]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/slab.c
mm/sl[aou]b: Use "kmem_cache" name for slab cache with kmem_cache struct
[mirror_ubuntu-focal-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include "slab.h"
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 /*
132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141 #ifdef CONFIG_DEBUG_SLAB
142 #define DEBUG 1
143 #define STATS 1
144 #define FORCED_DEBUG 1
145 #else
146 #define DEBUG 0
147 #define STATS 0
148 #define FORCED_DEBUG 0
149 #endif
150
151 /* Shouldn't this be in a header file somewhere? */
152 #define BYTES_PER_WORD sizeof(void *)
153 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
154
155 #ifndef ARCH_KMALLOC_FLAGS
156 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157 #endif
158
159 /*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163 static bool pfmemalloc_active __read_mostly;
164
165 /* Legal flag mask for kmem_cache_create(). */
166 #if DEBUG
167 # define CREATE_MASK (SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169 SLAB_CACHE_DMA | \
170 SLAB_STORE_USER | \
171 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
173 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
174 #else
175 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
176 SLAB_CACHE_DMA | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
179 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
180 #endif
181
182 /*
183 * kmem_bufctl_t:
184 *
185 * Bufctl's are used for linking objs within a slab
186 * linked offsets.
187 *
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 */
200
201 typedef unsigned int kmem_bufctl_t;
202 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
204 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
205 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
206
207 /*
208 * struct slab_rcu
209 *
210 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
211 * arrange for kmem_freepages to be called via RCU. This is useful if
212 * we need to approach a kernel structure obliquely, from its address
213 * obtained without the usual locking. We can lock the structure to
214 * stabilize it and check it's still at the given address, only if we
215 * can be sure that the memory has not been meanwhile reused for some
216 * other kind of object (which our subsystem's lock might corrupt).
217 *
218 * rcu_read_lock before reading the address, then rcu_read_unlock after
219 * taking the spinlock within the structure expected at that address.
220 */
221 struct slab_rcu {
222 struct rcu_head head;
223 struct kmem_cache *cachep;
224 void *addr;
225 };
226
227 /*
228 * struct slab
229 *
230 * Manages the objs in a slab. Placed either at the beginning of mem allocated
231 * for a slab, or allocated from an general cache.
232 * Slabs are chained into three list: fully used, partial, fully free slabs.
233 */
234 struct slab {
235 union {
236 struct {
237 struct list_head list;
238 unsigned long colouroff;
239 void *s_mem; /* including colour offset */
240 unsigned int inuse; /* num of objs active in slab */
241 kmem_bufctl_t free;
242 unsigned short nodeid;
243 };
244 struct slab_rcu __slab_cover_slab_rcu;
245 };
246 };
247
248 /*
249 * struct array_cache
250 *
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260 struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
265 spinlock_t lock;
266 void *entry[]; /*
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
270 *
271 * Entries should not be directly dereferenced as
272 * entries belonging to slabs marked pfmemalloc will
273 * have the lower bits set SLAB_OBJ_PFMEMALLOC
274 */
275 };
276
277 #define SLAB_OBJ_PFMEMALLOC 1
278 static inline bool is_obj_pfmemalloc(void *objp)
279 {
280 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
281 }
282
283 static inline void set_obj_pfmemalloc(void **objp)
284 {
285 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
286 return;
287 }
288
289 static inline void clear_obj_pfmemalloc(void **objp)
290 {
291 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
292 }
293
294 /*
295 * bootstrap: The caches do not work without cpuarrays anymore, but the
296 * cpuarrays are allocated from the generic caches...
297 */
298 #define BOOT_CPUCACHE_ENTRIES 1
299 struct arraycache_init {
300 struct array_cache cache;
301 void *entries[BOOT_CPUCACHE_ENTRIES];
302 };
303
304 /*
305 * The slab lists for all objects.
306 */
307 struct kmem_list3 {
308 struct list_head slabs_partial; /* partial list first, better asm code */
309 struct list_head slabs_full;
310 struct list_head slabs_free;
311 unsigned long free_objects;
312 unsigned int free_limit;
313 unsigned int colour_next; /* Per-node cache coloring */
314 spinlock_t list_lock;
315 struct array_cache *shared; /* shared per node */
316 struct array_cache **alien; /* on other nodes */
317 unsigned long next_reap; /* updated without locking */
318 int free_touched; /* updated without locking */
319 };
320
321 /*
322 * Need this for bootstrapping a per node allocator.
323 */
324 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
326 #define CACHE_CACHE 0
327 #define SIZE_AC MAX_NUMNODES
328 #define SIZE_L3 (2 * MAX_NUMNODES)
329
330 static int drain_freelist(struct kmem_cache *cache,
331 struct kmem_list3 *l3, int tofree);
332 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
333 int node);
334 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
335 static void cache_reap(struct work_struct *unused);
336
337 /*
338 * This function must be completely optimized away if a constant is passed to
339 * it. Mostly the same as what is in linux/slab.h except it returns an index.
340 */
341 static __always_inline int index_of(const size_t size)
342 {
343 extern void __bad_size(void);
344
345 if (__builtin_constant_p(size)) {
346 int i = 0;
347
348 #define CACHE(x) \
349 if (size <=x) \
350 return i; \
351 else \
352 i++;
353 #include <linux/kmalloc_sizes.h>
354 #undef CACHE
355 __bad_size();
356 } else
357 __bad_size();
358 return 0;
359 }
360
361 static int slab_early_init = 1;
362
363 #define INDEX_AC index_of(sizeof(struct arraycache_init))
364 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
365
366 static void kmem_list3_init(struct kmem_list3 *parent)
367 {
368 INIT_LIST_HEAD(&parent->slabs_full);
369 INIT_LIST_HEAD(&parent->slabs_partial);
370 INIT_LIST_HEAD(&parent->slabs_free);
371 parent->shared = NULL;
372 parent->alien = NULL;
373 parent->colour_next = 0;
374 spin_lock_init(&parent->list_lock);
375 parent->free_objects = 0;
376 parent->free_touched = 0;
377 }
378
379 #define MAKE_LIST(cachep, listp, slab, nodeid) \
380 do { \
381 INIT_LIST_HEAD(listp); \
382 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
383 } while (0)
384
385 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
386 do { \
387 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
388 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
389 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390 } while (0)
391
392 #define CFLGS_OFF_SLAB (0x80000000UL)
393 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
394
395 #define BATCHREFILL_LIMIT 16
396 /*
397 * Optimization question: fewer reaps means less probability for unnessary
398 * cpucache drain/refill cycles.
399 *
400 * OTOH the cpuarrays can contain lots of objects,
401 * which could lock up otherwise freeable slabs.
402 */
403 #define REAPTIMEOUT_CPUC (2*HZ)
404 #define REAPTIMEOUT_LIST3 (4*HZ)
405
406 #if STATS
407 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
408 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
409 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
410 #define STATS_INC_GROWN(x) ((x)->grown++)
411 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
412 #define STATS_SET_HIGH(x) \
413 do { \
414 if ((x)->num_active > (x)->high_mark) \
415 (x)->high_mark = (x)->num_active; \
416 } while (0)
417 #define STATS_INC_ERR(x) ((x)->errors++)
418 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
419 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
420 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
421 #define STATS_SET_FREEABLE(x, i) \
422 do { \
423 if ((x)->max_freeable < i) \
424 (x)->max_freeable = i; \
425 } while (0)
426 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
427 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
428 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
429 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
430 #else
431 #define STATS_INC_ACTIVE(x) do { } while (0)
432 #define STATS_DEC_ACTIVE(x) do { } while (0)
433 #define STATS_INC_ALLOCED(x) do { } while (0)
434 #define STATS_INC_GROWN(x) do { } while (0)
435 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
436 #define STATS_SET_HIGH(x) do { } while (0)
437 #define STATS_INC_ERR(x) do { } while (0)
438 #define STATS_INC_NODEALLOCS(x) do { } while (0)
439 #define STATS_INC_NODEFREES(x) do { } while (0)
440 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
441 #define STATS_SET_FREEABLE(x, i) do { } while (0)
442 #define STATS_INC_ALLOCHIT(x) do { } while (0)
443 #define STATS_INC_ALLOCMISS(x) do { } while (0)
444 #define STATS_INC_FREEHIT(x) do { } while (0)
445 #define STATS_INC_FREEMISS(x) do { } while (0)
446 #endif
447
448 #if DEBUG
449
450 /*
451 * memory layout of objects:
452 * 0 : objp
453 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
454 * the end of an object is aligned with the end of the real
455 * allocation. Catches writes behind the end of the allocation.
456 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
457 * redzone word.
458 * cachep->obj_offset: The real object.
459 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
460 * cachep->size - 1* BYTES_PER_WORD: last caller address
461 * [BYTES_PER_WORD long]
462 */
463 static int obj_offset(struct kmem_cache *cachep)
464 {
465 return cachep->obj_offset;
466 }
467
468 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
469 {
470 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
471 return (unsigned long long*) (objp + obj_offset(cachep) -
472 sizeof(unsigned long long));
473 }
474
475 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
476 {
477 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
478 if (cachep->flags & SLAB_STORE_USER)
479 return (unsigned long long *)(objp + cachep->size -
480 sizeof(unsigned long long) -
481 REDZONE_ALIGN);
482 return (unsigned long long *) (objp + cachep->size -
483 sizeof(unsigned long long));
484 }
485
486 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
487 {
488 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
489 return (void **)(objp + cachep->size - BYTES_PER_WORD);
490 }
491
492 #else
493
494 #define obj_offset(x) 0
495 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
496 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
497 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
498
499 #endif
500
501 #ifdef CONFIG_TRACING
502 size_t slab_buffer_size(struct kmem_cache *cachep)
503 {
504 return cachep->size;
505 }
506 EXPORT_SYMBOL(slab_buffer_size);
507 #endif
508
509 /*
510 * Do not go above this order unless 0 objects fit into the slab or
511 * overridden on the command line.
512 */
513 #define SLAB_MAX_ORDER_HI 1
514 #define SLAB_MAX_ORDER_LO 0
515 static int slab_max_order = SLAB_MAX_ORDER_LO;
516 static bool slab_max_order_set __initdata;
517
518 static inline struct kmem_cache *virt_to_cache(const void *obj)
519 {
520 struct page *page = virt_to_head_page(obj);
521 return page->slab_cache;
522 }
523
524 static inline struct slab *virt_to_slab(const void *obj)
525 {
526 struct page *page = virt_to_head_page(obj);
527
528 VM_BUG_ON(!PageSlab(page));
529 return page->slab_page;
530 }
531
532 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
533 unsigned int idx)
534 {
535 return slab->s_mem + cache->size * idx;
536 }
537
538 /*
539 * We want to avoid an expensive divide : (offset / cache->size)
540 * Using the fact that size is a constant for a particular cache,
541 * we can replace (offset / cache->size) by
542 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
543 */
544 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
545 const struct slab *slab, void *obj)
546 {
547 u32 offset = (obj - slab->s_mem);
548 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
549 }
550
551 /*
552 * These are the default caches for kmalloc. Custom caches can have other sizes.
553 */
554 struct cache_sizes malloc_sizes[] = {
555 #define CACHE(x) { .cs_size = (x) },
556 #include <linux/kmalloc_sizes.h>
557 CACHE(ULONG_MAX)
558 #undef CACHE
559 };
560 EXPORT_SYMBOL(malloc_sizes);
561
562 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
563 struct cache_names {
564 char *name;
565 char *name_dma;
566 };
567
568 static struct cache_names __initdata cache_names[] = {
569 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
570 #include <linux/kmalloc_sizes.h>
571 {NULL,}
572 #undef CACHE
573 };
574
575 static struct arraycache_init initarray_cache __initdata =
576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
577 static struct arraycache_init initarray_generic =
578 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
579
580 /* internal cache of cache description objs */
581 static struct kmem_list3 *kmem_cache_nodelists[MAX_NUMNODES];
582 static struct kmem_cache kmem_cache_boot = {
583 .nodelists = kmem_cache_nodelists,
584 .batchcount = 1,
585 .limit = BOOT_CPUCACHE_ENTRIES,
586 .shared = 1,
587 .size = sizeof(struct kmem_cache),
588 .name = "kmem_cache",
589 };
590
591 #define BAD_ALIEN_MAGIC 0x01020304ul
592
593 #ifdef CONFIG_LOCKDEP
594
595 /*
596 * Slab sometimes uses the kmalloc slabs to store the slab headers
597 * for other slabs "off slab".
598 * The locking for this is tricky in that it nests within the locks
599 * of all other slabs in a few places; to deal with this special
600 * locking we put on-slab caches into a separate lock-class.
601 *
602 * We set lock class for alien array caches which are up during init.
603 * The lock annotation will be lost if all cpus of a node goes down and
604 * then comes back up during hotplug
605 */
606 static struct lock_class_key on_slab_l3_key;
607 static struct lock_class_key on_slab_alc_key;
608
609 static struct lock_class_key debugobj_l3_key;
610 static struct lock_class_key debugobj_alc_key;
611
612 static void slab_set_lock_classes(struct kmem_cache *cachep,
613 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
614 int q)
615 {
616 struct array_cache **alc;
617 struct kmem_list3 *l3;
618 int r;
619
620 l3 = cachep->nodelists[q];
621 if (!l3)
622 return;
623
624 lockdep_set_class(&l3->list_lock, l3_key);
625 alc = l3->alien;
626 /*
627 * FIXME: This check for BAD_ALIEN_MAGIC
628 * should go away when common slab code is taught to
629 * work even without alien caches.
630 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
631 * for alloc_alien_cache,
632 */
633 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
634 return;
635 for_each_node(r) {
636 if (alc[r])
637 lockdep_set_class(&alc[r]->lock, alc_key);
638 }
639 }
640
641 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
642 {
643 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
644 }
645
646 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
647 {
648 int node;
649
650 for_each_online_node(node)
651 slab_set_debugobj_lock_classes_node(cachep, node);
652 }
653
654 static void init_node_lock_keys(int q)
655 {
656 struct cache_sizes *s = malloc_sizes;
657
658 if (slab_state < UP)
659 return;
660
661 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
662 struct kmem_list3 *l3;
663
664 l3 = s->cs_cachep->nodelists[q];
665 if (!l3 || OFF_SLAB(s->cs_cachep))
666 continue;
667
668 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
669 &on_slab_alc_key, q);
670 }
671 }
672
673 static inline void init_lock_keys(void)
674 {
675 int node;
676
677 for_each_node(node)
678 init_node_lock_keys(node);
679 }
680 #else
681 static void init_node_lock_keys(int q)
682 {
683 }
684
685 static inline void init_lock_keys(void)
686 {
687 }
688
689 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
690 {
691 }
692
693 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
694 {
695 }
696 #endif
697
698 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
699
700 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
701 {
702 return cachep->array[smp_processor_id()];
703 }
704
705 static inline struct kmem_cache *__find_general_cachep(size_t size,
706 gfp_t gfpflags)
707 {
708 struct cache_sizes *csizep = malloc_sizes;
709
710 #if DEBUG
711 /* This happens if someone tries to call
712 * kmem_cache_create(), or __kmalloc(), before
713 * the generic caches are initialized.
714 */
715 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
716 #endif
717 if (!size)
718 return ZERO_SIZE_PTR;
719
720 while (size > csizep->cs_size)
721 csizep++;
722
723 /*
724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
727 */
728 #ifdef CONFIG_ZONE_DMA
729 if (unlikely(gfpflags & GFP_DMA))
730 return csizep->cs_dmacachep;
731 #endif
732 return csizep->cs_cachep;
733 }
734
735 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
736 {
737 return __find_general_cachep(size, gfpflags);
738 }
739
740 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
741 {
742 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
743 }
744
745 /*
746 * Calculate the number of objects and left-over bytes for a given buffer size.
747 */
748 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
749 size_t align, int flags, size_t *left_over,
750 unsigned int *num)
751 {
752 int nr_objs;
753 size_t mgmt_size;
754 size_t slab_size = PAGE_SIZE << gfporder;
755
756 /*
757 * The slab management structure can be either off the slab or
758 * on it. For the latter case, the memory allocated for a
759 * slab is used for:
760 *
761 * - The struct slab
762 * - One kmem_bufctl_t for each object
763 * - Padding to respect alignment of @align
764 * - @buffer_size bytes for each object
765 *
766 * If the slab management structure is off the slab, then the
767 * alignment will already be calculated into the size. Because
768 * the slabs are all pages aligned, the objects will be at the
769 * correct alignment when allocated.
770 */
771 if (flags & CFLGS_OFF_SLAB) {
772 mgmt_size = 0;
773 nr_objs = slab_size / buffer_size;
774
775 if (nr_objs > SLAB_LIMIT)
776 nr_objs = SLAB_LIMIT;
777 } else {
778 /*
779 * Ignore padding for the initial guess. The padding
780 * is at most @align-1 bytes, and @buffer_size is at
781 * least @align. In the worst case, this result will
782 * be one greater than the number of objects that fit
783 * into the memory allocation when taking the padding
784 * into account.
