]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slab.c
Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-mmc
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
109
110 #include <asm/uaccess.h>
111 #include <asm/cacheflush.h>
112 #include <asm/tlbflush.h>
113 #include <asm/page.h>
114
115 /*
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126 #ifdef CONFIG_DEBUG_SLAB
127 #define DEBUG 1
128 #define STATS 1
129 #define FORCED_DEBUG 1
130 #else
131 #define DEBUG 0
132 #define STATS 0
133 #define FORCED_DEBUG 0
134 #endif
135
136 /* Shouldn't this be in a header file somewhere? */
137 #define BYTES_PER_WORD sizeof(void *)
138
139 #ifndef cache_line_size
140 #define cache_line_size() L1_CACHE_BYTES
141 #endif
142
143 #ifndef ARCH_KMALLOC_MINALIGN
144 /*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152 #define ARCH_KMALLOC_MINALIGN 0
153 #endif
154
155 #ifndef ARCH_SLAB_MINALIGN
156 /*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163 #define ARCH_SLAB_MINALIGN 0
164 #endif
165
166 #ifndef ARCH_KMALLOC_FLAGS
167 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168 #endif
169
170 /* Legal flag mask for kmem_cache_create(). */
171 #if DEBUG
172 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174 SLAB_CACHE_DMA | \
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
178 #else
179 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183 #endif
184
185 /*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
204 typedef unsigned int kmem_bufctl_t;
205 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
207 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
209
210 /*
211 * struct slab
212 *
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
216 */
217 struct slab {
218 struct list_head list;
219 unsigned long colouroff;
220 void *s_mem; /* including colour offset */
221 unsigned int inuse; /* num of objs active in slab */
222 kmem_bufctl_t free;
223 unsigned short nodeid;
224 };
225
226 /*
227 * struct slab_rcu
228 *
229 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
230 * arrange for kmem_freepages to be called via RCU. This is useful if
231 * we need to approach a kernel structure obliquely, from its address
232 * obtained without the usual locking. We can lock the structure to
233 * stabilize it and check it's still at the given address, only if we
234 * can be sure that the memory has not been meanwhile reused for some
235 * other kind of object (which our subsystem's lock might corrupt).
236 *
237 * rcu_read_lock before reading the address, then rcu_read_unlock after
238 * taking the spinlock within the structure expected at that address.
239 *
240 * We assume struct slab_rcu can overlay struct slab when destroying.
241 */
242 struct slab_rcu {
243 struct rcu_head head;
244 struct kmem_cache *cachep;
245 void *addr;
246 };
247
248 /*
249 * struct array_cache
250 *
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260 struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
265 spinlock_t lock;
266 void *entry[0]; /*
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
270 * [0] is for gcc 2.95. It should really be [].
271 */
272 };
273
274 /*
275 * bootstrap: The caches do not work without cpuarrays anymore, but the
276 * cpuarrays are allocated from the generic caches...
277 */
278 #define BOOT_CPUCACHE_ENTRIES 1
279 struct arraycache_init {
280 struct array_cache cache;
281 void *entries[BOOT_CPUCACHE_ENTRIES];
282 };
283
284 /*
285 * The slab lists for all objects.
286 */
287 struct kmem_list3 {
288 struct list_head slabs_partial; /* partial list first, better asm code */
289 struct list_head slabs_full;
290 struct list_head slabs_free;
291 unsigned long free_objects;
292 unsigned int free_limit;
293 unsigned int colour_next; /* Per-node cache coloring */
294 spinlock_t list_lock;
295 struct array_cache *shared; /* shared per node */
296 struct array_cache **alien; /* on other nodes */
297 unsigned long next_reap; /* updated without locking */
298 int free_touched; /* updated without locking */
299 };
300
301 /*
302 * Need this for bootstrapping a per node allocator.
303 */
304 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
305 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
306 #define CACHE_CACHE 0
307 #define SIZE_AC 1
308 #define SIZE_L3 (1 + MAX_NUMNODES)
309
310 /*
311 * This function must be completely optimized away if a constant is passed to
312 * it. Mostly the same as what is in linux/slab.h except it returns an index.
313 */
314 static __always_inline int index_of(const size_t size)
315 {
316 extern void __bad_size(void);
317
318 if (__builtin_constant_p(size)) {
319 int i = 0;
320
321 #define CACHE(x) \
322 if (size <=x) \
323 return i; \
324 else \
325 i++;
326 #include "linux/kmalloc_sizes.h"
327 #undef CACHE
328 __bad_size();
329 } else
330 __bad_size();
331 return 0;
332 }
333
334 #define INDEX_AC index_of(sizeof(struct arraycache_init))
335 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
336
337 static void kmem_list3_init(struct kmem_list3 *parent)
338 {
339 INIT_LIST_HEAD(&parent->slabs_full);
340 INIT_LIST_HEAD(&parent->slabs_partial);
341 INIT_LIST_HEAD(&parent->slabs_free);
342 parent->shared = NULL;
343 parent->alien = NULL;
344 parent->colour_next = 0;
345 spin_lock_init(&parent->list_lock);
346 parent->free_objects = 0;
347 parent->free_touched = 0;
348 }
349
350 #define MAKE_LIST(cachep, listp, slab, nodeid) \
351 do { \
352 INIT_LIST_HEAD(listp); \
353 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
354 } while (0)
355
356 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
357 do { \
358 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
359 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
360 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
361 } while (0)
362
363 /*
364 * struct kmem_cache
365 *
366 * manages a cache.
367 */
368
369 struct kmem_cache {
370 /* 1) per-cpu data, touched during every alloc/free */
371 struct array_cache *array[NR_CPUS];
372 /* 2) Cache tunables. Protected by cache_chain_mutex */
373 unsigned int batchcount;
374 unsigned int limit;
375 unsigned int shared;
376
377 unsigned int buffer_size;
378 /* 3) touched by every alloc & free from the backend */
379 struct kmem_list3 *nodelists[MAX_NUMNODES];
380
381 unsigned int flags; /* constant flags */
382 unsigned int num; /* # of objs per slab */
383
384 /* 4) cache_grow/shrink */
385 /* order of pgs per slab (2^n) */
386 unsigned int gfporder;
387
388 /* force GFP flags, e.g. GFP_DMA */
389 gfp_t gfpflags;
390
391 size_t colour; /* cache colouring range */
392 unsigned int colour_off; /* colour offset */
393 struct kmem_cache *slabp_cache;
394 unsigned int slab_size;
395 unsigned int dflags; /* dynamic flags */
396
397 /* constructor func */
398 void (*ctor) (void *, struct kmem_cache *, unsigned long);
399
400 /* de-constructor func */
401 void (*dtor) (void *, struct kmem_cache *, unsigned long);
402
403 /* 5) cache creation/removal */
404 const char *name;
405 struct list_head next;
406
407 /* 6) statistics */
408 #if STATS
409 unsigned long num_active;
410 unsigned long num_allocations;
411 unsigned long high_mark;
412 unsigned long grown;
413 unsigned long reaped;
414 unsigned long errors;
415 unsigned long max_freeable;
416 unsigned long node_allocs;
417 unsigned long node_frees;
418 unsigned long node_overflow;
419 atomic_t allochit;
420 atomic_t allocmiss;
421 atomic_t freehit;
422 atomic_t freemiss;
423 #endif
424 #if DEBUG
425 /*
426 * If debugging is enabled, then the allocator can add additional
427 * fields and/or padding to every object. buffer_size contains the total
428 * object size including these internal fields, the following two
429 * variables contain the offset to the user object and its size.
430 */
431 int obj_offset;
432 int obj_size;
433 #endif
434 };
435
436 #define CFLGS_OFF_SLAB (0x80000000UL)
437 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
438
439 #define BATCHREFILL_LIMIT 16
440 /*
441 * Optimization question: fewer reaps means less probability for unnessary
442 * cpucache drain/refill cycles.
443 *
444 * OTOH the cpuarrays can contain lots of objects,
445 * which could lock up otherwise freeable slabs.
446 */
447 #define REAPTIMEOUT_CPUC (2*HZ)
448 #define REAPTIMEOUT_LIST3 (4*HZ)
449
450 #if STATS
451 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
452 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
453 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
454 #define STATS_INC_GROWN(x) ((x)->grown++)
455 #define STATS_INC_REAPED(x) ((x)->reaped++)
456 #define STATS_SET_HIGH(x) \
457 do { \
458 if ((x)->num_active > (x)->high_mark) \
459 (x)->high_mark = (x)->num_active; \
460 } while (0)
461 #define STATS_INC_ERR(x) ((x)->errors++)
462 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
463 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
464 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
465 #define STATS_SET_FREEABLE(x, i) \
466 do { \
467 if ((x)->max_freeable < i) \
468 (x)->max_freeable = i; \
469 } while (0)
470 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
471 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
472 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
473 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
474 #else
475 #define STATS_INC_ACTIVE(x) do { } while (0)
476 #define STATS_DEC_ACTIVE(x) do { } while (0)
477 #define STATS_INC_ALLOCED(x) do { } while (0)
478 #define STATS_INC_GROWN(x) do { } while (0)
479 #define STATS_INC_REAPED(x) do { } while (0)
480 #define STATS_SET_HIGH(x) do { } while (0)
481 #define STATS_INC_ERR(x) do { } while (0)
482 #define STATS_INC_NODEALLOCS(x) do { } while (0)
483 #define STATS_INC_NODEFREES(x) do { } while (0)
484 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
485 #define STATS_SET_FREEABLE(x, i) do { } while (0)
486 #define STATS_INC_ALLOCHIT(x) do { } while (0)
487 #define STATS_INC_ALLOCMISS(x) do { } while (0)
488 #define STATS_INC_FREEHIT(x) do { } while (0)
489 #define STATS_INC_FREEMISS(x) do { } while (0)
490 #endif
491
492 #if DEBUG
493 /*
494 * Magic nums for obj red zoning.
495 * Placed in the first word before and the first word after an obj.
496 */
497 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
498 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
499
500 /* ...and for poisoning */
501 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
502 #define POISON_FREE 0x6b /* for use-after-free poisoning */
503 #define POISON_END 0xa5 /* end-byte of poisoning */
504
505 /*
506 * memory layout of objects:
507 * 0 : objp
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
512 * redzone word.
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
517 */
518 static int obj_offset(struct kmem_cache *cachep)
519 {
520 return cachep->obj_offset;
521 }
522
523 static int obj_size(struct kmem_cache *cachep)
524 {
525 return cachep->obj_size;
526 }
527
528 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
529 {
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
532 }
533
534 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
535 {
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
538 return (unsigned long *)(objp + cachep->buffer_size -
539 2 * BYTES_PER_WORD);
540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
541 }
542
543 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
544 {
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
547 }
548
549 #else
550
551 #define obj_offset(x) 0
552 #define obj_size(cachep) (cachep->buffer_size)
553 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557 #endif
558
559 /*
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
562 */
563 #if defined(CONFIG_LARGE_ALLOCS)
564 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
565 #define MAX_GFP_ORDER 13 /* up to 32Mb */
566 #elif defined(CONFIG_MMU)
567 #define MAX_OBJ_ORDER 5 /* 32 pages */
568 #define MAX_GFP_ORDER 5 /* 32 pages */
569 #else
570 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
571 #define MAX_GFP_ORDER 8 /* up to 1Mb */
572 #endif
573
574 /*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577 #define BREAK_GFP_ORDER_HI 1
578 #define BREAK_GFP_ORDER_LO 0
579 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
581 /*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
585 */
586 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587 {
588 page->lru.next = (struct list_head *)cache;
589 }
590
591 static inline struct kmem_cache *page_get_cache(struct page *page)
592 {
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
595 return (struct kmem_cache *)page->lru.next;
596 }
597
598 static inline void page_set_slab(struct page *page, struct slab *slab)
599 {
600 page->lru.prev = (struct list_head *)slab;
601 }
602
603 static inline struct slab *page_get_slab(struct page *page)
604 {
605 if (unlikely(PageCompound(page)))
606 page = (struct page *)page_private(page);
607 return (struct slab *)page->lru.prev;
608 }
609
610 static inline struct kmem_cache *virt_to_cache(const void *obj)
611 {
612 struct page *page = virt_to_page(obj);
613 return page_get_cache(page);
614 }
615
616 static inline struct slab *virt_to_slab(const void *obj)
617 {
618 struct page *page = virt_to_page(obj);
619 return page_get_slab(page);
620 }
621
622 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
623 unsigned int idx)
624 {
625 return slab->s_mem + cache->buffer_size * idx;
626 }
627
628 static inline unsigned int obj_to_index(struct kmem_cache *cache,
629 struct slab *slab, void *obj)
630 {
631 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
632 }
633
634 /*
635 * These are the default caches for kmalloc. Custom caches can have other sizes.
636 */
637 struct cache_sizes malloc_sizes[] = {
638 #define CACHE(x) { .cs_size = (x) },
639 #include <linux/kmalloc_sizes.h>
640 CACHE(ULONG_MAX)
641 #undef CACHE
642 };
643 EXPORT_SYMBOL(malloc_sizes);
644
645 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
646 struct cache_names {
647 char *name;
648 char *name_dma;
649 };
650
651 static struct cache_names __initdata cache_names[] = {
652 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
653 #include <linux/kmalloc_sizes.h>
654 {NULL,}
655 #undef CACHE
656 };
657
658 static struct arraycache_init initarray_cache __initdata =
659 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
660 static struct arraycache_init initarray_generic =
661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662
663 /* internal cache of cache description objs */
664 static struct kmem_cache cache_cache = {
665 .batchcount = 1,
666 .limit = BOOT_CPUCACHE_ENTRIES,
667 .shared = 1,
668 .buffer_size = sizeof(struct kmem_cache),
669 .name = "kmem_cache",
670 #if DEBUG
671 .obj_size = sizeof(struct kmem_cache),
672 #endif
673 };
674
675 /* Guard access to the cache-chain. */
676 static DEFINE_MUTEX(cache_chain_mutex);
677 static struct list_head cache_chain;
678
679 /*
680 * vm_enough_memory() looks at this to determine how many slab-allocated pages
681 * are possibly freeable under pressure
682 *
683 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
684 */
685 atomic_t slab_reclaim_pages;
686
687 /*
688 * chicken and egg problem: delay the per-cpu array allocation
689 * until the general caches are up.
690 */
691 static enum {
692 NONE,
693 PARTIAL_AC,
694 PARTIAL_L3,
695 FULL
696 } g_cpucache_up;
697
698 /*
699 * used by boot code to determine if it can use slab based allocator
700 */
701 int slab_is_available(void)
702 {
703 return g_cpucache_up == FULL;
704 }
705
706 static DEFINE_PER_CPU(struct work_struct, reap_work);
707
708 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
709 int node);
710 static void enable_cpucache(struct kmem_cache *cachep);
711 static void cache_reap(void *unused);
712 static int __node_shrink(struct kmem_cache *cachep, int node);
713
714 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
715 {
716 return cachep->array[smp_processor_id()];
717 }
718
719 static inline struct kmem_cache *__find_general_cachep(size_t size,
720 gfp_t gfpflags)
721 {
722 struct cache_sizes *csizep = malloc_sizes;
723
724 #if DEBUG
725 /* This happens if someone tries to call
726 * kmem_cache_create(), or __kmalloc(), before
727 * the generic caches are initialized.
