]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/slab.c
mm/sl[aou]b: Shrink __kmem_cache_create() parameter lists
[mirror_ubuntu-hirsute-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include "slab.h"
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 /*
132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141 #ifdef CONFIG_DEBUG_SLAB
142 #define DEBUG 1
143 #define STATS 1
144 #define FORCED_DEBUG 1
145 #else
146 #define DEBUG 0
147 #define STATS 0
148 #define FORCED_DEBUG 0
149 #endif
150
151 /* Shouldn't this be in a header file somewhere? */
152 #define BYTES_PER_WORD sizeof(void *)
153 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
154
155 #ifndef ARCH_KMALLOC_FLAGS
156 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157 #endif
158
159 /*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163 static bool pfmemalloc_active __read_mostly;
164
165 /* Legal flag mask for kmem_cache_create(). */
166 #if DEBUG
167 # define CREATE_MASK (SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169 SLAB_CACHE_DMA | \
170 SLAB_STORE_USER | \
171 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
173 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
174 #else
175 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
176 SLAB_CACHE_DMA | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
179 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
180 #endif
181
182 /*
183 * kmem_bufctl_t:
184 *
185 * Bufctl's are used for linking objs within a slab
186 * linked offsets.
187 *
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 */
200
201 typedef unsigned int kmem_bufctl_t;
202 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
204 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
205 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
206
207 /*
208 * struct slab_rcu
209 *
210 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
211 * arrange for kmem_freepages to be called via RCU. This is useful if
212 * we need to approach a kernel structure obliquely, from its address
213 * obtained without the usual locking. We can lock the structure to
214 * stabilize it and check it's still at the given address, only if we
215 * can be sure that the memory has not been meanwhile reused for some
216 * other kind of object (which our subsystem's lock might corrupt).
217 *
218 * rcu_read_lock before reading the address, then rcu_read_unlock after
219 * taking the spinlock within the structure expected at that address.
220 */
221 struct slab_rcu {
222 struct rcu_head head;
223 struct kmem_cache *cachep;
224 void *addr;
225 };
226
227 /*
228 * struct slab
229 *
230 * Manages the objs in a slab. Placed either at the beginning of mem allocated
231 * for a slab, or allocated from an general cache.
232 * Slabs are chained into three list: fully used, partial, fully free slabs.
233 */
234 struct slab {
235 union {
236 struct {
237 struct list_head list;
238 unsigned long colouroff;
239 void *s_mem; /* including colour offset */
240 unsigned int inuse; /* num of objs active in slab */
241 kmem_bufctl_t free;
242 unsigned short nodeid;
243 };
244 struct slab_rcu __slab_cover_slab_rcu;
245 };
246 };
247
248 /*
249 * struct array_cache
250 *
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260 struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
265 spinlock_t lock;
266 void *entry[]; /*
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
270 *
271 * Entries should not be directly dereferenced as
272 * entries belonging to slabs marked pfmemalloc will
273 * have the lower bits set SLAB_OBJ_PFMEMALLOC
274 */
275 };
276
277 #define SLAB_OBJ_PFMEMALLOC 1
278 static inline bool is_obj_pfmemalloc(void *objp)
279 {
280 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
281 }
282
283 static inline void set_obj_pfmemalloc(void **objp)
284 {
285 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
286 return;
287 }
288
289 static inline void clear_obj_pfmemalloc(void **objp)
290 {
291 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
292 }
293
294 /*
295 * bootstrap: The caches do not work without cpuarrays anymore, but the
296 * cpuarrays are allocated from the generic caches...
297 */
298 #define BOOT_CPUCACHE_ENTRIES 1
299 struct arraycache_init {
300 struct array_cache cache;
301 void *entries[BOOT_CPUCACHE_ENTRIES];
302 };
303
304 /*
305 * The slab lists for all objects.
306 */
307 struct kmem_list3 {
308 struct list_head slabs_partial; /* partial list first, better asm code */
309 struct list_head slabs_full;
310 struct list_head slabs_free;
311 unsigned long free_objects;
312 unsigned int free_limit;
313 unsigned int colour_next; /* Per-node cache coloring */
314 spinlock_t list_lock;
315 struct array_cache *shared; /* shared per node */
316 struct array_cache **alien; /* on other nodes */
317 unsigned long next_reap; /* updated without locking */
318 int free_touched; /* updated without locking */
319 };
320
321 /*
322 * Need this for bootstrapping a per node allocator.
323 */
324 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
326 #define CACHE_CACHE 0
327 #define SIZE_AC MAX_NUMNODES
328 #define SIZE_L3 (2 * MAX_NUMNODES)
329
330 static int drain_freelist(struct kmem_cache *cache,
331 struct kmem_list3 *l3, int tofree);
332 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
333 int node);
334 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
335 static void cache_reap(struct work_struct *unused);
336
337 /*
338 * This function must be completely optimized away if a constant is passed to
339 * it. Mostly the same as what is in linux/slab.h except it returns an index.
340 */
341 static __always_inline int index_of(const size_t size)
342 {
343 extern void __bad_size(void);
344
345 if (__builtin_constant_p(size)) {
346 int i = 0;
347
348 #define CACHE(x) \
349 if (size <=x) \
350 return i; \
351 else \
352 i++;
353 #include <linux/kmalloc_sizes.h>
354 #undef CACHE
355 __bad_size();
356 } else
357 __bad_size();
358 return 0;
359 }
360
361 static int slab_early_init = 1;
362
363 #define INDEX_AC index_of(sizeof(struct arraycache_init))
364 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
365
366 static void kmem_list3_init(struct kmem_list3 *parent)
367 {
368 INIT_LIST_HEAD(&parent->slabs_full);
369 INIT_LIST_HEAD(&parent->slabs_partial);
370 INIT_LIST_HEAD(&parent->slabs_free);
371 parent->shared = NULL;
372 parent->alien = NULL;
373 parent->colour_next = 0;
374 spin_lock_init(&parent->list_lock);
375 parent->free_objects = 0;
376 parent->free_touched = 0;
377 }
378
379 #define MAKE_LIST(cachep, listp, slab, nodeid) \
380 do { \
381 INIT_LIST_HEAD(listp); \
382 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
383 } while (0)
384
385 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
386 do { \
387 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
388 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
389 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390 } while (0)
391
392 #define CFLGS_OFF_SLAB (0x80000000UL)
393 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
394
395 #define BATCHREFILL_LIMIT 16
396 /*
397 * Optimization question: fewer reaps means less probability for unnessary
398 * cpucache drain/refill cycles.
399 *
400 * OTOH the cpuarrays can contain lots of objects,
401 * which could lock up otherwise freeable slabs.
402 */
403 #define REAPTIMEOUT_CPUC (2*HZ)
404 #define REAPTIMEOUT_LIST3 (4*HZ)
405
406 #if STATS
407 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
408 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
409 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
410 #define STATS_INC_GROWN(x) ((x)->grown++)
411 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
412 #define STATS_SET_HIGH(x) \
413 do { \
414 if ((x)->num_active > (x)->high_mark) \
415 (x)->high_mark = (x)->num_active; \
416 } while (0)
417 #define STATS_INC_ERR(x) ((x)->errors++)
418 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
419 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
420 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
421 #define STATS_SET_FREEABLE(x, i) \
422 do { \
423 if ((x)->max_freeable < i) \
424 (x)->max_freeable = i; \
425 } while (0)
426 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
427 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
428 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
429 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
430 #else
431 #define STATS_INC_ACTIVE(x) do { } while (0)
432 #define STATS_DEC_ACTIVE(x) do { } while (0)
433 #define STATS_INC_ALLOCED(x) do { } while (0)
434 #define STATS_INC_GROWN(x) do { } while (0)
435 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
436 #define STATS_SET_HIGH(x) do { } while (0)
437 #define STATS_INC_ERR(x) do { } while (0)
438 #define STATS_INC_NODEALLOCS(x) do { } while (0)
439 #define STATS_INC_NODEFREES(x) do { } while (0)
440 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
441 #define STATS_SET_FREEABLE(x, i) do { } while (0)
442 #define STATS_INC_ALLOCHIT(x) do { } while (0)
443 #define STATS_INC_ALLOCMISS(x) do { } while (0)
444 #define STATS_INC_FREEHIT(x) do { } while (0)
445 #define STATS_INC_FREEMISS(x) do { } while (0)
446 #endif
447
448 #if DEBUG
449
450 /*
451 * memory layout of objects:
452 * 0 : objp
453 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
454 * the end of an object is aligned with the end of the real
455 * allocation. Catches writes behind the end of the allocation.
456 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
457 * redzone word.
458 * cachep->obj_offset: The real object.
459 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
460 * cachep->size - 1* BYTES_PER_WORD: last caller address
461 * [BYTES_PER_WORD long]
462 */
463 static int obj_offset(struct kmem_cache *cachep)
464 {
465 return cachep->obj_offset;
466 }
467
468 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
469 {
470 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
471 return (unsigned long long*) (objp + obj_offset(cachep) -
472 sizeof(unsigned long long));
473 }
474
475 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
476 {
477 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
478 if (cachep->flags & SLAB_STORE_USER)
479 return (unsigned long long *)(objp + cachep->size -
480 sizeof(unsigned long long) -
481 REDZONE_ALIGN);
482 return (unsigned long long *) (objp + cachep->size -
483 sizeof(unsigned long long));
484 }
485
486 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
487 {
488 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
489 return (void **)(objp + cachep->size - BYTES_PER_WORD);
490 }
491
492 #else
493
494 #define obj_offset(x) 0
495 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
496 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
497 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
498
499 #endif
500
501 #ifdef CONFIG_TRACING
502 size_t slab_buffer_size(struct kmem_cache *cachep)
503 {
504 return cachep->size;
505 }
506 EXPORT_SYMBOL(slab_buffer_size);
507 #endif
508
509 /*
510 * Do not go above this order unless 0 objects fit into the slab or
511 * overridden on the command line.
512 */
513 #define SLAB_MAX_ORDER_HI 1
514 #define SLAB_MAX_ORDER_LO 0
515 static int slab_max_order = SLAB_MAX_ORDER_LO;
516 static bool slab_max_order_set __initdata;
517
518 static inline struct kmem_cache *virt_to_cache(const void *obj)
519 {
520 struct page *page = virt_to_head_page(obj);
521 return page->slab_cache;
522 }
523
524 static inline struct slab *virt_to_slab(const void *obj)
525 {
526 struct page *page = virt_to_head_page(obj);
527
528 VM_BUG_ON(!PageSlab(page));
529 return page->slab_page;
530 }
531
532 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
533 unsigned int idx)
534 {
535 return slab->s_mem + cache->size * idx;
536 }
537
538 /*
539 * We want to avoid an expensive divide : (offset / cache->size)
540 * Using the fact that size is a constant for a particular cache,
541 * we can replace (offset / cache->size) by
542 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
543 */
544 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
545 const struct slab *slab, void *obj)
546 {
547 u32 offset = (obj - slab->s_mem);
548 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
549 }
550
551 /*
552 * These are the default caches for kmalloc. Custom caches can have other sizes.
553 */
554 struct cache_sizes malloc_sizes[] = {
555 #define CACHE(x) { .cs_size = (x) },
556 #include <linux/kmalloc_sizes.h>
557 CACHE(ULONG_MAX)
558 #undef CACHE
559 };
560 EXPORT_SYMBOL(malloc_sizes);
561
562 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
563 struct cache_names {
564 char *name;
565 char *name_dma;
566 };
567
568 static struct cache_names __initdata cache_names[] = {
569 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
570 #include <linux/kmalloc_sizes.h>
571 {NULL,}
572 #undef CACHE
573 };
574
575 static struct arraycache_init initarray_cache __initdata =
576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
577 static struct arraycache_init initarray_generic =
578 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
579
580 /* internal cache of cache description objs */
581 static struct kmem_list3 *kmem_cache_nodelists[MAX_NUMNODES];
582 static struct kmem_cache kmem_cache_boot = {
583 .nodelists = kmem_cache_nodelists,
584 .batchcount = 1,
585 .limit = BOOT_CPUCACHE_ENTRIES,
586 .shared = 1,
587 .size = sizeof(struct kmem_cache),
588 .name = "kmem_cache",
589 };
590
591 #define BAD_ALIEN_MAGIC 0x01020304ul
592
593 #ifdef CONFIG_LOCKDEP
594
595 /*
596 * Slab sometimes uses the kmalloc slabs to store the slab headers
597 * for other slabs "off slab".
598 * The locking for this is tricky in that it nests within the locks
599 * of all other slabs in a few places; to deal with this special
600 * locking we put on-slab caches into a separate lock-class.
601 *
602 * We set lock class for alien array caches which are up during init.
603 * The lock annotation will be lost if all cpus of a node goes down and
604 * then comes back up during hotplug
605 */
606 static struct lock_class_key on_slab_l3_key;
607 static struct lock_class_key on_slab_alc_key;
608
609 static struct lock_class_key debugobj_l3_key;
610 static struct lock_class_key debugobj_alc_key;
611
612 static void slab_set_lock_classes(struct kmem_cache *cachep,
613 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
614 int q)
615 {
616 struct array_cache **alc;
617 struct kmem_list3 *l3;
618 int r;
619
620 l3 = cachep->nodelists[q];
621 if (!l3)
622 return;
623
624 lockdep_set_class(&l3->list_lock, l3_key);
625 alc = l3->alien;
626 /*
627 * FIXME: This check for BAD_ALIEN_MAGIC
628 * should go away when common slab code is taught to
629 * work even without alien caches.
630 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
631 * for alloc_alien_cache,
632 */
633 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
634 return;
635 for_each_node(r) {
636 if (alc[r])
637 lockdep_set_class(&alc[r]->lock, alc_key);
638 }
639 }
640
641 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
642 {
643 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
644 }
645
646 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
647 {
648 int node;
649
650 for_each_online_node(node)
651 slab_set_debugobj_lock_classes_node(cachep, node);
652 }
653
654 static void init_node_lock_keys(int q)
655 {
656 struct cache_sizes *s = malloc_sizes;
657
658 if (slab_state < UP)
659 return;
660
661 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
662 struct kmem_list3 *l3;
663
664 l3 = s->cs_cachep->nodelists[q];
665 if (!l3 || OFF_SLAB(s->cs_cachep))
666 continue;
667
668 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
669 &on_slab_alc_key, q);
670 }
671 }
672
673 static inline void init_lock_keys(void)
674 {
675 int node;
676
677 for_each_node(node)
678 init_node_lock_keys(node);
679 }
680 #else
681 static void init_node_lock_keys(int q)
682 {
683 }
684
685 static inline void init_lock_keys(void)
686 {
687 }
688
689 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
690 {
691 }
692
693 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
694 {
695 }
696 #endif
697
698 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
699
700 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
701 {
702 return cachep->array[smp_processor_id()];
703 }
704
705 static inline struct kmem_cache *__find_general_cachep(size_t size,
706 gfp_t gfpflags)
707 {
708 struct cache_sizes *csizep = malloc_sizes;
709
710 #if DEBUG
711 /* This happens if someone tries to call
712 * kmem_cache_create(), or __kmalloc(), before
713 * the generic caches are initialized.
714 */
715 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
716 #endif
717 if (!size)
718 return ZERO_SIZE_PTR;
719
720 while (size > csizep->cs_size)
721 csizep++;
722
723 /*
724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
727 */
728 #ifdef CONFIG_ZONE_DMA
729 if (unlikely(gfpflags & GFP_DMA))
730 return csizep->cs_dmacachep;
731 #endif
732 return csizep->cs_cachep;
733 }
734
735 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
736 {
737 return __find_general_cachep(size, gfpflags);
738 }
739
740 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
741 {
742 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
743 }
744
745 /*
746 * Calculate the number of objects and left-over bytes for a given buffer size.
747 */
748 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
749 size_t align, int flags, size_t *left_over,
750 unsigned int *num)
751 {
752 int nr_objs;
753 size_t mgmt_size;
754 size_t slab_size = PAGE_SIZE << gfporder;
755
756 /*
757 * The slab management structure can be either off the slab or
758 * on it. For the latter case, the memory allocated for a
759 * slab is used for:
760 *
761 * - The struct slab
762 * - One kmem_bufctl_t for each object
763 * - Padding to respect alignment of @align
764 * - @buffer_size bytes for each object
765 *
766 * If the slab management structure is off the slab, then the
767 * alignment will already be calculated into the size. Because
768 * the slabs are all pages aligned, the objects will be at the
769 * correct alignment when allocated.
770 */
771 if (flags & CFLGS_OFF_SLAB) {
772 mgmt_size = 0;
773 nr_objs = slab_size / buffer_size;
774
775 if (nr_objs > SLAB_LIMIT)
776 nr_objs = SLAB_LIMIT;
777 } else {
778 /*
779 * Ignore padding for the initial guess. The padding
780 * is at most @align-1 bytes, and @buffer_size is at
781 * least @align. In the worst case, this result will
782 * be one greater than the number of objects that fit
783 * into the memory allocation when taking the padding
784 * into account.
