]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slab.c
mm/slab: align cache size first before determination of OFF_SLAB candidate
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175 static bool pfmemalloc_active __read_mostly;
176
177 /*
178 * struct array_cache
179 *
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189 struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 void *entry[]; /*
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 */
203 };
204
205 struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208 };
209
210 #define SLAB_OBJ_PFMEMALLOC 1
211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215
216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220 }
221
222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226
227 /*
228 * Need this for bootstrapping a per node allocator.
229 */
230 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
231 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
232 #define CACHE_CACHE 0
233 #define SIZE_NODE (MAX_NUMNODES)
234
235 static int drain_freelist(struct kmem_cache *cache,
236 struct kmem_cache_node *n, int tofree);
237 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
238 int node, struct list_head *list);
239 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
240 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
241 static void cache_reap(struct work_struct *unused);
242
243 static int slab_early_init = 1;
244
245 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
246
247 static void kmem_cache_node_init(struct kmem_cache_node *parent)
248 {
249 INIT_LIST_HEAD(&parent->slabs_full);
250 INIT_LIST_HEAD(&parent->slabs_partial);
251 INIT_LIST_HEAD(&parent->slabs_free);
252 parent->shared = NULL;
253 parent->alien = NULL;
254 parent->colour_next = 0;
255 spin_lock_init(&parent->list_lock);
256 parent->free_objects = 0;
257 parent->free_touched = 0;
258 }
259
260 #define MAKE_LIST(cachep, listp, slab, nodeid) \
261 do { \
262 INIT_LIST_HEAD(listp); \
263 list_splice(&get_node(cachep, nodeid)->slab, listp); \
264 } while (0)
265
266 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
267 do { \
268 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
269 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
270 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
271 } while (0)
272
273 #define CFLGS_OFF_SLAB (0x80000000UL)
274 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
275 #define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
276
277 #define BATCHREFILL_LIMIT 16
278 /*
279 * Optimization question: fewer reaps means less probability for unnessary
280 * cpucache drain/refill cycles.
281 *
282 * OTOH the cpuarrays can contain lots of objects,
283 * which could lock up otherwise freeable slabs.
284 */
285 #define REAPTIMEOUT_AC (2*HZ)
286 #define REAPTIMEOUT_NODE (4*HZ)
287
288 #if STATS
289 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
290 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
291 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
292 #define STATS_INC_GROWN(x) ((x)->grown++)
293 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
294 #define STATS_SET_HIGH(x) \
295 do { \
296 if ((x)->num_active > (x)->high_mark) \
297 (x)->high_mark = (x)->num_active; \
298 } while (0)
299 #define STATS_INC_ERR(x) ((x)->errors++)
300 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
301 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
302 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
303 #define STATS_SET_FREEABLE(x, i) \
304 do { \
305 if ((x)->max_freeable < i) \
306 (x)->max_freeable = i; \
307 } while (0)
308 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
309 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
310 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
311 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
312 #else
313 #define STATS_INC_ACTIVE(x) do { } while (0)
314 #define STATS_DEC_ACTIVE(x) do { } while (0)
315 #define STATS_INC_ALLOCED(x) do { } while (0)
316 #define STATS_INC_GROWN(x) do { } while (0)
317 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
318 #define STATS_SET_HIGH(x) do { } while (0)
319 #define STATS_INC_ERR(x) do { } while (0)
320 #define STATS_INC_NODEALLOCS(x) do { } while (0)
321 #define STATS_INC_NODEFREES(x) do { } while (0)
322 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
323 #define STATS_SET_FREEABLE(x, i) do { } while (0)
324 #define STATS_INC_ALLOCHIT(x) do { } while (0)
325 #define STATS_INC_ALLOCMISS(x) do { } while (0)
326 #define STATS_INC_FREEHIT(x) do { } while (0)
327 #define STATS_INC_FREEMISS(x) do { } while (0)
328 #endif
329
330 #if DEBUG
331
332 /*
333 * memory layout of objects:
334 * 0 : objp
335 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
336 * the end of an object is aligned with the end of the real
337 * allocation. Catches writes behind the end of the allocation.
338 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
339 * redzone word.
340 * cachep->obj_offset: The real object.
341 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
342 * cachep->size - 1* BYTES_PER_WORD: last caller address
343 * [BYTES_PER_WORD long]
344 */
345 static int obj_offset(struct kmem_cache *cachep)
346 {
347 return cachep->obj_offset;
348 }
349
350 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
353 return (unsigned long long*) (objp + obj_offset(cachep) -
354 sizeof(unsigned long long));
355 }
356
357 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
358 {
359 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
360 if (cachep->flags & SLAB_STORE_USER)
361 return (unsigned long long *)(objp + cachep->size -
362 sizeof(unsigned long long) -
363 REDZONE_ALIGN);
364 return (unsigned long long *) (objp + cachep->size -
365 sizeof(unsigned long long));
366 }
367
368 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
369 {
370 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
371 return (void **)(objp + cachep->size - BYTES_PER_WORD);
372 }
373
374 #else
375
376 #define obj_offset(x) 0
377 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
378 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
379 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
380
381 #endif
382
383 #ifdef CONFIG_DEBUG_SLAB_LEAK
384
385 static inline bool is_store_user_clean(struct kmem_cache *cachep)
386 {
387 return atomic_read(&cachep->store_user_clean) == 1;
388 }
389
390 static inline void set_store_user_clean(struct kmem_cache *cachep)
391 {
392 atomic_set(&cachep->store_user_clean, 1);
393 }
394
395 static inline void set_store_user_dirty(struct kmem_cache *cachep)
396 {
397 if (is_store_user_clean(cachep))
398 atomic_set(&cachep->store_user_clean, 0);
399 }
400
401 #else
402 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
403
404 #endif
405
406 /*
407 * Do not go above this order unless 0 objects fit into the slab or
408 * overridden on the command line.
409 */
410 #define SLAB_MAX_ORDER_HI 1
411 #define SLAB_MAX_ORDER_LO 0
412 static int slab_max_order = SLAB_MAX_ORDER_LO;
413 static bool slab_max_order_set __initdata;
414
415 static inline struct kmem_cache *virt_to_cache(const void *obj)
416 {
417 struct page *page = virt_to_head_page(obj);
418 return page->slab_cache;
419 }
420
421 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
422 unsigned int idx)
423 {
424 return page->s_mem + cache->size * idx;
425 }
426
427 /*
428 * We want to avoid an expensive divide : (offset / cache->size)
429 * Using the fact that size is a constant for a particular cache,
430 * we can replace (offset / cache->size) by
431 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
432 */
433 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
434 const struct page *page, void *obj)
435 {
436 u32 offset = (obj - page->s_mem);
437 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
438 }
439
440 #define BOOT_CPUCACHE_ENTRIES 1
441 /* internal cache of cache description objs */
442 static struct kmem_cache kmem_cache_boot = {
443 .batchcount = 1,
444 .limit = BOOT_CPUCACHE_ENTRIES,
445 .shared = 1,
446 .size = sizeof(struct kmem_cache),
447 .name = "kmem_cache",
448 };
449
450 #define BAD_ALIEN_MAGIC 0x01020304ul
451
452 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
453
454 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
455 {
456 return this_cpu_ptr(cachep->cpu_cache);
457 }
458
459 /*
460 * Calculate the number of objects and left-over bytes for a given buffer size.
461 */
462 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
463 unsigned long flags, size_t *left_over, unsigned int *num)
464 {
465 size_t slab_size = PAGE_SIZE << gfporder;
466
467 /*
468 * The slab management structure can be either off the slab or
469 * on it. For the latter case, the memory allocated for a
470 * slab is used for:
471 *
472 * - @buffer_size bytes for each object
473 * - One freelist_idx_t for each object
474 *
475 * We don't need to consider alignment of freelist because
476 * freelist will be at the end of slab page. The objects will be
477 * at the correct alignment.
478 *
479 * If the slab management structure is off the slab, then the
480 * alignment will already be calculated into the size. Because
481 * the slabs are all pages aligned, the objects will be at the
482 * correct alignment when allocated.
483 */
484 if (flags & CFLGS_OFF_SLAB) {
485 *num = slab_size / buffer_size;
486 *left_over = slab_size % buffer_size;
487 } else {
488 *num = slab_size / (buffer_size + sizeof(freelist_idx_t));
489 *left_over = slab_size %
490 (buffer_size + sizeof(freelist_idx_t));
491 }
492 }
493
494 #if DEBUG
495 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
496
497 static void __slab_error(const char *function, struct kmem_cache *cachep,
498 char *msg)
499 {
500 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
501 function, cachep->name, msg);
502 dump_stack();
503 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
504 }
505 #endif
506
507 /*
508 * By default on NUMA we use alien caches to stage the freeing of
509 * objects allocated from other nodes. This causes massive memory
510 * inefficiencies when using fake NUMA setup to split memory into a
511 * large number of small nodes, so it can be disabled on the command
512 * line
513 */
514
515 static int use_alien_caches __read_mostly = 1;
516 static int __init noaliencache_setup(char *s)
517 {
518 use_alien_caches = 0;
519 return 1;
520 }
521 __setup("noaliencache", noaliencache_setup);
522
523 static int __init slab_max_order_setup(char *str)
524 {
525 get_option(&str, &slab_max_order);
526 slab_max_order = slab_max_order < 0 ? 0 :
527 min(slab_max_order, MAX_ORDER - 1);
528 slab_max_order_set = true;
529
530 return 1;
531 }
532 __setup("slab_max_order=", slab_max_order_setup);
533
534 #ifdef CONFIG_NUMA
535 /*
536 * Special reaping functions for NUMA systems called from cache_reap().
537 * These take care of doing round robin flushing of alien caches (containing
538 * objects freed on different nodes from which they were allocated) and the
539 * flushing of remote pcps by calling drain_node_pages.
540 */
541 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
542
543 static void init_reap_node(int cpu)
544 {
545 int node;
546
547 node = next_node(cpu_to_mem(cpu), node_online_map);
548 if (node == MAX_NUMNODES)
549 node = first_node(node_online_map);
550
551 per_cpu(slab_reap_node, cpu) = node;
552 }
553
554 static void next_reap_node(void)
555 {
556 int node = __this_cpu_read(slab_reap_node);
557
558 node = next_node(node, node_online_map);
559 if (unlikely(node >= MAX_NUMNODES))
560 node = first_node(node_online_map);
561 __this_cpu_write(slab_reap_node, node);
562 }
563
564 #else
565 #define init_reap_node(cpu) do { } while (0)
566 #define next_reap_node(void) do { } while (0)
567 #endif
568
569 /*
570 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
571 * via the workqueue/eventd.
572 * Add the CPU number into the expiration time to minimize the possibility of
573 * the CPUs getting into lockstep and contending for the global cache chain
574 * lock.
575 */
576 static void start_cpu_timer(int cpu)
577 {
578 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
579
580 /*
581 * When this gets called from do_initcalls via cpucache_init(),
582 * init_workqueues() has already run, so keventd will be setup
583 * at that time.
584 */
585 if (keventd_up() && reap_work->work.func == NULL) {
586 init_reap_node(cpu);
587 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
588 schedule_delayed_work_on(cpu, reap_work,
589 __round_jiffies_relative(HZ, cpu));
590 }
591 }
592
593 static void init_arraycache(struct array_cache *ac, int limit, int batch)
594 {
595 /*
596 * The array_cache structures contain pointers to free object.
597 * However, when such objects are allocated or transferred to another
598 * cache the pointers are not cleared and they could be counted as
599 * valid references during a kmemleak scan. Therefore, kmemleak must
600 * not scan such objects.
601 */
602 kmemleak_no_scan(ac);
603 if (ac) {
604 ac->avail = 0;
605 ac->limit = limit;
606 ac->batchcount = batch;
607 ac->touched = 0;
608 }
609 }
610
611 static struct array_cache *alloc_arraycache(int node, int entries,
612 int batchcount, gfp_t gfp)
613 {
614 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
615 struct array_cache *ac = NULL;
616
617 ac = kmalloc_node(memsize, gfp, node);
618 init_arraycache(ac, entries, batchcount);
619 return ac;
620 }
621
622 static inline bool is_slab_pfmemalloc(struct page *page)
623 {
624 return PageSlabPfmemalloc(page);
625 }
626
627 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
628 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
629 struct array_cache *ac)
630 {
631 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
632 struct page *page;
633 unsigned long flags;
634
635 if (!pfmemalloc_active)
636 return;
637
638 spin_lock_irqsave(&n->list_lock, flags);
639 list_for_each_entry(page, &n->slabs_full, lru)
640 if (is_slab_pfmemalloc(page))
641 goto out;
642
643 list_for_each_entry(page, &n->slabs_partial, lru)
644 if (is_slab_pfmemalloc(page))
645 goto out;
646
647 list_for_each_entry(page, &n->slabs_free, lru)
648 if (is_slab_pfmemalloc(page))
649 goto out;
650
651 pfmemalloc_active = false;
652 out:
653 spin_unlock_irqrestore(&n->list_lock, flags);
654 }
655
656 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
657 gfp_t flags, bool force_refill)
658 {
659 int i;
660 void *objp = ac->entry[--ac->avail];
661
662 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
663 if (unlikely(is_obj_pfmemalloc(objp))) {
664 struct kmem_cache_node *n;
665
666 if (gfp_pfmemalloc_allowed(flags)) {
667 clear_obj_pfmemalloc(&objp);
668 return objp;
669 }
670
671 /* The caller cannot use PFMEMALLOC objects, find another one */
672 for (i = 0; i < ac->avail; i++) {
673 /* If a !PFMEMALLOC object is found, swap them */
674 if (!is_obj_pfmemalloc(ac->entry[i])) {
675 objp = ac->entry[i];
676 ac->entry[i] = ac->entry[ac->avail];
677 ac->entry[ac->avail] = objp;
678 return objp;
679 }
680 }
681
682 /*
683 * If there are empty slabs on the slabs_free list and we are
684 * being forced to refill the cache, mark this one !pfmemalloc.
685 */
686 n = get_node(cachep, numa_mem_id());
687 if (!list_empty(&n->slabs_free) && force_refill) {
688 struct page *page = virt_to_head_page(objp);
689 ClearPageSlabPfmemalloc(page);
690 clear_obj_pfmemalloc(&objp);
691 recheck_pfmemalloc_active(cachep, ac);
692 return objp;
693 }
694
695 /* No !PFMEMALLOC objects available */
696 ac->avail++;
697 objp = NULL;
698 }
699
700 return objp;
701 }
702
703 static inline void *ac_get_obj(struct kmem_cache *cachep,
704 struct array_cache *ac, gfp_t flags, bool force_refill)
705 {
706 void *objp;
707
708 if (unlikely(sk_memalloc_socks()))
709 objp = __ac_get_obj(cachep, ac, flags, force_refill);
710 else
711 objp = ac->entry[--ac->avail];
712
713 return objp;
714 }
715
716 static noinline void *__ac_put_obj(struct kmem_cache *cachep,
717 struct array_cache *ac, void *objp)
718 {
719 if (unlikely(pfmemalloc_active)) {
720 /* Some pfmemalloc slabs exist, check if this is one */
721 struct page *page = virt_to_head_page(objp);
722 if (PageSlabPfmemalloc(page))
723 set_obj_pfmemalloc(&objp);
724 }
725
726 return objp;
727 }
728
729 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
730 void *objp)
731 {
732 if (unlikely(sk_memalloc_socks()))
733 objp = __ac_put_obj(cachep, ac, objp);
734
735 ac->entry[ac->avail++] = objp;
736 }
737
738 /*
739 * Transfer objects in one arraycache to another.