728 */
729 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
730 #endif
731 while (size > csizep->cs_size)
732 csizep++;
733
734 /*
735 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
736 * has cs_{dma,}cachep==NULL. Thus no special case
737 * for large kmalloc calls required.
738 */
739 if (unlikely(gfpflags & GFP_DMA))
740 return csizep->cs_dmacachep;
741 return csizep->cs_cachep;
742 }
743
744 struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
745 {
746 return __find_general_cachep(size, gfpflags);
747 }
748 EXPORT_SYMBOL(kmem_find_general_cachep);
749
750 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
751 {
752 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
753 }
754
755 /*
756 * Calculate the number of objects and left-over bytes for a given buffer size.
757 */
758 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
759 size_t align, int flags, size_t *left_over,
760 unsigned int *num)
761 {
762 int nr_objs;
763 size_t mgmt_size;
764 size_t slab_size = PAGE_SIZE << gfporder;
765
766 /*
767 * The slab management structure can be either off the slab or
768 * on it. For the latter case, the memory allocated for a
769 * slab is used for:
770 *
771 * - The struct slab
772 * - One kmem_bufctl_t for each object
773 * - Padding to respect alignment of @align
774 * - @buffer_size bytes for each object
775 *
776 * If the slab management structure is off the slab, then the
777 * alignment will already be calculated into the size. Because
778 * the slabs are all pages aligned, the objects will be at the
779 * correct alignment when allocated.
780 */
781 if (flags & CFLGS_OFF_SLAB) {
782 mgmt_size = 0;
783 nr_objs = slab_size / buffer_size;
784
785 if (nr_objs > SLAB_LIMIT)
786 nr_objs = SLAB_LIMIT;
787 } else {
788 /*
789 * Ignore padding for the initial guess. The padding
790 * is at most @align-1 bytes, and @buffer_size is at
791 * least @align. In the worst case, this result will
792 * be one greater than the number of objects that fit
793 * into the memory allocation when taking the padding
794 * into account.
795 */
796 nr_objs = (slab_size - sizeof(struct slab)) /
797 (buffer_size + sizeof(kmem_bufctl_t));
798
799 /*
800 * This calculated number will be either the right
801 * amount, or one greater than what we want.
802 */
803 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
804 > slab_size)
805 nr_objs--;
806
807 if (nr_objs > SLAB_LIMIT)
808 nr_objs = SLAB_LIMIT;
809
810 mgmt_size = slab_mgmt_size(nr_objs, align);
811 }
812 *num = nr_objs;
813 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
814 }
815
816 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
817
818 static void __slab_error(const char *function, struct kmem_cache *cachep,
819 char *msg)
820 {
821 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
822 function, cachep->name, msg);
823 dump_stack();
824 }
825
826 #ifdef CONFIG_NUMA
827 /*
828 * Special reaping functions for NUMA systems called from cache_reap().
829 * These take care of doing round robin flushing of alien caches (containing
830 * objects freed on different nodes from which they were allocated) and the
831 * flushing of remote pcps by calling drain_node_pages.
832 */
833 static DEFINE_PER_CPU(unsigned long, reap_node);
834
835 static void init_reap_node(int cpu)
836 {
837 int node;
838
839 node = next_node(cpu_to_node(cpu), node_online_map);
840 if (node == MAX_NUMNODES)
841 node = first_node(node_online_map);
842
843 __get_cpu_var(reap_node) = node;
844 }
845
846 static void next_reap_node(void)
847 {
848 int node = __get_cpu_var(reap_node);
849
850 /*
851 * Also drain per cpu pages on remote zones
852 */
853 if (node != numa_node_id())
854 drain_node_pages(node);
855
856 node = next_node(node, node_online_map);
857 if (unlikely(node >= MAX_NUMNODES))
858 node = first_node(node_online_map);
859 __get_cpu_var(reap_node) = node;
860 }
861
862 #else
863 #define init_reap_node(cpu) do { } while (0)
864 #define next_reap_node(void) do { } while (0)
865 #endif
866
867 /*
868 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
869 * via the workqueue/eventd.
870 * Add the CPU number into the expiration time to minimize the possibility of
871 * the CPUs getting into lockstep and contending for the global cache chain
872 * lock.
873 */
874 static void __devinit start_cpu_timer(int cpu)
875 {
876 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
877
878 /*
879 * When this gets called from do_initcalls via cpucache_init(),
880 * init_workqueues() has already run, so keventd will be setup
881 * at that time.
882 */
883 if (keventd_up() && reap_work->func == NULL) {
884 init_reap_node(cpu);
885 INIT_WORK(reap_work, cache_reap, NULL);
886 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
887 }
888 }
889
890 static struct array_cache *alloc_arraycache(int node, int entries,
891 int batchcount)
892 {
893 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
894 struct array_cache *nc = NULL;
895
896 nc = kmalloc_node(memsize, GFP_KERNEL, node);
897 if (nc) {
898 nc->avail = 0;
899 nc->limit = entries;
900 nc->batchcount = batchcount;
901 nc->touched = 0;
902 spin_lock_init(&nc->lock);
903 }
904 return nc;
905 }
906
907 /*
908 * Transfer objects in one arraycache to another.
909 * Locking must be handled by the caller.
910 *
911 * Return the number of entries transferred.
912 */
913 static int transfer_objects(struct array_cache *to,
914 struct array_cache *from, unsigned int max)
915 {
916 /* Figure out how many entries to transfer */
917 int nr = min(min(from->avail, max), to->limit - to->avail);
918
919 if (!nr)
920 return 0;
921
922 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
923 sizeof(void *) *nr);
924
925 from->avail -= nr;
926 to->avail += nr;
927 to->touched = 1;
928 return nr;
929 }
930
931 #ifdef CONFIG_NUMA
932 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
933 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
934
935 static struct array_cache **alloc_alien_cache(int node, int limit)
936 {
937 struct array_cache **ac_ptr;
938 int memsize = sizeof(void *) * MAX_NUMNODES;
939 int i;
940
941 if (limit > 1)
942 limit = 12;
943 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
944 if (ac_ptr) {
945 for_each_node(i) {
946 if (i == node || !node_online(i)) {
947 ac_ptr[i] = NULL;
948 continue;
949 }
950 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
951 if (!ac_ptr[i]) {
952 for (i--; i <= 0; i--)
953 kfree(ac_ptr[i]);
954 kfree(ac_ptr);
955 return NULL;
956 }
957 }
958 }
959 return ac_ptr;
960 }
961
962 static void free_alien_cache(struct array_cache **ac_ptr)
963 {
964 int i;
965
966 if (!ac_ptr)
967 return;
968 for_each_node(i)
969 kfree(ac_ptr[i]);
970 kfree(ac_ptr);
971 }
972
973 static void __drain_alien_cache(struct kmem_cache *cachep,
974 struct array_cache *ac, int node)
975 {
976 struct kmem_list3 *rl3 = cachep->nodelists[node];
977
978 if (ac->avail) {
979 spin_lock(&rl3->list_lock);
980 /*
981 * Stuff objects into the remote nodes shared array first.
982 * That way we could avoid the overhead of putting the objects
983 * into the free lists and getting them back later.
984 */
985 if (rl3->shared)
986 transfer_objects(rl3->shared, ac, ac->limit);
987
988 free_block(cachep, ac->entry, ac->avail, node);
989 ac->avail = 0;
990 spin_unlock(&rl3->list_lock);
991 }
992 }
993
994 /*
995 * Called from cache_reap() to regularly drain alien caches round robin.
996 */
997 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
998 {
999 int node = __get_cpu_var(reap_node);
1000
1001 if (l3->alien) {
1002 struct array_cache *ac = l3->alien[node];
1003
1004 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1005 __drain_alien_cache(cachep, ac, node);
1006 spin_unlock_irq(&ac->lock);
1007 }
1008 }
1009 }
1010
1011 static void drain_alien_cache(struct kmem_cache *cachep,
1012 struct array_cache **alien)
1013 {
1014 int i = 0;
1015 struct array_cache *ac;
1016 unsigned long flags;
1017
1018 for_each_online_node(i) {
1019 ac = alien[i];
1020 if (ac) {
1021 spin_lock_irqsave(&ac->lock, flags);
1022 __drain_alien_cache(cachep, ac, i);
1023 spin_unlock_irqrestore(&ac->lock, flags);
1024 }
1025 }
1026 }
1027 #else
1028
1029 #define drain_alien_cache(cachep, alien) do { } while (0)
1030 #define reap_alien(cachep, l3) do { } while (0)
1031
1032 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1033 {
1034 return (struct array_cache **) 0x01020304ul;
1035 }
1036
1037 static inline void free_alien_cache(struct array_cache **ac_ptr)
1038 {
1039 }
1040
1041 #endif
1042
1043 static int cpuup_callback(struct notifier_block *nfb,
1044 unsigned long action, void *hcpu)
1045 {
1046 long cpu = (long)hcpu;
1047 struct kmem_cache *cachep;
1048 struct kmem_list3 *l3 = NULL;
1049 int node = cpu_to_node(cpu);
1050 int memsize = sizeof(struct kmem_list3);
1051
1052 switch (action) {
1053 case CPU_UP_PREPARE:
1054 mutex_lock(&cache_chain_mutex);
1055 /*
1056 * We need to do this right in the beginning since
1057 * alloc_arraycache's are going to use this list.
1058 * kmalloc_node allows us to add the slab to the right
1059 * kmem_list3 and not this cpu's kmem_list3
1060 */
1061
1062 list_for_each_entry(cachep, &cache_chain, next) {
1063 /*
1064 * Set up the size64 kmemlist for cpu before we can
1065 * begin anything. Make sure some other cpu on this
1066 * node has not already allocated this
1067 */
1068 if (!cachep->nodelists[node]) {
1069 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1070 if (!l3)
1071 goto bad;
1072 kmem_list3_init(l3);
1073 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1074 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1075
1076 /*
1077 * The l3s don't come and go as CPUs come and
1078 * go. cache_chain_mutex is sufficient
1079 * protection here.
1080 */
1081 cachep->nodelists[node] = l3;
1082 }
1083
1084 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1085 cachep->nodelists[node]->free_limit =
1086 (1 + nr_cpus_node(node)) *
1087 cachep->batchcount + cachep->num;
1088 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1089 }
1090
1091 /*
1092 * Now we can go ahead with allocating the shared arrays and
1093 * array caches
1094 */
1095 list_for_each_entry(cachep, &cache_chain, next) {
1096 struct array_cache *nc;
1097 struct array_cache *shared;
1098 struct array_cache **alien;
1099
1100 nc = alloc_arraycache(node, cachep->limit,
1101 cachep->batchcount);
1102 if (!nc)
1103 goto bad;
1104 shared = alloc_arraycache(node,
1105 cachep->shared * cachep->batchcount,
1106 0xbaadf00d);
1107 if (!shared)
1108 goto bad;
1109
1110 alien = alloc_alien_cache(node, cachep->limit);
1111 if (!alien)
1112 goto bad;
1113 cachep->array[cpu] = nc;
1114 l3 = cachep->nodelists[node];
1115 BUG_ON(!l3);
1116
1117 spin_lock_irq(&l3->list_lock);
1118 if (!l3->shared) {
1119 /*
1120 * We are serialised from CPU_DEAD or
1121 * CPU_UP_CANCELLED by the cpucontrol lock
1122 */
1123 l3->shared = shared;
1124 shared = NULL;
1125 }
1126 #ifdef CONFIG_NUMA
1127 if (!l3->alien) {
1128 l3->alien = alien;
1129 alien = NULL;
1130 }
1131 #endif
1132 spin_unlock_irq(&l3->list_lock);
1133 kfree(shared);
1134 free_alien_cache(alien);
1135 }
1136 mutex_unlock(&cache_chain_mutex);
1137 break;
1138 case CPU_ONLINE:
1139 start_cpu_timer(cpu);
1140 break;
1141 #ifdef CONFIG_HOTPLUG_CPU
1142 case CPU_DEAD:
1143 /*
1144 * Even if all the cpus of a node are down, we don't free the
1145 * kmem_list3 of any cache. This to avoid a race between
1146 * cpu_down, and a kmalloc allocation from another cpu for
1147 * memory from the node of the cpu going down. The list3
1148 * structure is usually allocated from kmem_cache_create() and
1149 * gets destroyed at kmem_cache_destroy().
1150 */
1151 /* fall thru */
1152 case CPU_UP_CANCELED:
1153 mutex_lock(&cache_chain_mutex);
1154 list_for_each_entry(cachep, &cache_chain, next) {
1155 struct array_cache *nc;
1156 struct array_cache *shared;
1157 struct array_cache **alien;
1158 cpumask_t mask;
1159
1160 mask = node_to_cpumask(node);
1161 /* cpu is dead; no one can alloc from it. */
1162 nc = cachep->array[cpu];
1163 cachep->array[cpu] = NULL;
1164 l3 = cachep->nodelists[node];
1165
1166 if (!l3)
1167 goto free_array_cache;
1168
1169 spin_lock_irq(&l3->list_lock);
1170
1171 /* Free limit for this kmem_list3 */
1172 l3->free_limit -= cachep->batchcount;
1173 if (nc)
1174 free_block(cachep, nc->entry, nc->avail, node);
1175
1176 if (!cpus_empty(mask)) {
1177 spin_unlock_irq(&l3->list_lock);
1178 goto free_array_cache;
1179 }
1180
1181 shared = l3->shared;
1182 if (shared) {
1183 free_block(cachep, l3->shared->entry,
1184 l3->shared->avail, node);
1185 l3->shared = NULL;
1186 }
1187
1188 alien = l3->alien;
1189 l3->alien = NULL;
1190
1191 spin_unlock_irq(&l3->list_lock);
1192
1193 kfree(shared);
1194 if (alien) {
1195 drain_alien_cache(cachep, alien);
1196 free_alien_cache(alien);
1197 }
1198 free_array_cache:
1199 kfree(nc);
1200 }
1201 /*
1202 * In the previous loop, all the objects were freed to
1203 * the respective cache's slabs, now we can go ahead and
1204 * shrink each nodelist to its limit.
1205 */
1206 list_for_each_entry(cachep, &cache_chain, next) {
1207 l3 = cachep->nodelists[node];
1208 if (!l3)
1209 continue;
1210 spin_lock_irq(&l3->list_lock);
1211 /* free slabs belonging to this node */
1212 __node_shrink(cachep, node);
1213 spin_unlock_irq(&l3->list_lock);
1214 }
1215 mutex_unlock(&cache_chain_mutex);
1216 break;
1217 #endif
1218 }
1219 return NOTIFY_OK;
1220 bad:
1221 mutex_unlock(&cache_chain_mutex);
1222 return NOTIFY_BAD;
1223 }
1224
1225 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1226
1227 /*
1228 * swap the static kmem_list3 with kmalloced memory
1229 */
1230 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1231 int nodeid)
1232 {
1233 struct kmem_list3 *ptr;
1234
1235 BUG_ON(cachep->nodelists[nodeid] != list);
1236 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1237 BUG_ON(!ptr);
1238
1239 local_irq_disable();
1240 memcpy(ptr, list, sizeof(struct kmem_list3));
1241 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1242 cachep->nodelists[nodeid] = ptr;
1243 local_irq_enable();
1244 }
1245
1246 /*
1247 * Initialisation. Called after the page allocator have been initialised and
1248 * before smp_init().
