number of slabs within a cache. This is called by
2299 * kmem_cache_alloc() when there are no active objs left in a cache.
2300 */
2301 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2302 {
2303 struct slab *slabp;
2304 void *objp;
2305 size_t offset;
2306 gfp_t local_flags;
2307 unsigned long ctor_flags;
2308 struct kmem_list3 *l3;
2309
2310 /* Be lazy and only check for valid flags here,
2311 * keeping it out of the critical path in kmem_cache_alloc().
2312 */
2313 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2314 BUG();
2315 if (flags & SLAB_NO_GROW)
2316 return 0;
2317
2318 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2319 local_flags = (flags & SLAB_LEVEL_MASK);
2320 if (!(local_flags & __GFP_WAIT))
2321 /*
2322 * Not allowed to sleep. Need to tell a constructor about
2323 * this - it might need to know...
2324 */
2325 ctor_flags |= SLAB_CTOR_ATOMIC;
2326
2327 /* Take the l3 list lock to change the colour_next on this node */
2328 check_irq_off();
2329 l3 = cachep->nodelists[nodeid];
2330 spin_lock(&l3->list_lock);
2331
2332 /* Get colour for the slab, and cal the next value. */
2333 offset = l3->colour_next;
2334 l3->colour_next++;
2335 if (l3->colour_next >= cachep->colour)
2336 l3->colour_next = 0;
2337 spin_unlock(&l3->list_lock);
2338
2339 offset *= cachep->colour_off;
2340
2341 if (local_flags & __GFP_WAIT)
2342 local_irq_enable();
2343
2344 /*
2345 * The test for missing atomic flag is performed here, rather than
2346 * the more obvious place, simply to reduce the critical path length
2347 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2348 * will eventually be caught here (where it matters).
2349 */
2350 kmem_flagcheck(cachep, flags);
2351
2352 /* Get mem for the objs.
2353 * Attempt to allocate a physical page from 'nodeid',
2354 */
2355 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2356 goto failed;
2357
2358 /* Get slab management. */
2359 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2360 goto opps1;
2361
2362 slabp->nodeid = nodeid;
2363 set_slab_attr(cachep, slabp, objp);
2364
2365 cache_init_objs(cachep, slabp, ctor_flags);
2366
2367 if (local_flags & __GFP_WAIT)
2368 local_irq_disable();
2369 check_irq_off();
2370 spin_lock(&l3->list_lock);
2371
2372 /* Make slab active. */
2373 list_add_tail(&slabp->list, &(l3->slabs_free));
2374 STATS_INC_GROWN(cachep);
2375 l3->free_objects += cachep->num;
2376 spin_unlock(&l3->list_lock);
2377 return 1;
2378 opps1:
2379 kmem_freepages(cachep, objp);
2380 failed:
2381 if (local_flags & __GFP_WAIT)
2382 local_irq_disable();
2383 return 0;
2384 }
2385
2386 #if DEBUG
2387
2388 /*
2389 * Perform extra freeing checks:
2390 * - detect bad pointers.
2391 * - POISON/RED_ZONE checking
2392 * - destructor calls, for caches with POISON+dtor
2393 */
2394 static void kfree_debugcheck(const void *objp)
2395 {
2396 struct page *page;
2397
2398 if (!virt_addr_valid(objp)) {
2399 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2400 (unsigned long)objp);
2401 BUG();
2402 }
2403 page = virt_to_page(objp);
2404 if (!PageSlab(page)) {
2405 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2406 (unsigned long)objp);
2407 BUG();
2408 }
2409 }
2410
2411 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2412 void *caller)
2413 {
2414 struct page *page;
2415 unsigned int objnr;
2416 struct slab *slabp;
2417
2418 objp -= obj_offset(cachep);
2419 kfree_debugcheck(objp);
2420 page = virt_to_page(objp);
2421
2422 if (page_get_cache(page) != cachep) {
2423 printk(KERN_ERR
2424 "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2425 page_get_cache(page), cachep);
2426 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2427 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2428 page_get_cache(page)->name);
2429 WARN_ON(1);
2430 }
2431 slabp = page_get_slab(page);
2432
2433 if (cachep->flags & SLAB_RED_ZONE) {
2434 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
2435 || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2436 slab_error(cachep,
2437 "double free, or memory outside"
2438 " object was overwritten");
2439 printk(KERN_ERR
2440 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2441 objp, *dbg_redzone1(cachep, objp),
2442 *dbg_redzone2(cachep, objp));
2443 }
2444 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2445 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2446 }
2447 if (cachep->flags & SLAB_STORE_USER)
2448 *dbg_userword(cachep, objp) = caller;
2449
2450 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2451
2452 BUG_ON(objnr >= cachep->num);
2453 BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
2454
2455 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2456 /* Need to call the slab's constructor so the
2457 * caller can perform a verify of its state (debugging).
2458 * Called without the cache-lock held.