740 * Locking must be handled by the caller.
741 *
742 * Return the number of entries transferred.
743 */
744 static int transfer_objects(struct array_cache *to,
745 struct array_cache *from, unsigned int max)
746 {
747 /* Figure out how many entries to transfer */
748 int nr = min3(from->avail, max, to->limit - to->avail);
749
750 if (!nr)
751 return 0;
752
753 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
754 sizeof(void *) *nr);
755
756 from->avail -= nr;
757 to->avail += nr;
758 return nr;
759 }
760
761 #ifndef CONFIG_NUMA
762
763 #define drain_alien_cache(cachep, alien) do { } while (0)
764 #define reap_alien(cachep, n) do { } while (0)
765
766 static inline struct alien_cache **alloc_alien_cache(int node,
767 int limit, gfp_t gfp)
768 {
769 return (struct alien_cache **)BAD_ALIEN_MAGIC;
770 }
771
772 static inline void free_alien_cache(struct alien_cache **ac_ptr)
773 {
774 }
775
776 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
777 {
778 return 0;
779 }
780
781 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
782 gfp_t flags)
783 {
784 return NULL;
785 }
786
787 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
788 gfp_t flags, int nodeid)
789 {
790 return NULL;
791 }
792
793 static inline gfp_t gfp_exact_node(gfp_t flags)
794 {
795 return flags;
796 }
797
798 #else /* CONFIG_NUMA */
799
800 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
801 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
802
803 static struct alien_cache *__alloc_alien_cache(int node, int entries,
804 int batch, gfp_t gfp)
805 {
806 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
807 struct alien_cache *alc = NULL;
808
809 alc = kmalloc_node(memsize, gfp, node);
810 init_arraycache(&alc->ac, entries, batch);
811 spin_lock_init(&alc->lock);
812 return alc;
813 }
814
815 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
816 {
817 struct alien_cache **alc_ptr;
818 size_t memsize = sizeof(void *) * nr_node_ids;
819 int i;
820
821 if (limit > 1)
822 limit = 12;
823 alc_ptr = kzalloc_node(memsize, gfp, node);
824 if (!alc_ptr)
825 return NULL;
826
827 for_each_node(i) {
828 if (i == node || !node_online(i))
829 continue;
830 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
831 if (!alc_ptr[i]) {
832 for (i--; i >= 0; i--)
833 kfree(alc_ptr[i]);
834 kfree(alc_ptr);
835 return NULL;
836 }
837 }
838 return alc_ptr;
839 }
840
841 static void free_alien_cache(struct alien_cache **alc_ptr)
842 {
843 int i;
844
845 if (!alc_ptr)
846 return;
847 for_each_node(i)
848 kfree(alc_ptr[i]);
849 kfree(alc_ptr);
850 }
851
852 static void __drain_alien_cache(struct kmem_cache *cachep,
853 struct array_cache *ac, int node,
854 struct list_head *list)
855 {
856 struct kmem_cache_node *n = get_node(cachep, node);
857
858 if (ac->avail) {
859 spin_lock(&n->list_lock);
860 /*
861 * Stuff objects into the remote nodes shared array first.
862 * That way we could avoid the overhead of putting the objects
863 * into the free lists and getting them back later.
864 */
865 if (n->shared)
866 transfer_objects(n->shared, ac, ac->limit);
867
868 free_block(cachep, ac->entry, ac->avail, node, list);
869 ac->avail = 0;
870 spin_unlock(&n->list_lock);
871 }
872 }
873
874 /*
875 * Called from cache_reap() to regularly drain alien caches round robin.
876 */
877 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
878 {
879 int node = __this_cpu_read(slab_reap_node);
880
881 if (n->alien) {
882 struct alien_cache *alc = n->alien[node];
883 struct array_cache *ac;
884
885 if (alc) {
886 ac = &alc->ac;
887 if (ac->avail && spin_trylock_irq(&alc->lock)) {
888 LIST_HEAD(list);
889
890 __drain_alien_cache(cachep, ac, node, &list);
891 spin_unlock_irq(&alc->lock);
892 slabs_destroy(cachep, &list);
893 }
894 }
895 }
896 }
897
898 static void drain_alien_cache(struct kmem_cache *cachep,
899 struct alien_cache **alien)
900 {
901 int i = 0;
902 struct alien_cache *alc;
903 struct array_cache *ac;
904 unsigned long flags;
905
906 for_each_online_node(i) {
907 alc = alien[i];
908 if (alc) {
909 LIST_HEAD(list);
910
911 ac = &alc->ac;
912 spin_lock_irqsave(&alc->lock, flags);
913 __drain_alien_cache(cachep, ac, i, &list);
914 spin_unlock_irqrestore(&alc->lock, flags);
915 slabs_destroy(cachep, &list);
916 }
917 }
918 }
919
920 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
921 int node, int page_node)
922 {
923 struct kmem_cache_node *n;
924 struct alien_cache *alien = NULL;
925 struct array_cache *ac;
926 LIST_HEAD(list);
927
928 n = get_node(cachep, node);
929 STATS_INC_NODEFREES(cachep);
930 if (n->alien && n->alien[page_node]) {
931 alien = n->alien[page_node];
932 ac = &alien->ac;
933 spin_lock(&alien->lock);
934 if (unlikely(ac->avail == ac->limit)) {
935 STATS_INC_ACOVERFLOW(cachep);
936 __drain_alien_cache(cachep, ac, page_node, &list);
937 }
938 ac_put_obj(cachep, ac, objp);
939 spin_unlock(&alien->lock);
940 slabs_destroy(cachep, &list);
941 } else {
942 n = get_node(cachep, page_node);
943 spin_lock(&n->list_lock);
944 free_block(cachep, &objp, 1, page_node, &list);
945 spin_unlock(&n->list_lock);
946 slabs_destroy(cachep, &list);
947 }
948 return 1;
949 }
950
951 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
952 {
953 int page_node = page_to_nid(virt_to_page(objp));
954 int node = numa_mem_id();
955 /*
956 * Make sure we are not freeing a object from another node to the array
957 * cache on this cpu.
958 */
959 if (likely(node == page_node))
960 return 0;
961
962 return __cache_free_alien(cachep, objp, node, page_node);
963 }
964
965 /*
966 * Construct gfp mask to allocate from a specific node but do not direct reclaim
967 * or warn about failures. kswapd may still wake to reclaim in the background.
968 */
969 static inline gfp_t gfp_exact_node(gfp_t flags)
970 {
971 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
972 }
973 #endif
974
975 /*
976 * Allocates and initializes node for a node on each slab cache, used for
977 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
978 * will be allocated off-node since memory is not yet online for the new node.
979 * When hotplugging memory or a cpu, existing node are not replaced if
980 * already in use.
981 *
982 * Must hold slab_mutex.
983 */
984 static int init_cache_node_node(int node)
985 {
986 struct kmem_cache *cachep;
987 struct kmem_cache_node *n;
988 const size_t memsize = sizeof(struct kmem_cache_node);
989
990 list_for_each_entry(cachep, &slab_caches, list) {
991 /*
992 * Set up the kmem_cache_node for cpu before we can
993 * begin anything. Make sure some other cpu on this
994 * node has not already allocated this
995 */
996 n = get_node(cachep, node);
997 if (!n) {
998 n = kmalloc_node(memsize, GFP_KERNEL, node);
999 if (!n)
1000 return -ENOMEM;
1001 kmem_cache_node_init(n);
1002 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1003 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1004
1005 /*
1006 * The kmem_cache_nodes don't come and go as CPUs
1007 * come and go. slab_mutex is sufficient
1008 * protection here.
1009 */
1010 cachep->node[node] = n;
1011 }
1012
1013 spin_lock_irq(&n->list_lock);
1014 n->free_limit =
1015 (1 + nr_cpus_node(node)) *
1016 cachep->batchcount + cachep->num;
1017 spin_unlock_irq(&n->list_lock);
1018 }
1019 return 0;
1020 }
1021
1022 static inline int slabs_tofree(struct kmem_cache *cachep,
1023 struct kmem_cache_node *n)
1024 {
1025 return (n->free_objects + cachep->num - 1) / cachep->num;
1026 }
1027
1028 static void cpuup_canceled(long cpu)
1029 {
1030 struct kmem_cache *cachep;
1031 struct kmem_cache_node *n = NULL;
1032 int node = cpu_to_mem(cpu);
1033 const struct cpumask *mask = cpumask_of_node(node);
1034
1035 list_for_each_entry(cachep, &slab_caches, list) {
1036 struct array_cache *nc;
1037 struct array_cache *shared;
1038 struct alien_cache **alien;
1039 LIST_HEAD(list);
1040
1041 n = get_node(cachep, node);
1042 if (!n)
1043 continue;
1044
1045 spin_lock_irq(&n->list_lock);
1046
1047 /* Free limit for this kmem_cache_node */
1048 n->free_limit -= cachep->batchcount;
1049
1050 /* cpu is dead; no one can alloc from it. */
1051 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1052 if (nc) {
1053 free_block(cachep, nc->entry, nc->avail, node, &list);
1054 nc->avail = 0;
1055 }
1056
1057 if (!cpumask_empty(mask)) {
1058 spin_unlock_irq(&n->list_lock);
1059 goto free_slab;
1060 }
1061
1062 shared = n->shared;
1063 if (shared) {
1064 free_block(cachep, shared->entry,
1065 shared->avail, node, &list);
1066 n->shared = NULL;
1067 }
1068
1069 alien = n->alien;
1070 n->alien = NULL;
1071
1072 spin_unlock_irq(&n->list_lock);
1073
1074 kfree(shared);
1075 if (alien) {
1076 drain_alien_cache(cachep, alien);
1077 free_alien_cache(alien);
1078 }
1079
1080 free_slab:
1081 slabs_destroy(cachep, &list);
1082 }
1083 /*
1084 * In the previous loop, all the objects were freed to
1085 * the respective cache's slabs, now we can go ahead and
1086 * shrink each nodelist to its limit.
1087 */
1088 list_for_each_entry(cachep, &slab_caches, list) {
1089 n = get_node(cachep, node);
1090 if (!n)
1091 continue;
1092 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1093 }
1094 }
1095
1096 static int cpuup_prepare(long cpu)
1097 {
1098 struct kmem_cache *cachep;
1099 struct kmem_cache_node *n = NULL;
1100 int node = cpu_to_mem(cpu);
1101 int err;
1102
1103 /*
1104 * We need to do this right in the beginning since
1105 * alloc_arraycache's are going to use this list.
1106 * kmalloc_node allows us to add the slab to the right
1107 * kmem_cache_node and not this cpu's kmem_cache_node
1108 */
1109 err = init_cache_node_node(node);
1110 if (err < 0)
1111 goto bad;
1112
1113 /*
1114 * Now we can go ahead with allocating the shared arrays and
1115 * array caches
1116 */
1117 list_for_each_entry(cachep, &slab_caches, list) {
1118 struct array_cache *shared = NULL;
1119 struct alien_cache **alien = NULL;
1120
1121 if (cachep->shared) {
1122 shared = alloc_arraycache(node,
1123 cachep->shared * cachep->batchcount,
1124 0xbaadf00d, GFP_KERNEL);
1125 if (!shared)
1126 goto bad;
1127 }
1128 if (use_alien_caches) {
1129 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1130 if (!alien) {
1131 kfree(shared);
1132 goto bad;
1133 }
1134 }
1135 n = get_node(cachep, node);
1136 BUG_ON(!n);
1137
1138 spin_lock_irq(&n->list_lock);
1139 if (!n->shared) {
1140 /*
1141 * We are serialised from CPU_DEAD or
1142 * CPU_UP_CANCELLED by the cpucontrol lock
1143 */
1144 n->shared = shared;
1145 shared = NULL;
1146 }
1147 #ifdef CONFIG_NUMA
1148 if (!n->alien) {
1149 n->alien = alien;
1150 alien = NULL;
1151 }
1152 #endif
1153 spin_unlock_irq(&n->list_lock);
1154 kfree(shared);
1155 free_alien_cache(alien);
1156 }
1157
1158 return 0;
1159 bad:
1160 cpuup_canceled(cpu);
1161 return -ENOMEM;
1162 }
1163
1164 static int cpuup_callback(struct notifier_block *nfb,
1165 unsigned long action, void *hcpu)
1166 {
1167 long cpu = (long)hcpu;
1168 int err = 0;
1169
1170 switch (action) {
1171 case CPU_UP_PREPARE:
1172 case CPU_UP_PREPARE_FROZEN:
1173 mutex_lock(&slab_mutex);
1174 err = cpuup_prepare(cpu);
1175 mutex_unlock(&slab_mutex);
1176 break;
1177 case CPU_ONLINE:
1178 case CPU_ONLINE_FROZEN:
1179 start_cpu_timer(cpu);
1180 break;
1181 #ifdef CONFIG_HOTPLUG_CPU
1182 case CPU_DOWN_PREPARE:
1183 case CPU_DOWN_PREPARE_FROZEN:
1184 /*
1185 * Shutdown cache reaper. Note that the slab_mutex is
1186 * held so that if cache_reap() is invoked it cannot do
1187 * anything expensive but will only modify reap_work
1188 * and reschedule the timer.
1189 */
1190 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1191 /* Now the cache_reaper is guaranteed to be not running. */
1192 per_cpu(slab_reap_work, cpu).work.func = NULL;
1193 break;
1194 case CPU_DOWN_FAILED:
1195 case CPU_DOWN_FAILED_FROZEN:
1196 start_cpu_timer(cpu);
1197 break;
1198 case CPU_DEAD:
1199 case CPU_DEAD_FROZEN:
1200 /*
1201 * Even if all the cpus of a node are down, we don't free the
1202 * kmem_cache_node of any cache. This to avoid a race between
1203 * cpu_down, and a kmalloc allocation from another cpu for
1204 * memory from the node of the cpu going down. The node
1205 * structure is usually allocated from kmem_cache_create() and
1206 * gets destroyed at kmem_cache_destroy().