1249 */
1250 void __init kmem_cache_init(void)
1251 {
1252 size_t left_over;
1253 struct cache_sizes *sizes;
1254 struct cache_names *names;
1255 int i;
1256 int order;
1257
1258 for (i = 0; i < NUM_INIT_LISTS; i++) {
1259 kmem_list3_init(&initkmem_list3[i]);
1260 if (i < MAX_NUMNODES)
1261 cache_cache.nodelists[i] = NULL;
1262 }
1263
1264 /*
1265 * Fragmentation resistance on low memory - only use bigger
1266 * page orders on machines with more than 32MB of memory.
1267 */
1268 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1269 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1270
1271 /* Bootstrap is tricky, because several objects are allocated
1272 * from caches that do not exist yet:
1273 * 1) initialize the cache_cache cache: it contains the struct
1274 * kmem_cache structures of all caches, except cache_cache itself:
1275 * cache_cache is statically allocated.
1276 * Initially an __init data area is used for the head array and the
1277 * kmem_list3 structures, it's replaced with a kmalloc allocated
1278 * array at the end of the bootstrap.
1279 * 2) Create the first kmalloc cache.
1280 * The struct kmem_cache for the new cache is allocated normally.
1281 * An __init data area is used for the head array.
1282 * 3) Create the remaining kmalloc caches, with minimally sized
1283 * head arrays.
1284 * 4) Replace the __init data head arrays for cache_cache and the first
1285 * kmalloc cache with kmalloc allocated arrays.
1286 * 5) Replace the __init data for kmem_list3 for cache_cache and
1287 * the other cache's with kmalloc allocated memory.
1288 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1289 */
1290
1291 /* 1) create the cache_cache */
1292 INIT_LIST_HEAD(&cache_chain);
1293 list_add(&cache_cache.next, &cache_chain);
1294 cache_cache.colour_off = cache_line_size();
1295 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1296 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1297
1298 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1299 cache_line_size());
1300
1301 for (order = 0; order < MAX_ORDER; order++) {
1302 cache_estimate(order, cache_cache.buffer_size,
1303 cache_line_size(), 0, &left_over, &cache_cache.num);
1304 if (cache_cache.num)
1305 break;
1306 }
1307 BUG_ON(!cache_cache.num);
1308 cache_cache.gfporder = order;
1309 cache_cache.colour = left_over / cache_cache.colour_off;
1310 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1311 sizeof(struct slab), cache_line_size());
1312
1313 /* 2+3) create the kmalloc caches */
1314 sizes = malloc_sizes;
1315 names = cache_names;
1316
1317 /*
1318 * Initialize the caches that provide memory for the array cache and the
1319 * kmem_list3 structures first. Without this, further allocations will
1320 * bug.
1321 */
1322
1323 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1324 sizes[INDEX_AC].cs_size,
1325 ARCH_KMALLOC_MINALIGN,
1326 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1327 NULL, NULL);
1328
1329 if (INDEX_AC != INDEX_L3) {
1330 sizes[INDEX_L3].cs_cachep =
1331 kmem_cache_create(names[INDEX_L3].name,
1332 sizes[INDEX_L3].cs_size,
1333 ARCH_KMALLOC_MINALIGN,
1334 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1335 NULL, NULL);
1336 }
1337
1338 while (sizes->cs_size != ULONG_MAX) {
1339 /*
1340 * For performance, all the general caches are L1 aligned.
1341 * This should be particularly beneficial on SMP boxes, as it
1342 * eliminates "false sharing".
1343 * Note for systems short on memory removing the alignment will
1344 * allow tighter packing of the smaller caches.
1345 */
1346 if (!sizes->cs_cachep) {
1347 sizes->cs_cachep = kmem_cache_create(names->name,
1348 sizes->cs_size,
1349 ARCH_KMALLOC_MINALIGN,
1350 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1351 NULL, NULL);
1352 }
1353
1354 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1355 sizes->cs_size,
1356 ARCH_KMALLOC_MINALIGN,
1357 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1358 SLAB_PANIC,
1359 NULL, NULL);
1360 sizes++;
1361 names++;
1362 }
1363 /* 4) Replace the bootstrap head arrays */
1364 {
1365 void *ptr;
1366
1367 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1368
1369 local_irq_disable();
1370 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1371 memcpy(ptr, cpu_cache_get(&cache_cache),
1372 sizeof(struct arraycache_init));
1373 cache_cache.array[smp_processor_id()] = ptr;
1374 local_irq_enable();
1375
1376 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1377
1378 local_irq_disable();
1379 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1380 != &initarray_generic.cache);
1381 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1382 sizeof(struct arraycache_init));
1383 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1384 ptr;
1385 local_irq_enable();
1386 }
1387 /* 5) Replace the bootstrap kmem_list3's */
1388 {
1389 int node;
1390 /* Replace the static kmem_list3 structures for the boot cpu */
1391 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1392 numa_node_id());
1393
1394 for_each_online_node(node) {
1395 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1396 &initkmem_list3[SIZE_AC + node], node);
1397
1398 if (INDEX_AC != INDEX_L3) {
1399 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1400 &initkmem_list3[SIZE_L3 + node],
1401 node);
1402 }
1403 }
1404 }
1405
1406 /* 6) resize the head arrays to their final sizes */
1407 {
1408 struct kmem_cache *cachep;
1409 mutex_lock(&cache_chain_mutex);
1410 list_for_each_entry(cachep, &cache_chain, next)
1411 enable_cpucache(cachep);
1412 mutex_unlock(&cache_chain_mutex);
1413 }
1414
1415 /* Done! */
1416 g_cpucache_up = FULL;
1417
1418 /*
1419 * Register a cpu startup notifier callback that initializes
1420 * cpu_cache_get for all new cpus
1421 */
1422 register_cpu_notifier(&cpucache_notifier);
1423
1424 /*
1425 * The reap timers are started later, with a module init call: That part
1426 * of the kernel is not yet operational.
1427 */
1428 }
1429
1430 static int __init cpucache_init(void)
1431 {
1432 int cpu;
1433
1434 /*
1435 * Register the timers that return unneeded pages to the page allocator
1436 */
1437 for_each_online_cpu(cpu)
1438 start_cpu_timer(cpu);
1439 return 0;
1440 }
1441 __initcall(cpucache_init);
1442
1443 /*
1444 * Interface to system's page allocator. No need to hold the cache-lock.
1445 *
1446 * If we requested dmaable memory, we will get it. Even if we
1447 * did not request dmaable memory, we might get it, but that
1448 * would be relatively rare and ignorable.
1449 */
1450 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1451 {
1452 struct page *page;
1453 void *addr;
1454 int i;
1455
1456 flags |= cachep->gfpflags;
1457 #ifndef CONFIG_MMU
1458 /* nommu uses slab's for process anonymous memory allocations, so
1459 * requires __GFP_COMP to properly refcount higher order allocations"
1460 */
1461 page = alloc_pages_node(nodeid, (flags | __GFP_COMP), cachep->gfporder);
1462 #else
1463 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1464 #endif
1465 if (!page)
1466 return NULL;
1467 addr = page_address(page);
1468
1469 i = (1 << cachep->gfporder);
1470 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1471 atomic_add(i, &slab_reclaim_pages);
1472 add_page_state(nr_slab, i);
1473 while (i--) {
1474 __SetPageSlab(page);
1475 page++;
1476 }
1477 return addr;
1478 }
1479
1480 /*
1481 * Interface to system's page release.
1482 */
1483 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1484 {
1485 unsigned long i = (1 << cachep->gfporder);
1486 struct page *page = virt_to_page(addr);
1487 const unsigned long nr_freed = i;
1488
1489 while (i--) {
1490 BUG_ON(!PageSlab(page));
1491 __ClearPageSlab(page);
1492 page++;
1493 }
1494 sub_page_state(nr_slab, nr_freed);
1495 if (current->reclaim_state)
1496 current->reclaim_state->reclaimed_slab += nr_freed;
1497 free_pages((unsigned long)addr, cachep->gfporder);
1498 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1499 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1500 }
1501
1502 static void kmem_rcu_free(struct rcu_head *head)
1503 {
1504 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1505 struct kmem_cache *cachep = slab_rcu->cachep;
1506
1507 kmem_freepages(cachep, slab_rcu->addr);
1508 if (OFF_SLAB(cachep))
1509 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1510 }
1511
1512 #if DEBUG
1513
1514 #ifdef CONFIG_DEBUG_PAGEALLOC
1515 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1516 unsigned long caller)
1517 {
1518 int size = obj_size(cachep);
1519
1520 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1521
1522 if (size < 5 * sizeof(unsigned long))
1523 return;
1524
1525 *addr++ = 0x12345678;
1526 *addr++ = caller;
1527 *addr++ = smp_processor_id();
1528 size -= 3 * sizeof(unsigned long);
1529 {
1530 unsigned long *sptr = &caller;
1531 unsigned long svalue;
1532
1533 while (!kstack_end(sptr)) {
1534 svalue = *sptr++;
1535 if (kernel_text_address(svalue)) {
1536 *addr++ = svalue;
1537 size -= sizeof(unsigned long);
1538 if (size <= sizeof(unsigned long))
1539 break;
1540 }
1541 }
1542
1543 }
1544 *addr++ = 0x87654321;
1545 }
1546 #endif
1547
1548 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1549 {
1550 int size = obj_size(cachep);
1551 addr = &((char *)addr)[obj_offset(cachep)];
1552
1553 memset(addr, val, size);
1554 *(unsigned char *)(addr + size - 1) = POISON_END;
1555 }
1556
1557 static void dump_line(char *data, int offset, int limit)
1558 {
1559 int i;
1560 printk(KERN_ERR "%03x:", offset);
1561 for (i = 0; i < limit; i++)
1562 printk(" %02x", (unsigned char)data[offset + i]);
1563 printk("\n");
1564 }
1565 #endif
1566
1567 #if DEBUG
1568
1569 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1570 {
1571 int i, size;
1572 char *realobj;
1573
1574 if (cachep->flags & SLAB_RED_ZONE) {
1575 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1576 *dbg_redzone1(cachep, objp),
1577 *dbg_redzone2(cachep, objp));
1578 }
1579
1580 if (cachep->flags & SLAB_STORE_USER) {
1581 printk(KERN_ERR "Last user: [<%p>]",
1582 *dbg_userword(cachep, objp));
1583 print_symbol("(%s)",
1584 (unsigned long)*dbg_userword(cachep, objp));
1585 printk("\n");
1586 }
1587 realobj = (char *)objp + obj_offset(cachep);
1588 size = obj_size(cachep);
1589 for (i = 0; i < size && lines; i += 16, lines--) {
1590 int limit;
1591 limit = 16;
1592 if (i + limit > size)
1593 limit = size - i;
1594 dump_line(realobj, i, limit);
1595 }
1596 }
1597
1598 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1599 {
1600 char *realobj;
1601 int size, i;
1602 int lines = 0;
1603
1604 realobj = (char *)objp + obj_offset(cachep);
1605 size = obj_size(cachep);
1606
1607 for (i = 0; i < size; i++) {
1608 char exp = POISON_FREE;
1609 if (i == size - 1)
1610 exp = POISON_END;
1611 if (realobj[i] != exp) {
1612 int limit;
1613 /* Mismatch ! */
1614 /* Print header */
1615 if (lines == 0) {
1616 printk(KERN_ERR
1617 "Slab corruption: start=%p, len=%d\n",
1618 realobj, size);
1619 print_objinfo(cachep, objp, 0);
1620 }
1621 /* Hexdump the affected line */
1622 i = (i / 16) * 16;
1623 limit = 16;
1624 if (i + limit > size)
1625 limit = size - i;
1626 dump_line(realobj, i, limit);
1627 i += 16;
1628 lines++;
1629 /* Limit to 5 lines */
1630 if (lines > 5)
1631 break;
1632 }
1633 }
1634 if (lines != 0) {
1635 /* Print some data about the neighboring objects, if they
1636 * exist:
1637 */
1638 struct slab *slabp = virt_to_slab(objp);
1639 unsigned int objnr;
1640
1641 objnr = obj_to_index(cachep, slabp, objp);
1642 if (objnr) {
1643 objp = index_to_obj(cachep, slabp, objnr - 1);
1644 realobj = (char *)objp + obj_offset(cachep);
1645 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1646 realobj, size);
1647 print_objinfo(cachep, objp, 2);
1648 }
1649 if (objnr + 1 < cachep->num) {
1650 objp = index_to_obj(cachep, slabp, objnr + 1);
1651 realobj = (char *)objp + obj_offset(cachep);
1652 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1653 realobj, size);
1654 print_objinfo(cachep, objp, 2);
1655 }
1656 }
1657 }
1658 #endif
1659
1660 #if DEBUG
1661 /**
1662 * slab_destroy_objs - destroy a slab and its objects
1663 * @cachep: cache pointer being destroyed
1664 * @slabp: slab pointer being destroyed
1665 *
1666 * Call the registered destructor for each object in a slab that is being
1667 * destroyed.
1668 */
1669 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1670 {
1671 int i;
1672 for (i = 0; i < cachep->num; i++) {
1673 void *objp = index_to_obj(cachep, slabp, i);
1674
1675 if (cachep->flags & SLAB_POISON) {
1676 #ifdef CONFIG_DEBUG_PAGEALLOC
1677 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1678 OFF_SLAB(cachep))
1679 kernel_map_pages(virt_to_page(objp),
1680 cachep->buffer_size / PAGE_SIZE, 1);
1681 else
1682 check_poison_obj(cachep, objp);
1683 #else
1684 check_poison_obj(cachep, objp);
1685 #endif
1686 }
1687 if (cachep->flags & SLAB_RED_ZONE) {
1688 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1689 slab_error(cachep, "start of a freed object "
1690 "was overwritten");
1691 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1692 slab_error(cachep, "end of a freed object "
1693 "was overwritten");
1694 }
1695 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1696 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1697 }
1698 }
1699 #else
1700 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1701 {
1702 if (cachep->dtor) {
1703 int i;
1704 for (i = 0; i < cachep->num; i++) {
1705 void *objp = index_to_obj(cachep, slabp, i);
1706 (cachep->dtor) (objp, cachep, 0);
1707 }
1708 }
1709 }
1710 #endif
1711
1712 /**
1713 * slab_destroy - destroy and release all objects in a slab
1714 * @cachep: cache pointer being destroyed
1715 * @slabp: slab pointer being destroyed
1716 *
1717 * Destroy all the objs in a slab, and release the mem back to the system.
1718 * Before calling the slab must have been unlinked from the cache. The
1719 * cache-lock is not held/needed.