2459 */
2460 cachep->ctor(objp + obj_offset(cachep),
2461 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2462 }
2463 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2464 /* we want to cache poison the object,
2465 * call the destruction callback
2466 */
2467 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2468 }
2469 if (cachep->flags & SLAB_POISON) {
2470 #ifdef CONFIG_DEBUG_PAGEALLOC
2471 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2472 store_stackinfo(cachep, objp, (unsigned long)caller);
2473 kernel_map_pages(virt_to_page(objp),
2474 cachep->buffer_size / PAGE_SIZE, 0);
2475 } else {
2476 poison_obj(cachep, objp, POISON_FREE);
2477 }
2478 #else
2479 poison_obj(cachep, objp, POISON_FREE);
2480 #endif
2481 }
2482 return objp;
2483 }
2484
2485 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2486 {
2487 kmem_bufctl_t i;
2488 int entries = 0;
2489
2490 /* Check slab's freelist to see if this obj is there. */
2491 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2492 entries++;
2493 if (entries > cachep->num || i >= cachep->num)
2494 goto bad;
2495 }
2496 if (entries != cachep->num - slabp->inuse) {
2497 bad:
2498 printk(KERN_ERR
2499 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2500 cachep->name, cachep->num, slabp, slabp->inuse);
2501 for (i = 0;
2502 i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
2503 i++) {
2504 if ((i % 16) == 0)
2505 printk("\n%03x:", i);
2506 printk(" %02x", ((unsigned char *)slabp)[i]);
2507 }
2508 printk("\n");
2509 BUG();
2510 }
2511 }
2512 #else
2513 #define kfree_debugcheck(x) do { } while(0)
2514 #define cache_free_debugcheck(x,objp,z) (objp)
2515 #define check_slabp(x,y) do { } while(0)
2516 #endif
2517
2518 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2519 {
2520 int batchcount;
2521 struct kmem_list3 *l3;
2522 struct array_cache *ac;
2523
2524 check_irq_off();
2525 ac = cpu_cache_get(cachep);
2526 retry:
2527 batchcount = ac->batchcount;
2528 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2529 /* if there was little recent activity on this
2530 * cache, then perform only a partial refill.
2531 * Otherwise we could generate refill bouncing.
2532 */
2533 batchcount = BATCHREFILL_LIMIT;
2534 }
2535 l3 = cachep->nodelists[numa_node_id()];
2536
2537 BUG_ON(ac->avail > 0 || !l3);
2538 spin_lock(&l3->list_lock);
2539
2540 if (l3->shared) {
2541 struct array_cache *shared_array = l3->shared;
2542 if (shared_array->avail) {
2543 if (batchcount > shared_array->avail)
2544 batchcount = shared_array->avail;
2545 shared_array->avail -= batchcount;
2546 ac->avail = batchcount;
2547 memcpy(ac->entry,
2548 &(shared_array->entry[shared_array->avail]),
2549 sizeof(void *) * batchcount);
2550 shared_array->touched = 1;
2551 goto alloc_done;
2552 }
2553 }
2554 while (batchcount > 0) {
2555 struct list_head *entry;
2556 struct slab *slabp;
2557 /* Get slab alloc is to come from. */
2558 entry = l3->slabs_partial.next;
2559 if (entry == &l3->slabs_partial) {
2560 l3->free_touched = 1;
2561 entry = l3->slabs_free.next;
2562 if (entry == &l3->slabs_free)
2563 goto must_grow;
2564 }
2565
2566 slabp = list_entry(entry, struct slab, list);
2567 check_slabp(cachep, slabp);
2568 check_spinlock_acquired(cachep);
2569 while (slabp->inuse < cachep->num && batchcount--) {
2570 STATS_INC_ALLOCED(cachep);
2571 STATS_INC_ACTIVE(cachep);
2572 STATS_SET_HIGH(cachep);
2573
2574 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2575 numa_node_id());
2576 }
2577 check_slabp(cachep, slabp);
2578
2579 /* move slabp to correct slabp list: */
2580 list_del(&slabp->list);
2581 if (slabp->free == BUFCTL_END)
2582 list_add(&slabp->list, &l3->slabs_full);
2583 else
2584 list_add(&slabp->list, &l3->slabs_partial);
2585 }
2586
2587 must_grow:
2588 l3->free_objects -= ac->avail;
2589 alloc_done:
2590 spin_unlock(&l3->list_lock);
2591
2592 if (unlikely(!ac->avail)) {
2593 int x;
2594 x = cache_grow(cachep, flags, numa_node_id());
2595
2596 // cache_grow can reenable interrupts, then ac could change.
2597 ac = cpu_cache_get(cachep);
2598 if (!x && ac->avail == 0) // no objects in sight? abort
2599 return NULL;
2600
2601 if (!ac->avail) // objects refilled by interrupt?
2602 goto retry;
2603 }
2604 ac->touched = 1;
2605 return ac->entry[--ac->avail];
2606 }
2607
2608 static inline void
2609 cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
2610 {
2611 might_sleep_if(flags & __GFP_WAIT);
2612 #if DEBUG
2613 kmem_flagcheck(cachep, flags);
2614 #endif
2615 }
2616
2617 #if DEBUG
2618 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
2619 void *objp, void *caller)
2620 {
2621 if (!objp)
2622 return objp;
2623 if (cachep->flags & SLAB_POISON) {
2624 #ifdef CONFIG_DEBUG_PAGEALLOC
2625 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2626 kernel_map_pages(virt_to_page(objp),
2627 cachep->buffer_size / PAGE_SIZE, 1);
2628 else
2629 check_poison_obj(cachep, objp);
2630 #else
2631 check_poison_obj(cachep, objp);
2632 #endif
2633 poison_obj(cachep, objp, POISON_INUSE);
2634 }
2635 if (cachep->flags & SLAB_STORE_USER)
2636 *dbg_userword(cachep, objp) = caller;
2637
2638 if (cachep->flags & SLAB_RED_ZONE) {
2639 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
2640 || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2641 slab_error(cachep,
2642 "double free, or memory outside"
2643 " object was overwritten");
2644 printk(KERN_ERR
2645 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2646 objp, *dbg_redzone1(cachep, objp),
2647 *dbg_redzone2(cachep, objp));
2648 }
2649 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2650 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2651 }