785 */
786 nr_objs = (slab_size - sizeof(struct slab)) /
787 (buffer_size + sizeof(kmem_bufctl_t));
788
789 /*
790 * This calculated number will be either the right
791 * amount, or one greater than what we want.
792 */
793 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
794 > slab_size)
795 nr_objs--;
796
797 if (nr_objs > SLAB_LIMIT)
798 nr_objs = SLAB_LIMIT;
799
800 mgmt_size = slab_mgmt_size(nr_objs, align);
801 }
802 *num = nr_objs;
803 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
804 }
805
806 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
807
808 static void __slab_error(const char *function, struct kmem_cache *cachep,
809 char *msg)
810 {
811 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
812 function, cachep->name, msg);
813 dump_stack();
814 }
815
816 /*
817 * By default on NUMA we use alien caches to stage the freeing of
818 * objects allocated from other nodes. This causes massive memory
819 * inefficiencies when using fake NUMA setup to split memory into a
820 * large number of small nodes, so it can be disabled on the command
821 * line
822 */
823
824 static int use_alien_caches __read_mostly = 1;
825 static int __init noaliencache_setup(char *s)
826 {
827 use_alien_caches = 0;
828 return 1;
829 }
830 __setup("noaliencache", noaliencache_setup);
831
832 static int __init slab_max_order_setup(char *str)
833 {
834 get_option(&str, &slab_max_order);
835 slab_max_order = slab_max_order < 0 ? 0 :
836 min(slab_max_order, MAX_ORDER - 1);
837 slab_max_order_set = true;
838
839 return 1;
840 }
841 __setup("slab_max_order=", slab_max_order_setup);
842
843 #ifdef CONFIG_NUMA
844 /*
845 * Special reaping functions for NUMA systems called from cache_reap().
846 * These take care of doing round robin flushing of alien caches (containing
847 * objects freed on different nodes from which they were allocated) and the
848 * flushing of remote pcps by calling drain_node_pages.
849 */
850 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
851
852 static void init_reap_node(int cpu)
853 {
854 int node;
855
856 node = next_node(cpu_to_mem(cpu), node_online_map);
857 if (node == MAX_NUMNODES)
858 node = first_node(node_online_map);
859
860 per_cpu(slab_reap_node, cpu) = node;
861 }
862
863 static void next_reap_node(void)
864 {
865 int node = __this_cpu_read(slab_reap_node);
866
867 node = next_node(node, node_online_map);
868 if (unlikely(node >= MAX_NUMNODES))
869 node = first_node(node_online_map);
870 __this_cpu_write(slab_reap_node, node);
871 }
872
873 #else
874 #define init_reap_node(cpu) do { } while (0)
875 #define next_reap_node(void) do { } while (0)
876 #endif
877
878 /*
879 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
880 * via the workqueue/eventd.
881 * Add the CPU number into the expiration time to minimize the possibility of
882 * the CPUs getting into lockstep and contending for the global cache chain
883 * lock.
884 */
885 static void __cpuinit start_cpu_timer(int cpu)
886 {
887 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
888
889 /*
890 * When this gets called from do_initcalls via cpucache_init(),
891 * init_workqueues() has already run, so keventd will be setup
892 * at that time.
893 */
894 if (keventd_up() && reap_work->work.func == NULL) {
895 init_reap_node(cpu);
896 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
897 schedule_delayed_work_on(cpu, reap_work,
898 __round_jiffies_relative(HZ, cpu));
899 }
900 }
901
902 static struct array_cache *alloc_arraycache(int node, int entries,
903 int batchcount, gfp_t gfp)
904 {
905 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
906 struct array_cache *nc = NULL;
907
908 nc = kmalloc_node(memsize, gfp, node);
909 /*
910 * The array_cache structures contain pointers to free object.
911 * However, when such objects are allocated or transferred to another
912 * cache the pointers are not cleared and they could be counted as
913 * valid references during a kmemleak scan. Therefore, kmemleak must
914 * not scan such objects.
915 */
916 kmemleak_no_scan(nc);
917 if (nc) {
918 nc->avail = 0;
919 nc->limit = entries;
920 nc->batchcount = batchcount;
921 nc->touched = 0;
922 spin_lock_init(&nc->lock);
923 }
924 return nc;
925 }
926
927 static inline bool is_slab_pfmemalloc(struct slab *slabp)
928 {
929 struct page *page = virt_to_page(slabp->s_mem);
930
931 return PageSlabPfmemalloc(page);
932 }
933
934 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
935 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
936 struct array_cache *ac)
937 {
938 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
939 struct slab *slabp;
940 unsigned long flags;
941
942 if (!pfmemalloc_active)
943 return;
944
945 spin_lock_irqsave(&l3->list_lock, flags);
946 list_for_each_entry(slabp, &l3->slabs_full, list)
947 if (is_slab_pfmemalloc(slabp))
948 goto out;
949
950 list_for_each_entry(slabp, &l3->slabs_partial, list)
951 if (is_slab_pfmemalloc(slabp))
952 goto out;
953
954 list_for_each_entry(slabp, &l3->slabs_free, list)
955 if (is_slab_pfmemalloc(slabp))
956 goto out;
957
958 pfmemalloc_active = false;
959 out:
960 spin_unlock_irqrestore(&l3->list_lock, flags);
961 }
962
963 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
964 gfp_t flags, bool force_refill)
965 {
966 int i;
967 void *objp = ac->entry[--ac->avail];
968
969 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
970 if (unlikely(is_obj_pfmemalloc(objp))) {
971 struct kmem_list3 *l3;
972
973 if (gfp_pfmemalloc_allowed(flags)) {
974 clear_obj_pfmemalloc(&objp);
975 return objp;
976 }
977
978 /* The caller cannot use PFMEMALLOC objects, find another one */
979 for (i = 1; i < ac->avail; i++) {
980 /* If a !PFMEMALLOC object is found, swap them */
981 if (!is_obj_pfmemalloc(ac->entry[i])) {
982 objp = ac->entry[i];
983 ac->entry[i] = ac->entry[ac->avail];
984 ac->entry[ac->avail] = objp;
985 return objp;
986 }
987 }
988
989 /*
990 * If there are empty slabs on the slabs_free list and we are
991 * being forced to refill the cache, mark this one !pfmemalloc.
992 */
993 l3 = cachep->nodelists[numa_mem_id()];
994 if (!list_empty(&l3->slabs_free) && force_refill) {
995 struct slab *slabp = virt_to_slab(objp);
996 ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
997 clear_obj_pfmemalloc(&objp);
998 recheck_pfmemalloc_active(cachep, ac);
999 return objp;
1000 }
1001
1002 /* No !PFMEMALLOC objects available */
1003 ac->avail++;
1004 objp = NULL;
1005 }
1006
1007 return objp;
1008 }
1009
1010 static inline void *ac_get_obj(struct kmem_cache *cachep,
1011 struct array_cache *ac, gfp_t flags, bool force_refill)
1012 {
1013 void *objp;
1014
1015 if (unlikely(sk_memalloc_socks()))
1016 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1017 else
1018 objp = ac->entry[--ac->avail];
1019
1020 return objp;
1021 }
1022
1023 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1024 void *objp)
1025 {
1026 if (unlikely(pfmemalloc_active)) {
1027 /* Some pfmemalloc slabs exist, check if this is one */
1028 struct page *page = virt_to_page(objp);
1029 if (PageSlabPfmemalloc(page))
1030 set_obj_pfmemalloc(&objp);
1031 }
1032
1033 return objp;
1034 }
1035
1036 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1037 void *objp)
1038 {
1039 if (unlikely(sk_memalloc_socks()))
1040 objp = __ac_put_obj(cachep, ac, objp);
1041
1042 ac->entry[ac->avail++] = objp;
1043 }
1044
1045 /*
1046 * Transfer objects in one arraycache to another.
1047 * Locking must be handled by the caller.
1048 *
1049 * Return the number of entries transferred.
1050 */
1051 static int transfer_objects(struct array_cache *to,
1052 struct array_cache *from, unsigned int max)
1053 {
1054 /* Figure out how many entries to transfer */
1055 int nr = min3(from->avail, max, to->limit - to->avail);
1056
1057 if (!nr)
1058 return 0;
1059
1060 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1061 sizeof(void *) *nr);
1062
1063 from->avail -= nr;
1064 to->avail += nr;
1065 return nr;
1066 }
1067
1068 #ifndef CONFIG_NUMA
1069
1070 #define drain_alien_cache(cachep, alien) do { } while (0)
1071 #define reap_alien(cachep, l3) do { } while (0)
1072
1073 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1074 {
1075 return (struct array_cache **)BAD_ALIEN_MAGIC;
1076 }
1077
1078 static inline void free_alien_cache(struct array_cache **ac_ptr)
1079 {
1080 }
1081
1082 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1083 {
1084 return 0;
1085 }
1086
1087 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1088 gfp_t flags)
1089 {
1090 return NULL;
1091 }
1092
1093 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1094 gfp_t flags, int nodeid)
1095 {
1096 return NULL;
1097 }
1098
1099 #else /* CONFIG_NUMA */
1100
1101 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1102 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1103
1104 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1105 {
1106 struct array_cache **ac_ptr;
1107 int memsize = sizeof(void *) * nr_node_ids;
1108 int i;
1109
1110 if (limit > 1)
1111 limit = 12;
1112 ac_ptr = kzalloc_node(memsize, gfp, node);
1113 if (ac_ptr) {
1114 for_each_node(i) {
1115 if (i == node || !node_online(i))
1116 continue;
1117 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1118 if (!ac_ptr[i]) {
1119 for (i--; i >= 0; i--)
1120 kfree(ac_ptr[i]);
1121 kfree(ac_ptr);
1122 return NULL;
1123 }
1124 }
1125 }
1126 return ac_ptr;
1127 }
1128
1129 static void free_alien_cache(struct array_cache **ac_ptr)
1130 {
1131 int i;
1132
1133 if (!ac_ptr)
1134 return;
1135 for_each_node(i)
1136 kfree(ac_ptr[i]);
1137 kfree(ac_ptr);
1138 }
1139
1140 static void __drain_alien_cache(struct kmem_cache *cachep,
1141 struct array_cache *ac, int node)
1142 {
1143 struct kmem_list3 *rl3 = cachep->nodelists[node];
1144
1145 if (ac->avail) {
1146 spin_lock(&rl3->list_lock);
1147 /*
1148 * Stuff objects into the remote nodes shared array first.
1149 * That way we could avoid the overhead of putting the objects
1150 * into the free lists and getting them back later.
1151 */
1152 if (rl3->shared)
1153 transfer_objects(rl3->shared, ac, ac->limit);
1154
1155 free_block(cachep, ac->entry, ac->avail, node);
1156 ac->avail = 0;
1157 spin_unlock(&rl3->list_lock);
1158 }
1159 }
1160
1161 /*
1162 * Called from cache_reap() to regularly drain alien caches round robin.
1163 */
1164 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1165 {
1166 int node = __this_cpu_read(slab_reap_node);
1167
1168 if (l3->alien) {
1169 struct array_cache *ac = l3->alien[node];
1170
1171 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1172 __drain_alien_cache(cachep, ac, node);
1173 spin_unlock_irq(&ac->lock);
1174 }
1175 }
1176 }
1177
1178 static void drain_alien_cache(struct kmem_cache *cachep,
1179 struct array_cache **alien)
1180 {
1181 int i = 0;
1182 struct array_cache *ac;
1183 unsigned long flags;
1184
1185 for_each_online_node(i) {
1186 ac = alien[i];
1187 if (ac) {
1188 spin_lock_irqsave(&ac->lock, flags);
1189 __drain_alien_cache(cachep, ac, i);
1190 spin_unlock_irqrestore(&ac->lock, flags);
1191 }
1192 }
1193 }
1194
1195 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1196 {
1197 struct slab *slabp = virt_to_slab(objp);
1198 int nodeid = slabp->nodeid;
1199 struct kmem_list3 *l3;
1200 struct array_cache *alien = NULL;
1201 int node;
1202
1203 node = numa_mem_id();
1204
1205 /*
1206 * Make sure we are not freeing a object from another node to the array
1207 * cache on this cpu.
1208 */
1209 if (likely(slabp->nodeid == node))
1210 return 0;
1211
1212 l3 = cachep->nodelists[node];
1213 STATS_INC_NODEFREES(cachep);
1214 if (l3->alien && l3->alien[nodeid]) {
1215 alien = l3->alien[nodeid];
1216 spin_lock(&alien->lock);
1217 if (unlikely(alien->avail == alien->limit)) {
1218 STATS_INC_ACOVERFLOW(cachep);
1219 __drain_alien_cache(cachep, alien, nodeid);
1220 }
1221 ac_put_obj(cachep, alien, objp);
1222 spin_unlock(&alien->lock);
1223 } else {
1224 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1225 free_block(cachep, &objp, 1, nodeid);
1226 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1227 }
1228 return 1;
1229 }
1230 #endif
1231
1232 /*
1233 * Allocates and initializes nodelists for a node on each slab cache, used for
1234 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1235 * will be allocated off-node since memory is not yet online for the new node.
1236 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1237 * already in use.
1238 *
1239 * Must hold slab_mutex.
1240 */
1241 static int init_cache_nodelists_node(int node)
1242 {
1243 struct kmem_cache *cachep;
1244 struct kmem_list3 *l3;
1245 const int memsize = sizeof(struct kmem_list3);
1246
1247 list_for_each_entry(cachep, &slab_caches, list) {
1248 /*
1249 * Set up the size64 kmemlist for cpu before we can
1250 * begin anything. Make sure some other cpu on this
1251 * node has not already allocated this
1252 */
1253 if (!cachep->nodelists[node]) {
1254 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1255 if (!l3)
1256 return -ENOMEM;
1257 kmem_list3_init(l3);
1258 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1259 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1260
1261 /*
1262 * The l3s don't come and go as CPUs come and
1263 * go. slab_mutex is sufficient
1264 * protection here.
1265 */
1266 cachep->nodelists[node] = l3;
1267 }
1268
1269 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1270 cachep->nodelists[node]->free_limit =
1271 (1 + nr_cpus_node(node)) *
1272 cachep->batchcount + cachep->num;
1273 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1274 }
1275 return 0;
1276 }
1277
1278 static void __cpuinit cpuup_canceled(long cpu)
1279 {
1280 struct kmem_cache *cachep;
1281 struct kmem_list3 *l3 = NULL;
1282 int node = cpu_to_mem(cpu);
1283 const struct cpumask *mask = cpumask_of_node(node);
1284
1285 list_for_each_entry(cachep, &slab_caches, list) {
1286 struct array_cache *nc;
1287 struct array_cache *shared;
1288 struct array_cache **alien;
1289
1290 /* cpu is dead; no one can alloc from it. */
1291 nc = cachep->array[cpu];
1292 cachep->array[cpu] = NULL;
1293 l3 = cachep->nodelists[node];
1294
1295 if (!l3)
1296 goto free_array_cache;
1297
1298 spin_lock_irq(&l3->list_lock);
1299
1300 /* Free limit for this kmem_list3 */
1301 l3->free_limit -= cachep->batchcount;
1302 if (nc)
1303 free_block(cachep, nc->entry, nc->avail, node);
1304
1305 if (!cpumask_empty(mask)) {
1306 spin_unlock_irq(&l3->list_lock);
1307 goto free_array_cache;
1308 }
1309
1310 shared = l3->shared;
1311 if (shared) {
1312 free_block(cachep, shared->entry,
1313 shared->avail, node);
1314 l3->shared = NULL;
1315 }
1316
1317 alien = l3->alien;
1318 l3->alien = NULL;
1319
1320 spin_unlock_irq(&l3->list_lock);
1321
1322 kfree(shared);
1323 if (alien) {
1324 drain_alien_cache(cachep, alien);
1325 free_alien_cache(alien);
1326 }
1327 free_array_cache:
1328 kfree(nc);
1329 }
1330 /*
1331 * In the previous loop, all the objects were freed to
1332 * the respective cache's slabs, now we can go ahead and
1333 * shrink each nodelist to its limit.
1334 */
1335 list_for_each_entry(cachep, &slab_caches, list) {
1336 l3 = cachep->nodelists[node];
1337 if (!l3)
1338 continue;
1339 drain_freelist(cachep, l3, l3->free_objects);
1340 }
1341 }
1342
1343 static int __cpuinit cpuup_prepare(long cpu)
1344 {
1345 struct kmem_cache *cachep;
1346 struct kmem_list3 *l3 = NULL;
1347 int node = cpu_to_mem(cpu);
1348 int err;
1349
1350 /*
1351 * We need to do this right in the beginning since
1352 * alloc_arraycache's are going to use this list.