1207 */
1208 /* fall through */
1209 #endif
1210 case CPU_UP_CANCELED:
1211 case CPU_UP_CANCELED_FROZEN:
1212 mutex_lock(&slab_mutex);
1213 cpuup_canceled(cpu);
1214 mutex_unlock(&slab_mutex);
1215 break;
1216 }
1217 return notifier_from_errno(err);
1218 }
1219
1220 static struct notifier_block cpucache_notifier = {
1221 &cpuup_callback, NULL, 0
1222 };
1223
1224 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1225 /*
1226 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1227 * Returns -EBUSY if all objects cannot be drained so that the node is not
1228 * removed.
1229 *
1230 * Must hold slab_mutex.
1231 */
1232 static int __meminit drain_cache_node_node(int node)
1233 {
1234 struct kmem_cache *cachep;
1235 int ret = 0;
1236
1237 list_for_each_entry(cachep, &slab_caches, list) {
1238 struct kmem_cache_node *n;
1239
1240 n = get_node(cachep, node);
1241 if (!n)
1242 continue;
1243
1244 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1245
1246 if (!list_empty(&n->slabs_full) ||
1247 !list_empty(&n->slabs_partial)) {
1248 ret = -EBUSY;
1249 break;
1250 }
1251 }
1252 return ret;
1253 }
1254
1255 static int __meminit slab_memory_callback(struct notifier_block *self,
1256 unsigned long action, void *arg)
1257 {
1258 struct memory_notify *mnb = arg;
1259 int ret = 0;
1260 int nid;
1261
1262 nid = mnb->status_change_nid;
1263 if (nid < 0)
1264 goto out;
1265
1266 switch (action) {
1267 case MEM_GOING_ONLINE:
1268 mutex_lock(&slab_mutex);
1269 ret = init_cache_node_node(nid);
1270 mutex_unlock(&slab_mutex);
1271 break;
1272 case MEM_GOING_OFFLINE:
1273 mutex_lock(&slab_mutex);
1274 ret = drain_cache_node_node(nid);
1275 mutex_unlock(&slab_mutex);
1276 break;
1277 case MEM_ONLINE:
1278 case MEM_OFFLINE:
1279 case MEM_CANCEL_ONLINE:
1280 case MEM_CANCEL_OFFLINE:
1281 break;
1282 }
1283 out:
1284 return notifier_from_errno(ret);
1285 }
1286 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1287
1288 /*
1289 * swap the static kmem_cache_node with kmalloced memory
1290 */
1291 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1292 int nodeid)
1293 {
1294 struct kmem_cache_node *ptr;
1295
1296 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1297 BUG_ON(!ptr);
1298
1299 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1300 /*
1301 * Do not assume that spinlocks can be initialized via memcpy:
1302 */
1303 spin_lock_init(&ptr->list_lock);
1304
1305 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1306 cachep->node[nodeid] = ptr;
1307 }
1308
1309 /*
1310 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1311 * size of kmem_cache_node.
1312 */
1313 static void __init set_up_node(struct kmem_cache *cachep, int index)
1314 {
1315 int node;
1316
1317 for_each_online_node(node) {
1318 cachep->node[node] = &init_kmem_cache_node[index + node];
1319 cachep->node[node]->next_reap = jiffies +
1320 REAPTIMEOUT_NODE +
1321 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1322 }
1323 }
1324
1325 /*
1326 * Initialisation. Called after the page allocator have been initialised and
1327 * before smp_init().
1328 */
1329 void __init kmem_cache_init(void)
1330 {
1331 int i;
1332
1333 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1334 sizeof(struct rcu_head));
1335 kmem_cache = &kmem_cache_boot;
1336
1337 if (num_possible_nodes() == 1)
1338 use_alien_caches = 0;
1339
1340 for (i = 0; i < NUM_INIT_LISTS; i++)
1341 kmem_cache_node_init(&init_kmem_cache_node[i]);
1342
1343 /*
1344 * Fragmentation resistance on low memory - only use bigger
1345 * page orders on machines with more than 32MB of memory if
1346 * not overridden on the command line.
1347 */
1348 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1349 slab_max_order = SLAB_MAX_ORDER_HI;
1350
1351 /* Bootstrap is tricky, because several objects are allocated
1352 * from caches that do not exist yet:
1353 * 1) initialize the kmem_cache cache: it contains the struct
1354 * kmem_cache structures of all caches, except kmem_cache itself:
1355 * kmem_cache is statically allocated.
1356 * Initially an __init data area is used for the head array and the
1357 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1358 * array at the end of the bootstrap.
1359 * 2) Create the first kmalloc cache.
1360 * The struct kmem_cache for the new cache is allocated normally.
1361 * An __init data area is used for the head array.
1362 * 3) Create the remaining kmalloc caches, with minimally sized
1363 * head arrays.
1364 * 4) Replace the __init data head arrays for kmem_cache and the first
1365 * kmalloc cache with kmalloc allocated arrays.
1366 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1367 * the other cache's with kmalloc allocated memory.
1368 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1369 */
1370
1371 /* 1) create the kmem_cache */
1372
1373 /*
1374 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1375 */
1376 create_boot_cache(kmem_cache, "kmem_cache",
1377 offsetof(struct kmem_cache, node) +
1378 nr_node_ids * sizeof(struct kmem_cache_node *),
1379 SLAB_HWCACHE_ALIGN);
1380 list_add(&kmem_cache->list, &slab_caches);
1381 slab_state = PARTIAL;
1382
1383 /*
1384 * Initialize the caches that provide memory for the kmem_cache_node
1385 * structures first. Without this, further allocations will bug.
1386 */
1387 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1388 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1389 slab_state = PARTIAL_NODE;
1390 setup_kmalloc_cache_index_table();
1391
1392 slab_early_init = 0;
1393
1394 /* 5) Replace the bootstrap kmem_cache_node */
1395 {
1396 int nid;
1397
1398 for_each_online_node(nid) {
1399 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1400
1401 init_list(kmalloc_caches[INDEX_NODE],
1402 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1403 }
1404 }
1405
1406 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1407 }
1408
1409 void __init kmem_cache_init_late(void)
1410 {
1411 struct kmem_cache *cachep;
1412
1413 slab_state = UP;
1414
1415 /* 6) resize the head arrays to their final sizes */
1416 mutex_lock(&slab_mutex);
1417 list_for_each_entry(cachep, &slab_caches, list)
1418 if (enable_cpucache(cachep, GFP_NOWAIT))
1419 BUG();
1420 mutex_unlock(&slab_mutex);
1421
1422 /* Done! */
1423 slab_state = FULL;
1424
1425 /*
1426 * Register a cpu startup notifier callback that initializes
1427 * cpu_cache_get for all new cpus
1428 */
1429 register_cpu_notifier(&cpucache_notifier);
1430
1431 #ifdef CONFIG_NUMA
1432 /*
1433 * Register a memory hotplug callback that initializes and frees
1434 * node.
1435 */
1436 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1437 #endif
1438
1439 /*
1440 * The reap timers are started later, with a module init call: That part
1441 * of the kernel is not yet operational.
1442 */
1443 }
1444
1445 static int __init cpucache_init(void)
1446 {
1447 int cpu;
1448
1449 /*
1450 * Register the timers that return unneeded pages to the page allocator
1451 */
1452 for_each_online_cpu(cpu)
1453 start_cpu_timer(cpu);
1454
1455 /* Done! */
1456 slab_state = FULL;
1457 return 0;
1458 }
1459 __initcall(cpucache_init);
1460
1461 static noinline void
1462 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1463 {
1464 #if DEBUG
1465 struct kmem_cache_node *n;
1466 struct page *page;
1467 unsigned long flags;
1468 int node;
1469 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1470 DEFAULT_RATELIMIT_BURST);
1471
1472 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1473 return;
1474
1475 printk(KERN_WARNING
1476 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1477 nodeid, gfpflags);
1478 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1479 cachep->name, cachep->size, cachep->gfporder);
1480
1481 for_each_kmem_cache_node(cachep, node, n) {
1482 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1483 unsigned long active_slabs = 0, num_slabs = 0;
1484
1485 spin_lock_irqsave(&n->list_lock, flags);
1486 list_for_each_entry(page, &n->slabs_full, lru) {
1487 active_objs += cachep->num;
1488 active_slabs++;
1489 }
1490 list_for_each_entry(page, &n->slabs_partial, lru) {
1491 active_objs += page->active;
1492 active_slabs++;
1493 }
1494 list_for_each_entry(page, &n->slabs_free, lru)
1495 num_slabs++;
1496
1497 free_objects += n->free_objects;
1498 spin_unlock_irqrestore(&n->list_lock, flags);
1499
1500 num_slabs += active_slabs;
1501 num_objs = num_slabs * cachep->num;
1502 printk(KERN_WARNING
1503 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1504 node, active_slabs, num_slabs, active_objs, num_objs,
1505 free_objects);
1506 }
1507 #endif
1508 }
1509
1510 /*
1511 * Interface to system's page allocator. No need to hold the
1512 * kmem_cache_node ->list_lock.
1513 *
1514 * If we requested dmaable memory, we will get it. Even if we
1515 * did not request dmaable memory, we might get it, but that
1516 * would be relatively rare and ignorable.
1517 */
1518 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1519 int nodeid)
1520 {
1521 struct page *page;
1522 int nr_pages;
1523
1524 flags |= cachep->allocflags;
1525 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1526 flags |= __GFP_RECLAIMABLE;
1527
1528 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1529 if (!page) {
1530 slab_out_of_memory(cachep, flags, nodeid);
1531 return NULL;
1532 }
1533
1534 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1535 __free_pages(page, cachep->gfporder);
1536 return NULL;
1537 }
1538
1539 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1540 if (page_is_pfmemalloc(page))
1541 pfmemalloc_active = true;
1542
1543 nr_pages = (1 << cachep->gfporder);
1544 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1545 add_zone_page_state(page_zone(page),
1546 NR_SLAB_RECLAIMABLE, nr_pages);
1547 else
1548 add_zone_page_state(page_zone(page),
1549 NR_SLAB_UNRECLAIMABLE, nr_pages);
1550 __SetPageSlab(page);
1551 if (page_is_pfmemalloc(page))
1552 SetPageSlabPfmemalloc(page);
1553
1554 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1555 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1556
1557 if (cachep->ctor)
1558 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1559 else
1560 kmemcheck_mark_unallocated_pages(page, nr_pages);
1561 }
1562
1563 return page;
1564 }
1565
1566 /*
1567 * Interface to system's page release.
1568 */
1569 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1570 {
1571 const unsigned long nr_freed = (1 << cachep->gfporder);
1572
1573 kmemcheck_free_shadow(page, cachep->gfporder);
1574
1575 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1576 sub_zone_page_state(page_zone(page),
1577 NR_SLAB_RECLAIMABLE, nr_freed);
1578 else
1579 sub_zone_page_state(page_zone(page),
1580 NR_SLAB_UNRECLAIMABLE, nr_freed);
1581
1582 BUG_ON(!PageSlab(page));
1583 __ClearPageSlabPfmemalloc(page);
1584 __ClearPageSlab(page);
1585 page_mapcount_reset(page);
1586 page->mapping = NULL;
1587
1588 if (current->reclaim_state)
1589 current->reclaim_state->reclaimed_slab += nr_freed;
1590 __free_kmem_pages(page, cachep->gfporder);
1591 }
1592
1593 static void kmem_rcu_free(struct rcu_head *head)
1594 {
1595 struct kmem_cache *cachep;
1596 struct page *page;
1597
1598 page = container_of(head, struct page, rcu_head);
1599 cachep = page->slab_cache;
1600
1601 kmem_freepages(cachep, page);
1602 }
1603
1604 #if DEBUG
1605 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1606 {
1607 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1608 (cachep->size % PAGE_SIZE) == 0)
1609 return true;
1610
1611 return false;
1612 }
1613
1614 #ifdef CONFIG_DEBUG_PAGEALLOC
1615 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1616 unsigned long caller)
1617 {
1618 int size = cachep->object_size;
1619
1620 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1621
1622 if (size < 5 * sizeof(unsigned long))
1623 return;
1624
1625 *addr++ = 0x12345678;
1626 *addr++ = caller;
1627 *addr++ = smp_processor_id();
1628 size -= 3 * sizeof(unsigned long);
1629 {
1630 unsigned long *sptr = &caller;
1631 unsigned long svalue;
1632
1633 while (!kstack_end(sptr)) {
1634 svalue = *sptr++;
1635 if (kernel_text_address(svalue)) {
1636 *addr++ = svalue;
1637 size -= sizeof(unsigned long);
1638 if (size <= sizeof(unsigned long))
1639 break;
1640 }
1641 }
1642
1643 }
1644 *addr++ = 0x87654321;
1645 }
1646
1647 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1648 int map, unsigned long caller)
1649 {
1650 if (!is_debug_pagealloc_cache(cachep))
1651 return;
1652
1653 if (caller)
1654 store_stackinfo(cachep, objp, caller);
1655
1656 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1657 }
1658
1659 #else
1660 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1661 int map, unsigned long caller) {}
1662
1663 #endif
1664
1665 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1666 {
1667 int size = cachep->object_size;
1668 addr = &((char *)addr)[obj_offset(cachep)];
1669
1670 memset(addr, val, size);
1671 *(unsigned char *)(addr + size - 1) = POISON_END;
1672 }
1673
1674 static void dump_line(char *data, int offset, int limit)
1675 {
1676 int i;
1677 unsigned char error = 0;
1678 int bad_count = 0;
1679
1680 printk(KERN_ERR "%03x: ", offset);
1681 for (i = 0; i < limit; i++) {
1682 if (data[offset + i] != POISON_FREE) {
1683 error = data[offset + i];
1684 bad_count++;
1685 }
1686 }
1687 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1688 &data[offset], limit, 1);
1689
1690 if (bad_count == 1) {
1691 error ^= POISON_FREE;
1692 if (!(error & (error - 1))) {
1693 printk(KERN_ERR "Single bit error detected. Probably "
1694 "bad RAM.\n");
1695 #ifdef CONFIG_X86
1696 printk(KERN_ERR "Run memtest86+ or a similar memory "
1697 "test tool.\n");
1698 #else
1699 printk(KERN_ERR "Run a memory test tool.\n");
1700 #endif
1701 }
1702 }
1703 }
1704 #endif
1705
1706 #if DEBUG
1707
1708 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1709 {
1710 int i, size;
1711 char *realobj;
1712
1713 if (cachep->flags & SLAB_RED_ZONE) {
1714 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1715 *dbg_redzone1(cachep, objp),
1716 *dbg_redzone2(cachep, objp));
1717 }
1718
1719 if (cachep->flags & SLAB_STORE_USER) {
1720 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1721 *dbg_userword(cachep, objp),
1722 *dbg_userword(cachep, objp));
1723 }
1724 realobj = (char *)objp + obj_offset(cachep);
1725 size = cachep->object_size;
1726 for (i = 0; i < size && lines; i += 16, lines--) {
1727 int limit;
1728 limit = 16;
1729 if (i + limit > size)
1730 limit = size - i;
1731 dump_line(realobj, i, limit);
1732 }
1733 }
1734
1735 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1736 {
1737 char *realobj;
1738 int size, i;
1739 int lines = 0;
1740
1741 if (is_debug_pagealloc_cache(cachep))
1742 return;
1743
1744 realobj = (char *)objp + obj_offset(cachep);
1745 size = cachep->object_size;
1746
1747 for (i = 0; i < size; i++) {
1748 char exp = POISON_FREE;
1749 if (i == size - 1)
1750 exp = POISON_END;
1751 if (realobj[i] != exp) {
1752 int limit;
1753 /* Mismatch ! */
1754 /* Print header */
1755 if (lines == 0) {
1756 printk(KERN_ERR
1757 "Slab corruption (%s): %s start=%p, len=%d\n",
1758 print_tainted(), cachep->name, realobj, size);
1759 print_objinfo(cachep, objp, 0);
1760 }
1761 /* Hexdump the affected line */
1762 i = (i / 16) * 16;
1763 limit = 16;
1764 if (i + limit > size)
1765 limit = size - i;
1766 dump_line(realobj, i, limit);
1767 i += 16;
1768 lines++;
1769 /* Limit to 5 lines */
1770 if (lines > 5)
1771 break;
1772 }
1773 }
1774 if (lines != 0) {
1775 /* Print some data about the neighboring objects, if they
1776 * exist:
1777 */
1778 struct page *page = virt_to_head_page(objp);
1779 unsigned int objnr;
1780
1781 objnr = obj_to_index(cachep, page, objp);
1782 if (objnr) {
1783 objp = index_to_obj(cachep, page, objnr - 1);
1784 realobj = (char *)objp + obj_offset(cachep);
1785 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1786 realobj, size);
1787 print_objinfo(cachep, objp, 2);
1788 }
1789 if (objnr + 1 < cachep->num) {
1790 objp = index_to_obj(cachep, page, objnr + 1);
1791 realobj = (char *)objp + obj_offset(cachep);
1792 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1793 realobj, size);
1794 print_objinfo(cachep, objp, 2);
1795 }
1796 }
1797 }
1798 #endif
1799
1800 #if DEBUG
1801 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1802 struct page *page)
1803 {
1804 int i;
1805 for (i = 0; i < cachep->num; i++) {
1806 void *objp = index_to_obj(cachep, page, i);
1807
1808 if (cachep->flags & SLAB_POISON) {
1809 check_poison_obj(cachep, objp);
1810 slab_kernel_map(cachep, objp, 1, 0);
1811 }
1812 if (cachep->flags & SLAB_RED_ZONE) {
1813 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1814 slab_error(cachep, "start of a freed object "
1815 "was overwritten");
1816 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1817 slab_error(cachep, "end of a freed object "
1818 "was overwritten");
1819 }
1820 }
1821 }
1822 #else
1823 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1824 struct page *page)
1825 {
1826 }
1827 #endif
1828
1829 /**
1830 * slab_destroy - destroy and release all objects in a slab
1831 * @cachep: cache pointer being destroyed
1832 * @page: page pointer being destroyed
1833 *
1834 * Destroy all the objs in a slab page, and release the mem back to the system.