2652 objp += obj_offset(cachep);
2653 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2654 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2655
2656 if (!(flags & __GFP_WAIT))
2657 ctor_flags |= SLAB_CTOR_ATOMIC;
2658
2659 cachep->ctor(objp, cachep, ctor_flags);
2660 }
2661 return objp;
2662 }
2663 #else
2664 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2665 #endif
2666
2667 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2668 {
2669 void *objp;
2670 struct array_cache *ac;
2671
2672 #ifdef CONFIG_NUMA
2673 if (unlikely(current->mempolicy && !in_interrupt())) {
2674 int nid = slab_node(current->mempolicy);
2675
2676 if (nid != numa_node_id())
2677 return __cache_alloc_node(cachep, flags, nid);
2678 }
2679 #endif
2680
2681 check_irq_off();
2682 ac = cpu_cache_get(cachep);
2683 if (likely(ac->avail)) {
2684 STATS_INC_ALLOCHIT(cachep);
2685 ac->touched = 1;
2686 objp = ac->entry[--ac->avail];
2687 } else {
2688 STATS_INC_ALLOCMISS(cachep);
2689 objp = cache_alloc_refill(cachep, flags);
2690 }
2691 return objp;
2692 }
2693
2694 static __always_inline void *
2695 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
2696 {
2697 unsigned long save_flags;
2698 void *objp;
2699
2700 cache_alloc_debugcheck_before(cachep, flags);
2701
2702 local_irq_save(save_flags);
2703 objp = ____cache_alloc(cachep, flags);
2704 local_irq_restore(save_flags);
2705 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2706 caller);
2707 prefetchw(objp);
2708 return objp;
2709 }
2710
2711 #ifdef CONFIG_NUMA
2712 /*
2713 * A interface to enable slab creation on nodeid
2714 */
2715 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2716 {
2717 struct list_head *entry;
2718 struct slab *slabp;
2719 struct kmem_list3 *l3;
2720 void *obj;
2721 int x;
2722
2723 l3 = cachep->nodelists[nodeid];
2724 BUG_ON(!l3);
2725
2726 retry:
2727 check_irq_off();
2728 spin_lock(&l3->list_lock);
2729 entry = l3->slabs_partial.next;
2730 if (entry == &l3->slabs_partial) {
2731 l3->free_touched = 1;
2732 entry = l3->slabs_free.next;
2733 if (entry == &l3->slabs_free)
2734 goto must_grow;
2735 }
2736
2737 slabp = list_entry(entry, struct slab, list);
2738 check_spinlock_acquired_node(cachep, nodeid);
2739 check_slabp(cachep, slabp);
2740
2741 STATS_INC_NODEALLOCS(cachep);
2742 STATS_INC_ACTIVE(cachep);
2743 STATS_SET_HIGH(cachep);
2744
2745 BUG_ON(slabp->inuse == cachep->num);
2746
2747 obj = slab_get_obj(cachep, slabp, nodeid);
2748 check_slabp(cachep, slabp);
2749 l3->free_objects--;
2750 /* move slabp to correct slabp list: */
2751 list_del(&slabp->list);
2752
2753 if (slabp->free == BUFCTL_END) {
2754 list_add(&slabp->list, &l3->slabs_full);
2755 } else {
2756 list_add(&slabp->list, &l3->slabs_partial);
2757 }
2758
2759 spin_unlock(&l3->list_lock);
2760 goto done;
2761
2762 must_grow:
2763 spin_unlock(&l3->list_lock);
2764 x = cache_grow(cachep, flags, nodeid);
2765
2766 if (!x)
2767 return NULL;
2768
2769 goto retry;
2770 done:
2771 return obj;
2772 }
2773 #endif
2774
2775 /*
2776 * Caller needs to acquire correct kmem_list's list_lock
2777 */
2778 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2779 int node)
2780 {
2781 int i;
2782 struct kmem_list3 *l3;
2783
2784 for (i = 0; i < nr_objects; i++) {
2785 void *objp = objpp[i];
2786 struct slab *slabp;
2787
2788 slabp = virt_to_slab(objp);
2789 l3 = cachep->nodelists[node];
2790 list_del(&slabp->list);
2791 check_spinlock_acquired_node(cachep, node);
2792 check_slabp(cachep, slabp);
2793 slab_put_obj(cachep, slabp, objp, node);
2794 STATS_DEC_ACTIVE(cachep);
2795 l3->free_objects++;
2796 check_slabp(cachep, slabp);
2797
2798 /* fixup slab chains */
2799 if (slabp->inuse == 0) {
2800 if (l3->free_objects > l3->free_limit) {
2801 l3->free_objects -= cachep->num;
2802 slab_destroy(cachep, slabp);
2803 } else {
2804 list_add(&slabp->list, &l3->slabs_free);
2805 }
2806 } else {
2807 /* Unconditionally move a slab to the end of the
2808 * partial list on free - maximum time for the
2809 * other objects to be freed, too.
2810 */
2811 list_add_tail(&slabp->list, &l3->slabs_partial);
2812 }
2813 }
2814 }
2815
2816 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
2817 {
2818 int batchcount;
2819 struct kmem_list3 *l3;
2820 int node = numa_node_id();
2821
2822 batchcount = ac->batchcount;
2823 #if DEBUG
2824 BUG_ON(!batchcount || batchcount > ac->avail);
2825 #endif
2826 check_irq_off();
2827 l3 = cachep->nodelists[node];
2828 spin_lock(&l3->list_lock);
2829 if (l3->shared) {
2830 struct array_cache *shared_array = l3->shared;
2831 int max = shared_array->limit - shared_array->avail;
2832 if (max) {
2833 if (batchcount > max)
2834 batchcount = max;
2835 memcpy(&(shared_array->entry[shared_array->avail]),
2836 ac->entry, sizeof(void *) * batchcount);
2837 shared_array->avail += batchcount;
2838 goto free_done;
2839 }
2840 }
2841
2842 free_block(cachep, ac->entry, batchcount, node);
2843 free_done:
2844 #if STATS
2845 {
2846 int i = 0;
2847 struct list_head *p;
2848
2849 p = l3->slabs_free.next;
2850 while (p != &(l3->slabs_free)) {
2851 struct slab *slabp;
2852
2853 slabp = list_entry(p, struct slab, list);
2854 BUG_ON(slabp->inuse);
2855
2856 i++;
2857 p = p->next;
2858 }
2859 STATS_SET_FREEABLE(cachep, i);
2860 }
2861 #endif
2862 spin_unlock(&l3->list_lock);
2863 ac->avail -= batchcount;
2864 memmove(ac->entry, &(ac->entry[batchcount]),
2865 sizeof(void *) * ac->avail);
2866 }
2867
2868 /*
2869 * __cache_free
2870 * Release an obj back to its cache. If the obj has a constructed
2871 * state, it must be in this state _before_ it is released.