1720 */
1721 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1722 {
1723 void *addr = slabp->s_mem - slabp->colouroff;
1724
1725 slab_destroy_objs(cachep, slabp);
1726 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1727 struct slab_rcu *slab_rcu;
1728
1729 slab_rcu = (struct slab_rcu *)slabp;
1730 slab_rcu->cachep = cachep;
1731 slab_rcu->addr = addr;
1732 call_rcu(&slab_rcu->head, kmem_rcu_free);
1733 } else {
1734 kmem_freepages(cachep, addr);
1735 if (OFF_SLAB(cachep))
1736 kmem_cache_free(cachep->slabp_cache, slabp);
1737 }
1738 }
1739
1740 /*
1741 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1742 * size of kmem_list3.
1743 */
1744 static void set_up_list3s(struct kmem_cache *cachep, int index)
1745 {
1746 int node;
1747
1748 for_each_online_node(node) {
1749 cachep->nodelists[node] = &initkmem_list3[index + node];
1750 cachep->nodelists[node]->next_reap = jiffies +
1751 REAPTIMEOUT_LIST3 +
1752 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1753 }
1754 }
1755
1756 /**
1757 * calculate_slab_order - calculate size (page order) of slabs
1758 * @cachep: pointer to the cache that is being created
1759 * @size: size of objects to be created in this cache.
1760 * @align: required alignment for the objects.
1761 * @flags: slab allocation flags
1762 *
1763 * Also calculates the number of objects per slab.
1764 *
1765 * This could be made much more intelligent. For now, try to avoid using
1766 * high order pages for slabs. When the gfp() functions are more friendly
1767 * towards high-order requests, this should be changed.
1768 */
1769 static size_t calculate_slab_order(struct kmem_cache *cachep,
1770 size_t size, size_t align, unsigned long flags)
1771 {
1772 unsigned long offslab_limit;
1773 size_t left_over = 0;
1774 int gfporder;
1775
1776 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1777 unsigned int num;
1778 size_t remainder;
1779
1780 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1781 if (!num)
1782 continue;
1783
1784 if (flags & CFLGS_OFF_SLAB) {
1785 /*
1786 * Max number of objs-per-slab for caches which
1787 * use off-slab slabs. Needed to avoid a possible
1788 * looping condition in cache_grow().
1789 */
1790 offslab_limit = size - sizeof(struct slab);
1791 offslab_limit /= sizeof(kmem_bufctl_t);
1792
1793 if (num > offslab_limit)
1794 break;
1795 }
1796
1797 /* Found something acceptable - save it away */
1798 cachep->num = num;
1799 cachep->gfporder = gfporder;
1800 left_over = remainder;
1801
1802 /*
1803 * A VFS-reclaimable slab tends to have most allocations
1804 * as GFP_NOFS and we really don't want to have to be allocating
1805 * higher-order pages when we are unable to shrink dcache.
1806 */
1807 if (flags & SLAB_RECLAIM_ACCOUNT)
1808 break;
1809
1810 /*
1811 * Large number of objects is good, but very large slabs are
1812 * currently bad for the gfp()s.
1813 */
1814 if (gfporder >= slab_break_gfp_order)
1815 break;
1816
1817 /*
1818 * Acceptable internal fragmentation?
1819 */
1820 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1821 break;
1822 }
1823 return left_over;
1824 }
1825
1826 static void setup_cpu_cache(struct kmem_cache *cachep)
1827 {
1828 if (g_cpucache_up == FULL) {
1829 enable_cpucache(cachep);
1830 return;
1831 }
1832 if (g_cpucache_up == NONE) {
1833 /*
1834 * Note: the first kmem_cache_create must create the cache
1835 * that's used by kmalloc(24), otherwise the creation of
1836 * further caches will BUG().
1837 */
1838 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1839
1840 /*
1841 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1842 * the first cache, then we need to set up all its list3s,
1843 * otherwise the creation of further caches will BUG().
1844 */
1845 set_up_list3s(cachep, SIZE_AC);
1846 if (INDEX_AC == INDEX_L3)
1847 g_cpucache_up = PARTIAL_L3;
1848 else
1849 g_cpucache_up = PARTIAL_AC;
1850 } else {
1851 cachep->array[smp_processor_id()] =
1852 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1853
1854 if (g_cpucache_up == PARTIAL_AC) {
1855 set_up_list3s(cachep, SIZE_L3);
1856 g_cpucache_up = PARTIAL_L3;
1857 } else {
1858 int node;
1859 for_each_online_node(node) {
1860 cachep->nodelists[node] =
1861 kmalloc_node(sizeof(struct kmem_list3),
1862 GFP_KERNEL, node);
1863 BUG_ON(!cachep->nodelists[node]);
1864 kmem_list3_init(cachep->nodelists[node]);
1865 }
1866 }
1867 }
1868 cachep->nodelists[numa_node_id()]->next_reap =
1869 jiffies + REAPTIMEOUT_LIST3 +
1870 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1871
1872 cpu_cache_get(cachep)->avail = 0;
1873 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1874 cpu_cache_get(cachep)->batchcount = 1;
1875 cpu_cache_get(cachep)->touched = 0;
1876 cachep->batchcount = 1;
1877 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1878 }
1879
1880 /**
1881 * kmem_cache_create - Create a cache.
1882 * @name: A string which is used in /proc/slabinfo to identify this cache.
1883 * @size: The size of objects to be created in this cache.
1884 * @align: The required alignment for the objects.
1885 * @flags: SLAB flags
1886 * @ctor: A constructor for the objects.
1887 * @dtor: A destructor for the objects.
1888 *
1889 * Returns a ptr to the cache on success, NULL on failure.
1890 * Cannot be called within a int, but can be interrupted.
1891 * The @ctor is run when new pages are allocated by the cache
1892 * and the @dtor is run before the pages are handed back.
1893 *
1894 * @name must be valid until the cache is destroyed. This implies that
1895 * the module calling this has to destroy the cache before getting unloaded.
1896 *
1897 * The flags are
1898 *
1899 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1900 * to catch references to uninitialised memory.
1901 *
1902 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1903 * for buffer overruns.
1904 *
1905 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1906 * cacheline. This can be beneficial if you're counting cycles as closely
1907 * as davem.
1908 */
1909 struct kmem_cache *
1910 kmem_cache_create (const char *name, size_t size, size_t align,
1911 unsigned long flags,
1912 void (*ctor)(void*, struct kmem_cache *, unsigned long),
1913 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1914 {
1915 size_t left_over, slab_size, ralign;
1916 struct kmem_cache *cachep = NULL;
1917 struct list_head *p;
1918
1919 /*
1920 * Sanity checks... these are all serious usage bugs.
1921 */
1922 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1923 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1924 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1925 name);
1926 BUG();
1927 }
1928
1929 /*
1930 * Prevent CPUs from coming and going.
1931 * lock_cpu_hotplug() nests outside cache_chain_mutex
1932 */
1933 lock_cpu_hotplug();
1934
1935 mutex_lock(&cache_chain_mutex);
1936
1937 list_for_each(p, &cache_chain) {
1938 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1939 mm_segment_t old_fs = get_fs();
1940 char tmp;
1941 int res;
1942
1943 /*
1944 * This happens when the module gets unloaded and doesn't
1945 * destroy its slab cache and no-one else reuses the vmalloc
1946 * area of the module. Print a warning.
1947 */
1948 set_fs(KERNEL_DS);
1949 res = __get_user(tmp, pc->name);
1950 set_fs(old_fs);
1951 if (res) {
1952 printk("SLAB: cache with size %d has lost its name\n",
1953 pc->buffer_size);
1954 continue;
1955 }
1956
1957 if (!strcmp(pc->name, name)) {
1958 printk("kmem_cache_create: duplicate cache %s\n", name);
1959 dump_stack();
1960 goto oops;
1961 }
1962 }
1963
1964 #if DEBUG
1965 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1966 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1967 /* No constructor, but inital state check requested */
1968 printk(KERN_ERR "%s: No con, but init state check "
1969 "requested - %s\n", __FUNCTION__, name);
1970 flags &= ~SLAB_DEBUG_INITIAL;
1971 }
1972 #if FORCED_DEBUG
1973 /*
1974 * Enable redzoning and last user accounting, except for caches with
1975 * large objects, if the increased size would increase the object size
1976 * above the next power of two: caches with object sizes just above a
1977 * power of two have a significant amount of internal fragmentation.
1978 */
1979 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
1980 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1981 if (!(flags & SLAB_DESTROY_BY_RCU))
1982 flags |= SLAB_POISON;
1983 #endif
1984 if (flags & SLAB_DESTROY_BY_RCU)
1985 BUG_ON(flags & SLAB_POISON);
1986 #endif
1987 if (flags & SLAB_DESTROY_BY_RCU)
1988 BUG_ON(dtor);
1989
1990 /*
1991 * Always checks flags, a caller might be expecting debug support which
1992 * isn't available.
1993 */
1994 BUG_ON(flags & ~CREATE_MASK);
1995
1996 /*
1997 * Check that size is in terms of words. This is needed to avoid
1998 * unaligned accesses for some archs when redzoning is used, and makes
1999 * sure any on-slab bufctl's are also correctly aligned.
2000 */
2001 if (size & (BYTES_PER_WORD - 1)) {
2002 size += (BYTES_PER_WORD - 1);
2003 size &= ~(BYTES_PER_WORD - 1);
2004 }
2005
2006 /* calculate the final buffer alignment: */
2007
2008 /* 1) arch recommendation: can be overridden for debug */
2009 if (flags & SLAB_HWCACHE_ALIGN) {
2010 /*
2011 * Default alignment: as specified by the arch code. Except if
2012 * an object is really small, then squeeze multiple objects into
2013 * one cacheline.
2014 */
2015 ralign = cache_line_size();
2016 while (size <= ralign / 2)
2017 ralign /= 2;
2018 } else {
2019 ralign = BYTES_PER_WORD;
2020 }
2021 /* 2) arch mandated alignment: disables debug if necessary */
2022 if (ralign < ARCH_SLAB_MINALIGN) {
2023 ralign = ARCH_SLAB_MINALIGN;
2024 if (ralign > BYTES_PER_WORD)
2025 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2026 }
2027 /* 3) caller mandated alignment: disables debug if necessary */
2028 if (ralign < align) {
2029 ralign = align;
2030 if (ralign > BYTES_PER_WORD)
2031 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2032 }
2033 /*
2034 * 4) Store it. Note that the debug code below can reduce
2035 * the alignment to BYTES_PER_WORD.
2036 */
2037 align = ralign;
2038
2039 /* Get cache's description obj. */
2040 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2041 if (!cachep)
2042 goto oops;
2043
2044 #if DEBUG
2045 cachep->obj_size = size;
2046
2047 if (flags & SLAB_RED_ZONE) {
2048 /* redzoning only works with word aligned caches */
2049 align = BYTES_PER_WORD;
2050
2051 /* add space for red zone words */
2052 cachep->obj_offset += BYTES_PER_WORD;
2053 size += 2 * BYTES_PER_WORD;
2054 }
2055 if (flags & SLAB_STORE_USER) {
2056 /* user store requires word alignment and
2057 * one word storage behind the end of the real
2058 * object.
2059 */
2060 align = BYTES_PER_WORD;
2061 size += BYTES_PER_WORD;
2062 }
2063 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2064 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2065 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2066 cachep->obj_offset += PAGE_SIZE - size;
2067 size = PAGE_SIZE;
2068 }
2069 #endif
2070 #endif
2071
2072 /* Determine if the slab management is 'on' or 'off' slab. */
2073 if (size >= (PAGE_SIZE >> 3))
2074 /*
2075 * Size is large, assume best to place the slab management obj
2076 * off-slab (should allow better packing of objs).
2077 */
2078 flags |= CFLGS_OFF_SLAB;
2079
2080 size = ALIGN(size, align);
2081
2082 left_over = calculate_slab_order(cachep, size, align, flags);
2083
2084 if (!cachep->num) {
2085 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2086 kmem_cache_free(&cache_cache, cachep);
2087 cachep = NULL;
2088 goto oops;
2089 }
2090 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2091 + sizeof(struct slab), align);
2092
2093 /*
2094 * If the slab has been placed off-slab, and we have enough space then
2095 * move it on-slab. This is at the expense of any extra colouring.
2096 */
2097 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2098 flags &= ~CFLGS_OFF_SLAB;
2099 left_over -= slab_size;
2100 }
2101
2102 if (flags & CFLGS_OFF_SLAB) {
2103 /* really off slab. No need for manual alignment */
2104 slab_size =
2105 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2106 }
2107
2108 cachep->colour_off = cache_line_size();
2109 /* Offset must be a multiple of the alignment. */
2110 if (cachep->colour_off < align)
2111 cachep->colour_off = align;
2112 cachep->colour = left_over / cachep->colour_off;
2113 cachep->slab_size = slab_size;
2114 cachep->flags = flags;
2115 cachep->gfpflags = 0;
2116 if (flags & SLAB_CACHE_DMA)
2117 cachep->gfpflags |= GFP_DMA;
2118 cachep->buffer_size = size;
2119
2120 if (flags & CFLGS_OFF_SLAB)
2121 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2122 cachep->ctor = ctor;
2123 cachep->dtor = dtor;
2124 cachep->name = name;
2125
2126
2127 setup_cpu_cache(cachep);
2128
2129 /* cache setup completed, link it into the list */
2130 list_add(&cachep->next, &cache_chain);
2131 oops:
2132 if (!cachep && (flags & SLAB_PANIC))
2133 panic("kmem_cache_create(): failed to create slab `%s'\n",
2134 name);
2135 mutex_unlock(&cache_chain_mutex);
2136 unlock_cpu_hotplug();
2137 return cachep;
2138 }
2139 EXPORT_SYMBOL(kmem_cache_create);
2140
2141 #if DEBUG
2142 static void check_irq_off(void)
2143 {
2144 BUG_ON(!irqs_disabled());
2145 }
2146
2147 static void check_irq_on(void)
2148 {
2149 BUG_ON(irqs_disabled());
2150 }
2151
2152 static void check_spinlock_acquired(struct kmem_cache *cachep)
2153 {
2154 #ifdef CONFIG_SMP
2155 check_irq_off();
2156 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2157 #endif
2158 }
2159
2160 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2161 {
2162 #ifdef CONFIG_SMP
2163 check_irq_off();
2164 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2165 #endif
2166 }
2167
2168 #else
2169 #define check_irq_off() do { } while(0)
2170 #define check_irq_on() do { } while(0)
2171 #define check_spinlock_acquired(x) do { } while(0)
2172 #define check_spinlock_acquired_node(x, y) do { } while(0)
2173 #endif
2174
2175 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2176 struct array_cache *ac,
2177 int force, int node);
2178
2179 static void do_drain(void *arg)
2180 {
2181 struct kmem_cache *cachep = arg;
2182 struct array_cache *ac;
2183 int node = numa_node_id();
2184
2185 check_irq_off();
2186 ac = cpu_cache_get(cachep);
2187 spin_lock(&cachep->nodelists[node]->list_lock);
2188 free_block(cachep, ac->entry, ac->avail, node);
2189 spin_unlock(&cachep->nodelists[node]->list_lock);
2190 ac->avail = 0;
2191 }
2192
2193 static void drain_cpu_caches(struct kmem_cache *cachep)
2194 {
2195 struct kmem_list3 *l3;
2196 int node;
2197
2198 on_each_cpu(do_drain, cachep, 1, 1);
2199 check_irq_on();
2200 for_each_online_node(node) {
2201 l3 = cachep->nodelists[node];
2202 if (l3 && l3->alien)
2203 drain_alien_cache(cachep, l3->alien);
2204 }
2205
2206 for_each_online_node(node) {
2207 l3 = cachep->nodelists[node];
2208 if (l3)
2209 drain_array(cachep, l3, l3->shared, 1, node);
2210 }
2211 }
2212
2213 static int __node_shrink(struct kmem_cache *cachep, int node)
2214 {
2215 struct slab *slabp;
2216 struct kmem_list3 *l3 = cachep->nodelists[node];
2217 int ret;
2218
2219 for (;;) {
2220 struct list_head *p;
2221
2222 p = l3->slabs_free.prev;
2223 if (p == &l3->slabs_free)
2224 break;
2225
2226 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2227 #if DEBUG
2228 BUG_ON(slabp->inuse);
2229 #endif
2230 list_del(&slabp->list);
2231
2232 l3->free_objects -= cachep->num;
2233 spin_unlock_irq(&l3->list_lock);
2234 slab_destroy(cachep, slabp);
2235 spin_lock_irq(&l3->list_lock);
2236 }
2237 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2238 return ret;
2239 }
2240
2241 static int __cache_shrink(struct kmem_cache *cachep)
2242 {
2243 int ret = 0, i = 0;
2244 struct kmem_list3 *l3;
2245
2246 drain_cpu_caches(cachep);
2247
2248 check_irq_on();
2249 for_each_online_node(i) {
2250 l3 = cachep->nodelists[i];
2251 if (l3) {
2252 spin_lock_irq(&l3->list_lock);
2253 ret += __node_shrink(cachep, i);
2254 spin_unlock_irq(&l3->list_lock);
2255 }
2256 }
2257 return (ret ? 1 : 0);
2258 }
2259
2260 /**
2261 * kmem_cache_shrink - Shrink a cache.