1835 * Before calling the slab page must have been unlinked from the cache. The
1836 * kmem_cache_node ->list_lock is not held/needed.
1837 */
1838 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1839 {
1840 void *freelist;
1841
1842 freelist = page->freelist;
1843 slab_destroy_debugcheck(cachep, page);
1844 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1845 call_rcu(&page->rcu_head, kmem_rcu_free);
1846 else
1847 kmem_freepages(cachep, page);
1848
1849 /*
1850 * From now on, we don't use freelist
1851 * although actual page can be freed in rcu context
1852 */
1853 if (OFF_SLAB(cachep))
1854 kmem_cache_free(cachep->freelist_cache, freelist);
1855 }
1856
1857 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1858 {
1859 struct page *page, *n;
1860
1861 list_for_each_entry_safe(page, n, list, lru) {
1862 list_del(&page->lru);
1863 slab_destroy(cachep, page);
1864 }
1865 }
1866
1867 /**
1868 * calculate_slab_order - calculate size (page order) of slabs
1869 * @cachep: pointer to the cache that is being created
1870 * @size: size of objects to be created in this cache.
1871 * @flags: slab allocation flags
1872 *
1873 * Also calculates the number of objects per slab.
1874 *
1875 * This could be made much more intelligent. For now, try to avoid using
1876 * high order pages for slabs. When the gfp() functions are more friendly
1877 * towards high-order requests, this should be changed.
1878 */
1879 static size_t calculate_slab_order(struct kmem_cache *cachep,
1880 size_t size, unsigned long flags)
1881 {
1882 unsigned long offslab_limit;
1883 size_t left_over = 0;
1884 int gfporder;
1885
1886 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1887 unsigned int num;
1888 size_t remainder;
1889
1890 cache_estimate(gfporder, size, flags, &remainder, &num);
1891 if (!num)
1892 continue;
1893
1894 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1895 if (num > SLAB_OBJ_MAX_NUM)
1896 break;
1897
1898 if (flags & CFLGS_OFF_SLAB) {
1899 /*
1900 * Max number of objs-per-slab for caches which
1901 * use off-slab slabs. Needed to avoid a possible
1902 * looping condition in cache_grow().
1903 */
1904 offslab_limit = size;
1905 offslab_limit /= sizeof(freelist_idx_t);
1906
1907 if (num > offslab_limit)
1908 break;
1909 }
1910
1911 /* Found something acceptable - save it away */
1912 cachep->num = num;
1913 cachep->gfporder = gfporder;
1914 left_over = remainder;
1915
1916 /*
1917 * A VFS-reclaimable slab tends to have most allocations
1918 * as GFP_NOFS and we really don't want to have to be allocating
1919 * higher-order pages when we are unable to shrink dcache.
1920 */
1921 if (flags & SLAB_RECLAIM_ACCOUNT)
1922 break;
1923
1924 /*
1925 * Large number of objects is good, but very large slabs are
1926 * currently bad for the gfp()s.
1927 */
1928 if (gfporder >= slab_max_order)
1929 break;
1930
1931 /*
1932 * Acceptable internal fragmentation?
1933 */
1934 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1935 break;
1936 }
1937 return left_over;
1938 }
1939
1940 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1941 struct kmem_cache *cachep, int entries, int batchcount)
1942 {
1943 int cpu;
1944 size_t size;
1945 struct array_cache __percpu *cpu_cache;
1946
1947 size = sizeof(void *) * entries + sizeof(struct array_cache);
1948 cpu_cache = __alloc_percpu(size, sizeof(void *));
1949
1950 if (!cpu_cache)
1951 return NULL;
1952
1953 for_each_possible_cpu(cpu) {
1954 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1955 entries, batchcount);
1956 }
1957
1958 return cpu_cache;
1959 }
1960
1961 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1962 {
1963 if (slab_state >= FULL)
1964 return enable_cpucache(cachep, gfp);
1965
1966 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1967 if (!cachep->cpu_cache)
1968 return 1;
1969
1970 if (slab_state == DOWN) {
1971 /* Creation of first cache (kmem_cache). */
1972 set_up_node(kmem_cache, CACHE_CACHE);
1973 } else if (slab_state == PARTIAL) {
1974 /* For kmem_cache_node */
1975 set_up_node(cachep, SIZE_NODE);
1976 } else {
1977 int node;
1978
1979 for_each_online_node(node) {
1980 cachep->node[node] = kmalloc_node(
1981 sizeof(struct kmem_cache_node), gfp, node);
1982 BUG_ON(!cachep->node[node]);
1983 kmem_cache_node_init(cachep->node[node]);
1984 }
1985 }
1986
1987 cachep->node[numa_mem_id()]->next_reap =
1988 jiffies + REAPTIMEOUT_NODE +
1989 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1990
1991 cpu_cache_get(cachep)->avail = 0;
1992 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1993 cpu_cache_get(cachep)->batchcount = 1;
1994 cpu_cache_get(cachep)->touched = 0;
1995 cachep->batchcount = 1;
1996 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1997 return 0;
1998 }
1999
2000 unsigned long kmem_cache_flags(unsigned long object_size,
2001 unsigned long flags, const char *name,
2002 void (*ctor)(void *))
2003 {
2004 return flags;
2005 }
2006
2007 struct kmem_cache *
2008 __kmem_cache_alias(const char *name, size_t size, size_t align,
2009 unsigned long flags, void (*ctor)(void *))
2010 {
2011 struct kmem_cache *cachep;
2012
2013 cachep = find_mergeable(size, align, flags, name, ctor);
2014 if (cachep) {
2015 cachep->refcount++;
2016
2017 /*
2018 * Adjust the object sizes so that we clear
2019 * the complete object on kzalloc.
2020 */
2021 cachep->object_size = max_t(int, cachep->object_size, size);
2022 }
2023 return cachep;
2024 }
2025
2026 /**
2027 * __kmem_cache_create - Create a cache.
2028 * @cachep: cache management descriptor
2029 * @flags: SLAB flags
2030 *
2031 * Returns a ptr to the cache on success, NULL on failure.
2032 * Cannot be called within a int, but can be interrupted.
2033 * The @ctor is run when new pages are allocated by the cache.
2034 *
2035 * The flags are
2036 *
2037 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2038 * to catch references to uninitialised memory.
2039 *
2040 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2041 * for buffer overruns.
2042 *
2043 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2044 * cacheline. This can be beneficial if you're counting cycles as closely
2045 * as davem.
2046 */
2047 int
2048 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2049 {
2050 size_t left_over, freelist_size;
2051 size_t ralign = BYTES_PER_WORD;
2052 gfp_t gfp;
2053 int err;
2054 size_t size = cachep->size;
2055
2056 #if DEBUG
2057 #if FORCED_DEBUG
2058 /*
2059 * Enable redzoning and last user accounting, except for caches with
2060 * large objects, if the increased size would increase the object size
2061 * above the next power of two: caches with object sizes just above a
2062 * power of two have a significant amount of internal fragmentation.
2063 */
2064 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2065 2 * sizeof(unsigned long long)))
2066 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2067 if (!(flags & SLAB_DESTROY_BY_RCU))
2068 flags |= SLAB_POISON;
2069 #endif
2070 #endif
2071
2072 /*
2073 * Check that size is in terms of words. This is needed to avoid
2074 * unaligned accesses for some archs when redzoning is used, and makes
2075 * sure any on-slab bufctl's are also correctly aligned.
2076 */
2077 if (size & (BYTES_PER_WORD - 1)) {
2078 size += (BYTES_PER_WORD - 1);
2079 size &= ~(BYTES_PER_WORD - 1);
2080 }
2081
2082 if (flags & SLAB_RED_ZONE) {
2083 ralign = REDZONE_ALIGN;
2084 /* If redzoning, ensure that the second redzone is suitably
2085 * aligned, by adjusting the object size accordingly. */
2086 size += REDZONE_ALIGN - 1;
2087 size &= ~(REDZONE_ALIGN - 1);
2088 }
2089
2090 /* 3) caller mandated alignment */
2091 if (ralign < cachep->align) {
2092 ralign = cachep->align;
2093 }
2094 /* disable debug if necessary */
2095 if (ralign > __alignof__(unsigned long long))
2096 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2097 /*
2098 * 4) Store it.
2099 */
2100 cachep->align = ralign;
2101
2102 if (slab_is_available())
2103 gfp = GFP_KERNEL;
2104 else
2105 gfp = GFP_NOWAIT;
2106
2107 #if DEBUG
2108
2109 /*
2110 * Both debugging options require word-alignment which is calculated
2111 * into align above.
2112 */
2113 if (flags & SLAB_RED_ZONE) {
2114 /* add space for red zone words */
2115 cachep->obj_offset += sizeof(unsigned long long);
2116 size += 2 * sizeof(unsigned long long);
2117 }
2118 if (flags & SLAB_STORE_USER) {
2119 /* user store requires one word storage behind the end of
2120 * the real object. But if the second red zone needs to be
2121 * aligned to 64 bits, we must allow that much space.
2122 */
2123 if (flags & SLAB_RED_ZONE)
2124 size += REDZONE_ALIGN;
2125 else
2126 size += BYTES_PER_WORD;
2127 }
2128 #endif
2129
2130 size = ALIGN(size, cachep->align);
2131 /*
2132 * We should restrict the number of objects in a slab to implement
2133 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2134 */
2135 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2136 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2137
2138 #if DEBUG
2139 /*
2140 * To activate debug pagealloc, off-slab management is necessary
2141 * requirement. In early phase of initialization, small sized slab
2142 * doesn't get initialized so it would not be possible. So, we need
2143 * to check size >= 256. It guarantees that all necessary small
2144 * sized slab is initialized in current slab initialization sequence.
2145 */
2146 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2147 !slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2148 size >= 256 && cachep->object_size > cache_line_size() &&
2149 size < PAGE_SIZE) {
2150 cachep->obj_offset += PAGE_SIZE - size;
2151 size = PAGE_SIZE;
2152 }
2153 #endif
2154
2155 /*
2156 * Determine if the slab management is 'on' or 'off' slab.
2157 * (bootstrapping cannot cope with offslab caches so don't do
2158 * it too early on. Always use on-slab management when
2159 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2160 */
2161 if (size >= OFF_SLAB_MIN_SIZE && !slab_early_init &&
2162 !(flags & SLAB_NOLEAKTRACE)) {
2163 /*
2164 * Size is large, assume best to place the slab management obj
2165 * off-slab (should allow better packing of objs).
2166 */
2167 flags |= CFLGS_OFF_SLAB;
2168 }
2169
2170 left_over = calculate_slab_order(cachep, size, flags);
2171
2172 if (!cachep->num)
2173 return -E2BIG;
2174
2175 freelist_size = cachep->num * sizeof(freelist_idx_t);
2176
2177 /*
2178 * If the slab has been placed off-slab, and we have enough space then
2179 * move it on-slab. This is at the expense of any extra colouring.
2180 */
2181 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2182 flags &= ~CFLGS_OFF_SLAB;
2183 left_over -= freelist_size;
2184 }
2185
2186 cachep->colour_off = cache_line_size();
2187 /* Offset must be a multiple of the alignment. */
2188 if (cachep->colour_off < cachep->align)
2189 cachep->colour_off = cachep->align;
2190 cachep->colour = left_over / cachep->colour_off;
2191 cachep->freelist_size = freelist_size;
2192 cachep->flags = flags;
2193 cachep->allocflags = __GFP_COMP;
2194 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2195 cachep->allocflags |= GFP_DMA;
2196 cachep->size = size;
2197 cachep->reciprocal_buffer_size = reciprocal_value(size);
2198
2199 #if DEBUG
2200 /*
2201 * If we're going to use the generic kernel_map_pages()
2202 * poisoning, then it's going to smash the contents of
2203 * the redzone and userword anyhow, so switch them off.