785 */
786 nr_objs = (slab_size - sizeof(struct slab)) /
787 (buffer_size + sizeof(kmem_bufctl_t));
788
789 /*
790 * This calculated number will be either the right
791 * amount, or one greater than what we want.
792 */
793 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
794 > slab_size)
795 nr_objs--;
796
797 if (nr_objs > SLAB_LIMIT)
798 nr_objs = SLAB_LIMIT;
799
800 mgmt_size = slab_mgmt_size(nr_objs, align);
801 }
802 *num = nr_objs;
803 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
804 }
805
806 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
807
808 static void __slab_error(const char *function, struct kmem_cache *cachep,
809 char *msg)
810 {
811 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
812 function, cachep->name, msg);
813 dump_stack();
814 }
815
816 /*
817 * By default on NUMA we use alien caches to stage the freeing of
818 * objects allocated from other nodes. This causes massive memory
819 * inefficiencies when using fake NUMA setup to split memory into a
820 * large number of small nodes, so it can be disabled on the command
821 * line
822 */
823
824 static int use_alien_caches __read_mostly = 1;
825 static int __init noaliencache_setup(char *s)
826 {
827 use_alien_caches = 0;
828 return 1;
829 }
830 __setup("noaliencache", noaliencache_setup);
831
832 static int __init slab_max_order_setup(char *str)
833 {
834 get_option(&str, &slab_max_order);
835 slab_max_order = slab_max_order < 0 ? 0 :
836 min(slab_max_order, MAX_ORDER - 1);
837 slab_max_order_set = true;
838
839 return 1;
840 }
841 __setup("slab_max_order=", slab_max_order_setup);
842
843 #ifdef CONFIG_NUMA
844 /*
845 * Special reaping functions for NUMA systems called from cache_reap().
846 * These take care of doing round robin flushing of alien caches (containing
847 * objects freed on different nodes from which they were allocated) and the
848 * flushing of remote pcps by calling drain_node_pages.
849 */
850 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
851
852 static void init_reap_node(int cpu)
853 {
854 int node;
855
856 node = next_node(cpu_to_mem(cpu), node_online_map);
857 if (node == MAX_NUMNODES)
858 node = first_node(node_online_map);
859
860 per_cpu(slab_reap_node, cpu) = node;
861 }
862
863 static void next_reap_node(void)
864 {
865 int node = __this_cpu_read(slab_reap_node);
866
867 node = next_node(node, node_online_map);
868 if (unlikely(node >= MAX_NUMNODES))
869 node = first_node(node_online_map);
870 __this_cpu_write(slab_reap_node, node);
871 }
872
873 #else
874 #define init_reap_node(cpu) do { } while (0)
875 #define next_reap_node(void) do { } while (0)
876 #endif
877
878 /*
879 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
880 * via the workqueue/eventd.
881 * Add the CPU number into the expiration time to minimize the possibility of
882 * the CPUs getting into lockstep and contending for the global cache chain
883 * lock.
884 */
885 static void __cpuinit start_cpu_timer(int cpu)
886 {
887 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
888
889 /*
890 * When this gets called from do_initcalls via cpucache_init(),
891 * init_workqueues() has already run, so keventd will be setup
892 * at that time.
893 */
894 if (keventd_up() && reap_work->work.func == NULL) {
895 init_reap_node(cpu);
896 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
897 schedule_delayed_work_on(cpu, reap_work,
898 __round_jiffies_relative(HZ, cpu));
899 }
900 }
901
902 static struct array_cache *alloc_arraycache(int node, int entries,
903 int batchcount, gfp_t gfp)
904 {
905 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
906 struct array_cache *nc = NULL;
907
908 nc = kmalloc_node(memsize, gfp, node);
909 /*
910 * The array_cache structures contain pointers to free object.
911 * However, when such objects are allocated or transferred to another
912 * cache the pointers are not cleared and they could be counted as
913 * valid references during a kmemleak scan. Therefore, kmemleak must
914 * not scan such objects.
915 */
916 kmemleak_no_scan(nc);
917 if (nc) {
918 nc->avail = 0;
919 nc->limit = entries;
920 nc->batchcount = batchcount;
921 nc->touched = 0;
922 spin_lock_init(&nc->lock);
923 }
924 return nc;
925 }
926
927 static inline bool is_slab_pfmemalloc(struct slab *slabp)
928 {
929 struct page *page = virt_to_page(slabp->s_mem);
930
931 return PageSlabPfmemalloc(page);
932 }
933
934 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
935 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
936 struct array_cache *ac)
937 {
938 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
939 struct slab *slabp;
940 unsigned long flags;
941
942 if (!pfmemalloc_active)
943 return;
944
945 spin_lock_irqsave(&l3->list_lock, flags);
946 list_for_each_entry(slabp, &l3->slabs_full, list)
947 if (is_slab_pfmemalloc(slabp))
948 goto out;
949
950 list_for_each_entry(slabp, &l3->slabs_partial, list)
951 if (is_slab_pfmemalloc(slabp))
952 goto out;
953
954 list_for_each_entry(slabp, &l3->slabs_free, list)
955 if (is_slab_pfmemalloc(slabp))
956 goto out;
957
958 pfmemalloc_active = false;
959 out:
960 spin_unlock_irqrestore(&l3->list_lock, flags);
961 }
962
963 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
964 gfp_t flags, bool force_refill)
965 {
966 int i;
967 void *objp = ac->entry[--ac->avail];
968
969 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
970 if (unlikely(is_obj_pfmemalloc(objp))) {
971 struct kmem_list3 *l3;
972
973 if (gfp_pfmemalloc_allowed(flags)) {
974 clear_obj_pfmemalloc(&objp);
975 return objp;
976 }
977
978 /* The caller cannot use PFMEMALLOC objects, find another one */
979 for (i = 1; i < ac->avail; i++) {
980 /* If a !PFMEMALLOC object is found, swap them */
981 if (!is_obj_pfmemalloc(ac->entry[i])) {
982 objp = ac->entry[i];
983 ac->entry[i] = ac->entry[ac->avail];
984 ac->entry[ac->avail] = objp;
985 return objp;
986 }
987 }
988
989 /*
990 * If there are empty slabs on the slabs_free list and we are
991 * being forced to refill the cache, mark this one !pfmemalloc.
992 */
993 l3 = cachep->nodelists[numa_mem_id()];
994 if (!list_empty(&l3->slabs_free) && force_refill) {
995 struct slab *slabp = virt_to_slab(objp);
996 ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
997 clear_obj_pfmemalloc(&objp);
998 recheck_pfmemalloc_active(cachep, ac);
999 return objp;
1000 }
1001
1002 /* No !PFMEMALLOC objects available */
1003 ac->avail++;
1004 objp = NULL;
1005 }
1006
1007 return objp;
1008 }
1009
1010 static inline void *ac_get_obj(struct kmem_cache *cachep,
1011 struct array_cache *ac, gfp_t flags, bool force_refill)
1012 {
1013 void *objp;
1014
1015 if (unlikely(sk_memalloc_socks()))
1016 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1017 else
1018 objp = ac->entry[--ac->avail];
1019
1020 return objp;
1021 }
1022
1023 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1024 void *objp)
1025 {
1026 if (unlikely(pfmemalloc_active)) {
1027 /* Some pfmemalloc slabs exist, check if this is one */
1028 struct page *page = virt_to_page(objp);
1029 if (PageSlabPfmemalloc(page))
1030 set_obj_pfmemalloc(&objp);
1031 }
1032
1033 return objp;
1034 }
1035
1036 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1037 void *objp)
1038 {
1039 if (unlikely(sk_memalloc_socks()))
1040 objp = __ac_put_obj(cachep, ac, objp);
1041
1042 ac->entry[ac->avail++] = objp;
1043 }
1044
1045 /*
1046 * Transfer objects in one arraycache to another.
1047 * Locking must be handled by the caller.
1048 *
1049 * Return the number of entries transferred.
1050 */
1051 static int transfer_objects(struct array_cache *to,
1052 struct array_cache *from, unsigned int max)
1053 {
1054 /* Figure out how many entries to transfer */
1055 int nr = min3(from->avail, max, to->limit - to->avail);
1056
1057 if (!nr)
1058 return 0;
1059
1060 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1061 sizeof(void *) *nr);
1062
1063 from->avail -= nr;
1064 to->avail += nr;
1065 return nr;
1066 }
1067
1068 #ifndef CONFIG_NUMA
1069
1070 #define drain_alien_cache(cachep, alien) do { } while (0)
1071 #define reap_alien(cachep, l3) do { } while (0)
1072
1073 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1074 {
1075 return (struct array_cache **)BAD_ALIEN_MAGIC;
1076 }
1077
1078 static inline void free_alien_cache(struct array_cache **ac_ptr)
1079 {
1080 }
1081
1082 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1083 {
1084 return 0;
1085 }
1086
1087 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1088 gfp_t flags)
1089 {
1090 return NULL;
1091 }
1092
1093 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1094 gfp_t flags, int nodeid)
1095 {
1096 return NULL;
1097 }
1098
1099 #else /* CONFIG_NUMA */
1100
1101 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1102 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1103
1104 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1105 {
1106 struct array_cache **ac_ptr;
1107 int memsize = sizeof(void *) * nr_node_ids;
1108 int i;
1109
1110 if (limit > 1)
1111 limit = 12;
1112 ac_ptr = kzalloc_node(memsize, gfp, node);
1113 if (ac_ptr) {
1114 for_each_node(i) {
1115 if (i == node || !node_online(i))
1116 continue;
1117 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1118 if (!ac_ptr[i]) {
1119 for (i--; i >= 0; i--)
1120 kfree(ac_ptr[i]);
1121 kfree(ac_ptr);
1122 return NULL;
1123 }
1124 }
1125 }
1126 return ac_ptr;
1127 }
1128
1129 static void free_alien_cache(struct array_cache **ac_ptr)
1130 {
1131 int i;
1132
1133 if (!ac_ptr)
1134 return;
1135 for_each_node(i)
1136 kfree(ac_ptr[i]);
1137 kfree(ac_ptr);
1138 }
1139
1140 static void __drain_alien_cache(struct kmem_cache *cachep,
1141 struct array_cache *ac, int node)
1142 {
1143 struct kmem_list3 *rl3 = cachep->nodelists[node];
1144
1145 if (ac->avail) {
1146 spin_lock(&rl3->list_lock);
1147 /*
1148 * Stuff objects into the remote nodes shared array first.
1149 * That way we could avoid the overhead of putting the objects
1150 * into the free lists and getting them back later.
1151 */
1152 if (rl3->shared)
1153 transfer_objects(rl3->shared, ac, ac->limit);
1154
1155 free_block(cachep, ac->entry, ac->avail, node);
1156 ac->avail = 0;
1157 spin_unlock(&rl3->list_lock);
1158 }
1159 }
1160
1161 /*
1162 * Called from cache_reap() to regularly drain alien caches round robin.
1163 */
1164 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1165 {
1166 int node = __this_cpu_read(slab_reap_node);
1167
1168 if (l3->alien) {
1169 struct array_cache *ac = l3->alien[node];
1170
1171 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1172 __drain_alien_cache(cachep, ac, node);
1173 spin_unlock_irq(&ac->lock);
1174 }
1175 }
1176 }
1177
1178 static void drain_alien_cache(struct kmem_cache *cachep,
1179 struct array_cache **alien)
1180 {
1181 int i = 0;
1182 struct array_cache *ac;
1183 unsigned long flags;
1184
1185 for_each_online_node(i) {
1186 ac = alien[i];
1187 if (ac) {
1188 spin_lock_irqsave(&ac->lock, flags);
1189 __drain_alien_cache(cachep, ac, i);
1190 spin_unlock_irqrestore(&ac->lock, flags);
1191 }
1192 }
1193 }
1194
1195 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1196 {
1197 struct slab *slabp = virt_to_slab(objp);
1198 int nodeid = slabp->nodeid;
1199 struct kmem_list3 *l3;
1200 struct array_cache *alien = NULL;
1201 int node;
1202
1203 node = numa_mem_id();
1204
1205 /*
1206 * Make sure we are not freeing a object from another node to the array
1207 * cache on this cpu.
1208 */
1209 if (likely(slabp->nodeid == node))
1210 return 0;
1211
1212 l3 = cachep->nodelists[node];
1213 STATS_INC_NODEFREES(cachep);
1214 if (l3->alien && l3->alien[nodeid]) {
1215 alien = l3->alien[nodeid];
1216 spin_lock(&alien->lock);
1217 if (unlikely(alien->avail == alien->limit)) {
1218 STATS_INC_ACOVERFLOW(cachep);
1219 __drain_alien_cache(cachep, alien, nodeid);
1220 }
1221 ac_put_obj(cachep, alien, objp);
1222 spin_unlock(&alien->lock);
1223 } else {
1224 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1225 free_block(cachep, &objp, 1, nodeid);
1226 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1227 }
1228 return 1;
1229 }
1230 #endif
1231
1232 /*
1233 * Allocates and initializes nodelists for a node on each slab cache, used for
1234 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1235 * will be allocated off-node since memory is not yet online for the new node.
1236 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1237 * already in use.
1238 *
1239 * Must hold slab_mutex.
1240 */
1241 static int init_cache_nodelists_node(int node)
1242 {
1243 struct kmem_cache *cachep;
1244 struct kmem_list3 *l3;
1245 const int memsize = sizeof(struct kmem_list3);
1246
1247 list_for_each_entry(cachep, &slab_caches, list) {
1248 /*
1249 * Set up the size64 kmemlist for cpu before we can
1250 * begin anything. Make sure some other cpu on this
1251 * node has not already allocated this
1252 */
1253 if (!cachep->nodelists[node]) {
1254 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1255 if (!l3)
1256 return -ENOMEM;
1257 kmem_list3_init(l3);
1258 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1259 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1260
1261 /*
1262 * The l3s don't come and go as CPUs come and
1263 * go. slab_mutex is sufficient
1264 * protection here.
1265 */
1266 cachep->nodelists[node] = l3;
1267 }
1268
1269 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1270 cachep->nodelists[node]->free_limit =
1271 (1 + nr_cpus_node(node)) *
1272 cachep->batchcount + cachep->num;
1273 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1274 }
1275 return 0;
1276 }
1277
1278 static void __cpuinit cpuup_canceled(long cpu)
1279 {
1280 struct kmem_cache *cachep;
1281 struct kmem_list3 *l3 = NULL;
1282 int node = cpu_to_mem(cpu);
1283 const struct cpumask *mask = cpumask_of_node(node);
1284
1285 list_for_each_entry(cachep, &slab_caches, list) {
1286 struct array_cache *nc;
1287 struct array_cache *shared;
1288 struct array_cache **alien;
1289
1290 /* cpu is dead; no one can alloc from it. */
1291 nc = cachep->array[cpu];
1292 cachep->array[cpu] = NULL;
1293 l3 = cachep->nodelists[node];
1294
1295 if (!l3)
1296 goto free_array_cache;
1297
1298 spin_lock_irq(&l3->list_lock);
1299
1300 /* Free limit for this kmem_list3 */
1301 l3->free_limit -= cachep->batchcount;
1302 if (nc)
1303 free_block(cachep, nc->entry, nc->avail, node);
1304
1305 if (!cpumask_empty(mask)) {
1306 spin_unlock_irq(&l3->list_lock);
1307 goto free_array_cache;
1308 }
1309
1310 shared = l3->shared;
1311 if (shared) {
1312 free_block(cachep, shared->entry,
1313 shared->avail, node);
1314 l3->shared = NULL;
1315 }
1316
1317 alien = l3->alien;
1318 l3->alien = NULL;
1319
1320 spin_unlock_irq(&l3->list_lock);
1321
1322 kfree(shared);
1323 if (alien) {
1324 drain_alien_cache(cachep, alien);
1325 free_alien_cache(alien);
1326 }
1327 free_array_cache:
1328 kfree(nc);
1329 }
1330 /*
1331 * In the previous loop, all the objects were freed to
1332 * the respective cache's slabs, now we can go ahead and
1333 * shrink each nodelist to its limit.
1334 */
1335 list_for_each_entry(cachep, &slab_caches, list) {
1336 l3 = cachep->nodelists[node];
1337 if (!l3)
1338 continue;
1339 drain_freelist(cachep, l3, l3->free_objects);
1340 }
1341 }
1342
1343 static int __cpuinit cpuup_prepare(long cpu)
1344 {
1345 struct kmem_cache *cachep;
1346 struct kmem_list3 *l3 = NULL;
1347 int node = cpu_to_mem(cpu);
1348 int err;
1349
1350 /*
1351 * We need to do this right in the beginning since
1352 * alloc_arraycache's are going to use this list.