2262 * @cachep: The cache to shrink.
2263 *
2264 * Releases as many slabs as possible for a cache.
2265 * To help debugging, a zero exit status indicates all slabs were released.
2266 */
2267 int kmem_cache_shrink(struct kmem_cache *cachep)
2268 {
2269 BUG_ON(!cachep || in_interrupt());
2270
2271 return __cache_shrink(cachep);
2272 }
2273 EXPORT_SYMBOL(kmem_cache_shrink);
2274
2275 /**
2276 * kmem_cache_destroy - delete a cache
2277 * @cachep: the cache to destroy
2278 *
2279 * Remove a struct kmem_cache object from the slab cache.
2280 * Returns 0 on success.
2281 *
2282 * It is expected this function will be called by a module when it is
2283 * unloaded. This will remove the cache completely, and avoid a duplicate
2284 * cache being allocated each time a module is loaded and unloaded, if the
2285 * module doesn't have persistent in-kernel storage across loads and unloads.
2286 *
2287 * The cache must be empty before calling this function.
2288 *
2289 * The caller must guarantee that noone will allocate memory from the cache
2290 * during the kmem_cache_destroy().
2291 */
2292 int kmem_cache_destroy(struct kmem_cache *cachep)
2293 {
2294 int i;
2295 struct kmem_list3 *l3;
2296
2297 BUG_ON(!cachep || in_interrupt());
2298
2299 /* Don't let CPUs to come and go */
2300 lock_cpu_hotplug();
2301
2302 /* Find the cache in the chain of caches. */
2303 mutex_lock(&cache_chain_mutex);
2304 /*
2305 * the chain is never empty, cache_cache is never destroyed
2306 */
2307 list_del(&cachep->next);
2308 mutex_unlock(&cache_chain_mutex);
2309
2310 if (__cache_shrink(cachep)) {
2311 slab_error(cachep, "Can't free all objects");
2312 mutex_lock(&cache_chain_mutex);
2313 list_add(&cachep->next, &cache_chain);
2314 mutex_unlock(&cache_chain_mutex);
2315 unlock_cpu_hotplug();
2316 return 1;
2317 }
2318
2319 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2320 synchronize_rcu();
2321
2322 for_each_online_cpu(i)
2323 kfree(cachep->array[i]);
2324
2325 /* NUMA: free the list3 structures */
2326 for_each_online_node(i) {
2327 l3 = cachep->nodelists[i];
2328 if (l3) {
2329 kfree(l3->shared);
2330 free_alien_cache(l3->alien);
2331 kfree(l3);
2332 }
2333 }
2334 kmem_cache_free(&cache_cache, cachep);
2335 unlock_cpu_hotplug();
2336 return 0;
2337 }
2338 EXPORT_SYMBOL(kmem_cache_destroy);
2339
2340 /* Get the memory for a slab management obj. */
2341 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2342 int colour_off, gfp_t local_flags,
2343 int nodeid)
2344 {
2345 struct slab *slabp;
2346
2347 if (OFF_SLAB(cachep)) {
2348 /* Slab management obj is off-slab. */
2349 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2350 local_flags, nodeid);
2351 if (!slabp)
2352 return NULL;
2353 } else {
2354 slabp = objp + colour_off;
2355 colour_off += cachep->slab_size;
2356 }
2357 slabp->inuse = 0;
2358 slabp->colouroff = colour_off;
2359 slabp->s_mem = objp + colour_off;
2360 slabp->nodeid = nodeid;
2361 return slabp;
2362 }
2363
2364 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2365 {
2366 return (kmem_bufctl_t *) (slabp + 1);
2367 }
2368
2369 static void cache_init_objs(struct kmem_cache *cachep,
2370 struct slab *slabp, unsigned long ctor_flags)
2371 {
2372 int i;
2373
2374 for (i = 0; i < cachep->num; i++) {
2375 void *objp = index_to_obj(cachep, slabp, i);
2376 #if DEBUG
2377 /* need to poison the objs? */
2378 if (cachep->flags & SLAB_POISON)
2379 poison_obj(cachep, objp, POISON_FREE);
2380 if (cachep->flags & SLAB_STORE_USER)
2381 *dbg_userword(cachep, objp) = NULL;
2382
2383 if (cachep->flags & SLAB_RED_ZONE) {
2384 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2385 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2386 }
2387 /*
2388 * Constructors are not allowed to allocate memory from the same
2389 * cache which they are a constructor for. Otherwise, deadlock.
2390 * They must also be threaded.
2391 */
2392 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2393 cachep->ctor(objp + obj_offset(cachep), cachep,
2394 ctor_flags);
2395
2396 if (cachep->flags & SLAB_RED_ZONE) {
2397 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2398 slab_error(cachep, "constructor overwrote the"
2399 " end of an object");
2400 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2401 slab_error(cachep, "constructor overwrote the"
2402 " start of an object");
2403 }
2404 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2405 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2406 kernel_map_pages(virt_to_page(objp),
2407 cachep->buffer_size / PAGE_SIZE, 0);
2408 #else
2409 if (cachep->ctor)
2410 cachep->ctor(objp, cachep, ctor_flags);
2411 #endif
2412 slab_bufctl(slabp)[i] = i + 1;
2413 }
2414 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2415 slabp->free = 0;
2416 }
2417
2418 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2419 {
2420 if (flags & SLAB_DMA)
2421 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2422 else
2423 BUG_ON(cachep->gfpflags & GFP_DMA);
2424 }
2425
2426 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2427 int nodeid)
2428 {
2429 void *objp = index_to_obj(cachep, slabp, slabp->free);
2430 kmem_bufctl_t next;
2431
2432 slabp->inuse++;
2433 next = slab_bufctl(slabp)[slabp->free];
2434 #if DEBUG
2435 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2436 WARN_ON(slabp->nodeid != nodeid);
2437 #endif
2438 slabp->free = next;
2439
2440 return objp;
2441 }
2442
2443 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2444 void *objp, int nodeid)
2445 {
2446 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2447
2448 #if DEBUG
2449 /* Verify that the slab belongs to the intended node */
2450 WARN_ON(slabp->nodeid != nodeid);
2451
2452 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2453 printk(KERN_ERR "slab: double free detected in cache "
2454 "'%s', objp %p\n", cachep->name, objp);
2455 BUG();
2456 }
2457 #endif
2458 slab_bufctl(slabp)[objnr] = slabp->free;
2459 slabp->free = objnr;
2460 slabp->inuse--;
2461 }
2462
2463 static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2464 void *objp)
2465 {
2466 int i;
2467 struct page *page;
2468
2469 /* Nasty!!!!!! I hope this is OK. */
2470 page = virt_to_page(objp);
2471
2472 i = 1;
2473 if (likely(!PageCompound(page)))
2474 i <<= cachep->gfporder;
2475 do {
2476 page_set_cache(page, cachep);
2477 page_set_slab(page, slabp);
2478 page++;
2479 } while (--i);
2480 }
2481
2482 /*
2483 * Grow (by 1) the number of slabs within a cache. This is called by
2484 * kmem_cache_alloc() when there are no active objs left in a cache.
2485 */
2486 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2487 {
2488 struct slab *slabp;
2489 void *objp;
2490 size_t offset;
2491 gfp_t local_flags;
2492 unsigned long ctor_flags;
2493 struct kmem_list3 *l3;
2494
2495 /*
2496 * Be lazy and only check for valid flags here, keeping it out of the
2497 * critical path in kmem_cache_alloc().
2498 */
2499 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2500 if (flags & SLAB_NO_GROW)
2501 return 0;
2502
2503 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2504 local_flags = (flags & SLAB_LEVEL_MASK);
2505 if (!(local_flags & __GFP_WAIT))
2506 /*
2507 * Not allowed to sleep. Need to tell a constructor about
2508 * this - it might need to know...
2509 */
2510 ctor_flags |= SLAB_CTOR_ATOMIC;
2511
2512 /* Take the l3 list lock to change the colour_next on this node */
2513 check_irq_off();
2514 l3 = cachep->nodelists[nodeid];
2515 spin_lock(&l3->list_lock);
2516
2517 /* Get colour for the slab, and cal the next value. */
2518 offset = l3->colour_next;
2519 l3->colour_next++;
2520 if (l3->colour_next >= cachep->colour)
2521 l3->colour_next = 0;
2522 spin_unlock(&l3->list_lock);
2523
2524 offset *= cachep->colour_off;
2525
2526 if (local_flags & __GFP_WAIT)
2527 local_irq_enable();
2528
2529 /*
2530 * The test for missing atomic flag is performed here, rather than
2531 * the more obvious place, simply to reduce the critical path length
2532 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2533 * will eventually be caught here (where it matters).
2534 */
2535 kmem_flagcheck(cachep, flags);
2536
2537 /*
2538 * Get mem for the objs. Attempt to allocate a physical page from
2539 * 'nodeid'.
2540 */
2541 objp = kmem_getpages(cachep, flags, nodeid);
2542 if (!objp)
2543 goto failed;
2544
2545 /* Get slab management. */
2546 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2547 if (!slabp)
2548 goto opps1;
2549
2550 slabp->nodeid = nodeid;
2551 set_slab_attr(cachep, slabp, objp);
2552
2553 cache_init_objs(cachep, slabp, ctor_flags);
2554
2555 if (local_flags & __GFP_WAIT)
2556 local_irq_disable();
2557 check_irq_off();
2558 spin_lock(&l3->list_lock);
2559
2560 /* Make slab active. */
2561 list_add_tail(&slabp->list, &(l3->slabs_free));
2562 STATS_INC_GROWN(cachep);
2563 l3->free_objects += cachep->num;
2564 spin_unlock(&l3->list_lock);
2565 return 1;
2566 opps1:
2567 kmem_freepages(cachep, objp);
2568 failed:
2569 if (local_flags & __GFP_WAIT)
2570 local_irq_disable();
2571 return 0;
2572 }
2573
2574 #if DEBUG
2575
2576 /*
2577 * Perform extra freeing checks:
2578 * - detect bad pointers.
2579 * - POISON/RED_ZONE checking
2580 * - destructor calls, for caches with POISON+dtor
2581 */
2582 static void kfree_debugcheck(const void *objp)
2583 {
2584 struct page *page;
2585
2586 if (!virt_addr_valid(objp)) {
2587 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2588 (unsigned long)objp);
2589 BUG();
2590 }
2591 page = virt_to_page(objp);
2592 if (!PageSlab(page)) {
2593 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2594 (unsigned long)objp);
2595 BUG();
2596 }
2597 }
2598
2599 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2600 void *caller)
2601 {
2602 struct page *page;
2603 unsigned int objnr;
2604 struct slab *slabp;
2605
2606 objp -= obj_offset(cachep);
2607 kfree_debugcheck(objp);
2608 page = virt_to_page(objp);
2609
2610 if (page_get_cache(page) != cachep) {
2611 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2612 "cache %p, got %p\n",
2613 page_get_cache(page), cachep);
2614 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2615 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2616 page_get_cache(page)->name);
2617 WARN_ON(1);
2618 }
2619 slabp = page_get_slab(page);
2620
2621 if (cachep->flags & SLAB_RED_ZONE) {
2622 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2623 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2624 slab_error(cachep, "double free, or memory outside"
2625 " object was overwritten");
2626 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2627 "redzone 2:0x%lx.\n",
2628 objp, *dbg_redzone1(cachep, objp),
2629 *dbg_redzone2(cachep, objp));
2630 }
2631 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2632 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2633 }
2634 if (cachep->flags & SLAB_STORE_USER)
2635 *dbg_userword(cachep, objp) = caller;
2636
2637 objnr = obj_to_index(cachep, slabp, objp);
2638
2639 BUG_ON(objnr >= cachep->num);
2640 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2641
2642 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2643 /*
2644 * Need to call the slab's constructor so the caller can
2645 * perform a verify of its state (debugging). Called without
2646 * the cache-lock held.