2204 */
2205 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2206 (cachep->flags & SLAB_POISON) &&
2207 is_debug_pagealloc_cache(cachep))
2208 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2209 #endif
2210
2211 if (OFF_SLAB(cachep)) {
2212 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2213 /*
2214 * This is a possibility for one of the kmalloc_{dma,}_caches.
2215 * But since we go off slab only for object size greater than
2216 * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
2217 * in ascending order,this should not happen at all.
2218 * But leave a BUG_ON for some lucky dude.
2219 */
2220 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2221 }
2222
2223 err = setup_cpu_cache(cachep, gfp);
2224 if (err) {
2225 __kmem_cache_release(cachep);
2226 return err;
2227 }
2228
2229 return 0;
2230 }
2231
2232 #if DEBUG
2233 static void check_irq_off(void)
2234 {
2235 BUG_ON(!irqs_disabled());
2236 }
2237
2238 static void check_irq_on(void)
2239 {
2240 BUG_ON(irqs_disabled());
2241 }
2242
2243 static void check_spinlock_acquired(struct kmem_cache *cachep)
2244 {
2245 #ifdef CONFIG_SMP
2246 check_irq_off();
2247 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2248 #endif
2249 }
2250
2251 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2252 {
2253 #ifdef CONFIG_SMP
2254 check_irq_off();
2255 assert_spin_locked(&get_node(cachep, node)->list_lock);
2256 #endif
2257 }
2258
2259 #else
2260 #define check_irq_off() do { } while(0)
2261 #define check_irq_on() do { } while(0)
2262 #define check_spinlock_acquired(x) do { } while(0)
2263 #define check_spinlock_acquired_node(x, y) do { } while(0)
2264 #endif
2265
2266 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2267 struct array_cache *ac,
2268 int force, int node);
2269
2270 static void do_drain(void *arg)
2271 {
2272 struct kmem_cache *cachep = arg;
2273 struct array_cache *ac;
2274 int node = numa_mem_id();
2275 struct kmem_cache_node *n;
2276 LIST_HEAD(list);
2277
2278 check_irq_off();
2279 ac = cpu_cache_get(cachep);
2280 n = get_node(cachep, node);
2281 spin_lock(&n->list_lock);
2282 free_block(cachep, ac->entry, ac->avail, node, &list);
2283 spin_unlock(&n->list_lock);
2284 slabs_destroy(cachep, &list);
2285 ac->avail = 0;
2286 }
2287
2288 static void drain_cpu_caches(struct kmem_cache *cachep)
2289 {
2290 struct kmem_cache_node *n;
2291 int node;
2292
2293 on_each_cpu(do_drain, cachep, 1);
2294 check_irq_on();
2295 for_each_kmem_cache_node(cachep, node, n)
2296 if (n->alien)
2297 drain_alien_cache(cachep, n->alien);
2298
2299 for_each_kmem_cache_node(cachep, node, n)
2300 drain_array(cachep, n, n->shared, 1, node);
2301 }
2302
2303 /*
2304 * Remove slabs from the list of free slabs.
2305 * Specify the number of slabs to drain in tofree.
2306 *
2307 * Returns the actual number of slabs released.
2308 */
2309 static int drain_freelist(struct kmem_cache *cache,
2310 struct kmem_cache_node *n, int tofree)
2311 {
2312 struct list_head *p;
2313 int nr_freed;
2314 struct page *page;
2315
2316 nr_freed = 0;
2317 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2318
2319 spin_lock_irq(&n->list_lock);
2320 p = n->slabs_free.prev;
2321 if (p == &n->slabs_free) {
2322 spin_unlock_irq(&n->list_lock);
2323 goto out;
2324 }
2325
2326 page = list_entry(p, struct page, lru);
2327 list_del(&page->lru);
2328 /*
2329 * Safe to drop the lock. The slab is no longer linked
2330 * to the cache.
2331 */
2332 n->free_objects -= cache->num;
2333 spin_unlock_irq(&n->list_lock);
2334 slab_destroy(cache, page);
2335 nr_freed++;
2336 }
2337 out:
2338 return nr_freed;
2339 }
2340
2341 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2342 {
2343 int ret = 0;
2344 int node;
2345 struct kmem_cache_node *n;
2346
2347 drain_cpu_caches(cachep);
2348
2349 check_irq_on();
2350 for_each_kmem_cache_node(cachep, node, n) {
2351 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2352
2353 ret += !list_empty(&n->slabs_full) ||
2354 !list_empty(&n->slabs_partial);
2355 }
2356 return (ret ? 1 : 0);
2357 }
2358
2359 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2360 {
2361 return __kmem_cache_shrink(cachep, false);
2362 }
2363
2364 void __kmem_cache_release(struct kmem_cache *cachep)
2365 {
2366 int i;
2367 struct kmem_cache_node *n;
2368
2369 free_percpu(cachep->cpu_cache);
2370
2371 /* NUMA: free the node structures */
2372 for_each_kmem_cache_node(cachep, i, n) {
2373 kfree(n->shared);
2374 free_alien_cache(n->alien);
2375 kfree(n);
2376 cachep->node[i] = NULL;
2377 }
2378 }
2379
2380 /*
2381 * Get the memory for a slab management obj.
2382 *
2383 * For a slab cache when the slab descriptor is off-slab, the
2384 * slab descriptor can't come from the same cache which is being created,
2385 * Because if it is the case, that means we defer the creation of
2386 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2387 * And we eventually call down to __kmem_cache_create(), which
2388 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2389 * This is a "chicken-and-egg" problem.
2390 *
2391 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2392 * which are all initialized during kmem_cache_init().
2393 */
2394 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2395 struct page *page, int colour_off,
2396 gfp_t local_flags, int nodeid)
2397 {
2398 void *freelist;
2399 void *addr = page_address(page);
2400
2401 page->s_mem = addr + colour_off;
2402 page->active = 0;
2403
2404 if (OFF_SLAB(cachep)) {
2405 /* Slab management obj is off-slab. */
2406 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2407 local_flags, nodeid);
2408 if (!freelist)
2409 return NULL;
2410 } else {
2411 /* We will use last bytes at the slab for freelist */
2412 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2413 cachep->freelist_size;
2414 }
2415
2416 return freelist;
2417 }
2418
2419 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2420 {
2421 return ((freelist_idx_t *)page->freelist)[idx];
2422 }
2423
2424 static inline void set_free_obj(struct page *page,
2425 unsigned int idx, freelist_idx_t val)
2426 {
2427 ((freelist_idx_t *)(page->freelist))[idx] = val;
2428 }
2429
2430 static void cache_init_objs(struct kmem_cache *cachep,
2431 struct page *page)
2432 {
2433 int i;
2434
2435 for (i = 0; i < cachep->num; i++) {
2436 void *objp = index_to_obj(cachep, page, i);
2437 #if DEBUG
2438 if (cachep->flags & SLAB_STORE_USER)
2439 *dbg_userword(cachep, objp) = NULL;
2440
2441 if (cachep->flags & SLAB_RED_ZONE) {
2442 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2443 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2444 }
2445 /*
2446 * Constructors are not allowed to allocate memory from the same
2447 * cache which they are a constructor for. Otherwise, deadlock.
2448 * They must also be threaded.
2449 */
2450 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2451 cachep->ctor(objp + obj_offset(cachep));
2452
2453 if (cachep->flags & SLAB_RED_ZONE) {
2454 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2455 slab_error(cachep, "constructor overwrote the"
2456 " end of an object");
2457 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2458 slab_error(cachep, "constructor overwrote the"
2459 " start of an object");
2460 }
2461 /* need to poison the objs? */
2462 if (cachep->flags & SLAB_POISON) {
2463 poison_obj(cachep, objp, POISON_FREE);
2464 slab_kernel_map(cachep, objp, 0, 0);
2465 }
2466 #else
2467 if (cachep->ctor)
2468 cachep->ctor(objp);
2469 #endif
2470 set_free_obj(page, i, i);
2471 }
2472 }
2473
2474 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2475 {
2476 if (CONFIG_ZONE_DMA_FLAG) {
2477 if (flags & GFP_DMA)
2478 BUG_ON(!(cachep->allocflags & GFP_DMA));
2479 else
2480 BUG_ON(cachep->allocflags & GFP_DMA);
2481 }
2482 }
2483
2484 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2485 {
2486 void *objp;
2487
2488 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2489 page->active++;
2490
2491 #if DEBUG
2492 if (cachep->flags & SLAB_STORE_USER)
2493 set_store_user_dirty(cachep);
2494 #endif
2495
2496 return objp;
2497 }
2498
2499 static void slab_put_obj(struct kmem_cache *cachep,
2500 struct page *page, void *objp)
2501 {
2502 unsigned int objnr = obj_to_index(cachep, page, objp);
2503 #if DEBUG
2504 unsigned int i;
2505
2506 /* Verify double free bug */
2507 for (i = page->active; i < cachep->num; i++) {
2508 if (get_free_obj(page, i) == objnr) {
2509 printk(KERN_ERR "slab: double free detected in cache "
2510 "'%s', objp %p\n", cachep->name, objp);
2511 BUG();
2512 }
2513 }
2514 #endif
2515 page->active--;
2516 set_free_obj(page, page->active, objnr);
2517 }
2518
2519 /*
2520 * Map pages beginning at addr to the given cache and slab. This is required
2521 * for the slab allocator to be able to lookup the cache and slab of a
2522 * virtual address for kfree, ksize, and slab debugging.
2523 */
2524 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2525 void *freelist)
2526 {
2527 page->slab_cache = cache;
2528 page->freelist = freelist;
2529 }
2530
2531 /*
2532 * Grow (by 1) the number of slabs within a cache. This is called by
2533 * kmem_cache_alloc() when there are no active objs left in a cache.
2534 */
2535 static int cache_grow(struct kmem_cache *cachep,
2536 gfp_t flags, int nodeid, struct page *page)
2537 {
2538 void *freelist;
2539 size_t offset;
2540 gfp_t local_flags;
2541 struct kmem_cache_node *n;
2542
2543 /*
2544 * Be lazy and only check for valid flags here, keeping it out of the
2545 * critical path in kmem_cache_alloc().
2546 */
2547 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2548 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2549 BUG();
2550 }
2551 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2552
2553 /* Take the node list lock to change the colour_next on this node */
2554 check_irq_off();
2555 n = get_node(cachep, nodeid);
2556 spin_lock(&n->list_lock);
2557
2558 /* Get colour for the slab, and cal the next value. */
2559 offset = n->colour_next;
2560 n->colour_next++;
2561 if (n->colour_next >= cachep->colour)
2562 n->colour_next = 0;
2563 spin_unlock(&n->list_lock);
2564
2565 offset *= cachep->colour_off;
2566
2567 if (gfpflags_allow_blocking(local_flags))
2568 local_irq_enable();
2569
2570 /*
2571 * The test for missing atomic flag is performed here, rather than
2572 * the more obvious place, simply to reduce the critical path length
2573 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2574 * will eventually be caught here (where it matters).
2575 */
2576 kmem_flagcheck(cachep, flags);
2577
2578 /*
2579 * Get mem for the objs. Attempt to allocate a physical page from
2580 * 'nodeid'.
2581 */
2582 if (!page)
2583 page = kmem_getpages(cachep, local_flags, nodeid);
2584 if (!page)
2585 goto failed;
2586
2587 /* Get slab management. */
2588 freelist = alloc_slabmgmt(cachep, page, offset,
2589 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2590 if (!freelist)
2591 goto opps1;
2592
2593 slab_map_pages(cachep, page, freelist);
2594
2595 cache_init_objs(cachep, page);
2596
2597 if (gfpflags_allow_blocking(local_flags))
2598 local_irq_disable();
2599 check_irq_off();
2600 spin_lock(&n->list_lock);
2601
2602 /* Make slab active. */
2603 list_add_tail(&page->lru, &(n->slabs_free));
2604 STATS_INC_GROWN(cachep);
2605 n->free_objects += cachep->num;
2606 spin_unlock(&n->list_lock);
2607 return 1;
2608 opps1:
2609 kmem_freepages(cachep, page);
2610 failed:
2611 if (gfpflags_allow_blocking(local_flags))
2612 local_irq_disable();
2613 return 0;
2614 }
2615
2616 #if DEBUG
2617
2618 /*
2619 * Perform extra freeing checks:
2620 * - detect bad pointers.
2621 * - POISON/RED_ZONE checking
2622 */
2623 static void kfree_debugcheck(const void *objp)
2624 {
2625 if (!virt_addr_valid(objp)) {
2626 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2627 (unsigned long)objp);
2628 BUG();
2629 }
2630 }
2631
2632 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2633 {
2634 unsigned long long redzone1, redzone2;
2635
2636 redzone1 = *dbg_redzone1(cache, obj);
2637 redzone2 = *dbg_redzone2(cache, obj);
2638
2639 /*
2640 * Redzone is ok.
2641 */
2642 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2643 return;
2644
2645 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2646 slab_error(cache, "double free detected");
2647 else
2648 slab_error(cache, "memory outside object was overwritten");
2649
2650 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2651 obj, redzone1, redzone2);
2652 }
2653
2654 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2655 unsigned long caller)
2656 {
2657 unsigned int objnr;
2658 struct page *page;
2659
2660 BUG_ON(virt_to_cache(objp) != cachep);
2661
2662 objp -= obj_offset(cachep);
2663 kfree_debugcheck(objp);
2664 page = virt_to_head_page(objp);
2665
2666 if (cachep->flags & SLAB_RED_ZONE) {
2667 verify_redzone_free(cachep, objp);
2668 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2669 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2670 }
2671 if (cachep->flags & SLAB_STORE_USER) {
2672 set_store_user_dirty(cachep);
2673 *dbg_userword(cachep, objp) = (void *)caller;
2674 }
2675
2676 objnr = obj_to_index(cachep, page, objp);
2677
2678 BUG_ON(objnr >= cachep->num);
2679 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2680
2681 if (cachep->flags & SLAB_POISON) {
2682 poison_obj(cachep, objp, POISON_FREE);
2683 slab_kernel_map(cachep, objp, 0, caller);
2684 }
2685 return objp;
2686 }
2687
2688 #else
2689 #define kfree_debugcheck(x) do { } while(0)
2690 #define cache_free_debugcheck(x,objp,z) (objp)
2691 #endif
2692
2693 static struct page *get_first_slab(struct kmem_cache_node *n)
2694 {
2695 struct page *page;
2696
2697 page = list_first_entry_or_null(&n->slabs_partial,
2698 struct page, lru);
2699 if (!page) {
2700 n->free_touched = 1;
2701 page = list_first_entry_or_null(&n->slabs_free,
2702 struct page, lru);
2703 }
2704
2705 return page;
2706 }
2707
2708 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2709 bool force_refill)
2710 {
2711 int batchcount;
2712 struct kmem_cache_node *n;
2713 struct array_cache *ac;
2714 int node;
2715
2716 check_irq_off();
2717 node = numa_mem_id();
2718 if (unlikely(force_refill))
2719 goto force_grow;
2720 retry:
2721 ac = cpu_cache_get(cachep);
2722 batchcount = ac->batchcount;
2723 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2724 /*
2725 * If there was little recent activity on this cache, then
2726 * perform only a partial refill. Otherwise we could generate
2727 * refill bouncing.