1353 * kmalloc_node allows us to add the slab to the right
1354 * kmem_list3 and not this cpu's kmem_list3
1355 */
1356 err = init_cache_nodelists_node(node);
1357 if (err < 0)
1358 goto bad;
1359
1360 /*
1361 * Now we can go ahead with allocating the shared arrays and
1362 * array caches
1363 */
1364 list_for_each_entry(cachep, &slab_caches, list) {
1365 struct array_cache *nc;
1366 struct array_cache *shared = NULL;
1367 struct array_cache **alien = NULL;
1368
1369 nc = alloc_arraycache(node, cachep->limit,
1370 cachep->batchcount, GFP_KERNEL);
1371 if (!nc)
1372 goto bad;
1373 if (cachep->shared) {
1374 shared = alloc_arraycache(node,
1375 cachep->shared * cachep->batchcount,
1376 0xbaadf00d, GFP_KERNEL);
1377 if (!shared) {
1378 kfree(nc);
1379 goto bad;
1380 }
1381 }
1382 if (use_alien_caches) {
1383 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1384 if (!alien) {
1385 kfree(shared);
1386 kfree(nc);
1387 goto bad;
1388 }
1389 }
1390 cachep->array[cpu] = nc;
1391 l3 = cachep->nodelists[node];
1392 BUG_ON(!l3);
1393
1394 spin_lock_irq(&l3->list_lock);
1395 if (!l3->shared) {
1396 /*
1397 * We are serialised from CPU_DEAD or
1398 * CPU_UP_CANCELLED by the cpucontrol lock
1399 */
1400 l3->shared = shared;
1401 shared = NULL;
1402 }
1403 #ifdef CONFIG_NUMA
1404 if (!l3->alien) {
1405 l3->alien = alien;
1406 alien = NULL;
1407 }
1408 #endif
1409 spin_unlock_irq(&l3->list_lock);
1410 kfree(shared);
1411 free_alien_cache(alien);
1412 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1413 slab_set_debugobj_lock_classes_node(cachep, node);
1414 }
1415 init_node_lock_keys(node);
1416
1417 return 0;
1418 bad:
1419 cpuup_canceled(cpu);
1420 return -ENOMEM;
1421 }
1422
1423 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1424 unsigned long action, void *hcpu)
1425 {
1426 long cpu = (long)hcpu;
1427 int err = 0;
1428
1429 switch (action) {
1430 case CPU_UP_PREPARE:
1431 case CPU_UP_PREPARE_FROZEN:
1432 mutex_lock(&slab_mutex);
1433 err = cpuup_prepare(cpu);
1434 mutex_unlock(&slab_mutex);
1435 break;
1436 case CPU_ONLINE:
1437 case CPU_ONLINE_FROZEN:
1438 start_cpu_timer(cpu);
1439 break;
1440 #ifdef CONFIG_HOTPLUG_CPU
1441 case CPU_DOWN_PREPARE:
1442 case CPU_DOWN_PREPARE_FROZEN:
1443 /*
1444 * Shutdown cache reaper. Note that the slab_mutex is
1445 * held so that if cache_reap() is invoked it cannot do
1446 * anything expensive but will only modify reap_work
1447 * and reschedule the timer.
1448 */
1449 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1450 /* Now the cache_reaper is guaranteed to be not running. */
1451 per_cpu(slab_reap_work, cpu).work.func = NULL;
1452 break;
1453 case CPU_DOWN_FAILED:
1454 case CPU_DOWN_FAILED_FROZEN:
1455 start_cpu_timer(cpu);
1456 break;
1457 case CPU_DEAD:
1458 case CPU_DEAD_FROZEN:
1459 /*
1460 * Even if all the cpus of a node are down, we don't free the
1461 * kmem_list3 of any cache. This to avoid a race between
1462 * cpu_down, and a kmalloc allocation from another cpu for
1463 * memory from the node of the cpu going down. The list3
1464 * structure is usually allocated from kmem_cache_create() and
1465 * gets destroyed at kmem_cache_destroy().
1466 */
1467 /* fall through */
1468 #endif
1469 case CPU_UP_CANCELED:
1470 case CPU_UP_CANCELED_FROZEN:
1471 mutex_lock(&slab_mutex);
1472 cpuup_canceled(cpu);
1473 mutex_unlock(&slab_mutex);
1474 break;
1475 }
1476 return notifier_from_errno(err);
1477 }
1478
1479 static struct notifier_block __cpuinitdata cpucache_notifier = {
1480 &cpuup_callback, NULL, 0
1481 };
1482
1483 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1484 /*
1485 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1486 * Returns -EBUSY if all objects cannot be drained so that the node is not
1487 * removed.
1488 *
1489 * Must hold slab_mutex.
1490 */
1491 static int __meminit drain_cache_nodelists_node(int node)
1492 {
1493 struct kmem_cache *cachep;
1494 int ret = 0;
1495
1496 list_for_each_entry(cachep, &slab_caches, list) {
1497 struct kmem_list3 *l3;
1498
1499 l3 = cachep->nodelists[node];
1500 if (!l3)
1501 continue;
1502
1503 drain_freelist(cachep, l3, l3->free_objects);
1504
1505 if (!list_empty(&l3->slabs_full) ||
1506 !list_empty(&l3->slabs_partial)) {
1507 ret = -EBUSY;
1508 break;
1509 }
1510 }
1511 return ret;
1512 }
1513
1514 static int __meminit slab_memory_callback(struct notifier_block *self,
1515 unsigned long action, void *arg)
1516 {
1517 struct memory_notify *mnb = arg;
1518 int ret = 0;
1519 int nid;
1520
1521 nid = mnb->status_change_nid;
1522 if (nid < 0)
1523 goto out;
1524
1525 switch (action) {
1526 case MEM_GOING_ONLINE:
1527 mutex_lock(&slab_mutex);
1528 ret = init_cache_nodelists_node(nid);
1529 mutex_unlock(&slab_mutex);
1530 break;
1531 case MEM_GOING_OFFLINE:
1532 mutex_lock(&slab_mutex);
1533 ret = drain_cache_nodelists_node(nid);
1534 mutex_unlock(&slab_mutex);
1535 break;
1536 case MEM_ONLINE:
1537 case MEM_OFFLINE:
1538 case MEM_CANCEL_ONLINE:
1539 case MEM_CANCEL_OFFLINE:
1540 break;
1541 }
1542 out:
1543 return notifier_from_errno(ret);
1544 }
1545 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1546
1547 /*
1548 * swap the static kmem_list3 with kmalloced memory
1549 */
1550 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1551 int nodeid)
1552 {
1553 struct kmem_list3 *ptr;
1554
1555 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1556 BUG_ON(!ptr);
1557
1558 memcpy(ptr, list, sizeof(struct kmem_list3));
1559 /*
1560 * Do not assume that spinlocks can be initialized via memcpy:
1561 */
1562 spin_lock_init(&ptr->list_lock);
1563
1564 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1565 cachep->nodelists[nodeid] = ptr;
1566 }
1567
1568 /*
1569 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1570 * size of kmem_list3.
1571 */
1572 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1573 {
1574 int node;
1575
1576 for_each_online_node(node) {
1577 cachep->nodelists[node] = &initkmem_list3[index + node];
1578 cachep->nodelists[node]->next_reap = jiffies +
1579 REAPTIMEOUT_LIST3 +
1580 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1581 }
1582 }
1583
1584 /*
1585 * Initialisation. Called after the page allocator have been initialised and
1586 * before smp_init().
1587 */
1588 void __init kmem_cache_init(void)
1589 {
1590 size_t left_over;
1591 struct cache_sizes *sizes;
1592 struct cache_names *names;
1593 int i;
1594 int order;
1595 int node;
1596
1597 kmem_cache = &kmem_cache_boot;
1598
1599 if (num_possible_nodes() == 1)
1600 use_alien_caches = 0;
1601
1602 for (i = 0; i < NUM_INIT_LISTS; i++) {
1603 kmem_list3_init(&initkmem_list3[i]);
1604 if (i < MAX_NUMNODES)
1605 kmem_cache->nodelists[i] = NULL;
1606 }
1607 set_up_list3s(kmem_cache, CACHE_CACHE);
1608
1609 /*
1610 * Fragmentation resistance on low memory - only use bigger
1611 * page orders on machines with more than 32MB of memory if
1612 * not overridden on the command line.
1613 */
1614 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1615 slab_max_order = SLAB_MAX_ORDER_HI;
1616
1617 /* Bootstrap is tricky, because several objects are allocated
1618 * from caches that do not exist yet:
1619 * 1) initialize the kmem_cache cache: it contains the struct
1620 * kmem_cache structures of all caches, except kmem_cache itself:
1621 * kmem_cache is statically allocated.
1622 * Initially an __init data area is used for the head array and the
1623 * kmem_list3 structures, it's replaced with a kmalloc allocated
1624 * array at the end of the bootstrap.
1625 * 2) Create the first kmalloc cache.
1626 * The struct kmem_cache for the new cache is allocated normally.
1627 * An __init data area is used for the head array.
1628 * 3) Create the remaining kmalloc caches, with minimally sized
1629 * head arrays.
1630 * 4) Replace the __init data head arrays for kmem_cache and the first
1631 * kmalloc cache with kmalloc allocated arrays.
1632 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1633 * the other cache's with kmalloc allocated memory.
1634 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1635 */
1636
1637 node = numa_mem_id();
1638
1639 /* 1) create the kmem_cache */
1640 INIT_LIST_HEAD(&slab_caches);
1641 list_add(&kmem_cache->list, &slab_caches);
1642 kmem_cache->colour_off = cache_line_size();
1643 kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
1644 kmem_cache->nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1645
1646 /*
1647 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1648 */
1649 kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1650 nr_node_ids * sizeof(struct kmem_list3 *);
1651 kmem_cache->object_size = kmem_cache->size;
1652 kmem_cache->size = ALIGN(kmem_cache->object_size,
1653 cache_line_size());
1654 kmem_cache->reciprocal_buffer_size =
1655 reciprocal_value(kmem_cache->size);
1656
1657 for (order = 0; order < MAX_ORDER; order++) {
1658 cache_estimate(order, kmem_cache->size,
1659 cache_line_size(), 0, &left_over, &kmem_cache->num);
1660 if (kmem_cache->num)
1661 break;
1662 }
1663 BUG_ON(!kmem_cache->num);
1664 kmem_cache->gfporder = order;
1665 kmem_cache->colour = left_over / kmem_cache->colour_off;
1666 kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
1667 sizeof(struct slab), cache_line_size());
1668
1669 /* 2+3) create the kmalloc caches */
1670 sizes = malloc_sizes;
1671 names = cache_names;
1672
1673 /*
1674 * Initialize the caches that provide memory for the array cache and the
1675 * kmem_list3 structures first. Without this, further allocations will
1676 * bug.
1677 */
1678
1679 sizes[INDEX_AC].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1680 sizes[INDEX_AC].cs_cachep->name = names[INDEX_AC].name;
1681 sizes[INDEX_AC].cs_cachep->size = sizes[INDEX_AC].cs_size;
1682 sizes[INDEX_AC].cs_cachep->object_size = sizes[INDEX_AC].cs_size;
1683 sizes[INDEX_AC].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1684 __kmem_cache_create(sizes[INDEX_AC].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1685 list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
1686
1687 if (INDEX_AC != INDEX_L3) {
1688 sizes[INDEX_L3].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1689 sizes[INDEX_L3].cs_cachep->name = names[INDEX_L3].name;
1690 sizes[INDEX_L3].cs_cachep->size = sizes[INDEX_L3].cs_size;
1691 sizes[INDEX_L3].cs_cachep->object_size = sizes[INDEX_L3].cs_size;
1692 sizes[INDEX_L3].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1693 __kmem_cache_create(sizes[INDEX_L3].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1694 list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
1695 }
1696
1697 slab_early_init = 0;
1698
1699 while (sizes->cs_size != ULONG_MAX) {
1700 /*
1701 * For performance, all the general caches are L1 aligned.
1702 * This should be particularly beneficial on SMP boxes, as it
1703 * eliminates "false sharing".
1704 * Note for systems short on memory removing the alignment will
1705 * allow tighter packing of the smaller caches.
1706 */
1707 if (!sizes->cs_cachep) {
1708 sizes->cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1709 sizes->cs_cachep->name = names->name;
1710 sizes->cs_cachep->size = sizes->cs_size;
1711 sizes->cs_cachep->object_size = sizes->cs_size;
1712 sizes->cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1713 __kmem_cache_create(sizes->cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1714 list_add(&sizes->cs_cachep->list, &slab_caches);
1715 }
1716 #ifdef CONFIG_ZONE_DMA
1717 sizes->cs_dmacachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1718 sizes->cs_dmacachep->name = names->name_dma;
1719 sizes->cs_dmacachep->size = sizes->cs_size;
1720 sizes->cs_dmacachep->object_size = sizes->cs_size;
1721 sizes->cs_dmacachep->align = ARCH_KMALLOC_MINALIGN;
1722 __kmem_cache_create(sizes->cs_dmacachep,
1723 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| SLAB_PANIC);
1724 list_add(&sizes->cs_dmacachep->list, &slab_caches);
1725 #endif
1726 sizes++;
1727 names++;
1728 }
1729 /* 4) Replace the bootstrap head arrays */
1730 {
1731 struct array_cache *ptr;
1732
1733 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1734
1735 BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
1736 memcpy(ptr, cpu_cache_get(kmem_cache),
1737 sizeof(struct arraycache_init));
1738 /*
1739 * Do not assume that spinlocks can be initialized via memcpy:
1740 */
1741 spin_lock_init(&ptr->lock);
1742
1743 kmem_cache->array[smp_processor_id()] = ptr;
1744
1745 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1746
1747 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1748 != &initarray_generic.cache);
1749 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1750 sizeof(struct arraycache_init));
1751 /*
1752 * Do not assume that spinlocks can be initialized via memcpy:
1753 */
1754 spin_lock_init(&ptr->lock);
1755
1756 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1757 ptr;
1758 }
1759 /* 5) Replace the bootstrap kmem_list3's */
1760 {
1761 int nid;
1762
1763 for_each_online_node(nid) {
1764 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1765
1766 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1767 &initkmem_list3[SIZE_AC + nid], nid);
1768
1769 if (INDEX_AC != INDEX_L3) {
1770 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1771 &initkmem_list3[SIZE_L3 + nid], nid);
1772 }
1773 }
1774 }
1775
1776 slab_state = UP;
1777 }
1778
1779 void __init kmem_cache_init_late(void)
1780 {
1781 struct kmem_cache *cachep;
1782
1783 slab_state = UP;
1784
1785 /* Annotate slab for lockdep -- annotate the malloc caches */
1786 init_lock_keys();
1787
1788 /* 6) resize the head arrays to their final sizes */
1789 mutex_lock(&slab_mutex);
1790 list_for_each_entry(cachep, &slab_caches, list)
1791 if (enable_cpucache(cachep, GFP_NOWAIT))
1792 BUG();
1793 mutex_unlock(&slab_mutex);
1794
1795 /* Done! */
1796 slab_state = FULL;
1797
1798 /*
1799 * Register a cpu startup notifier callback that initializes
1800 * cpu_cache_get for all new cpus
1801 */
1802 register_cpu_notifier(&cpucache_notifier);
1803
1804 #ifdef CONFIG_NUMA
1805 /*
1806 * Register a memory hotplug callback that initializes and frees
1807 * nodelists.
1808 */
1809 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1810 #endif
1811
1812 /*
1813 * The reap timers are started later, with a module init call: That part
1814 * of the kernel is not yet operational.
1815 */
1816 }
1817
1818 static int __init cpucache_init(void)
1819 {
1820 int cpu;
1821
1822 /*
1823 * Register the timers that return unneeded pages to the page allocator
1824 */
1825 for_each_online_cpu(cpu)
1826 start_cpu_timer(cpu);
1827
1828 /* Done! */
1829 slab_state = FULL;
1830 return 0;
1831 }
1832 __initcall(cpucache_init);
1833
1834 static noinline void
1835 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1836 {
1837 struct kmem_list3 *l3;
1838 struct slab *slabp;
1839 unsigned long flags;
1840 int node;
1841
1842 printk(KERN_WARNING
1843 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1844 nodeid, gfpflags);
1845 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1846 cachep->name, cachep->size, cachep->gfporder);
1847
1848 for_each_online_node(node) {
1849 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1850 unsigned long active_slabs = 0, num_slabs = 0;
1851
1852 l3 = cachep->nodelists[node];
1853 if (!l3)
1854 continue;
1855
1856 spin_lock_irqsave(&l3->list_lock, flags);
1857 list_for_each_entry(slabp, &l3->slabs_full, list) {
1858 active_objs += cachep->num;
1859 active_slabs++;
1860 }
1861 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1862 active_objs += slabp->inuse;
1863 active_slabs++;
1864 }
1865 list_for_each_entry(slabp, &l3->slabs_free, list)
1866 num_slabs++;
1867
1868 free_objects += l3->free_objects;
1869 spin_unlock_irqrestore(&l3->list_lock, flags);
1870
1871 num_slabs += active_slabs;
1872 num_objs = num_slabs * cachep->num;
1873 printk(KERN_WARNING
1874 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1875 node, active_slabs, num_slabs, active_objs, num_objs,
1876 free_objects);
1877 }
1878 }
1879
1880 /*
1881 * Interface to system's page allocator. No need to hold the cache-lock.