1353 * kmalloc_node allows us to add the slab to the right
1354 * kmem_list3 and not this cpu's kmem_list3
1355 */
1356 err = init_cache_nodelists_node(node);
1357 if (err < 0)
1358 goto bad;
1359
1360 /*
1361 * Now we can go ahead with allocating the shared arrays and
1362 * array caches
1363 */
1364 list_for_each_entry(cachep, &slab_caches, list) {
1365 struct array_cache *nc;
1366 struct array_cache *shared = NULL;
1367 struct array_cache **alien = NULL;
1368
1369 nc = alloc_arraycache(node, cachep->limit,
1370 cachep->batchcount, GFP_KERNEL);
1371 if (!nc)
1372 goto bad;
1373 if (cachep->shared) {
1374 shared = alloc_arraycache(node,
1375 cachep->shared * cachep->batchcount,
1376 0xbaadf00d, GFP_KERNEL);
1377 if (!shared) {
1378 kfree(nc);
1379 goto bad;
1380 }
1381 }
1382 if (use_alien_caches) {
1383 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1384 if (!alien) {
1385 kfree(shared);
1386 kfree(nc);
1387 goto bad;
1388 }
1389 }
1390 cachep->array[cpu] = nc;
1391 l3 = cachep->nodelists[node];
1392 BUG_ON(!l3);
1393
1394 spin_lock_irq(&l3->list_lock);
1395 if (!l3->shared) {
1396 /*
1397 * We are serialised from CPU_DEAD or
1398 * CPU_UP_CANCELLED by the cpucontrol lock
1399 */
1400 l3->shared = shared;
1401 shared = NULL;
1402 }
1403 #ifdef CONFIG_NUMA
1404 if (!l3->alien) {
1405 l3->alien = alien;
1406 alien = NULL;
1407 }
1408 #endif
1409 spin_unlock_irq(&l3->list_lock);
1410 kfree(shared);
1411 free_alien_cache(alien);
1412 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1413 slab_set_debugobj_lock_classes_node(cachep, node);
1414 }
1415 init_node_lock_keys(node);
1416
1417 return 0;
1418 bad:
1419 cpuup_canceled(cpu);
1420 return -ENOMEM;
1421 }
1422
1423 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1424 unsigned long action, void *hcpu)
1425 {
1426 long cpu = (long)hcpu;
1427 int err = 0;
1428
1429 switch (action) {
1430 case CPU_UP_PREPARE:
1431 case CPU_UP_PREPARE_FROZEN:
1432 mutex_lock(&slab_mutex);
1433 err = cpuup_prepare(cpu);
1434 mutex_unlock(&slab_mutex);
1435 break;
1436 case CPU_ONLINE:
1437 case CPU_ONLINE_FROZEN:
1438 start_cpu_timer(cpu);
1439 break;
1440 #ifdef CONFIG_HOTPLUG_CPU
1441 case CPU_DOWN_PREPARE:
1442 case CPU_DOWN_PREPARE_FROZEN:
1443 /*
1444 * Shutdown cache reaper. Note that the slab_mutex is
1445 * held so that if cache_reap() is invoked it cannot do
1446 * anything expensive but will only modify reap_work
1447 * and reschedule the timer.
1448 */
1449 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1450 /* Now the cache_reaper is guaranteed to be not running. */
1451 per_cpu(slab_reap_work, cpu).work.func = NULL;
1452 break;
1453 case CPU_DOWN_FAILED:
1454 case CPU_DOWN_FAILED_FROZEN:
1455 start_cpu_timer(cpu);
1456 break;
1457 case CPU_DEAD:
1458 case CPU_DEAD_FROZEN:
1459 /*
1460 * Even if all the cpus of a node are down, we don't free the
1461 * kmem_list3 of any cache. This to avoid a race between
1462 * cpu_down, and a kmalloc allocation from another cpu for
1463 * memory from the node of the cpu going down. The list3
1464 * structure is usually allocated from kmem_cache_create() and
1465 * gets destroyed at kmem_cache_destroy().
1466 */
1467 /* fall through */
1468 #endif
1469 case CPU_UP_CANCELED:
1470 case CPU_UP_CANCELED_FROZEN:
1471 mutex_lock(&slab_mutex);
1472 cpuup_canceled(cpu);
1473 mutex_unlock(&slab_mutex);
1474 break;
1475 }
1476 return notifier_from_errno(err);
1477 }
1478
1479 static struct notifier_block __cpuinitdata cpucache_notifier = {
1480 &cpuup_callback, NULL, 0
1481 };
1482
1483 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1484 /*
1485 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1486 * Returns -EBUSY if all objects cannot be drained so that the node is not
1487 * removed.
1488 *
1489 * Must hold slab_mutex.
1490 */
1491 static int __meminit drain_cache_nodelists_node(int node)
1492 {
1493 struct kmem_cache *cachep;
1494 int ret = 0;
1495
1496 list_for_each_entry(cachep, &slab_caches, list) {
1497 struct kmem_list3 *l3;
1498
1499 l3 = cachep->nodelists[node];
1500 if (!l3)
1501 continue;
1502
1503 drain_freelist(cachep, l3, l3->free_objects);
1504
1505 if (!list_empty(&l3->slabs_full) ||
1506 !list_empty(&l3->slabs_partial)) {
1507 ret = -EBUSY;
1508 break;
1509 }
1510 }
1511 return ret;
1512 }
1513
1514 static int __meminit slab_memory_callback(struct notifier_block *self,
1515 unsigned long action, void *arg)
1516 {
1517 struct memory_notify *mnb = arg;
1518 int ret = 0;
1519 int nid;
1520
1521 nid = mnb->status_change_nid;
1522 if (nid < 0)
1523 goto out;
1524
1525 switch (action) {
1526 case MEM_GOING_ONLINE:
1527 mutex_lock(&slab_mutex);
1528 ret = init_cache_nodelists_node(nid);
1529 mutex_unlock(&slab_mutex);
1530 break;
1531 case MEM_GOING_OFFLINE:
1532 mutex_lock(&slab_mutex);
1533 ret = drain_cache_nodelists_node(nid);
1534 mutex_unlock(&slab_mutex);
1535 break;
1536 case MEM_ONLINE:
1537 case MEM_OFFLINE:
1538 case MEM_CANCEL_ONLINE:
1539 case MEM_CANCEL_OFFLINE:
1540 break;
1541 }
1542 out:
1543 return notifier_from_errno(ret);
1544 }
1545 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1546
1547 /*
1548 * swap the static kmem_list3 with kmalloced memory
1549 */
1550 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1551 int nodeid)
1552 {
1553 struct kmem_list3 *ptr;
1554
1555 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1556 BUG_ON(!ptr);
1557
1558 memcpy(ptr, list, sizeof(struct kmem_list3));
1559 /*
1560 * Do not assume that spinlocks can be initialized via memcpy:
1561 */
1562 spin_lock_init(&ptr->list_lock);
1563
1564 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1565 cachep->nodelists[nodeid] = ptr;
1566 }
1567
1568 /*
1569 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1570 * size of kmem_list3.
1571 */
1572 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1573 {
1574 int node;
1575
1576 for_each_online_node(node) {
1577 cachep->nodelists[node] = &initkmem_list3[index + node];
1578 cachep->nodelists[node]->next_reap = jiffies +
1579 REAPTIMEOUT_LIST3 +
1580 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1581 }
1582 }
1583
1584 /*
1585 * Initialisation. Called after the page allocator have been initialised and
1586 * before smp_init().
1587 */
1588 void __init kmem_cache_init(void)
1589 {
1590 size_t left_over;
1591 struct cache_sizes *sizes;
1592 struct cache_names *names;
1593 int i;
1594 int order;
1595 int node;
1596
1597 kmem_cache = &kmem_cache_boot;
1598
1599 if (num_possible_nodes() == 1)
1600 use_alien_caches = 0;
1601
1602 for (i = 0; i < NUM_INIT_LISTS; i++) {
1603 kmem_list3_init(&initkmem_list3[i]);
1604 if (i < MAX_NUMNODES)
1605 kmem_cache->nodelists[i] = NULL;
1606 }
1607 set_up_list3s(kmem_cache, CACHE_CACHE);
1608
1609 /*
1610 * Fragmentation resistance on low memory - only use bigger
1611 * page orders on machines with more than 32MB of memory if
1612 * not overridden on the command line.
1613 */
1614 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1615 slab_max_order = SLAB_MAX_ORDER_HI;
1616
1617 /* Bootstrap is tricky, because several objects are allocated
1618 * from caches that do not exist yet:
1619 * 1) initialize the kmem_cache cache: it contains the struct
1620 * kmem_cache structures of all caches, except kmem_cache itself:
1621 * kmem_cache is statically allocated.
1622 * Initially an __init data area is used for the head array and the
1623 * kmem_list3 structures, it's replaced with a kmalloc allocated
1624 * array at the end of the bootstrap.
1625 * 2) Create the first kmalloc cache.
1626 * The struct kmem_cache for the new cache is allocated normally.
1627 * An __init data area is used for the head array.
1628 * 3) Create the remaining kmalloc caches, with minimally sized
1629 * head arrays.
1630 * 4) Replace the __init data head arrays for kmem_cache and the first
1631 * kmalloc cache with kmalloc allocated arrays.
1632 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1633 * the other cache's with kmalloc allocated memory.
1634 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1635 */
1636
1637 node = numa_mem_id();
1638
1639 /* 1) create the kmem_cache */
1640 INIT_LIST_HEAD(&slab_caches);
1641 list_add(&kmem_cache->list, &slab_caches);
1642 kmem_cache->colour_off = cache_line_size();
1643 kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
1644 kmem_cache->nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1645
1646 /*
1647 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1648 */
1649 kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1650 nr_node_ids * sizeof(struct kmem_list3 *);
1651 kmem_cache->object_size = kmem_cache->size;
1652 kmem_cache->size = ALIGN(kmem_cache->object_size,
1653 cache_line_size());
1654 kmem_cache->reciprocal_buffer_size =
1655 reciprocal_value(kmem_cache->size);
1656
1657 for (order = 0; order < MAX_ORDER; order++) {
1658 cache_estimate(order, kmem_cache->size,
1659 cache_line_size(), 0, &left_over, &kmem_cache->num);
1660 if (kmem_cache->num)
1661 break;
1662 }
1663 BUG_ON(!kmem_cache->num);
1664 kmem_cache->gfporder = order;
1665 kmem_cache->colour = left_over / kmem_cache->colour_off;
1666 kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
1667 sizeof(struct slab), cache_line_size());
1668
1669 /* 2+3) create the kmalloc caches */
1670 sizes = malloc_sizes;
1671 names = cache_names;
1672
1673 /*
1674 * Initialize the caches that provide memory for the array cache and the
1675 * kmem_list3 structures first. Without this, further allocations will
1676 * bug.
1677 */
1678
1679 sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
1680 sizes[INDEX_AC].cs_size,
1681 ARCH_KMALLOC_MINALIGN,
1682 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1683 NULL);
1684
1685 list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
1686 if (INDEX_AC != INDEX_L3) {
1687 sizes[INDEX_L3].cs_cachep =
1688 __kmem_cache_create(names[INDEX_L3].name,
1689 sizes[INDEX_L3].cs_size,
1690 ARCH_KMALLOC_MINALIGN,
1691 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1692 NULL);
1693 list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
1694 }
1695
1696 slab_early_init = 0;
1697
1698 while (sizes->cs_size != ULONG_MAX) {
1699 /*
1700 * For performance, all the general caches are L1 aligned.
1701 * This should be particularly beneficial on SMP boxes, as it
1702 * eliminates "false sharing".
1703 * Note for systems short on memory removing the alignment will
1704 * allow tighter packing of the smaller caches.
1705 */
1706 if (!sizes->cs_cachep) {
1707 sizes->cs_cachep = __kmem_cache_create(names->name,
1708 sizes->cs_size,
1709 ARCH_KMALLOC_MINALIGN,
1710 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1711 NULL);
1712 list_add(&sizes->cs_cachep->list, &slab_caches);
1713 }
1714 #ifdef CONFIG_ZONE_DMA
1715 sizes->cs_dmacachep = __kmem_cache_create(
1716 names->name_dma,
1717 sizes->cs_size,
1718 ARCH_KMALLOC_MINALIGN,
1719 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1720 SLAB_PANIC,
1721 NULL);
1722 list_add(&sizes->cs_dmacachep->list, &slab_caches);
1723 #endif
1724 sizes++;
1725 names++;
1726 }
1727 /* 4) Replace the bootstrap head arrays */
1728 {
1729 struct array_cache *ptr;
1730
1731 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1732
1733 BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
1734 memcpy(ptr, cpu_cache_get(kmem_cache),
1735 sizeof(struct arraycache_init));
1736 /*
1737 * Do not assume that spinlocks can be initialized via memcpy:
1738 */
1739 spin_lock_init(&ptr->lock);
1740
1741 kmem_cache->array[smp_processor_id()] = ptr;
1742
1743 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1744
1745 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1746 != &initarray_generic.cache);
1747 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1748 sizeof(struct arraycache_init));
1749 /*
1750 * Do not assume that spinlocks can be initialized via memcpy:
1751 */
1752 spin_lock_init(&ptr->lock);
1753
1754 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1755 ptr;
1756 }
1757 /* 5) Replace the bootstrap kmem_list3's */
1758 {
1759 int nid;
1760
1761 for_each_online_node(nid) {
1762 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1763
1764 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1765 &initkmem_list3[SIZE_AC + nid], nid);
1766
1767 if (INDEX_AC != INDEX_L3) {
1768 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1769 &initkmem_list3[SIZE_L3 + nid], nid);
1770 }
1771 }
1772 }
1773
1774 slab_state = UP;
1775 }
1776
1777 void __init kmem_cache_init_late(void)
1778 {
1779 struct kmem_cache *cachep;
1780
1781 slab_state = UP;
1782
1783 /* Annotate slab for lockdep -- annotate the malloc caches */
1784 init_lock_keys();
1785
1786 /* 6) resize the head arrays to their final sizes */
1787 mutex_lock(&slab_mutex);
1788 list_for_each_entry(cachep, &slab_caches, list)
1789 if (enable_cpucache(cachep, GFP_NOWAIT))
1790 BUG();
1791 mutex_unlock(&slab_mutex);
1792
1793 /* Done! */
1794 slab_state = FULL;
1795
1796 /*
1797 * Register a cpu startup notifier callback that initializes
1798 * cpu_cache_get for all new cpus
1799 */
1800 register_cpu_notifier(&cpucache_notifier);
1801
1802 #ifdef CONFIG_NUMA
1803 /*
1804 * Register a memory hotplug callback that initializes and frees
1805 * nodelists.
1806 */
1807 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1808 #endif
1809
1810 /*
1811 * The reap timers are started later, with a module init call: That part
1812 * of the kernel is not yet operational.
1813 */
1814 }
1815
1816 static int __init cpucache_init(void)
1817 {
1818 int cpu;
1819
1820 /*
1821 * Register the timers that return unneeded pages to the page allocator
1822 */
1823 for_each_online_cpu(cpu)
1824 start_cpu_timer(cpu);
1825
1826 /* Done! */
1827 slab_state = FULL;
1828 return 0;
1829 }
1830 __initcall(cpucache_init);
1831
1832 static noinline void
1833 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1834 {
1835 struct kmem_list3 *l3;
1836 struct slab *slabp;
1837 unsigned long flags;
1838 int node;
1839
1840 printk(KERN_WARNING
1841 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1842 nodeid, gfpflags);
1843 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1844 cachep->name, cachep->size, cachep->gfporder);
1845
1846 for_each_online_node(node) {
1847 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1848 unsigned long active_slabs = 0, num_slabs = 0;
1849
1850 l3 = cachep->nodelists[node];
1851 if (!l3)
1852 continue;
1853
1854 spin_lock_irqsave(&l3->list_lock, flags);
1855 list_for_each_entry(slabp, &l3->slabs_full, list) {
1856 active_objs += cachep->num;
1857 active_slabs++;
1858 }
1859 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1860 active_objs += slabp->inuse;
1861 active_slabs++;
1862 }
1863 list_for_each_entry(slabp, &l3->slabs_free, list)
1864 num_slabs++;
1865
1866 free_objects += l3->free_objects;
1867 spin_unlock_irqrestore(&l3->list_lock, flags);
1868
1869 num_slabs += active_slabs;
1870 num_objs = num_slabs * cachep->num;
1871 printk(KERN_WARNING
1872 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1873 node, active_slabs, num_slabs, active_objs, num_objs,
1874 free_objects);
1875 }
1876 }
1877
1878 /*
1879 * Interface to system's page allocator. No need to hold the cache-lock.
1880 *
1881 * If we requested dmaable memory, we will get it. Even if we
1882 * did not request dmaable memory, we might get it, but that
1883 * would be relatively rare and ignorable.