2647 */
2648 cachep->ctor(objp + obj_offset(cachep),
2649 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2650 }
2651 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2652 /* we want to cache poison the object,
2653 * call the destruction callback
2654 */
2655 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2656 }
2657 #ifdef CONFIG_DEBUG_SLAB_LEAK
2658 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2659 #endif
2660 if (cachep->flags & SLAB_POISON) {
2661 #ifdef CONFIG_DEBUG_PAGEALLOC
2662 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2663 store_stackinfo(cachep, objp, (unsigned long)caller);
2664 kernel_map_pages(virt_to_page(objp),
2665 cachep->buffer_size / PAGE_SIZE, 0);
2666 } else {
2667 poison_obj(cachep, objp, POISON_FREE);
2668 }
2669 #else
2670 poison_obj(cachep, objp, POISON_FREE);
2671 #endif
2672 }
2673 return objp;
2674 }
2675
2676 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2677 {
2678 kmem_bufctl_t i;
2679 int entries = 0;
2680
2681 /* Check slab's freelist to see if this obj is there. */
2682 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2683 entries++;
2684 if (entries > cachep->num || i >= cachep->num)
2685 goto bad;
2686 }
2687 if (entries != cachep->num - slabp->inuse) {
2688 bad:
2689 printk(KERN_ERR "slab: Internal list corruption detected in "
2690 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2691 cachep->name, cachep->num, slabp, slabp->inuse);
2692 for (i = 0;
2693 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2694 i++) {
2695 if (i % 16 == 0)
2696 printk("\n%03x:", i);
2697 printk(" %02x", ((unsigned char *)slabp)[i]);
2698 }
2699 printk("\n");
2700 BUG();
2701 }
2702 }
2703 #else
2704 #define kfree_debugcheck(x) do { } while(0)
2705 #define cache_free_debugcheck(x,objp,z) (objp)
2706 #define check_slabp(x,y) do { } while(0)
2707 #endif
2708
2709 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2710 {
2711 int batchcount;
2712 struct kmem_list3 *l3;
2713 struct array_cache *ac;
2714
2715 check_irq_off();
2716 ac = cpu_cache_get(cachep);
2717 retry:
2718 batchcount = ac->batchcount;
2719 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2720 /*
2721 * If there was little recent activity on this cache, then
2722 * perform only a partial refill. Otherwise we could generate
2723 * refill bouncing.
2724 */
2725 batchcount = BATCHREFILL_LIMIT;
2726 }
2727 l3 = cachep->nodelists[numa_node_id()];
2728
2729 BUG_ON(ac->avail > 0 || !l3);
2730 spin_lock(&l3->list_lock);
2731
2732 /* See if we can refill from the shared array */
2733 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2734 goto alloc_done;
2735
2736 while (batchcount > 0) {
2737 struct list_head *entry;
2738 struct slab *slabp;
2739 /* Get slab alloc is to come from. */
2740 entry = l3->slabs_partial.next;
2741 if (entry == &l3->slabs_partial) {
2742 l3->free_touched = 1;
2743 entry = l3->slabs_free.next;
2744 if (entry == &l3->slabs_free)
2745 goto must_grow;
2746 }
2747
2748 slabp = list_entry(entry, struct slab, list);
2749 check_slabp(cachep, slabp);
2750 check_spinlock_acquired(cachep);
2751 while (slabp->inuse < cachep->num && batchcount--) {
2752 STATS_INC_ALLOCED(cachep);
2753 STATS_INC_ACTIVE(cachep);
2754 STATS_SET_HIGH(cachep);
2755
2756 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2757 numa_node_id());
2758 }
2759 check_slabp(cachep, slabp);
2760
2761 /* move slabp to correct slabp list: */
2762 list_del(&slabp->list);
2763 if (slabp->free == BUFCTL_END)
2764 list_add(&slabp->list, &l3->slabs_full);
2765 else
2766 list_add(&slabp->list, &l3->slabs_partial);
2767 }
2768
2769 must_grow:
2770 l3->free_objects -= ac->avail;
2771 alloc_done:
2772 spin_unlock(&l3->list_lock);
2773
2774 if (unlikely(!ac->avail)) {
2775 int x;
2776 x = cache_grow(cachep, flags, numa_node_id());
2777
2778 /* cache_grow can reenable interrupts, then ac could change. */
2779 ac = cpu_cache_get(cachep);
2780 if (!x && ac->avail == 0) /* no objects in sight? abort */
2781 return NULL;
2782
2783 if (!ac->avail) /* objects refilled by interrupt? */
2784 goto retry;
2785 }
2786 ac->touched = 1;
2787 return ac->entry[--ac->avail];
2788 }
2789
2790 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2791 gfp_t flags)
2792 {
2793 might_sleep_if(flags & __GFP_WAIT);
2794 #if DEBUG
2795 kmem_flagcheck(cachep, flags);
2796 #endif
2797 }
2798
2799 #if DEBUG
2800 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2801 gfp_t flags, void *objp, void *caller)
2802 {
2803 if (!objp)
2804 return objp;
2805 if (cachep->flags & SLAB_POISON) {
2806 #ifdef CONFIG_DEBUG_PAGEALLOC
2807 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2808 kernel_map_pages(virt_to_page(objp),
2809 cachep->buffer_size / PAGE_SIZE, 1);
2810 else
2811 check_poison_obj(cachep, objp);
2812 #else
2813 check_poison_obj(cachep, objp);
2814 #endif
2815 poison_obj(cachep, objp, POISON_INUSE);
2816 }
2817 if (cachep->flags & SLAB_STORE_USER)
2818 *dbg_userword(cachep, objp) = caller;
2819
2820 if (cachep->flags & SLAB_RED_ZONE) {
2821 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2822 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2823 slab_error(cachep, "double free, or memory outside"
2824 " object was overwritten");
2825 printk(KERN_ERR
2826 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2827 objp, *dbg_redzone1(cachep, objp),
2828 *dbg_redzone2(cachep, objp));
2829 }
2830 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2831 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2832 }
2833 #ifdef CONFIG_DEBUG_SLAB_LEAK
2834 {
2835 struct slab *slabp;
2836 unsigned objnr;
2837
2838 slabp = page_get_slab(virt_to_page(objp));
2839 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2840 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2841 }
2842 #endif
2843 objp += obj_offset(cachep);
2844 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2845 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2846
2847 if (!(flags & __GFP_WAIT))
2848 ctor_flags |= SLAB_CTOR_ATOMIC;
2849
2850 cachep->ctor(objp, cachep, ctor_flags);
2851 }
2852 return objp;
2853 }
2854 #else
2855 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2856 #endif
2857
2858 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2859 {
2860 void *objp;
2861 struct array_cache *ac;
2862
2863 #ifdef CONFIG_NUMA
2864 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2865 objp = alternate_node_alloc(cachep, flags);
2866 if (objp != NULL)
2867 return objp;
2868 }
2869 #endif
2870
2871 check_irq_off();
2872 ac = cpu_cache_get(cachep);
2873 if (likely(ac->avail)) {
2874 STATS_INC_ALLOCHIT(cachep);
2875 ac->touched = 1;
2876 objp = ac->entry[--ac->avail];
2877 } else {
2878 STATS_INC_ALLOCMISS(cachep);
2879 objp = cache_alloc_refill(cachep, flags);
2880 }
2881 return objp;
2882 }
2883
2884 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2885 gfp_t flags, void *caller)
2886 {
2887 unsigned long save_flags;
2888 void *objp;
2889
2890 cache_alloc_debugcheck_before(cachep, flags);
2891
2892 local_irq_save(save_flags);
2893 objp = ____cache_alloc(cachep, flags);
2894 local_irq_restore(save_flags);
2895 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2896 caller);
2897 prefetchw(objp);
2898 return objp;
2899 }
2900
2901 #ifdef CONFIG_NUMA
2902 /*
2903 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2904 *
2905 * If we are in_interrupt, then process context, including cpusets and
2906 * mempolicy, may not apply and should not be used for allocation policy.
2907 */
2908 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2909 {
2910 int nid_alloc, nid_here;
2911
2912 if (in_interrupt())
2913 return NULL;
2914 nid_alloc = nid_here = numa_node_id();
2915 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2916 nid_alloc = cpuset_mem_spread_node();
2917 else if (current->mempolicy)
2918 nid_alloc = slab_node(current->mempolicy);
2919 if (nid_alloc != nid_here)
2920 return __cache_alloc_node(cachep, flags, nid_alloc);
2921 return NULL;
2922 }
2923
2924 /*
2925 * A interface to enable slab creation on nodeid
2926 */
2927 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2928 int nodeid)
2929 {
2930 struct list_head *entry;
2931 struct slab *slabp;
2932 struct kmem_list3 *l3;
2933 void *obj;
2934 int x;
2935
2936 l3 = cachep->nodelists[nodeid];
2937 BUG_ON(!l3);
2938
2939 retry:
2940 check_irq_off();
2941 spin_lock(&l3->list_lock);
2942 entry = l3->slabs_partial.next;
2943 if (entry == &l3->slabs_partial) {
2944 l3->free_touched = 1;
2945 entry = l3->slabs_free.next;
2946 if (entry == &l3->slabs_free)
2947 goto must_grow;
2948 }
2949
2950 slabp = list_entry(entry, struct slab, list);
2951 check_spinlock_acquired_node(cachep, nodeid);
2952 check_slabp(cachep, slabp);
2953
2954 STATS_INC_NODEALLOCS(cachep);
2955 STATS_INC_ACTIVE(cachep);
2956 STATS_SET_HIGH(cachep);
2957
2958 BUG_ON(slabp->inuse == cachep->num);
2959
2960 obj = slab_get_obj(cachep, slabp, nodeid);
2961 check_slabp(cachep, slabp);
2962 l3->free_objects--;
2963 /* move slabp to correct slabp list: */
2964 list_del(&slabp->list);
2965
2966 if (slabp->free == BUFCTL_END)
2967 list_add(&slabp->list, &l3->slabs_full);
2968 else
2969 list_add(&slabp->list, &l3->slabs_partial);
2970
2971 spin_unlock(&l3->list_lock);
2972 goto done;
2973
2974 must_grow:
2975 spin_unlock(&l3->list_lock);
2976 x = cache_grow(cachep, flags, nodeid);
2977
2978 if (!x)
2979 return NULL;
2980
2981 goto retry;
2982 done:
2983 return obj;
2984 }
2985 #endif
2986
2987 /*
2988 * Caller needs to acquire correct kmem_list's list_lock
2989 */
2990 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2991 int node)
2992 {
2993 int i;
2994 struct kmem_list3 *l3;
2995
2996 for (i = 0; i < nr_objects; i++) {
2997 void *objp = objpp[i];
2998 struct slab *slabp;
2999
3000 slabp = virt_to_slab(objp);
3001 l3 = cachep->nodelists[node];
3002 list_del(&slabp->list);
3003 check_spinlock_acquired_node(cachep, node);
3004 check_slabp(cachep, slabp);
3005 slab_put_obj(cachep, slabp, objp, node);
3006 STATS_DEC_ACTIVE(cachep);
3007 l3->free_objects++;
3008 check_slabp(cachep, slabp);
3009
3010 /* fixup slab chains */
3011 if (slabp->inuse == 0) {
3012 if (l3->free_objects > l3->free_limit) {
3013 l3->free_objects -= cachep->num;
3014 slab_destroy(cachep, slabp);
3015 } else {
3016 list_add(&slabp->list, &l3->slabs_free);
3017 }
3018 } else {
3019 /* Unconditionally move a slab to the end of the
3020 * partial list on free - maximum time for the
3021 * other objects to be freed, too.
3022 */
3023 list_add_tail(&slabp->list, &l3->slabs_partial);
3024 }
3025 }
3026 }
3027
3028 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3029 {
3030 int batchcount;
3031 struct kmem_list3 *l3;
3032 int node = numa_node_id();
3033
3034 batchcount = ac->batchcount;
3035 #if DEBUG
3036 BUG_ON(!batchcount || batchcount > ac->avail);
3037 #endif
3038 check_irq_off();
3039 l3 = cachep->nodelists[node];
3040 spin_lock(&l3->list_lock);
3041 if (l3->shared) {
3042 struct array_cache *shared_array = l3->shared;
3043 int max = shared_array->limit - shared_array->avail;
3044 if (max) {
3045 if (batchcount > max)
3046 batchcount = max;
3047 memcpy(&(shared_array->entry[shared_array->avail]),
3048 ac->entry, sizeof(void *) * batchcount);
3049 shared_array->avail += batchcount;
3050 goto free_done;
3051 }
3052 }
3053
3054 free_block(cachep, ac->entry, batchcount, node);
3055 free_done:
3056 #if STATS
3057 {
3058 int i = 0;
3059 struct list_head *p;
3060
3061 p = l3->slabs_free.next;
3062 while (p != &(l3->slabs_free)) {
3063 struct slab *slabp;
3064
3065 slabp = list_entry(p, struct slab, list);
3066 BUG_ON(slabp->inuse);
3067
3068 i++;
3069 p = p->next;
3070 }
3071 STATS_SET_FREEABLE(cachep, i);
3072 }
3073 #endif
3074 spin_unlock(&l3->list_lock);
3075 ac->avail -= batchcount;
3076 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3077 }
3078
3079 /*
3080 * Release an obj back to its cache. If the obj has a constructed state, it must
3081 * be in this state _before_ it is released. Called with disabled ints.
3082 */
3083 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3084 {
3085 struct array_cache *ac = cpu_cache_get(cachep);
3086
3087 check_irq_off();
3088 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3089
3090 /* Make sure we are not freeing a object from another
3091 * node to the array cache on this cpu.
3092 */
3093 #ifdef CONFIG_NUMA
3094 {
3095 struct slab *slabp;
3096 slabp = virt_to_slab(objp);
3097 if (unlikely(slabp->nodeid != numa_node_id())) {
3098 struct array_cache *alien = NULL;
3099 int nodeid = slabp->nodeid;
3100 struct kmem_list3 *l3;
3101
3102 l3 = cachep->nodelists[numa_node_id()];
3103 STATS_INC_NODEFREES(cachep);
3104 if (l3->alien && l3->alien[nodeid]) {
3105 alien = l3->alien[nodeid];
3106 spin_lock(&alien->lock);
3107 if (unlikely(alien->avail == alien->limit)) {
3108 STATS_INC_ACOVERFLOW(cachep);
3109 __drain_alien_cache(cachep,
3110 alien, nodeid);
3111 }
3112 alien->entry[alien->avail++] = objp;
3113 spin_unlock(&alien->lock);
3114 } else {
3115 spin_lock(&(cachep->nodelists[nodeid])->
3116 list_lock);
3117 free_block(cachep, &objp, 1, nodeid);
3118 spin_unlock(&(cachep->nodelists[nodeid])->
3119 list_lock);
3120 }
3121 return;
3122 }
3123 }
3124 #endif
3125 if (likely(ac->avail < ac->limit)) {
3126 STATS_INC_FREEHIT(cachep);
3127 ac->entry[ac->avail++] = objp;
3128 return;
3129 } else {
3130 STATS_INC_FREEMISS(cachep);
3131 cache_flusharray(cachep, ac);
3132 ac->entry[ac->avail++] = objp;
3133 }
3134 }
3135
3136 /**
3137 * kmem_cache_alloc - Allocate an object
3138 * @cachep: The cache to allocate from.
3139 * @flags: See kmalloc().
3140 *
3141 * Allocate an object from this cache. The flags are only relevant
3142 * if the cache has no available objects.
3143 */
3144 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3145 {
3146 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3147 }
3148 EXPORT_SYMBOL(kmem_cache_alloc);
3149
3150 /**
3151 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3152 * @cache: The cache to allocate from.
3153 * @flags: See kmalloc().
3154 *
3155 * Allocate an object from this cache and set the allocated memory to zero.
3156 * The flags are only relevant if the cache has no available objects.
3157 */
3158 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3159 {
3160 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3161 if (ret)
3162 memset(ret, 0, obj_size(cache));
3163 return ret;
3164 }
3165 EXPORT_SYMBOL(kmem_cache_zalloc);
3166
3167 /**
3168 * kmem_ptr_validate - check if an untrusted pointer might
3169 * be a slab entry.