2872 *
2873 * Called with disabled ints.
2874 */
2875 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
2876 {
2877 struct array_cache *ac = cpu_cache_get(cachep);
2878
2879 check_irq_off();
2880 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2881
2882 /* Make sure we are not freeing a object from another
2883 * node to the array cache on this cpu.
2884 */
2885 #ifdef CONFIG_NUMA
2886 {
2887 struct slab *slabp;
2888 slabp = virt_to_slab(objp);
2889 if (unlikely(slabp->nodeid != numa_node_id())) {
2890 struct array_cache *alien = NULL;
2891 int nodeid = slabp->nodeid;
2892 struct kmem_list3 *l3 =
2893 cachep->nodelists[numa_node_id()];
2894
2895 STATS_INC_NODEFREES(cachep);
2896 if (l3->alien && l3->alien[nodeid]) {
2897 alien = l3->alien[nodeid];
2898 spin_lock(&alien->lock);
2899 if (unlikely(alien->avail == alien->limit))
2900 __drain_alien_cache(cachep,
2901 alien, nodeid);
2902 alien->entry[alien->avail++] = objp;
2903 spin_unlock(&alien->lock);
2904 } else {
2905 spin_lock(&(cachep->nodelists[nodeid])->
2906 list_lock);
2907 free_block(cachep, &objp, 1, nodeid);
2908 spin_unlock(&(cachep->nodelists[nodeid])->
2909 list_lock);
2910 }
2911 return;
2912 }
2913 }
2914 #endif
2915 if (likely(ac->avail < ac->limit)) {
2916 STATS_INC_FREEHIT(cachep);
2917 ac->entry[ac->avail++] = objp;
2918 return;
2919 } else {
2920 STATS_INC_FREEMISS(cachep);
2921 cache_flusharray(cachep, ac);
2922 ac->entry[ac->avail++] = objp;
2923 }
2924 }
2925
2926 /**
2927 * kmem_cache_alloc - Allocate an object
2928 * @cachep: The cache to allocate from.
2929 * @flags: See kmalloc().
2930 *
2931 * Allocate an object from this cache. The flags are only relevant
2932 * if the cache has no available objects.
2933 */
2934 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2935 {
2936 return __cache_alloc(cachep, flags, __builtin_return_address(0));
2937 }
2938 EXPORT_SYMBOL(kmem_cache_alloc);
2939
2940 /**
2941 * kmem_ptr_validate - check if an untrusted pointer might
2942 * be a slab entry.
2943 * @cachep: the cache we're checking against
2944 * @ptr: pointer to validate
2945 *
2946 * This verifies that the untrusted pointer looks sane:
2947 * it is _not_ a guarantee that the pointer is actually
2948 * part of the slab cache in question, but it at least
2949 * validates that the pointer can be dereferenced and
2950 * looks half-way sane.
2951 *
2952 * Currently only used for dentry validation.
2953 */
2954 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
2955 {
2956 unsigned long addr = (unsigned long)ptr;
2957 unsigned long min_addr = PAGE_OFFSET;
2958 unsigned long align_mask = BYTES_PER_WORD - 1;
2959 unsigned long size = cachep->buffer_size;
2960 struct page *page;
2961
2962 if (unlikely(addr < min_addr))
2963 goto out;
2964 if (unlikely(addr > (unsigned long)high_memory - size))
2965 goto out;
2966 if (unlikely(addr & align_mask))
2967 goto out;
2968 if (unlikely(!kern_addr_valid(addr)))
2969 goto out;
2970 if (unlikely(!kern_addr_valid(addr + size - 1)))
2971 goto out;
2972 page = virt_to_page(ptr);
2973 if (unlikely(!PageSlab(page)))
2974 goto out;
2975 if (unlikely(page_get_cache(page) != cachep))
2976 goto out;
2977 return 1;
2978 out:
2979 return 0;
2980 }
2981
2982 #ifdef CONFIG_NUMA
2983 /**
2984 * kmem_cache_alloc_node - Allocate an object on the specified node
2985 * @cachep: The cache to allocate from.
2986 * @flags: See kmalloc().
2987 * @nodeid: node number of the target node.
2988 *
2989 * Identical to kmem_cache_alloc, except that this function is slow
2990 * and can sleep. And it will allocate memory on the given node, which
2991 * can improve the performance for cpu bound structures.
2992 * New and improved: it will now make sure that the object gets
2993 * put on the correct node list so that there is no false sharing.