1884 */
1885 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1886 {
1887 struct page *page;
1888 int nr_pages;
1889 int i;
1890
1891 #ifndef CONFIG_MMU
1892 /*
1893 * Nommu uses slab's for process anonymous memory allocations, and thus
1894 * requires __GFP_COMP to properly refcount higher order allocations
1895 */
1896 flags |= __GFP_COMP;
1897 #endif
1898
1899 flags |= cachep->allocflags;
1900 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1901 flags |= __GFP_RECLAIMABLE;
1902
1903 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1904 if (!page) {
1905 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1906 slab_out_of_memory(cachep, flags, nodeid);
1907 return NULL;
1908 }
1909
1910 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1911 if (unlikely(page->pfmemalloc))
1912 pfmemalloc_active = true;
1913
1914 nr_pages = (1 << cachep->gfporder);
1915 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1916 add_zone_page_state(page_zone(page),
1917 NR_SLAB_RECLAIMABLE, nr_pages);
1918 else
1919 add_zone_page_state(page_zone(page),
1920 NR_SLAB_UNRECLAIMABLE, nr_pages);
1921 for (i = 0; i < nr_pages; i++) {
1922 __SetPageSlab(page + i);
1923
1924 if (page->pfmemalloc)
1925 SetPageSlabPfmemalloc(page + i);
1926 }
1927
1928 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1929 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1930
1931 if (cachep->ctor)
1932 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1933 else
1934 kmemcheck_mark_unallocated_pages(page, nr_pages);
1935 }
1936
1937 return page_address(page);
1938 }
1939
1940 /*
1941 * Interface to system's page release.
1942 */
1943 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1944 {
1945 unsigned long i = (1 << cachep->gfporder);
1946 struct page *page = virt_to_page(addr);
1947 const unsigned long nr_freed = i;
1948
1949 kmemcheck_free_shadow(page, cachep->gfporder);
1950
1951 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1952 sub_zone_page_state(page_zone(page),
1953 NR_SLAB_RECLAIMABLE, nr_freed);
1954 else
1955 sub_zone_page_state(page_zone(page),
1956 NR_SLAB_UNRECLAIMABLE, nr_freed);
1957 while (i--) {
1958 BUG_ON(!PageSlab(page));
1959 __ClearPageSlabPfmemalloc(page);
1960 __ClearPageSlab(page);
1961 page++;
1962 }
1963 if (current->reclaim_state)
1964 current->reclaim_state->reclaimed_slab += nr_freed;
1965 free_pages((unsigned long)addr, cachep->gfporder);
1966 }
1967
1968 static void kmem_rcu_free(struct rcu_head *head)
1969 {
1970 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1971 struct kmem_cache *cachep = slab_rcu->cachep;
1972
1973 kmem_freepages(cachep, slab_rcu->addr);
1974 if (OFF_SLAB(cachep))
1975 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1976 }
1977
1978 #if DEBUG
1979
1980 #ifdef CONFIG_DEBUG_PAGEALLOC
1981 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1982 unsigned long caller)
1983 {
1984 int size = cachep->object_size;
1985
1986 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1987
1988 if (size < 5 * sizeof(unsigned long))
1989 return;
1990
1991 *addr++ = 0x12345678;
1992 *addr++ = caller;
1993 *addr++ = smp_processor_id();
1994 size -= 3 * sizeof(unsigned long);
1995 {
1996 unsigned long *sptr = &caller;
1997 unsigned long svalue;
1998
1999 while (!kstack_end(sptr)) {
2000 svalue = *sptr++;
2001 if (kernel_text_address(svalue)) {
2002 *addr++ = svalue;
2003 size -= sizeof(unsigned long);
2004 if (size <= sizeof(unsigned long))
2005 break;
2006 }
2007 }
2008
2009 }
2010 *addr++ = 0x87654321;
2011 }
2012 #endif
2013
2014 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
2015 {
2016 int size = cachep->object_size;
2017 addr = &((char *)addr)[obj_offset(cachep)];
2018
2019 memset(addr, val, size);
2020 *(unsigned char *)(addr + size - 1) = POISON_END;
2021 }
2022
2023 static void dump_line(char *data, int offset, int limit)
2024 {
2025 int i;
2026 unsigned char error = 0;
2027 int bad_count = 0;
2028
2029 printk(KERN_ERR "%03x: ", offset);
2030 for (i = 0; i < limit; i++) {
2031 if (data[offset + i] != POISON_FREE) {
2032 error = data[offset + i];
2033 bad_count++;
2034 }
2035 }
2036 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2037 &data[offset], limit, 1);
2038
2039 if (bad_count == 1) {
2040 error ^= POISON_FREE;
2041 if (!(error & (error - 1))) {
2042 printk(KERN_ERR "Single bit error detected. Probably "
2043 "bad RAM.\n");
2044 #ifdef CONFIG_X86
2045 printk(KERN_ERR "Run memtest86+ or a similar memory "
2046 "test tool.\n");
2047 #else
2048 printk(KERN_ERR "Run a memory test tool.\n");
2049 #endif
2050 }
2051 }
2052 }
2053 #endif
2054
2055 #if DEBUG
2056
2057 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
2058 {
2059 int i, size;
2060 char *realobj;
2061
2062 if (cachep->flags & SLAB_RED_ZONE) {
2063 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
2064 *dbg_redzone1(cachep, objp),
2065 *dbg_redzone2(cachep, objp));
2066 }
2067
2068 if (cachep->flags & SLAB_STORE_USER) {
2069 printk(KERN_ERR "Last user: [<%p>]",
2070 *dbg_userword(cachep, objp));
2071 print_symbol("(%s)",
2072 (unsigned long)*dbg_userword(cachep, objp));
2073 printk("\n");
2074 }
2075 realobj = (char *)objp + obj_offset(cachep);
2076 size = cachep->object_size;
2077 for (i = 0; i < size && lines; i += 16, lines--) {
2078 int limit;
2079 limit = 16;
2080 if (i + limit > size)
2081 limit = size - i;
2082 dump_line(realobj, i, limit);
2083 }
2084 }
2085
2086 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
2087 {
2088 char *realobj;
2089 int size, i;
2090 int lines = 0;
2091
2092 realobj = (char *)objp + obj_offset(cachep);
2093 size = cachep->object_size;
2094
2095 for (i = 0; i < size; i++) {
2096 char exp = POISON_FREE;
2097 if (i == size - 1)
2098 exp = POISON_END;
2099 if (realobj[i] != exp) {
2100 int limit;
2101 /* Mismatch ! */
2102 /* Print header */
2103 if (lines == 0) {
2104 printk(KERN_ERR
2105 "Slab corruption (%s): %s start=%p, len=%d\n",
2106 print_tainted(), cachep->name, realobj, size);
2107 print_objinfo(cachep, objp, 0);
2108 }
2109 /* Hexdump the affected line */
2110 i = (i / 16) * 16;
2111 limit = 16;
2112 if (i + limit > size)
2113 limit = size - i;
2114 dump_line(realobj, i, limit);
2115 i += 16;
2116 lines++;
2117 /* Limit to 5 lines */
2118 if (lines > 5)
2119 break;
2120 }
2121 }
2122 if (lines != 0) {
2123 /* Print some data about the neighboring objects, if they
2124 * exist:
2125 */
2126 struct slab *slabp = virt_to_slab(objp);
2127 unsigned int objnr;
2128
2129 objnr = obj_to_index(cachep, slabp, objp);
2130 if (objnr) {
2131 objp = index_to_obj(cachep, slabp, objnr - 1);
2132 realobj = (char *)objp + obj_offset(cachep);
2133 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2134 realobj, size);
2135 print_objinfo(cachep, objp, 2);
2136 }
2137 if (objnr + 1 < cachep->num) {
2138 objp = index_to_obj(cachep, slabp, objnr + 1);
2139 realobj = (char *)objp + obj_offset(cachep);
2140 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2141 realobj, size);
2142 print_objinfo(cachep, objp, 2);
2143 }
2144 }
2145 }
2146 #endif
2147
2148 #if DEBUG
2149 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2150 {
2151 int i;
2152 for (i = 0; i < cachep->num; i++) {
2153 void *objp = index_to_obj(cachep, slabp, i);
2154
2155 if (cachep->flags & SLAB_POISON) {
2156 #ifdef CONFIG_DEBUG_PAGEALLOC
2157 if (cachep->size % PAGE_SIZE == 0 &&
2158 OFF_SLAB(cachep))
2159 kernel_map_pages(virt_to_page(objp),
2160 cachep->size / PAGE_SIZE, 1);
2161 else
2162 check_poison_obj(cachep, objp);
2163 #else
2164 check_poison_obj(cachep, objp);
2165 #endif
2166 }
2167 if (cachep->flags & SLAB_RED_ZONE) {
2168 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2169 slab_error(cachep, "start of a freed object "
2170 "was overwritten");
2171 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2172 slab_error(cachep, "end of a freed object "
2173 "was overwritten");
2174 }
2175 }
2176 }
2177 #else
2178 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2179 {
2180 }
2181 #endif
2182
2183 /**
2184 * slab_destroy - destroy and release all objects in a slab
2185 * @cachep: cache pointer being destroyed
2186 * @slabp: slab pointer being destroyed
2187 *
2188 * Destroy all the objs in a slab, and release the mem back to the system.
2189 * Before calling the slab must have been unlinked from the cache. The
2190 * cache-lock is not held/needed.
2191 */
2192 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2193 {
2194 void *addr = slabp->s_mem - slabp->colouroff;
2195
2196 slab_destroy_debugcheck(cachep, slabp);
2197 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2198 struct slab_rcu *slab_rcu;
2199
2200 slab_rcu = (struct slab_rcu *)slabp;
2201 slab_rcu->cachep = cachep;
2202 slab_rcu->addr = addr;
2203 call_rcu(&slab_rcu->head, kmem_rcu_free);
2204 } else {
2205 kmem_freepages(cachep, addr);
2206 if (OFF_SLAB(cachep))
2207 kmem_cache_free(cachep->slabp_cache, slabp);
2208 }
2209 }
2210
2211 void __kmem_cache_destroy(struct kmem_cache *cachep)
2212 {
2213 int i;
2214 struct kmem_list3 *l3;
2215
2216 for_each_online_cpu(i)
2217 kfree(cachep->array[i]);
2218
2219 /* NUMA: free the list3 structures */
2220 for_each_online_node(i) {
2221 l3 = cachep->nodelists[i];
2222 if (l3) {
2223 kfree(l3->shared);
2224 free_alien_cache(l3->alien);
2225 kfree(l3);
2226 }
2227 }
2228 kmem_cache_free(kmem_cache, cachep);
2229 }
2230
2231
2232 /**
2233 * calculate_slab_order - calculate size (page order) of slabs
2234 * @cachep: pointer to the cache that is being created
2235 * @size: size of objects to be created in this cache.
2236 * @align: required alignment for the objects.
2237 * @flags: slab allocation flags
2238 *
2239 * Also calculates the number of objects per slab.
2240 *
2241 * This could be made much more intelligent. For now, try to avoid using
2242 * high order pages for slabs. When the gfp() functions are more friendly
2243 * towards high-order requests, this should be changed.
2244 */
2245 static size_t calculate_slab_order(struct kmem_cache *cachep,
2246 size_t size, size_t align, unsigned long flags)
2247 {
2248 unsigned long offslab_limit;
2249 size_t left_over = 0;
2250 int gfporder;
2251
2252 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2253 unsigned int num;
2254 size_t remainder;
2255
2256 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2257 if (!num)
2258 continue;
2259
2260 if (flags & CFLGS_OFF_SLAB) {
2261 /*
2262 * Max number of objs-per-slab for caches which
2263 * use off-slab slabs. Needed to avoid a possible
2264 * looping condition in cache_grow().
2265 */
2266 offslab_limit = size - sizeof(struct slab);
2267 offslab_limit /= sizeof(kmem_bufctl_t);
2268
2269 if (num > offslab_limit)
2270 break;
2271 }
2272
2273 /* Found something acceptable - save it away */
2274 cachep->num = num;
2275 cachep->gfporder = gfporder;
2276 left_over = remainder;
2277
2278 /*
2279 * A VFS-reclaimable slab tends to have most allocations
2280 * as GFP_NOFS and we really don't want to have to be allocating
2281 * higher-order pages when we are unable to shrink dcache.
2282 */
2283 if (flags & SLAB_RECLAIM_ACCOUNT)
2284 break;
2285
2286 /*
2287 * Large number of objects is good, but very large slabs are
2288 * currently bad for the gfp()s.
2289 */
2290 if (gfporder >= slab_max_order)
2291 break;
2292
2293 /*
2294 * Acceptable internal fragmentation?
2295 */
2296 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2297 break;
2298 }
2299 return left_over;
2300 }
2301
2302 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2303 {
2304 if (slab_state >= FULL)
2305 return enable_cpucache(cachep, gfp);
2306
2307 if (slab_state == DOWN) {
2308 /*
2309 * Note: the first kmem_cache_create must create the cache
2310 * that's used by kmalloc(24), otherwise the creation of
2311 * further caches will BUG().
2312 */
2313 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2314
2315 /*
2316 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2317 * the first cache, then we need to set up all its list3s,
2318 * otherwise the creation of further caches will BUG().
2319 */
2320 set_up_list3s(cachep, SIZE_AC);
2321 if (INDEX_AC == INDEX_L3)
2322 slab_state = PARTIAL_L3;
2323 else
2324 slab_state = PARTIAL_ARRAYCACHE;
2325 } else {
2326 cachep->array[smp_processor_id()] =
2327 kmalloc(sizeof(struct arraycache_init), gfp);
2328
2329 if (slab_state == PARTIAL_ARRAYCACHE) {
2330 set_up_list3s(cachep, SIZE_L3);
2331 slab_state = PARTIAL_L3;
2332 } else {
2333 int node;
2334 for_each_online_node(node) {
2335 cachep->nodelists[node] =
2336 kmalloc_node(sizeof(struct kmem_list3),
2337 gfp, node);
2338 BUG_ON(!cachep->nodelists[node]);
2339 kmem_list3_init(cachep->nodelists[node]);
2340 }
2341 }
2342 }
2343 cachep->nodelists[numa_mem_id()]->next_reap =
2344 jiffies + REAPTIMEOUT_LIST3 +
2345 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2346
2347 cpu_cache_get(cachep)->avail = 0;
2348 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2349 cpu_cache_get(cachep)->batchcount = 1;
2350 cpu_cache_get(cachep)->touched = 0;
2351 cachep->batchcount = 1;
2352 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2353 return 0;
2354 }
2355
2356 /**
2357 * __kmem_cache_create - Create a cache.
2358 * @name: A string which is used in /proc/slabinfo to identify this cache.
2359 * @size: The size of objects to be created in this cache.
2360 * @align: The required alignment for the objects.
2361 * @flags: SLAB flags
2362 * @ctor: A constructor for the objects.
2363 *
2364 * Returns a ptr to the cache on success, NULL on failure.
2365 * Cannot be called within a int, but can be interrupted.
2366 * The @ctor is run when new pages are allocated by the cache.
2367 *
2368 * @name must be valid until the cache is destroyed. This implies that
2369 * the module calling this has to destroy the cache before getting unloaded.
2370 *
2371 * The flags are
2372 *
2373 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2374 * to catch references to uninitialised memory.
2375 *
2376 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2377 * for buffer overruns.
2378 *
2379 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2380 * cacheline. This can be beneficial if you're counting cycles as closely
2381 * as davem.
2382 */
2383 struct kmem_cache *
2384 __kmem_cache_create (const char *name, size_t size, size_t align,
2385 unsigned long flags, void (*ctor)(void *))
2386 {
2387 size_t left_over, slab_size, ralign;
2388 struct kmem_cache *cachep = NULL;
2389 gfp_t gfp;
2390
2391 #if DEBUG
2392 #if FORCED_DEBUG
2393 /*
2394 * Enable redzoning and last user accounting, except for caches with
2395 * large objects, if the increased size would increase the object size
2396 * above the next power of two: caches with object sizes just above a
2397 * power of two have a significant amount of internal fragmentation.
2398 */
2399 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2400 2 * sizeof(unsigned long long)))
2401 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2402 if (!(flags & SLAB_DESTROY_BY_RCU))
2403 flags |= SLAB_POISON;
2404 #endif
2405 if (flags & SLAB_DESTROY_BY_RCU)
2406 BUG_ON(flags & SLAB_POISON);
2407 #endif
2408 /*
2409 * Always checks flags, a caller might be expecting debug support which
2410 * isn't available.
2411 */
2412 BUG_ON(flags & ~CREATE_MASK);
2413
2414 /*
2415 * Check that size is in terms of words. This is needed to avoid
2416 * unaligned accesses for some archs when redzoning is used, and makes
2417 * sure any on-slab bufctl's are also correctly aligned.
2418 */
2419 if (size & (BYTES_PER_WORD - 1)) {
2420 size += (BYTES_PER_WORD - 1);
2421 size &= ~(BYTES_PER_WORD - 1);
2422 }
2423
2424 /* calculate the final buffer alignment: */
2425
2426 /* 1) arch recommendation: can be overridden for debug */
2427 if (flags & SLAB_HWCACHE_ALIGN) {
2428 /*
2429 * Default alignment: as specified by the arch code. Except if
2430 * an object is really small, then squeeze multiple objects into
2431 * one cacheline.