3170 * @cachep: the cache we're checking against
3171 * @ptr: pointer to validate
3172 *
3173 * This verifies that the untrusted pointer looks sane:
3174 * it is _not_ a guarantee that the pointer is actually
3175 * part of the slab cache in question, but it at least
3176 * validates that the pointer can be dereferenced and
3177 * looks half-way sane.
3178 *
3179 * Currently only used for dentry validation.
3180 */
3181 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3182 {
3183 unsigned long addr = (unsigned long)ptr;
3184 unsigned long min_addr = PAGE_OFFSET;
3185 unsigned long align_mask = BYTES_PER_WORD - 1;
3186 unsigned long size = cachep->buffer_size;
3187 struct page *page;
3188
3189 if (unlikely(addr < min_addr))
3190 goto out;
3191 if (unlikely(addr > (unsigned long)high_memory - size))
3192 goto out;
3193 if (unlikely(addr & align_mask))
3194 goto out;
3195 if (unlikely(!kern_addr_valid(addr)))
3196 goto out;
3197 if (unlikely(!kern_addr_valid(addr + size - 1)))
3198 goto out;
3199 page = virt_to_page(ptr);
3200 if (unlikely(!PageSlab(page)))
3201 goto out;
3202 if (unlikely(page_get_cache(page) != cachep))
3203 goto out;
3204 return 1;
3205 out:
3206 return 0;
3207 }
3208
3209 #ifdef CONFIG_NUMA
3210 /**
3211 * kmem_cache_alloc_node - Allocate an object on the specified node
3212 * @cachep: The cache to allocate from.
3213 * @flags: See kmalloc().
3214 * @nodeid: node number of the target node.
3215 *
3216 * Identical to kmem_cache_alloc, except that this function is slow
3217 * and can sleep. And it will allocate memory on the given node, which
3218 * can improve the performance for cpu bound structures.
3219 * New and improved: it will now make sure that the object gets
3220 * put on the correct node list so that there is no false sharing.
3221 */
3222 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3223 {
3224 unsigned long save_flags;
3225 void *ptr;
3226
3227 cache_alloc_debugcheck_before(cachep, flags);
3228 local_irq_save(save_flags);
3229
3230 if (nodeid == -1 || nodeid == numa_node_id() ||
3231 !cachep->nodelists[nodeid])
3232 ptr = ____cache_alloc(cachep, flags);
3233 else
3234 ptr = __cache_alloc_node(cachep, flags, nodeid);
3235 local_irq_restore(save_flags);
3236
3237 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3238 __builtin_return_address(0));
3239
3240 return ptr;
3241 }
3242 EXPORT_SYMBOL(kmem_cache_alloc_node);
3243
3244 void *kmalloc_node(size_t size, gfp_t flags, int node)
3245 {
3246 struct kmem_cache *cachep;
3247
3248 cachep = kmem_find_general_cachep(size, flags);
3249 if (unlikely(cachep == NULL))
3250 return NULL;
3251 return kmem_cache_alloc_node(cachep, flags, node);
3252 }
3253 EXPORT_SYMBOL(kmalloc_node);
3254 #endif
3255
3256 /**
3257 * kmalloc - allocate memory
3258 * @size: how many bytes of memory are required.
3259 * @flags: the type of memory to allocate.
3260 * @caller: function caller for debug tracking of the caller
3261 *
3262 * kmalloc is the normal method of allocating memory
3263 * in the kernel.
3264 *
3265 * The @flags argument may be one of:
3266 *
3267 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3268 *
3269 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3270 *
3271 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3272 *
3273 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3274 * must be suitable for DMA. This can mean different things on different
3275 * platforms. For example, on i386, it means that the memory must come
3276 * from the first 16MB.
3277 */
3278 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3279 void *caller)
3280 {
3281 struct kmem_cache *cachep;
3282
3283 /* If you want to save a few bytes .text space: replace
3284 * __ with kmem_.
3285 * Then kmalloc uses the uninlined functions instead of the inline
3286 * functions.
3287 */
3288 cachep = __find_general_cachep(size, flags);
3289 if (unlikely(cachep == NULL))
3290 return NULL;
3291 return __cache_alloc(cachep, flags, caller);
3292 }
3293
3294
3295 void *__kmalloc(size_t size, gfp_t flags)
3296 {
3297 #ifndef CONFIG_DEBUG_SLAB
3298 return __do_kmalloc(size, flags, NULL);
3299 #else
3300 return __do_kmalloc(size, flags, __builtin_return_address(0));
3301 #endif
3302 }
3303 EXPORT_SYMBOL(__kmalloc);
3304
3305 #ifdef CONFIG_DEBUG_SLAB
3306 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3307 {
3308 return __do_kmalloc(size, flags, caller);
3309 }
3310 EXPORT_SYMBOL(__kmalloc_track_caller);
3311 #endif
3312
3313 #ifdef CONFIG_SMP
3314 /**
3315 * __alloc_percpu - allocate one copy of the object for every present
3316 * cpu in the system, zeroing them.
3317 * Objects should be dereferenced using the per_cpu_ptr macro only.
3318 *
3319 * @size: how many bytes of memory are required.
3320 */
3321 void *__alloc_percpu(size_t size)
3322 {
3323 int i;
3324 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3325
3326 if (!pdata)
3327 return NULL;
3328
3329 /*
3330 * Cannot use for_each_online_cpu since a cpu may come online
3331 * and we have no way of figuring out how to fix the array
3332 * that we have allocated then....
3333 */
3334 for_each_possible_cpu(i) {
3335 int node = cpu_to_node(i);
3336
3337 if (node_online(node))
3338 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3339 else
3340 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3341
3342 if (!pdata->ptrs[i])
3343 goto unwind_oom;
3344 memset(pdata->ptrs[i], 0, size);
3345 }
3346
3347 /* Catch derefs w/o wrappers */
3348 return (void *)(~(unsigned long)pdata);
3349
3350 unwind_oom:
3351 while (--i >= 0) {
3352 if (!cpu_possible(i))
3353 continue;
3354 kfree(pdata->ptrs[i]);
3355 }
3356 kfree(pdata);
3357 return NULL;
3358 }
3359 EXPORT_SYMBOL(__alloc_percpu);
3360 #endif
3361
3362 /**
3363 * kmem_cache_free - Deallocate an object
3364 * @cachep: The cache the allocation was from.
3365 * @objp: The previously allocated object.
3366 *
3367 * Free an object which was previously allocated from this
3368 * cache.
3369 */
3370 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3371 {
3372 unsigned long flags;
3373
3374 local_irq_save(flags);
3375 __cache_free(cachep, objp);
3376 local_irq_restore(flags);
3377 }
3378 EXPORT_SYMBOL(kmem_cache_free);
3379
3380 /**
3381 * kfree - free previously allocated memory
3382 * @objp: pointer returned by kmalloc.
3383 *
3384 * If @objp is NULL, no operation is performed.
3385 *
3386 * Don't free memory not originally allocated by kmalloc()
3387 * or you will run into trouble.
3388 */
3389 void kfree(const void *objp)
3390 {
3391 struct kmem_cache *c;
3392 unsigned long flags;
3393
3394 if (unlikely(!objp))
3395 return;
3396 local_irq_save(flags);
3397 kfree_debugcheck(objp);
3398 c = virt_to_cache(objp);
3399 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3400 __cache_free(c, (void *)objp);
3401 local_irq_restore(flags);
3402 }
3403 EXPORT_SYMBOL(kfree);
3404
3405 #ifdef CONFIG_SMP
3406 /**
3407 * free_percpu - free previously allocated percpu memory
3408 * @objp: pointer returned by alloc_percpu.
3409 *
3410 * Don't free memory not originally allocated by alloc_percpu()
3411 * The complemented objp is to check for that.
3412 */
3413 void free_percpu(const void *objp)
3414 {
3415 int i;
3416 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3417
3418 /*
3419 * We allocate for all cpus so we cannot use for online cpu here.
3420 */
3421 for_each_possible_cpu(i)
3422 kfree(p->ptrs[i]);
3423 kfree(p);
3424 }
3425 EXPORT_SYMBOL(free_percpu);
3426 #endif
3427
3428 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3429 {
3430 return obj_size(cachep);
3431 }
3432 EXPORT_SYMBOL(kmem_cache_size);
3433
3434 const char *kmem_cache_name(struct kmem_cache *cachep)
3435 {
3436 return cachep->name;
3437 }
3438 EXPORT_SYMBOL_GPL(kmem_cache_name);
3439
3440 /*
3441 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3442 */
3443 static int alloc_kmemlist(struct kmem_cache *cachep)
3444 {
3445 int node;
3446 struct kmem_list3 *l3;
3447 struct array_cache *new_shared;
3448 struct array_cache **new_alien;
3449
3450 for_each_online_node(node) {
3451
3452 new_alien = alloc_alien_cache(node, cachep->limit);
3453 if (!new_alien)
3454 goto fail;
3455
3456 new_shared = alloc_arraycache(node,
3457 cachep->shared*cachep->batchcount,
3458 0xbaadf00d);
3459 if (!new_shared) {
3460 free_alien_cache(new_alien);
3461 goto fail;
3462 }
3463
3464 l3 = cachep->nodelists[node];
3465 if (l3) {
3466 struct array_cache *shared = l3->shared;
3467
3468 spin_lock_irq(&l3->list_lock);
3469
3470 if (shared)
3471 free_block(cachep, shared->entry,
3472 shared->avail, node);
3473
3474 l3->shared = new_shared;
3475 if (!l3->alien) {
3476 l3->alien = new_alien;
3477 new_alien = NULL;
3478 }
3479 l3->free_limit = (1 + nr_cpus_node(node)) *
3480 cachep->batchcount + cachep->num;
3481 spin_unlock_irq(&l3->list_lock);
3482 kfree(shared);
3483 free_alien_cache(new_alien);
3484 continue;
3485 }
3486 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3487 if (!l3) {
3488 free_alien_cache(new_alien);
3489 kfree(new_shared);
3490 goto fail;
3491 }
3492
3493 kmem_list3_init(l3);
3494 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3495 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3496 l3->shared = new_shared;
3497 l3->alien = new_alien;
3498 l3->free_limit = (1 + nr_cpus_node(node)) *
3499 cachep->batchcount + cachep->num;
3500 cachep->nodelists[node] = l3;
3501 }
3502 return 0;
3503
3504 fail:
3505 if (!cachep->next.next) {
3506 /* Cache is not active yet. Roll back what we did */
3507 node--;
3508 while (node >= 0) {
3509 if (cachep->nodelists[node]) {
3510 l3 = cachep->nodelists[node];
3511
3512 kfree(l3->shared);
3513 free_alien_cache(l3->alien);
3514 kfree(l3);
3515 cachep->nodelists[node] = NULL;
3516 }
3517 node--;
3518 }
3519 }
3520 return -ENOMEM;
3521 }
3522
3523 struct ccupdate_struct {
3524 struct kmem_cache *cachep;
3525 struct array_cache *new[NR_CPUS];
3526 };
3527
3528 static void do_ccupdate_local(void *info)
3529 {
3530 struct ccupdate_struct *new = info;
3531 struct array_cache *old;
3532
3533 check_irq_off();
3534 old = cpu_cache_get(new->cachep);
3535
3536 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3537 new->new[smp_processor_id()] = old;
3538 }
3539
3540 /* Always called with the cache_chain_mutex held */
3541 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3542 int batchcount, int shared)
3543 {
3544 struct ccupdate_struct new;
3545 int i, err;
3546
3547 memset(&new.new, 0, sizeof(new.new));
3548 for_each_online_cpu(i) {
3549 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3550 batchcount);
3551 if (!new.new[i]) {
3552 for (i--; i >= 0; i--)
3553 kfree(new.new[i]);
3554 return -ENOMEM;
3555 }
3556 }
3557 new.cachep = cachep;
3558
3559 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3560
3561 check_irq_on();
3562 cachep->batchcount = batchcount;
3563 cachep->limit = limit;
3564 cachep->shared = shared;
3565
3566 for_each_online_cpu(i) {
3567 struct array_cache *ccold = new.new[i];
3568 if (!ccold)
3569 continue;
3570 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3571 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3572 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3573 kfree(ccold);
3574 }
3575
3576 err = alloc_kmemlist(cachep);
3577 if (err) {
3578 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3579 cachep->name, -err);
3580 BUG();
3581 }
3582 return 0;
3583 }
3584
3585 /* Called with cache_chain_mutex held always */
3586 static void enable_cpucache(struct kmem_cache *cachep)
3587 {
3588 int err;
3589 int limit, shared;
3590
3591 /*
3592 * The head array serves three purposes:
3593 * - create a LIFO ordering, i.e. return objects that are cache-warm
3594 * - reduce the number of spinlock operations.
3595 * - reduce the number of linked list operations on the slab and
3596 * bufctl chains: array operations are cheaper.
3597 * The numbers are guessed, we should auto-tune as described by
3598 * Bonwick.
3599 */
3600 if (cachep->buffer_size > 131072)
3601 limit = 1;
3602 else if (cachep->buffer_size > PAGE_SIZE)
3603 limit = 8;
3604 else if (cachep->buffer_size > 1024)
3605 limit = 24;
3606 else if (cachep->buffer_size > 256)
3607 limit = 54;
3608 else
3609 limit = 120;
3610
3611 /*
3612 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3613 * allocation behaviour: Most allocs on one cpu, most free operations
3614 * on another cpu. For these cases, an efficient object passing between
3615 * cpus is necessary. This is provided by a shared array. The array
3616 * replaces Bonwick's magazine layer.
3617 * On uniprocessor, it's functionally equivalent (but less efficient)
3618 * to a larger limit. Thus disabled by default.
3619 */
3620 shared = 0;
3621 #ifdef CONFIG_SMP
3622 if (cachep->buffer_size <= PAGE_SIZE)
3623 shared = 8;
3624 #endif
3625
3626 #if DEBUG
3627 /*
3628 * With debugging enabled, large batchcount lead to excessively long
3629 * periods with disabled local interrupts. Limit the batchcount
3630 */
3631 if (limit > 32)
3632 limit = 32;
3633 #endif
3634 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3635 if (err)
3636 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3637 cachep->name, -err);
3638 }
3639
3640 /*
3641 * Drain an array if it contains any elements taking the l3 lock only if
3642 * necessary. Note that the l3 listlock also protects the array_cache
3643 * if drain_array() is used on the shared array.
3644 */
3645 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3646 struct array_cache *ac, int force, int node)
3647 {
3648 int tofree;
3649
3650 if (!ac || !ac->avail)
3651 return;
3652 if (ac->touched && !force) {
3653 ac->touched = 0;
3654 } else {
3655 spin_lock_irq(&l3->list_lock);
3656 if (ac->avail) {
3657 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3658 if (tofree > ac->avail)
3659 tofree = (ac->avail + 1) / 2;
3660 free_block(cachep, ac->entry, tofree, node);
3661 ac->avail -= tofree;
3662 memmove(ac->entry, &(ac->entry[tofree]),
3663 sizeof(void *) * ac->avail);
3664 }
3665 spin_unlock_irq(&l3->list_lock);
3666 }
3667 }
3668
3669 /**
3670 * cache_reap - Reclaim memory from caches.