1882 *
1883 * If we requested dmaable memory, we will get it. Even if we
1884 * did not request dmaable memory, we might get it, but that
1885 * would be relatively rare and ignorable.
1886 */
1887 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1888 {
1889 struct page *page;
1890 int nr_pages;
1891 int i;
1892
1893 #ifndef CONFIG_MMU
1894 /*
1895 * Nommu uses slab's for process anonymous memory allocations, and thus
1896 * requires __GFP_COMP to properly refcount higher order allocations
1897 */
1898 flags |= __GFP_COMP;
1899 #endif
1900
1901 flags |= cachep->allocflags;
1902 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1903 flags |= __GFP_RECLAIMABLE;
1904
1905 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1906 if (!page) {
1907 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1908 slab_out_of_memory(cachep, flags, nodeid);
1909 return NULL;
1910 }
1911
1912 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1913 if (unlikely(page->pfmemalloc))
1914 pfmemalloc_active = true;
1915
1916 nr_pages = (1 << cachep->gfporder);
1917 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1918 add_zone_page_state(page_zone(page),
1919 NR_SLAB_RECLAIMABLE, nr_pages);
1920 else
1921 add_zone_page_state(page_zone(page),
1922 NR_SLAB_UNRECLAIMABLE, nr_pages);
1923 for (i = 0; i < nr_pages; i++) {
1924 __SetPageSlab(page + i);
1925
1926 if (page->pfmemalloc)
1927 SetPageSlabPfmemalloc(page + i);
1928 }
1929
1930 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1931 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1932
1933 if (cachep->ctor)
1934 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1935 else
1936 kmemcheck_mark_unallocated_pages(page, nr_pages);
1937 }
1938
1939 return page_address(page);
1940 }
1941
1942 /*
1943 * Interface to system's page release.
1944 */
1945 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1946 {
1947 unsigned long i = (1 << cachep->gfporder);
1948 struct page *page = virt_to_page(addr);
1949 const unsigned long nr_freed = i;
1950
1951 kmemcheck_free_shadow(page, cachep->gfporder);
1952
1953 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1954 sub_zone_page_state(page_zone(page),
1955 NR_SLAB_RECLAIMABLE, nr_freed);
1956 else
1957 sub_zone_page_state(page_zone(page),
1958 NR_SLAB_UNRECLAIMABLE, nr_freed);
1959 while (i--) {
1960 BUG_ON(!PageSlab(page));
1961 __ClearPageSlabPfmemalloc(page);
1962 __ClearPageSlab(page);
1963 page++;
1964 }
1965 if (current->reclaim_state)
1966 current->reclaim_state->reclaimed_slab += nr_freed;
1967 free_pages((unsigned long)addr, cachep->gfporder);
1968 }
1969
1970 static void kmem_rcu_free(struct rcu_head *head)
1971 {
1972 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1973 struct kmem_cache *cachep = slab_rcu->cachep;
1974
1975 kmem_freepages(cachep, slab_rcu->addr);
1976 if (OFF_SLAB(cachep))
1977 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1978 }
1979
1980 #if DEBUG
1981
1982 #ifdef CONFIG_DEBUG_PAGEALLOC
1983 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1984 unsigned long caller)
1985 {
1986 int size = cachep->object_size;
1987
1988 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1989
1990 if (size < 5 * sizeof(unsigned long))
1991 return;
1992
1993 *addr++ = 0x12345678;
1994 *addr++ = caller;
1995 *addr++ = smp_processor_id();
1996 size -= 3 * sizeof(unsigned long);
1997 {
1998 unsigned long *sptr = &caller;
1999 unsigned long svalue;
2000
2001 while (!kstack_end(sptr)) {
2002 svalue = *sptr++;
2003 if (kernel_text_address(svalue)) {
2004 *addr++ = svalue;
2005 size -= sizeof(unsigned long);
2006 if (size <= sizeof(unsigned long))
2007 break;
2008 }
2009 }
2010
2011 }
2012 *addr++ = 0x87654321;
2013 }
2014 #endif
2015
2016 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
2017 {
2018 int size = cachep->object_size;
2019 addr = &((char *)addr)[obj_offset(cachep)];
2020
2021 memset(addr, val, size);
2022 *(unsigned char *)(addr + size - 1) = POISON_END;
2023 }
2024
2025 static void dump_line(char *data, int offset, int limit)
2026 {
2027 int i;
2028 unsigned char error = 0;
2029 int bad_count = 0;
2030
2031 printk(KERN_ERR "%03x: ", offset);
2032 for (i = 0; i < limit; i++) {
2033 if (data[offset + i] != POISON_FREE) {
2034 error = data[offset + i];
2035 bad_count++;
2036 }
2037 }
2038 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2039 &data[offset], limit, 1);
2040
2041 if (bad_count == 1) {
2042 error ^= POISON_FREE;
2043 if (!(error & (error - 1))) {
2044 printk(KERN_ERR "Single bit error detected. Probably "
2045 "bad RAM.\n");
2046 #ifdef CONFIG_X86
2047 printk(KERN_ERR "Run memtest86+ or a similar memory "
2048 "test tool.\n");
2049 #else
2050 printk(KERN_ERR "Run a memory test tool.\n");
2051 #endif
2052 }
2053 }
2054 }
2055 #endif
2056
2057 #if DEBUG
2058
2059 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
2060 {
2061 int i, size;
2062 char *realobj;
2063
2064 if (cachep->flags & SLAB_RED_ZONE) {
2065 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
2066 *dbg_redzone1(cachep, objp),
2067 *dbg_redzone2(cachep, objp));
2068 }
2069
2070 if (cachep->flags & SLAB_STORE_USER) {
2071 printk(KERN_ERR "Last user: [<%p>]",
2072 *dbg_userword(cachep, objp));
2073 print_symbol("(%s)",
2074 (unsigned long)*dbg_userword(cachep, objp));
2075 printk("\n");
2076 }
2077 realobj = (char *)objp + obj_offset(cachep);
2078 size = cachep->object_size;
2079 for (i = 0; i < size && lines; i += 16, lines--) {
2080 int limit;
2081 limit = 16;
2082 if (i + limit > size)
2083 limit = size - i;
2084 dump_line(realobj, i, limit);
2085 }
2086 }
2087
2088 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
2089 {
2090 char *realobj;
2091 int size, i;
2092 int lines = 0;
2093
2094 realobj = (char *)objp + obj_offset(cachep);
2095 size = cachep->object_size;
2096
2097 for (i = 0; i < size; i++) {
2098 char exp = POISON_FREE;
2099 if (i == size - 1)
2100 exp = POISON_END;
2101 if (realobj[i] != exp) {
2102 int limit;
2103 /* Mismatch ! */
2104 /* Print header */
2105 if (lines == 0) {
2106 printk(KERN_ERR
2107 "Slab corruption (%s): %s start=%p, len=%d\n",
2108 print_tainted(), cachep->name, realobj, size);
2109 print_objinfo(cachep, objp, 0);
2110 }
2111 /* Hexdump the affected line */
2112 i = (i / 16) * 16;
2113 limit = 16;
2114 if (i + limit > size)
2115 limit = size - i;
2116 dump_line(realobj, i, limit);
2117 i += 16;
2118 lines++;
2119 /* Limit to 5 lines */
2120 if (lines > 5)
2121 break;
2122 }
2123 }
2124 if (lines != 0) {
2125 /* Print some data about the neighboring objects, if they
2126 * exist:
2127 */
2128 struct slab *slabp = virt_to_slab(objp);
2129 unsigned int objnr;
2130
2131 objnr = obj_to_index(cachep, slabp, objp);
2132 if (objnr) {
2133 objp = index_to_obj(cachep, slabp, objnr - 1);
2134 realobj = (char *)objp + obj_offset(cachep);
2135 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2136 realobj, size);
2137 print_objinfo(cachep, objp, 2);
2138 }
2139 if (objnr + 1 < cachep->num) {
2140 objp = index_to_obj(cachep, slabp, objnr + 1);
2141 realobj = (char *)objp + obj_offset(cachep);
2142 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2143 realobj, size);
2144 print_objinfo(cachep, objp, 2);
2145 }
2146 }
2147 }
2148 #endif
2149
2150 #if DEBUG
2151 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2152 {
2153 int i;
2154 for (i = 0; i < cachep->num; i++) {
2155 void *objp = index_to_obj(cachep, slabp, i);
2156
2157 if (cachep->flags & SLAB_POISON) {
2158 #ifdef CONFIG_DEBUG_PAGEALLOC
2159 if (cachep->size % PAGE_SIZE == 0 &&
2160 OFF_SLAB(cachep))
2161 kernel_map_pages(virt_to_page(objp),
2162 cachep->size / PAGE_SIZE, 1);
2163 else
2164 check_poison_obj(cachep, objp);
2165 #else
2166 check_poison_obj(cachep, objp);
2167 #endif
2168 }
2169 if (cachep->flags & SLAB_RED_ZONE) {
2170 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2171 slab_error(cachep, "start of a freed object "
2172 "was overwritten");
2173 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2174 slab_error(cachep, "end of a freed object "
2175 "was overwritten");
2176 }
2177 }
2178 }
2179 #else
2180 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2181 {
2182 }
2183 #endif
2184
2185 /**
2186 * slab_destroy - destroy and release all objects in a slab
2187 * @cachep: cache pointer being destroyed
2188 * @slabp: slab pointer being destroyed
2189 *
2190 * Destroy all the objs in a slab, and release the mem back to the system.
2191 * Before calling the slab must have been unlinked from the cache. The
2192 * cache-lock is not held/needed.
2193 */
2194 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2195 {
2196 void *addr = slabp->s_mem - slabp->colouroff;
2197
2198 slab_destroy_debugcheck(cachep, slabp);
2199 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2200 struct slab_rcu *slab_rcu;
2201
2202 slab_rcu = (struct slab_rcu *)slabp;
2203 slab_rcu->cachep = cachep;
2204 slab_rcu->addr = addr;
2205 call_rcu(&slab_rcu->head, kmem_rcu_free);
2206 } else {
2207 kmem_freepages(cachep, addr);
2208 if (OFF_SLAB(cachep))
2209 kmem_cache_free(cachep->slabp_cache, slabp);
2210 }
2211 }
2212
2213 /**
2214 * calculate_slab_order - calculate size (page order) of slabs
2215 * @cachep: pointer to the cache that is being created
2216 * @size: size of objects to be created in this cache.
2217 * @align: required alignment for the objects.
2218 * @flags: slab allocation flags
2219 *
2220 * Also calculates the number of objects per slab.
2221 *
2222 * This could be made much more intelligent. For now, try to avoid using
2223 * high order pages for slabs. When the gfp() functions are more friendly
2224 * towards high-order requests, this should be changed.
2225 */
2226 static size_t calculate_slab_order(struct kmem_cache *cachep,
2227 size_t size, size_t align, unsigned long flags)
2228 {
2229 unsigned long offslab_limit;
2230 size_t left_over = 0;
2231 int gfporder;
2232
2233 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2234 unsigned int num;
2235 size_t remainder;
2236
2237 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2238 if (!num)
2239 continue;
2240
2241 if (flags & CFLGS_OFF_SLAB) {
2242 /*
2243 * Max number of objs-per-slab for caches which
2244 * use off-slab slabs. Needed to avoid a possible
2245 * looping condition in cache_grow().
2246 */
2247 offslab_limit = size - sizeof(struct slab);
2248 offslab_limit /= sizeof(kmem_bufctl_t);
2249
2250 if (num > offslab_limit)
2251 break;
2252 }
2253
2254 /* Found something acceptable - save it away */
2255 cachep->num = num;
2256 cachep->gfporder = gfporder;
2257 left_over = remainder;
2258
2259 /*
2260 * A VFS-reclaimable slab tends to have most allocations
2261 * as GFP_NOFS and we really don't want to have to be allocating
2262 * higher-order pages when we are unable to shrink dcache.
2263 */
2264 if (flags & SLAB_RECLAIM_ACCOUNT)
2265 break;
2266
2267 /*
2268 * Large number of objects is good, but very large slabs are
2269 * currently bad for the gfp()s.
2270 */
2271 if (gfporder >= slab_max_order)
2272 break;
2273
2274 /*
2275 * Acceptable internal fragmentation?
2276 */
2277 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2278 break;
2279 }
2280 return left_over;
2281 }
2282
2283 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2284 {
2285 if (slab_state >= FULL)
2286 return enable_cpucache(cachep, gfp);
2287
2288 if (slab_state == DOWN) {
2289 /*
2290 * Note: the first kmem_cache_create must create the cache
2291 * that's used by kmalloc(24), otherwise the creation of
2292 * further caches will BUG().
2293 */
2294 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2295
2296 /*
2297 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2298 * the first cache, then we need to set up all its list3s,
2299 * otherwise the creation of further caches will BUG().
2300 */
2301 set_up_list3s(cachep, SIZE_AC);
2302 if (INDEX_AC == INDEX_L3)
2303 slab_state = PARTIAL_L3;
2304 else
2305 slab_state = PARTIAL_ARRAYCACHE;
2306 } else {
2307 cachep->array[smp_processor_id()] =
2308 kmalloc(sizeof(struct arraycache_init), gfp);
2309
2310 if (slab_state == PARTIAL_ARRAYCACHE) {
2311 set_up_list3s(cachep, SIZE_L3);
2312 slab_state = PARTIAL_L3;
2313 } else {
2314 int node;
2315 for_each_online_node(node) {
2316 cachep->nodelists[node] =
2317 kmalloc_node(sizeof(struct kmem_list3),
2318 gfp, node);
2319 BUG_ON(!cachep->nodelists[node]);
2320 kmem_list3_init(cachep->nodelists[node]);
2321 }
2322 }
2323 }
2324 cachep->nodelists[numa_mem_id()]->next_reap =
2325 jiffies + REAPTIMEOUT_LIST3 +
2326 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2327
2328 cpu_cache_get(cachep)->avail = 0;
2329 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2330 cpu_cache_get(cachep)->batchcount = 1;
2331 cpu_cache_get(cachep)->touched = 0;
2332 cachep->batchcount = 1;
2333 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2334 return 0;
2335 }
2336
2337 /**
2338 * __kmem_cache_create - Create a cache.
2339 * @name: A string which is used in /proc/slabinfo to identify this cache.
2340 * @size: The size of objects to be created in this cache.
2341 * @align: The required alignment for the objects.
2342 * @flags: SLAB flags
2343 * @ctor: A constructor for the objects.
2344 *
2345 * Returns a ptr to the cache on success, NULL on failure.
2346 * Cannot be called within a int, but can be interrupted.
2347 * The @ctor is run when new pages are allocated by the cache.
2348 *
2349 * The flags are
2350 *
2351 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2352 * to catch references to uninitialised memory.
2353 *
2354 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2355 * for buffer overruns.
2356 *
2357 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2358 * cacheline. This can be beneficial if you're counting cycles as closely
2359 * as davem.
2360 */
2361 int
2362 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2363 {
2364 size_t left_over, slab_size, ralign;
2365 gfp_t gfp;
2366 int err;
2367 size_t size = cachep->size;
2368
2369 #if DEBUG
2370 #if FORCED_DEBUG
2371 /*
2372 * Enable redzoning and last user accounting, except for caches with
2373 * large objects, if the increased size would increase the object size
2374 * above the next power of two: caches with object sizes just above a
2375 * power of two have a significant amount of internal fragmentation.
2376 */
2377 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2378 2 * sizeof(unsigned long long)))
2379 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2380 if (!(flags & SLAB_DESTROY_BY_RCU))
2381 flags |= SLAB_POISON;
2382 #endif
2383 if (flags & SLAB_DESTROY_BY_RCU)
2384 BUG_ON(flags & SLAB_POISON);
2385 #endif
2386 /*
2387 * Always checks flags, a caller might be expecting debug support which
2388 * isn't available.
2389 */
2390 BUG_ON(flags & ~CREATE_MASK);
2391
2392 /*
2393 * Check that size is in terms of words. This is needed to avoid
2394 * unaligned accesses for some archs when redzoning is used, and makes
2395 * sure any on-slab bufctl's are also correctly aligned.
2396 */
2397 if (size & (BYTES_PER_WORD - 1)) {
2398 size += (BYTES_PER_WORD - 1);
2399 size &= ~(BYTES_PER_WORD - 1);
2400 }
2401
2402 /* calculate the final buffer alignment: */
2403
2404 /* 1) arch recommendation: can be overridden for debug */
2405 if (flags & SLAB_HWCACHE_ALIGN) {
2406 /*
2407 * Default alignment: as specified by the arch code. Except if
2408 * an object is really small, then squeeze multiple objects into
2409 * one cacheline.
2410 */
2411 ralign = cache_line_size();
2412 while (size <= ralign / 2)
2413 ralign /= 2;
2414 } else {
2415 ralign = BYTES_PER_WORD;
2416 }
2417
2418 /*
2419 * Redzoning and user store require word alignment or possibly larger.