2994 */
2995 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2996 {
2997 unsigned long save_flags;
2998 void *ptr;
2999
3000 cache_alloc_debugcheck_before(cachep, flags);
3001 local_irq_save(save_flags);
3002
3003 if (nodeid == -1 || nodeid == numa_node_id() ||
3004 !cachep->nodelists[nodeid])
3005 ptr = ____cache_alloc(cachep, flags);
3006 else
3007 ptr = __cache_alloc_node(cachep, flags, nodeid);
3008 local_irq_restore(save_flags);
3009
3010 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3011 __builtin_return_address(0));
3012
3013 return ptr;
3014 }
3015 EXPORT_SYMBOL(kmem_cache_alloc_node);
3016
3017 void *kmalloc_node(size_t size, gfp_t flags, int node)
3018 {
3019 struct kmem_cache *cachep;
3020
3021 cachep = kmem_find_general_cachep(size, flags);
3022 if (unlikely(cachep == NULL))
3023 return NULL;
3024 return kmem_cache_alloc_node(cachep, flags, node);
3025 }
3026 EXPORT_SYMBOL(kmalloc_node);
3027 #endif
3028
3029 /**
3030 * kmalloc - allocate memory
3031 * @size: how many bytes of memory are required.
3032 * @flags: the type of memory to allocate.
3033 *
3034 * kmalloc is the normal method of allocating memory
3035 * in the kernel.
3036 *
3037 * The @flags argument may be one of:
3038 *
3039 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3040 *
3041 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3042 *
3043 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3044 *
3045 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3046 * must be suitable for DMA. This can mean different things on different
3047 * platforms. For example, on i386, it means that the memory must come
3048 * from the first 16MB.
3049 */
3050 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3051 void *caller)
3052 {
3053 struct kmem_cache *cachep;
3054
3055 /* If you want to save a few bytes .text space: replace
3056 * __ with kmem_.
3057 * Then kmalloc uses the uninlined functions instead of the inline
3058 * functions.
3059 */
3060 cachep = __find_general_cachep(size, flags);
3061 if (unlikely(cachep == NULL))
3062 return NULL;
3063 return __cache_alloc(cachep, flags, caller);
3064 }
3065
3066 #ifndef CONFIG_DEBUG_SLAB
3067
3068 void *__kmalloc(size_t size, gfp_t flags)
3069 {
3070 return __do_kmalloc(size, flags, NULL);
3071 }
3072 EXPORT_SYMBOL(__kmalloc);
3073
3074 #else
3075
3076 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3077 {
3078 return __do_kmalloc(size, flags, caller);
3079 }
3080 EXPORT_SYMBOL(__kmalloc_track_caller);
3081
3082 #endif
3083
3084 #ifdef CONFIG_SMP
3085 /**
3086 * __alloc_percpu - allocate one copy of the object for every present
3087 * cpu in the system, zeroing them.
3088 * Objects should be dereferenced using the per_cpu_ptr macro only.
3089 *
3090 * @size: how many bytes of memory are required.
3091 */
3092 void *__alloc_percpu(size_t size)
3093 {
3094 int i;
3095 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3096
3097 if (!pdata)
3098 return NULL;
3099
3100 /*
3101 * Cannot use for_each_online_cpu since a cpu may come online
3102 * and we have no way of figuring out how to fix the array
3103 * that we have allocated then....
3104 */
3105 for_each_cpu(i) {
3106 int node = cpu_to_node(i);
3107
3108 if (node_online(node))
3109 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3110 else
3111 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3112
3113 if (!pdata->ptrs[i])
3114 goto unwind_oom;
3115 memset(pdata->ptrs[i], 0, size);
3116 }
3117
3118 /* Catch derefs w/o wrappers */
3119 return (void *)(~(unsigned long)pdata);
3120
3121 unwind_oom:
3122 while (--i >= 0) {
3123 if (!cpu_possible(i))
3124 continue;
3125 kfree(pdata->ptrs[i]);
3126 }
3127 kfree(pdata);
3128 return NULL;
3129 }
3130 EXPORT_SYMBOL(__alloc_percpu);
3131 #endif
3132
3133 /**
3134 * kmem_cache_free - Deallocate an object
3135 * @cachep: The cache the allocation was from.
3136 * @objp: The previously allocated object.
3137 *
3138 * Free an object which was previously allocated from this
3139 * cache.
3140 */
3141 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3142 {
3143 unsigned long flags;
3144
3145 local_irq_save(flags);
3146 __cache_free(cachep, objp);
3147 local_irq_restore(flags);
3148 }
3149 EXPORT_SYMBOL(kmem_cache_free);
3150
3151 /**
3152 * kfree - free previously allocated memory
3153 * @objp: pointer returned by kmalloc.
3154 *
3155 * If @objp is NULL, no operation is performed.
3156 *
3157 * Don't free memory not originally allocated by kmalloc()
3158 * or you will run into trouble.
3159 */
3160 void kfree(const void *objp)
3161 {
3162 struct kmem_cache *c;
3163 unsigned long flags;
3164
3165 if (unlikely(!objp))
3166 return;
3167 local_irq_save(flags);
3168 kfree_debugcheck(objp);
3169 c = virt_to_cache(objp);
3170 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3171 __cache_free(c, (void *)objp);
3172 local_irq_restore(flags);
3173 }
3174 EXPORT_SYMBOL(kfree);
3175
3176 #ifdef CONFIG_SMP
3177 /**
3178 * free_percpu - free previously allocated percpu memory
3179 * @objp: pointer returned by alloc_percpu.
3180 *
3181 * Don't free memory not originally allocated by alloc_percpu()
3182 * The complemented objp is to check for that.
3183 */
3184 void free_percpu(const void *objp)
3185 {
3186 int i;
3187 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3188
3189 /*
3190 * We allocate for all cpus so we cannot use for online cpu here.
3191 */
3192 for_each_cpu(i)
3193 kfree(p->ptrs[i]);
3194 kfree(p);
3195 }
3196 EXPORT_SYMBOL(free_percpu);
3197 #endif
3198
3199 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3200 {
3201 return obj_size(cachep);
3202 }
3203 EXPORT_SYMBOL(kmem_cache_size);
3204
3205 const char *kmem_cache_name(struct kmem_cache *cachep)
3206 {
3207 return cachep->name;
3208 }
3209 EXPORT_SYMBOL_GPL(kmem_cache_name);
3210
3211 /*
3212 * This initializes kmem_list3 for all nodes.