3671 * @unused: unused parameter
3672 *
3673 * Called from workqueue/eventd every few seconds.
3674 * Purpose:
3675 * - clear the per-cpu caches for this CPU.
3676 * - return freeable pages to the main free memory pool.
3677 *
3678 * If we cannot acquire the cache chain mutex then just give up - we'll try
3679 * again on the next iteration.
3680 */
3681 static void cache_reap(void *unused)
3682 {
3683 struct list_head *walk;
3684 struct kmem_list3 *l3;
3685 int node = numa_node_id();
3686
3687 if (!mutex_trylock(&cache_chain_mutex)) {
3688 /* Give up. Setup the next iteration. */
3689 schedule_delayed_work(&__get_cpu_var(reap_work),
3690 REAPTIMEOUT_CPUC);
3691 return;
3692 }
3693
3694 list_for_each(walk, &cache_chain) {
3695 struct kmem_cache *searchp;
3696 struct list_head *p;
3697 int tofree;
3698 struct slab *slabp;
3699
3700 searchp = list_entry(walk, struct kmem_cache, next);
3701 check_irq_on();
3702
3703 /*
3704 * We only take the l3 lock if absolutely necessary and we
3705 * have established with reasonable certainty that
3706 * we can do some work if the lock was obtained.
3707 */
3708 l3 = searchp->nodelists[node];
3709
3710 reap_alien(searchp, l3);
3711
3712 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3713
3714 /*
3715 * These are racy checks but it does not matter
3716 * if we skip one check or scan twice.
3717 */
3718 if (time_after(l3->next_reap, jiffies))
3719 goto next;
3720
3721 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3722
3723 drain_array(searchp, l3, l3->shared, 0, node);
3724
3725 if (l3->free_touched) {
3726 l3->free_touched = 0;
3727 goto next;
3728 }
3729
3730 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3731 (5 * searchp->num);
3732 do {
3733 /*
3734 * Do not lock if there are no free blocks.
3735 */
3736 if (list_empty(&l3->slabs_free))
3737 break;
3738
3739 spin_lock_irq(&l3->list_lock);
3740 p = l3->slabs_free.next;
3741 if (p == &(l3->slabs_free)) {
3742 spin_unlock_irq(&l3->list_lock);
3743 break;
3744 }
3745
3746 slabp = list_entry(p, struct slab, list);
3747 BUG_ON(slabp->inuse);
3748 list_del(&slabp->list);
3749 STATS_INC_REAPED(searchp);
3750
3751 /*
3752 * Safe to drop the lock. The slab is no longer linked
3753 * to the cache. searchp cannot disappear, we hold
3754 * cache_chain_lock
3755 */
3756 l3->free_objects -= searchp->num;
3757 spin_unlock_irq(&l3->list_lock);
3758 slab_destroy(searchp, slabp);
3759 } while (--tofree > 0);
3760 next:
3761 cond_resched();
3762 }
3763 check_irq_on();
3764 mutex_unlock(&cache_chain_mutex);
3765 next_reap_node();
3766 /* Set up the next iteration */
3767 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3768 }
3769
3770 #ifdef CONFIG_PROC_FS
3771
3772 static void print_slabinfo_header(struct seq_file *m)
3773 {
3774 /*
3775 * Output format version, so at least we can change it
3776 * without _too_ many complaints.
3777 */
3778 #if STATS
3779 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3780 #else
3781 seq_puts(m, "slabinfo - version: 2.1\n");
3782 #endif
3783 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3784 "<objperslab> <pagesperslab>");
3785 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3786 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3787 #if STATS
3788 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3789 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3790 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3791 #endif
3792 seq_putc(m, '\n');
3793 }
3794
3795 static void *s_start(struct seq_file *m, loff_t *pos)
3796 {
3797 loff_t n = *pos;
3798 struct list_head *p;
3799
3800 mutex_lock(&cache_chain_mutex);
3801 if (!n)
3802 print_slabinfo_header(m);
3803 p = cache_chain.next;
3804 while (n--) {
3805 p = p->next;
3806 if (p == &cache_chain)
3807 return NULL;
3808 }
3809 return list_entry(p, struct kmem_cache, next);
3810 }
3811
3812 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3813 {
3814 struct kmem_cache *cachep = p;
3815 ++*pos;
3816 return cachep->next.next == &cache_chain ?
3817 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3818 }
3819
3820 static void s_stop(struct seq_file *m, void *p)
3821 {
3822 mutex_unlock(&cache_chain_mutex);
3823 }
3824
3825 static int s_show(struct seq_file *m, void *p)
3826 {
3827 struct kmem_cache *cachep = p;
3828 struct list_head *q;
3829 struct slab *slabp;
3830 unsigned long active_objs;
3831 unsigned long num_objs;
3832 unsigned long active_slabs = 0;
3833 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3834 const char *name;
3835 char *error = NULL;
3836 int node;
3837 struct kmem_list3 *l3;
3838
3839 active_objs = 0;
3840 num_slabs = 0;
3841 for_each_online_node(node) {
3842 l3 = cachep->nodelists[node];
3843 if (!l3)
3844 continue;
3845
3846 check_irq_on();
3847 spin_lock_irq(&l3->list_lock);
3848
3849 list_for_each(q, &l3->slabs_full) {
3850 slabp = list_entry(q, struct slab, list);
3851 if (slabp->inuse != cachep->num && !error)
3852 error = "slabs_full accounting error";
3853 active_objs += cachep->num;
3854 active_slabs++;
3855 }
3856 list_for_each(q, &l3->slabs_partial) {
3857 slabp = list_entry(q, struct slab, list);
3858 if (slabp->inuse == cachep->num && !error)
3859 error = "slabs_partial inuse accounting error";
3860 if (!slabp->inuse && !error)
3861 error = "slabs_partial/inuse accounting error";
3862 active_objs += slabp->inuse;
3863 active_slabs++;
3864 }
3865 list_for_each(q, &l3->slabs_free) {
3866 slabp = list_entry(q, struct slab, list);
3867 if (slabp->inuse && !error)
3868 error = "slabs_free/inuse accounting error";
3869 num_slabs++;
3870 }
3871 free_objects += l3->free_objects;
3872 if (l3->shared)
3873 shared_avail += l3->shared->avail;
3874
3875 spin_unlock_irq(&l3->list_lock);
3876 }
3877 num_slabs += active_slabs;
3878 num_objs = num_slabs * cachep->num;
3879 if (num_objs - active_objs != free_objects && !error)
3880 error = "free_objects accounting error";
3881
3882 name = cachep->name;
3883 if (error)
3884 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3885
3886 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3887 name, active_objs, num_objs, cachep->buffer_size,
3888 cachep->num, (1 << cachep->gfporder));
3889 seq_printf(m, " : tunables %4u %4u %4u",
3890 cachep->limit, cachep->batchcount, cachep->shared);
3891 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3892 active_slabs, num_slabs, shared_avail);
3893 #if STATS
3894 { /* list3 stats */
3895 unsigned long high = cachep->high_mark;
3896 unsigned long allocs = cachep->num_allocations;
3897 unsigned long grown = cachep->grown;
3898 unsigned long reaped = cachep->reaped;
3899 unsigned long errors = cachep->errors;
3900 unsigned long max_freeable = cachep->max_freeable;
3901 unsigned long node_allocs = cachep->node_allocs;
3902 unsigned long node_frees = cachep->node_frees;
3903 unsigned long overflows = cachep->node_overflow;
3904
3905 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3906 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
3907 reaped, errors, max_freeable, node_allocs,
3908 node_frees, overflows);
3909 }
3910 /* cpu stats */
3911 {
3912 unsigned long allochit = atomic_read(&cachep->allochit);
3913 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3914 unsigned long freehit = atomic_read(&cachep->freehit);
3915 unsigned long freemiss = atomic_read(&cachep->freemiss);
3916
3917 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3918 allochit, allocmiss, freehit, freemiss);
3919 }
3920 #endif
3921 seq_putc(m, '\n');
3922 return 0;
3923 }
3924
3925 /*
3926 * slabinfo_op - iterator that generates /proc/slabinfo
3927 *
3928 * Output layout:
3929 * cache-name
3930 * num-active-objs
3931 * total-objs
3932 * object size
3933 * num-active-slabs
3934 * total-slabs
3935 * num-pages-per-slab
3936 * + further values on SMP and with statistics enabled
3937 */
3938
3939 struct seq_operations slabinfo_op = {
3940 .start = s_start,
3941 .next = s_next,
3942 .stop = s_stop,
3943 .show = s_show,
3944 };
3945
3946 #define MAX_SLABINFO_WRITE 128
3947 /**
3948 * slabinfo_write - Tuning for the slab allocator
3949 * @file: unused
3950 * @buffer: user buffer
3951 * @count: data length
3952 * @ppos: unused
3953 */
3954 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3955 size_t count, loff_t *ppos)
3956 {
3957 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3958 int limit, batchcount, shared, res;
3959 struct list_head *p;
3960
3961 if (count > MAX_SLABINFO_WRITE)
3962 return -EINVAL;
3963 if (copy_from_user(&kbuf, buffer, count))
3964 return -EFAULT;
3965 kbuf[MAX_SLABINFO_WRITE] = '\0';
3966
3967 tmp = strchr(kbuf, ' ');
3968 if (!tmp)
3969 return -EINVAL;
3970 *tmp = '\0';
3971 tmp++;
3972 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3973 return -EINVAL;
3974
3975 /* Find the cache in the chain of caches. */
3976 mutex_lock(&cache_chain_mutex);
3977 res = -EINVAL;
3978 list_for_each(p, &cache_chain) {
3979 struct kmem_cache *cachep;
3980
3981 cachep = list_entry(p, struct kmem_cache, next);
3982 if (!strcmp(cachep->name, kbuf)) {
3983 if (limit < 1 || batchcount < 1 ||
3984 batchcount > limit || shared < 0) {
3985 res = 0;
3986 } else {
3987 res = do_tune_cpucache(cachep, limit,
3988 batchcount, shared);
3989 }
3990 break;
3991 }
3992 }
3993 mutex_unlock(&cache_chain_mutex);
3994 if (res >= 0)
3995 res = count;
3996 return res;
3997 }
3998
3999 #ifdef CONFIG_DEBUG_SLAB_LEAK
4000
4001 static void *leaks_start(struct seq_file *m, loff_t *pos)
4002 {
4003 loff_t n = *pos;
4004 struct list_head *p;
4005
4006 mutex_lock(&cache_chain_mutex);
4007 p = cache_chain.next;
4008 while (n--) {
4009 p = p->next;
4010 if (p == &cache_chain)
4011 return NULL;
4012 }
4013 return list_entry(p, struct kmem_cache, next);
4014 }
4015
4016 static inline int add_caller(unsigned long *n, unsigned long v)
4017 {
4018 unsigned long *p;
4019 int l;
4020 if (!v)
4021 return 1;
4022 l = n[1];
4023 p = n + 2;
4024 while (l) {
4025 int i = l/2;
4026 unsigned long *q = p + 2 * i;
4027 if (*q == v) {
4028 q[1]++;
4029 return 1;
4030 }
4031 if (*q > v) {
4032 l = i;
4033 } else {
4034 p = q + 2;
4035 l -= i + 1;
4036 }
4037 }
4038 if (++n[1] == n[0])
4039 return 0;
4040 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4041 p[0] = v;
4042 p[1] = 1;
4043 return 1;
4044 }
4045
4046 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4047 {
4048 void *p;
4049 int i;
4050 if (n[0] == n[1])
4051 return;
4052 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4053 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4054 continue;
4055 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4056 return;
4057 }
4058 }
4059
4060 static void show_symbol(struct seq_file *m, unsigned long address)
4061 {
4062 #ifdef CONFIG_KALLSYMS
4063 char *modname;
4064 const char *name;
4065 unsigned long offset, size;
4066 char namebuf[KSYM_NAME_LEN+1];
4067
4068 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4069
4070 if (name) {
4071 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4072 if (modname)
4073 seq_printf(m, " [%s]", modname);
4074 return;
4075 }
4076 #endif
4077 seq_printf(m, "%p", (void *)address);
4078 }
4079
4080 static int leaks_show(struct seq_file *m, void *p)
4081 {
4082 struct kmem_cache *cachep = p;
4083 struct list_head *q;
4084 struct slab *slabp;
4085 struct kmem_list3 *l3;
4086 const char *name;
4087 unsigned long *n = m->private;
4088 int node;
4089 int i;
4090
4091 if (!(cachep->flags & SLAB_STORE_USER))
4092 return 0;
4093 if (!(cachep->flags & SLAB_RED_ZONE))
4094 return 0;
4095
4096 /* OK, we can do it */
4097
4098 n[1] = 0;
4099
4100 for_each_online_node(node) {
4101 l3 = cachep->nodelists[node];
4102 if (!l3)
4103 continue;
4104
4105 check_irq_on();
4106 spin_lock_irq(&l3->list_lock);
4107
4108 list_for_each(q, &l3->slabs_full) {
4109 slabp = list_entry(q, struct slab, list);
4110 handle_slab(n, cachep, slabp);
4111 }
4112 list_for_each(q, &l3->slabs_partial) {
4113 slabp = list_entry(q, struct slab, list);
4114 handle_slab(n, cachep, slabp);
4115 }
4116 spin_unlock_irq(&l3->list_lock);
4117 }
4118 name = cachep->name;
4119 if (n[0] == n[1]) {
4120 /* Increase the buffer size */
4121 mutex_unlock(&cache_chain_mutex);
4122 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4123 if (!m->private) {
4124 /* Too bad, we are really out */
4125 m->private = n;
4126 mutex_lock(&cache_chain_mutex);
4127 return -ENOMEM;
4128 }
4129 *(unsigned long *)m->private = n[0] * 2;
4130 kfree(n);
4131 mutex_lock(&cache_chain_mutex);
4132 /* Now make sure this entry will be retried */
4133 m->count = m->size;
4134 return 0;
4135 }
4136 for (i = 0; i < n[1]; i++) {
4137 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4138 show_symbol(m, n[2*i+2]);
4139 seq_putc(m, '\n');
4140 }
4141 return 0;
4142 }
4143
4144 struct seq_operations slabstats_op = {
4145 .start = leaks_start,
4146 .next = s_next,
4147 .stop = s_stop,
4148 .show = leaks_show,
4149 };
4150 #endif
4151 #endif
4152
4153 /**
4154 * ksize - get the actual amount of memory allocated for a given object
4155 * @objp: Pointer to the object
4156 *
4157 * kmalloc may internally round up allocations and return more memory
4158 * than requested. ksize() can be used to determine the actual amount of
4159 * memory allocated. The caller may use this additional memory, even though
4160 * a smaller amount of memory was initially specified with the kmalloc call.
4161 * The caller must guarantee that objp points to a valid object previously
4162 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4163 * must not be freed during the duration of the call.
4164 */
4165 unsigned int ksize(const void *objp)
4166 {
4167 if (unlikely(objp == NULL))
4168 return 0;
4169
4170 return obj_size(virt_to_cache(objp));
4171 }