2432 */
2433 ralign = cache_line_size();
2434 while (size <= ralign / 2)
2435 ralign /= 2;
2436 } else {
2437 ralign = BYTES_PER_WORD;
2438 }
2439
2440 /*
2441 * Redzoning and user store require word alignment or possibly larger.
2442 * Note this will be overridden by architecture or caller mandated
2443 * alignment if either is greater than BYTES_PER_WORD.
2444 */
2445 if (flags & SLAB_STORE_USER)
2446 ralign = BYTES_PER_WORD;
2447
2448 if (flags & SLAB_RED_ZONE) {
2449 ralign = REDZONE_ALIGN;
2450 /* If redzoning, ensure that the second redzone is suitably
2451 * aligned, by adjusting the object size accordingly. */
2452 size += REDZONE_ALIGN - 1;
2453 size &= ~(REDZONE_ALIGN - 1);
2454 }
2455
2456 /* 2) arch mandated alignment */
2457 if (ralign < ARCH_SLAB_MINALIGN) {
2458 ralign = ARCH_SLAB_MINALIGN;
2459 }
2460 /* 3) caller mandated alignment */
2461 if (ralign < align) {
2462 ralign = align;
2463 }
2464 /* disable debug if necessary */
2465 if (ralign > __alignof__(unsigned long long))
2466 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2467 /*
2468 * 4) Store it.
2469 */
2470 align = ralign;
2471
2472 if (slab_is_available())
2473 gfp = GFP_KERNEL;
2474 else
2475 gfp = GFP_NOWAIT;
2476
2477 /* Get cache's description obj. */
2478 cachep = kmem_cache_zalloc(kmem_cache, gfp);
2479 if (!cachep)
2480 return NULL;
2481
2482 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2483 cachep->object_size = size;
2484 cachep->align = align;
2485 #if DEBUG
2486
2487 /*
2488 * Both debugging options require word-alignment which is calculated
2489 * into align above.
2490 */
2491 if (flags & SLAB_RED_ZONE) {
2492 /* add space for red zone words */
2493 cachep->obj_offset += sizeof(unsigned long long);
2494 size += 2 * sizeof(unsigned long long);
2495 }
2496 if (flags & SLAB_STORE_USER) {
2497 /* user store requires one word storage behind the end of
2498 * the real object. But if the second red zone needs to be
2499 * aligned to 64 bits, we must allow that much space.
2500 */
2501 if (flags & SLAB_RED_ZONE)
2502 size += REDZONE_ALIGN;
2503 else
2504 size += BYTES_PER_WORD;
2505 }
2506 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2507 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2508 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2509 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2510 size = PAGE_SIZE;
2511 }
2512 #endif
2513 #endif
2514
2515 /*
2516 * Determine if the slab management is 'on' or 'off' slab.
2517 * (bootstrapping cannot cope with offslab caches so don't do
2518 * it too early on. Always use on-slab management when
2519 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2520 */
2521 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2522 !(flags & SLAB_NOLEAKTRACE))
2523 /*
2524 * Size is large, assume best to place the slab management obj
2525 * off-slab (should allow better packing of objs).
2526 */
2527 flags |= CFLGS_OFF_SLAB;
2528
2529 size = ALIGN(size, align);
2530
2531 left_over = calculate_slab_order(cachep, size, align, flags);
2532
2533 if (!cachep->num) {
2534 printk(KERN_ERR
2535 "kmem_cache_create: couldn't create cache %s.\n", name);
2536 kmem_cache_free(kmem_cache, cachep);
2537 return NULL;
2538 }
2539 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2540 + sizeof(struct slab), align);
2541
2542 /*
2543 * If the slab has been placed off-slab, and we have enough space then
2544 * move it on-slab. This is at the expense of any extra colouring.
2545 */
2546 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2547 flags &= ~CFLGS_OFF_SLAB;
2548 left_over -= slab_size;
2549 }
2550
2551 if (flags & CFLGS_OFF_SLAB) {
2552 /* really off slab. No need for manual alignment */
2553 slab_size =
2554 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2555
2556 #ifdef CONFIG_PAGE_POISONING
2557 /* If we're going to use the generic kernel_map_pages()
2558 * poisoning, then it's going to smash the contents of
2559 * the redzone and userword anyhow, so switch them off.
2560 */
2561 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2562 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2563 #endif
2564 }
2565
2566 cachep->colour_off = cache_line_size();
2567 /* Offset must be a multiple of the alignment. */
2568 if (cachep->colour_off < align)
2569 cachep->colour_off = align;
2570 cachep->colour = left_over / cachep->colour_off;
2571 cachep->slab_size = slab_size;
2572 cachep->flags = flags;
2573 cachep->allocflags = 0;
2574 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2575 cachep->allocflags |= GFP_DMA;
2576 cachep->size = size;
2577 cachep->reciprocal_buffer_size = reciprocal_value(size);
2578
2579 if (flags & CFLGS_OFF_SLAB) {
2580 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2581 /*
2582 * This is a possibility for one of the malloc_sizes caches.
2583 * But since we go off slab only for object size greater than
2584 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2585 * this should not happen at all.
2586 * But leave a BUG_ON for some lucky dude.
2587 */
2588 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2589 }
2590 cachep->ctor = ctor;
2591 cachep->name = name;
2592 cachep->refcount = 1;
2593
2594 if (setup_cpu_cache(cachep, gfp)) {
2595 __kmem_cache_destroy(cachep);
2596 return NULL;
2597 }
2598
2599 if (flags & SLAB_DEBUG_OBJECTS) {
2600 /*
2601 * Would deadlock through slab_destroy()->call_rcu()->
2602 * debug_object_activate()->kmem_cache_alloc().
2603 */
2604 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2605
2606 slab_set_debugobj_lock_classes(cachep);
2607 }
2608
2609 return cachep;
2610 }
2611
2612 #if DEBUG
2613 static void check_irq_off(void)
2614 {
2615 BUG_ON(!irqs_disabled());
2616 }
2617
2618 static void check_irq_on(void)
2619 {
2620 BUG_ON(irqs_disabled());
2621 }
2622
2623 static void check_spinlock_acquired(struct kmem_cache *cachep)
2624 {
2625 #ifdef CONFIG_SMP
2626 check_irq_off();
2627 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2628 #endif
2629 }
2630
2631 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2632 {
2633 #ifdef CONFIG_SMP
2634 check_irq_off();
2635 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2636 #endif
2637 }
2638
2639 #else
2640 #define check_irq_off() do { } while(0)
2641 #define check_irq_on() do { } while(0)
2642 #define check_spinlock_acquired(x) do { } while(0)
2643 #define check_spinlock_acquired_node(x, y) do { } while(0)
2644 #endif
2645
2646 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2647 struct array_cache *ac,
2648 int force, int node);
2649
2650 static void do_drain(void *arg)
2651 {
2652 struct kmem_cache *cachep = arg;
2653 struct array_cache *ac;
2654 int node = numa_mem_id();
2655
2656 check_irq_off();
2657 ac = cpu_cache_get(cachep);
2658 spin_lock(&cachep->nodelists[node]->list_lock);
2659 free_block(cachep, ac->entry, ac->avail, node);
2660 spin_unlock(&cachep->nodelists[node]->list_lock);
2661 ac->avail = 0;
2662 }
2663
2664 static void drain_cpu_caches(struct kmem_cache *cachep)
2665 {
2666 struct kmem_list3 *l3;
2667 int node;
2668
2669 on_each_cpu(do_drain, cachep, 1);
2670 check_irq_on();
2671 for_each_online_node(node) {
2672 l3 = cachep->nodelists[node];
2673 if (l3 && l3->alien)
2674 drain_alien_cache(cachep, l3->alien);
2675 }
2676
2677 for_each_online_node(node) {
2678 l3 = cachep->nodelists[node];
2679 if (l3)
2680 drain_array(cachep, l3, l3->shared, 1, node);
2681 }
2682 }
2683
2684 /*
2685 * Remove slabs from the list of free slabs.
2686 * Specify the number of slabs to drain in tofree.
2687 *
2688 * Returns the actual number of slabs released.
2689 */
2690 static int drain_freelist(struct kmem_cache *cache,
2691 struct kmem_list3 *l3, int tofree)
2692 {
2693 struct list_head *p;
2694 int nr_freed;
2695 struct slab *slabp;
2696
2697 nr_freed = 0;
2698 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2699
2700 spin_lock_irq(&l3->list_lock);
2701 p = l3->slabs_free.prev;
2702 if (p == &l3->slabs_free) {
2703 spin_unlock_irq(&l3->list_lock);
2704 goto out;
2705 }
2706
2707 slabp = list_entry(p, struct slab, list);
2708 #if DEBUG
2709 BUG_ON(slabp->inuse);
2710 #endif
2711 list_del(&slabp->list);
2712 /*
2713 * Safe to drop the lock. The slab is no longer linked
2714 * to the cache.
2715 */
2716 l3->free_objects -= cache->num;
2717 spin_unlock_irq(&l3->list_lock);
2718 slab_destroy(cache, slabp);
2719 nr_freed++;
2720 }
2721 out:
2722 return nr_freed;
2723 }
2724
2725 /* Called with slab_mutex held to protect against cpu hotplug */
2726 static int __cache_shrink(struct kmem_cache *cachep)
2727 {
2728 int ret = 0, i = 0;
2729 struct kmem_list3 *l3;
2730
2731 drain_cpu_caches(cachep);
2732
2733 check_irq_on();
2734 for_each_online_node(i) {
2735 l3 = cachep->nodelists[i];
2736 if (!l3)
2737 continue;
2738
2739 drain_freelist(cachep, l3, l3->free_objects);
2740
2741 ret += !list_empty(&l3->slabs_full) ||
2742 !list_empty(&l3->slabs_partial);
2743 }
2744 return (ret ? 1 : 0);
2745 }
2746
2747 /**
2748 * kmem_cache_shrink - Shrink a cache.
2749 * @cachep: The cache to shrink.
2750 *
2751 * Releases as many slabs as possible for a cache.
2752 * To help debugging, a zero exit status indicates all slabs were released.
2753 */
2754 int kmem_cache_shrink(struct kmem_cache *cachep)
2755 {
2756 int ret;
2757 BUG_ON(!cachep || in_interrupt());
2758
2759 get_online_cpus();
2760 mutex_lock(&slab_mutex);
2761 ret = __cache_shrink(cachep);
2762 mutex_unlock(&slab_mutex);
2763 put_online_cpus();
2764 return ret;
2765 }
2766 EXPORT_SYMBOL(kmem_cache_shrink);
2767
2768 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2769 {
2770 return __cache_shrink(cachep);
2771 }
2772
2773 /*
2774 * Get the memory for a slab management obj.
2775 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2776 * always come from malloc_sizes caches. The slab descriptor cannot
2777 * come from the same cache which is getting created because,
2778 * when we are searching for an appropriate cache for these
2779 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2780 * If we are creating a malloc_sizes cache here it would not be visible to
2781 * kmem_find_general_cachep till the initialization is complete.
2782 * Hence we cannot have slabp_cache same as the original cache.
2783 */
2784 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2785 int colour_off, gfp_t local_flags,
2786 int nodeid)
2787 {
2788 struct slab *slabp;
2789
2790 if (OFF_SLAB(cachep)) {
2791 /* Slab management obj is off-slab. */
2792 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2793 local_flags, nodeid);
2794 /*
2795 * If the first object in the slab is leaked (it's allocated
2796 * but no one has a reference to it), we want to make sure
2797 * kmemleak does not treat the ->s_mem pointer as a reference
2798 * to the object. Otherwise we will not report the leak.
2799 */
2800 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2801 local_flags);
2802 if (!slabp)
2803 return NULL;
2804 } else {
2805 slabp = objp + colour_off;
2806 colour_off += cachep->slab_size;
2807 }
2808 slabp->inuse = 0;
2809 slabp->colouroff = colour_off;
2810 slabp->s_mem = objp + colour_off;
2811 slabp->nodeid = nodeid;
2812 slabp->free = 0;
2813 return slabp;
2814 }
2815
2816 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2817 {
2818 return (kmem_bufctl_t *) (slabp + 1);
2819 }
2820
2821 static void cache_init_objs(struct kmem_cache *cachep,
2822 struct slab *slabp)
2823 {
2824 int i;
2825
2826 for (i = 0; i < cachep->num; i++) {
2827 void *objp = index_to_obj(cachep, slabp, i);
2828 #if DEBUG
2829 /* need to poison the objs? */
2830 if (cachep->flags & SLAB_POISON)
2831 poison_obj(cachep, objp, POISON_FREE);
2832 if (cachep->flags & SLAB_STORE_USER)
2833 *dbg_userword(cachep, objp) = NULL;
2834
2835 if (cachep->flags & SLAB_RED_ZONE) {
2836 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2837 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2838 }
2839 /*
2840 * Constructors are not allowed to allocate memory from the same
2841 * cache which they are a constructor for. Otherwise, deadlock.
2842 * They must also be threaded.
2843 */
2844 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2845 cachep->ctor(objp + obj_offset(cachep));
2846
2847 if (cachep->flags & SLAB_RED_ZONE) {
2848 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2849 slab_error(cachep, "constructor overwrote the"
2850 " end of an object");
2851 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2852 slab_error(cachep, "constructor overwrote the"
2853 " start of an object");
2854 }
2855 if ((cachep->size % PAGE_SIZE) == 0 &&
2856 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2857 kernel_map_pages(virt_to_page(objp),
2858 cachep->size / PAGE_SIZE, 0);
2859 #else
2860 if (cachep->ctor)
2861 cachep->ctor(objp);
2862 #endif
2863 slab_bufctl(slabp)[i] = i + 1;
2864 }
2865 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2866 }
2867
2868 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2869 {
2870 if (CONFIG_ZONE_DMA_FLAG) {
2871 if (flags & GFP_DMA)
2872 BUG_ON(!(cachep->allocflags & GFP_DMA));
2873 else
2874 BUG_ON(cachep->allocflags & GFP_DMA);
2875 }
2876 }
2877
2878 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2879 int nodeid)
2880 {
2881 void *objp = index_to_obj(cachep, slabp, slabp->free);
2882 kmem_bufctl_t next;
2883
2884 slabp->inuse++;
2885 next = slab_bufctl(slabp)[slabp->free];
2886 #if DEBUG
2887 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2888 WARN_ON(slabp->nodeid != nodeid);
2889 #endif
2890 slabp->free = next;
2891
2892 return objp;
2893 }
2894
2895 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2896 void *objp, int nodeid)
2897 {
2898 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2899
2900 #if DEBUG
2901 /* Verify that the slab belongs to the intended node */
2902 WARN_ON(slabp->nodeid != nodeid);
2903
2904 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2905 printk(KERN_ERR "slab: double free detected in cache "
2906 "'%s', objp %p\n", cachep->name, objp);
2907 BUG();
2908 }
2909 #endif
2910 slab_bufctl(slabp)[objnr] = slabp->free;
2911 slabp->free = objnr;
2912 slabp->inuse--;
2913 }
2914
2915 /*
2916 * Map pages beginning at addr to the given cache and slab. This is required
2917 * for the slab allocator to be able to lookup the cache and slab of a
2918 * virtual address for kfree, ksize, and slab debugging.
2919 */
2920 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2921 void *addr)
2922 {
2923 int nr_pages;
2924 struct page *page;
2925
2926 page = virt_to_page(addr);
2927
2928 nr_pages = 1;
2929 if (likely(!PageCompound(page)))
2930 nr_pages <<= cache->gfporder;
2931
2932 do {
2933 page->slab_cache = cache;
2934 page->slab_page = slab;
2935 page++;
2936 } while (--nr_pages);
2937 }
2938
2939 /*
2940 * Grow (by 1) the number of slabs within a cache. This is called by
2941 * kmem_cache_alloc() when there are no active objs left in a cache.
2942 */
2943 static int cache_grow(struct kmem_cache *cachep,
2944 gfp_t flags, int nodeid, void *objp)
2945 {
2946 struct slab *slabp;
2947 size_t offset;
2948 gfp_t local_flags;
2949 struct kmem_list3 *l3;
2950
2951 /*
2952 * Be lazy and only check for valid flags here, keeping it out of the
2953 * critical path in kmem_cache_alloc().
2954 */
2955 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2956 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2957
2958 /* Take the l3 list lock to change the colour_next on this node */
2959 check_irq_off();
2960 l3 = cachep->nodelists[nodeid];
2961 spin_lock(&l3->list_lock);
2962
2963 /* Get colour for the slab, and cal the next value. */
2964 offset = l3->colour_next;
2965 l3->colour_next++;
2966 if (l3->colour_next >= cachep->colour)
2967 l3->colour_next = 0;
2968 spin_unlock(&l3->list_lock);
2969
2970 offset *= cachep->colour_off;
2971
2972 if (local_flags & __GFP_WAIT)
2973 local_irq_enable();
2974
2975 /*
2976 * The test for missing atomic flag is performed here, rather than
2977 * the more obvious place, simply to reduce the critical path length
2978 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2979 * will eventually be caught here (where it matters).