3213 */
3214 static int alloc_kmemlist(struct kmem_cache *cachep)
3215 {
3216 int node;
3217 struct kmem_list3 *l3;
3218 int err = 0;
3219
3220 for_each_online_node(node) {
3221 struct array_cache *nc = NULL, *new;
3222 struct array_cache **new_alien = NULL;
3223 #ifdef CONFIG_NUMA
3224 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3225 goto fail;
3226 #endif
3227 if (!(new = alloc_arraycache(node, (cachep->shared *
3228 cachep->batchcount),
3229 0xbaadf00d)))
3230 goto fail;
3231 if ((l3 = cachep->nodelists[node])) {
3232
3233 spin_lock_irq(&l3->list_lock);
3234
3235 if ((nc = cachep->nodelists[node]->shared))
3236 free_block(cachep, nc->entry, nc->avail, node);
3237
3238 l3->shared = new;
3239 if (!cachep->nodelists[node]->alien) {
3240 l3->alien = new_alien;
3241 new_alien = NULL;
3242 }
3243 l3->free_limit = (1 + nr_cpus_node(node)) *
3244 cachep->batchcount + cachep->num;
3245 spin_unlock_irq(&l3->list_lock);
3246 kfree(nc);
3247 free_alien_cache(new_alien);
3248 continue;
3249 }
3250 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
3251 GFP_KERNEL, node)))
3252 goto fail;
3253
3254 kmem_list3_init(l3);
3255 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3256 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3257 l3->shared = new;
3258 l3->alien = new_alien;
3259 l3->free_limit = (1 + nr_cpus_node(node)) *
3260 cachep->batchcount + cachep->num;
3261 cachep->nodelists[node] = l3;
3262 }
3263 return err;
3264 fail:
3265 err = -ENOMEM;
3266 return err;
3267 }
3268
3269 struct ccupdate_struct {
3270 struct kmem_cache *cachep;
3271 struct array_cache *new[NR_CPUS];
3272 };
3273
3274 static void do_ccupdate_local(void *info)
3275 {
3276 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3277 struct array_cache *old;
3278
3279 check_irq_off();
3280 old = cpu_cache_get(new->cachep);
3281
3282 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3283 new->new[smp_processor_id()] = old;
3284 }
3285
3286 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
3287 int shared)
3288 {
3289 struct ccupdate_struct new;
3290 int i, err;
3291
3292 memset(&new.new, 0, sizeof(new.new));
3293 for_each_online_cpu(i) {
3294 new.new[i] =
3295 alloc_arraycache(cpu_to_node(i), limit, batchcount);
3296 if (!new.new[i]) {
3297 for (i--; i >= 0; i--)
3298 kfree(new.new[i]);
3299 return -ENOMEM;
3300 }
3301 }
3302 new.cachep = cachep;
3303
3304 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3305
3306 check_irq_on();
3307 spin_lock(&cachep->spinlock);
3308 cachep->batchcount = batchcount;
3309 cachep->limit = limit;
3310 cachep->shared = shared;
3311 spin_unlock(&cachep->spinlock);
3312
3313 for_each_online_cpu(i) {
3314 struct array_cache *ccold = new.new[i];
3315 if (!ccold)
3316 continue;
3317 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3318 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3319 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3320 kfree(ccold);
3321 }
3322
3323 err = alloc_kmemlist(cachep);
3324 if (err) {
3325 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3326 cachep->name, -err);
3327 BUG();
3328 }
3329 return 0;
3330 }
3331
3332 static void enable_cpucache(struct kmem_cache *cachep)
3333 {
3334 int err;
3335 int limit, shared;
3336
3337 /* The head array serves three purposes:
3338 * - create a LIFO ordering, i.e. return objects that are cache-warm
3339 * - reduce the number of spinlock operations.
3340 * - reduce the number of linked list operations on the slab and
3341 * bufctl chains: array operations are cheaper.
3342 * The numbers are guessed, we should auto-tune as described by
3343 * Bonwick.
3344 */
3345 if (cachep->buffer_size > 131072)
3346 limit = 1;
3347 else if (cachep->buffer_size > PAGE_SIZE)
3348 limit = 8;
3349 else if (cachep->buffer_size > 1024)
3350 limit = 24;
3351 else if (cachep->buffer_size > 256)
3352 limit = 54;
3353 else
3354 limit = 120;
3355
3356 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3357 * allocation behaviour: Most allocs on one cpu, most free operations
3358 * on another cpu. For these cases, an efficient object passing between
3359 * cpus is necessary. This is provided by a shared array. The array
3360 * replaces Bonwick's magazine layer.
3361 * On uniprocessor, it's functionally equivalent (but less efficient)
3362 * to a larger limit. Thus disabled by default.
3363 */
3364 shared = 0;
3365 #ifdef CONFIG_SMP
3366 if (cachep->buffer_size <= PAGE_SIZE)
3367 shared = 8;
3368 #endif
3369
3370 #if DEBUG
3371 /* With debugging enabled, large batchcount lead to excessively
3372 * long periods with disabled local interrupts. Limit the
3373 * batchcount
3374 */
3375 if (limit > 32)
3376 limit = 32;
3377 #endif
3378 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3379 if (err)
3380 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3381 cachep->name, -err);
3382 }
3383
3384 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
3385 int force, int node)
3386 {
3387 int tofree;
3388
3389 check_spinlock_acquired_node(cachep, node);
3390 if (ac->touched && !force) {
3391 ac->touched = 0;
3392 } else if (ac->avail) {
3393 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3394 if (tofree > ac->avail) {
3395 tofree = (ac->avail + 1) / 2;
3396 }
3397 free_block(cachep, ac->entry, tofree, node);
3398 ac->avail -= tofree;
3399 memmove(ac->entry, &(ac->entry[tofree]),
3400 sizeof(void *) * ac->avail);
3401 }
3402 }
3403
3404 /**
3405 * cache_reap - Reclaim memory from caches.