2420 * Note this will be overridden by architecture or caller mandated
2421 * alignment if either is greater than BYTES_PER_WORD.
2422 */
2423 if (flags & SLAB_STORE_USER)
2424 ralign = BYTES_PER_WORD;
2425
2426 if (flags & SLAB_RED_ZONE) {
2427 ralign = REDZONE_ALIGN;
2428 /* If redzoning, ensure that the second redzone is suitably
2429 * aligned, by adjusting the object size accordingly. */
2430 size += REDZONE_ALIGN - 1;
2431 size &= ~(REDZONE_ALIGN - 1);
2432 }
2433
2434 /* 2) arch mandated alignment */
2435 if (ralign < ARCH_SLAB_MINALIGN) {
2436 ralign = ARCH_SLAB_MINALIGN;
2437 }
2438 /* 3) caller mandated alignment */
2439 if (ralign < cachep->align) {
2440 ralign = cachep->align;
2441 }
2442 /* disable debug if necessary */
2443 if (ralign > __alignof__(unsigned long long))
2444 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2445 /*
2446 * 4) Store it.
2447 */
2448 cachep->align = ralign;
2449
2450 if (slab_is_available())
2451 gfp = GFP_KERNEL;
2452 else
2453 gfp = GFP_NOWAIT;
2454
2455 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2456 #if DEBUG
2457
2458 /*
2459 * Both debugging options require word-alignment which is calculated
2460 * into align above.
2461 */
2462 if (flags & SLAB_RED_ZONE) {
2463 /* add space for red zone words */
2464 cachep->obj_offset += sizeof(unsigned long long);
2465 size += 2 * sizeof(unsigned long long);
2466 }
2467 if (flags & SLAB_STORE_USER) {
2468 /* user store requires one word storage behind the end of
2469 * the real object. But if the second red zone needs to be
2470 * aligned to 64 bits, we must allow that much space.
2471 */
2472 if (flags & SLAB_RED_ZONE)
2473 size += REDZONE_ALIGN;
2474 else
2475 size += BYTES_PER_WORD;
2476 }
2477 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2478 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2479 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2480 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2481 size = PAGE_SIZE;
2482 }
2483 #endif
2484 #endif
2485
2486 /*
2487 * Determine if the slab management is 'on' or 'off' slab.
2488 * (bootstrapping cannot cope with offslab caches so don't do
2489 * it too early on. Always use on-slab management when
2490 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2491 */
2492 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2493 !(flags & SLAB_NOLEAKTRACE))
2494 /*
2495 * Size is large, assume best to place the slab management obj
2496 * off-slab (should allow better packing of objs).
2497 */
2498 flags |= CFLGS_OFF_SLAB;
2499
2500 size = ALIGN(size, cachep->align);
2501
2502 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2503
2504 if (!cachep->num)
2505 return -E2BIG;
2506
2507 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2508 + sizeof(struct slab), cachep->align);
2509
2510 /*
2511 * If the slab has been placed off-slab, and we have enough space then
2512 * move it on-slab. This is at the expense of any extra colouring.
2513 */
2514 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2515 flags &= ~CFLGS_OFF_SLAB;
2516 left_over -= slab_size;
2517 }
2518
2519 if (flags & CFLGS_OFF_SLAB) {
2520 /* really off slab. No need for manual alignment */
2521 slab_size =
2522 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2523
2524 #ifdef CONFIG_PAGE_POISONING
2525 /* If we're going to use the generic kernel_map_pages()
2526 * poisoning, then it's going to smash the contents of
2527 * the redzone and userword anyhow, so switch them off.
2528 */
2529 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2530 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2531 #endif
2532 }
2533
2534 cachep->colour_off = cache_line_size();
2535 /* Offset must be a multiple of the alignment. */
2536 if (cachep->colour_off < cachep->align)
2537 cachep->colour_off = cachep->align;
2538 cachep->colour = left_over / cachep->colour_off;
2539 cachep->slab_size = slab_size;
2540 cachep->flags = flags;
2541 cachep->allocflags = 0;
2542 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2543 cachep->allocflags |= GFP_DMA;
2544 cachep->size = size;
2545 cachep->reciprocal_buffer_size = reciprocal_value(size);
2546
2547 if (flags & CFLGS_OFF_SLAB) {
2548 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2549 /*
2550 * This is a possibility for one of the malloc_sizes caches.
2551 * But since we go off slab only for object size greater than
2552 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2553 * this should not happen at all.
2554 * But leave a BUG_ON for some lucky dude.
2555 */
2556 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2557 }
2558 cachep->refcount = 1;
2559
2560 err = setup_cpu_cache(cachep, gfp);
2561 if (err) {
2562 __kmem_cache_shutdown(cachep);
2563 return err;
2564 }
2565
2566 if (flags & SLAB_DEBUG_OBJECTS) {
2567 /*
2568 * Would deadlock through slab_destroy()->call_rcu()->
2569 * debug_object_activate()->kmem_cache_alloc().
2570 */
2571 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2572
2573 slab_set_debugobj_lock_classes(cachep);
2574 }
2575
2576 return 0;
2577 }
2578
2579 #if DEBUG
2580 static void check_irq_off(void)
2581 {
2582 BUG_ON(!irqs_disabled());
2583 }
2584
2585 static void check_irq_on(void)
2586 {
2587 BUG_ON(irqs_disabled());
2588 }
2589
2590 static void check_spinlock_acquired(struct kmem_cache *cachep)
2591 {
2592 #ifdef CONFIG_SMP
2593 check_irq_off();
2594 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2595 #endif
2596 }
2597
2598 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2599 {
2600 #ifdef CONFIG_SMP
2601 check_irq_off();
2602 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2603 #endif
2604 }
2605
2606 #else
2607 #define check_irq_off() do { } while(0)
2608 #define check_irq_on() do { } while(0)
2609 #define check_spinlock_acquired(x) do { } while(0)
2610 #define check_spinlock_acquired_node(x, y) do { } while(0)
2611 #endif
2612
2613 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2614 struct array_cache *ac,
2615 int force, int node);
2616
2617 static void do_drain(void *arg)
2618 {
2619 struct kmem_cache *cachep = arg;
2620 struct array_cache *ac;
2621 int node = numa_mem_id();
2622
2623 check_irq_off();
2624 ac = cpu_cache_get(cachep);
2625 spin_lock(&cachep->nodelists[node]->list_lock);
2626 free_block(cachep, ac->entry, ac->avail, node);
2627 spin_unlock(&cachep->nodelists[node]->list_lock);
2628 ac->avail = 0;
2629 }
2630
2631 static void drain_cpu_caches(struct kmem_cache *cachep)
2632 {
2633 struct kmem_list3 *l3;
2634 int node;
2635
2636 on_each_cpu(do_drain, cachep, 1);
2637 check_irq_on();
2638 for_each_online_node(node) {
2639 l3 = cachep->nodelists[node];
2640 if (l3 && l3->alien)
2641 drain_alien_cache(cachep, l3->alien);
2642 }
2643
2644 for_each_online_node(node) {
2645 l3 = cachep->nodelists[node];
2646 if (l3)
2647 drain_array(cachep, l3, l3->shared, 1, node);
2648 }
2649 }
2650
2651 /*
2652 * Remove slabs from the list of free slabs.
2653 * Specify the number of slabs to drain in tofree.
2654 *
2655 * Returns the actual number of slabs released.
2656 */
2657 static int drain_freelist(struct kmem_cache *cache,
2658 struct kmem_list3 *l3, int tofree)
2659 {
2660 struct list_head *p;
2661 int nr_freed;
2662 struct slab *slabp;
2663
2664 nr_freed = 0;
2665 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2666
2667 spin_lock_irq(&l3->list_lock);
2668 p = l3->slabs_free.prev;
2669 if (p == &l3->slabs_free) {
2670 spin_unlock_irq(&l3->list_lock);
2671 goto out;
2672 }
2673
2674 slabp = list_entry(p, struct slab, list);
2675 #if DEBUG
2676 BUG_ON(slabp->inuse);
2677 #endif
2678 list_del(&slabp->list);
2679 /*
2680 * Safe to drop the lock. The slab is no longer linked
2681 * to the cache.
2682 */
2683 l3->free_objects -= cache->num;
2684 spin_unlock_irq(&l3->list_lock);
2685 slab_destroy(cache, slabp);
2686 nr_freed++;
2687 }
2688 out:
2689 return nr_freed;
2690 }
2691
2692 /* Called with slab_mutex held to protect against cpu hotplug */
2693 static int __cache_shrink(struct kmem_cache *cachep)
2694 {
2695 int ret = 0, i = 0;
2696 struct kmem_list3 *l3;
2697
2698 drain_cpu_caches(cachep);
2699
2700 check_irq_on();
2701 for_each_online_node(i) {
2702 l3 = cachep->nodelists[i];
2703 if (!l3)
2704 continue;
2705
2706 drain_freelist(cachep, l3, l3->free_objects);
2707
2708 ret += !list_empty(&l3->slabs_full) ||
2709 !list_empty(&l3->slabs_partial);
2710 }
2711 return (ret ? 1 : 0);
2712 }
2713
2714 /**
2715 * kmem_cache_shrink - Shrink a cache.
2716 * @cachep: The cache to shrink.
2717 *
2718 * Releases as many slabs as possible for a cache.
2719 * To help debugging, a zero exit status indicates all slabs were released.
2720 */
2721 int kmem_cache_shrink(struct kmem_cache *cachep)
2722 {
2723 int ret;
2724 BUG_ON(!cachep || in_interrupt());
2725
2726 get_online_cpus();
2727 mutex_lock(&slab_mutex);
2728 ret = __cache_shrink(cachep);
2729 mutex_unlock(&slab_mutex);
2730 put_online_cpus();
2731 return ret;
2732 }
2733 EXPORT_SYMBOL(kmem_cache_shrink);
2734
2735 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2736 {
2737 int i;
2738 struct kmem_list3 *l3;
2739 int rc = __cache_shrink(cachep);
2740
2741 if (rc)
2742 return rc;
2743
2744 for_each_online_cpu(i)
2745 kfree(cachep->array[i]);
2746
2747 /* NUMA: free the list3 structures */
2748 for_each_online_node(i) {
2749 l3 = cachep->nodelists[i];
2750 if (l3) {
2751 kfree(l3->shared);
2752 free_alien_cache(l3->alien);
2753 kfree(l3);
2754 }
2755 }
2756 return 0;
2757 }
2758
2759 /*
2760 * Get the memory for a slab management obj.
2761 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2762 * always come from malloc_sizes caches. The slab descriptor cannot
2763 * come from the same cache which is getting created because,
2764 * when we are searching for an appropriate cache for these
2765 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2766 * If we are creating a malloc_sizes cache here it would not be visible to
2767 * kmem_find_general_cachep till the initialization is complete.
2768 * Hence we cannot have slabp_cache same as the original cache.
2769 */
2770 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2771 int colour_off, gfp_t local_flags,
2772 int nodeid)
2773 {
2774 struct slab *slabp;
2775
2776 if (OFF_SLAB(cachep)) {
2777 /* Slab management obj is off-slab. */
2778 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2779 local_flags, nodeid);
2780 /*
2781 * If the first object in the slab is leaked (it's allocated
2782 * but no one has a reference to it), we want to make sure
2783 * kmemleak does not treat the ->s_mem pointer as a reference
2784 * to the object. Otherwise we will not report the leak.
2785 */
2786 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2787 local_flags);
2788 if (!slabp)
2789 return NULL;
2790 } else {
2791 slabp = objp + colour_off;
2792 colour_off += cachep->slab_size;
2793 }
2794 slabp->inuse = 0;
2795 slabp->colouroff = colour_off;
2796 slabp->s_mem = objp + colour_off;
2797 slabp->nodeid = nodeid;
2798 slabp->free = 0;
2799 return slabp;
2800 }
2801
2802 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2803 {
2804 return (kmem_bufctl_t *) (slabp + 1);
2805 }
2806
2807 static void cache_init_objs(struct kmem_cache *cachep,
2808 struct slab *slabp)
2809 {
2810 int i;
2811
2812 for (i = 0; i < cachep->num; i++) {
2813 void *objp = index_to_obj(cachep, slabp, i);
2814 #if DEBUG
2815 /* need to poison the objs? */
2816 if (cachep->flags & SLAB_POISON)
2817 poison_obj(cachep, objp, POISON_FREE);
2818 if (cachep->flags & SLAB_STORE_USER)
2819 *dbg_userword(cachep, objp) = NULL;
2820
2821 if (cachep->flags & SLAB_RED_ZONE) {
2822 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2823 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2824 }
2825 /*
2826 * Constructors are not allowed to allocate memory from the same
2827 * cache which they are a constructor for. Otherwise, deadlock.
2828 * They must also be threaded.
2829 */
2830 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2831 cachep->ctor(objp + obj_offset(cachep));
2832
2833 if (cachep->flags & SLAB_RED_ZONE) {
2834 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2835 slab_error(cachep, "constructor overwrote the"
2836 " end of an object");
2837 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2838 slab_error(cachep, "constructor overwrote the"
2839 " start of an object");
2840 }
2841 if ((cachep->size % PAGE_SIZE) == 0 &&
2842 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2843 kernel_map_pages(virt_to_page(objp),
2844 cachep->size / PAGE_SIZE, 0);
2845 #else
2846 if (cachep->ctor)
2847 cachep->ctor(objp);
2848 #endif
2849 slab_bufctl(slabp)[i] = i + 1;
2850 }
2851 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2852 }
2853
2854 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2855 {
2856 if (CONFIG_ZONE_DMA_FLAG) {
2857 if (flags & GFP_DMA)
2858 BUG_ON(!(cachep->allocflags & GFP_DMA));
2859 else
2860 BUG_ON(cachep->allocflags & GFP_DMA);
2861 }
2862 }
2863
2864 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2865 int nodeid)
2866 {
2867 void *objp = index_to_obj(cachep, slabp, slabp->free);
2868 kmem_bufctl_t next;
2869
2870 slabp->inuse++;
2871 next = slab_bufctl(slabp)[slabp->free];
2872 #if DEBUG
2873 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2874 WARN_ON(slabp->nodeid != nodeid);
2875 #endif
2876 slabp->free = next;
2877
2878 return objp;
2879 }
2880
2881 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2882 void *objp, int nodeid)
2883 {
2884 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2885
2886 #if DEBUG
2887 /* Verify that the slab belongs to the intended node */
2888 WARN_ON(slabp->nodeid != nodeid);
2889
2890 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2891 printk(KERN_ERR "slab: double free detected in cache "
2892 "'%s', objp %p\n", cachep->name, objp);
2893 BUG();
2894 }
2895 #endif
2896 slab_bufctl(slabp)[objnr] = slabp->free;
2897 slabp->free = objnr;
2898 slabp->inuse--;
2899 }
2900
2901 /*
2902 * Map pages beginning at addr to the given cache and slab. This is required
2903 * for the slab allocator to be able to lookup the cache and slab of a
2904 * virtual address for kfree, ksize, and slab debugging.
2905 */
2906 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2907 void *addr)
2908 {
2909 int nr_pages;
2910 struct page *page;
2911
2912 page = virt_to_page(addr);
2913
2914 nr_pages = 1;
2915 if (likely(!PageCompound(page)))
2916 nr_pages <<= cache->gfporder;
2917
2918 do {
2919 page->slab_cache = cache;
2920 page->slab_page = slab;
2921 page++;
2922 } while (--nr_pages);
2923 }
2924
2925 /*
2926 * Grow (by 1) the number of slabs within a cache. This is called by
2927 * kmem_cache_alloc() when there are no active objs left in a cache.
2928 */
2929 static int cache_grow(struct kmem_cache *cachep,
2930 gfp_t flags, int nodeid, void *objp)
2931 {
2932 struct slab *slabp;
2933 size_t offset;
2934 gfp_t local_flags;
2935 struct kmem_list3 *l3;
2936
2937 /*
2938 * Be lazy and only check for valid flags here, keeping it out of the
2939 * critical path in kmem_cache_alloc().
2940 */
2941 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2942 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2943
2944 /* Take the l3 list lock to change the colour_next on this node */
2945 check_irq_off();
2946 l3 = cachep->nodelists[nodeid];
2947 spin_lock(&l3->list_lock);
2948
2949 /* Get colour for the slab, and cal the next value. */
2950 offset = l3->colour_next;
2951 l3->colour_next++;
2952 if (l3->colour_next >= cachep->colour)
2953 l3->colour_next = 0;
2954 spin_unlock(&l3->list_lock);
2955
2956 offset *= cachep->colour_off;
2957
2958 if (local_flags & __GFP_WAIT)
2959 local_irq_enable();
2960
2961 /*
2962 * The test for missing atomic flag is performed here, rather than
2963 * the more obvious place, simply to reduce the critical path length
2964 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2965 * will eventually be caught here (where it matters).