2980 */
2981 kmem_flagcheck(cachep, flags);
2982
2983 /*
2984 * Get mem for the objs. Attempt to allocate a physical page from
2985 * 'nodeid'.
2986 */
2987 if (!objp)
2988 objp = kmem_getpages(cachep, local_flags, nodeid);
2989 if (!objp)
2990 goto failed;
2991
2992 /* Get slab management. */
2993 slabp = alloc_slabmgmt(cachep, objp, offset,
2994 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2995 if (!slabp)
2996 goto opps1;
2997
2998 slab_map_pages(cachep, slabp, objp);
2999
3000 cache_init_objs(cachep, slabp);
3001
3002 if (local_flags & __GFP_WAIT)
3003 local_irq_disable();
3004 check_irq_off();
3005 spin_lock(&l3->list_lock);
3006
3007 /* Make slab active. */
3008 list_add_tail(&slabp->list, &(l3->slabs_free));
3009 STATS_INC_GROWN(cachep);
3010 l3->free_objects += cachep->num;
3011 spin_unlock(&l3->list_lock);
3012 return 1;
3013 opps1:
3014 kmem_freepages(cachep, objp);
3015 failed:
3016 if (local_flags & __GFP_WAIT)
3017 local_irq_disable();
3018 return 0;
3019 }
3020
3021 #if DEBUG
3022
3023 /*
3024 * Perform extra freeing checks:
3025 * - detect bad pointers.
3026 * - POISON/RED_ZONE checking
3027 */
3028 static void kfree_debugcheck(const void *objp)
3029 {
3030 if (!virt_addr_valid(objp)) {
3031 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
3032 (unsigned long)objp);
3033 BUG();
3034 }
3035 }
3036
3037 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3038 {
3039 unsigned long long redzone1, redzone2;
3040
3041 redzone1 = *dbg_redzone1(cache, obj);
3042 redzone2 = *dbg_redzone2(cache, obj);
3043
3044 /*
3045 * Redzone is ok.
3046 */
3047 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3048 return;
3049
3050 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3051 slab_error(cache, "double free detected");
3052 else
3053 slab_error(cache, "memory outside object was overwritten");
3054
3055 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3056 obj, redzone1, redzone2);
3057 }
3058
3059 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3060 void *caller)
3061 {
3062 struct page *page;
3063 unsigned int objnr;
3064 struct slab *slabp;
3065
3066 BUG_ON(virt_to_cache(objp) != cachep);
3067
3068 objp -= obj_offset(cachep);
3069 kfree_debugcheck(objp);
3070 page = virt_to_head_page(objp);
3071
3072 slabp = page->slab_page;
3073
3074 if (cachep->flags & SLAB_RED_ZONE) {
3075 verify_redzone_free(cachep, objp);
3076 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3077 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3078 }
3079 if (cachep->flags & SLAB_STORE_USER)
3080 *dbg_userword(cachep, objp) = caller;
3081
3082 objnr = obj_to_index(cachep, slabp, objp);
3083
3084 BUG_ON(objnr >= cachep->num);
3085 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3086
3087 #ifdef CONFIG_DEBUG_SLAB_LEAK
3088 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3089 #endif
3090 if (cachep->flags & SLAB_POISON) {
3091 #ifdef CONFIG_DEBUG_PAGEALLOC
3092 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3093 store_stackinfo(cachep, objp, (unsigned long)caller);
3094 kernel_map_pages(virt_to_page(objp),
3095 cachep->size / PAGE_SIZE, 0);
3096 } else {
3097 poison_obj(cachep, objp, POISON_FREE);
3098 }
3099 #else
3100 poison_obj(cachep, objp, POISON_FREE);
3101 #endif
3102 }
3103 return objp;
3104 }
3105
3106 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3107 {
3108 kmem_bufctl_t i;
3109 int entries = 0;
3110
3111 /* Check slab's freelist to see if this obj is there. */
3112 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3113 entries++;
3114 if (entries > cachep->num || i >= cachep->num)
3115 goto bad;
3116 }
3117 if (entries != cachep->num - slabp->inuse) {
3118 bad:
3119 printk(KERN_ERR "slab: Internal list corruption detected in "
3120 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3121 cachep->name, cachep->num, slabp, slabp->inuse,
3122 print_tainted());
3123 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3124 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3125 1);
3126 BUG();
3127 }
3128 }
3129 #else
3130 #define kfree_debugcheck(x) do { } while(0)
3131 #define cache_free_debugcheck(x,objp,z) (objp)
3132 #define check_slabp(x,y) do { } while(0)
3133 #endif
3134
3135 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3136 bool force_refill)
3137 {
3138 int batchcount;
3139 struct kmem_list3 *l3;
3140 struct array_cache *ac;
3141 int node;
3142
3143 check_irq_off();
3144 node = numa_mem_id();
3145 if (unlikely(force_refill))
3146 goto force_grow;
3147 retry:
3148 ac = cpu_cache_get(cachep);
3149 batchcount = ac->batchcount;
3150 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3151 /*
3152 * If there was little recent activity on this cache, then
3153 * perform only a partial refill. Otherwise we could generate
3154 * refill bouncing.
3155 */
3156 batchcount = BATCHREFILL_LIMIT;
3157 }
3158 l3 = cachep->nodelists[node];
3159
3160 BUG_ON(ac->avail > 0 || !l3);
3161 spin_lock(&l3->list_lock);
3162
3163 /* See if we can refill from the shared array */
3164 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3165 l3->shared->touched = 1;
3166 goto alloc_done;
3167 }
3168
3169 while (batchcount > 0) {
3170 struct list_head *entry;
3171 struct slab *slabp;
3172 /* Get slab alloc is to come from. */
3173 entry = l3->slabs_partial.next;
3174 if (entry == &l3->slabs_partial) {
3175 l3->free_touched = 1;
3176 entry = l3->slabs_free.next;
3177 if (entry == &l3->slabs_free)
3178 goto must_grow;
3179 }
3180
3181 slabp = list_entry(entry, struct slab, list);
3182 check_slabp(cachep, slabp);
3183 check_spinlock_acquired(cachep);
3184
3185 /*
3186 * The slab was either on partial or free list so
3187 * there must be at least one object available for
3188 * allocation.
3189 */
3190 BUG_ON(slabp->inuse >= cachep->num);
3191
3192 while (slabp->inuse < cachep->num && batchcount--) {
3193 STATS_INC_ALLOCED(cachep);
3194 STATS_INC_ACTIVE(cachep);
3195 STATS_SET_HIGH(cachep);
3196
3197 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3198 node));
3199 }
3200 check_slabp(cachep, slabp);
3201
3202 /* move slabp to correct slabp list: */
3203 list_del(&slabp->list);
3204 if (slabp->free == BUFCTL_END)
3205 list_add(&slabp->list, &l3->slabs_full);
3206 else
3207 list_add(&slabp->list, &l3->slabs_partial);
3208 }
3209
3210 must_grow:
3211 l3->free_objects -= ac->avail;
3212 alloc_done:
3213 spin_unlock(&l3->list_lock);
3214
3215 if (unlikely(!ac->avail)) {
3216 int x;
3217 force_grow:
3218 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3219
3220 /* cache_grow can reenable interrupts, then ac could change. */
3221 ac = cpu_cache_get(cachep);
3222
3223 /* no objects in sight? abort */
3224 if (!x && (ac->avail == 0 || force_refill))
3225 return NULL;
3226
3227 if (!ac->avail) /* objects refilled by interrupt? */
3228 goto retry;
3229 }
3230 ac->touched = 1;
3231
3232 return ac_get_obj(cachep, ac, flags, force_refill);
3233 }
3234
3235 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3236 gfp_t flags)
3237 {
3238 might_sleep_if(flags & __GFP_WAIT);
3239 #if DEBUG
3240 kmem_flagcheck(cachep, flags);
3241 #endif
3242 }
3243
3244 #if DEBUG
3245 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3246 gfp_t flags, void *objp, void *caller)
3247 {
3248 if (!objp)
3249 return objp;
3250 if (cachep->flags & SLAB_POISON) {
3251 #ifdef CONFIG_DEBUG_PAGEALLOC
3252 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3253 kernel_map_pages(virt_to_page(objp),
3254 cachep->size / PAGE_SIZE, 1);
3255 else
3256 check_poison_obj(cachep, objp);
3257 #else
3258 check_poison_obj(cachep, objp);
3259 #endif
3260 poison_obj(cachep, objp, POISON_INUSE);
3261 }
3262 if (cachep->flags & SLAB_STORE_USER)
3263 *dbg_userword(cachep, objp) = caller;
3264
3265 if (cachep->flags & SLAB_RED_ZONE) {
3266 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3267 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3268 slab_error(cachep, "double free, or memory outside"
3269 " object was overwritten");
3270 printk(KERN_ERR
3271 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3272 objp, *dbg_redzone1(cachep, objp),
3273 *dbg_redzone2(cachep, objp));
3274 }
3275 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3276 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3277 }
3278 #ifdef CONFIG_DEBUG_SLAB_LEAK
3279 {
3280 struct slab *slabp;
3281 unsigned objnr;
3282
3283 slabp = virt_to_head_page(objp)->slab_page;
3284 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3285 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3286 }
3287 #endif
3288 objp += obj_offset(cachep);
3289 if (cachep->ctor && cachep->flags & SLAB_POISON)
3290 cachep->ctor(objp);
3291 if (ARCH_SLAB_MINALIGN &&
3292 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3293 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3294 objp, (int)ARCH_SLAB_MINALIGN);
3295 }
3296 return objp;
3297 }
3298 #else
3299 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3300 #endif
3301
3302 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3303 {
3304 if (cachep == kmem_cache)
3305 return false;
3306
3307 return should_failslab(cachep->object_size, flags, cachep->flags);
3308 }
3309
3310 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3311 {
3312 void *objp;
3313 struct array_cache *ac;
3314 bool force_refill = false;
3315
3316 check_irq_off();
3317
3318 ac = cpu_cache_get(cachep);
3319 if (likely(ac->avail)) {
3320 ac->touched = 1;
3321 objp = ac_get_obj(cachep, ac, flags, false);
3322
3323 /*
3324 * Allow for the possibility all avail objects are not allowed
3325 * by the current flags
3326 */
3327 if (objp) {
3328 STATS_INC_ALLOCHIT(cachep);
3329 goto out;
3330 }
3331 force_refill = true;
3332 }
3333
3334 STATS_INC_ALLOCMISS(cachep);
3335 objp = cache_alloc_refill(cachep, flags, force_refill);
3336 /*
3337 * the 'ac' may be updated by cache_alloc_refill(),
3338 * and kmemleak_erase() requires its correct value.
3339 */
3340 ac = cpu_cache_get(cachep);
3341
3342 out:
3343 /*
3344 * To avoid a false negative, if an object that is in one of the
3345 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3346 * treat the array pointers as a reference to the object.
3347 */
3348 if (objp)
3349 kmemleak_erase(&ac->entry[ac->avail]);
3350 return objp;
3351 }
3352
3353 #ifdef CONFIG_NUMA
3354 /*
3355 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3356 *
3357 * If we are in_interrupt, then process context, including cpusets and
3358 * mempolicy, may not apply and should not be used for allocation policy.
3359 */
3360 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3361 {
3362 int nid_alloc, nid_here;
3363
3364 if (in_interrupt() || (flags & __GFP_THISNODE))
3365 return NULL;
3366 nid_alloc = nid_here = numa_mem_id();
3367 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3368 nid_alloc = cpuset_slab_spread_node();
3369 else if (current->mempolicy)
3370 nid_alloc = slab_node();
3371 if (nid_alloc != nid_here)
3372 return ____cache_alloc_node(cachep, flags, nid_alloc);
3373 return NULL;
3374 }
3375
3376 /*
3377 * Fallback function if there was no memory available and no objects on a
3378 * certain node and fall back is permitted. First we scan all the
3379 * available nodelists for available objects. If that fails then we
3380 * perform an allocation without specifying a node. This allows the page
3381 * allocator to do its reclaim / fallback magic. We then insert the
3382 * slab into the proper nodelist and then allocate from it.
3383 */
3384 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3385 {
3386 struct zonelist *zonelist;
3387 gfp_t local_flags;
3388 struct zoneref *z;
3389 struct zone *zone;
3390 enum zone_type high_zoneidx = gfp_zone(flags);
3391 void *obj = NULL;
3392 int nid;
3393 unsigned int cpuset_mems_cookie;
3394
3395 if (flags & __GFP_THISNODE)
3396 return NULL;
3397
3398 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3399
3400 retry_cpuset:
3401 cpuset_mems_cookie = get_mems_allowed();
3402 zonelist = node_zonelist(slab_node(), flags);
3403
3404 retry:
3405 /*
3406 * Look through allowed nodes for objects available
3407 * from existing per node queues.
3408 */
3409 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3410 nid = zone_to_nid(zone);
3411
3412 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3413 cache->nodelists[nid] &&
3414 cache->nodelists[nid]->free_objects) {
3415 obj = ____cache_alloc_node(cache,
3416 flags | GFP_THISNODE, nid);
3417 if (obj)
3418 break;
3419 }
3420 }
3421
3422 if (!obj) {
3423 /*
3424 * This allocation will be performed within the constraints
3425 * of the current cpuset / memory policy requirements.
3426 * We may trigger various forms of reclaim on the allowed
3427 * set and go into memory reserves if necessary.
3428 */
3429 if (local_flags & __GFP_WAIT)
3430 local_irq_enable();
3431 kmem_flagcheck(cache, flags);
3432 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3433 if (local_flags & __GFP_WAIT)
3434 local_irq_disable();
3435 if (obj) {
3436 /*
3437 * Insert into the appropriate per node queues
3438 */
3439 nid = page_to_nid(virt_to_page(obj));
3440 if (cache_grow(cache, flags, nid, obj)) {
3441 obj = ____cache_alloc_node(cache,
3442 flags | GFP_THISNODE, nid);
3443 if (!obj)
3444 /*
3445 * Another processor may allocate the
3446 * objects in the slab since we are
3447 * not holding any locks.
3448 */
3449 goto retry;
3450 } else {
3451 /* cache_grow already freed obj */
3452 obj = NULL;
3453 }
3454 }
3455 }
3456
3457 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3458 goto retry_cpuset;
3459 return obj;
3460 }
3461
3462 /*
3463 * A interface to enable slab creation on nodeid
3464 */
3465 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3466 int nodeid)
3467 {
3468 struct list_head *entry;
3469 struct slab *slabp;
3470 struct kmem_list3 *l3;
3471 void *obj;
3472 int x;
3473
3474 l3 = cachep->nodelists[nodeid];
3475 BUG_ON(!l3);
3476
3477 retry:
3478 check_irq_off();
3479 spin_lock(&l3->list_lock);
3480 entry = l3->slabs_partial.next;
3481 if (entry == &l3->slabs_partial) {
3482 l3->free_touched = 1;
3483 entry = l3->slabs_free.next;
3484 if (entry == &l3->slabs_free)
3485 goto must_grow;
3486 }
3487
3488 slabp = list_entry(entry, struct slab, list);
3489 check_spinlock_acquired_node(cachep, nodeid);
3490 check_slabp(cachep, slabp);
3491
3492 STATS_INC_NODEALLOCS(cachep);
3493 STATS_INC_ACTIVE(cachep);
3494 STATS_SET_HIGH(cachep);
3495
3496 BUG_ON(slabp->inuse == cachep->num);
3497
3498 obj = slab_get_obj(cachep, slabp, nodeid);
3499 check_slabp(cachep, slabp);
3500 l3->free_objects--;
3501 /* move slabp to correct slabp list: */
3502 list_del(&slabp->list);
3503
3504 if (slabp->free == BUFCTL_END)
3505 list_add(&slabp->list, &l3->slabs_full);
3506 else
3507 list_add(&slabp->list, &l3->slabs_partial);
3508
3509 spin_unlock(&l3->list_lock);
3510 goto done;
3511
3512 must_grow:
3513 spin_unlock(&l3->list_lock);
3514 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3515 if (x)
3516 goto retry;
3517
3518 return fallback_alloc(cachep, flags);
3519
3520 done:
3521 return obj;
3522 }
3523
3524 /**
3525 * kmem_cache_alloc_node - Allocate an object on the specified node
3526 * @cachep: The cache to allocate from.
3527 * @flags: See kmalloc().
3528 * @nodeid: node number of the target node.
3529 * @caller: return address of caller, used for debug information
3530 *
3531 * Identical to kmem_cache_alloc but it will allocate memory on the given
3532 * node, which can improve the performance for cpu bound structures.
3533 *
3534 * Fallback to other node is possible if __GFP_THISNODE is not set.