2728 */
2729 batchcount = BATCHREFILL_LIMIT;
2730 }
2731 n = get_node(cachep, node);
2732
2733 BUG_ON(ac->avail > 0 || !n);
2734 spin_lock(&n->list_lock);
2735
2736 /* See if we can refill from the shared array */
2737 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2738 n->shared->touched = 1;
2739 goto alloc_done;
2740 }
2741
2742 while (batchcount > 0) {
2743 struct page *page;
2744 /* Get slab alloc is to come from. */
2745 page = get_first_slab(n);
2746 if (!page)
2747 goto must_grow;
2748
2749 check_spinlock_acquired(cachep);
2750
2751 /*
2752 * The slab was either on partial or free list so
2753 * there must be at least one object available for
2754 * allocation.
2755 */
2756 BUG_ON(page->active >= cachep->num);
2757
2758 while (page->active < cachep->num && batchcount--) {
2759 STATS_INC_ALLOCED(cachep);
2760 STATS_INC_ACTIVE(cachep);
2761 STATS_SET_HIGH(cachep);
2762
2763 ac_put_obj(cachep, ac, slab_get_obj(cachep, page));
2764 }
2765
2766 /* move slabp to correct slabp list: */
2767 list_del(&page->lru);
2768 if (page->active == cachep->num)
2769 list_add(&page->lru, &n->slabs_full);
2770 else
2771 list_add(&page->lru, &n->slabs_partial);
2772 }
2773
2774 must_grow:
2775 n->free_objects -= ac->avail;
2776 alloc_done:
2777 spin_unlock(&n->list_lock);
2778
2779 if (unlikely(!ac->avail)) {
2780 int x;
2781 force_grow:
2782 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2783
2784 /* cache_grow can reenable interrupts, then ac could change. */
2785 ac = cpu_cache_get(cachep);
2786 node = numa_mem_id();
2787
2788 /* no objects in sight? abort */
2789 if (!x && (ac->avail == 0 || force_refill))
2790 return NULL;
2791
2792 if (!ac->avail) /* objects refilled by interrupt? */
2793 goto retry;
2794 }
2795 ac->touched = 1;
2796
2797 return ac_get_obj(cachep, ac, flags, force_refill);
2798 }
2799
2800 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2801 gfp_t flags)
2802 {
2803 might_sleep_if(gfpflags_allow_blocking(flags));
2804 #if DEBUG
2805 kmem_flagcheck(cachep, flags);
2806 #endif
2807 }
2808
2809 #if DEBUG
2810 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2811 gfp_t flags, void *objp, unsigned long caller)
2812 {
2813 if (!objp)
2814 return objp;
2815 if (cachep->flags & SLAB_POISON) {
2816 check_poison_obj(cachep, objp);
2817 slab_kernel_map(cachep, objp, 1, 0);
2818 poison_obj(cachep, objp, POISON_INUSE);
2819 }
2820 if (cachep->flags & SLAB_STORE_USER)
2821 *dbg_userword(cachep, objp) = (void *)caller;
2822
2823 if (cachep->flags & SLAB_RED_ZONE) {
2824 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2825 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2826 slab_error(cachep, "double free, or memory outside"
2827 " object was overwritten");
2828 printk(KERN_ERR
2829 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2830 objp, *dbg_redzone1(cachep, objp),
2831 *dbg_redzone2(cachep, objp));
2832 }
2833 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2834 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2835 }
2836
2837 objp += obj_offset(cachep);
2838 if (cachep->ctor && cachep->flags & SLAB_POISON)
2839 cachep->ctor(objp);
2840 if (ARCH_SLAB_MINALIGN &&
2841 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2842 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2843 objp, (int)ARCH_SLAB_MINALIGN);
2844 }
2845 return objp;
2846 }
2847 #else
2848 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2849 #endif
2850
2851 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2852 {
2853 void *objp;
2854 struct array_cache *ac;
2855 bool force_refill = false;
2856
2857 check_irq_off();
2858
2859 ac = cpu_cache_get(cachep);
2860 if (likely(ac->avail)) {
2861 ac->touched = 1;
2862 objp = ac_get_obj(cachep, ac, flags, false);
2863
2864 /*
2865 * Allow for the possibility all avail objects are not allowed
2866 * by the current flags
2867 */
2868 if (objp) {
2869 STATS_INC_ALLOCHIT(cachep);
2870 goto out;
2871 }
2872 force_refill = true;
2873 }
2874
2875 STATS_INC_ALLOCMISS(cachep);
2876 objp = cache_alloc_refill(cachep, flags, force_refill);
2877 /*
2878 * the 'ac' may be updated by cache_alloc_refill(),
2879 * and kmemleak_erase() requires its correct value.
2880 */
2881 ac = cpu_cache_get(cachep);
2882
2883 out:
2884 /*
2885 * To avoid a false negative, if an object that is in one of the
2886 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2887 * treat the array pointers as a reference to the object.
2888 */
2889 if (objp)
2890 kmemleak_erase(&ac->entry[ac->avail]);
2891 return objp;
2892 }
2893
2894 #ifdef CONFIG_NUMA
2895 /*
2896 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2897 *
2898 * If we are in_interrupt, then process context, including cpusets and
2899 * mempolicy, may not apply and should not be used for allocation policy.
2900 */
2901 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2902 {
2903 int nid_alloc, nid_here;
2904
2905 if (in_interrupt() || (flags & __GFP_THISNODE))
2906 return NULL;
2907 nid_alloc = nid_here = numa_mem_id();
2908 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2909 nid_alloc = cpuset_slab_spread_node();
2910 else if (current->mempolicy)
2911 nid_alloc = mempolicy_slab_node();
2912 if (nid_alloc != nid_here)
2913 return ____cache_alloc_node(cachep, flags, nid_alloc);
2914 return NULL;
2915 }
2916
2917 /*
2918 * Fallback function if there was no memory available and no objects on a
2919 * certain node and fall back is permitted. First we scan all the
2920 * available node for available objects. If that fails then we
2921 * perform an allocation without specifying a node. This allows the page
2922 * allocator to do its reclaim / fallback magic. We then insert the
2923 * slab into the proper nodelist and then allocate from it.
2924 */
2925 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2926 {
2927 struct zonelist *zonelist;
2928 gfp_t local_flags;
2929 struct zoneref *z;
2930 struct zone *zone;
2931 enum zone_type high_zoneidx = gfp_zone(flags);
2932 void *obj = NULL;
2933 int nid;
2934 unsigned int cpuset_mems_cookie;
2935
2936 if (flags & __GFP_THISNODE)
2937 return NULL;
2938
2939 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2940
2941 retry_cpuset:
2942 cpuset_mems_cookie = read_mems_allowed_begin();
2943 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2944
2945 retry:
2946 /*
2947 * Look through allowed nodes for objects available
2948 * from existing per node queues.
2949 */
2950 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2951 nid = zone_to_nid(zone);
2952
2953 if (cpuset_zone_allowed(zone, flags) &&
2954 get_node(cache, nid) &&
2955 get_node(cache, nid)->free_objects) {
2956 obj = ____cache_alloc_node(cache,
2957 gfp_exact_node(flags), nid);
2958 if (obj)
2959 break;
2960 }
2961 }
2962
2963 if (!obj) {
2964 /*
2965 * This allocation will be performed within the constraints
2966 * of the current cpuset / memory policy requirements.
2967 * We may trigger various forms of reclaim on the allowed
2968 * set and go into memory reserves if necessary.
2969 */
2970 struct page *page;
2971
2972 if (gfpflags_allow_blocking(local_flags))
2973 local_irq_enable();
2974 kmem_flagcheck(cache, flags);
2975 page = kmem_getpages(cache, local_flags, numa_mem_id());
2976 if (gfpflags_allow_blocking(local_flags))
2977 local_irq_disable();
2978 if (page) {
2979 /*
2980 * Insert into the appropriate per node queues
2981 */
2982 nid = page_to_nid(page);
2983 if (cache_grow(cache, flags, nid, page)) {
2984 obj = ____cache_alloc_node(cache,
2985 gfp_exact_node(flags), nid);
2986 if (!obj)
2987 /*
2988 * Another processor may allocate the
2989 * objects in the slab since we are
2990 * not holding any locks.
2991 */
2992 goto retry;
2993 } else {
2994 /* cache_grow already freed obj */
2995 obj = NULL;
2996 }
2997 }
2998 }
2999
3000 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3001 goto retry_cpuset;
3002 return obj;
3003 }
3004
3005 /*
3006 * A interface to enable slab creation on nodeid
3007 */
3008 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3009 int nodeid)
3010 {
3011 struct page *page;
3012 struct kmem_cache_node *n;
3013 void *obj;
3014 int x;
3015
3016 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3017 n = get_node(cachep, nodeid);
3018 BUG_ON(!n);
3019
3020 retry:
3021 check_irq_off();
3022 spin_lock(&n->list_lock);
3023 page = get_first_slab(n);
3024 if (!page)
3025 goto must_grow;
3026
3027 check_spinlock_acquired_node(cachep, nodeid);
3028
3029 STATS_INC_NODEALLOCS(cachep);
3030 STATS_INC_ACTIVE(cachep);
3031 STATS_SET_HIGH(cachep);
3032
3033 BUG_ON(page->active == cachep->num);
3034
3035 obj = slab_get_obj(cachep, page);
3036 n->free_objects--;
3037 /* move slabp to correct slabp list: */
3038 list_del(&page->lru);
3039
3040 if (page->active == cachep->num)
3041 list_add(&page->lru, &n->slabs_full);
3042 else
3043 list_add(&page->lru, &n->slabs_partial);
3044
3045 spin_unlock(&n->list_lock);
3046 goto done;
3047
3048 must_grow:
3049 spin_unlock(&n->list_lock);
3050 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3051 if (x)
3052 goto retry;
3053
3054 return fallback_alloc(cachep, flags);
3055
3056 done:
3057 return obj;
3058 }
3059
3060 static __always_inline void *
3061 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3062 unsigned long caller)
3063 {
3064 unsigned long save_flags;
3065 void *ptr;
3066 int slab_node = numa_mem_id();
3067
3068 flags &= gfp_allowed_mask;
3069 cachep = slab_pre_alloc_hook(cachep, flags);
3070 if (unlikely(!cachep))
3071 return NULL;
3072
3073 cache_alloc_debugcheck_before(cachep, flags);
3074 local_irq_save(save_flags);
3075
3076 if (nodeid == NUMA_NO_NODE)
3077 nodeid = slab_node;
3078
3079 if (unlikely(!get_node(cachep, nodeid))) {
3080 /* Node not bootstrapped yet */
3081 ptr = fallback_alloc(cachep, flags);
3082 goto out;
3083 }
3084
3085 if (nodeid == slab_node) {
3086 /*
3087 * Use the locally cached objects if possible.
3088 * However ____cache_alloc does not allow fallback
3089 * to other nodes. It may fail while we still have
3090 * objects on other nodes available.
3091 */
3092 ptr = ____cache_alloc(cachep, flags);
3093 if (ptr)
3094 goto out;
3095 }
3096 /* ___cache_alloc_node can fall back to other nodes */
3097 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3098 out:
3099 local_irq_restore(save_flags);
3100 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3101
3102 if (unlikely(flags & __GFP_ZERO) && ptr)
3103 memset(ptr, 0, cachep->object_size);
3104
3105 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3106 return ptr;
3107 }
3108
3109 static __always_inline void *
3110 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3111 {
3112 void *objp;
3113
3114 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3115 objp = alternate_node_alloc(cache, flags);
3116 if (objp)
3117 goto out;
3118 }
3119 objp = ____cache_alloc(cache, flags);
3120
3121 /*
3122 * We may just have run out of memory on the local node.
3123 * ____cache_alloc_node() knows how to locate memory on other nodes
3124 */
3125 if (!objp)
3126 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3127
3128 out:
3129 return objp;
3130 }
3131 #else
3132
3133 static __always_inline void *
3134 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3135 {
3136 return ____cache_alloc(cachep, flags);
3137 }
3138
3139 #endif /* CONFIG_NUMA */
3140
3141 static __always_inline void *
3142 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3143 {
3144 unsigned long save_flags;
3145 void *objp;
3146
3147 flags &= gfp_allowed_mask;
3148 cachep = slab_pre_alloc_hook(cachep, flags);
3149 if (unlikely(!cachep))
3150 return NULL;
3151
3152 cache_alloc_debugcheck_before(cachep, flags);
3153 local_irq_save(save_flags);
3154 objp = __do_cache_alloc(cachep, flags);
3155 local_irq_restore(save_flags);
3156 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3157 prefetchw(objp);
3158
3159 if (unlikely(flags & __GFP_ZERO) && objp)
3160 memset(objp, 0, cachep->object_size);
3161
3162 slab_post_alloc_hook(cachep, flags, 1, &objp);
3163 return objp;
3164 }
3165
3166 /*
3167 * Caller needs to acquire correct kmem_cache_node's list_lock
3168 * @list: List of detached free slabs should be freed by caller
3169 */
3170 static void free_block(struct kmem_cache *cachep, void **objpp,
3171 int nr_objects, int node, struct list_head *list)
3172 {
3173 int i;
3174 struct kmem_cache_node *n = get_node(cachep, node);
3175
3176 for (i = 0; i < nr_objects; i++) {
3177 void *objp;
3178 struct page *page;
3179
3180 clear_obj_pfmemalloc(&objpp[i]);
3181 objp = objpp[i];
3182
3183 page = virt_to_head_page(objp);
3184 list_del(&page->lru);
3185 check_spinlock_acquired_node(cachep, node);
3186 slab_put_obj(cachep, page, objp);
3187 STATS_DEC_ACTIVE(cachep);
3188 n->free_objects++;
3189
3190 /* fixup slab chains */
3191 if (page->active == 0) {
3192 if (n->free_objects > n->free_limit) {
3193 n->free_objects -= cachep->num;
3194 list_add_tail(&page->lru, list);
3195 } else {
3196 list_add(&page->lru, &n->slabs_free);
3197 }
3198 } else {
3199 /* Unconditionally move a slab to the end of the
3200 * partial list on free - maximum time for the
3201 * other objects to be freed, too.