2966 */
2967 kmem_flagcheck(cachep, flags);
2968
2969 /*
2970 * Get mem for the objs. Attempt to allocate a physical page from
2971 * 'nodeid'.
2972 */
2973 if (!objp)
2974 objp = kmem_getpages(cachep, local_flags, nodeid);
2975 if (!objp)
2976 goto failed;
2977
2978 /* Get slab management. */
2979 slabp = alloc_slabmgmt(cachep, objp, offset,
2980 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2981 if (!slabp)
2982 goto opps1;
2983
2984 slab_map_pages(cachep, slabp, objp);
2985
2986 cache_init_objs(cachep, slabp);
2987
2988 if (local_flags & __GFP_WAIT)
2989 local_irq_disable();
2990 check_irq_off();
2991 spin_lock(&l3->list_lock);
2992
2993 /* Make slab active. */
2994 list_add_tail(&slabp->list, &(l3->slabs_free));
2995 STATS_INC_GROWN(cachep);
2996 l3->free_objects += cachep->num;
2997 spin_unlock(&l3->list_lock);
2998 return 1;
2999 opps1:
3000 kmem_freepages(cachep, objp);
3001 failed:
3002 if (local_flags & __GFP_WAIT)
3003 local_irq_disable();
3004 return 0;
3005 }
3006
3007 #if DEBUG
3008
3009 /*
3010 * Perform extra freeing checks:
3011 * - detect bad pointers.
3012 * - POISON/RED_ZONE checking
3013 */
3014 static void kfree_debugcheck(const void *objp)
3015 {
3016 if (!virt_addr_valid(objp)) {
3017 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
3018 (unsigned long)objp);
3019 BUG();
3020 }
3021 }
3022
3023 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3024 {
3025 unsigned long long redzone1, redzone2;
3026
3027 redzone1 = *dbg_redzone1(cache, obj);
3028 redzone2 = *dbg_redzone2(cache, obj);
3029
3030 /*
3031 * Redzone is ok.
3032 */
3033 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3034 return;
3035
3036 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3037 slab_error(cache, "double free detected");
3038 else
3039 slab_error(cache, "memory outside object was overwritten");
3040
3041 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3042 obj, redzone1, redzone2);
3043 }
3044
3045 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3046 void *caller)
3047 {
3048 struct page *page;
3049 unsigned int objnr;
3050 struct slab *slabp;
3051
3052 BUG_ON(virt_to_cache(objp) != cachep);
3053
3054 objp -= obj_offset(cachep);
3055 kfree_debugcheck(objp);
3056 page = virt_to_head_page(objp);
3057
3058 slabp = page->slab_page;
3059
3060 if (cachep->flags & SLAB_RED_ZONE) {
3061 verify_redzone_free(cachep, objp);
3062 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3063 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3064 }
3065 if (cachep->flags & SLAB_STORE_USER)
3066 *dbg_userword(cachep, objp) = caller;
3067
3068 objnr = obj_to_index(cachep, slabp, objp);
3069
3070 BUG_ON(objnr >= cachep->num);
3071 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3072
3073 #ifdef CONFIG_DEBUG_SLAB_LEAK
3074 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3075 #endif
3076 if (cachep->flags & SLAB_POISON) {
3077 #ifdef CONFIG_DEBUG_PAGEALLOC
3078 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3079 store_stackinfo(cachep, objp, (unsigned long)caller);
3080 kernel_map_pages(virt_to_page(objp),
3081 cachep->size / PAGE_SIZE, 0);
3082 } else {
3083 poison_obj(cachep, objp, POISON_FREE);
3084 }
3085 #else
3086 poison_obj(cachep, objp, POISON_FREE);
3087 #endif
3088 }
3089 return objp;
3090 }
3091
3092 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3093 {
3094 kmem_bufctl_t i;
3095 int entries = 0;
3096
3097 /* Check slab's freelist to see if this obj is there. */
3098 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3099 entries++;
3100 if (entries > cachep->num || i >= cachep->num)
3101 goto bad;
3102 }
3103 if (entries != cachep->num - slabp->inuse) {
3104 bad:
3105 printk(KERN_ERR "slab: Internal list corruption detected in "
3106 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3107 cachep->name, cachep->num, slabp, slabp->inuse,
3108 print_tainted());
3109 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3110 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3111 1);
3112 BUG();
3113 }
3114 }
3115 #else
3116 #define kfree_debugcheck(x) do { } while(0)
3117 #define cache_free_debugcheck(x,objp,z) (objp)
3118 #define check_slabp(x,y) do { } while(0)
3119 #endif
3120
3121 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3122 bool force_refill)
3123 {
3124 int batchcount;
3125 struct kmem_list3 *l3;
3126 struct array_cache *ac;
3127 int node;
3128
3129 check_irq_off();
3130 node = numa_mem_id();
3131 if (unlikely(force_refill))
3132 goto force_grow;
3133 retry:
3134 ac = cpu_cache_get(cachep);
3135 batchcount = ac->batchcount;
3136 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3137 /*
3138 * If there was little recent activity on this cache, then
3139 * perform only a partial refill. Otherwise we could generate
3140 * refill bouncing.
3141 */
3142 batchcount = BATCHREFILL_LIMIT;
3143 }
3144 l3 = cachep->nodelists[node];
3145
3146 BUG_ON(ac->avail > 0 || !l3);
3147 spin_lock(&l3->list_lock);
3148
3149 /* See if we can refill from the shared array */
3150 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3151 l3->shared->touched = 1;
3152 goto alloc_done;
3153 }
3154
3155 while (batchcount > 0) {
3156 struct list_head *entry;
3157 struct slab *slabp;
3158 /* Get slab alloc is to come from. */
3159 entry = l3->slabs_partial.next;
3160 if (entry == &l3->slabs_partial) {
3161 l3->free_touched = 1;
3162 entry = l3->slabs_free.next;
3163 if (entry == &l3->slabs_free)
3164 goto must_grow;
3165 }
3166
3167 slabp = list_entry(entry, struct slab, list);
3168 check_slabp(cachep, slabp);
3169 check_spinlock_acquired(cachep);
3170
3171 /*
3172 * The slab was either on partial or free list so
3173 * there must be at least one object available for
3174 * allocation.
3175 */
3176 BUG_ON(slabp->inuse >= cachep->num);
3177
3178 while (slabp->inuse < cachep->num && batchcount--) {
3179 STATS_INC_ALLOCED(cachep);
3180 STATS_INC_ACTIVE(cachep);
3181 STATS_SET_HIGH(cachep);
3182
3183 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3184 node));
3185 }
3186 check_slabp(cachep, slabp);
3187
3188 /* move slabp to correct slabp list: */
3189 list_del(&slabp->list);
3190 if (slabp->free == BUFCTL_END)
3191 list_add(&slabp->list, &l3->slabs_full);
3192 else
3193 list_add(&slabp->list, &l3->slabs_partial);
3194 }
3195
3196 must_grow:
3197 l3->free_objects -= ac->avail;
3198 alloc_done:
3199 spin_unlock(&l3->list_lock);
3200
3201 if (unlikely(!ac->avail)) {
3202 int x;
3203 force_grow:
3204 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3205
3206 /* cache_grow can reenable interrupts, then ac could change. */
3207 ac = cpu_cache_get(cachep);
3208
3209 /* no objects in sight? abort */
3210 if (!x && (ac->avail == 0 || force_refill))
3211 return NULL;
3212
3213 if (!ac->avail) /* objects refilled by interrupt? */
3214 goto retry;
3215 }
3216 ac->touched = 1;
3217
3218 return ac_get_obj(cachep, ac, flags, force_refill);
3219 }
3220
3221 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3222 gfp_t flags)
3223 {
3224 might_sleep_if(flags & __GFP_WAIT);
3225 #if DEBUG
3226 kmem_flagcheck(cachep, flags);
3227 #endif
3228 }
3229
3230 #if DEBUG
3231 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3232 gfp_t flags, void *objp, void *caller)
3233 {
3234 if (!objp)
3235 return objp;
3236 if (cachep->flags & SLAB_POISON) {
3237 #ifdef CONFIG_DEBUG_PAGEALLOC
3238 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3239 kernel_map_pages(virt_to_page(objp),
3240 cachep->size / PAGE_SIZE, 1);
3241 else
3242 check_poison_obj(cachep, objp);
3243 #else
3244 check_poison_obj(cachep, objp);
3245 #endif
3246 poison_obj(cachep, objp, POISON_INUSE);
3247 }
3248 if (cachep->flags & SLAB_STORE_USER)
3249 *dbg_userword(cachep, objp) = caller;
3250
3251 if (cachep->flags & SLAB_RED_ZONE) {
3252 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3253 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3254 slab_error(cachep, "double free, or memory outside"
3255 " object was overwritten");
3256 printk(KERN_ERR
3257 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3258 objp, *dbg_redzone1(cachep, objp),
3259 *dbg_redzone2(cachep, objp));
3260 }
3261 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3262 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3263 }
3264 #ifdef CONFIG_DEBUG_SLAB_LEAK
3265 {
3266 struct slab *slabp;
3267 unsigned objnr;
3268
3269 slabp = virt_to_head_page(objp)->slab_page;
3270 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3271 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3272 }
3273 #endif
3274 objp += obj_offset(cachep);
3275 if (cachep->ctor && cachep->flags & SLAB_POISON)
3276 cachep->ctor(objp);
3277 if (ARCH_SLAB_MINALIGN &&
3278 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3279 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3280 objp, (int)ARCH_SLAB_MINALIGN);
3281 }
3282 return objp;
3283 }
3284 #else
3285 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3286 #endif
3287
3288 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3289 {
3290 if (cachep == kmem_cache)
3291 return false;
3292
3293 return should_failslab(cachep->object_size, flags, cachep->flags);
3294 }
3295
3296 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3297 {
3298 void *objp;
3299 struct array_cache *ac;
3300 bool force_refill = false;
3301
3302 check_irq_off();
3303
3304 ac = cpu_cache_get(cachep);
3305 if (likely(ac->avail)) {
3306 ac->touched = 1;
3307 objp = ac_get_obj(cachep, ac, flags, false);
3308
3309 /*
3310 * Allow for the possibility all avail objects are not allowed
3311 * by the current flags
3312 */
3313 if (objp) {
3314 STATS_INC_ALLOCHIT(cachep);
3315 goto out;
3316 }
3317 force_refill = true;
3318 }
3319
3320 STATS_INC_ALLOCMISS(cachep);
3321 objp = cache_alloc_refill(cachep, flags, force_refill);
3322 /*
3323 * the 'ac' may be updated by cache_alloc_refill(),
3324 * and kmemleak_erase() requires its correct value.
3325 */
3326 ac = cpu_cache_get(cachep);
3327
3328 out:
3329 /*
3330 * To avoid a false negative, if an object that is in one of the
3331 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3332 * treat the array pointers as a reference to the object.
3333 */
3334 if (objp)
3335 kmemleak_erase(&ac->entry[ac->avail]);
3336 return objp;
3337 }
3338
3339 #ifdef CONFIG_NUMA
3340 /*
3341 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3342 *
3343 * If we are in_interrupt, then process context, including cpusets and
3344 * mempolicy, may not apply and should not be used for allocation policy.
3345 */
3346 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3347 {
3348 int nid_alloc, nid_here;
3349
3350 if (in_interrupt() || (flags & __GFP_THISNODE))
3351 return NULL;
3352 nid_alloc = nid_here = numa_mem_id();
3353 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3354 nid_alloc = cpuset_slab_spread_node();
3355 else if (current->mempolicy)
3356 nid_alloc = slab_node();
3357 if (nid_alloc != nid_here)
3358 return ____cache_alloc_node(cachep, flags, nid_alloc);
3359 return NULL;
3360 }
3361
3362 /*
3363 * Fallback function if there was no memory available and no objects on a
3364 * certain node and fall back is permitted. First we scan all the
3365 * available nodelists for available objects. If that fails then we
3366 * perform an allocation without specifying a node. This allows the page
3367 * allocator to do its reclaim / fallback magic. We then insert the
3368 * slab into the proper nodelist and then allocate from it.
3369 */
3370 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3371 {
3372 struct zonelist *zonelist;
3373 gfp_t local_flags;
3374 struct zoneref *z;
3375 struct zone *zone;
3376 enum zone_type high_zoneidx = gfp_zone(flags);
3377 void *obj = NULL;
3378 int nid;
3379 unsigned int cpuset_mems_cookie;
3380
3381 if (flags & __GFP_THISNODE)
3382 return NULL;
3383
3384 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3385
3386 retry_cpuset:
3387 cpuset_mems_cookie = get_mems_allowed();
3388 zonelist = node_zonelist(slab_node(), flags);
3389
3390 retry:
3391 /*
3392 * Look through allowed nodes for objects available
3393 * from existing per node queues.
3394 */
3395 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3396 nid = zone_to_nid(zone);
3397
3398 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3399 cache->nodelists[nid] &&
3400 cache->nodelists[nid]->free_objects) {
3401 obj = ____cache_alloc_node(cache,
3402 flags | GFP_THISNODE, nid);
3403 if (obj)
3404 break;
3405 }
3406 }
3407
3408 if (!obj) {
3409 /*
3410 * This allocation will be performed within the constraints
3411 * of the current cpuset / memory policy requirements.
3412 * We may trigger various forms of reclaim on the allowed
3413 * set and go into memory reserves if necessary.
3414 */
3415 if (local_flags & __GFP_WAIT)
3416 local_irq_enable();
3417 kmem_flagcheck(cache, flags);
3418 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3419 if (local_flags & __GFP_WAIT)
3420 local_irq_disable();
3421 if (obj) {
3422 /*
3423 * Insert into the appropriate per node queues
3424 */
3425 nid = page_to_nid(virt_to_page(obj));
3426 if (cache_grow(cache, flags, nid, obj)) {
3427 obj = ____cache_alloc_node(cache,
3428 flags | GFP_THISNODE, nid);
3429 if (!obj)
3430 /*
3431 * Another processor may allocate the
3432 * objects in the slab since we are
3433 * not holding any locks.
3434 */
3435 goto retry;
3436 } else {
3437 /* cache_grow already freed obj */
3438 obj = NULL;
3439 }
3440 }
3441 }
3442
3443 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3444 goto retry_cpuset;
3445 return obj;
3446 }
3447
3448 /*
3449 * A interface to enable slab creation on nodeid
3450 */
3451 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3452 int nodeid)
3453 {
3454 struct list_head *entry;
3455 struct slab *slabp;
3456 struct kmem_list3 *l3;
3457 void *obj;
3458 int x;
3459
3460 l3 = cachep->nodelists[nodeid];
3461 BUG_ON(!l3);
3462
3463 retry:
3464 check_irq_off();
3465 spin_lock(&l3->list_lock);
3466 entry = l3->slabs_partial.next;
3467 if (entry == &l3->slabs_partial) {
3468 l3->free_touched = 1;
3469 entry = l3->slabs_free.next;
3470 if (entry == &l3->slabs_free)
3471 goto must_grow;
3472 }
3473
3474 slabp = list_entry(entry, struct slab, list);
3475 check_spinlock_acquired_node(cachep, nodeid);
3476 check_slabp(cachep, slabp);
3477
3478 STATS_INC_NODEALLOCS(cachep);
3479 STATS_INC_ACTIVE(cachep);
3480 STATS_SET_HIGH(cachep);
3481
3482 BUG_ON(slabp->inuse == cachep->num);
3483
3484 obj = slab_get_obj(cachep, slabp, nodeid);
3485 check_slabp(cachep, slabp);
3486 l3->free_objects--;
3487 /* move slabp to correct slabp list: */
3488 list_del(&slabp->list);
3489
3490 if (slabp->free == BUFCTL_END)
3491 list_add(&slabp->list, &l3->slabs_full);
3492 else
3493 list_add(&slabp->list, &l3->slabs_partial);
3494
3495 spin_unlock(&l3->list_lock);
3496 goto done;
3497
3498 must_grow:
3499 spin_unlock(&l3->list_lock);
3500 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3501 if (x)
3502 goto retry;
3503
3504 return fallback_alloc(cachep, flags);
3505
3506 done:
3507 return obj;
3508 }
3509
3510 /**
3511 * kmem_cache_alloc_node - Allocate an object on the specified node
3512 * @cachep: The cache to allocate from.
3513 * @flags: See kmalloc().
3514 * @nodeid: node number of the target node.
3515 * @caller: return address of caller, used for debug information
3516 *
3517 * Identical to kmem_cache_alloc but it will allocate memory on the given
3518 * node, which can improve the performance for cpu bound structures.
3519 *
3520 * Fallback to other node is possible if __GFP_THISNODE is not set.