3535 */
3536 static __always_inline void *
3537 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3538 void *caller)
3539 {
3540 unsigned long save_flags;
3541 void *ptr;
3542 int slab_node = numa_mem_id();
3543
3544 flags &= gfp_allowed_mask;
3545
3546 lockdep_trace_alloc(flags);
3547
3548 if (slab_should_failslab(cachep, flags))
3549 return NULL;
3550
3551 cache_alloc_debugcheck_before(cachep, flags);
3552 local_irq_save(save_flags);
3553
3554 if (nodeid == NUMA_NO_NODE)
3555 nodeid = slab_node;
3556
3557 if (unlikely(!cachep->nodelists[nodeid])) {
3558 /* Node not bootstrapped yet */
3559 ptr = fallback_alloc(cachep, flags);
3560 goto out;
3561 }
3562
3563 if (nodeid == slab_node) {
3564 /*
3565 * Use the locally cached objects if possible.
3566 * However ____cache_alloc does not allow fallback
3567 * to other nodes. It may fail while we still have
3568 * objects on other nodes available.
3569 */
3570 ptr = ____cache_alloc(cachep, flags);
3571 if (ptr)
3572 goto out;
3573 }
3574 /* ___cache_alloc_node can fall back to other nodes */
3575 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3576 out:
3577 local_irq_restore(save_flags);
3578 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3579 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3580 flags);
3581
3582 if (likely(ptr))
3583 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3584
3585 if (unlikely((flags & __GFP_ZERO) && ptr))
3586 memset(ptr, 0, cachep->object_size);
3587
3588 return ptr;
3589 }
3590
3591 static __always_inline void *
3592 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3593 {
3594 void *objp;
3595
3596 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3597 objp = alternate_node_alloc(cache, flags);
3598 if (objp)
3599 goto out;
3600 }
3601 objp = ____cache_alloc(cache, flags);
3602
3603 /*
3604 * We may just have run out of memory on the local node.
3605 * ____cache_alloc_node() knows how to locate memory on other nodes
3606 */
3607 if (!objp)
3608 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3609
3610 out:
3611 return objp;
3612 }
3613 #else
3614
3615 static __always_inline void *
3616 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3617 {
3618 return ____cache_alloc(cachep, flags);
3619 }
3620
3621 #endif /* CONFIG_NUMA */
3622
3623 static __always_inline void *
3624 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3625 {
3626 unsigned long save_flags;
3627 void *objp;
3628
3629 flags &= gfp_allowed_mask;
3630
3631 lockdep_trace_alloc(flags);
3632
3633 if (slab_should_failslab(cachep, flags))
3634 return NULL;
3635
3636 cache_alloc_debugcheck_before(cachep, flags);
3637 local_irq_save(save_flags);
3638 objp = __do_cache_alloc(cachep, flags);
3639 local_irq_restore(save_flags);
3640 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3641 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3642 flags);
3643 prefetchw(objp);
3644
3645 if (likely(objp))
3646 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3647
3648 if (unlikely((flags & __GFP_ZERO) && objp))
3649 memset(objp, 0, cachep->object_size);
3650
3651 return objp;
3652 }
3653
3654 /*
3655 * Caller needs to acquire correct kmem_list's list_lock
3656 */
3657 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3658 int node)
3659 {
3660 int i;
3661 struct kmem_list3 *l3;
3662
3663 for (i = 0; i < nr_objects; i++) {
3664 void *objp;
3665 struct slab *slabp;
3666
3667 clear_obj_pfmemalloc(&objpp[i]);
3668 objp = objpp[i];
3669
3670 slabp = virt_to_slab(objp);
3671 l3 = cachep->nodelists[node];
3672 list_del(&slabp->list);
3673 check_spinlock_acquired_node(cachep, node);
3674 check_slabp(cachep, slabp);
3675 slab_put_obj(cachep, slabp, objp, node);
3676 STATS_DEC_ACTIVE(cachep);
3677 l3->free_objects++;
3678 check_slabp(cachep, slabp);
3679
3680 /* fixup slab chains */
3681 if (slabp->inuse == 0) {
3682 if (l3->free_objects > l3->free_limit) {
3683 l3->free_objects -= cachep->num;
3684 /* No need to drop any previously held
3685 * lock here, even if we have a off-slab slab
3686 * descriptor it is guaranteed to come from
3687 * a different cache, refer to comments before
3688 * alloc_slabmgmt.
3689 */
3690 slab_destroy(cachep, slabp);
3691 } else {
3692 list_add(&slabp->list, &l3->slabs_free);
3693 }
3694 } else {
3695 /* Unconditionally move a slab to the end of the
3696 * partial list on free - maximum time for the
3697 * other objects to be freed, too.
3698 */
3699 list_add_tail(&slabp->list, &l3->slabs_partial);
3700 }
3701 }
3702 }
3703
3704 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3705 {
3706 int batchcount;
3707 struct kmem_list3 *l3;
3708 int node = numa_mem_id();
3709
3710 batchcount = ac->batchcount;
3711 #if DEBUG
3712 BUG_ON(!batchcount || batchcount > ac->avail);
3713 #endif
3714 check_irq_off();
3715 l3 = cachep->nodelists[node];
3716 spin_lock(&l3->list_lock);
3717 if (l3->shared) {
3718 struct array_cache *shared_array = l3->shared;
3719 int max = shared_array->limit - shared_array->avail;
3720 if (max) {
3721 if (batchcount > max)
3722 batchcount = max;
3723 memcpy(&(shared_array->entry[shared_array->avail]),
3724 ac->entry, sizeof(void *) * batchcount);
3725 shared_array->avail += batchcount;
3726 goto free_done;
3727 }
3728 }
3729
3730 free_block(cachep, ac->entry, batchcount, node);
3731 free_done:
3732 #if STATS
3733 {
3734 int i = 0;
3735 struct list_head *p;
3736
3737 p = l3->slabs_free.next;
3738 while (p != &(l3->slabs_free)) {
3739 struct slab *slabp;
3740
3741 slabp = list_entry(p, struct slab, list);
3742 BUG_ON(slabp->inuse);
3743
3744 i++;
3745 p = p->next;
3746 }
3747 STATS_SET_FREEABLE(cachep, i);
3748 }
3749 #endif
3750 spin_unlock(&l3->list_lock);
3751 ac->avail -= batchcount;
3752 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3753 }
3754
3755 /*
3756 * Release an obj back to its cache. If the obj has a constructed state, it must
3757 * be in this state _before_ it is released. Called with disabled ints.
3758 */
3759 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3760 void *caller)
3761 {
3762 struct array_cache *ac = cpu_cache_get(cachep);
3763
3764 check_irq_off();
3765 kmemleak_free_recursive(objp, cachep->flags);
3766 objp = cache_free_debugcheck(cachep, objp, caller);
3767
3768 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3769
3770 /*
3771 * Skip calling cache_free_alien() when the platform is not numa.
3772 * This will avoid cache misses that happen while accessing slabp (which
3773 * is per page memory reference) to get nodeid. Instead use a global
3774 * variable to skip the call, which is mostly likely to be present in
3775 * the cache.
3776 */
3777 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3778 return;
3779
3780 if (likely(ac->avail < ac->limit)) {
3781 STATS_INC_FREEHIT(cachep);
3782 } else {
3783 STATS_INC_FREEMISS(cachep);
3784 cache_flusharray(cachep, ac);
3785 }
3786
3787 ac_put_obj(cachep, ac, objp);
3788 }
3789
3790 /**
3791 * kmem_cache_alloc - Allocate an object
3792 * @cachep: The cache to allocate from.
3793 * @flags: See kmalloc().
3794 *
3795 * Allocate an object from this cache. The flags are only relevant
3796 * if the cache has no available objects.
3797 */
3798 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3799 {
3800 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3801
3802 trace_kmem_cache_alloc(_RET_IP_, ret,
3803 cachep->object_size, cachep->size, flags);
3804
3805 return ret;
3806 }
3807 EXPORT_SYMBOL(kmem_cache_alloc);
3808
3809 #ifdef CONFIG_TRACING
3810 void *
3811 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3812 {
3813 void *ret;
3814
3815 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3816
3817 trace_kmalloc(_RET_IP_, ret,
3818 size, slab_buffer_size(cachep), flags);
3819 return ret;
3820 }
3821 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3822 #endif
3823
3824 #ifdef CONFIG_NUMA
3825 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3826 {
3827 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3828 __builtin_return_address(0));
3829
3830 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3831 cachep->object_size, cachep->size,
3832 flags, nodeid);
3833
3834 return ret;
3835 }
3836 EXPORT_SYMBOL(kmem_cache_alloc_node);
3837
3838 #ifdef CONFIG_TRACING
3839 void *kmem_cache_alloc_node_trace(size_t size,
3840 struct kmem_cache *cachep,
3841 gfp_t flags,
3842 int nodeid)
3843 {
3844 void *ret;
3845
3846 ret = __cache_alloc_node(cachep, flags, nodeid,
3847 __builtin_return_address(0));
3848 trace_kmalloc_node(_RET_IP_, ret,
3849 size, slab_buffer_size(cachep),
3850 flags, nodeid);
3851 return ret;
3852 }
3853 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3854 #endif
3855
3856 static __always_inline void *
3857 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3858 {
3859 struct kmem_cache *cachep;
3860
3861 cachep = kmem_find_general_cachep(size, flags);
3862 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3863 return cachep;
3864 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3865 }
3866
3867 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3868 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3869 {
3870 return __do_kmalloc_node(size, flags, node,
3871 __builtin_return_address(0));
3872 }
3873 EXPORT_SYMBOL(__kmalloc_node);
3874
3875 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3876 int node, unsigned long caller)
3877 {
3878 return __do_kmalloc_node(size, flags, node, (void *)caller);
3879 }
3880 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3881 #else
3882 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3883 {
3884 return __do_kmalloc_node(size, flags, node, NULL);
3885 }
3886 EXPORT_SYMBOL(__kmalloc_node);
3887 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3888 #endif /* CONFIG_NUMA */
3889
3890 /**
3891 * __do_kmalloc - allocate memory
3892 * @size: how many bytes of memory are required.
3893 * @flags: the type of memory to allocate (see kmalloc).
3894 * @caller: function caller for debug tracking of the caller
3895 */
3896 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3897 void *caller)
3898 {
3899 struct kmem_cache *cachep;
3900 void *ret;
3901
3902 /* If you want to save a few bytes .text space: replace
3903 * __ with kmem_.
3904 * Then kmalloc uses the uninlined functions instead of the inline
3905 * functions.
3906 */
3907 cachep = __find_general_cachep(size, flags);
3908 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3909 return cachep;
3910 ret = __cache_alloc(cachep, flags, caller);
3911
3912 trace_kmalloc((unsigned long) caller, ret,
3913 size, cachep->size, flags);
3914
3915 return ret;
3916 }
3917
3918
3919 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3920 void *__kmalloc(size_t size, gfp_t flags)
3921 {
3922 return __do_kmalloc(size, flags, __builtin_return_address(0));
3923 }
3924 EXPORT_SYMBOL(__kmalloc);
3925
3926 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3927 {
3928 return __do_kmalloc(size, flags, (void *)caller);
3929 }
3930 EXPORT_SYMBOL(__kmalloc_track_caller);
3931
3932 #else
3933 void *__kmalloc(size_t size, gfp_t flags)
3934 {
3935 return __do_kmalloc(size, flags, NULL);
3936 }
3937 EXPORT_SYMBOL(__kmalloc);
3938 #endif
3939
3940 /**
3941 * kmem_cache_free - Deallocate an object
3942 * @cachep: The cache the allocation was from.
3943 * @objp: The previously allocated object.
3944 *
3945 * Free an object which was previously allocated from this
3946 * cache.
3947 */
3948 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3949 {
3950 unsigned long flags;
3951
3952 local_irq_save(flags);
3953 debug_check_no_locks_freed(objp, cachep->object_size);
3954 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3955 debug_check_no_obj_freed(objp, cachep->object_size);
3956 __cache_free(cachep, objp, __builtin_return_address(0));
3957 local_irq_restore(flags);
3958
3959 trace_kmem_cache_free(_RET_IP_, objp);
3960 }
3961 EXPORT_SYMBOL(kmem_cache_free);
3962
3963 /**
3964 * kfree - free previously allocated memory
3965 * @objp: pointer returned by kmalloc.
3966 *
3967 * If @objp is NULL, no operation is performed.
3968 *
3969 * Don't free memory not originally allocated by kmalloc()
3970 * or you will run into trouble.
3971 */
3972 void kfree(const void *objp)
3973 {
3974 struct kmem_cache *c;
3975 unsigned long flags;
3976
3977 trace_kfree(_RET_IP_, objp);
3978
3979 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3980 return;
3981 local_irq_save(flags);
3982 kfree_debugcheck(objp);
3983 c = virt_to_cache(objp);
3984 debug_check_no_locks_freed(objp, c->object_size);
3985
3986 debug_check_no_obj_freed(objp, c->object_size);
3987 __cache_free(c, (void *)objp, __builtin_return_address(0));
3988 local_irq_restore(flags);
3989 }
3990 EXPORT_SYMBOL(kfree);
3991
3992 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3993 {
3994 return cachep->object_size;
3995 }
3996 EXPORT_SYMBOL(kmem_cache_size);
3997
3998 /*
3999 * This initializes kmem_list3 or resizes various caches for all nodes.
4000 */
4001 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
4002 {
4003 int node;
4004 struct kmem_list3 *l3;
4005 struct array_cache *new_shared;
4006 struct array_cache **new_alien = NULL;
4007
4008 for_each_online_node(node) {
4009
4010 if (use_alien_caches) {
4011 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
4012 if (!new_alien)
4013 goto fail;
4014 }
4015
4016 new_shared = NULL;
4017 if (cachep->shared) {
4018 new_shared = alloc_arraycache(node,
4019 cachep->shared*cachep->batchcount,
4020 0xbaadf00d, gfp);
4021 if (!new_shared) {
4022 free_alien_cache(new_alien);
4023 goto fail;
4024 }
4025 }
4026
4027 l3 = cachep->nodelists[node];
4028 if (l3) {
4029 struct array_cache *shared = l3->shared;
4030
4031 spin_lock_irq(&l3->list_lock);
4032
4033 if (shared)
4034 free_block(cachep, shared->entry,
4035 shared->avail, node);
4036
4037 l3->shared = new_shared;
4038 if (!l3->alien) {
4039 l3->alien = new_alien;
4040 new_alien = NULL;
4041 }
4042 l3->free_limit = (1 + nr_cpus_node(node)) *
4043 cachep->batchcount + cachep->num;
4044 spin_unlock_irq(&l3->list_lock);
4045 kfree(shared);
4046 free_alien_cache(new_alien);
4047 continue;
4048 }
4049 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4050 if (!l3) {
4051 free_alien_cache(new_alien);
4052 kfree(new_shared);
4053 goto fail;
4054 }
4055
4056 kmem_list3_init(l3);
4057 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
4058 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4059 l3->shared = new_shared;
4060 l3->alien = new_alien;
4061 l3->free_limit = (1 + nr_cpus_node(node)) *
4062 cachep->batchcount + cachep->num;
4063 cachep->nodelists[node] = l3;
4064 }
4065 return 0;
4066
4067 fail:
4068 if (!cachep->list.next) {
4069 /* Cache is not active yet. Roll back what we did */
4070 node--;
4071 while (node >= 0) {
4072 if (cachep->nodelists[node]) {
4073 l3 = cachep->nodelists[node];
4074
4075 kfree(l3->shared);
4076 free_alien_cache(l3->alien);
4077 kfree(l3);
4078 cachep->nodelists[node] = NULL;
4079 }
4080 node--;
4081 }
4082 }
4083 return -ENOMEM;
4084 }
4085
4086 struct ccupdate_struct {
4087 struct kmem_cache *cachep;
4088 struct array_cache *new[0];
4089 };
4090
4091 static void do_ccupdate_local(void *info)
4092 {
4093 struct ccupdate_struct *new = info;
4094 struct array_cache *old;
4095
4096 check_irq_off();
4097 old = cpu_cache_get(new->cachep);
4098
4099 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4100 new->new[smp_processor_id()] = old;
4101 }
4102
4103 /* Always called with the slab_mutex held */
4104 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4105 int batchcount, int shared, gfp_t gfp)
4106 {
4107 struct ccupdate_struct *new;
4108 int i;
4109
4110 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4111 gfp);
4112 if (!new)
4113 return -ENOMEM;
4114
4115 for_each_online_cpu(i) {
4116 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4117 batchcount, gfp);
4118 if (!new->new[i]) {
4119 for (i--; i >= 0; i--)
4120 kfree(new->new[i]);
4121 kfree(new);
4122 return -ENOMEM;
4123 }
4124 }
4125 new->cachep = cachep;
4126
4127 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4128
4129 check_irq_on();
4130 cachep->batchcount = batchcount;
4131 cachep->limit = limit;
4132 cachep->shared = shared;
4133
4134 for_each_online_cpu(i) {
4135 struct array_cache *ccold = new->new[i];
4136 if (!ccold)
4137 continue;
4138 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4139 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4140 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4141 kfree(ccold);
4142 }
4143 kfree(new);
4144 return alloc_kmemlist(cachep, gfp);
4145 }
4146
4147 /* Called with slab_mutex held always */
4148 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4149 {
4150 int err;
4151 int limit, shared;
4152
4153 /*
4154 * The head array serves three purposes:
4155 * - create a LIFO ordering, i.e. return objects that are cache-warm
4156 * - reduce the number of spinlock operations.