3202 */
3203 list_add_tail(&page->lru, &n->slabs_partial);
3204 }
3205 }
3206 }
3207
3208 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3209 {
3210 int batchcount;
3211 struct kmem_cache_node *n;
3212 int node = numa_mem_id();
3213 LIST_HEAD(list);
3214
3215 batchcount = ac->batchcount;
3216
3217 check_irq_off();
3218 n = get_node(cachep, node);
3219 spin_lock(&n->list_lock);
3220 if (n->shared) {
3221 struct array_cache *shared_array = n->shared;
3222 int max = shared_array->limit - shared_array->avail;
3223 if (max) {
3224 if (batchcount > max)
3225 batchcount = max;
3226 memcpy(&(shared_array->entry[shared_array->avail]),
3227 ac->entry, sizeof(void *) * batchcount);
3228 shared_array->avail += batchcount;
3229 goto free_done;
3230 }
3231 }
3232
3233 free_block(cachep, ac->entry, batchcount, node, &list);
3234 free_done:
3235 #if STATS
3236 {
3237 int i = 0;
3238 struct page *page;
3239
3240 list_for_each_entry(page, &n->slabs_free, lru) {
3241 BUG_ON(page->active);
3242
3243 i++;
3244 }
3245 STATS_SET_FREEABLE(cachep, i);
3246 }
3247 #endif
3248 spin_unlock(&n->list_lock);
3249 slabs_destroy(cachep, &list);
3250 ac->avail -= batchcount;
3251 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3252 }
3253
3254 /*
3255 * Release an obj back to its cache. If the obj has a constructed state, it must
3256 * be in this state _before_ it is released. Called with disabled ints.
3257 */
3258 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3259 unsigned long caller)
3260 {
3261 struct array_cache *ac = cpu_cache_get(cachep);
3262
3263 check_irq_off();
3264 kmemleak_free_recursive(objp, cachep->flags);
3265 objp = cache_free_debugcheck(cachep, objp, caller);
3266
3267 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3268
3269 /*
3270 * Skip calling cache_free_alien() when the platform is not numa.
3271 * This will avoid cache misses that happen while accessing slabp (which
3272 * is per page memory reference) to get nodeid. Instead use a global
3273 * variable to skip the call, which is mostly likely to be present in
3274 * the cache.
3275 */
3276 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3277 return;
3278
3279 if (ac->avail < ac->limit) {
3280 STATS_INC_FREEHIT(cachep);
3281 } else {
3282 STATS_INC_FREEMISS(cachep);
3283 cache_flusharray(cachep, ac);
3284 }
3285
3286 ac_put_obj(cachep, ac, objp);
3287 }
3288
3289 /**
3290 * kmem_cache_alloc - Allocate an object
3291 * @cachep: The cache to allocate from.
3292 * @flags: See kmalloc().
3293 *
3294 * Allocate an object from this cache. The flags are only relevant
3295 * if the cache has no available objects.
3296 */
3297 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3298 {
3299 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3300
3301 trace_kmem_cache_alloc(_RET_IP_, ret,
3302 cachep->object_size, cachep->size, flags);
3303
3304 return ret;
3305 }
3306 EXPORT_SYMBOL(kmem_cache_alloc);
3307
3308 static __always_inline void
3309 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3310 size_t size, void **p, unsigned long caller)
3311 {
3312 size_t i;
3313
3314 for (i = 0; i < size; i++)
3315 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3316 }
3317
3318 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3319 void **p)
3320 {
3321 size_t i;
3322
3323 s = slab_pre_alloc_hook(s, flags);
3324 if (!s)
3325 return 0;
3326
3327 cache_alloc_debugcheck_before(s, flags);
3328
3329 local_irq_disable();
3330 for (i = 0; i < size; i++) {
3331 void *objp = __do_cache_alloc(s, flags);
3332
3333 if (unlikely(!objp))
3334 goto error;
3335 p[i] = objp;
3336 }
3337 local_irq_enable();
3338
3339 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3340
3341 /* Clear memory outside IRQ disabled section */
3342 if (unlikely(flags & __GFP_ZERO))
3343 for (i = 0; i < size; i++)
3344 memset(p[i], 0, s->object_size);
3345
3346 slab_post_alloc_hook(s, flags, size, p);
3347 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3348 return size;
3349 error:
3350 local_irq_enable();
3351 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3352 slab_post_alloc_hook(s, flags, i, p);
3353 __kmem_cache_free_bulk(s, i, p);
3354 return 0;
3355 }
3356 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3357
3358 #ifdef CONFIG_TRACING
3359 void *
3360 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3361 {
3362 void *ret;
3363
3364 ret = slab_alloc(cachep, flags, _RET_IP_);
3365
3366 trace_kmalloc(_RET_IP_, ret,
3367 size, cachep->size, flags);
3368 return ret;
3369 }
3370 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3371 #endif
3372
3373 #ifdef CONFIG_NUMA
3374 /**
3375 * kmem_cache_alloc_node - Allocate an object on the specified node
3376 * @cachep: The cache to allocate from.
3377 * @flags: See kmalloc().
3378 * @nodeid: node number of the target node.
3379 *
3380 * Identical to kmem_cache_alloc but it will allocate memory on the given
3381 * node, which can improve the performance for cpu bound structures.
3382 *
3383 * Fallback to other node is possible if __GFP_THISNODE is not set.
3384 */
3385 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3386 {
3387 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3388
3389 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3390 cachep->object_size, cachep->size,
3391 flags, nodeid);
3392
3393 return ret;
3394 }
3395 EXPORT_SYMBOL(kmem_cache_alloc_node);
3396
3397 #ifdef CONFIG_TRACING
3398 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3399 gfp_t flags,
3400 int nodeid,
3401 size_t size)
3402 {
3403 void *ret;
3404
3405 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3406
3407 trace_kmalloc_node(_RET_IP_, ret,
3408 size, cachep->size,
3409 flags, nodeid);
3410 return ret;
3411 }
3412 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3413 #endif
3414
3415 static __always_inline void *
3416 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3417 {
3418 struct kmem_cache *cachep;
3419
3420 cachep = kmalloc_slab(size, flags);
3421 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3422 return cachep;
3423 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3424 }
3425
3426 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3427 {
3428 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3429 }
3430 EXPORT_SYMBOL(__kmalloc_node);
3431
3432 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3433 int node, unsigned long caller)
3434 {
3435 return __do_kmalloc_node(size, flags, node, caller);
3436 }
3437 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3438 #endif /* CONFIG_NUMA */
3439
3440 /**
3441 * __do_kmalloc - allocate memory
3442 * @size: how many bytes of memory are required.
3443 * @flags: the type of memory to allocate (see kmalloc).
3444 * @caller: function caller for debug tracking of the caller
3445 */
3446 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3447 unsigned long caller)
3448 {
3449 struct kmem_cache *cachep;
3450 void *ret;
3451
3452 cachep = kmalloc_slab(size, flags);
3453 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3454 return cachep;
3455 ret = slab_alloc(cachep, flags, caller);
3456
3457 trace_kmalloc(caller, ret,
3458 size, cachep->size, flags);
3459
3460 return ret;
3461 }
3462
3463 void *__kmalloc(size_t size, gfp_t flags)
3464 {
3465 return __do_kmalloc(size, flags, _RET_IP_);
3466 }
3467 EXPORT_SYMBOL(__kmalloc);
3468
3469 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3470 {
3471 return __do_kmalloc(size, flags, caller);
3472 }
3473 EXPORT_SYMBOL(__kmalloc_track_caller);
3474
3475 /**
3476 * kmem_cache_free - Deallocate an object
3477 * @cachep: The cache the allocation was from.
3478 * @objp: The previously allocated object.
3479 *
3480 * Free an object which was previously allocated from this
3481 * cache.
3482 */
3483 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3484 {
3485 unsigned long flags;
3486 cachep = cache_from_obj(cachep, objp);
3487 if (!cachep)
3488 return;
3489
3490 local_irq_save(flags);
3491 debug_check_no_locks_freed(objp, cachep->object_size);
3492 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3493 debug_check_no_obj_freed(objp, cachep->object_size);
3494 __cache_free(cachep, objp, _RET_IP_);
3495 local_irq_restore(flags);
3496
3497 trace_kmem_cache_free(_RET_IP_, objp);
3498 }
3499 EXPORT_SYMBOL(kmem_cache_free);
3500
3501 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3502 {
3503 struct kmem_cache *s;
3504 size_t i;
3505
3506 local_irq_disable();
3507 for (i = 0; i < size; i++) {
3508 void *objp = p[i];
3509
3510 if (!orig_s) /* called via kfree_bulk */
3511 s = virt_to_cache(objp);
3512 else
3513 s = cache_from_obj(orig_s, objp);
3514
3515 debug_check_no_locks_freed(objp, s->object_size);
3516 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3517 debug_check_no_obj_freed(objp, s->object_size);
3518
3519 __cache_free(s, objp, _RET_IP_);
3520 }
3521 local_irq_enable();
3522
3523 /* FIXME: add tracing */
3524 }
3525 EXPORT_SYMBOL(kmem_cache_free_bulk);
3526
3527 /**
3528 * kfree - free previously allocated memory
3529 * @objp: pointer returned by kmalloc.
3530 *
3531 * If @objp is NULL, no operation is performed.
3532 *
3533 * Don't free memory not originally allocated by kmalloc()
3534 * or you will run into trouble.
3535 */
3536 void kfree(const void *objp)
3537 {
3538 struct kmem_cache *c;
3539 unsigned long flags;
3540
3541 trace_kfree(_RET_IP_, objp);
3542
3543 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3544 return;
3545 local_irq_save(flags);
3546 kfree_debugcheck(objp);
3547 c = virt_to_cache(objp);
3548 debug_check_no_locks_freed(objp, c->object_size);
3549
3550 debug_check_no_obj_freed(objp, c->object_size);
3551 __cache_free(c, (void *)objp, _RET_IP_);
3552 local_irq_restore(flags);
3553 }
3554 EXPORT_SYMBOL(kfree);
3555
3556 /*
3557 * This initializes kmem_cache_node or resizes various caches for all nodes.
3558 */
3559 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3560 {
3561 int node;
3562 struct kmem_cache_node *n;
3563 struct array_cache *new_shared;
3564 struct alien_cache **new_alien = NULL;
3565
3566 for_each_online_node(node) {
3567
3568 if (use_alien_caches) {
3569 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3570 if (!new_alien)
3571 goto fail;
3572 }
3573
3574 new_shared = NULL;
3575 if (cachep->shared) {
3576 new_shared = alloc_arraycache(node,
3577 cachep->shared*cachep->batchcount,
3578 0xbaadf00d, gfp);
3579 if (!new_shared) {
3580 free_alien_cache(new_alien);
3581 goto fail;
3582 }
3583 }
3584
3585 n = get_node(cachep, node);
3586 if (n) {
3587 struct array_cache *shared = n->shared;
3588 LIST_HEAD(list);
3589
3590 spin_lock_irq(&n->list_lock);
3591
3592 if (shared)
3593 free_block(cachep, shared->entry,
3594 shared->avail, node, &list);
3595
3596 n->shared = new_shared;
3597 if (!n->alien) {
3598 n->alien = new_alien;
3599 new_alien = NULL;
3600 }
3601 n->free_limit = (1 + nr_cpus_node(node)) *
3602 cachep->batchcount + cachep->num;
3603 spin_unlock_irq(&n->list_lock);
3604 slabs_destroy(cachep, &list);
3605 kfree(shared);
3606 free_alien_cache(new_alien);
3607 continue;
3608 }
3609 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3610 if (!n) {
3611 free_alien_cache(new_alien);
3612 kfree(new_shared);
3613 goto fail;
3614 }
3615
3616 kmem_cache_node_init(n);
3617 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3618 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3619 n->shared = new_shared;
3620 n->alien = new_alien;
3621 n->free_limit = (1 + nr_cpus_node(node)) *
3622 cachep->batchcount + cachep->num;
3623 cachep->node[node] = n;
3624 }
3625 return 0;
3626
3627 fail:
3628 if (!cachep->list.next) {
3629 /* Cache is not active yet. Roll back what we did */
3630 node--;
3631 while (node >= 0) {
3632 n = get_node(cachep, node);
3633 if (n) {
3634 kfree(n->shared);
3635 free_alien_cache(n->alien);
3636 kfree(n);
3637 cachep->node[node] = NULL;
3638 }
3639 node--;
3640 }
3641 }
3642 return -ENOMEM;
3643 }
3644
3645 /* Always called with the slab_mutex held */
3646 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3647 int batchcount, int shared, gfp_t gfp)
3648 {
3649 struct array_cache __percpu *cpu_cache, *prev;
3650 int cpu;
3651
3652 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3653 if (!cpu_cache)
3654 return -ENOMEM;
3655
3656 prev = cachep->cpu_cache;
3657 cachep->cpu_cache = cpu_cache;
3658 kick_all_cpus_sync();
3659
3660 check_irq_on();
3661 cachep->batchcount = batchcount;
3662 cachep->limit = limit;
3663 cachep->shared = shared;
3664
3665 if (!prev)
3666 goto alloc_node;
3667
3668 for_each_online_cpu(cpu) {
3669 LIST_HEAD(list);
3670 int node;
3671 struct kmem_cache_node *n;
3672 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3673
3674 node = cpu_to_mem(cpu);
3675 n = get_node(cachep, node);
3676 spin_lock_irq(&n->list_lock);
3677 free_block(cachep, ac->entry, ac->avail, node, &list);
3678 spin_unlock_irq(&n->list_lock);
3679 slabs_destroy(cachep, &list);
3680 }
3681 free_percpu(prev);
3682
3683 alloc_node:
3684 return alloc_kmem_cache_node(cachep, gfp);
3685 }
3686
3687 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3688 int batchcount, int shared, gfp_t gfp)
3689 {
3690 int ret;
3691 struct kmem_cache *c;
3692
3693 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3694
3695 if (slab_state < FULL)
3696 return ret;
3697
3698 if ((ret < 0) || !is_root_cache(cachep))
3699 return ret;
3700
3701 lockdep_assert_held(&slab_mutex);
3702 for_each_memcg_cache(c, cachep) {
3703 /* return value determined by the root cache only */
3704 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3705 }
3706
3707 return ret;
3708 }
3709
3710 /* Called with slab_mutex held always */
3711 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3712 {
3713 int err;
3714 int limit = 0;
3715 int shared = 0;
3716 int batchcount = 0;
3717
3718 if (!is_root_cache(cachep)) {
3719 struct kmem_cache *root = memcg_root_cache(cachep);
3720 limit = root->limit;
3721 shared = root->shared;
3722 batchcount = root->batchcount;
3723 }
3724
3725 if (limit && shared && batchcount)
3726 goto skip_setup;
3727 /*
3728 * The head array serves three purposes:
3729 * - create a LIFO ordering, i.e. return objects that are cache-warm
3730 * - reduce the number of spinlock operations.
3731 * - reduce the number of linked list operations on the slab and
3732 * bufctl chains: array operations are cheaper.
3733 * The numbers are guessed, we should auto-tune as described by
3734 * Bonwick.