3406 * @unused: unused parameter
3407 *
3408 * Called from workqueue/eventd every few seconds.
3409 * Purpose:
3410 * - clear the per-cpu caches for this CPU.
3411 * - return freeable pages to the main free memory pool.
3412 *
3413 * If we cannot acquire the cache chain mutex then just give up - we'll
3414 * try again on the next iteration.
3415 */
3416 static void cache_reap(void *unused)
3417 {
3418 struct list_head *walk;
3419 struct kmem_list3 *l3;
3420
3421 if (!mutex_trylock(&cache_chain_mutex)) {
3422 /* Give up. Setup the next iteration. */
3423 schedule_delayed_work(&__get_cpu_var(reap_work),
3424 REAPTIMEOUT_CPUC);
3425 return;
3426 }
3427
3428 list_for_each(walk, &cache_chain) {
3429 struct kmem_cache *searchp;
3430 struct list_head *p;
3431 int tofree;
3432 struct slab *slabp;
3433
3434 searchp = list_entry(walk, struct kmem_cache, next);
3435
3436 if (searchp->flags & SLAB_NO_REAP)
3437 goto next;
3438
3439 check_irq_on();
3440
3441 l3 = searchp->nodelists[numa_node_id()];
3442 if (l3->alien)
3443 drain_alien_cache(searchp, l3);
3444 spin_lock_irq(&l3->list_lock);
3445
3446 drain_array_locked(searchp, cpu_cache_get(searchp), 0,
3447 numa_node_id());
3448
3449 if (time_after(l3->next_reap, jiffies))
3450 goto next_unlock;
3451
3452 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3453
3454 if (l3->shared)
3455 drain_array_locked(searchp, l3->shared, 0,
3456 numa_node_id());
3457
3458 if (l3->free_touched) {
3459 l3->free_touched = 0;
3460 goto next_unlock;
3461 }
3462
3463 tofree =
3464 (l3->free_limit + 5 * searchp->num -
3465 1) / (5 * searchp->num);
3466 do {
3467 p = l3->slabs_free.next;
3468 if (p == &(l3->slabs_free))
3469 break;
3470
3471 slabp = list_entry(p, struct slab, list);
3472 BUG_ON(slabp->inuse);
3473 list_del(&slabp->list);
3474 STATS_INC_REAPED(searchp);
3475
3476 /* Safe to drop the lock. The slab is no longer
3477 * linked to the cache.
3478 * searchp cannot disappear, we hold
3479 * cache_chain_lock
3480 */
3481 l3->free_objects -= searchp->num;
3482 spin_unlock_irq(&l3->list_lock);
3483 slab_destroy(searchp, slabp);
3484 spin_lock_irq(&l3->list_lock);
3485 } while (--tofree > 0);
3486 next_unlock:
3487 spin_unlock_irq(&l3->list_lock);
3488 next:
3489 cond_resched();
3490 }
3491 check_irq_on();
3492 mutex_unlock(&cache_chain_mutex);
3493 drain_remote_pages();
3494 /* Setup the next iteration */
3495 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3496 }
3497
3498 #ifdef CONFIG_PROC_FS
3499
3500 static void print_slabinfo_header(struct seq_file *m)
3501 {
3502 /*
3503 * Output format version, so at least we can change it
3504 * without _too_ many complaints.
3505 */
3506 #if STATS
3507 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3508 #else
3509 seq_puts(m, "slabinfo - version: 2.1\n");
3510 #endif
3511 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3512 "<objperslab> <pagesperslab>");
3513 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3514 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3515 #if STATS
3516 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3517 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3518 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3519 #endif
3520 seq_putc(m, '\n');
3521 }
3522
3523 static void *s_start(struct seq_file *m, loff_t *pos)
3524 {
3525 loff_t n = *pos;
3526 struct list_head *p;
3527
3528 mutex_lock(&cache_chain_mutex);
3529 if (!n)
3530 print_slabinfo_header(m);
3531 p = cache_chain.next;
3532 while (n--) {
3533 p = p->next;
3534 if (p == &cache_chain)
3535 return NULL;
3536 }
3537 return list_entry(p, struct kmem_cache, next);
3538 }
3539
3540 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3541 {
3542 struct kmem_cache *cachep = p;
3543 ++*pos;
3544 return cachep->next.next == &cache_chain ? NULL
3545 : list_entry(cachep->next.next, struct kmem_cache, next);
3546 }
3547
3548 static void s_stop(struct seq_file *m, void *p)
3549 {
3550 mutex_unlock(&cache_chain_mutex);
3551 }
3552
3553 static int s_show(struct seq_file *m, void *p)
3554 {
3555 struct kmem_cache *cachep = p;
3556 struct list_head *q;
3557 struct slab *slabp;
3558 unsigned long active_objs;
3559 unsigned long num_objs;
3560 unsigned long active_slabs = 0;
3561 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3562 const char *name;
3563 char *error = NULL;
3564 int node;
3565 struct kmem_list3 *l3;
3566
3567 spin_lock(&cachep->spinlock);
3568 active_objs = 0;
3569 num_slabs = 0;
3570 for_each_online_node(node) {
3571 l3 = cachep->nodelists[node];
3572 if (!l3)
3573 continue;
3574
3575 check_irq_on();
3576 spin_lock_irq(&l3->list_lock);
3577
3578 list_for_each(q, &l3->slabs_full) {
3579 slabp = list_entry(q, struct slab, list);
3580 if (slabp->inuse != cachep->num && !error)
3581 error = "slabs_full accounting error";
3582 active_objs += cachep->num;
3583 active_slabs++;
3584 }
3585 list_for_each(q, &l3->slabs_partial) {