3521 */
3522 static __always_inline void *
3523 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3524 void *caller)
3525 {
3526 unsigned long save_flags;
3527 void *ptr;
3528 int slab_node = numa_mem_id();
3529
3530 flags &= gfp_allowed_mask;
3531
3532 lockdep_trace_alloc(flags);
3533
3534 if (slab_should_failslab(cachep, flags))
3535 return NULL;
3536
3537 cache_alloc_debugcheck_before(cachep, flags);
3538 local_irq_save(save_flags);
3539
3540 if (nodeid == NUMA_NO_NODE)
3541 nodeid = slab_node;
3542
3543 if (unlikely(!cachep->nodelists[nodeid])) {
3544 /* Node not bootstrapped yet */
3545 ptr = fallback_alloc(cachep, flags);
3546 goto out;
3547 }
3548
3549 if (nodeid == slab_node) {
3550 /*
3551 * Use the locally cached objects if possible.
3552 * However ____cache_alloc does not allow fallback
3553 * to other nodes. It may fail while we still have
3554 * objects on other nodes available.
3555 */
3556 ptr = ____cache_alloc(cachep, flags);
3557 if (ptr)
3558 goto out;
3559 }
3560 /* ___cache_alloc_node can fall back to other nodes */
3561 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3562 out:
3563 local_irq_restore(save_flags);
3564 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3565 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3566 flags);
3567
3568 if (likely(ptr))
3569 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3570
3571 if (unlikely((flags & __GFP_ZERO) && ptr))
3572 memset(ptr, 0, cachep->object_size);
3573
3574 return ptr;
3575 }
3576
3577 static __always_inline void *
3578 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3579 {
3580 void *objp;
3581
3582 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3583 objp = alternate_node_alloc(cache, flags);
3584 if (objp)
3585 goto out;
3586 }
3587 objp = ____cache_alloc(cache, flags);
3588
3589 /*
3590 * We may just have run out of memory on the local node.
3591 * ____cache_alloc_node() knows how to locate memory on other nodes
3592 */
3593 if (!objp)
3594 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3595
3596 out:
3597 return objp;
3598 }
3599 #else
3600
3601 static __always_inline void *
3602 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3603 {
3604 return ____cache_alloc(cachep, flags);
3605 }
3606
3607 #endif /* CONFIG_NUMA */
3608
3609 static __always_inline void *
3610 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3611 {
3612 unsigned long save_flags;
3613 void *objp;
3614
3615 flags &= gfp_allowed_mask;
3616
3617 lockdep_trace_alloc(flags);
3618
3619 if (slab_should_failslab(cachep, flags))
3620 return NULL;
3621
3622 cache_alloc_debugcheck_before(cachep, flags);
3623 local_irq_save(save_flags);
3624 objp = __do_cache_alloc(cachep, flags);
3625 local_irq_restore(save_flags);
3626 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3627 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3628 flags);
3629 prefetchw(objp);
3630
3631 if (likely(objp))
3632 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3633
3634 if (unlikely((flags & __GFP_ZERO) && objp))
3635 memset(objp, 0, cachep->object_size);
3636
3637 return objp;
3638 }
3639
3640 /*
3641 * Caller needs to acquire correct kmem_list's list_lock
3642 */
3643 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3644 int node)
3645 {
3646 int i;
3647 struct kmem_list3 *l3;
3648
3649 for (i = 0; i < nr_objects; i++) {
3650 void *objp;
3651 struct slab *slabp;
3652
3653 clear_obj_pfmemalloc(&objpp[i]);
3654 objp = objpp[i];
3655
3656 slabp = virt_to_slab(objp);
3657 l3 = cachep->nodelists[node];
3658 list_del(&slabp->list);
3659 check_spinlock_acquired_node(cachep, node);
3660 check_slabp(cachep, slabp);
3661 slab_put_obj(cachep, slabp, objp, node);
3662 STATS_DEC_ACTIVE(cachep);
3663 l3->free_objects++;
3664 check_slabp(cachep, slabp);
3665
3666 /* fixup slab chains */
3667 if (slabp->inuse == 0) {
3668 if (l3->free_objects > l3->free_limit) {
3669 l3->free_objects -= cachep->num;
3670 /* No need to drop any previously held
3671 * lock here, even if we have a off-slab slab
3672 * descriptor it is guaranteed to come from
3673 * a different cache, refer to comments before
3674 * alloc_slabmgmt.
3675 */
3676 slab_destroy(cachep, slabp);
3677 } else {
3678 list_add(&slabp->list, &l3->slabs_free);
3679 }
3680 } else {
3681 /* Unconditionally move a slab to the end of the
3682 * partial list on free - maximum time for the
3683 * other objects to be freed, too.
3684 */
3685 list_add_tail(&slabp->list, &l3->slabs_partial);
3686 }
3687 }
3688 }
3689
3690 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3691 {
3692 int batchcount;
3693 struct kmem_list3 *l3;
3694 int node = numa_mem_id();
3695
3696 batchcount = ac->batchcount;
3697 #if DEBUG
3698 BUG_ON(!batchcount || batchcount > ac->avail);
3699 #endif
3700 check_irq_off();
3701 l3 = cachep->nodelists[node];
3702 spin_lock(&l3->list_lock);
3703 if (l3->shared) {
3704 struct array_cache *shared_array = l3->shared;
3705 int max = shared_array->limit - shared_array->avail;
3706 if (max) {
3707 if (batchcount > max)
3708 batchcount = max;
3709 memcpy(&(shared_array->entry[shared_array->avail]),
3710 ac->entry, sizeof(void *) * batchcount);
3711 shared_array->avail += batchcount;
3712 goto free_done;
3713 }
3714 }
3715
3716 free_block(cachep, ac->entry, batchcount, node);
3717 free_done:
3718 #if STATS
3719 {
3720 int i = 0;
3721 struct list_head *p;
3722
3723 p = l3->slabs_free.next;
3724 while (p != &(l3->slabs_free)) {
3725 struct slab *slabp;
3726
3727 slabp = list_entry(p, struct slab, list);
3728 BUG_ON(slabp->inuse);
3729
3730 i++;
3731 p = p->next;
3732 }
3733 STATS_SET_FREEABLE(cachep, i);
3734 }
3735 #endif
3736 spin_unlock(&l3->list_lock);
3737 ac->avail -= batchcount;
3738 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3739 }
3740
3741 /*
3742 * Release an obj back to its cache. If the obj has a constructed state, it must
3743 * be in this state _before_ it is released. Called with disabled ints.
3744 */
3745 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3746 void *caller)
3747 {
3748 struct array_cache *ac = cpu_cache_get(cachep);
3749
3750 check_irq_off();
3751 kmemleak_free_recursive(objp, cachep->flags);
3752 objp = cache_free_debugcheck(cachep, objp, caller);
3753
3754 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3755
3756 /*
3757 * Skip calling cache_free_alien() when the platform is not numa.
3758 * This will avoid cache misses that happen while accessing slabp (which
3759 * is per page memory reference) to get nodeid. Instead use a global
3760 * variable to skip the call, which is mostly likely to be present in
3761 * the cache.
3762 */
3763 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3764 return;
3765
3766 if (likely(ac->avail < ac->limit)) {
3767 STATS_INC_FREEHIT(cachep);
3768 } else {
3769 STATS_INC_FREEMISS(cachep);
3770 cache_flusharray(cachep, ac);
3771 }
3772
3773 ac_put_obj(cachep, ac, objp);
3774 }
3775
3776 /**
3777 * kmem_cache_alloc - Allocate an object
3778 * @cachep: The cache to allocate from.
3779 * @flags: See kmalloc().
3780 *
3781 * Allocate an object from this cache. The flags are only relevant
3782 * if the cache has no available objects.
3783 */
3784 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3785 {
3786 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3787
3788 trace_kmem_cache_alloc(_RET_IP_, ret,
3789 cachep->object_size, cachep->size, flags);
3790
3791 return ret;
3792 }
3793 EXPORT_SYMBOL(kmem_cache_alloc);
3794
3795 #ifdef CONFIG_TRACING
3796 void *
3797 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3798 {
3799 void *ret;
3800
3801 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3802
3803 trace_kmalloc(_RET_IP_, ret,
3804 size, slab_buffer_size(cachep), flags);
3805 return ret;
3806 }
3807 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3808 #endif
3809
3810 #ifdef CONFIG_NUMA
3811 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3812 {
3813 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3814 __builtin_return_address(0));
3815
3816 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3817 cachep->object_size, cachep->size,
3818 flags, nodeid);
3819
3820 return ret;
3821 }
3822 EXPORT_SYMBOL(kmem_cache_alloc_node);
3823
3824 #ifdef CONFIG_TRACING
3825 void *kmem_cache_alloc_node_trace(size_t size,
3826 struct kmem_cache *cachep,
3827 gfp_t flags,
3828 int nodeid)
3829 {
3830 void *ret;
3831
3832 ret = __cache_alloc_node(cachep, flags, nodeid,
3833 __builtin_return_address(0));
3834 trace_kmalloc_node(_RET_IP_, ret,
3835 size, slab_buffer_size(cachep),
3836 flags, nodeid);
3837 return ret;
3838 }
3839 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3840 #endif
3841
3842 static __always_inline void *
3843 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3844 {
3845 struct kmem_cache *cachep;
3846
3847 cachep = kmem_find_general_cachep(size, flags);
3848 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3849 return cachep;
3850 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3851 }
3852
3853 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3854 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3855 {
3856 return __do_kmalloc_node(size, flags, node,
3857 __builtin_return_address(0));
3858 }
3859 EXPORT_SYMBOL(__kmalloc_node);
3860
3861 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3862 int node, unsigned long caller)
3863 {
3864 return __do_kmalloc_node(size, flags, node, (void *)caller);
3865 }
3866 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3867 #else
3868 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3869 {
3870 return __do_kmalloc_node(size, flags, node, NULL);
3871 }
3872 EXPORT_SYMBOL(__kmalloc_node);
3873 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3874 #endif /* CONFIG_NUMA */
3875
3876 /**
3877 * __do_kmalloc - allocate memory
3878 * @size: how many bytes of memory are required.
3879 * @flags: the type of memory to allocate (see kmalloc).
3880 * @caller: function caller for debug tracking of the caller
3881 */
3882 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3883 void *caller)
3884 {
3885 struct kmem_cache *cachep;
3886 void *ret;
3887
3888 /* If you want to save a few bytes .text space: replace
3889 * __ with kmem_.
3890 * Then kmalloc uses the uninlined functions instead of the inline
3891 * functions.
3892 */
3893 cachep = __find_general_cachep(size, flags);
3894 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3895 return cachep;
3896 ret = __cache_alloc(cachep, flags, caller);
3897
3898 trace_kmalloc((unsigned long) caller, ret,
3899 size, cachep->size, flags);
3900
3901 return ret;
3902 }
3903
3904
3905 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3906 void *__kmalloc(size_t size, gfp_t flags)
3907 {
3908 return __do_kmalloc(size, flags, __builtin_return_address(0));
3909 }
3910 EXPORT_SYMBOL(__kmalloc);
3911
3912 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3913 {
3914 return __do_kmalloc(size, flags, (void *)caller);
3915 }
3916 EXPORT_SYMBOL(__kmalloc_track_caller);
3917
3918 #else
3919 void *__kmalloc(size_t size, gfp_t flags)
3920 {
3921 return __do_kmalloc(size, flags, NULL);
3922 }
3923 EXPORT_SYMBOL(__kmalloc);
3924 #endif
3925
3926 /**
3927 * kmem_cache_free - Deallocate an object
3928 * @cachep: The cache the allocation was from.
3929 * @objp: The previously allocated object.
3930 *
3931 * Free an object which was previously allocated from this
3932 * cache.
3933 */
3934 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3935 {
3936 unsigned long flags;
3937
3938 local_irq_save(flags);
3939 debug_check_no_locks_freed(objp, cachep->object_size);
3940 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3941 debug_check_no_obj_freed(objp, cachep->object_size);
3942 __cache_free(cachep, objp, __builtin_return_address(0));
3943 local_irq_restore(flags);
3944
3945 trace_kmem_cache_free(_RET_IP_, objp);
3946 }
3947 EXPORT_SYMBOL(kmem_cache_free);
3948
3949 /**
3950 * kfree - free previously allocated memory
3951 * @objp: pointer returned by kmalloc.
3952 *
3953 * If @objp is NULL, no operation is performed.
3954 *
3955 * Don't free memory not originally allocated by kmalloc()
3956 * or you will run into trouble.
3957 */
3958 void kfree(const void *objp)
3959 {
3960 struct kmem_cache *c;
3961 unsigned long flags;
3962
3963 trace_kfree(_RET_IP_, objp);
3964
3965 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3966 return;
3967 local_irq_save(flags);
3968 kfree_debugcheck(objp);
3969 c = virt_to_cache(objp);
3970 debug_check_no_locks_freed(objp, c->object_size);
3971
3972 debug_check_no_obj_freed(objp, c->object_size);
3973 __cache_free(c, (void *)objp, __builtin_return_address(0));
3974 local_irq_restore(flags);
3975 }
3976 EXPORT_SYMBOL(kfree);
3977
3978 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3979 {
3980 return cachep->object_size;
3981 }
3982 EXPORT_SYMBOL(kmem_cache_size);
3983
3984 /*
3985 * This initializes kmem_list3 or resizes various caches for all nodes.
3986 */
3987 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3988 {
3989 int node;
3990 struct kmem_list3 *l3;
3991 struct array_cache *new_shared;
3992 struct array_cache **new_alien = NULL;
3993
3994 for_each_online_node(node) {
3995
3996 if (use_alien_caches) {
3997 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3998 if (!new_alien)
3999 goto fail;
4000 }
4001
4002 new_shared = NULL;
4003 if (cachep->shared) {
4004 new_shared = alloc_arraycache(node,
4005 cachep->shared*cachep->batchcount,
4006 0xbaadf00d, gfp);
4007 if (!new_shared) {
4008 free_alien_cache(new_alien);
4009 goto fail;
4010 }
4011 }
4012
4013 l3 = cachep->nodelists[node];
4014 if (l3) {
4015 struct array_cache *shared = l3->shared;
4016
4017 spin_lock_irq(&l3->list_lock);
4018
4019 if (shared)
4020 free_block(cachep, shared->entry,
4021 shared->avail, node);
4022
4023 l3->shared = new_shared;
4024 if (!l3->alien) {
4025 l3->alien = new_alien;
4026 new_alien = NULL;
4027 }
4028 l3->free_limit = (1 + nr_cpus_node(node)) *
4029 cachep->batchcount + cachep->num;
4030 spin_unlock_irq(&l3->list_lock);
4031 kfree(shared);
4032 free_alien_cache(new_alien);
4033 continue;
4034 }
4035 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4036 if (!l3) {
4037 free_alien_cache(new_alien);
4038 kfree(new_shared);
4039 goto fail;
4040 }
4041
4042 kmem_list3_init(l3);
4043 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
4044 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4045 l3->shared = new_shared;
4046 l3->alien = new_alien;
4047 l3->free_limit = (1 + nr_cpus_node(node)) *
4048 cachep->batchcount + cachep->num;
4049 cachep->nodelists[node] = l3;
4050 }
4051 return 0;
4052
4053 fail:
4054 if (!cachep->list.next) {
4055 /* Cache is not active yet. Roll back what we did */
4056 node--;
4057 while (node >= 0) {
4058 if (cachep->nodelists[node]) {
4059 l3 = cachep->nodelists[node];
4060
4061 kfree(l3->shared);
4062 free_alien_cache(l3->alien);
4063 kfree(l3);
4064 cachep->nodelists[node] = NULL;
4065 }
4066 node--;
4067 }
4068 }
4069 return -ENOMEM;
4070 }
4071
4072 struct ccupdate_struct {
4073 struct kmem_cache *cachep;
4074 struct array_cache *new[0];
4075 };
4076
4077 static void do_ccupdate_local(void *info)
4078 {
4079 struct ccupdate_struct *new = info;
4080 struct array_cache *old;
4081
4082 check_irq_off();
4083 old = cpu_cache_get(new->cachep);
4084
4085 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4086 new->new[smp_processor_id()] = old;
4087 }
4088
4089 /* Always called with the slab_mutex held */
4090 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4091 int batchcount, int shared, gfp_t gfp)
4092 {
4093 struct ccupdate_struct *new;
4094 int i;
4095
4096 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4097 gfp);
4098 if (!new)
4099 return -ENOMEM;
4100
4101 for_each_online_cpu(i) {
4102 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4103 batchcount, gfp);
4104 if (!new->new[i]) {
4105 for (i--; i >= 0; i--)
4106 kfree(new->new[i]);
4107 kfree(new);
4108 return -ENOMEM;
4109 }
4110 }
4111 new->cachep = cachep;
4112
4113 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4114
4115 check_irq_on();
4116 cachep->batchcount = batchcount;
4117 cachep->limit = limit;
4118 cachep->shared = shared;
4119
4120 for_each_online_cpu(i) {
4121 struct array_cache *ccold = new->new[i];
4122 if (!ccold)
4123 continue;
4124 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4125 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4126 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4127 kfree(ccold);
4128 }
4129 kfree(new);
4130 return alloc_kmemlist(cachep, gfp);
4131 }
4132
4133 /* Called with slab_mutex held always */
4134 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4135 {
4136 int err;
4137 int limit, shared;
4138
4139 /*
4140 * The head array serves three purposes:
4141 * - create a LIFO ordering, i.e. return objects that are cache-warm
4142 * - reduce the number of spinlock operations.