3735 */
3736 if (cachep->size > 131072)
3737 limit = 1;
3738 else if (cachep->size > PAGE_SIZE)
3739 limit = 8;
3740 else if (cachep->size > 1024)
3741 limit = 24;
3742 else if (cachep->size > 256)
3743 limit = 54;
3744 else
3745 limit = 120;
3746
3747 /*
3748 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3749 * allocation behaviour: Most allocs on one cpu, most free operations
3750 * on another cpu. For these cases, an efficient object passing between
3751 * cpus is necessary. This is provided by a shared array. The array
3752 * replaces Bonwick's magazine layer.
3753 * On uniprocessor, it's functionally equivalent (but less efficient)
3754 * to a larger limit. Thus disabled by default.
3755 */
3756 shared = 0;
3757 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3758 shared = 8;
3759
3760 #if DEBUG
3761 /*
3762 * With debugging enabled, large batchcount lead to excessively long
3763 * periods with disabled local interrupts. Limit the batchcount
3764 */
3765 if (limit > 32)
3766 limit = 32;
3767 #endif
3768 batchcount = (limit + 1) / 2;
3769 skip_setup:
3770 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3771 if (err)
3772 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3773 cachep->name, -err);
3774 return err;
3775 }
3776
3777 /*
3778 * Drain an array if it contains any elements taking the node lock only if
3779 * necessary. Note that the node listlock also protects the array_cache
3780 * if drain_array() is used on the shared array.
3781 */
3782 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3783 struct array_cache *ac, int force, int node)
3784 {
3785 LIST_HEAD(list);
3786 int tofree;
3787
3788 if (!ac || !ac->avail)
3789 return;
3790 if (ac->touched && !force) {
3791 ac->touched = 0;
3792 } else {
3793 spin_lock_irq(&n->list_lock);
3794 if (ac->avail) {
3795 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3796 if (tofree > ac->avail)
3797 tofree = (ac->avail + 1) / 2;
3798 free_block(cachep, ac->entry, tofree, node, &list);
3799 ac->avail -= tofree;
3800 memmove(ac->entry, &(ac->entry[tofree]),
3801 sizeof(void *) * ac->avail);
3802 }
3803 spin_unlock_irq(&n->list_lock);
3804 slabs_destroy(cachep, &list);
3805 }
3806 }
3807
3808 /**
3809 * cache_reap - Reclaim memory from caches.
3810 * @w: work descriptor
3811 *
3812 * Called from workqueue/eventd every few seconds.
3813 * Purpose:
3814 * - clear the per-cpu caches for this CPU.
3815 * - return freeable pages to the main free memory pool.
3816 *
3817 * If we cannot acquire the cache chain mutex then just give up - we'll try
3818 * again on the next iteration.
3819 */
3820 static void cache_reap(struct work_struct *w)
3821 {
3822 struct kmem_cache *searchp;
3823 struct kmem_cache_node *n;
3824 int node = numa_mem_id();
3825 struct delayed_work *work = to_delayed_work(w);
3826
3827 if (!mutex_trylock(&slab_mutex))
3828 /* Give up. Setup the next iteration. */
3829 goto out;
3830
3831 list_for_each_entry(searchp, &slab_caches, list) {
3832 check_irq_on();
3833
3834 /*
3835 * We only take the node lock if absolutely necessary and we
3836 * have established with reasonable certainty that
3837 * we can do some work if the lock was obtained.
3838 */
3839 n = get_node(searchp, node);
3840
3841 reap_alien(searchp, n);
3842
3843 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3844
3845 /*
3846 * These are racy checks but it does not matter
3847 * if we skip one check or scan twice.
3848 */
3849 if (time_after(n->next_reap, jiffies))
3850 goto next;
3851
3852 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3853
3854 drain_array(searchp, n, n->shared, 0, node);
3855
3856 if (n->free_touched)
3857 n->free_touched = 0;
3858 else {
3859 int freed;
3860
3861 freed = drain_freelist(searchp, n, (n->free_limit +
3862 5 * searchp->num - 1) / (5 * searchp->num));
3863 STATS_ADD_REAPED(searchp, freed);
3864 }
3865 next:
3866 cond_resched();
3867 }
3868 check_irq_on();
3869 mutex_unlock(&slab_mutex);
3870 next_reap_node();
3871 out:
3872 /* Set up the next iteration */
3873 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3874 }
3875
3876 #ifdef CONFIG_SLABINFO
3877 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3878 {
3879 struct page *page;
3880 unsigned long active_objs;
3881 unsigned long num_objs;
3882 unsigned long active_slabs = 0;
3883 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3884 const char *name;
3885 char *error = NULL;
3886 int node;
3887 struct kmem_cache_node *n;
3888
3889 active_objs = 0;
3890 num_slabs = 0;
3891 for_each_kmem_cache_node(cachep, node, n) {
3892
3893 check_irq_on();
3894 spin_lock_irq(&n->list_lock);
3895
3896 list_for_each_entry(page, &n->slabs_full, lru) {
3897 if (page->active != cachep->num && !error)
3898 error = "slabs_full accounting error";
3899 active_objs += cachep->num;
3900 active_slabs++;
3901 }
3902 list_for_each_entry(page, &n->slabs_partial, lru) {
3903 if (page->active == cachep->num && !error)
3904 error = "slabs_partial accounting error";
3905 if (!page->active && !error)
3906 error = "slabs_partial accounting error";
3907 active_objs += page->active;
3908 active_slabs++;
3909 }
3910 list_for_each_entry(page, &n->slabs_free, lru) {
3911 if (page->active && !error)
3912 error = "slabs_free accounting error";
3913 num_slabs++;
3914 }
3915 free_objects += n->free_objects;
3916 if (n->shared)
3917 shared_avail += n->shared->avail;
3918
3919 spin_unlock_irq(&n->list_lock);
3920 }
3921 num_slabs += active_slabs;
3922 num_objs = num_slabs * cachep->num;
3923 if (num_objs - active_objs != free_objects && !error)
3924 error = "free_objects accounting error";
3925
3926 name = cachep->name;
3927 if (error)
3928 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3929
3930 sinfo->active_objs = active_objs;
3931 sinfo->num_objs = num_objs;
3932 sinfo->active_slabs = active_slabs;
3933 sinfo->num_slabs = num_slabs;
3934 sinfo->shared_avail = shared_avail;
3935 sinfo->limit = cachep->limit;
3936 sinfo->batchcount = cachep->batchcount;
3937 sinfo->shared = cachep->shared;
3938 sinfo->objects_per_slab = cachep->num;
3939 sinfo->cache_order = cachep->gfporder;
3940 }
3941
3942 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3943 {
3944 #if STATS
3945 { /* node stats */
3946 unsigned long high = cachep->high_mark;
3947 unsigned long allocs = cachep->num_allocations;
3948 unsigned long grown = cachep->grown;
3949 unsigned long reaped = cachep->reaped;
3950 unsigned long errors = cachep->errors;
3951 unsigned long max_freeable = cachep->max_freeable;
3952 unsigned long node_allocs = cachep->node_allocs;
3953 unsigned long node_frees = cachep->node_frees;
3954 unsigned long overflows = cachep->node_overflow;
3955
3956 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3957 "%4lu %4lu %4lu %4lu %4lu",
3958 allocs, high, grown,
3959 reaped, errors, max_freeable, node_allocs,
3960 node_frees, overflows);
3961 }
3962 /* cpu stats */
3963 {
3964 unsigned long allochit = atomic_read(&cachep->allochit);
3965 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3966 unsigned long freehit = atomic_read(&cachep->freehit);
3967 unsigned long freemiss = atomic_read(&cachep->freemiss);
3968
3969 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3970 allochit, allocmiss, freehit, freemiss);
3971 }
3972 #endif
3973 }
3974
3975 #define MAX_SLABINFO_WRITE 128
3976 /**
3977 * slabinfo_write - Tuning for the slab allocator
3978 * @file: unused
3979 * @buffer: user buffer
3980 * @count: data length
3981 * @ppos: unused
3982 */
3983 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
3984 size_t count, loff_t *ppos)
3985 {
3986 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3987 int limit, batchcount, shared, res;
3988 struct kmem_cache *cachep;
3989
3990 if (count > MAX_SLABINFO_WRITE)
3991 return -EINVAL;
3992 if (copy_from_user(&kbuf, buffer, count))
3993 return -EFAULT;
3994 kbuf[MAX_SLABINFO_WRITE] = '\0';
3995
3996 tmp = strchr(kbuf, ' ');
3997 if (!tmp)
3998 return -EINVAL;
3999 *tmp = '\0';
4000 tmp++;
4001 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4002 return -EINVAL;
4003
4004 /* Find the cache in the chain of caches. */
4005 mutex_lock(&slab_mutex);
4006 res = -EINVAL;
4007 list_for_each_entry(cachep, &slab_caches, list) {
4008 if (!strcmp(cachep->name, kbuf)) {
4009 if (limit < 1 || batchcount < 1 ||
4010 batchcount > limit || shared < 0) {
4011 res = 0;
4012 } else {
4013 res = do_tune_cpucache(cachep, limit,
4014 batchcount, shared,
4015 GFP_KERNEL);
4016 }
4017 break;
4018 }
4019 }
4020 mutex_unlock(&slab_mutex);
4021 if (res >= 0)
4022 res = count;
4023 return res;
4024 }
4025
4026 #ifdef CONFIG_DEBUG_SLAB_LEAK
4027
4028 static inline int add_caller(unsigned long *n, unsigned long v)
4029 {
4030 unsigned long *p;
4031 int l;
4032 if (!v)
4033 return 1;
4034 l = n[1];
4035 p = n + 2;
4036 while (l) {
4037 int i = l/2;
4038 unsigned long *q = p + 2 * i;
4039 if (*q == v) {
4040 q[1]++;
4041 return 1;
4042 }
4043 if (*q > v) {
4044 l = i;
4045 } else {
4046 p = q + 2;
4047 l -= i + 1;
4048 }
4049 }
4050 if (++n[1] == n[0])
4051 return 0;
4052 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4053 p[0] = v;
4054 p[1] = 1;
4055 return 1;
4056 }
4057
4058 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4059 struct page *page)
4060 {
4061 void *p;
4062 int i, j;
4063 unsigned long v;
4064
4065 if (n[0] == n[1])
4066 return;
4067 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4068 bool active = true;
4069
4070 for (j = page->active; j < c->num; j++) {
4071 if (get_free_obj(page, j) == i) {
4072 active = false;
4073 break;
4074 }
4075 }
4076
4077 if (!active)
4078 continue;
4079
4080 /*
4081 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4082 * mapping is established when actual object allocation and
4083 * we could mistakenly access the unmapped object in the cpu
4084 * cache.
4085 */
4086 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4087 continue;
4088
4089 if (!add_caller(n, v))
4090 return;
4091 }
4092 }
4093
4094 static void show_symbol(struct seq_file *m, unsigned long address)
4095 {
4096 #ifdef CONFIG_KALLSYMS
4097 unsigned long offset, size;
4098 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4099
4100 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4101 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4102 if (modname[0])
4103 seq_printf(m, " [%s]", modname);
4104 return;
4105 }
4106 #endif
4107 seq_printf(m, "%p", (void *)address);
4108 }
4109
4110 static int leaks_show(struct seq_file *m, void *p)
4111 {
4112 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4113 struct page *page;
4114 struct kmem_cache_node *n;
4115 const char *name;
4116 unsigned long *x = m->private;
4117 int node;
4118 int i;
4119
4120 if (!(cachep->flags & SLAB_STORE_USER))
4121 return 0;
4122 if (!(cachep->flags & SLAB_RED_ZONE))
4123 return 0;
4124
4125 /*
4126 * Set store_user_clean and start to grab stored user information
4127 * for all objects on this cache. If some alloc/free requests comes
4128 * during the processing, information would be wrong so restart
4129 * whole processing.
4130 */
4131 do {
4132 set_store_user_clean(cachep);
4133 drain_cpu_caches(cachep);
4134
4135 x[1] = 0;
4136
4137 for_each_kmem_cache_node(cachep, node, n) {
4138
4139 check_irq_on();
4140 spin_lock_irq(&n->list_lock);
4141
4142 list_for_each_entry(page, &n->slabs_full, lru)
4143 handle_slab(x, cachep, page);
4144 list_for_each_entry(page, &n->slabs_partial, lru)
4145 handle_slab(x, cachep, page);
4146 spin_unlock_irq(&n->list_lock);
4147 }
4148 } while (!is_store_user_clean(cachep));
4149
4150 name = cachep->name;
4151 if (x[0] == x[1]) {
4152 /* Increase the buffer size */
4153 mutex_unlock(&slab_mutex);
4154 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4155 if (!m->private) {
4156 /* Too bad, we are really out */
4157 m->private = x;
4158 mutex_lock(&slab_mutex);
4159 return -ENOMEM;
4160 }
4161 *(unsigned long *)m->private = x[0] * 2;
4162 kfree(x);
4163 mutex_lock(&slab_mutex);
4164 /* Now make sure this entry will be retried */
4165 m->count = m->size;
4166 return 0;
4167 }
4168 for (i = 0; i < x[1]; i++) {
4169 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4170 show_symbol(m, x[2*i+2]);
4171 seq_putc(m, '\n');
4172 }
4173
4174 return 0;
4175 }
4176
4177 static const struct seq_operations slabstats_op = {
4178 .start = slab_start,
4179 .next = slab_next,
4180 .stop = slab_stop,
4181 .show = leaks_show,
4182 };
4183
4184 static int slabstats_open(struct inode *inode, struct file *file)
4185 {
4186 unsigned long *n;
4187
4188 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4189 if (!n)
4190 return -ENOMEM;
4191
4192 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4193
4194 return 0;
4195 }
4196
4197 static const struct file_operations proc_slabstats_operations = {
4198 .open = slabstats_open,
4199 .read = seq_read,
4200 .llseek = seq_lseek,
4201 .release = seq_release_private,
4202 };
4203 #endif
4204
4205 static int __init slab_proc_init(void)
4206 {
4207 #ifdef CONFIG_DEBUG_SLAB_LEAK
4208 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4209 #endif
4210 return 0;
4211 }
4212 module_init(slab_proc_init);
4213 #endif
4214
4215 /**
4216 * ksize - get the actual amount of memory allocated for a given object
4217 * @objp: Pointer to the object
4218 *
4219 * kmalloc may internally round up allocations and return more memory
4220 * than requested. ksize() can be used to determine the actual amount of
4221 * memory allocated. The caller may use this additional memory, even though
4222 * a smaller amount of memory was initially specified with the kmalloc call.
4223 * The caller must guarantee that objp points to a valid object previously
4224 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4225 * must not be freed during the duration of the call.
4226 */
4227 size_t ksize(const void *objp)
4228 {
4229 BUG_ON(!objp);
4230 if (unlikely(objp == ZERO_SIZE_PTR))
4231 return 0;
4232
4233 return virt_to_cache(objp)->object_size;
4234 }
4235 EXPORT_SYMBOL(ksize);