3586 slabp = list_entry(q, struct slab, list);
3587 if (slabp->inuse == cachep->num && !error)
3588 error = "slabs_partial inuse accounting error";
3589 if (!slabp->inuse && !error)
3590 error = "slabs_partial/inuse accounting error";
3591 active_objs += slabp->inuse;
3592 active_slabs++;
3593 }
3594 list_for_each(q, &l3->slabs_free) {
3595 slabp = list_entry(q, struct slab, list);
3596 if (slabp->inuse && !error)
3597 error = "slabs_free/inuse accounting error";
3598 num_slabs++;
3599 }
3600 free_objects += l3->free_objects;
3601 shared_avail += l3->shared->avail;
3602
3603 spin_unlock_irq(&l3->list_lock);
3604 }
3605 num_slabs += active_slabs;
3606 num_objs = num_slabs * cachep->num;
3607 if (num_objs - active_objs != free_objects && !error)
3608 error = "free_objects accounting error";
3609
3610 name = cachep->name;
3611 if (error)
3612 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3613
3614 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3615 name, active_objs, num_objs, cachep->buffer_size,
3616 cachep->num, (1 << cachep->gfporder));
3617 seq_printf(m, " : tunables %4u %4u %4u",
3618 cachep->limit, cachep->batchcount, cachep->shared);
3619 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3620 active_slabs, num_slabs, shared_avail);
3621 #if STATS
3622 { /* list3 stats */
3623 unsigned long high = cachep->high_mark;
3624 unsigned long allocs = cachep->num_allocations;
3625 unsigned long grown = cachep->grown;
3626 unsigned long reaped = cachep->reaped;
3627 unsigned long errors = cachep->errors;
3628 unsigned long max_freeable = cachep->max_freeable;
3629 unsigned long node_allocs = cachep->node_allocs;
3630 unsigned long node_frees = cachep->node_frees;
3631
3632 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3633 %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
3634 }
3635 /* cpu stats */
3636 {
3637 unsigned long allochit = atomic_read(&cachep->allochit);
3638 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3639 unsigned long freehit = atomic_read(&cachep->freehit);
3640 unsigned long freemiss = atomic_read(&cachep->freemiss);
3641
3642 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3643 allochit, allocmiss, freehit, freemiss);
3644 }
3645 #endif
3646 seq_putc(m, '\n');
3647 spin_unlock(&cachep->spinlock);
3648 return 0;
3649 }
3650
3651 /*
3652 * slabinfo_op - iterator that generates /proc/slabinfo
3653 *
3654 * Output layout:
3655 * cache-name
3656 * num-active-objs
3657 * total-objs
3658 * object size
3659 * num-active-slabs
3660 * total-slabs
3661 * num-pages-per-slab
3662 * + further values on SMP and with statistics enabled
3663 */
3664
3665 struct seq_operations slabinfo_op = {
3666 .start = s_start,
3667 .next = s_next,
3668 .stop = s_stop,
3669 .show = s_show,
3670 };
3671
3672 #define MAX_SLABINFO_WRITE 128
3673 /**
3674 * slabinfo_write - Tuning for the slab allocator
3675 * @file: unused
3676 * @buffer: user buffer
3677 * @count: data length
3678 * @ppos: unused
3679 */
3680 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3681 size_t count, loff_t *ppos)
3682 {
3683 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3684 int limit, batchcount, shared, res;
3685 struct list_head *p;
3686
3687 if (count > MAX_SLABINFO_WRITE)
3688 return -EINVAL;
3689 if (copy_from_user(&kbuf, buffer, count))
3690 return -EFAULT;
3691 kbuf[MAX_SLABINFO_WRITE] = '\0';
3692
3693 tmp = strchr(kbuf, ' ');
3694 if (!tmp)
3695 return -EINVAL;
3696 *tmp = '\0';
3697 tmp++;
3698 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3699 return -EINVAL;
3700
3701 /* Find the cache in the chain of caches. */
3702 mutex_lock(&cache_chain_mutex);
3703 res = -EINVAL;
3704 list_for_each(p, &cache_chain) {
3705 struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
3706 next);
3707
3708 if (!strcmp(cachep->name, kbuf)) {
3709 if (limit < 1 ||
3710 batchcount < 1 ||
3711 batchcount > limit || shared < 0) {
3712 res = 0;
3713 } else {
3714 res = do_tune_cpucache(cachep, limit,
3715 batchcount, shared);
3716 }
3717 break;
3718 }
3719 }
3720 mutex_unlock(&cache_chain_mutex);
3721 if (res >= 0)
3722 res = count;
3723 return res;
3724 }
3725 #endif
3726
3727 /**
3728 * ksize - get the actual amount of memory allocated for a given object
3729 * @objp: Pointer to the object
3730 *
3731 * kmalloc may internally round up allocations and return more memory
3732 * than requested. ksize() can be used to determine the actual amount of
3733 * memory allocated. The caller may use this additional memory, even though
3734 * a smaller amount of memory was initially specified with the kmalloc call.
3735 * The caller must guarantee that objp points to a valid object previously
3736 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3737 * must not be freed during the duration of the call.
3738 */
3739 unsigned int ksize(const void *objp)
3740 {
3741 if (unlikely(objp == NULL))
3742 return 0;
3743
3744 return obj_size(virt_to_cache(objp));
3745 }