4157 * - reduce the number of linked list operations on the slab and
4158 * bufctl chains: array operations are cheaper.
4159 * The numbers are guessed, we should auto-tune as described by
4160 * Bonwick.
4161 */
4162 if (cachep->size > 131072)
4163 limit = 1;
4164 else if (cachep->size > PAGE_SIZE)
4165 limit = 8;
4166 else if (cachep->size > 1024)
4167 limit = 24;
4168 else if (cachep->size > 256)
4169 limit = 54;
4170 else
4171 limit = 120;
4172
4173 /*
4174 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4175 * allocation behaviour: Most allocs on one cpu, most free operations
4176 * on another cpu. For these cases, an efficient object passing between
4177 * cpus is necessary. This is provided by a shared array. The array
4178 * replaces Bonwick's magazine layer.
4179 * On uniprocessor, it's functionally equivalent (but less efficient)
4180 * to a larger limit. Thus disabled by default.
4181 */
4182 shared = 0;
4183 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4184 shared = 8;
4185
4186 #if DEBUG
4187 /*
4188 * With debugging enabled, large batchcount lead to excessively long
4189 * periods with disabled local interrupts. Limit the batchcount
4190 */
4191 if (limit > 32)
4192 limit = 32;
4193 #endif
4194 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4195 if (err)
4196 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4197 cachep->name, -err);
4198 return err;
4199 }
4200
4201 /*
4202 * Drain an array if it contains any elements taking the l3 lock only if
4203 * necessary. Note that the l3 listlock also protects the array_cache
4204 * if drain_array() is used on the shared array.
4205 */
4206 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4207 struct array_cache *ac, int force, int node)
4208 {
4209 int tofree;
4210
4211 if (!ac || !ac->avail)
4212 return;
4213 if (ac->touched && !force) {
4214 ac->touched = 0;
4215 } else {
4216 spin_lock_irq(&l3->list_lock);
4217 if (ac->avail) {
4218 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4219 if (tofree > ac->avail)
4220 tofree = (ac->avail + 1) / 2;
4221 free_block(cachep, ac->entry, tofree, node);
4222 ac->avail -= tofree;
4223 memmove(ac->entry, &(ac->entry[tofree]),
4224 sizeof(void *) * ac->avail);
4225 }
4226 spin_unlock_irq(&l3->list_lock);
4227 }
4228 }
4229
4230 /**
4231 * cache_reap - Reclaim memory from caches.
4232 * @w: work descriptor
4233 *
4234 * Called from workqueue/eventd every few seconds.
4235 * Purpose:
4236 * - clear the per-cpu caches for this CPU.
4237 * - return freeable pages to the main free memory pool.
4238 *
4239 * If we cannot acquire the cache chain mutex then just give up - we'll try
4240 * again on the next iteration.
4241 */
4242 static void cache_reap(struct work_struct *w)
4243 {
4244 struct kmem_cache *searchp;
4245 struct kmem_list3 *l3;
4246 int node = numa_mem_id();
4247 struct delayed_work *work = to_delayed_work(w);
4248
4249 if (!mutex_trylock(&slab_mutex))
4250 /* Give up. Setup the next iteration. */
4251 goto out;
4252
4253 list_for_each_entry(searchp, &slab_caches, list) {
4254 check_irq_on();
4255
4256 /*
4257 * We only take the l3 lock if absolutely necessary and we
4258 * have established with reasonable certainty that
4259 * we can do some work if the lock was obtained.
4260 */
4261 l3 = searchp->nodelists[node];
4262
4263 reap_alien(searchp, l3);
4264
4265 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4266
4267 /*
4268 * These are racy checks but it does not matter
4269 * if we skip one check or scan twice.
4270 */
4271 if (time_after(l3->next_reap, jiffies))
4272 goto next;
4273
4274 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4275
4276 drain_array(searchp, l3, l3->shared, 0, node);
4277
4278 if (l3->free_touched)
4279 l3->free_touched = 0;
4280 else {
4281 int freed;
4282
4283 freed = drain_freelist(searchp, l3, (l3->free_limit +
4284 5 * searchp->num - 1) / (5 * searchp->num));
4285 STATS_ADD_REAPED(searchp, freed);
4286 }
4287 next:
4288 cond_resched();
4289 }
4290 check_irq_on();
4291 mutex_unlock(&slab_mutex);
4292 next_reap_node();
4293 out:
4294 /* Set up the next iteration */
4295 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4296 }
4297
4298 #ifdef CONFIG_SLABINFO
4299
4300 static void print_slabinfo_header(struct seq_file *m)
4301 {
4302 /*
4303 * Output format version, so at least we can change it
4304 * without _too_ many complaints.
4305 */
4306 #if STATS
4307 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4308 #else
4309 seq_puts(m, "slabinfo - version: 2.1\n");
4310 #endif
4311 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4312 "<objperslab> <pagesperslab>");
4313 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4314 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4315 #if STATS
4316 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4317 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4318 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4319 #endif
4320 seq_putc(m, '\n');
4321 }
4322
4323 static void *s_start(struct seq_file *m, loff_t *pos)
4324 {
4325 loff_t n = *pos;
4326
4327 mutex_lock(&slab_mutex);
4328 if (!n)
4329 print_slabinfo_header(m);
4330
4331 return seq_list_start(&slab_caches, *pos);
4332 }
4333
4334 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4335 {
4336 return seq_list_next(p, &slab_caches, pos);
4337 }
4338
4339 static void s_stop(struct seq_file *m, void *p)
4340 {
4341 mutex_unlock(&slab_mutex);
4342 }
4343
4344 static int s_show(struct seq_file *m, void *p)
4345 {
4346 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4347 struct slab *slabp;
4348 unsigned long active_objs;
4349 unsigned long num_objs;
4350 unsigned long active_slabs = 0;
4351 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4352 const char *name;
4353 char *error = NULL;
4354 int node;
4355 struct kmem_list3 *l3;
4356
4357 active_objs = 0;
4358 num_slabs = 0;
4359 for_each_online_node(node) {
4360 l3 = cachep->nodelists[node];
4361 if (!l3)
4362 continue;
4363
4364 check_irq_on();
4365 spin_lock_irq(&l3->list_lock);
4366
4367 list_for_each_entry(slabp, &l3->slabs_full, list) {
4368 if (slabp->inuse != cachep->num && !error)
4369 error = "slabs_full accounting error";
4370 active_objs += cachep->num;
4371 active_slabs++;
4372 }
4373 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4374 if (slabp->inuse == cachep->num && !error)
4375 error = "slabs_partial inuse accounting error";
4376 if (!slabp->inuse && !error)
4377 error = "slabs_partial/inuse accounting error";
4378 active_objs += slabp->inuse;
4379 active_slabs++;
4380 }
4381 list_for_each_entry(slabp, &l3->slabs_free, list) {
4382 if (slabp->inuse && !error)
4383 error = "slabs_free/inuse accounting error";
4384 num_slabs++;
4385 }
4386 free_objects += l3->free_objects;
4387 if (l3->shared)
4388 shared_avail += l3->shared->avail;
4389
4390 spin_unlock_irq(&l3->list_lock);
4391 }
4392 num_slabs += active_slabs;
4393 num_objs = num_slabs * cachep->num;
4394 if (num_objs - active_objs != free_objects && !error)
4395 error = "free_objects accounting error";
4396
4397 name = cachep->name;
4398 if (error)
4399 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4400
4401 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4402 name, active_objs, num_objs, cachep->size,
4403 cachep->num, (1 << cachep->gfporder));
4404 seq_printf(m, " : tunables %4u %4u %4u",
4405 cachep->limit, cachep->batchcount, cachep->shared);
4406 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4407 active_slabs, num_slabs, shared_avail);
4408 #if STATS
4409 { /* list3 stats */
4410 unsigned long high = cachep->high_mark;
4411 unsigned long allocs = cachep->num_allocations;
4412 unsigned long grown = cachep->grown;
4413 unsigned long reaped = cachep->reaped;
4414 unsigned long errors = cachep->errors;
4415 unsigned long max_freeable = cachep->max_freeable;
4416 unsigned long node_allocs = cachep->node_allocs;
4417 unsigned long node_frees = cachep->node_frees;
4418 unsigned long overflows = cachep->node_overflow;
4419
4420 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4421 "%4lu %4lu %4lu %4lu %4lu",
4422 allocs, high, grown,
4423 reaped, errors, max_freeable, node_allocs,
4424 node_frees, overflows);
4425 }
4426 /* cpu stats */
4427 {
4428 unsigned long allochit = atomic_read(&cachep->allochit);
4429 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4430 unsigned long freehit = atomic_read(&cachep->freehit);
4431 unsigned long freemiss = atomic_read(&cachep->freemiss);
4432
4433 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4434 allochit, allocmiss, freehit, freemiss);
4435 }
4436 #endif
4437 seq_putc(m, '\n');
4438 return 0;
4439 }
4440
4441 /*
4442 * slabinfo_op - iterator that generates /proc/slabinfo
4443 *
4444 * Output layout:
4445 * cache-name
4446 * num-active-objs
4447 * total-objs
4448 * object size
4449 * num-active-slabs
4450 * total-slabs
4451 * num-pages-per-slab
4452 * + further values on SMP and with statistics enabled
4453 */
4454
4455 static const struct seq_operations slabinfo_op = {
4456 .start = s_start,
4457 .next = s_next,
4458 .stop = s_stop,
4459 .show = s_show,
4460 };
4461
4462 #define MAX_SLABINFO_WRITE 128
4463 /**
4464 * slabinfo_write - Tuning for the slab allocator
4465 * @file: unused
4466 * @buffer: user buffer
4467 * @count: data length
4468 * @ppos: unused
4469 */
4470 static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4471 size_t count, loff_t *ppos)
4472 {
4473 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4474 int limit, batchcount, shared, res;
4475 struct kmem_cache *cachep;
4476
4477 if (count > MAX_SLABINFO_WRITE)
4478 return -EINVAL;
4479 if (copy_from_user(&kbuf, buffer, count))
4480 return -EFAULT;
4481 kbuf[MAX_SLABINFO_WRITE] = '\0';
4482
4483 tmp = strchr(kbuf, ' ');
4484 if (!tmp)
4485 return -EINVAL;
4486 *tmp = '\0';
4487 tmp++;
4488 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4489 return -EINVAL;
4490
4491 /* Find the cache in the chain of caches. */
4492 mutex_lock(&slab_mutex);
4493 res = -EINVAL;
4494 list_for_each_entry(cachep, &slab_caches, list) {
4495 if (!strcmp(cachep->name, kbuf)) {
4496 if (limit < 1 || batchcount < 1 ||
4497 batchcount > limit || shared < 0) {
4498 res = 0;
4499 } else {
4500 res = do_tune_cpucache(cachep, limit,
4501 batchcount, shared,
4502 GFP_KERNEL);
4503 }
4504 break;
4505 }
4506 }
4507 mutex_unlock(&slab_mutex);
4508 if (res >= 0)
4509 res = count;
4510 return res;
4511 }
4512
4513 static int slabinfo_open(struct inode *inode, struct file *file)
4514 {
4515 return seq_open(file, &slabinfo_op);
4516 }
4517
4518 static const struct file_operations proc_slabinfo_operations = {
4519 .open = slabinfo_open,
4520 .read = seq_read,
4521 .write = slabinfo_write,
4522 .llseek = seq_lseek,
4523 .release = seq_release,
4524 };
4525
4526 #ifdef CONFIG_DEBUG_SLAB_LEAK
4527
4528 static void *leaks_start(struct seq_file *m, loff_t *pos)
4529 {
4530 mutex_lock(&slab_mutex);
4531 return seq_list_start(&slab_caches, *pos);
4532 }
4533
4534 static inline int add_caller(unsigned long *n, unsigned long v)
4535 {
4536 unsigned long *p;
4537 int l;
4538 if (!v)
4539 return 1;
4540 l = n[1];
4541 p = n + 2;
4542 while (l) {
4543 int i = l/2;
4544 unsigned long *q = p + 2 * i;
4545 if (*q == v) {
4546 q[1]++;
4547 return 1;
4548 }
4549 if (*q > v) {
4550 l = i;
4551 } else {
4552 p = q + 2;
4553 l -= i + 1;
4554 }
4555 }
4556 if (++n[1] == n[0])
4557 return 0;
4558 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4559 p[0] = v;
4560 p[1] = 1;
4561 return 1;
4562 }
4563
4564 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4565 {
4566 void *p;
4567 int i;
4568 if (n[0] == n[1])
4569 return;
4570 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4571 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4572 continue;
4573 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4574 return;
4575 }
4576 }
4577
4578 static void show_symbol(struct seq_file *m, unsigned long address)
4579 {
4580 #ifdef CONFIG_KALLSYMS
4581 unsigned long offset, size;
4582 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4583
4584 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4585 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4586 if (modname[0])
4587 seq_printf(m, " [%s]", modname);
4588 return;
4589 }
4590 #endif
4591 seq_printf(m, "%p", (void *)address);
4592 }
4593
4594 static int leaks_show(struct seq_file *m, void *p)
4595 {
4596 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4597 struct slab *slabp;
4598 struct kmem_list3 *l3;
4599 const char *name;
4600 unsigned long *n = m->private;
4601 int node;
4602 int i;
4603
4604 if (!(cachep->flags & SLAB_STORE_USER))
4605 return 0;
4606 if (!(cachep->flags & SLAB_RED_ZONE))
4607 return 0;
4608
4609 /* OK, we can do it */
4610
4611 n[1] = 0;
4612
4613 for_each_online_node(node) {
4614 l3 = cachep->nodelists[node];
4615 if (!l3)
4616 continue;
4617
4618 check_irq_on();
4619 spin_lock_irq(&l3->list_lock);
4620
4621 list_for_each_entry(slabp, &l3->slabs_full, list)
4622 handle_slab(n, cachep, slabp);
4623 list_for_each_entry(slabp, &l3->slabs_partial, list)
4624 handle_slab(n, cachep, slabp);
4625 spin_unlock_irq(&l3->list_lock);
4626 }
4627 name = cachep->name;
4628 if (n[0] == n[1]) {
4629 /* Increase the buffer size */
4630 mutex_unlock(&slab_mutex);
4631 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4632 if (!m->private) {
4633 /* Too bad, we are really out */
4634 m->private = n;
4635 mutex_lock(&slab_mutex);
4636 return -ENOMEM;
4637 }
4638 *(unsigned long *)m->private = n[0] * 2;
4639 kfree(n);
4640 mutex_lock(&slab_mutex);
4641 /* Now make sure this entry will be retried */
4642 m->count = m->size;
4643 return 0;
4644 }
4645 for (i = 0; i < n[1]; i++) {
4646 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4647 show_symbol(m, n[2*i+2]);
4648 seq_putc(m, '\n');
4649 }
4650
4651 return 0;
4652 }
4653
4654 static const struct seq_operations slabstats_op = {
4655 .start = leaks_start,
4656 .next = s_next,
4657 .stop = s_stop,
4658 .show = leaks_show,
4659 };
4660
4661 static int slabstats_open(struct inode *inode, struct file *file)
4662 {
4663 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4664 int ret = -ENOMEM;
4665 if (n) {
4666 ret = seq_open(file, &slabstats_op);
4667 if (!ret) {
4668 struct seq_file *m = file->private_data;
4669 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4670 m->private = n;
4671 n = NULL;
4672 }
4673 kfree(n);
4674 }
4675 return ret;
4676 }
4677
4678 static const struct file_operations proc_slabstats_operations = {
4679 .open = slabstats_open,
4680 .read = seq_read,
4681 .llseek = seq_lseek,
4682 .release = seq_release_private,
4683 };
4684 #endif
4685
4686 static int __init slab_proc_init(void)
4687 {
4688 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4689 #ifdef CONFIG_DEBUG_SLAB_LEAK
4690 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4691 #endif
4692 return 0;
4693 }
4694 module_init(slab_proc_init);
4695 #endif
4696
4697 /**
4698 * ksize - get the actual amount of memory allocated for a given object
4699 * @objp: Pointer to the object
4700 *
4701 * kmalloc may internally round up allocations and return more memory
4702 * than requested. ksize() can be used to determine the actual amount of
4703 * memory allocated. The caller may use this additional memory, even though
4704 * a smaller amount of memory was initially specified with the kmalloc call.
4705 * The caller must guarantee that objp points to a valid object previously
4706 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4707 * must not be freed during the duration of the call.
4708 */
4709 size_t ksize(const void *objp)
4710 {
4711 BUG_ON(!objp);
4712 if (unlikely(objp == ZERO_SIZE_PTR))
4713 return 0;
4714
4715 return virt_to_cache(objp)->object_size;
4716 }
4717 EXPORT_SYMBOL(ksize);