4143 * - reduce the number of linked list operations on the slab and
4144 * bufctl chains: array operations are cheaper.
4145 * The numbers are guessed, we should auto-tune as described by
4146 * Bonwick.
4147 */
4148 if (cachep->size > 131072)
4149 limit = 1;
4150 else if (cachep->size > PAGE_SIZE)
4151 limit = 8;
4152 else if (cachep->size > 1024)
4153 limit = 24;
4154 else if (cachep->size > 256)
4155 limit = 54;
4156 else
4157 limit = 120;
4158
4159 /*
4160 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4161 * allocation behaviour: Most allocs on one cpu, most free operations
4162 * on another cpu. For these cases, an efficient object passing between
4163 * cpus is necessary. This is provided by a shared array. The array
4164 * replaces Bonwick's magazine layer.
4165 * On uniprocessor, it's functionally equivalent (but less efficient)
4166 * to a larger limit. Thus disabled by default.
4167 */
4168 shared = 0;
4169 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4170 shared = 8;
4171
4172 #if DEBUG
4173 /*
4174 * With debugging enabled, large batchcount lead to excessively long
4175 * periods with disabled local interrupts. Limit the batchcount
4176 */
4177 if (limit > 32)
4178 limit = 32;
4179 #endif
4180 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4181 if (err)
4182 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4183 cachep->name, -err);
4184 return err;
4185 }
4186
4187 /*
4188 * Drain an array if it contains any elements taking the l3 lock only if
4189 * necessary. Note that the l3 listlock also protects the array_cache
4190 * if drain_array() is used on the shared array.
4191 */
4192 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4193 struct array_cache *ac, int force, int node)
4194 {
4195 int tofree;
4196
4197 if (!ac || !ac->avail)
4198 return;
4199 if (ac->touched && !force) {
4200 ac->touched = 0;
4201 } else {
4202 spin_lock_irq(&l3->list_lock);
4203 if (ac->avail) {
4204 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4205 if (tofree > ac->avail)
4206 tofree = (ac->avail + 1) / 2;
4207 free_block(cachep, ac->entry, tofree, node);
4208 ac->avail -= tofree;
4209 memmove(ac->entry, &(ac->entry[tofree]),
4210 sizeof(void *) * ac->avail);
4211 }
4212 spin_unlock_irq(&l3->list_lock);
4213 }
4214 }
4215
4216 /**
4217 * cache_reap - Reclaim memory from caches.
4218 * @w: work descriptor
4219 *
4220 * Called from workqueue/eventd every few seconds.
4221 * Purpose:
4222 * - clear the per-cpu caches for this CPU.
4223 * - return freeable pages to the main free memory pool.
4224 *
4225 * If we cannot acquire the cache chain mutex then just give up - we'll try
4226 * again on the next iteration.
4227 */
4228 static void cache_reap(struct work_struct *w)
4229 {
4230 struct kmem_cache *searchp;
4231 struct kmem_list3 *l3;
4232 int node = numa_mem_id();
4233 struct delayed_work *work = to_delayed_work(w);
4234
4235 if (!mutex_trylock(&slab_mutex))
4236 /* Give up. Setup the next iteration. */
4237 goto out;
4238
4239 list_for_each_entry(searchp, &slab_caches, list) {
4240 check_irq_on();
4241
4242 /*
4243 * We only take the l3 lock if absolutely necessary and we
4244 * have established with reasonable certainty that
4245 * we can do some work if the lock was obtained.
4246 */
4247 l3 = searchp->nodelists[node];
4248
4249 reap_alien(searchp, l3);
4250
4251 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4252
4253 /*
4254 * These are racy checks but it does not matter
4255 * if we skip one check or scan twice.
4256 */
4257 if (time_after(l3->next_reap, jiffies))
4258 goto next;
4259
4260 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4261
4262 drain_array(searchp, l3, l3->shared, 0, node);
4263
4264 if (l3->free_touched)
4265 l3->free_touched = 0;
4266 else {
4267 int freed;
4268
4269 freed = drain_freelist(searchp, l3, (l3->free_limit +
4270 5 * searchp->num - 1) / (5 * searchp->num));
4271 STATS_ADD_REAPED(searchp, freed);
4272 }
4273 next:
4274 cond_resched();
4275 }
4276 check_irq_on();
4277 mutex_unlock(&slab_mutex);
4278 next_reap_node();
4279 out:
4280 /* Set up the next iteration */
4281 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4282 }
4283
4284 #ifdef CONFIG_SLABINFO
4285
4286 static void print_slabinfo_header(struct seq_file *m)
4287 {
4288 /*
4289 * Output format version, so at least we can change it
4290 * without _too_ many complaints.
4291 */
4292 #if STATS
4293 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4294 #else
4295 seq_puts(m, "slabinfo - version: 2.1\n");
4296 #endif
4297 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4298 "<objperslab> <pagesperslab>");
4299 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4300 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4301 #if STATS
4302 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4303 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4304 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4305 #endif
4306 seq_putc(m, '\n');
4307 }
4308
4309 static void *s_start(struct seq_file *m, loff_t *pos)
4310 {
4311 loff_t n = *pos;
4312
4313 mutex_lock(&slab_mutex);
4314 if (!n)
4315 print_slabinfo_header(m);
4316
4317 return seq_list_start(&slab_caches, *pos);
4318 }
4319
4320 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4321 {
4322 return seq_list_next(p, &slab_caches, pos);
4323 }
4324
4325 static void s_stop(struct seq_file *m, void *p)
4326 {
4327 mutex_unlock(&slab_mutex);
4328 }
4329
4330 static int s_show(struct seq_file *m, void *p)
4331 {
4332 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4333 struct slab *slabp;
4334 unsigned long active_objs;
4335 unsigned long num_objs;
4336 unsigned long active_slabs = 0;
4337 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4338 const char *name;
4339 char *error = NULL;
4340 int node;
4341 struct kmem_list3 *l3;
4342
4343 active_objs = 0;
4344 num_slabs = 0;
4345 for_each_online_node(node) {
4346 l3 = cachep->nodelists[node];
4347 if (!l3)
4348 continue;
4349
4350 check_irq_on();
4351 spin_lock_irq(&l3->list_lock);
4352
4353 list_for_each_entry(slabp, &l3->slabs_full, list) {
4354 if (slabp->inuse != cachep->num && !error)
4355 error = "slabs_full accounting error";
4356 active_objs += cachep->num;
4357 active_slabs++;
4358 }
4359 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4360 if (slabp->inuse == cachep->num && !error)
4361 error = "slabs_partial inuse accounting error";
4362 if (!slabp->inuse && !error)
4363 error = "slabs_partial/inuse accounting error";
4364 active_objs += slabp->inuse;
4365 active_slabs++;
4366 }
4367 list_for_each_entry(slabp, &l3->slabs_free, list) {
4368 if (slabp->inuse && !error)
4369 error = "slabs_free/inuse accounting error";
4370 num_slabs++;
4371 }
4372 free_objects += l3->free_objects;
4373 if (l3->shared)
4374 shared_avail += l3->shared->avail;
4375
4376 spin_unlock_irq(&l3->list_lock);
4377 }
4378 num_slabs += active_slabs;
4379 num_objs = num_slabs * cachep->num;
4380 if (num_objs - active_objs != free_objects && !error)
4381 error = "free_objects accounting error";
4382
4383 name = cachep->name;
4384 if (error)
4385 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4386
4387 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4388 name, active_objs, num_objs, cachep->size,
4389 cachep->num, (1 << cachep->gfporder));
4390 seq_printf(m, " : tunables %4u %4u %4u",
4391 cachep->limit, cachep->batchcount, cachep->shared);
4392 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4393 active_slabs, num_slabs, shared_avail);
4394 #if STATS
4395 { /* list3 stats */
4396 unsigned long high = cachep->high_mark;
4397 unsigned long allocs = cachep->num_allocations;
4398 unsigned long grown = cachep->grown;
4399 unsigned long reaped = cachep->reaped;
4400 unsigned long errors = cachep->errors;
4401 unsigned long max_freeable = cachep->max_freeable;
4402 unsigned long node_allocs = cachep->node_allocs;
4403 unsigned long node_frees = cachep->node_frees;
4404 unsigned long overflows = cachep->node_overflow;
4405
4406 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4407 "%4lu %4lu %4lu %4lu %4lu",
4408 allocs, high, grown,
4409 reaped, errors, max_freeable, node_allocs,
4410 node_frees, overflows);
4411 }
4412 /* cpu stats */
4413 {
4414 unsigned long allochit = atomic_read(&cachep->allochit);
4415 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4416 unsigned long freehit = atomic_read(&cachep->freehit);
4417 unsigned long freemiss = atomic_read(&cachep->freemiss);
4418
4419 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4420 allochit, allocmiss, freehit, freemiss);
4421 }
4422 #endif
4423 seq_putc(m, '\n');
4424 return 0;
4425 }
4426
4427 /*
4428 * slabinfo_op - iterator that generates /proc/slabinfo
4429 *
4430 * Output layout:
4431 * cache-name
4432 * num-active-objs
4433 * total-objs
4434 * object size
4435 * num-active-slabs
4436 * total-slabs
4437 * num-pages-per-slab
4438 * + further values on SMP and with statistics enabled
4439 */
4440
4441 static const struct seq_operations slabinfo_op = {
4442 .start = s_start,
4443 .next = s_next,
4444 .stop = s_stop,
4445 .show = s_show,
4446 };
4447
4448 #define MAX_SLABINFO_WRITE 128
4449 /**
4450 * slabinfo_write - Tuning for the slab allocator
4451 * @file: unused
4452 * @buffer: user buffer
4453 * @count: data length
4454 * @ppos: unused
4455 */
4456 static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4457 size_t count, loff_t *ppos)
4458 {
4459 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4460 int limit, batchcount, shared, res;
4461 struct kmem_cache *cachep;
4462
4463 if (count > MAX_SLABINFO_WRITE)
4464 return -EINVAL;
4465 if (copy_from_user(&kbuf, buffer, count))
4466 return -EFAULT;
4467 kbuf[MAX_SLABINFO_WRITE] = '\0';
4468
4469 tmp = strchr(kbuf, ' ');
4470 if (!tmp)
4471 return -EINVAL;
4472 *tmp = '\0';
4473 tmp++;
4474 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4475 return -EINVAL;
4476
4477 /* Find the cache in the chain of caches. */
4478 mutex_lock(&slab_mutex);
4479 res = -EINVAL;
4480 list_for_each_entry(cachep, &slab_caches, list) {
4481 if (!strcmp(cachep->name, kbuf)) {
4482 if (limit < 1 || batchcount < 1 ||
4483 batchcount > limit || shared < 0) {
4484 res = 0;
4485 } else {
4486 res = do_tune_cpucache(cachep, limit,
4487 batchcount, shared,
4488 GFP_KERNEL);
4489 }
4490 break;
4491 }
4492 }
4493 mutex_unlock(&slab_mutex);
4494 if (res >= 0)
4495 res = count;
4496 return res;
4497 }
4498
4499 static int slabinfo_open(struct inode *inode, struct file *file)
4500 {
4501 return seq_open(file, &slabinfo_op);
4502 }
4503
4504 static const struct file_operations proc_slabinfo_operations = {
4505 .open = slabinfo_open,
4506 .read = seq_read,
4507 .write = slabinfo_write,
4508 .llseek = seq_lseek,
4509 .release = seq_release,
4510 };
4511
4512 #ifdef CONFIG_DEBUG_SLAB_LEAK
4513
4514 static void *leaks_start(struct seq_file *m, loff_t *pos)
4515 {
4516 mutex_lock(&slab_mutex);
4517 return seq_list_start(&slab_caches, *pos);
4518 }
4519
4520 static inline int add_caller(unsigned long *n, unsigned long v)
4521 {
4522 unsigned long *p;
4523 int l;
4524 if (!v)
4525 return 1;
4526 l = n[1];
4527 p = n + 2;
4528 while (l) {
4529 int i = l/2;
4530 unsigned long *q = p + 2 * i;
4531 if (*q == v) {
4532 q[1]++;
4533 return 1;
4534 }
4535 if (*q > v) {
4536 l = i;
4537 } else {
4538 p = q + 2;
4539 l -= i + 1;
4540 }
4541 }
4542 if (++n[1] == n[0])
4543 return 0;
4544 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4545 p[0] = v;
4546 p[1] = 1;
4547 return 1;
4548 }
4549
4550 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4551 {
4552 void *p;
4553 int i;
4554 if (n[0] == n[1])
4555 return;
4556 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4557 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4558 continue;
4559 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4560 return;
4561 }
4562 }
4563
4564 static void show_symbol(struct seq_file *m, unsigned long address)
4565 {
4566 #ifdef CONFIG_KALLSYMS
4567 unsigned long offset, size;
4568 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4569
4570 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4571 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4572 if (modname[0])
4573 seq_printf(m, " [%s]", modname);
4574 return;
4575 }
4576 #endif
4577 seq_printf(m, "%p", (void *)address);
4578 }
4579
4580 static int leaks_show(struct seq_file *m, void *p)
4581 {
4582 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4583 struct slab *slabp;
4584 struct kmem_list3 *l3;
4585 const char *name;
4586 unsigned long *n = m->private;
4587 int node;
4588 int i;
4589
4590 if (!(cachep->flags & SLAB_STORE_USER))
4591 return 0;
4592 if (!(cachep->flags & SLAB_RED_ZONE))
4593 return 0;
4594
4595 /* OK, we can do it */
4596
4597 n[1] = 0;
4598
4599 for_each_online_node(node) {
4600 l3 = cachep->nodelists[node];
4601 if (!l3)
4602 continue;
4603
4604 check_irq_on();
4605 spin_lock_irq(&l3->list_lock);
4606
4607 list_for_each_entry(slabp, &l3->slabs_full, list)
4608 handle_slab(n, cachep, slabp);
4609 list_for_each_entry(slabp, &l3->slabs_partial, list)
4610 handle_slab(n, cachep, slabp);
4611 spin_unlock_irq(&l3->list_lock);
4612 }
4613 name = cachep->name;
4614 if (n[0] == n[1]) {
4615 /* Increase the buffer size */
4616 mutex_unlock(&slab_mutex);
4617 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4618 if (!m->private) {
4619 /* Too bad, we are really out */
4620 m->private = n;
4621 mutex_lock(&slab_mutex);
4622 return -ENOMEM;
4623 }
4624 *(unsigned long *)m->private = n[0] * 2;
4625 kfree(n);
4626 mutex_lock(&slab_mutex);
4627 /* Now make sure this entry will be retried */
4628 m->count = m->size;
4629 return 0;
4630 }
4631 for (i = 0; i < n[1]; i++) {
4632 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4633 show_symbol(m, n[2*i+2]);
4634 seq_putc(m, '\n');
4635 }
4636
4637 return 0;
4638 }
4639
4640 static const struct seq_operations slabstats_op = {
4641 .start = leaks_start,
4642 .next = s_next,
4643 .stop = s_stop,
4644 .show = leaks_show,
4645 };
4646
4647 static int slabstats_open(struct inode *inode, struct file *file)
4648 {
4649 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4650 int ret = -ENOMEM;
4651 if (n) {
4652 ret = seq_open(file, &slabstats_op);
4653 if (!ret) {
4654 struct seq_file *m = file->private_data;
4655 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4656 m->private = n;
4657 n = NULL;
4658 }
4659 kfree(n);
4660 }
4661 return ret;
4662 }
4663
4664 static const struct file_operations proc_slabstats_operations = {
4665 .open = slabstats_open,
4666 .read = seq_read,
4667 .llseek = seq_lseek,
4668 .release = seq_release_private,
4669 };
4670 #endif
4671
4672 static int __init slab_proc_init(void)
4673 {
4674 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4675 #ifdef CONFIG_DEBUG_SLAB_LEAK
4676 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4677 #endif
4678 return 0;
4679 }
4680 module_init(slab_proc_init);
4681 #endif
4682
4683 /**
4684 * ksize - get the actual amount of memory allocated for a given object
4685 * @objp: Pointer to the object
4686 *
4687 * kmalloc may internally round up allocations and return more memory
4688 * than requested. ksize() can be used to determine the actual amount of
4689 * memory allocated. The caller may use this additional memory, even though
4690 * a smaller amount of memory was initially specified with the kmalloc call.
4691 * The caller must guarantee that objp points to a valid object previously
4692 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4693 * must not be freed during the duration of the call.
4694 */
4695 size_t ksize(const void *objp)
4696 {
4697 BUG_ON(!objp);
4698 if (unlikely(objp == ZERO_SIZE_PTR))
4699 return 0;
4700
4701 return virt_to_cache(objp)->object_size;
4702 }
4703 EXPORT_SYMBOL(ksize);